PI6C3991JIE [PERICOM]

暂无描述;
PI6C3991JIE
型号: PI6C3991JIE
厂家: PERICOM SEMICONDUCTOR CORPORATION    PERICOM SEMICONDUCTOR CORPORATION
描述:

暂无描述

时钟
文件: 总11页 (文件大小:502K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PI6C3991  
3.3V High-Speed, Low-Voltage  
Programmable Skew Clock Buffer  
SuperClock  
Features  
Description  
• All output pair skew <100ps typical (250 Max.)  
• 3.75 MHz to 80 MHz output operation  
• User-selectable output functions  
— Selectable skew to 18ns  
PI6C3991 offers selectable control over system clock functions.  
These multiple-output clock drivers provide the system integrator  
with functions necessary to optimize the timing of high-perfor-  
mancecomputersystems.Eightindividualdrivers,arrangedasfour  
pairs of user-controllable outputs, can each drive terminated trans-  
mission lines with impedances as low as 50 ohms while delivering  
minimal and specified output skews and full-swing logic levels  
(LVTTL).  
— Inverted and Non-Inverted  
— Operation at ½ and ¼ input frequency  
— Operation at 2X and 4X input frequency  
(input as low as 3.75 MHz, x4 operation)  
Each output can be hardwired to one of nine skews or function  
configurations. Delay increments of 0.7ns to 1.5ns are determined  
by the operating frequency with outputs able to skew up to ±6 time  
units from their nominal “zero” skew position. The completely  
integrated PLL allows external load and transmission line delay  
effects to be canceled. The user can create output-to-output skew  
up to ±12 time units.  
• Zero input-to-output delay  
• 50% duty-cycle outputs  
• LVTTLoutputsdrive50-ohmterminatedlines  
• Operates from a single 3.3V supply  
• Low operating current  
Divide-by-two and divide-by-four output functions are provided  
foradditionalflexibilityindesigningcomplexclocksystems.When  
combined with the internal PLL, these divide functions allow  
distribution of a low-frequency clock that can be multiplied by  
two or four at the clock destination. This feature allows flexibility  
and simplifies system timing distribution design for complex  
high-speed systems.  
• Availablein32-pinPLCC(J)package  
• Jitter < 200ps peak-to-peak (< 25ps RMS)  
PinConfiguration  
LogicBlockDiagram  
Test  
Phase  
Freq.  
DET  
FB  
VCO and  
Time Unit  
Generator  
Filter  
REF  
4
3
2
1
32 31 30  
5
29  
28  
27  
26  
25  
24  
23  
22  
21  
3F1  
4F0  
4F1  
2F0  
GND  
1F1  
1F0  
FS  
6
4Q0  
4Q1  
7
4F0  
4F1  
8
V
CCQ  
32-Pin  
J
Select Inputs  
(three level)  
9
V
V
CCN  
4Q1  
CCN  
Skew  
3Q0  
3Q1  
10  
11  
12  
13  
1Q0  
1Q1  
GND  
GND  
3F0  
3F1  
4Q0  
Select  
GND  
GND  
2Q0  
2Q1  
2F0  
2F1  
Matrix  
14 15 16 17 18 19 20  
1Q0  
1Q1  
1F0  
1F1  
PS8450B  
04/09/01  
1
PI6C3991  
3.3V High-Speed, Low-Voltage Programmable  
Skew Clock Buffer - SuperClock  
PinDescriptions  
Signal Name  
I/O  
Description  
REF  
I
Reference frequency input. This input supplies the frequency and timing against which all functional variation is measured.  
PLL feedback input (typically connected to one of the eight outputs)  
Three-level frequency range select. see Table 1.  
FB  
I
FS  
I
1F0, 1F1  
2F0, 2F1  
3F0, 3F1  
4F0, 4F1  
TEST  
I
Three-level function select inputs for output pair 1 (1Q0, 1Q1). See Table 2.  
Three-level function select inputs for output pair 2 (2Q0, 2Q1). See Table 2.  
Three-level function select inputs for output pair 3 (3Q0, 3Q1). See Table 2.  
Three-level function select inputs for output pair 4 (4Q0, 4Q1). See Table 2.  
Three-level select. See test mode section under the block diagram descriptions  
Output pair 1. See Table 2  
I
I
I
I
1Q0, 1Q1  
2Q0, 2Q1  
3Q0, 3Q1  
4Q0, 4Q1  
VCCN  
O
O
O
O
Output pair 2. See Table 2  
Output pair 3. See Table 2  
Output pair 4. See Table 2  
PWR Power supply for output drivers  
PWR Power supply for internal circuitry  
PWR Ground  
VCCQ  
GND  
Table2.ProgrammableSkewConfigurations(1)  
Table1.FrequencyRangeSelectandt Calculation(1)  
U
1
Function Selects  
Output Functions  
tU =  
Approximate  
Freq. (MHz) at  
which tU= 1.0ns  
FNOM(MHz)  
f
NOM × N  
FS(1,2)  
1F1, 2F1,  
1F0, 2F0,  
3F0, 4F0  
1Q0, 1Q1,  
2Q0, 2Q1  
3Q0, 3Q1  
4Q0, 4Q1  
where N=  
3F1, 4F1  
LOW  
LOW  
LOW  
MID  
Min.  
15  
Max.  
30  
LOW  
MID  
–4tU  
–3tU  
–2tU  
–1tU  
0tU  
Divide by 2 Divide by 2  
LOW  
MID  
44  
26  
16  
22.7  
38.5  
62.5  
–6tU  
–4tU  
–6tU  
–4tU  
25  
40  
50  
80  
HIGH  
LOW  
MID  
HIGH  
–2tU  
–2tU  
MID  
0tU  
0tU  
MID  
HIGH  
LOW  
MID  
+1tU  
+2tU  
+3tU  
+4tU  
+2tU  
+2tU  
+4tU  
+6tU  
Inverted  
HIGH  
HIGH  
HIGH  
+4tU  
+6tU  
HIGH  
Divide by 4  
Notes:  
1. For all three-state inputs, HIGH indicates a connection to V , LOW indicates a connection to GND, and MID indicates an  
CC  
open connection. Internal termination circuitry holds an unconnected input to V /2.  
CC  
2. The level to be set on FS is determined by the “normal” operating frequency (f ) and Time Unit Generator  
NOM  
(see Logic Block Diagram). Nominal frequency (f ) always appears at 1Q0 and the other outputs when they are operated in  
NOM  
their undivided modes (see Table 2). The frequency appearing at the REF and FB inputs will be f  
when the output connected  
NOM  
to FB is undivided. The frequency of the REF and FB inputs will be f /2 or f /4 when the part is configured for a frequency  
NOM NOM  
multiplication by using a divided output as the FB input.  
PS8450B  
04/09/01  
2
PI6C3991  
3.3V High-Speed, Low-Voltage Programmable  
Skew Clock Buffer - SuperClock  
Test Mode  
Block Diagram Description  
TheTESTinputisathree-levelinput. Innormalsystemoperation,  
this pin is connected to ground, allowing the PI6C3991 to operate  
as explained briefly above (for testing purposes, any of the three  
levelinputscanhavearemovablejumpertoground,orbetiedLOW  
through a 100 Ohm resistor. This will allow an external tester to  
change the state of these pins.)  
IftheTESTinputisforcedtoitsMIDorHIGHstate,thedevicewill  
operatewithitsinternalphaselockedloopdisconnected, andinput  
levels supplied to REF will directly control all outputs. Relative  
output to output functions are the same as in normal mode.  
Phase Frequency Detector and Filter  
These two blocks accept input signals from the reference frequency  
(REF) input and the feedback (FB) input and generate correction  
information to control the frequency of the Voltage-Controlled  
Oscillator (VCO). These blocks, along with the VCO, form a Phase-  
Locked Loop (PLL) that tracks the incoming REF signal.  
VCO and Time Unit Generator  
The VCO accepts analog control inputs from the PLL filter block  
and generates a frequency that is used by the time unit generator  
to create discrete time units that are selected in the skew mix matrix.  
The operational range of the VCO is determined by the FS control  
pin. The time unit (tU) is determined by the operating frequency of  
the device and the level of the FS pin as shown in Table 1.  
In contrast with normal operation (TEST tied LOW). All outputs  
will function based only on the connection of their own function  
select inputs (xF0 and xF1) and the waveform characteristics of  
the REF input.  
Skew Select Matrix  
MaximumRatings  
Storage Temperature ...................................... –65°Cto+150°C  
AmbientTemperaturewith  
PowerApplied.................................................–55°Cto+125°C  
Supply Voltage to Ground Potential.................. –0.5Vto+7.0V  
DC Input Voltage ...............................................–0.5Vto+7.0V  
Output Current into Outputs (LOW) ............................... 64mA  
Static Discharge Voltage ............................................... >2001V  
(perMIL-STD-883,Method3015)  
The skew select matrix is comprised of four independent sections.  
Each section has two low-skew, high-fanout drivers (xQ0, xQ1),  
and two corresponding three-level function select (xF0, xF1)  
inputs. Table 2 shows the nine possible output functions for each  
section as determined by the function select inputs. All times are  
measured with respect to the REF input assuming that the output  
connected to the FB input has 0tU selected.  
Latch-UpCurrent .........................................................>200mA  
FB Input  
REF Input  
OperatingRange  
Range  
Commercial  
Industrial  
Ambient Temperature  
0°C to +70°C  
VCC  
1Fx  
2Fx  
3Fx  
4Fx  
3.3V ±10%  
3.3V ±10%  
(N/A)  
LL  
LM  
LH  
–6t  
–4t  
–3t  
–2t  
–1t  
0t  
U
U
U
–40°C to +85°C  
LM (N/A)  
LH ML  
ML (N/A)  
MM MM  
Note:  
U
U
3. FB connected to an output selected for "zero" skew  
(ie.,xF1=xF0=MID).  
U
U
MH  
HL  
(N/A) +1t  
MH +2t  
(N/A) +3t  
U
U
U
U
HM  
HH  
HL  
+4t  
+6t  
(N/A)  
HM  
(N/A) LL/HH Divided  
(N/A)  
HH Invert  
Figure1.TypicalOutputswithFBConnectedtoa  
(3)  
Zero-SkewOutput  
PS8450B  
04/09/01  
3
PI6C3991  
3.3V High-Speed, Low-Voltage Programmable  
Skew Clock Buffer - SuperClock  
Capacitance(6)  
Parameter  
Description  
Test Conditions  
Max.  
Units  
C
Input Capacitance  
T = 25°C, f = 1MHz, V = 3.3V  
10  
pF  
IN  
A
CC  
ElectricalCharacteristics(OvertheOperatingRange)  
Parameter  
VOH  
Description  
Output HIGH Voltage  
Test Conditions  
Min.  
Max.  
Units  
VCC = Min., IOH = –12mA  
2.4  
VOL  
Output LOW Voltage  
VCC = Min., IOL = 35mA  
0.45  
VCC  
Input HIGH Voltage (REF & FB  
inputs only)  
VIH  
VIL  
2.0  
–0.5  
Input LOW Voltage (REF & FB inputs  
only)  
0.8  
V
Three-Level Input HIGH Voltage  
(Test, FS, xFn)(4)  
VIHH  
VIMM  
VILL  
IIH  
Min. VCC Max.  
0.87 VCC  
VCC  
Three-Level Input MID Voltage  
(Test, FS, xFn)(4)  
Min. VCC Max.  
0.47 VCC 0.53 VCC  
Three-Level Input LOW Voltage  
(Test, FS, xFn)(4)  
Min. VCC Max.  
0.0  
0.13 VCC  
20  
Input HIGH Leakage Current  
(REF & FB inputs only)  
VCC = Max., VIN = Max.  
VCC = Max., VIN = 0.4V  
Input LOW Leakage Current  
(REF & FB inputs only)  
IIL  
–20  
µA  
IIHH  
IIMM  
IILL  
Input HIGH Current (Test, FS, xFn)  
Input MID Current (Test, FS, xFn)  
Input LOW Current (Test, FS, xFn)  
Short Circuit Current(5)  
VIN = VCC  
200  
50  
VIN = VCC/2  
–50  
VIN = GND  
–200  
IOS  
VCC = Max., VOUT = GND (25°C only)  
–200  
95  
mA  
mA  
ICCQ  
Operating Current Used by Internal  
Circuitry  
VCCN = VCCQ = Max.,  
All Input Selects Open  
Com'l  
Mil/Ind  
100  
ICCN  
Output Buffer Current per Output Pair VCCN = VCCQ = Max.,  
IOUT = 0mA  
19  
mA  
All Input Selects Open, fMAX  
PD  
Power Dissipation per Output Pair  
VCCN = VCCQ = Max.,  
IOUT = 0mA  
104  
mW  
All Input Selects Open, fMAX  
Notes:  
4. These inputs are normally wired to V , GND, or left unconnected (actual threshold voltages vary as a percentage of V ). Internal  
CC  
CC  
termination resistors hold unconnected inputs at V /2. If these inputs are switched, the function and timing of the outputs may glitch  
CC  
and the PLL may require an additional t  
time before all data sheet limits are achieved.  
LOCK  
5. PI6C3991 should be tested one output at a time, output shorted for less than one second, less than 10% duty cycle.  
Roomtemperatureonly.  
6. Applies to REF and FB inputs only. Tested initially and after any design or process changes that may affect these parameters.  
PS8450B  
04/09/01  
4
PI6C3991  
3.3V High-Speed, Low-Voltage Programmable  
Skew Clock Buffer - SuperClock  
SwitchingCharacteristicsPI6C3991(OvertheOperatingRange)(2,7)  
PI6C3991-2  
PI6C3991-5  
PI6C3991  
Parameter  
Description  
Min.  
15  
Typ. Max. Min. Typ. Max. Min. Typ. Max. Units  
(1,2)  
(1,2)  
(1,2)  
FS = LOW  
30  
50  
80  
15  
25  
30  
50  
80  
15  
25  
30  
50  
80  
Operating  
Clock Frequency  
in MHz  
f
FS = MID  
25  
MHz  
ns  
NOM  
FS = HIGH  
40  
40  
40  
t
REF Pulse Width HIGH  
REF Pulse Width LOW  
Programmable Skew Unit  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
RPWH  
t
RPWL  
t
U
See Table 1  
0.05  
0.1  
See Table 1  
0.1 0.25  
See Table 1  
(9,10)  
t
Zero Output Matched-Pair Skew (XQ0, XQ1)  
0.2  
0.25  
0.5  
0.1  
0.3  
0.6  
1.0  
0.7  
1.2  
0.25  
0.75  
1.0  
SKEWPR  
(9,11)  
t
Zero Output Skew (All Outputs)  
0.25  
0.6  
0.5  
0.5  
0.5  
0.5  
0.7  
1.0  
0.7  
1.0  
1.25  
SKEW0  
(9,13)  
t
Output Skew (Rise-Rise, Fall-Fall, Same Class Outputs)  
Output Skew (Rise-Fall, Nominal-Inverted, Divided-Divided)  
0.1  
SKEW1  
(9,13)  
(9,13)  
t
0.5  
1.0  
1.5  
SKEW2  
t
Output Skew (Rise-Rise, Fall-Fall, Different Class Outputs)  
0.25  
0.5  
0.5  
1.2  
SKEW3  
(9,13)  
t
Output Skew (Rise-Fall, Nominal-Divided, Divided-Inverted  
0.9  
1.7  
SKEW4  
(8,14)  
t
Device-to-Device Dkew  
1.25  
1.65  
ns  
DEV  
t
Propagation Delay, REF Rise to FB Rise  
–0.25  
–0.65  
0.0  
0.0  
+0.25 –0.5  
+0.65 –1.0  
2.0  
0.0 +0.5 –0.7  
0.0  
0.0  
+0.7  
+1.2  
3
PD  
(15)  
t
Output Duty Cycle Variation  
0.0 +1.0 –1.2  
ODCV  
(16)  
t
Output HIGH Time Deviation from 50%  
2.5  
3.0  
PWH  
(16)  
t
Output LOW Time Deviation from 50%  
1.5  
3.5  
2.5  
2.5  
0.5  
25  
PWL  
(16,17)  
t
Output Rise Time  
0.15  
0.15  
1.0  
1.0  
1.2  
1.2  
0.5  
25  
0.15  
0.15  
1.0  
1.0  
1.5  
1.5  
0.5  
25  
0.15  
0.15  
1.5  
1.5  
ORISE  
(16,17)  
t
Output Fall Time  
OFALL  
(18)  
t
PLL Lock Time  
ms  
ps  
LOCK  
(8)  
RMS  
Cycle-to-cycle  
Output Jitter  
t
JR  
(8)  
Peak-to-peak  
200  
200  
200  
Notes:  
7. TestmeasurementlevelsforthePI6C3991areTTLlevels(1.5Vto1.5V). Testconditionsassumesignaltransitiontimesof2ns orless  
and output loading as shown in the AC Test Loads and Waveforms unless otherwise specified.  
8. Guaranteed by statistical correlation. Tested initially and after any design or process changes that may affect these parameters.  
9. SKEW is defined as the time between the earliest and the latest output transition among all outputs for which the same t delay has  
U
been selected when all are loaded with 30pF and terminated with 50 Ohm to V /2.  
CC  
10. t  
11. t  
is defined as the skew between a pair of outputs (XQ0 and XQ1) when all eight outputs are selected for 0t .  
U
SKEWPR  
is defined as the skew between outputs when they are selected for 0t . Other outputs are divided or inverted but not shifted.  
SKEW0  
U
12. C = 0pF. For C = 30pF, t = 0.35ns.  
SKEW0  
L
L
13. There are three classes of outputs: Nominal (multiple of t delay), Inverted (4Q0 and 4Q1 only with 4F0 = 4F1 = HIGH), and Divided  
U
(3Qxand4QxonlyinDivide-by-2orDivide-by-4mode).  
14. t  
is the output-to-output skew between any two devices operating under the same conditions (V ambient temperature, air flow,  
CC  
DEV  
etc.)  
15. t  
is the deviation of the output from a 50% duty cycle. Output pulse width variations are included in t  
and t  
SKEW4  
ODCV  
SKEW2  
specifications.  
16. Specified with outputs loaded with 30pF for the PI6C3991 and PI6C3991-5 devices. Devices are terminated through 50 Ohm to V  
/
CC  
2. t  
is measured at 2.0V. t  
is measured at 0.8V.  
PWL  
PWH  
17. t  
18. t  
and t  
measured between 0.8V and 2.0V.  
ORISE  
LOCK  
OFALL  
is the time that is required before synchronization is achieved. This specification is valid only after V is stable and within  
CC  
normal operating limits. This parameter is measured from the application of a new signal or frequency at REF or FB until t is within  
PD  
specifiedlimits.  
PS8450B  
04/09/01  
5
PI6C3991  
3.3V High-Speed, Low-Voltage Programmable  
Skew Clock Buffer - SuperClock  
AC Test Loads and Waveforms  
TTL AC Test Load  
TTL Input Test Waveform  
VCC  
1ns  
1ns  
R1  
3.0V  
2.0V  
Vth=1.5V  
0.8V  
0V  
C
L
R2  
R1=100  
R2=100  
C =30pF  
L
(Includes fixture and probe capacitance)  
ACTimingDiagrams  
t
t
REF  
RPWL  
t
RPWH  
REF  
t
PD  
t
t
ODCV  
ODCV  
FB  
Q
t
JR  
t
SKEWPR  
t
SKEWPR  
t
SKEW0, 1  
t
SKEW0, 1  
Other Q  
t
t
SKEW2  
SKEW2  
Inverted Q  
t
t
SKEW3,4  
t
t
SKEW3,4  
SKEW3,4  
SKEW2,4  
REF Divided by 2  
t
SKEW1,3,4  
REF Divided by 4  
PS8450B  
04/09/01  
6
PI6C3991  
3.3V High-Speed, Low-Voltage Programmable  
Skew Clock Buffer - SuperClock  
OperationalModeDescriptions  
REF  
FB  
LOAD  
System Clock  
REF  
FS  
L1  
Z
Z
0
0
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
LOAD  
LOAD  
LOAD  
L2  
L3  
L4  
Z
Z
0
0
LENGTH: L1 = L2 = L3 = L4  
Figure2.Zero-Skewand/orZero-DelayClockDriver  
Figure 2 shows the SuperClock configured as a zero-skew clock  
buffer.InthismodethePI6C3991canbeusedasthebasisforalow-  
skew clock distribution tree. When all of the function select inputs  
(xF0, xF1) are left open, the outputs are aligned and may each drive  
aterminatedtransmissionlinetoanindependentload.TheFBinput  
can be tied to any output in this configuration and the operating  
frequency range is selected with the FS pin. The low-skew specifi-  
cation,coupledwiththeabilitytodriveterminatedtransmissionlines  
(withimpedancesaslowas50Ohm),allowsefficientprintedcircuit  
board design.  
REF  
FB  
LOAD  
LOAD  
System Clock  
REF  
FS  
L1  
L2  
Z
Z
0
0
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
L3  
L4  
LOAD  
LOAD  
Z
Z
0
0
LENGTH: L1 = L2, L3 < L2 by 6", L4 > L2 by 6"  
Figure3.ProgrammableSkewClockDriver  
PS8450B  
04/09/01  
7
PI6C3991  
3.3V High-Speed, Low-Voltage Programmable  
Skew Clock Buffer - SuperClock  
Figure 3 shows a configuration to equalize skew between metal Figure4showsanexampleoftheinvertfunctionoftheSuperClock.  
tracesofdifferentlengths. Inadditiontolowskewbetweenoutputs, In this example the 4Q0 output used as the FB input is programmed  
the SuperClock can be programmed to stagger the timing of its forinvert(4F0=4F1=HIGH)whiletheotherthreepairsofoutputs  
outputs. The four groups of output pairs can each be programmed areprogrammedforzeroskew.When4F0and4F1aretiedHIGH,4Q0  
to different output timing. Skew timing can be adjusted over a wide and 4Q1 become inverted zero phase outputs. The PLL aligns the  
range in small increments with the appropriate strapping of the rising edge of the FB input with the rising edge of the REF. This  
functionselectpins. Inthisconfigurationthe4Q0outputisfedback causesthe1Q,2Q,and3Qoutputstobecomethe“inverted”outputs  
to FB and configured for zero skew.  
with respect to the REF input. By selecting which output is connect  
to FB, it is possible to have 2 inverted and 6 non-inverted outputs  
or6invertedand2non-invertedoutputs.Thecorrectconfigura-tion  
would be determined by the need for more (or fewer) inverted  
outputs. 1Q, 2Q, and 3Q outputs can also be skewed to compensate  
for varying trace delays independent of inver-sion on 4Q.  
The other three pairs of outputs are programmed to yield different  
skewsrelativetothefeedback. Byadvancingtheclocksignalonthe  
longertracesorretardingtheclocksignalonshortertraces,allloads  
can receive the clock pulse at the same time.  
In this illustration the FB input is connected to an output with 0ns  
skew(xF1,xF0=MID)selected.TheinternalPLLsynchronizesthe  
FB and REF inputs and aligns their rising edges to insure that all  
outputs have precise phase alignment.  
REF  
Clock skews can be advanced by ±6 time units (t ) when using an  
U
output selected for zero skew as the feedback. A wider range of  
delaysispossibleiftheoutputconnectedtoFBisalsoskewed.Since  
FB  
20 MHz  
REF  
“ZeroSkew”,+t ,and–t aredefinedrelativetooutputgroups,and  
U
U
sincethePLLalignstherisingedgesofREFandFB, itispossibleto  
createwideroutputskewsbyproperselectionofthexFninputs. For  
FS  
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
40 MHz  
20 MHz  
examplea+10t betweenREFand3Qxcanbeachievedbyconnect-  
U
ing 1Q0 to FB and setting 1F0 = 1F1 = GND, 3F0 = MID, and 3F1 =  
High.(SinceFBalignsat–4t and3Qxskewsto+6t ,atotalof+10  
U
U
t skew is realized). Many other configurations can be realized by  
U
80 MHz  
skewing both the output used as the FB input and skewing the other  
outputs.  
REF  
Figure5.FrequencyMultiplierwithSkewConnections  
FB  
REF  
FS  
Figure5illustratestheSuperClockconfiguredasaclockmultiplier.  
The 3Q0 output is programmed to divide by four and is fed back to  
FB. This causes the PLL to increase its frequency until the 3Q0 and  
3Q1outputsarelockedat20MHzwhilethe1Qxand2Qxoutputsrun  
at 80 MHz. The 4Q0 and 4Q1 outputs are programmed to divide by  
two,whichresultsina40MHzwaveformattheseoutputs.Notethat  
the 20 and 40 MHz clocks fall simultaneously and are out of phase  
on their rising edge. This will allow the designer to use the rising  
edges of the ½ frequency and ¼ frequency outputs without concern  
forrising-edgeskew.The2Q0,2Q1,1Q0,and1Q1outputsrunat80  
MHz and are skewed by programming their select inputs accord-  
ingly.NotethattheFSpiniswiredfor80MHzoperationbecausethat  
is the frequency of the fastest output.  
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
Figure4.InvertedOutputConnections  
PS8450B  
04/09/01  
8
PI6C3991  
3.3V High-Speed, Low-Voltage Programmable  
Skew Clock Buffer - SuperClock  
Figure 7 shows some of the functions that are selectable on the 3Qx  
and 4Qx outputs. These include inverted outputs and outputs that  
offerdivide-by-2anddivide-by-4timing.Aninvertedoutputallows  
the system designer to clock different sub-systems on opposite  
edges, without suffering from the pulse asymmetry typical of non-  
ideal loading. This function allows the two subsystems to each be  
clocked 180 degrees out of phase, but still to be aligned within the  
skew spec.  
The divided outputs offer a zero-delay divider for portions of the  
system that need the clock to be divided by either two or four, and  
still remain within a narrow skew of the “1X” clock. Without this  
feature, an external divider would need to be add-ed, and the  
propagation delay of the divider would add to the skew between the  
different clock signals.  
These divided outputs, coupled with the Phase Locked Loop, allow  
the SuperClock to multiply the clock rate at the REF input by either  
two or four. This mode will enable the designer to distribute a low-  
frequency clock between various portions of the system, and then  
locallymultiplytheclockratetoamoresuitablefrequency,whilestill  
maintaining the low-skew characteristics of the clock driver. The  
SuperClock can perform all of the functions described above at the  
sametime.Itcanmultiplybytwoandfourordividebytwo(andfour)  
at the same time that it is shifting its outputs over a wide range or  
maintaining zero skew between selected outputs.  
REF  
FB  
20 MHz  
REF  
FS  
10 MHz  
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
5 MHz  
20 MHz  
Figure6.FrequencyDividerConnections  
Figure6demonstratestheSuperClock inaclockdividerapplication.  
2Q0isfedbacktotheFBinputandprogrammedforzeroskew. 3Qx  
isprogrammedtodividebyfour.4Qxisprogrammedtodividebytwo.  
Note that the falling edges of the 4Qx and 3Qx outputs are aligned.  
This allows use of the rising edges of the ½ frequency and ¼  
frequencywithoutconcernforskewmismatch.The1Qxoutputsare  
programmed to zero skew and are aligned with the 2Qx outputs. In  
thisexample, theFSinputisgroundedtoconfigurethedeviceinthe  
15 to 30 MHz range since the highest frequency output is running  
at20MHz.  
REF  
FB  
LOAD  
27.5 MHz  
REF  
Distribution  
Z0  
Clock  
FS  
80 MHz  
Inverted  
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
LOAD  
Z0  
27.5 MHz  
LOAD  
80 MHz  
Zero Skew  
Z0  
80 MHz Skewed  
LOAD  
–3.125ns (–4t )  
Z0  
U
Figure7.Multi-FunctionClockDriver  
PS8450B  
04/09/01  
9
PI6C3991  
3.3V High-Speed, Low-Voltage Programmable  
Skew Clock Buffer - SuperClock  
REF  
LOAD  
FB  
System  
Clock  
Z0  
REF  
FS  
L1  
L2  
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
LOAD  
Z0  
L3  
LOAD  
Z0  
L4  
FB  
Z0  
REF  
FS  
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
LOAD  
LOAD  
Figure8.Board-to-BoardClockDistribution  
Figure8showsthePI6C3991connectedinseriestoconstructazero delay clock tree. Cascaded clock buffers will accumulate low-fre-  
skew clock distribution tree between boards. Delays of the down quencyjitterbecauseofthenon-idealfilteringcharacteristicsofthe  
streamclockbufferscanbeprogrammedtocompensateforthewire PLLfilter.Itisrecommendedthatnotmorethantwoclockbuffersbe  
length (i.e., select negative skew equal to the wire delay) necessary connected in series.  
to connect them to the master clock source, approximating a zero-  
PS8450B  
04/09/01  
10  
PI6C3991  
3.3V High-Speed, Low-Voltage Programmable  
Skew Clock Buffer - SuperClock  
Package Diagram - 32-Pin PLCC (J)  
OrderingInformation  
Accuracy (ps)  
Ordering Code  
PI6C3991-2J  
PI6C3991-5J  
PI6C3991J  
Package Name  
Package Type  
Operating Range  
Commercial  
250  
500  
750  
500  
750  
J32  
J32  
J32  
J32  
J32  
32-Pin Plastic Leaded Chip Carrier  
32-Pin Plastic Leaded Chip Carrier  
32-Pin Plastic Leaded Chip Carrier  
32-Pin Plastic Leaded Chip Carrier  
32-Pin Plastic Leaded Chip Carrier  
Commercial  
Commercial  
PI6C3991-5IJ  
PI6C3991-IJ  
Industrial  
PericomSemiconductorCorporation  
2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com  
PS8450B  
04/09/01  
11  

相关型号:

PI6C3993-5AC

PLL Based Clock Driver, 16 True Output(s), 0 Inverted Output(s), PQFP100, PLASTIC, TQFP-100
PERICOM

PI6C3Q991

3.3V Programmable Skew PLL Clock Driver
PERICOM

PI6C3Q991-2

Eight Distributed-Output Clock Driver
ETC

PI6C3Q991-2J

3.3V Programmable Skew PLL Clock Driver
PERICOM

PI6C3Q991-2JE

PLL Based Clock Driver, 6C Series, 4 True Output(s), 0 Inverted Output(s), PQCC32, PLASTIC, MS-016A/AE, LCC-32
PERICOM

PI6C3Q991-2JEX

PLL Based Clock Driver, 6C Series, 4 True Output(s), 0 Inverted Output(s), PQCC32, PLASTIC, MS-016A/AE, LCC-32
PERICOM

PI6C3Q991-2JX

PLL Based Clock Driver, 6C Series, 4 True Output(s), 0 Inverted Output(s), PQCC32, PLASTIC, MS-016A/AE, LCC-32
PERICOM

PI6C3Q991-5

Clock IC | 500ps Accuracy. 3.3V. Balanced. 3.75 to 85 MHz
ETC

PI6C3Q991-5I

Eight Distributed-Output Clock Driver
ETC

PI6C3Q991-5IJ

3.3V Programmable Skew PLL Clock Driver
PERICOM

PI6C3Q991-5IJX

PLL Based Clock Driver, 6C Series, 8 True Output(s), 0 Inverted Output(s), PQCC32, PLASTIC, LCC-32
PERICOM

PI6C3Q991-5J

3.3V Programmable Skew PLL Clock Driver
PERICOM