HY-5 [PERKINELMER]

Thyratrons; 闸流管
HY-5
型号: HY-5
厂家: PERKINELMER OPTOELECTRONICS    PERKINELMER OPTOELECTRONICS
描述:

Thyratrons
闸流管

文件: 总6页 (文件大小:52K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Lighting  
Imaging  
Telecom  
High Energy Switches  
Thyratrons  
Features  
Description  
Wide operating voltage range  
High pulse rate capability  
Ceramic-metal construction  
High current capability  
Long life  
Thyratrons are fast acting high  
voltage switches suitable for a  
variety of applications including  
radar, laser and scientific use.  
PerkinElmer’s thyratrons are  
constructed of ceramic and  
metal for strength and long life.  
Over 300 thyratron types are  
available from PerkinElmer. The  
types listed in this guide are a  
cross section of the broad line  
available. We encourage  
inquiries for thyratrons to suit  
your particular application.  
.
www.perkinelmer.com/opto  
How a Thyratron works  
The commutation process is sim-  
100 nS, it can damage the grid  
ply modeled as shown in Figure 2. driver circuit unless measures  
The operation of the device can  
be divided into three phases: trig-  
gering and commutation (closure),  
steady-state conduction, and  
recovery (opening), each of which  
is discussed below.  
are taken to suppress the spike  
The time interval between trigger  
before it enters the grid driver cir-  
breakdown of the grid-cathode  
cuit. The location of the grid spike  
region and complete closure of  
suppression circuit is shown in  
Figure 3, Grid Circuit.  
the thyratron is called the anode  
delay time. It is typically 100-200  
nanoseconds for most tube types.  
Figure 4, Typical Grid Spike  
Suppression Circuits, shows the  
more common methods used to  
protect the grid driver circuit. In  
using any of these types of cir-  
cuits, care must be exercised to  
assure that the Grid Driver Circuit  
pulse is not attenuated in an unac-  
ceptable manner. The values for  
the circuit components are  
During commutation, a high volt-  
age spike appears at the grid of  
the thyratron. This spike happens  
in the time it takes for the plasma  
in the grid-anode space to "con-  
nect" to the plasma in the grid-  
cathode space. During this time,  
the anode is momentarily "con-  
nected" to the grid thereby caus-  
ing the grid to assume a voltage  
nearly that of the anode’s.  
ANODE  
CONTROL GRID (G2)  
AUXILIARY GRID (G1)  
CATHODE  
Figure 1. Thyratron with auxiliary grid  
(heater detail not shown)  
dependent on the characteristics  
of the thyratron being driven, the  
Although the grid spike voltage is  
brief in duration, usually less than  
Triggering and Commutation  
When a suitable positive trigger-  
ing pulse of energy is applied to  
the grid, a plasma forms in the  
grid-cathode region from elec-  
trons. This plasma passes through  
the apertures of the grid structure  
and causes electrical breakdown  
in the high-voltage region  
e
e
1. Trigger pulse applied  
to control grid.  
2. Grid-cathode breakdown.  
between the grid and the anode.  
This begins the process of thyra-  
tron switching (also called com-  
mutation). The plasma that is  
formed between the grid and the  
anode diffuses back through the  
grid into the grid-cathode space.  
"Connection" of the plasma in the  
anode-grid space with the plasma  
in the cathode-grid space com-  
pletes the commutation process.  
Propagating  
Plasma Front  
4. Closure  
3. Electrons from grid-cathode  
region create a dense plasma  
in the grid-anode region. The  
plasma front propagates to-  
ward the cathode via break-  
down of gas.  
Figure 2. Thyratron commutation  
grid driver circuit design, and the Recovery can also be improved  
involving gently rising voltages  
performance required from the by arranging to have small nega- (i.e., resonant charging and ramp  
thyratron itself. Contact the appli- tive voltage on the anode after  
cations engineering department at forward conduction has ceased.  
charging) favor thyratron recov-  
ery, and therefore allow higher  
PerkinElmer to discuss the spe-  
In many radar circuits, a few-per- pulse repetition rates. Fast ramp-  
cific details of your requirement. cent negative mismatch between  
a pulse-forming network and the  
ing and resistive charging put  
large voltages on the anode  
load ensures a residual negative  
anode voltage. In laser circuits,  
quickly, thus making recovery  
more difficult. The ideal charging  
Conduction  
Once the commutation interval  
has ended, a typical hydrogen  
thyratron will conduct with near-  
ly constant voltage drop on the  
order of 100 volts regardless of  
the current through the tube.  
classical pulse-forming networks scheme from the viewpoint of  
are seldom used, so inverse  
anode voltage may not be easily  
thyratron recovery is command  
charging, wherein voltage is  
generated. Recovery then strong- applied to the thyratron only an  
ly depends on the characteristics  
of the anode charging circuit. In  
general, charging schemes  
instant before firing.  
Recovery  
Thyratrons open (recover) via  
diffusion of ions to the tube inner  
walls and electrode surfaces,  
where the ions can recombine  
with electrons. This process takes  
from 30 to 150 microseconds,  
depending on the tube type, fill  
pressure, and gas (hydrogen or  
deuterium). The theoretical maxi-  
mum pulse repetition rate is the  
inverse of the recovery time.  
CURRENT LIMITING AND/OR  
MATCHING RESISTOR  
GRID SPIKE  
SUPPRESSION CIRCUIT  
GRID DRIVER  
CIRCUIT  
Figure 3. Grid Circuit  
Recovery can be promoted by  
arranging to have a small nega-  
tive DC bias voltage on the con-  
trol grid when forward conduc-  
tion has ceased. A bias voltage of  
50 to 100 volts is usually suffi-  
cient.  
(d)  
Spark Gap  
(a)  
Filter  
(b)  
Zener  
(c)  
MOV  
Figure 4. Typical Grid Spike Suppression Circuits  
Thyratrons  
Plate  
Dissipa-  
tion  
Factor  
Pb  
Peak  
Forward  
Grid  
Voltage  
egy  
Impe-  
dence  
of Grid  
Circuits  
g (Max)  
Peak  
Anode  
Voltage  
epy (kV)  
Peak  
Anode  
Current  
ib (a)  
Average  
Anode  
Current  
lb (Adc)  
RMS  
Reser-  
voir  
Heater  
V/A  
Seated  
Height x  
Tube Width  
(Inches)  
Anode  
Current  
lp (Aac)  
Cathode  
Heater  
V/A  
Type  
9
(Min)  
EIA Type & Comments  
JAN 7621  
Notes  
(x 10 )  
HY-2  
8
100  
350  
0.1  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
2.2  
2.2  
1
2
6.3/3.5  
6.3/7  
Note 1  
6.3/2.5  
6.3/7  
175  
150  
150  
150  
200  
200  
175  
20  
1200  
1500  
1500  
1500  
500  
500  
500  
500  
250  
400  
400  
400  
400  
400  
400  
400  
250  
250  
100  
100  
250  
250  
250  
250  
400  
250  
50  
1
2.35 x 1.0  
2 x 1.4  
2.7  
5
HY-6  
16  
16  
16  
20  
18  
18  
18  
32  
32  
32  
25  
25  
35  
25  
35  
28  
32  
40  
40  
35  
40  
40  
45  
70  
32  
40  
50  
40  
40  
6.5  
6.5  
6.5  
8
JAN 7782  
HY-60  
350  
6.3/7  
JAN 7665A  
2.4 x 1.4  
3.6 x 1.4  
3.4 x 2  
5
HY-61  
350  
6.3/8.5  
6.3/7.5  
6.3/7.5  
6.3/11  
Note 1  
6.3/4  
1
5
HY-10  
500  
JAN 7620  
JAN8613  
10  
10  
10  
10  
50  
50  
40  
50  
50  
50  
50  
50  
50  
50  
160  
100  
50  
50  
100  
50  
50  
50  
100  
100  
100  
200  
HY-11  
1600  
500  
8
6.3/4  
2.2 x 2.25  
5 x 2  
HY-1A  
8
Note 1  
6.3/8  
1
2
3
4
4
4
HY-1102  
HY-3192  
HY-32  
1000  
1000  
1500  
1500  
5000  
5000  
5000  
5000  
5000  
5000  
5000  
5000  
5000  
5000  
12000  
12000  
15000  
15000  
20000  
20000  
20000  
20000  
20000  
16  
6.3/7.5  
6.3/12.5  
6.3/18  
6.3/18  
6.3/12.5  
6.3/12.5  
6.3/12.5  
6.3/12.5  
6.3/12.5  
6.3/12.5  
6.3/12.5  
6.3/30  
6.3/30  
6.3/18  
6.3/28  
6.3/28  
6.3/16  
6.3/16  
6.3/18  
6.3/29  
6.3/35  
6.3/29  
6.3/29  
2 x 2  
47.5  
47.5  
25  
6.3/5.5  
6.3/5.5  
6.3/6  
1500  
450  
450  
500  
500  
500  
500  
500  
500  
500  
1300  
1300  
500  
500  
500  
500  
450  
500  
2500  
2500  
2500  
2500  
3.75 x 3.25  
4 x 3.25  
3 x 6  
HY-3204  
1802  
ib to 10kA @ <1usec  
JAN 7322  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
8
47.5  
47.5  
47.5  
47.5  
47.5  
47.5  
47.5  
125  
90  
6.3/5.5  
6.3/5.5  
6.3/5.5  
6.3/5.5  
6.3/5.5  
6.3/5.5  
6.3/5.5  
4.5/11  
4.5/11  
6.3/6  
4 x 3.25  
4 x 3.25  
4 x 3.25  
4.75 x 3.25  
4.75 x 3.25  
4.25 x 3.25  
3.75 x 3  
5 x 4.5  
HY-3002  
HY-3003  
HY-3004  
HY-3005  
HY-3025  
HY-3189  
HY-5  
3
8614  
HY-53  
4
3
6
5 x 4.5  
LS-3101S  
LS-4101  
LS-4111  
HY-3246  
LS-3229  
HY-3202  
LS-5001  
LS-5002  
LS-5101  
LS-5111  
2
45  
5.25 x 3  
8 x 3.5  
3
55  
6.3/6  
3,6  
3.5,6  
3
55  
6.3/6  
8.25 x 3.5  
5.75 x 3  
6.4 x 3  
2
45  
6.3/6  
Two gap tetrode  
Two gap tetrode  
2
45  
6.3/6  
3,6  
2,6  
3
0.5  
4
47.5  
90  
6.3/13  
4.5/10  
4.5/15  
4.5/10  
4.5/10  
6.4 x 3  
6.75 x 4.5  
9.5 x 4.5  
6.75 x 4.5  
7.2 x 4.5  
4
70  
100  
50  
3
4
90  
3,6  
3,5,6  
4
90  
50  
Notes  
1. Cathode and reservoir heater internally connected  
2. Grounded grid design  
3. Auxiliary grid design  
4. MT-4 mount required  
5. Liquid cooling design  
6. Hollow anode design for reverse current  
PerkinElmer thyratron control grid driver TM-27 recommended for use with all thyratrons up to 3 inch diameter. TM-29 recommended for thyratrons greater than 3 inch diameter.  
The selections above are a representative sample of hundreds of design variations available. Contact PerkinElmer for support for any specific application.  
Definition of Terms  
TERMS USED TO CHARACTERIZE INDIVIDUAL PULSES  
Peak Anode Voltage (epy): maximum positive anode voltage, with respect to the cathode.  
Peak Inverse Anode Voltage (epx): maximum negative anode voltage, with respect to the cathode.  
Peak Forward Anode Current (ib): maximum instantaneous positive anode current.  
Peak Inverse Current (Ibx): maximum instantaneous negative anode current.  
Pulse Width (tp): current pulse full-width at half-maximum.  
Pulse Repetition Rate (prr): average number of pulses/second.  
Current Rise Time (tr): time for the forward current to rise from 10% to 90% of its peak value.  
Anode Fall Time: time for the forward anode voltage to collapse from 90% to 10% of its maximum value.  
Anode Delay Time (tad): time interval between triggering and commutation (commutation is defined below). The precise  
reference points for this interval vary with the application.  
Anode Delay Time Drift (tad): gradual decrease in anode delay time that occurs as the thyratron warms up.  
Jitter (tj): pulse-to-pulse variation in anode delay time.  
TIME AVERAGED QUANTITIES  
DC Average Current (Ib): forward current averaged over one second.  
RMS Average Current (Ip): root-mean-square current averaged over one second.  
Plate Breakdown Factor (Pb): numerical factor proportional to the power dissipated at the anode, averaged over one  
second. Pb = epy x ib x prr.  
STRUCTURAL PARTS OF THE THYRATRON  
Auxiliary Grid: grid placed between the control grid and cathode in some thyratrons. A small DC current (or a larger pulsed  
current) applied between Auxiliary Grid and cathode can be used to control the anode delay time. (Anode delay time is  
defined above). Thyratrons with auxiliary girds are called Tetrode Thyratrons.  
Reservoir: maintains the gas pressure in the tube at a level which depends on the reservoir heater voltage.  
GENERAL TERMINOLOGY  
Static (Self) Breakdown Voltage (SBV): applied voltage at which a thyratron will break down spontaneously, without  
being triggered.  
Commutation: transition from trigger breakdown to full closure of the thyratron.  
Recovery Time: time which must elapse after decay of the circuit current before anode voltage can be reapplied to the  
thyratron without causing self-breakdown. The maximum possible pulse repetition rate is the inverse of the recovery time.  
Grid Bias: negative DC voltage which may be applied to the control grid to speed up recovery.  
Marking  
PerkinElmer’s trademark, part designation, and date code.  
PerkinElmer welcomes inquiries about special types. We would be pleased to discuss the requirements  
of your application and the feasibility of designing a type specifically suited to your needs.  
For more information email us at opto@perkinelmer.com or visit our web site at www.perkinelmer.com/opto  
Note: All specifications subject to change without notice.  
USA:  
PerkinElmer Optoelectronics  
35 Congress Street  
Salem, MA 01970  
Toll Free: (800) 950-3441 (USA)  
Phone: (978) 745-3200  
Fax: (978) 745-0894  
.
© 2001 PerkinElmer, Inc. All rights reserved.  
DS-247 Rev A 0901  
www.perkinelmer.com/opto  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY