MPC5603BEMLQ [NXP]

32-BIT, FLASH, 60MHz, MICROCONTROLLER, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, LQFP-144;
MPC5603BEMLQ
型号: MPC5603BEMLQ
厂家: NXP    NXP
描述:

32-BIT, FLASH, 60MHz, MICROCONTROLLER, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, LQFP-144

时钟 微控制器 外围集成电路
文件: 总72页 (文件大小:971K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Advance Information  
Document Number: MPC5604BC  
Rev. 4, 08/2009  
MPC5604B/C  
208 MAPBGA  
(17 x 17 x 1.7 mm)  
MPC5604B/C  
Microcontroller Data Sheet  
144 LQFP  
(20 x 20 x 1.4 mm)  
100 LQFP  
(14 x 14 x 1.4 mm)  
32-bit MCU family built on the Power Architecture™ for  
automotive body electronics applications  
Up to 6 enhanced full CAN (FlexCAN) modules  
with configurable buffers  
1 inter IC communication interface (I2C) module  
Features:  
Up to 123 configurable general purpose pins  
supporting input and output operations (package  
dependent)  
Single issue, 32-bit CPU core complex (e200z0)  
— Compliant with the Power Architecture™  
embedded category  
Real Time Counter (RTC) with clock source from  
128 kHz or 16 MHz internal RC oscillator  
supporting autonomous wakeup with 1 ms  
resolution with max timeout of 2 seconds  
— Includes an instruction set enhancement  
allowing variable length encoding (VLE) for  
code size footprint reduction. With the optional  
encoding of mixed 16-bit and 32-bit  
Up to 6 periodic interrupt timers (PIT) with 32-bit  
counter resolution  
instructions, it is possible to achieve significant  
code size footprint reduction.  
1 System Module Timer (STM)  
Up to 512 Kbytes on-chip flash supported with the  
flash controller  
Nexus development interface (NDI) per IEEE-ISTO  
5001-2003 Class Two Plus standard  
Up to 48 Kbytes on-chip SRAM  
Device/board boundary Scan testing supported with  
per Joint Test Action Group (JTAG) of IEEE (IEEE  
1149.1)  
Memory protection unit (MPU) with 8 region  
descriptors and 32-byte region granularity  
Interrupt controller (INTC) with 148 interrupt  
vectors, including 16 external interrupt sources and  
18 external interrupt/wakeup sources  
On-chip voltage regulator (VREG) for regulation of  
input supply for all internal levels  
Frequency modulated phase-locked loop (FMPLL)  
Crossbar switch architecture for concurrent access to  
peripherals, flash, or RAM from multiple bus  
masters  
Boot assist module (BAM) supports internal flash  
programming via a serial link (CAN or SCI)  
Timer supports input/output channels providing a  
range of 16-bit input capture, output compare, and  
pulse width modulation functions (eMIOS-lite)  
10-bit analog-to-digital converter (ADC)  
3 serial peripheral interface (DSPI) modules  
Up to 4 serial communication interface (LINFlex)  
modules  
This document contains information on a product under development. Freescale reserves the  
right to change or discontinue this product without notice.  
© Freescale Semiconductor, Inc., 2009. All rights reserved.  
Table of Contents  
1
2
General description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
4.11.1 Program/Erase characteristics . . . . . . . . . . . . . 29  
4.11.2 Flash power supply DC characteristics . . . . . . 31  
4.11.3 Start-up/Switch-off timings . . . . . . . . . . . . . . . . 31  
4.12 Electromagnetic compatibility (EMC) characteristics. . 32  
4.12.1 Designing hardened software to avoid noise  
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Device blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
2.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
2.2 Device block summary . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
4.2 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . .11  
4.3 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
4.3.1 NVUSRO[PAD3V5V] field description . . . . . . . .11  
4.3.2 NVUSRO[OSCILLATOR_MARGIN] field description  
12  
4.4 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . .12  
4.5 Recommended operating conditions . . . . . . . . . . . . . .13  
4.6 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . .15  
4.6.1 Package thermal characteristics . . . . . . . . . . . .15  
4.6.2 Power considerations. . . . . . . . . . . . . . . . . . . . .15  
4.7 I/O pad electrical characteristics. . . . . . . . . . . . . . . . . .16  
4.7.1 I/O pad types . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.7.2 I/O input DC characteristics. . . . . . . . . . . . . . . .17  
4.7.3 I/O output DC characteristics. . . . . . . . . . . . . . .17  
4.7.4 Output pin transition times. . . . . . . . . . . . . . . . .20  
4.7.5 I/O pad current specification . . . . . . . . . . . . . . .21  
4.8 nRSTIN electrical characteristics . . . . . . . . . . . . . . . . .23  
4.9 Power management electrical characteristics. . . . . . . .25  
4.9.1 Voltage regulator electrical characteristics . . . .25  
4.9.2 Voltage monitor electrical characteristics. . . . . .27  
4.10 Low voltage domain power consumption . . . . . . . . . . .28  
4.11 Flash memory electrical characteristics . . . . . . . . . . . .29  
3
4
problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4.12.2 Electromagnetic interference (EMI) . . . . . . . . . 32  
4.12.3 Absolute maximum ratings (electrical sensitivity)33  
4.13 Fast external crystal oscillator (4 to 16 MHz) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
4.14 Slow external crystal oscillator (32 kHz) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
4.15 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . 39  
4.16 Fast internal RC oscillator (16 MHz) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
4.17 Slow internal RC oscillator (128 kHz) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
4.18 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
4.18.1 Current consumption . . . . . . . . . . . . . . . . . . . . 42  
4.18.2 DSPI characteristics. . . . . . . . . . . . . . . . . . . . . 44  
4.18.3 Nexus characteristics . . . . . . . . . . . . . . . . . . . . 50  
4.18.4 JTAG characteristics. . . . . . . . . . . . . . . . . . . . . 51  
4.18.5 ADC electrical characteristics . . . . . . . . . . . . . 52  
Package characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
5.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . 60  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
5
6
7
Appendix A  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
2
Freescale Semiconductor  
General description  
1
General description  
1.1  
Introduction  
The MPC5604B/C is a family of next generation microcontrollers built on the Power Architecture™ embedded category. This  
document describes the features of the family and options available within the family members, and highlights important  
1
electrical and physical characteristics of the device .  
The MPC5604B/C family of 32-bit microcontrollers is the latest achievement in integrated automotive application controllers.  
It belongs to an expanding family of automotive-focused products designed to address the next wave of body electronics  
applications within the vehicle. The advanced and cost-efficient host processor core of the MPC5604B/C automotive controller  
family complies with the Power Architecture embedded category and only implements the VLE (variable-length encoding)  
APU, providing improved code density. It operates at speeds of up to 64 MHz and offers high performance processing optimized  
for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices  
and is supported with software drivers, operating systems and configuration code to assist with users implementations.  
1
Table 1. MPC5604B/C device comparison  
Device  
Feature  
MPC560 MPC560 MPC560 MPC560 MPC560 MPC560 MPC560 MPC560 MPC560 MPC560  
2BxLL 2BxLQ 2CxLL 3BxLL 3BxLQ 3CxLL 4BxLL 4BxLQ 4BxMG 4CxLL  
CPU  
e200z0h  
Execution  
speed2  
Static - 64 MHz  
Code Flash  
Data Flash  
RAM  
256 KB  
384 KB  
512 KB  
64 KB (4 × 16 KB)  
24 KB  
32 KB  
28 KB  
40 KB  
8-entry  
32 KB  
48 KB  
MPU  
ADC  
28 ch,  
10-bit  
36 ch,  
10-bit  
28 ch, 10-bit  
36 ch,  
10-bit  
28 ch,  
10-bit  
28 ch,  
10-bit  
36 ch,  
10-bit  
36 ch,  
10-bit  
28 ch,  
10-bit  
CTU  
Yes  
Total timer  
I/O3  
28 ch,  
16-bit  
56 ch,  
16-bit  
28 ch, 16-bit  
56ch,  
16-bit  
28 ch, 16-bit  
56 ch, 16-bit  
28 ch,  
16-bit  
eMIOS  
• PWM + MC  
+ IC/OC4  
5 ch  
20 ch  
3 ch  
10 ch  
40 ch  
6 ch  
5 ch  
5 ch  
20 ch  
3 ch  
10 ch  
40 ch  
6 ch  
5 ch  
5 ch  
20 ch  
3 ch  
10 ch  
40 ch  
10 ch  
40 ch  
6 ch  
5 ch  
• PWM +  
IC/OC4  
20 ch  
20 ch  
20 ch  
• IC/OC4  
3 ch  
4
3 ch  
4
6 ch  
4
3 ch  
4
SCI (LINFlex)  
SPI (DSPI)  
3
2
4
3
3
CAN  
6
6
3
3
6
6
(FlexCAN)  
1.For a correct use of the datasheet, it’s recommended of referring to the errata sheet.  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
3
General description  
1
Table 1. MPC5604B/C device comparison (continued)  
Device  
Feature  
MPC560 MPC560 MPC560 MPC560 MPC560 MPC560 MPC560 MPC560 MPC560 MPC560  
2BxLL 2BxLQ 2CxLL 3BxLL 3BxLQ 3CxLL 4BxLL 4BxLQ 4BxMG 4CxLL  
I2C  
1
32 kHz  
Yes  
oscillator  
GPIO5  
79  
123  
79  
79  
123  
79  
79  
123  
123  
79  
Debug  
JTAG  
Nexus2+ JTAG  
Package  
100  
LQFP  
144  
LQFP  
100  
LQFP  
100  
LQFP  
144  
LQFP  
100  
LQFP  
100  
LQFP  
144  
LQFP  
208 MA  
PBGA6  
100  
LQFP  
1
Feature set dependent on selected peripheral multiplexing—table shows example implementation  
Based on 105 °C ambient operating temperature  
2
3
4
5
6
Refer to eMIOS section of device reference manual for information on the channel configuration and functions  
IC - Input Capture; OC - Output Compare; PWM - Pulse Width Modulation; MC - Modulus counter  
I/O count based on multiplexing with peripherals  
208 MAPBGA available only as development package for Nexus2+  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
4
Freescale Semiconductor  
Device blocks  
2
Device blocks  
2.1  
Block diagram  
Figure 1 shows a top-level block diagram of the MPC5604B/C device series.  
Figure 1. MPC5604B/C series block diagram  
RAM  
48 KB  
Code Flash DataFlash  
512 KB 64 KB  
TCU  
JTAG  
JTAG Port  
Nexus Port  
Instructions  
(Master)  
SRAM  
Flash  
Controller  
e200z0h  
Nexus 2+  
Nexus  
Controller  
Data  
NMI  
(Slave)  
(Master)  
SIUL  
Voltage  
Regulator  
(Slave)  
Interrupt requests  
from peripheral  
blocks  
(Slave)  
NMI  
MPU  
Registers  
INTC  
Clocks  
CMU  
FMPLL  
RTC  
RGM  
CGM  
MEM  
PCU  
SSCM  
STM  
PIT  
BAM  
SWT  
ECSM  
Peripheral Bridge  
2 x  
SIUL  
36 Ch.  
ADC  
4 x  
LINFlex  
3 x  
DSPI  
6 x  
FlexCAN  
2
CTU  
I C  
eMIOS  
Reset Control  
Interrupt  
Request  
External  
Interrupt  
Request  
IMUX  
GPIO &  
Pad Control  
. . .  
. . .  
. . .  
. . .  
. . .  
I/O  
Legend:  
ADC  
BAM  
CAN  
Analog-to-Digital Converter  
Boot Assist Module  
Controller Area Network (FlexCAN)  
Clock Generation Module  
Clock Monitor Unit  
Cross Triggering Unit  
Deserial Serial Peripheral Interface  
Enhanced Modular Input Output System  
Frequency-Modulated Phase-Locked Loop  
Inter-integrated Circuit Bus  
Internal Multiplexer  
Interrupt Controller  
JTAG controller  
Serial Communication Interface (LIN support)  
MEM  
MPU  
Nexus  
NMI  
PCU  
PIT  
Mode Entry Module  
Memory Protection Unit  
NexuS Development Interface (NDI) Level  
Non-Maskable Interrupt  
Power Control Unit  
Periodic Interrupt Timer  
Reset Generation Module  
Real-Time Clock  
System Integration Unit Lite  
Static Random-Access Memory  
System Status Configuration Module  
System Timer Module  
Software Watchdog Timer  
Test Control Unit  
CGM  
CMU  
CTU  
DSPI  
eMIOS  
FMPLL  
I2C  
IMUX  
INTC  
JTAG  
LINFlex  
RGM  
RTC  
SIUL  
SRAM  
SSCM  
STM  
SWT  
TCU  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
5
Device blocks  
2.2  
Device block summary  
Table 2 summarizes the functions of all blocks present in the MPC5604B/C series of microcontrollers. Please note that the  
presence and number of blocks varies by device and package.  
Table 2. MPC5604B/C series block summary  
Block  
Function  
Crossbar (XBAR) switch  
Supports simultaneous connections between two master ports and three slave  
ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus  
width  
Analog-to-digital converter (ADC) Multi-channel, 10-bit analog-to digital-converter  
Boot assist module (BAM) A block of read-only memory containing VLE code which is executed according  
to the boot mode of the device  
Clock generation module (CGM) Provides logic and control required for the generation of system and peripheral  
clocks  
Clock monitor unit (CMU)  
Cross triggering unit (CTU)  
Monitors clock source (internal and external) integrity  
Enables synchronization of ADC conversions with a timer event from the eMIOS  
or from the PIT  
Deserial serial peripheral interface Provides a synchronous serial interface for communication with external devices  
(DSPI)  
Enhanced modular input output  
system (eMIOS)  
Provides the functionality to generate or measure events  
Flash memory  
Provides non-volatile storage for program code, constants and variables  
FlexCAN (controller area network) Supports the standard CAN communications protocol  
FMPLL (frequency-modulated  
phase-locked loop)  
Generates high-speed system clocks and supports programmable frequency  
modulation  
Internal multiplexer (IMUX) SIU  
subblock  
Allows flexible mapping of peripheral interface on the different pins of the device  
Inter-integrated circuit (I2C™) bus A two wire bidirectional serial bus that provides a simple and efficient method of  
data exchange between devices  
Interrupt controller (INTC)  
JTAG controller  
Provides priority-based preemptive scheduling of interrupt requests  
Provides the means to test chip functionality and connectivity while remaining  
transparent to system logic when not in test mode  
LINflex controller  
Manages a high number of LIN (Local Interconnect Network protocol) messages  
efficiently with a minimum of CPU load  
Memory protection unit (MPU)  
Mode entry module (MC_ME)  
Provides hardware access control for all memory references generated in a  
device  
Provides a mechanism for controlling the device operational mode and mode  
transition sequences in all functional states; also manages the power control unit,  
reset generation module and clock generation module, and holds the  
configuration, control and status registers accessible for applications  
Non-Maskable Interrupt (NMI)  
Handles external events that must produce an immediate response, such as  
power down detection  
Nexus development interface  
(NDI)  
Provides real-time development support capabilities in compliance with the  
IEEE-ISTO 5001-2003 standard  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
6
Freescale Semiconductor  
Device blocks  
Table 2. MPC5604B/C series block summary (continued)  
Function  
Block  
Periodic interrupt timer (PIT)  
Power control unit (PCU)  
Produces periodic interrupts and triggers  
Reduces the overall power consumption by disconnecting parts of the device  
from the power supply via a power switching device; device components are  
grouped into sections called “power domains” which are controlled by the PCU  
Real-time counter (RTC)  
A free running counter used for time keeping applications, the RTC can be  
configured to generate an interrupt at a predefined interval independent of the  
mode of operation (run mode or low-power mode)  
Reset generation module (RGM) Centralizes reset sources and manages the device reset sequence of the device  
Static random-access memory  
(SRAM)  
Provides storage for program code, constants, and variables  
System integration unit (SIU)  
Provides control over all the electrical pad controls and up 32 ports with 16 bits  
of bidirectional, general-purpose input and output signals and supports up to 32  
external interrupts with trigger event configuration  
System status configuration  
module (SSCM)  
Provides system configuration and status data (such as memory size and status,  
device mode and security status), device identification data, debug status port  
enable and selection, and bus and peripheral abort enable/disable  
System timer module (STM)  
Provides a set of output compare events to support AUTOSAR and operating  
system tasks  
System watchdog timer (SWT)  
Test control unit (TCU)  
Provides protection from runaway code  
An extension of the JTAG controller module, the TCU provides the means to test  
chip functionality and connectivity while remaining transparent to system logic  
when not in test mode.  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
7
Package pinouts  
3
Package pinouts  
The available LQFP pinouts and the 208 MAPBGA ballmap are provided in the following figures. For pin signal descriptions,  
please refer to the device reference manual.  
Figure 2. LQFP 144-pin configuration (top view)  
WKUP[11] / SCL / LIN0RX / GPIO[19] / PB[3]  
WKUP[13] / LIN2RX / GPIO[41] / PC[9]  
EIRQ[8] / SCK2 / E0UC[14] / GPIO[46] / PC[14]  
CS0_2 / E0UC[15] / GPIO[47] / PC[15]  
WKUP[18] / E1UC[14] / GPIO[101] / PG[5]  
E1UC[13] / GPIO[100] / PG[4]  
1
2
3
4
5
6
7
8
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
PA[11] / GPIO[11] / E0UC[11] / SCL  
PA[10] / GPIO[10] / E0UC[10] / SDA  
PA[9] / GPIO[9] / E0UC[9] / FAB  
PA[8] / GPIO[8] / E0UC[8] / LIN3RX / EIRQ[3] / ABS[0]  
PA[7] / GPIO[7] / E0UC[7] / LIN3TX / EIRQ[2]  
PE[13] / GPIO[77] / SOUT2 / E1UC[20]  
PF[14] / GPIO[94] / CAN1TX / CAN4TX / E1UC[27]  
PF[15] / GPIO[95] / CAN1RX / CAN4RX / EIRQ[13]  
VDD_HV  
WKUP[17] / E1UC[12] / GPIO[99] / PG[3]  
E1UC[11] / GPIO[98] / PG[2]  
WKUP[3] / E0UC[2] / GPIO[2] / PA[2]  
WKUP[6] / CAN5RX / E0UC[16] / GPIO[64] / PE[0]  
WKUP[2] / NMI / E0UC[1] / GPIO[1] / PA[1]  
CAN5TX / E0UC[17] / GPIO[65] / PE[1]  
CAN3TX / E0UC[22] / CAN2TX / GPIO[72] / PE[8]  
WKUP[7] / E0UC[23] / CAN3RX / CAN2RX / GPIO[73] / PE[9]  
EIRQ[10] / CS3_1 / LIN3TX / GPIO[74] / PE[10]  
WKUP[19] / CLKOUT / E0UC[0] / GPIO[0] / PA[0]  
WKUP[14] / CS4_1 / LIN3RX / GPIO[75] / PE[11]  
VSS_HV  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
VSS_HV  
PG[0] / GPIO[96] / CAN5TX / E1UC[23]  
PG[1] / GPIO[97] / CAN5RX / E1UC[24] / EIRQ[14]  
PH[3] / GPIO[115] / E1UC[5] / CS0_1  
PH[2] / GPIO[114] / E1UC[4] / SCK1  
PH[1] / GPIO[113] / E1UC[3] / SOUT1  
PH[0] / GPIO[112] / E1UC[2] / SIN1  
PG[12] / GPIO[108] / E0UC[26]  
PG[13] / GPIO[109] / E0UC[27]  
144 LQFP  
VDD_HV  
VSS_HV  
RESET  
VSS_LV  
VDD_LV  
VDD_BV  
PA[3] / GPIO[3] / E0UC[3] / EIRQ[0]  
PB[15] / GPIO[31] / CS4_0 / E0UC[7] / ANX[3]  
PD[15] / GPIO[63] / CS2_1 / ANS[7] / E0UC[27]  
PB[14] / GPIO[30] / CS3_0 / E0UC[6] / ANX[2]  
PD[14] / GPIO[62] / CS1_1 / ANS[6] / E0UC[26]  
PB[13] / GPIO[29] / CS2_0 / E0UC[5] / ANX[1]  
PD[13] / GPIO[61] / CS0_1 / ANS[5] / E0UC[25]  
PB[12] / GPIO[28] / CS1_0 / E0UC[4] / ANX[0]  
PD[12] / GPIO[60] / CS5_0 / ANS[4] / E0UC[24]  
PB[11] / GPIO[27] / E0UC[3] / ANS[3] / CS0_0  
PD[11] / GPIO[59] / ANP[15]  
PD[10] / GPIO[58] / ANP[14]  
PD[9] / GPIO[57] / ANP[13]  
PB[7] / GPIO[23] / ANP[3]  
PB[6] / GPIO[22] / ANP[2]  
PB[5] / GPIO[21] / ANP[1]  
VDD_HV_ADC  
VSS_HV_ADC  
SCK_2 / E1UC[18] / GPIO[105] / PG[9]  
EIRQ[15] / CS0_2 / E1UC[17] / GPIO[104] / PG[8]  
WKUP[5] / CAN4RX / CAN1RX / GPIO[43] / PC[11]  
MA[1] / CAN4TX / CAN1TX / GPIO[42] / PC[10]  
E1UC[16] / GPIO[103] / PG[7]  
E1UC[15] / GPIO[102] / PG[6]  
CAN0TX / GPIO[16] / PB[0]  
WKUP[4] / CAN0RX / GPIO[17] / PB[1]  
CS5_0 / CAN3RX / CAN2RX / GPIO[89] / PF[9]  
CS4_0 / CAN3TX / CAN2TX / GPIO[88] / PF[8]  
E1UC[25] / GPIO[92] / PF[12]  
74  
73  
LIN1TX / GPIO[38] / PC[6]  
Note:  
Availability of port pin alternate functions depends on product selection.  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
8
Freescale Semiconductor  
Package pinouts  
Figure 3. LQFP 100-pin configuration (top view)  
WKUP[11] / SCL / LIN0RX / GPIO[19] / PB[3]  
WKUP[13] / LIN2RX / GPIO[41] / PC[9]  
EIRQ[8] / SCK2 / E0UC[14] / GPIO[46] / PC[14]  
CS0_2 / E0UC[15] / GPIO[47] / PC[15]  
WKUP[3] / E0UC[2] / GPIO[2] / PA[2]  
WKUP[6] / CAN5RX / E0UC[16] / GPIO[64] / PE[0]  
WKUP[2] / NMI / E0UC[1] / GPIO[1] / PA[1]  
CAN5TX / E0UC[17] / GPIO[65] / PE[1]  
CAN3TX / E0UC[22] /CAN2TX / GPIO[72] / PE[8]  
WKUP[7] / CAN3RX / E0UC[23] /CAN2RX / GPIO[73] / PE[9]  
EIRQ[10] / CS3_1 / LIN3TX / GPIO[74] / PE[10]  
WKUP[19] / CLKOUT / E0UC[0] / GPIO[0] / PA[0]  
WKUP[14] / CS4_1 / LIN3RX / GPIO[75] / PE[11]  
VSS_HV  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PA[11] / GPIO[11] / E0UC[11] / SCL  
PA[10] / GPIO[10] / E0UC[10] / SDA  
PA[9] / GPIO[9] / E0UC[9] / FAB  
PA[8] / GPIO[8] / E0UC[8] / LIN3RX / EIRQ[3] / ABS[0]  
PA[7] / GPIO[7] / E0UC[7] / LIN3TX / EIRQ [2]  
VDD_HV  
VSS_HV  
PA[3] / GPIO[3] / E0UC[3] / EIRQ[0]  
PB[15] / GPIO[31] / CS4_0 / E0UC[7] / ANX[3]  
PD[15] / GPIO[63] / CS2_1 / ANS[7] / E0UC[27]  
PB[14] / GPIO[30] / CS3_ 0 / E0UC[6] / ANX[2]  
PD[14] / GPIO[62] / CS1_1 / ANS[6] / E0UC[26]  
PB[13] / GPIO[29] / CS2_0 / E0UC[5] / ANX[1]  
PD[13] / GPIO[61] / CS0_1 / ANS[5] / E0UC[25]  
PB[12] / GPIO[28] / CS1_0 / E0UC[4] / ANX[0]  
PD[12] / GPIO[60] / CS5_0 / ANS[4] / E0UC[24]  
PB[11] / GPIO[27] / E0UC[3] / ANS[3] / CS0_0  
PD[11] / GPIO[59] / ANP[15]  
PD[10] / GPIO[58] / ANP[14]  
PD[9] / GPIO[57] / ANP[13]  
PB[7] / GPIO[23] / ANP[3]  
PB[6] / GPIO[22] / ANP[2]  
PB[5] / GPIO[21] / ANP[1]  
VDD_HV_ADC  
VSS_HV_ADC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
100 LQFP  
VDD_HV  
VSS_HV  
RESET  
VSS_LV  
VDD_LV  
VDD_BV  
WKUP[5] / CAN4RX / CAN1RX / GPIO[43] / PC[11]  
MA[1] / CAN4TX / CAN1TX / GPIO[42] / PC[10]  
CAN0TX / GPIO[16] / PB[0]  
WKUP[4] / CAN0RX / GPIO[17] / PB[1]  
LIN1TX / GPIO[38] / PC[6]  
Note:  
Availability of port pin alternate functions depends on product selection.  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
9
Electrical characteristics  
1
2
3
4
NC  
5
6
7
8
9
10  
NC  
NC  
NC  
NC  
11  
12  
NC  
13  
PE[15]  
PG[15]  
PE[14]  
PG[10]  
PG[1]  
PH[0]  
VDD_HV  
MDO3  
NC  
14  
15  
NC  
16  
NC  
PC[8]  
PC[9]  
PC[13]  
PB[2]  
NC  
PH[8]  
PE[6]  
PH[7]  
PH[6]  
PH[4]  
PH[5]  
PE[5]  
PE[4]  
PC[5]  
PC[4]  
PE[3]  
PE[2]  
PC[0]  
PH[9]  
VSS_LV  
NC  
PC[2]  
PC[3]  
PA[5]  
PA[6]  
NC  
A
B
C
D
E
F
A
B
C
D
E
F
NC  
PC[12]  
PE[7]  
NC  
PH[10]  
PC[1]  
PG[11]  
NC  
PG[14]  
PE[12]  
PF[14]  
PG[0]  
PH[1]  
NC  
PA[11]  
PA[9]  
PE[13]  
PA[10]  
PA[8]  
PA[7]  
PC[14] VDD_HV  
PB[3]  
PC[15]  
PG[3]  
PA[1]  
PE[10]  
NC  
NC  
VDD_LV VDD_HV  
NC  
PG[4]  
PE[0]  
PE[9]  
PG[5]  
PA[2]  
PE[8]  
PG[2]  
PE[1]  
PA[0]  
NC  
PF[15] VDD_HV  
PH[3]  
NC  
PH[2]  
MSEO  
MDO1  
NC  
VSS_HV VSS_HV VSS_HV VSS_HV  
VSS_HV VSS_HV VSS_HV VSS_HV  
VSS_HV VSS_HV VSS_HV VSS_HV  
VSS_HV VSS_HV VSS_HV VSS_HV  
G
H
J
G
H
J
VSS_HV PE[11] VDD_HV  
MDO2  
NC  
MDO0  
NC  
RESET VSS_LV  
NC  
NC  
EVTI  
PG[9]  
PG[7]  
PB[1]  
PF[8]  
PF[12]  
NC  
NC  
PG[8]  
PG[6]  
PF[9]  
NC  
VDD_BV VDD_LV  
NC  
PG[12]  
PD[15]  
PD[13]  
PD[10]  
PA[3]  
PD[14]  
PD[12]  
PD[9]  
PB[6]  
PG[13]  
PB[14]  
PB[12]  
PD[11]  
PB[7]  
PB[5]  
PB[4]  
16  
K
L
K
L
NC  
PC[10]  
PB[0]  
PC[7]  
PF[10]  
NC  
EVTO  
PC[11]  
NC  
PB[15]  
PB[13]  
PB[11]  
PD[3]  
PD[4]  
PD[5]  
13  
M
N
P
R
T
M
N
P
R
T
NC  
NC  
PA[4]  
VSS_LV  
VDD_LV  
PA[13]  
PA[12]  
7
EXTAL VDD_HV  
PF[0]  
PF[1]  
PF[3]  
PF[2]  
10  
PF[4]  
PF[5]  
PF[7]  
PF[6]  
11  
NC  
VDD_HV  
_ADC  
NC  
PA[14]  
XTAL  
NC  
NC  
8
PB[10]  
PD[0]  
PD[2]  
PD[1]  
12  
OSC32K  
_XTAL  
VSS_HV  
_ADC  
PC[6]  
NC  
PF[11] VDD_HV PA[15]  
PD[7]  
PD[6]  
OSC32K  
_EXTAL  
MCKO  
NC  
PF[13]  
PD[8]  
1
2
3
4
5
6
9
14  
15  
NC  
Note: 208 MAPBGA available only as development package for Nexus 2+.  
= Not connected  
Figure 4. 208 MAPBGA configuration  
4
Electrical characteristics  
4.1  
Introduction  
This section contains electrical characteristics of the device as well as temperature and power considerations.  
This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take  
precautions to avoid application of any voltage higher than the specified maximum rated voltages.  
To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V or V ). This could be done by  
DD  
SS  
the internal pull-up and pull-down, which is provided by the product for most general purpose pins.  
The parameters listed in the following tables represent the characteristics of the device and its demands on the system.  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
10  
Freescale Semiconductor  
Electrical characteristics  
In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller  
Characteristics is included in the Symbol column.  
In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol  
“SR” for System Requirement is included in the Symbol column.  
CAUTION  
All of the following figures are indicative and must be confirmed during either silicon validation, silicon characterization or  
silicon reliability trial.  
4.2  
Parameter classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better  
understanding, the classifications listed in Table 3 are used and the parameters are tagged accordingly in the tables where  
appropriate.  
Table 3. Parameter classifications  
Classification tag  
Tag description  
P
C
Those parameters are guaranteed during production testing on each individual device.  
Those parameters are achieved by the design characterization by measuring a statistically  
relevant sample size across process variations.  
T
Those parameters are achieved by design characterization on a small sample size from typical  
devices under typical conditions unless otherwise noted. All values shown in the typical column  
are within this category.  
D
Those parameters are derived mainly from simulations.  
NOTE  
The classification is shown in the column labeled “C” in the parameter tables where  
appropriate.  
4.3  
NVUSRO register  
Portions of the device configuration, such as high voltage supply, oscillator margin, and watchdog enable/disable after reset are  
controlled via bit values in the Non-Volatile User Options Register (NVUSRO) register.  
4.3.1  
NVUSRO[PAD3V5V] field description  
Table 4 shows how NVUSRO[PAD3V5V] controls the device configuration.  
1
Table 4. PAD3V5V field description  
Value2  
Description  
0
1
High voltage supply is 5.0 V  
High voltage supply is 3.3 V  
1
2
See the device reference manual for more information on the NVUSRO register.  
'1' is delivery value. It is part of shadow Flash, thus programmable by customer.  
The DC electrical characteristics are dependent on the PAD3V5V bit value.  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
11  
Electrical characteristics  
4.3.2  
NVUSRO[OSCILLATOR_MARGIN] field description  
Table 5 shows how NVUSRO[OSCILLATOR_MARGIN] controls the device configuration.  
1
Table 5. OSCILLATOR_MARGIN field description  
Value2  
Description  
0
1
Low consumption configuration (4 MHz/8 MHz)  
High margin configuration (4 MHz/16 MHz)  
1
2
See the device reference manual for more information on the NVUSRO register.  
'1' is delivery value. It is part of shadow Flash, thus programmable by customer.  
The fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value.  
4.4  
Absolute maximum ratings  
Table 6. Absolute maximum ratings  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VSS  
VDD  
SR Digital ground on VSS_HV pins  
0
0
V
V
SR Voltage on VDD_HV pins with respect to  
0.3  
6.0  
ground (VSS  
)
VSS_LV SR Voltage on VSS_LV (low voltage digital  
supply) pins with respect to ground  
VSS0.1 VSS+0.1  
V
(VSS  
)
VDD_BV SR Voltage on VDD_BV pin (regulator  
supply) with respect to ground (VSS  
0.3  
0.3  
5.5  
V
V
)
Relative to VDD  
VDD+0.3  
VSS_ADC SR Voltage on VSS_HV_ADC (ADC  
VSS0.1 VSS+0.1  
reference) pin with respect to ground  
(VSS  
)
VDD_ADC SR Voltage on VDD_HV_ADC pin (ADC  
reference) with respect to ground (VSS  
0.3  
VDD0.3 VDD+0.3  
0.3 5.5  
VDD0.3 VDD+0.3  
5.5  
V
V
)
Relative to VDD  
Relative to VDD  
VIN  
SR Voltage on any GPIO pin with respect to  
ground (VSS  
)
IINJPAD SR Injected input current on any pin during  
overload condition  
10  
10  
mA  
IINJSUM SR Absolute sum of all injected input  
currents during overload condition  
50  
50  
IAVGSEG SR Sum of all the static I/O current within a VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
70  
64  
mA  
supply segment  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
ICORELV SR Low voltage static current sink through  
VDD_BV  
150  
mA  
°C  
TSTORAGE SR Storage temperature  
55  
150  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
12  
Freescale Semiconductor  
Electrical characteristics  
NOTE  
Stresses exceeding the recommended absolute maximum ratings may cause permanent  
damage to the device. This is a stress rating only and functional operation of the device at  
these or any other conditions above those indicated in the operational sections of this  
specification are not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability. During overload conditions (V > V or  
IN  
DD  
V
< V ), the voltage on pins with respect to ground (V ) must not exceed the  
IN  
SS SS  
recommended values.  
4.5  
Recommended operating conditions  
Table 7. Recommended operating conditions (3.3 V)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VSS  
SR Digital ground on VSS_HV pins  
0
0
V
V
1
VDD  
SR Voltage on VDD_HV pins with respect  
3.0  
3.6  
to ground (VSS  
)
2
VSS_LV  
SR Voltage on VSS_LV (low voltage digital  
supply) pins with respect to ground  
VSS0.1 VSS+0.1  
V
(VSS  
)
3
VDD_BV  
SR Voltage on VDD_BV pin (regulator  
supply) with respect to ground (VSS  
3.0  
3.6  
V
V
)
Relative to VDD  
VDD0.1 VDD+0.1  
VSS0.1 VSS+0.1  
VSS_ADC SR Voltage on VSS_HV_ADC (ADC  
reference) pin with respect to ground  
(VSS  
)
4
VDD_ADC  
SR Voltage on VDD_HV_ADC pin (ADC  
reference) with respect to ground  
3.05  
VDD0.1 VDD+0.1  
3.6  
V
Relative to VDD  
(VSS  
)
VIN  
SR Voltage on any GPIO pin with respect  
VSS0.1  
VDD+0.1  
5
V
to ground (VSS  
)
Relative to VDD  
IINJPAD  
IINJSUM  
TVDD  
SR Injected input current on any pin  
during overload condition  
5  
mA  
SR Absolute sum of all injected input  
currents during overload condition  
50  
50  
SR VDD slope to ensure correct power up6  
3
0.25 V/µs  
V/s  
°C  
TA  
TJ  
SR Ambient temperature under bias  
SR Junction temperature under bias  
fCPU < 64 MHz  
40  
40  
125  
150  
1
2
3
100 nF capacitance needs to be provided between each VDD/VSS pair  
330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.  
100 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed  
depending on external regulator characteristics).  
4
100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
13  
Electrical characteristics  
5
Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical  
characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below VLVDHVL  
device is reset.  
,
6
Guaranteed by device validation  
Table 8. Recommended operating conditions (5.0 V)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VSS  
SR Digital ground on VSS_HV pins  
0
0
V
V
1
VDD  
SR Voltage on VDD_HV pins with respect to  
4.5  
3.0  
5.5  
5.5  
ground (VSS  
)
Voltage drop2  
3
VSS_LV  
SR Voltage on VSS_LV (low voltage digital  
supply) pins with respect to ground  
VSS0.1 VSS+0.1  
V
V
(VSS  
)
4
VDD_BV  
SR Voltage on VDD_BV pin (regulator  
supply) with respect to ground (VSS  
4.5  
3.0  
5.5  
5.5  
)
Voltage drop(2)  
Relative to VDD  
VDD0.1 VDD+0.1  
VSS0.1 VSS+0.1  
VSS_ADC  
SR Voltage on VSS_HV_ADC (ADC  
V
V
reference) pin with respect to ground  
(VSS  
5
VDD_ADC  
SR Voltage on VDD_HV_ADC pin (ADC  
reference) with respect to ground (VSS  
4.5  
3.0  
5.5  
5.5  
)
Voltage drop(2)  
Relative to VDD  
VDD0.1 VDD+0.1  
VIN  
SR Voltage on any GPIO pin with respect to  
ground (VSS  
VSS0.1  
VDD+0.1  
5
V
)
Relative to VDD  
IINJPAD  
IINJSUM  
TVDD  
SR Injected input current on any pin during  
overload condition  
5  
mA  
SR Absolute sum of all injected input  
currents during overload condition  
50  
50  
SR VDD slope to ensure correct power up6  
0.25 V/µs  
3
V/s  
°C  
TA C-Grade Part SR Ambient temperature under bias  
TJ C-Grade Part SR Junction temperature under bias  
TA V-Grade Part SR Ambient temperature under bias  
TJ V-Grade Part SR Junction temperature under bias  
TA M-Grade Part SR Ambient temperature under bias  
TJ M-Grade Part SR Junction temperature under bias  
100 nF capacitance needs to be provided between each VDD/VSS pair.  
fCPU < 64 MHz  
40  
40  
40  
40  
40  
40  
85  
110  
105  
130  
125  
150  
fCPU < 64 MHz  
fCPU < 60 MHz  
1
2
Full device operation is guaranteed by design when the voltage drops below 4.5V down to 3.6V. However, certain analog  
electrical characteristics will not be guaranteed to stay within the stated limits.  
3
330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
14  
Freescale Semiconductor  
Electrical characteristics  
470 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed  
4
depending on external regulator characteristics).  
100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.  
Guaranteed by device validation  
5
6
NOTE  
RAM data retention is guaranteed with V  
not below 1.08 V.  
DD_LV  
4.6  
Thermal characteristics  
4.6.1  
Package thermal characteristics  
1
Table 9. LQFP thermal characteristics  
Value3  
Typ  
Pin  
count  
Symbol  
C
Parameter  
Conditions2  
Unit  
Min  
Max  
RθJA CC  
D
Thermal resistance,  
junction-to-ambient natural  
convection4  
Single-layer board—1s  
100  
144  
100  
144  
64  
64  
°C/W  
Four-layer board—2s2p  
50.8  
49.4  
1
2
3
4
Thermal characteristics are targets based on simulation that are subject to change per device characterization.  
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C.  
All values need to be confirmed during device validation.  
Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets  
JEDEC specification for this package. When Greek letters are not available, the symbols are typed as RthJA and RthJMA  
.
1
Table 10. 208 MAPBGA thermal characteristics  
Symbol  
C
Parameter  
Conditions  
Value Unit  
TBD °C/W  
RθJA CC  
Thermal resistance, junction-to-ambient natural Single-layer board—1s  
convection2  
Four-layer board—2s2p  
1
Thermal characteristics are targets based on simulation that are subject to change per device characterization.  
2
Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets  
JEDEC specification for this package. When Greek letters are not available, the symbols are typed as RthJA and RthJMA  
.
4.6.2  
Power considerations  
The average chip-junction temperature, T , in degrees Celsius, may be calculated using Equation 1:  
J
T = T + (P x R )  
θJA  
Eqn. 1  
J
A
D
Where:  
T is the ambient temperature in °C.  
A
R
is the package junction-to-ambient thermal resistance, in °C/W.  
θJA  
P is the sum of P  
and P (P = P  
+ P ).  
D
INT  
I/O  
D
INT I/O  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
15  
Electrical characteristics  
P
P
is the product of I and V , expressed in watts. This is the chip internal power.  
DD DD  
INT  
represents the power dissipation on input and output pins; user determined.  
I/O  
Most of the time for the applications, P < P  
and may be neglected. On the other hand, P may be significant, if the device  
I/O  
INT  
I/O  
is configured to continuously drive external modules and/or memories.  
An approximate relationship between P and T (if P is neglected) is given by:  
D
J
I/O  
P = K / (T + 273 °C)  
Eqn. 2  
Eqn. 3  
D
J
Therefore, solving equations 1 and 2:  
Where:  
2
K = P x (T + 273 °C) + R  
x P  
D
D
A
θJA  
K is a constant for the particular part, which may be determined from Equation 3 by measuring P (at equilibrium)  
D
for a known T Using this value of K, the values of P and T may be obtained by solving equations 1 and 2  
A.  
D
J
iteratively for any value of T .  
A
4.7  
I/O pad electrical characteristics  
I/O pad types  
4.7.1  
The device provides four main I/O pad types depending on the associated alternate functions:  
Slow pads—These pads are the most common pads, providing a good compromise between transition time and low  
electromagnetic emission.  
Medium pads—These pads provide transition fast enough for the serial communication channels with controlled  
current to reduce electromagnetic emission.  
Fast pads—These pads provide maximum speed. There are used for improved Nexus debugging capability.  
Input only pads—These pads are associated to ADC channels and 32 kHz slow external crystal oscillator providing  
low input leakage.  
Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance.  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
16  
Freescale Semiconductor  
Electrical characteristics  
4.7.2  
I/O input DC characteristics  
Table 11 provides input DC electrical characteristics as described in Figure 5.  
Figure 5. I/O input DC electrical characteristics definition  
V
IN  
V
DD  
V
IH  
V
HYS  
V
IL  
PDIx = ‘1’  
(GPDI register of SIUL)  
PDIx = ‘0’  
Table 11. I/O input DC electrical characteristics  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VIH SR P Input high level CMOS (Schmitt  
Trigger)  
0.65VDD  
VDD+0.4  
V
VIL SR P Input low level CMOS (Schmitt  
Trigger)  
0.4  
0.35VDD  
VHYS CC C Input hysteresis CMOS (Schmitt  
Trigger)  
0.1VDD  
ILKG CC P Digital input leakage  
No injection  
on adjacent  
pin  
TA = 40 °C  
TA = 25 °C  
TA = 105 °C  
TA = 125 °C  
2
nA  
P
2
D
12  
70  
500  
1000  
40  
P
WFI SR P Digital input filtered pulse  
WNFI SR P Digital input not filtered pulse  
ns  
ns  
1000  
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
All values need to be confirmed during device validation.  
4.7.3  
I/O output DC characteristics  
The following tables provide DC characteristics for bidirectional pads:  
Table 12 provides weak pull figures. Both pull-up and pull-down resistances are supported.  
Table 13 provides output driver characteristics for I/O pads when in SLOW configuration.  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
17  
Electrical characteristics  
Table 14 provides output driver characteristics for I/O pads when in MEDIUM configuration.  
Table 15 provides output driver characteristics for I/O pads when in FAST configuration.  
Table 12. I/O pull-up/pull-down DC electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
|IWPU| CC P Weak pull-up current  
VIN = VIL, VDD = 5.0 V 10ꢀ PAD3V5V = 0  
PAD3V5V = 12  
10  
10  
10  
10  
10  
10  
150 µA  
250  
absolute value  
C
P
VIN = VIL, VDD = 3.3 V 10ꢀ PAD3V5V = 1  
VIN = VIH, VDD = 5.0 V 10ꢀ PAD3V5V = 0  
PAD3V5V = 1  
150  
|IWPD| CC P Weak pull-down current  
150 µA  
250  
absolute value  
C
P
VIN = VIH, VDD = 3.3 V 10ꢀ PAD3V5V = 1  
150  
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET  
and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
Table 13. SLOW configuration output buffer electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VOH CC P Output high level  
SLOW configuration  
Push Pull IOH = 2 mA,  
0.8VDD  
V
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
(recommended)  
C
C
I
OH = 2 mA,  
0.8VDD  
VDD = 5.0 V 10ꢀ, PAD3V5V = 12  
I
OH = 1 mA,  
VDD0.8  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
(recommended)  
VOL CC P Output low level  
SLOW configuration  
Push Pull IOL = 2 mA,  
0.1VDD  
0.1VDD  
0.5  
V
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
(recommended)  
C
C
IOL = 2 mA,  
VDD = 5.0 V 10ꢀ, PAD3V5V =  
1(2)  
I
V
OL = 1 mA,  
DD = 3.3 V 10ꢀ, PAD3V5V = 1  
(recommended)  
1
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET  
and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
2
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
18  
Freescale Semiconductor  
Electrical characteristics  
Table 14. MEDIUM configuration output buffer electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VOH CC C Output high level  
MEDIUM configuration  
Push Pull IOH = 3.8 mA,  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
0.8VDD  
V
P
I
OH = 2 mA,  
0.8VDD  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
(recommended)  
C
C
I
OH = 1 mA,  
0.8VDD  
VDD = 5.0 V 10ꢀ, PAD3V5V = 12  
I
OH = 1 mA,  
DD = 3.3 V 10ꢀ, PAD3V5V = 1  
(recommended)  
VDD0.8  
V
C
I
OH = 100 µA,  
0.8VDD  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
VOL CC C Output low level  
Push Pull IOL = 3.8 mA,  
0.2VDD  
0.1VDD  
V
MEDIUM configuration  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
P
IOL = 2 mA,  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
(recommended)  
C
C
I
OL = 1 mA,  
0.1VDD  
0.5  
VDD = 5.0 V 10ꢀ, PAD3V5V = 1(2)  
I
OL = 1 mA,  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
(recommended)  
C
I
OH = 100 µA,  
0.1VDD  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET  
and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
19  
Electrical characteristics  
Table 15. FAST configuration output buffer electrical characteristics  
Value  
Symbol C  
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VOH CC P Output high level  
FAST configuration  
Push  
Pull  
IOH = 14mA,  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
0.8VDD  
V
(recommended)  
C
C
I
OH = 7mA,  
0.8VDD  
VDD = 5.0 V 10ꢀ, PAD3V5V = 12  
IOH = 11mA,  
VDD0.8  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
(recommended)  
VOL CC P Output low level  
FAST configuration  
Push  
Pull  
IOL = 14mA,  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
(recommended)  
0.1VDD  
V
C
C
I
OL = 7mA,  
0.1VDD  
0.5  
VDD = 5.0 V 10ꢀ, PAD3V5V = 1(2)  
IOL = 11mA,  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
(recommended)  
1
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but  
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
2
4.7.4  
Output pin transition times  
Table 16. Output pin transition times  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
Ttr CC D Output transition time output pin3 CL = 25 pF VDD = 5.0 V 10ꢀ,  
50  
100  
125  
50  
ns  
SLOW configuration  
PAD3V5V = 0  
T
D
D
T
CL = 50 pF  
CL = 100 pF  
CL = 25 pF VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
CL = 50 pF  
100  
125  
10  
D
CL = 100 pF  
Ttr CC D Output transition time output pin(3) CL = 25 pF VDD = 5.0 V 10ꢀ,  
ns  
MEDIUM configuration  
PAD3V5V = 0  
SIUL.PCRx.SRC=1  
T
D
D
T
CL = 50 pF  
20  
CL = 100 pF  
40  
CL = 25 pF VDD = 3.3 V 10ꢀ,  
12  
PAD3V5V = 1  
SIUL.PCRx.SRC=1  
CL = 50 pF  
25  
D
CL = 100 pF  
40  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
20  
Freescale Semiconductor  
Electrical characteristics  
Table 16. Output pin transition times (continued)  
Conditions1  
Ttr CC D Output transition time output pin(3) CL = 25 pF VDD = 5.0 V 10ꢀ,  
Value2  
Symbol  
C
Parameter  
Unit  
Min  
Typ  
Max  
4
6
ns  
FAST configuration  
PAD3V5V = 0  
CL = 50 pF  
CL = 100 pF  
12  
4
CL = 25 pF VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
CL = 50 pF  
7
CL = 100 pF  
12  
1
2
3
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
All values need to be confirmed during device validation.  
CL includes device and package capacitances (CPKG < 5 pF).  
4.7.5  
I/O pad current specification  
The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V /V supply pair as  
DD SS  
described in Table 17.  
Table 18 provides I/O consumption figures.  
In order to ensure device reliability, the average current of the I/O on a single segment should remain below the I  
maximum value.  
AVGSEG  
In order to ensure device functionality, the sum of the dynamic and static current of the I/O on a single segment should remain  
below the I  
maximum value.  
DYNSEG  
Table 17. I/O supply segment  
Supply segment  
Package  
1
2
3
4
5
6
208 MAPBGA1  
144 LQFP  
Equivalent to 144 LQFP segment pad distribution  
pin20–pin49 pin51–pin99 pin100–pin122 pin 123–pin19  
pin16–pin35 pin37–pin69 pin70–pin83 pin 84–pin15  
MCKO  
MDOn/MSEO  
100 LQFP  
1
208 MAPBGA available only as development package for Nexus2+  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
21  
Electrical characteristics  
Table 18. I/O consumption  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
IDYNSEG  
SR D Sum of all the  
dynamic and static  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
110 mA  
65  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
I/O current within a  
supply segment  
,3  
ISWTSLW  
CC D Dynamic I/O current CL = 25 pF  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
20  
16  
29  
17  
mA  
for SLOW  
configuration  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
(3)  
ISWTMED  
CC D Dynamic I/O current CL = 25 pF  
for MEDIUM  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
mA  
configuration  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
(3)  
ISWTFST  
CC D Dynamic I/O current CL = 25 pF  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
110 mA  
50  
for FAST  
configuration  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
IRMSSLW  
CC D Root medium square CL = 25 pF, 2 MHz  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
2.3 mA  
3.2  
I/O current for SLOW  
CL = 25 pF, 4 MHz  
configuration  
CL = 100 pF, 2 MHz  
CL = 25 pF, 2 MHz  
CL = 25 pF, 4 MHz  
CL = 100 pF, 2 MHz  
6.6  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
1.6  
2.3  
4.7  
IRMSMED CC D Root medium square CL = 25 pF, 13 MHz VDD = 5.0 V 10ꢀ,  
6.6 mA  
13.4  
18.3  
5
I/O current for  
MEDIUM  
configuration  
PAD3V5V = 0  
CL = 25 pF, 40 MHz  
CL = 100 pF, 13 MHz  
CL = 25 pF, 13 MHz VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
CL = 25 pF, 40 MHz  
8.5  
CL = 100 pF, 13 MHz  
11  
IRMSFST  
CC D Root medium square CL = 25 pF, 40 MHz VDD = 5.0 V 10ꢀ,  
22  
33  
56  
14  
20  
35  
70  
65  
mA  
I/O current for FAST  
configuration  
PAD3V5V = 0  
CL = 25 pF, 64 MHz  
CL = 100 pF, 40 MHz  
CL = 25 pF, 40 MHz VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
CL = 25 pF, 64 MHz  
CL = 100 pF, 40 MHz  
IAVGSEG  
SR D Sum of all the static VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
I/O current within a  
mA  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
supply segment  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
22  
Freescale Semiconductor  
Electrical characteristics  
1
2
3
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to125 °C, unless otherwise specified  
All values need to be confirmed during device validation.  
Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.  
4.8  
nRSTIN electrical characteristics  
The device implements a dedicated bidirectional RESET pin.  
Figure 6. Start-up reset requirements  
V
DD  
V
DDMIN  
nRSTIN  
V
IH  
V
IL  
device reset forced by nRSTIN  
device start-up phase  
Figure 7. Noise filtering on reset signal  
VRSTIN  
hw_rst  
‘1’  
V
DD  
V
IH  
V
IL  
‘0’  
filtered by  
lowpass filter  
unknown reset  
state  
filtered by  
hysteresis  
filtered by  
lowpass filter  
device under hardware reset  
W
W
FRST  
FRST  
W
NFRST  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
23  
Electrical characteristics  
Table 19. Reset electrical characteristics  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VIH SR P Input High Level CMOS  
(Schmitt Trigger)  
0.65VDD  
VDD+0.4  
V
V
V
V
VIL SR P Input low Level CMOS  
(Schmitt Trigger)  
0.4  
0.1VDD  
0.35VDD  
VHYS CC C Input hysteresis CMOS  
(Schmitt Trigger)  
VOL CC P Output low level  
Push Pull, IOL = 2mA,  
0.1VDD  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
(recommended)  
Push Pull, IOL = 1mA,  
0.1VDD  
0.5  
VDD = 5.0 V 10ꢀ, PAD3V5V = 13  
Push Pull, IOL = 1mA,  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
(recommended)  
Ttr  
CC D Output transition time  
output pin4  
CL = 25pF,  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
10  
20  
40  
12  
25  
40  
40  
ns  
MEDIUM configuration  
CL = 50pF,  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
CL = 100pF,  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
CL = 25pF,  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
CL = 50pF,  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
CL = 100pF,  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
WFRST SR P nRSTIN input filtered  
pulse  
ns  
ns  
µA  
WNFRST SR P nRSTIN input not filtered  
pulse  
1000  
|IWPU  
|
CC P Weak pull-up current  
absolute value  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
VDD = 5.0 V 10ꢀ, PAD3V5V = 15  
10  
10  
10  
150  
150  
250  
1
2
3
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
All values need to be confirmed during device validation.  
This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of  
the device reference manual).  
4
5
CL includes device and package capacitance (CPKG < 5 pF).  
The configuration PAD3V5 = 1 when VDD = 5 V is only transient configuration during power-up. All pads but RESET  
and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
24  
Freescale Semiconductor  
Electrical characteristics  
4.9  
Power management electrical characteristics  
Voltage regulator electrical characteristics  
4.9.1  
The device implements an internal voltage regulator to generate the low voltage core supply V  
from the high voltage  
DD_LV  
ballast supply V  
. The regulator itself is supplied by the common I/O supply V . The following supplies are involved:  
DD_BV  
DD  
HV—High voltage external power supply for voltage regulator module. This must be provided externally through V  
power pin.  
DD  
BV—High voltage external power supply for internal ballast module. This must be provided externally through  
V
power pin. Voltage values should be aligned with V  
.
DD_BV  
DD  
LV—Low voltage internal power supply for core, FMPLL and flash digital logic. This is generated by the internal  
voltage regulator but provided outside to connect stability capacitor. It is further split into four main domains to ensure  
noise isolation between critical LV modules within the device:  
LV_COR—Low voltage supply for the core. It is also used to provide supply for FMPLL through double bonding.  
LV_CFLA—Low voltage supply for code flash module. It is supplied with dedicated ballast and shorted to  
LV_COR through double bonding.  
LV_DFLA—Low voltage supply for data flash module. It is supplied with dedicated ballast and shorted to  
LV_COR through double bonding.  
LV_PLL—Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding.  
Figure 8. Voltage regulator capacitance connection  
C
(LV_COR/LV_CFLA)  
REG2  
GND  
V
DD  
V
V
DD_LV  
SS_LV  
V
DD_BV  
DD_LVn  
SS_LVn  
V
REF  
V
DD_BV  
V
DD_LV  
DEVICE  
V
Voltage Regulator  
I
V
SS_LV  
GND  
V
V
V
V
V
DD  
SS_LV  
DD_LV  
SS  
DEVICE  
GND  
GND  
C
(supply/IO decoupling)  
C
(LV_COR/LV_PLL)  
DEC2  
REG3  
The internal voltage regulator requires external capacitance (C  
) to be connected to the device in order to provide a stable  
REGn  
low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins.  
Care should also be taken to limit the serial inductance of the board to less than 5 nH.  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
25  
Electrical characteristics  
Each decoupling capacitor must be placed between each of the three V  
/V  
supply pairs to ensure stable voltage (see  
DD_LV SS_LV  
Section 4.5, “Recommended operating conditions).  
Table 20. Voltage regulator electrical characteristics  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
CREGn  
RREG  
SR — Internal voltage regulator external  
capacitance  
200  
330  
nF  
SR — Stability capacitor equivalent serial  
resistance  
0.2  
Ω
CDEC1  
CDEC2  
SR — Decoupling capacitance3 ballast  
VDD_BV/VSS_LV pair  
VDD/VSS pair  
400  
10  
4704  
100  
nF  
nF  
SR — Decoupling capacitance regulator  
supply  
VMREG  
CC P Main regulator output voltage  
Before trimming  
After trimming  
1.32  
1.28  
V
IMREG  
SR — Main regulator current provided to  
VDD_LV domain  
150  
mA  
mA  
IMREGINT CC D Main regulator module current  
consumption  
IMREG = 200 mA  
IMREG = 0 mA  
2
1
VLPREG  
ILPREG  
CC P Low power regulator output voltage After trimming  
1.23  
15  
V
SR — Low power regulator current provided  
to VDD_LV domain  
mA  
ILPREGINT CC D Low power regulator module current ILPREG = 15 mA;  
5
600  
TBD  
µA  
consumption  
TA = 55 °C  
ILPREG = 0 mA;  
TA = 55 °C  
VULPREG CC P Ultra low power regulator output  
voltage  
Post trimming  
1.23  
2
V
IULPREG  
SR — Ultra low power regulator current  
provided to VDD_LV domain  
5
mA  
µA  
IULPREGINT CC D Ultra low power regulator module  
current consumption  
IULPREG = 5 mA;  
TA = 55 °C  
100  
TBD  
IULPREG = 0 mA;  
TA = 55 °C  
IVREGREF CC D Main LVDs and reference current  
consumption (low power and main  
regulator switched off)  
TA = 55 °C  
17  
µA  
IVREDLVD12 CC D Main LVD current consumption  
(switch-off during standby)  
TA = 55 °C  
2
TBD µA  
4005 mA  
IDD_BV  
CC D In-rush current on VDD_BV during  
power-up  
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
All values need to be confirmed during device validation.  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
26  
Freescale Semiconductor  
Electrical characteristics  
3
4
5
This capacitance value is driven by the constraints of the external voltage regulator supplying the VDD_BV voltage.  
A typical value is in the range of 470 nF.  
External regulator and capacitance circuitry must be capable of providing IDD_BV while maintaining supply VDD_BV  
in operating range.  
In-rush current is seen only for short time during power-up and on standby exit (max 20µs, depending on external  
capacitances to be load)  
4.9.2  
Voltage monitor electrical characteristics  
The device implements a Power-on Reset (POR) module to ensure correct power-up initialization, as well as four low voltage  
detectors (LVDs) to monitor the V and the V voltage while device is supplied:  
DD  
DD_LV  
POR monitors V during the power-up phase to ensure device is maintained in a safe reset state  
DD  
LVDHV3 monitors V to ensure device reset below minimum functional supply  
DD  
LVDHV5 monitors V when application uses device in the 5.0 V ± 10% range  
DD  
LVDLVCOR monitors power domain No. 1  
LVDLVBKP monitors power domain No. 0  
NOTE  
When enabled, power domain No. 2 is monitored through LVD_DIGBKP.  
Figure 9. Low voltage monitor vs reset  
V
DD  
V
V
LVDHVxH  
LVDHVxL  
RESET  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
27  
Electrical characteristics  
Table 21. Low voltage monitor electrical characteristics  
Value2  
Typ  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
VPORUP  
VPORH  
SR P Supply for functional POR module  
CC P Power-on reset threshold  
TA = 25 °C,  
after trimming  
1.0  
1.5  
5.5  
2.6  
V
VLVDHV3H CC T LVDHV3 low voltage detector high threshold  
VLVDHV3L CC P LVDHV3 low voltage detector low threshold  
VLVDHV5H CC T LVDHV5 low voltage detector high threshold  
VLVDHV5L CC P LVDHV5 low voltage detector low threshold  
VLVDLVCORL CC P LVDLVCOR low voltage detector low threshold  
VLVDLVBKPL CC P LVDLVBKP low voltage detector low threshold  
2.95  
2.9  
2.7  
4.5  
3.8  
1.07  
1.07  
4.4  
1.11  
1.11  
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
All values need to be confirmed during device validation.  
4.10 Low voltage domain power consumption  
Table 22 provides DC electrical characteristics for significant application modes. These values are indicative values; actual  
consumption depends on the application.  
Table 22. Low voltage power domain electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
115 1403 mA  
Min Typ Max  
2
IDDMAX  
CC D RUN mode maximum  
average current  
4
IDDRUN  
CC T RUN modetypical average  
60  
TBD TBD  
TBD mA  
180 7008 µA  
80  
mA  
current5  
P
IDDHALT  
CC P HALT mode current6  
8
IDDSTOP CC P STOP mode current7  
Slow internal RC oscillator TA = 25 °C  
(128 kHz) running  
D
D
D
P
TA = 55 °C  
500  
1
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
mA  
µA  
2
4.5 TBD(8)  
IDDSTDBY2 CC P STANDBY2modecurrent9 Slow internal RC oscillator TA = 25 °C  
(128 kHz) running  
30  
100  
D
D
D
P
TA = 55 °C  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
TBD  
TBD  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
28  
Freescale Semiconductor  
Electrical characteristics  
Table 22. Low voltage power domain electrical characteristics (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
IDDSTDBY1 CC T STANDBY1 mode  
Slow internal RC oscillator TA = 25 °C  
20  
60  
µA  
current10  
D
(128 kHz) running  
TA = 55 °C  
TBD  
D
D
D
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
280 TBD  
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
Running consumption is given on voltage regulator supply (VDDREG). It does not include consumption linked to I/Os  
toggling. This value is highly dependent on the application. The given value is thought to be a worst case value with  
all peripherals running, and code fetched from code flash while modify operation on-going on data flash. It is to be  
noticed that this value can be significantly reduced by application: switch-off not used peripherals (default), reduce  
peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when  
possible.  
3
4
5
Higher current may be sinked by device during power-up and standby exit. please refer to in rush current on Table 20.  
RUN current measured with typical application with accesses on both flash and RAM.  
Only for the “P” classification: Code fetched from RAM: Serial IPs CAN and LIN in loop back mode, DSPi as Master,  
PLL as system Clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at max frequency, periodic  
SW/WDG timer reset enabled.  
6
Data Flash Power Down. Code Flash in Low Power. RC-osc128kHz & RC-OSC 16MHz on. 10MHz XTAL clock.  
FlexCAN: instances: 0, 1, 2 ON (clocked but not reception or transmission), instances: 4, 5, 6 clock gated. LINFlex:  
instances: 0, 1, 2 ON (clocked but not reception or transmission), instance: 3 clock gated. eMIOS: instance: 0 ON  
(16 channels on PA[0]-PA[11] and PC[12]-PC[15]) with PWM 20KHz, instance: 1 clock gated. DSPI: instance: 0  
(clocked but no communication). RTC/API ON.PIT ON. STM ON. ADC ON but not conversion except 2 analogue  
watchdog  
7
8
Only for the “P” classification: No clock, RC 16MHz off, RC128kHz on, PLL off, HPvreg off, ULPVreg/LPVreg on. All  
possible peripherals off and clock gated. Flash in power down mode.  
When going from RUN to STOP mode and the core consumption is > 6 mA , it is normal operation for the main  
regulator module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction  
temperatures exceeding 125 °C and under these circumstances , it is possible for the current to initially exceed the  
maximum STOP specification by up to 2 mA. After entering stop, the application junction temperature will reduce to  
the ambient level and the main regulator will be automatically switched off when the load current is below 6 mA.  
9
Only for the “P” classification: ULPreg on, HP/LPVreg off, 32kB RAM on, device configured for minimum  
consumption, all possible modules switched-off.  
10 ULPreg on, HP/LPVreg off, 8kB RAM on, device configured for minimum consumption, all possible modules  
switched-off.  
4.11 Flash memory electrical characteristics  
4.11.1 Program/Erase characteristics  
Table 23 shows the program and erase characteristics.  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
29  
Electrical characteristics  
Table 23. Program and erase specifications  
Parameter  
Value  
Symbol  
C
Unit  
Initial  
max2  
Min  
Typ1  
Max3  
Tdwprogram CC C Double word (64 bits) program time4  
22  
TBD  
500  
500  
µs  
ms  
ms  
ms  
T16Kpperase  
T32Kpperase  
T128Kpperase  
16 KB block pre-program and erase time  
32 KB block pre-program and erase time  
128 KB block pre-program and erase time  
300  
400  
800  
5000  
5000  
7500  
600  
1300  
1
Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to  
change pending device characterization.  
2
3
Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.  
The maximum program and erase times occur after the specified number of program/erase cycles. These maximum  
values are characterized but not guaranteed.  
4
Actual hardware programming times. This does not include software overhead.  
Table 24. Flash module life  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Typ  
P/E  
CC C Number of program/erase cycles per  
block for 16 Kbyte blocks over the  
operating temperature range (TJ)  
100,000  
cycles  
P/E  
P/E  
CC C Number of program/erase cycles per  
block for 32 Kbyte blocks over the  
operating temperature range (TJ)  
10,000  
1,000  
100,0001 cycles  
100,000(1) cycles  
CC C Number of program/erase cycles per  
block for 128 Kbyte blocks over the  
operating temperature range (TJ)  
Retention CC C Minimum data retention at 85 °C  
average ambient temperature2  
Blocks with 0–1,000 P/E  
cycles  
20  
10  
years  
years  
years  
Blocks with 10,000 P/E  
cycles  
Blocks with 100,000 P/E  
cycles  
1–5  
1
To be confirmed  
2
Ambient temperature averaged over duration of application, not to exceed recommended product operating  
temperature range.  
ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results.  
Some units will experience single bit corrections throughout the life of the product with no impact to product  
reliability.  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
30  
Freescale Semiconductor  
Electrical characteristics  
Max Unit  
Table 25. Flash read access timing  
Parameter  
Symbol  
C
Conditions1  
fREAD CC P Maximum frequency for Flash reading  
2 wait states  
1 wait state  
0 wait states  
64  
40  
20  
MHz  
C
C
1
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
4.11.2 Flash power supply DC characteristics  
Table 26 shows the power supply DC characteristics on external supply.  
Table 26. Flash power supply DC electrical characteristics  
Conditions1  
Value2  
Min Typ Max  
Symbol  
C
Parameter  
Unit  
IFREAD CC D Sum of the current consumption on VDDHV Flash module read  
and VDDBV on read access  
fCPU = 64 MHz3  
33 mA  
IFMOD CC D Sum of the current consumption on VDDHV Program/Erase on-going  
33 mA  
and VDDBV on matrix modification  
(program/erase)  
while reading Flash registers  
fCPU = 64 MHz(3)  
IFLPW CC D Sum of the current consumption on VDDHV  
and VDDBV during Flash low-power mode  
900 µA  
150 µA  
IFPWD CC D Sum of the current consumption on VDDHV  
and VDDBV during Flash powe-down mode  
1
2
3
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
All values need to be confirmed during device validation.  
fCPU 64 MHz can be achieved only at up to 105 °C  
4.11.3 Start-up/Switch-off timings  
Table 27. Start-up time/Switch-off time  
Value  
Typ  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
125  
TFLARSTEXIT CC T Delay for Flash module to exit reset mode  
µs  
TFLALPEXIT  
CC T Delay for Flash module to exit low-power  
mode  
0.5  
TFLAPDEXIT  
CC T Delay for Flash module to exit power-down  
mode  
30  
TFLALPENTRY CC T Delay for Flash module to enter low-power  
mode  
0.5  
1.5  
TFLAPDENTRY CC T  
Delay for Flash module to enter power-down  
mode  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
31  
Electrical characteristics  
1
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
4.12 Electromagnetic compatibility (EMC) characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
4.12.1 Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical application environment and simplified  
MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in  
particular.  
Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC  
level requested for his application.  
Software recommendations The software flowchart must include the management of runaway conditions such as:  
— Corrupted program counter  
— Unexpected reset  
— Critical data corruption (control registers...)  
Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.  
To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the  
software can be hardened to prevent unrecoverable errors occurring.  
4.12.2 Electromagnetic interference (EMI)  
The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC 61967-1  
standard, which specifies the general conditions for EMI measurements.  
1,2  
Table 28. EMI radiated emission measurement  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min Typ Max  
S — Scan range  
R
0.15  
0
1000 MHz  
fCPU S — Operating frequency  
R
64  
1.28  
MHz  
V
VDD_L S — LV operating  
R
voltages  
V
SEMI C T Peak level  
C
VDD = 5 V, TA = 25 °C,  
LQFP144 package  
No PLL frequency  
modulation  
18 dBµ  
V
Test conforming to IEC 61967-2,  
fOSC = 8 MHz/fCPU = 64 MHz  
2ꢀ PLL  
frequency  
modulation  
143 dBµ  
V
1
2
EMI testing and I/O port waveforms per IEC 61967-1, -2, -4  
For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your  
local marketing representative.  
3
All values need to be confirmed during device validation  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
32  
Freescale Semiconductor  
Electrical characteristics  
4.12.3 Absolute maximum ratings (electrical sensitivity)  
Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine  
its performance in terms of electrical sensitivity.  
4.12.3.1 Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according  
to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This  
test conforms to the AEC-Q100-002/-003/-011 standard.  
1 2  
Table 29. ESD absolute maximum ratings  
Symbol  
C
Ratings  
Conditions  
TA = 25 °C  
Class Max value  
Unit  
VESD(HBM) CC T Electrostatic discharge voltage  
(Human Body Model)  
H1C  
2000  
V
conforming to AEC-Q100-002  
VESD(MM) CC T Electrostatic discharge voltage  
(Machine Model)  
TA = 25 °C  
conforming to AEC-Q100-003  
M2  
200  
VESD(CDM) CC T Electrostatic discharge voltage  
(Charged Device Model)  
TA = 25 °C  
conforming to AEC-Q100-011  
C3A  
500  
750 (corners)  
1
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated  
Circuits.  
2
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device  
specification requirements. Complete DC parametric and functional testing shall be performed per applicable  
device specification at room temperature followed by hot temperature, unless specified otherwise in the device  
specification.  
4.12.3.2 Static latch-up (LU)  
Two complementary static tests are required on six parts to assess the latch-up performance:  
A supply overvoltage is applied to each power supply pin.  
A current injection is applied to each input, output and configurable I/O pin.  
These tests are compliant with the EIA/JESD 78 IC latch-up standard.  
Table 30. Latch-up results  
Symbol  
LU CC  
C
Parameter  
Conditions  
Class  
T Static latch-up class  
TA = 125 °C  
II level A  
conforming to JESD 78  
4.13 Fast external crystal oscillator (4 to 16 MHz) electrical  
characteristics  
The device provides an oscillator/resonator driver. Figure 10 describes a simple model of the internal oscillator driver and  
provides an example of a connection for an oscillator or a resonator.  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
33  
Electrical characteristics  
Table 31 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations.  
Figure 10. Crystal oscillator and resonator connection scheme  
EXTAL  
C1  
EXTAL  
XTAL  
C2  
DEVICE  
V
DD  
I
R
EXTAL  
XTAL  
DEVICE  
XTAL  
DEVICE  
NOTE  
XTAL/EXTAL must not be directly used to drive external circuits.  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
34  
Freescale Semiconductor  
Electrical characteristics  
Shunt  
Table 31. Crystal description  
Crystal  
Crystal  
motional  
capacitance  
(Cm) fF  
Crystal  
motional  
inductance  
(Lm) mH  
Load on  
capacitance  
between  
xtalout  
Nominal  
frequency  
(MHz)  
equivalent  
series  
NDK crystal  
reference  
xtalin/xtalout  
C1 = C2  
(pF)1  
resistance  
ESR Ω  
and xtalin  
C02 (pF)  
4
NX8045GB  
NX5032GA  
300  
300  
150  
120  
120  
2.68  
2.46  
2.93  
3.11  
3.90  
591.0  
160.7  
86.6  
21  
17  
15  
15  
10  
2.93  
3.01  
2.91  
2.93  
3.00  
8
10  
12  
16  
56.5  
25.3  
1
2
The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing  
includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.  
The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads,  
package, etc.).  
Figure 11. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics  
S_MTRANS bit (ME_GS register)  
‘1’  
‘0’  
V
XTAL  
1/f  
FXOSC  
V
FXOSC  
90ꢀ  
10ꢀ  
V
FXOSCOP  
T
valid internal clock  
FXOSCSU  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
35  
Electrical characteristics  
Table 32. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
fFXOSC  
SR — Fast external crystal  
oscillator frequency  
4.0  
16.0  
MHz  
gmFXOSC CC C Fast external crystal  
oscillator  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
OSCILLATOR_MARGIN =0  
2.2  
2.0  
2.7  
2.5  
8.2  
7.4  
9.7  
9.2  
mA/V  
transconductance  
CC P  
CC C  
CC C  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
OSCILLATOR_MARGIN =0  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
OSCILLATOR_MARGIN =1  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
OSCILLATOR_MARGIN =1  
VFXOSC  
CC T Oscillation amplitude at  
EXTAL  
fOSC = 4 MHz,  
OSCILLATOR_MARGIN = 0  
1.3  
1.3  
V
f
OSC = 16 MHz,  
OSCILLATOR_MARGIN = 1  
VFXOSCOP CC P Oscillation operating point  
0.95  
2
V
,3  
IFXOSC  
CC T Fast external crystal  
oscillator consumption  
3
6
mA  
TFXOSCSU CC T Fast external crystal  
oscillator start-up time  
fOSC = 4 MHz,  
OSCILLATOR_MARGIN = 0  
ms  
fOSC = 16 MHz,  
OSCILLATOR_MARGIN = 1  
1.8  
VIH  
VIL  
SR P Input high level CMOS  
(Schmitt Trigger)  
Oscillator bypass mode  
Oscillator bypass mode  
0.65VDD  
0.4  
VDD+0.4  
0.35VDD  
V
V
SR P Input low level CMOS  
(Schmitt Trigger)  
1
2
3
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
All values need to be confirmed during device validation.  
Stated values take into account only analog module consumption but not the digital contributor (clock tree and  
enabled peripherals)  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
36  
Freescale Semiconductor  
Electrical characteristics  
4.14 Slow external crystal oscillator (32 kHz) electrical characteristics  
The device provides a low power oscillator/resonator driver.  
Figure 12. Crystal oscillator and resonator connection scheme  
OSC32K_EXTAL  
OSC32K_EXTAL  
C1  
C2  
OSC32K_XTAL  
OSC32K_XTAL  
DEVICE  
DEVICE  
NOTE  
OSC32K_XTAL/OSC32K_EXTAL must not be directly used to drive external circuits.  
Figure 13. Equivalent circuit of a quartz crystal  
C0  
Crystal  
Rm  
Lm  
Cm  
C1  
C2  
C1  
C2  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
37  
Electrical characteristics  
Symbol  
1
Table 33. Crystal motional characteristics  
Value  
Typ  
Parameter  
Conditions  
Unit  
Min  
Max  
Lm  
Motional inductance  
Motional capacitance  
18  
11.796  
28  
KH  
fF  
Cm  
2
C1/C2 Load capacitance at OSC32K_XTAL and  
OSC32K_EXTAL with respect to ground2  
pF  
AC coupled @ C0 = 2.85 pF4  
AC coupled @ C0 = 4.9 pF(4)  
AC coupled @ C0 = 7.0 pF(4)  
AC coupled @ C0 = 9.0 pF(4)  
65  
50  
35  
30  
kW  
3
Rm  
Motional resistance  
1
2
The crystal used is Epson Toyocom MC306.  
This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to  
ground. It includes all the parasitics due to board traces, crystal and package.  
3
4
Maximum ESR (Rm) of the crystal is 50 kΩ  
C0 Includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins  
Figure 14. Slow external crystal oscillator (32 kHz) electrical characteristics  
OSCON bit (OSC_CTL register)  
1
0
V
OSC32K_XTAL  
1/f  
SXOSC  
V
SXOSC  
90ꢀ  
10ꢀ  
T
valid internal clock  
SXOSCSU  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
38  
Freescale Semiconductor  
Electrical characteristics  
Table 34. Slow external crystal oscillator (32 kHz) electrical characteristics  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
fSXOSC  
SR — Slow external crystal oscillator  
frequency  
32  
32.768  
40  
kHz  
gmSXOSC CC — Slow external crystal oscillator  
transconductance  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
TBD  
TBD  
TBD  
TBD  
mA/V  
VDD = 5.0 V 10ꢀ  
PAD3V5V = 0  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
VSXOSC  
CC T Oscillation amplitude  
2.1  
TBD  
V
ISXOSCBIAS CC T Oscillation bias current  
µA  
µA  
ISXOSC  
CC T Slow external crystal oscillator  
consumption  
8
TSXOSCSU CC T Slow external crystal oscillator  
start-up time  
23  
s
1
2
3
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
All values need to be confirmed during device validation.  
Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal  
4.15 FMPLL electrical characteristics  
The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system clock from the main  
oscillator driver.  
Table 35. FMPLL electrical characteristics  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
fPLLIN SR — FMPLL reference clock3  
4
64  
60  
MHz  
ΔPLLIN SR — FMPLL reference clock duty  
40  
cycle(3)  
fPLLOUT CC P FMPLL output clock frequency  
fCPU SR — System clock frequency  
fFREE CC P Free-running frequency  
tLOCK CC P FMPLL lock time  
16  
20  
40  
64  
MHz  
644 MHz  
150 MHz  
Stable oscillator (fPLLIN = 16 MHz)  
100  
10  
µs  
ns  
ΔtLTJIT CC — FMPLL long term jitter  
fPLLIN = 16 MHz (resonator),  
fPLLCLK @ 64 MHz, 4000 cycles  
IPLL  
CC C FMPLL consumption  
TA = 25 °C  
4
mA  
1
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
39  
Electrical characteristics  
2
All values need to be confirmed during device validation.  
3
PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in  
functional mode. When bypass mode is used, oscillator input clock should verify fPLLIN and ΔPLLIN  
fCPU 64 MHz can be achieved only at up to 105 °C  
.
4
4.16 Fast internal RC oscillator (16 MHz) electrical characteristics  
The device provides a 16 MHz fast internal RC oscillator. This is used as the default clock at the power-up of the device.  
Table 36. Fast internal RC oscillator (16 MHz) electrical characteristics  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
fFIRC  
CC P Fast internal RC oscillator high TA = 25 °C, trimmed  
frequency  
16  
MHz  
SR —  
12  
20  
3,  
IFIRCRUN  
CC T Fast internal RC oscillator high TA = 25 °C, trimmed  
200  
µA  
µA  
frequency current in running  
mode  
IFIRCPWD CC D Fast internal RC oscillator high TA = 25 °C  
frequency current in power  
TBD  
10  
TA = 55 °C  
TBD TBD  
down mode  
IFIRCSTOP CC T Fast internal RC oscillator high TA = 25 °C sysclk = off  
frequency and system clock  
500  
600  
700  
900  
1250  
1.1  
µA  
sysclk = 2 MHz  
current in stop mode  
sysclk = 4 MHz  
sysclk = 8 MHz  
sysclk = 16 MHz  
TFIRCSU CC C Fast internal RC oscillator  
TA = 55 °C VDD = 5.0 V 10ꢀ  
VDD = 3.3 V 10ꢀ  
2.0  
TBD  
µs  
start-up time  
1.2  
TA = 125 °C VDD = 5.0 V 10ꢀ  
1  
2.0  
TBD  
+1  
VDD = 3.3 V 10ꢀ  
ΔFIRCPRE CC C Fast internal RC oscillator  
precision after software  
TA = 25 °C  
TA = 25 °C  
trimming of fFIRC  
ΔFIRCTRIM CC C Fast internal RC oscillator  
1.6  
trimming step  
ΔFIRCVAR CC C Fast internal RC oscillator  
variation in temperature and  
supply with respect to fFIRC at  
TA = 55 °C in high-frequency  
configuration  
5  
+5  
1
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
40  
Freescale Semiconductor  
Electrical characteristics  
2
3
All values need to be confirmed during device validation.  
This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is  
ON.  
4.17 Slow internal RC oscillator (128 kHz) electrical characteristics  
The device provides a 128 kHz slow internal RC oscillator. This can be used as the reference clock for the RTC module.  
Table 37. Slow internal RC oscillator (128 kHz) electrical characteristics  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
fSIRC  
CC P Slow internal RC oscillator low  
TA = 25 °C, trimmed  
100  
128  
150  
5
kHz  
frequency  
SR —  
3,  
ISIRC  
CC C Slow internal RC oscillator low  
frequency current  
TA = 25 °C, trimmed  
µA  
µs  
TSIRCSU CC P Slow internal RC oscillator start-up TA = 25 °C, VDD = 5.0 V 10ꢀ  
time  
2  
8
12  
+2  
ΔSIRCPRE CC C Slow internal RC oscillator precision TA = 25 °C  
2.7  
after software trimming of fSIRC  
ΔSIRCTRIM CC C Slow internal RC oscillator trimming  
step  
ΔSIRCVAR CC C Slow internal RC oscillator variation High frequency configuration  
in temperature and supply with  
10  
+10  
respect to fSIRC at TA = 55 °C in high  
frequency configuration  
1
2
3
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
All values need to be confirmed during device validation.  
This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is  
ON.  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
41  
Electrical characteristics  
4.18 On-chip peripherals  
4.18.1 Current consumption  
1
Table 38. On-chip peripherals current consumption  
Value  
Typ  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Max  
IDD_BV(CAN)  
CC T CAN (FlexCAN) supply 500 Kbps Total (static + dynamic)  
7.652 * fperiph + 84.73  
8.0743 * fperiph + 26.757  
µA  
current on VDD_BV  
consumption:  
125 Kbps  
• FlexCAN in loop-back  
mode  
• XTAL@8MHz used as  
CAN engine clock  
source  
• Messagesendingperiod  
is 580 µs  
IDD_BV(eMIOS) CC T eMIOS supply current Static consumption:  
28.7 * fperiph  
on VDD_BV  
• eMIOS channel OFF  
• Global prescaler enabled  
Dynamic consumption:  
3
• It does not change varying the  
frequency (0.003 mA)  
IDD_BV(SCI)  
CC T SCI (LINFlex) supply  
current on VDD_BV  
Total (static + dynamic) consumption:  
• LIN mode  
4.7804 * fperiph + 30.946  
• Baudrate: 20 Kbps  
IDD_BV(SPI)  
CC T SPI (DSPI) supply  
current on VDD_BV  
Ballast static consumption (only  
clocked)  
1
Ballast dynamic consumption  
(continuus communication):  
• Baudrate: 2 Mbit  
16.3 * fperiph  
Trasmission every 8 µs  
• Frame: 16 bits  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
42  
Freescale Semiconductor  
Electrical characteristics  
Table 38. On-chip peripherals current consumption (continued)  
1
Value  
Typ  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Max  
IDD_BV(ADC)  
CC T ADC supply current on VDD =5.5V Ballast static consumption  
0.0409 * fperiph  
mA  
VDD_BV  
(no conversion)  
VDD =5.5V  
Ballast dynamic  
consumption (continuus  
conversion)  
0.0049 * fperiph  
IDD_HV_ADC(ADC) CC T ADC supply current on VDD =5.5V Analog static consumption  
0.0017 * fperiph  
VDD_HV_ADC  
(no conversion)  
VDD =5.5V  
Analog dynamic  
consumption (continuus  
conversion)  
0.075 * fperiph + 0.032  
IDD_HV(FLASH) CC T CFlash + DFlash  
supply current on  
VDD =5.5V  
-
8.21 (4.14 + 4.07)  
0.0031 * fperiph  
VDD_HV_ADC  
IDD_HV(PLL)  
CC T PLL supply current on VDD =5.5V  
VDD_HV  
-
1
Operating conditions: TA = 25 °C, fperiph = 8 MHz to 64 MHz  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
43  
Electrical characteristics  
4.18.2 DSPI characteristics  
Table 39. DSPI characteristics  
Value  
Typ  
No. Symbol  
C
Parameter  
Unit  
Min  
Max  
1
tSCK SR D SCK cycle time  
64  
ns  
fDSPI SR D DSPI digital controller frequency  
fCPU MHz  
ΔtCSC CC D Internal delay between pad associated to SCK and  
1201  
ns  
pad associated to CSn in master mode  
2
2
3
4
tCSCext CC D CS to SCK delay  
SR D  
Master mode  
Slave mode  
Master mode  
Slave mode  
Master mode  
Slave mode  
t
CSCext = tCSC + ΔtCSC  
ns  
32  
3
tASCext CC D After SCK delay  
tASCext = tASC + ΔtCSC  
ns  
ns  
ns  
SR D  
1/fDSPI + 5 ns  
tSCK/2  
32  
34  
32  
tSDC CC D SCK duty cycle  
SR D  
tSCK/2  
27  
0
5
6
7
tA  
SR D Slave access time  
ns  
ns  
ns  
tDI  
SR D Slave SOUT disable time  
tSUI SR D Data setup time for inputs  
Master (MTFE = 0)  
Slave  
35  
5
Master(MTFE = 1)  
Master (MTFE = 0)  
Slave  
35  
0
8
9
tHI  
SR D Data hold time for inputs  
ns  
ns  
ns  
24  
Master(MTFE = 1)  
Master (MTFE = 0)  
Slave  
0
5
tSUO CC D Data valid after SCK edge  
2
Master (MTFE = 1)  
Master (MTFE = 0)  
Slave  
(5)  
10 tHO  
CC D Data hold time for outputs  
5.5  
2
Master (MTFE = 1)  
1
2
Maximum is reached when CSn pad is configured as SLOW pad while SCK pad is configured as MEDIUM pad.  
The tCSC delay value is configurable through a register. When configuring tCSC (using PCSSCK and CSSCK fields  
in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than ΔtCSC to ensure  
positive tCSCext  
.
3
The tASC delay value is configurable through a register. When configuring tASC (using PASC and ASC fields in  
DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than ΔtASC to ensure positive  
tASCext  
.
4
5
This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of DSPI_MCR register.  
SCK and SOUT configured as MEDIUM pad  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
44  
Freescale Semiconductor  
Electrical characteristics  
Figure 15. DSPI classic SPI timing – master, CPHA = 0  
2
3
PCSx  
1
4
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
10  
9
Last Data  
SIN  
First Data  
First Data  
Data  
Data  
12  
11  
Last Data  
SOUT  
Note: Numbers shown reference Table 39.  
Figure 16. DSPI classic SPI timing – master, CPHA = 1  
PCSx  
SCK Output  
(CPOL = 0)  
10  
SCK Output  
(CPOL = 1)  
9
Data  
Data  
First Data  
Last Data  
SIN  
12  
11  
SOUT  
Last Data  
First Data  
Note: Numbers shown reference Table 39.  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
45  
Electrical characteristics  
Figure 17. DSPI classic SPI timing – slave, CPHA = 0  
3
2
SS  
1
4
SCK Input  
(CPOL = 0)  
4
SCK Input  
(CPOL = 1)  
5
11  
12  
Data  
6
First Data  
Last Data  
SOUT  
SIN  
9
10  
Data  
Last Data  
First Data  
Note: Numbers shown reference Table 39.  
Figure 18. DSPI classic SPI timing – slave, CPHA = 1  
SS  
SCK Input  
(CPOL = 0)  
SCK Input  
(CPOL = 1)  
11  
5
6
12  
Last Data  
Data  
Data  
SOUT  
SIN  
First Data  
10  
9
Last Data  
First Data  
Note: Numbers shown reference Table 39.  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
46  
Freescale Semiconductor  
Electrical characteristics  
Figure 19. DSPI modified transfer format timing – master, CPHA = 0  
3
PCSx  
4
1
2
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
9
10  
SIN  
First Data  
Last Data  
Last Data  
Data  
12  
11  
SOUT  
First Data  
Data  
Note: Numbers shown reference Table 39.  
Figure 20. DSPI modified transfer format timing – master, CPHA = 1  
PCSx  
SCK Output  
(CPOL = 0)  
SCK Output  
(CPOL = 1)  
10  
9
SIN  
Last Data  
First Data  
Data  
12  
Data  
11  
First Data  
Last Data  
SOUT  
Note: Numbers shown reference Table 39.  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
47  
Electrical characteristics  
Figure 21. DSPI modified transfer format timing – slave, CPHA = 0  
3
2
SS  
1
SCK Input  
(CPOL = 0)  
4
4
SCK Input  
(CPOL = 1)  
12  
11  
6
5
First Data  
9
Data  
Data  
Last Data  
10  
SOUT  
SIN  
Last Data  
First Data  
Note: Numbers shown reference Table 39.  
Figure 22. DSPI modified transfer format timing – slave, CPHA = 1  
SS  
SCK Input  
(CPOL = 0)  
SCK Input  
(CPOL = 1)  
11  
5
6
12  
Last Data  
First Data  
10  
Data  
Data  
SOUT  
SIN  
9
First Data  
Last Data  
Note: Numbers shown reference Table 39.  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
48  
Freescale Semiconductor  
Electrical characteristics  
Figure 23. DSPI PCS strobe (PCSS) timing  
8
7
PCSS  
PCSx  
Note: Numbers shown reference Table 39.  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
49  
Electrical characteristics  
4.18.3 Nexus characteristics  
Table 40. Nexus characteristics  
Value  
Typ  
No.  
Symbol  
C
Parameter  
Unit  
Min  
Max  
1
2
tTCYC  
tMCYC  
tMDOV  
tMSEOV CC D MCKO low to MSEO_b data valid  
CC D TCK cycle time  
64  
32  
15  
15  
5
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CC D MCKO cycle time  
3
CC D MCKO low to MDO data valid  
4
8
5
tEVTOV  
tNTDIS  
CC D MCKO low to EVTO data valid  
CC D TDI data setup time  
8
10  
tNTMSS CC D TMS data setup time  
tNTDIH CC D TDI data hold time  
tNTMSH CC D TMS data hold time  
11  
5
12  
13  
tTDOV  
tTDOI  
CC D TCK low to TDO data valid  
CC D TCK low to TDO data invalid  
35  
6
Figure 24. Nexus TDI, TMS, TDO timing  
TCK  
10  
11  
TMS, TDI  
12  
TDO  
Note: Numbers shown reference Table 40.  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
50  
Freescale Semiconductor  
Electrical characteristics  
4.18.4 JTAG characteristics  
Table 41. JTAG characteristics  
Value  
Typ  
No.  
Symbol  
C
Parameter  
Unit  
Max  
Min  
1
2
3
4
5
6
7
tJCYC  
tTDIS  
CC D TCK cycle time  
CC D TDI setup time  
CC D TDI hold time  
64  
15  
5
33  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tTDIH  
tTMSS  
tTMSH  
tTDOV  
tTDOI  
CC D TMS setup time  
CC D TMS hold time  
CC D TCK low to TDO valid  
CC D TCK low to TDO invalid  
15  
5
6
Figure 25. Timing diagram – JTAG boundary scan  
TCK  
2/4  
3/5  
INPUT DATA VALID  
DATA INPUTS  
6
DATA OUTPUTS  
DATA OUTPUTS  
OUTPUT DATA VALID  
7
Note: Numbers shown reference Table 41.  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
51  
Electrical characteristics  
4.18.5 ADC electrical characteristics  
4.18.5.1 Introduction  
The device provides a 10-bit Successive Approximation Register (SAR) analog-to-digital converter.  
Figure 26. ADC characteristic and error definitions  
Offset Error OSE  
Gain Error GE  
1023  
1022  
1021  
1020  
1019  
1 LSB ideal = V  
/ 1024  
DD_ADC  
1018  
(2)  
code out  
7
(1)  
6
5
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(5)  
(3) Differential non-linearity error (DNL)  
(4) Integral non-linearity error (INL)  
(5) Center of a step of the actual transfer curve  
4
3
(4)  
(3)  
2
1
1 LSB (ideal)  
0
1
2
3
4
5
6
7
1017 1018 1019 1020 1021 1022 1023  
(LSB  
V
)
ideal  
in(A)  
Offset Error OSE  
4.18.5.2 Input impedance and ADC accuracy  
In the following analysis, the input circuit corresponding to the precise channels is considered.  
To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor  
with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as  
possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources  
charge during the sampling phase, when the analog signal source is a high-impedance source.  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
52  
Freescale Semiconductor  
Electrical characteristics  
A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC  
filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to  
be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal  
(bandwidth) and the equivalent input impedance of the ADC itself.  
In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: C being  
S
substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path  
to ground. For instance, assuming a conversion rate of 1 MHz, with C equal to 3 pF, a resistance of 330 kΩ is obtained (R  
S
EQ  
= 1 / (f *C ), where f represents the conversion rate at the considered channel). To minimize the error induced by the voltage  
c
S
c
partitioning between this resistance (sampled voltage on C ) and the sum of R + R + R + R + R , the external circuit  
S
S
F
L
SW  
AD  
must be designed to respect the Equation 4:  
Eqn. 4  
R + R + R + R  
+ R  
S
F
L
SW  
AD  
1
2
--------------------------------------------------------------------------  
V •  
< -- LSB  
A
R
EQ  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
53  
Electrical characteristics  
Equation 4 generates a constraint for external network design, in particular on a resistive path. Internal switch resistances (R  
SW  
and R ) can be neglected with respect to external resistances.  
AD  
Figure 27. Input equivalent circuit (precise channels)  
EXTERNAL CIRCUIT  
INTERNAL CIRCUIT SCHEME  
V
DD  
Channel  
Sampling  
Selection  
Source  
Filter  
Current Limiter  
R
R
R
R
R
AD  
S
F
L
SW1  
V
C
C
C
C
S
A
F
P1  
P2  
R
Source Impedance  
Filter Resistance  
Filter Capacitance  
Current Limiter Resistance  
Channel Selection Switch Impedance  
Sampling Switch Impedance  
Pin Capacitance (two contributions, C and C  
P1  
Sampling Capacitance  
S
F
F
L
R
C
R
R
R
C
C
SW1  
AD  
P
)
P2  
S
Figure 28. Input equivalent circuit (extended channels)  
EXTERNAL CIRCUIT  
INTERNAL CIRCUIT SCHEME  
V
DD  
Channel  
Selection  
Extended  
Switch  
Sampling  
Source  
R
Filter  
Current Limiter  
R
R
R
F
R
L
R
AD  
SW2  
S
SW1  
C
S
C
V
C
F
C
C
P2  
A
P1  
P3  
R
R
C
R
R
R
C
C
Source Impedance  
Filter Resistance  
Filter Capacitance  
Current Limiter Resistance  
Channel Selection Switch Impedance (two contributions R  
Sampling Switch Impedance  
Pin Capacitance (three contributions, C , C and C )  
P3  
Sampling Capacitance  
S
F
F
L
and R  
)
SW2  
SW  
AD  
P
SW1  
P1  
P2  
S
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
54  
Freescale Semiconductor  
Electrical characteristics  
A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C , C and C are  
F
P1  
P2  
initially charged at the source voltage V (refer to the equivalent circuit in Figure 27): A charge sharing phenomenon is installed  
A
when the sampling phase is started (A/D switch close).  
Figure 29. Transient behavior during sampling phase  
Voltage transient on CS  
V
CS  
V
A
ΔV < 0.5 LSB  
V
A2  
1
2
τ1 < (RSW + RAD) CS << TS  
V
A1  
τ2 = RL (CS + CP1 + CP2)  
T
t
S
In particular two different transient periods can be distinguished:  
1. A first and quick charge transfer from the internal capacitance C and C to the sampling capacitance C occurs (C  
S
P1  
P2  
S
is supposed initially completely discharged): considering a worst case (since the time constant in reality would be  
faster) in which C is reported in parallel to C (call C = C + C ), the two capacitances C and C are in series,  
P2  
P1  
P
P1  
P2  
P
S
and the time constant is  
Eqn. 5  
C C  
P
S
--------------------  
) •  
τ
= (R  
+ R  
1
SW  
AD  
C + C  
P
S
Equation 5 can again be simplified considering only C as an additional worst condition. In reality, the transient is  
S
faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time T  
is always much longer than the internal time constant:  
S
Eqn. 6  
τ < (R  
+ R  
) C « T  
1
SW  
AD  
S
S
The charge of C and C is redistributed also on C , determining a new value of the voltage V on the capacitance  
P1  
P2  
S
A1  
according to Equation 7:  
Eqn. 7  
V
(C + C + C ) = V (C + C  
)
A1  
S
P1  
P2  
A
P1  
P2  
2. A second charge transfer involves also C (that is typically bigger than the on-chip capacitance) through the resistance  
F
R : again considering the worst case in which C and C were in parallel to C (since the time constant in reality  
L
P2  
S
P1  
would be faster), the time constant is:  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
55  
Electrical characteristics  
Eqn. 8  
τ < R (C + C + C  
P1 P2  
)
2
L
S
In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed  
well before the end of sampling time T , a constraints on R sizing is obtained:  
S
L
Eqn. 9  
10 τ = 10 R (C + C + C ) < T  
P1 P2 S  
2
L
S
Of course, R shall be sized also according to the current limitation constraints, in combination with R (source  
L
S
impedance) and R (filter resistance). Being C definitively bigger than C , C and C , then the final voltage V  
F
F
P1 P2  
S
A2  
(at the end of the charge transfer transient) will be much higher than V . Equation 10 must be respected (charge  
A1  
balance assuming now C already charged at V ):  
S
A1  
Eqn. 10  
V
(C + C + C + C ) = V C + V (C + C + C )  
P1 P2 A1 P1 P2  
A2  
S
F
A
F
S
The two transients above are not influenced by the voltage source that, due to the presence of the R C filter, is not able to  
F
F
provide the extra charge to compensate the voltage drop on C with respect to the ideal source V ; the time constant R C of  
S
A
F F  
the filter is very high with respect to the sampling time (T ). The filter is typically designed to act as anti-aliasing.  
S
Figure 30. Spectral representation of input signal  
Analog source bandwidth (VA)  
TC < 2 RFCF (conversion rate vs. filter pole)  
Noise  
fF = f0 (anti-aliasing filtering condition)  
2 f0 < fC (Nyquist)  
f0  
f
Anti-aliasing filter (fF = RC filter pole)  
Sampled signal spectrum (fC = conversion rate)  
fF  
f0  
fC  
f
f
Calling f the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, f ),  
0
F
according to the Nyquist theorem the conversion rate f must be at least 2f ; it means that the constant time of the filter is greater  
C
0
than or at least equal to twice the conversion period (T ). Again the conversion period T is longer than the sampling time T ,  
C
C
S
which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a  
specific channel): in conclusion it is evident that the time constant of the filter R C is definitively much higher than the  
F
F
sampling time T , so the charge level on C cannot be modified by the analog signal source during the time in which the  
S
S
sampling switch is closed.  
The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage  
drop on C ; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled  
S
voltage on C :  
S
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
56  
Freescale Semiconductor  
Electrical characteristics  
Eqn. 11  
V
C
+ C + C  
P2  
----------- = -------------------------------------------------------  
A
P1  
F
V
C
+ C + C + C  
A2  
P1  
P2 S  
F
From this formula, in the worst case (when V is maximum, that is for instance 5 V), assuming to accept a maximum error of  
A
half a count, a constraint is evident on C value:  
F
Eqn. 12  
C
> 2048 C  
F
S
4.18.5.3 ADC electrical characteristics  
Table 42. ADC input leakage current  
Value  
Typ  
Symbol C  
Parameter  
Conditions  
Unit  
Min  
Max  
ILKG CC C Input leakage current TA = 40 °C No current injection on adjacent pin  
1
1
nA  
C
C
P
TA = 25 °C  
TA = 105 °C  
TA = 125 °C  
8
200  
400  
45  
Table 43. ADC conversion characteristics  
Value  
Uni  
t
Symbol  
C
Parameter  
Conditions1  
Min  
Typ  
Max  
VSS_ADC  
S
R
— Voltage on  
0.1  
0.1  
V
V
V
VSS_HV_ADC (ADC  
reference) pin with  
respect to ground  
2
(VSS  
)
VDD_ADC  
S
R
— Voltage on  
VDD_HV_ADC pin  
VDD0.1  
VDD+0.1  
(ADC reference) with  
respect to ground  
(VSS  
)
VAINx  
fADC  
S
R
— Analog input voltage3  
VSS_ADC0.1  
VDD_ADC+0.  
1
S
R
— ADC analog  
frequency  
6
32 + 4ꢀ  
MH  
z
ΔADC_SY  
S
R
— ADC digital clock duty ADCLKSEL = 14  
cycle (ipg_clk)  
45  
55  
S
tADC_PU  
S
R
— ADC power up delay  
1.5  
µs  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
57  
Electrical characteristics  
Table 43. ADC conversion characteristics (continued)  
Value  
Uni  
t
Symbol  
C
Parameter  
Sample time5  
Conditions1  
Min  
Typ  
Max  
tADC_S  
C
C
T
fADC = 32 MHz,  
ADC_conf_sample_input = 17  
0.5  
µs  
f
ADC = 6 MHz,  
42  
INPSAMP = 255  
tADC_C  
CS  
C
C
P
D
D
D
D
D
D
D
Conversion time6  
fADC = 32 MHz,  
ADC_conf_comp = 2  
0.625  
µs  
pF  
pF  
pF  
pF  
kΩ  
kΩ  
kΩ  
mA  
C
C
ADC input sampling  
capacitance  
3
3
CP1  
C
C
ADC input pin  
capacitance 1  
CP2  
C
C
ADC input pin  
capacitance 2  
1
CP3  
C
C
ADC input pin  
capacitance 3  
1
RSW1  
RSW2  
RAD  
IINJ  
C
C
Internal resistance of  
analog source  
3
C
C
Internal resistance of  
analog source  
2
C
C
Internal resistance of  
analog source  
0.1  
5
S
R
— Input current Injection Current  
injection on  
VDD  
3.3 V 10ꢀ  
=
5  
5  
one ADC input,  
different from  
the converted  
one  
VDD  
5.0 V 10ꢀ  
=
5
| INL |  
| DNL |  
| OFS |  
| GNE |  
TUEp  
C
C
T
T
T
T
Absolute value for  
integral non-linearity  
No overload  
0.5  
0.5  
0.5  
0.6  
0.6  
1.5  
1.0  
LSB  
LSB  
LSB  
LSB  
LSB  
C
C
Absolute differential  
non-linearity  
No overload  
C
C
Absolute offset error  
C
C
Absolute gain error  
C
C
P
T
Total unadjusted  
error7 for precise  
channels, input only  
pins  
Without current injection  
With current injection  
2  
3  
2
3
TUEx  
C
C
T
T
Total unadjusted  
error(7) for extended  
channel  
Without current injection  
With current injection  
3  
4  
1
3
4
LSB  
1
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
58  
Freescale Semiconductor  
Electrical characteristics  
2
3
Analog and digital VSS must be common (to be tied together externally).  
VAINx may exceed VSS_ADC and VDD_ADC limits, remaining on absolute maximum ratings, but the results of the  
conversion will be clamped respectively to 0x000 or 0x3FF.  
4
5
Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured  
by internal divider by 2.  
During the sample time the input capacitance CS can be charged/discharged by the external source. The internal  
resistance of the analog source must allow the capacitance to reach its final voltage level within tADC_S. After the  
end of the sample time tADC_S, changes of the analog input voltage have no effect on the conversion result. Values  
for the sample clock tADC_S depend on programming.  
6
7
This parameter does not include the sample time tADC_S, but only the time for determining the digital result and the  
time to load the result’s register with the conversion result.  
Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a  
combination of Offset, Gain and Integral Linearity errors.  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
59  
Package characteristics  
5
Package characteristics  
5.1  
Package mechanical data  
Figure 31. 144 LQFP package mechanical drawing  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
60  
Freescale Semiconductor  
Package characteristics  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
61  
Package characteristics  
Figure 32. 100 LQFP package mechanical drawing  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
62  
Freescale Semiconductor  
Package characteristics  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
63  
Package characteristics  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
64  
Freescale Semiconductor  
Package characteristics  
Figure 33. 208 MAPBGA package mechanical drawing  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
65  
Package characteristics  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
66  
Freescale Semiconductor  
Ordering information  
6
Ordering information  
Table 44. Orderable Part Number Summary  
Code Flash /  
SRAM  
(Kbytes)  
Operating  
temp.  
Orderable Part  
Number  
Speed  
(MHz)  
Data  
Flash  
CPU  
Package  
Voltage Packing  
(°C)  
MPC5602BEMLL  
MPC5602BEMLLR  
MPC5602BEMLQ  
MPC5602BEMLQR  
MPC5602CEMLL  
MPC5602CEMLLR  
MPC5603BEMLL  
MPC5603BEMLLR  
MPC5603BEMLQ  
MPC5603BEMLQR  
MPC5603CEMLL  
MPC5603CEMLLR  
MPC5602BEVLL  
MPC5602BEVLLR  
MPC5602BEVLQ  
MPC5602BEVLQR  
MPC5602CEVLL  
MPC5602CEVLLR  
MPC5603BEVLL  
MPC5603BEVLLR  
MPC5603BEVLQ  
MPC5603BEVLQR  
MPC5603CEVLL  
MPC5603CEVLLR  
MPC5604BEMLL  
MPC5604BEMLLR  
MPC5604BEMLQ  
MPC5604BEMLQR  
MPC5604BEVLL  
MPC5604BEVLLR  
e200z0h  
256 / 24  
256 / 24  
256 / 32  
384 / 28  
384 / 28  
384 / 40  
256 / 24  
256 / 24  
256 / 32  
384 / 28  
384 / 28  
384 / 40  
512 / 32  
512 / 32  
512 / 32  
100 LQFP 40 to 125  
144 LQFP 40 to 125  
100 LQFP 40 to 125  
100 LQFP 40 to 125  
144 LQFP 40 to 125  
100 LQFP 40 to 125  
100 LQFP 40 to 105  
144 LQFP 40 to 105  
100 LQFP 40 to 105  
100 LQFP 40 to 105  
144 LQFP 40 to 105  
100 LQFP 40 to 105  
100 LQFP 40 to 125  
144 LQFP 40 to 125  
100 LQFP 40 to 105  
60  
60  
60  
60  
60  
60  
64  
64  
64  
64  
64  
64  
60  
60  
64  
4 x 16 KB 3.3/5 V  
4 x 16 KB 3.3/5 V  
4 x 16 KB 3.3/5 V  
4 x 16 KB 3.3/5 V  
4 x 16 KB 3.3/5 V  
4 x 16 KB 3.3/5 V  
4 x 16 KB 3.3/5 V  
4 x 16 KB 3.3/5 V  
4 x 16 KB 3.3/5 V  
4 x 16 KB 3.3/5 V  
4 x 16 KB 3.3/5 V  
4 x 16 KB 3.3/5 V  
4 x 16 KB 3.3/5 V  
4 x 16 KB 3.3/5 V  
4 x 16 KB 3.3/5 V  
Tray  
Tape & Reel  
Tray  
e200z0h  
e200z0h  
e200z0h  
e200z0h  
e200z0h  
e200z0h  
e200z0h  
e200z0h  
e200z0h  
e200z0h  
e200z0h  
e200z0h  
e200z0h  
e200z0h  
Tape & Reel  
Tray  
Tape & Reel  
Tray  
Tape & Reel  
Tray  
Tape & Reel  
Tray  
Tape & Reel  
Tray  
Tape & Reel  
Tray  
Tape & Reel  
Tray  
Tape & Reel  
Tray  
Tape & Reel  
Tray  
Tape & Reel  
Tray  
Tape & Reel  
Tray  
Tape & Reel  
Tray  
Tape & Reel  
Tray  
Tape & Reel  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
67  
Document revision history  
Table 44. Orderable Part Number Summary (continued)  
Code Flash /  
SRAM  
(Kbytes)  
Operating  
temp.  
Orderable Part  
Number  
Speed  
(MHz)  
Data  
Flash  
CPU  
Package  
Voltage Packing  
(°C)  
MPC5604BEVLQ  
MPC5604BEVLQR  
MPC5604CEMLL  
MPC5604CEMLLR  
MPC5604BEMMG  
e200z0h  
512 / 32  
512 / 48  
512 / 48  
144 LQFP 40 to 105  
100 LQFP 40 to 125  
64  
60  
64  
4 x 16 KB 3.3/5 V  
4 x 16 KB 3.3/5 V  
4 x 16 KB 3.3/5 V  
Tray  
Tape & Reel  
Tray  
e200z0h  
e200z0h  
Tape & Reel  
Tray  
208 MAP 40 to 125  
BGA1  
1
208 MAPBGA available only as development package for Nexus2+  
Figure 34. Commercial product code structure  
Example code:  
M
PC  
56  
0
4
B
E
M
LL  
R
Qualification Status  
PowerPC Core  
Automotive Platform  
Core Version  
Flash Size (core dependent)  
Product  
Optional fields  
Temperature spec.  
Package Code  
R = Tape & Reel (blank if Tray)  
Qualification Status  
M = MC status  
Flash Size (z0 core)  
2 = 256 KB  
Temperature spec.  
C = -40 to 85 °C  
S = Auto qualified  
P = PC status  
3 = 384 KB  
V = -40 to 105 °C  
M = -40 to 125 °C  
4 = 512 KB  
Automotive Platform  
56 = PPC in 90nm  
Product  
B = Body  
Package Code  
LL = 100 LQFP  
LQ = 144 LQFP  
57 = PPC in 65nm  
C = Gateway  
1
MG = 208 MAPBGA  
1
208 MAPBGA available only as development package for Nexus2+  
7
Document revision history  
Table 45 summarizes revisions to this document.  
Table 45. Revision history  
Revision  
Date  
Description of Changes  
1
04-Apr-2008 Initial release.  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
68  
Freescale Semiconductor  
Document revision history  
Table 45. Revision history (continued)  
Description of Changes  
Revision  
Date  
2
06-Mar-2009 Made minor editing and formatting changes to improve readability  
Harmonized oscillator naming throughout document  
Features:  
—Replaced 32 KB with 48 KB as max SRAM size  
—Updated descripiton of INTC  
—Changed max number of GPIO pins from 121 to 123  
Updated Section 1.1, “Introduction  
Updated Table 2  
Added Section 2, “Device blocks  
Section 3, “Package pinouts: Removed signal descriptions (these are found in the device  
reference manual)  
Updated Figure 2:  
—Replaced VPP with VSS_HV on pin 18  
—Added MA[1] as AF3 for PC[10] (pin 28)  
—Added MA[0] as AF2 for PC[3] (pin 116)  
—Changed description for pin 120 to PH[10] / GPIO[122] / TMS  
—Changed description for pin 127 to PH[9] / GPIO[121] / TCK  
—Replaced NMI[0] with NMI on pin 11  
Updated Figure 3:  
—Replaced VPP with VSS_HV on pin 14  
—Added MA[1] as AF3 for PC[10] (pin 22)  
—Added MA[0] as AF2 for PC[3] (pin 77)  
—Changed description for pin 81 to PH[10] / GPIO[122] / TMS  
—Changed description for pin 88 to PH[9] / GPIO[121] / TCK  
—Removed E1UC[19] from pin 76  
—Replaced [11] with WKUP[11] for PB[3] (pin 1)  
—Replaced NMI[0] with NMI on pin 7  
Updated Figure 4:  
—Changed description for ball B8 from TCK to PH[9]  
—Changed description for ball B9 from TMS to PH[10]  
—Updated descriptions for balls R9 and T9  
Added Section 3.2, “Parameter classification and tagged parameters in tables where  
appropriate  
Added Section 3.3, “NVUSRO register  
Updated Table 7  
Section 3.5, “Recommended operating conditions: Added note on RAM data retention to  
end of section  
Updated Table 8 and Table 9  
Added Section 3.6.1, “Package thermal characteristics  
Updated Section 3.6.2, “Power considerations  
Updated Figure 6  
Updated Table 12, Table 13, Table 14, Table 15 and Table 16  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
69  
Document revision history  
Table 45. Revision history (continued)  
Description of Changes  
Revision  
Date  
2
06-Mar-2009 Added Section 3.7.4, “Output pin transition times  
Updated Table 19  
Updated Figure 7  
Updated Table 20  
Section 3.9.1, “Voltage regulator electrical characteristics: Amended description of  
LV_PLL  
Figure 9: Exchanged position of symbols CDEC1 and CDEC2  
Updated Table 21  
Added Figure 10  
Updated Table 22 and Table 23  
Updated Section 3.11, “Flash memory electrical characteristics  
Added Section 3.12, “Electromagnetic compatibility (EMC) characteristics  
Updated Section 3.13, “Fast external crystal oscillator (4 to 16 MHz) electrical  
characteristics  
Updated Section 3.14, “Slow external crystal oscillator (32 kHz) electrical characteristics  
Updated Table 37, Table 38 and Table 39  
Added Section 3.18, “On-chip peripherals  
Added Table 44  
Updated Table 45  
Updated Table 49  
Added Section Appendix A, “Abbreviations  
4
06-Aug-2009 Updated Figure 4  
Table 7  
• VDD_ADC: changed min value for “relative to VDD“ condition  
• VIN: changed min value for “relative to VDD“ condition  
• ICORELV: added new row  
Table 9  
TA C-Grade Part, TJ C-Grade Part, TA V-Grade Part, TJ V-Grade Part, TA M-Grade Part, TJ M-Grade Part  
:
added new rows  
• Changed capacitance value in footnote  
Table 17  
• MEDIUM configuration: added condition for PAD3V5V = 0  
Updated Figure 9  
Table 21  
• CDEC1: changed min value  
• IMREG: changed max value  
• IDD_BV: added max value footnote  
Table 22  
• VLVDHV3H: changed max value  
• VLVDHV3L: added max value  
• VLVDHV5H: changed max value  
• VLVDHV5L: added max value  
Updated Table 23  
Table 26  
• Retention: deleted min value footnote for “Blocks with 100,000 P/E cycles“  
Table 34  
• IFXOSC: added typ value  
Table 36  
• VSXOSC: changed typ value  
• TSXOSCSU: added max value footnote  
Table 37  
ΔtLTJIT: added max value  
Updated Figure 33  
MPC5604B/C Microcontroller Data Sheet Data Sheet, Rev. 4  
70  
Freescale Semiconductor  
Abbreviations  
Appendix A  
Abbreviations  
Table 46 lists abbreviations used but not defined elsewhere in this document.  
Table 46. Abbreviations  
Abbreviation  
Meaning  
CMOS  
CPHA  
CPOL  
CS  
Complementary metal–oxide–semiconductor  
Clock phase  
Clock polarity  
Peripheral chip select  
Event out  
EVTO  
LED  
Light emitting diode  
Message clock out  
Message data out  
Message start/end out  
Modified timing format enable  
Serial communications clock  
Serial data out  
MCKO  
MDO  
MSEO  
MTFE  
SCK  
SOUT  
TBD  
To be defined  
TCK  
Test clock input  
TDI  
Test data input  
TDO  
Test data output  
TMS  
Test mode select  
MPC5604B/C Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
71  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
Japan:  
Freescale Semiconductor Japan Ltd. Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of Freescale  
Semiconductor, Inc. The described product contains a PowerPC processor  
core. The PowerPC name is a trademark of IBM Corp. and used under license.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2009. All rights reserved.  
MPC5604BC  
Rev. 4  
08/2009  

相关型号:

MPC5603BEMLQR

MPC5604B/C Microcontroller Data Sheet
FREESCALE

MPC5603BEMLQR

32-BIT, FLASH, 60MHz, MICROCONTROLLER, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, LQFP-144
NXP

MPC5603BEVLL

MPC5604B/C Microcontroller Data Sheet
FREESCALE

MPC5603BEVLL

32-BIT, FLASH, 64MHz, MICROCONTROLLER, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, LQFP-100
NXP

MPC5603BEVLLR

MPC5604B/C Microcontroller Data Sheet
FREESCALE

MPC5603BEVLLR

32-BIT, FLASH, 64MHz, MICROCONTROLLER, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, LQFP-100
NXP

MPC5603BEVLQ

MPC5604B/C Microcontroller Data Sheet
FREESCALE

MPC5603BEVLQ

32-BIT, FLASH, 64MHz, MICROCONTROLLER, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, LQFP-144
NXP

MPC5603BEVLQR

MPC5604B/C Microcontroller Data Sheet
FREESCALE

MPC5603BEVLQR

32-BIT, FLASH, 64MHz, MICROCONTROLLER, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, LQFP-144
NXP

MPC5603BF1CLH4R

MICROCONTROLLER, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, MS-026BCD, LQFP-64
NXP

MPC5603BF1CLH6R

MICROCONTROLLER, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, MS-026BCD, LQFP-64
NXP