SC83C451CCA68-T [NXP]

IC 8-BIT, MROM, 12 MHz, MICROCONTROLLER, PQCC68, Microcontroller;
SC83C451CCA68-T
型号: SC83C451CCA68-T
厂家: NXP    NXP
描述:

IC 8-BIT, MROM, 12 MHz, MICROCONTROLLER, PQCC68, Microcontroller

文件: 总22页 (文件大小:162K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
80C451/83C451/87C451  
80C51 8-bit microcontroller family  
4K/128 OTP/ROM/ROMless, expanded I/O  
Product specification  
1998 May 01  
Supersedes data of 1998 Jan 19  
IC20 Data Handbook  
Philips  
Semiconductors  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
4K/128 OTP/ROM/ROMless, expanded I/O  
80C451/83C451/87C451  
DESCRIPTION  
PIN CONFIGURATION  
The Philips 8XC451 is an I/O expanded single-chip microcontroller  
fabricated with Philips high-density CMOS technology. Philips  
epitaxial substrate minimizes latch-up sensitivity.  
9
1
61  
10  
26  
60  
44  
The 8XC451 (includes the 80C451, 87C451 and 83C451) is a  
functional extension of the 87C51 microcontroller with three  
additional I/O ports and four I/O control lines for a total of 68 pins.  
Four control lines associated with port 6 facilitate high-speed  
asynchronous I/O functions.  
LCC  
The 8XC451 includes a 4k × 8 ROM (83C451) EPROM (87C451), a  
128 × 8 RAM, 56 I/O, two 16-bit timer/counters, a five source, two  
priority level, nested interrupt structure, a serial I/O port for either a  
full duplex UART, I/O expansion, or multi-processor  
communications, and on-chip oscillator and clock circuits. The  
80C451 ROMless version includes all of the 83C451 features except  
the on-board 4k × 8 ROM.  
27  
43  
Pin  
1
Function  
Pin  
Function  
P4.2  
Pin  
Function  
P5.3  
EA/V  
PP  
P2.0/A8  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
2
P4.1  
P5.4  
3
P2.1/A9  
P4.0  
P5.5  
4
P2.2/A10  
P2.3/A11  
P2.4/A12  
P2.5/A13  
P2.6/A14  
P2.7/A15  
P0.7/AD7  
P0.6/AD6  
P0.5/AD5  
P0.4/AD4  
P0.3/AD3  
P0.2/AD2  
P0.1/AD1  
P0.0/AD0  
P1.0  
P5.6  
5
P1.1  
P5.7  
The 87C451 has 4k of EPROM on-chip as program memory and is  
otherwise identical to the 83C451.  
6
P1.2  
XTAL2  
XTAL1  
7
P1.3  
The 8XC451 has two software selectable modes of reduced activity  
for further power reduction; idle mode and power-down mode. Idle  
mode freezes the CPU while allowing the RAM, timers, serial port,  
and interrupt system to continue functioning. Power-down mode  
freezes the oscillator, causing all other chip functions to be  
inoperative while maintaining the RAM contents.  
8
P1.4  
V
SS  
9
P1.5  
ODS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
P1.6  
IDS  
P1.7  
BFLAG  
AFLAG  
P6.0  
RST  
P3.0/RxD  
P3.1/TxD  
P3.2/INT0  
P3.3/INT1  
P3.4/T0  
P3.5/T1  
P3.6/WR  
P3.7/RD  
P5.0  
P6.1  
P6.2  
P6.3  
FEATURES  
80C51 based architecture  
P6.4  
V
P6.5  
CC  
P4.7  
P4.6  
P4.5  
P4.4  
P4.3  
P6.6  
P6.7  
Seven 8-bit I/O ports  
PSEN  
ALE/PROG  
Port 6 features:  
– Eight data pins  
P5.1  
P5.2  
SU00084A  
– Four control pins  
– Direct MPU bus interface  
– Parallel printer interface  
On the microcontroller:  
– 4k × 8 ROM (83C451)  
4k × 8 EPROM (87C451)  
ROMless version (80C451)  
– 128 × 8 RAM  
– Two 16-bit counter/timers  
– Two external interrupts  
External memory addressing capability  
– 64k ROM and 64k RAM  
Low power consumption:  
– Normal operation: less than 24mA at 5V, 12MHz  
– Idle mode  
– Power-down mode  
2
1998 May 01  
853-0830 19327  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
4K/128 OTP/ROM/ROMless, expanded I/O  
80C451/83C451/87C451  
BLOCK DIAGRAM  
P2.0–P2.7  
P0.0–P0.7  
P4.0–P4.7  
P5.0–5.7  
PORT 2  
DRIVERS  
PORT 0  
DRIVERS  
PORT 4  
DRIVERS  
PORT 5  
DRIVERS  
V
V
CC  
SS  
4K x 8  
ROM/EPROM  
PORT 2  
LATCH  
RAM ADDR  
REGISTER  
PORT 0  
LATCH  
PORT 4  
LATCH  
PORT 5  
LATCH  
RAM  
B
STACK  
POINTER  
ACC  
REGISTER  
PROGRAM  
ADDRESS  
REGISTER  
TMP1  
TMP2  
BUFFER  
PCON SCON TMOD TCON  
ALU  
TH0  
TL0  
TH1  
TL1  
PC  
INCRE-  
MENTER  
SBUF  
IE  
IP  
PSW  
INTERRUPT, SERIAL  
PORT AND TIMER BLOCKS  
PROGRAM  
COUNTER  
PSEN  
ALE/PROG  
TIMING  
AND  
CONTROL  
DPTR  
EAV  
PP  
RST  
PORT 1  
LATCH  
PORT 6  
LATCH  
PD  
PORT 3  
LATCH  
OSCILLATOR  
PORT 6  
CONTROL/STATUS  
PORT 1  
DRIVERS  
PORT 6  
DRIVERS  
PORT 3  
DRIVERS  
XTAL1  
XTAL2  
IDS ODS BFLAG  
AFLAG  
P1.0–P1.7  
P6.0–P6.7  
P3.0–P3.7  
SU00086  
3
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
4K/128 OTP/ROM/ROMless, expanded I/O  
80C451/83C451/87C451  
ORDERING INFORMATION  
TEMPERATURE RANGE °C  
FREQ  
MHz  
DRAWING  
NUMBER  
1
ROMless  
ROM  
EPROM  
AND PACKAGE  
SC80C451CCA68  
SC83C451CCA68  
SC87C451CCA68 OTP  
0 to +70, Plastic Leaded Chip Carrier,  
0 to +70, Plastic Leaded Chip Carrier  
3.5 to 12  
3.5 to 16  
SOT188-3  
SOT188-3  
SC80C451CGA68 SC83C451CGA68 SC87C451CGA68 OTP  
NOTE:  
1. OTP = One Time Programmable  
LOGIC SYMBOL  
V
V
SS  
CC  
XTAL1  
ADDRESS AND  
DATA BUS  
XTAL2  
RST  
EA/V  
PP  
PSEN  
ALE/PROG  
RxD  
TxD  
INT0  
INT1  
T0  
ADDRESS BUS  
T1  
WR  
RD  
ODS  
IDS  
PORT 6 CONTROL  
BFLAG  
AFLAG  
SU00085  
4
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
4K/128 OTP/ROM/ROMless, expanded I/O  
80C451/83C451/87C451  
PIN DESCRIPTION  
PIN  
NO.  
MNEMONIC  
TYPE NAME AND FUNCTION  
V
V
54  
I
I
Ground: 0V reference.  
SS  
18  
Power Supply: This is the power supply voltage for normal, idle, and power-down operation.  
CC  
P0.0–0.7  
17-10  
I/O  
Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 is also the multiplexed data and low-order  
address bus during accesses to external memory. External pull-ups are required during program  
verification. Port 0 can sink/source eight LS TTL inputs.  
P1.0–P1.7  
P2.0–P2.7  
27-34  
2-9  
I/O  
I/O  
Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 receives the low-order  
address bytes during program memory verification. Port 1 can sink/source three LS TTL inputs, and  
drive CMOS inputs without external pull-ups.  
Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 emits the high-order address  
bytes during access to external memory and receives the high-order address bits and control signals  
during program verification. Port 2 can sink/source three LS TTL inputs, and drive CMOS inputs without  
external pull-ups.  
P3.0–P3.7  
36-43  
I/O  
Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 can sink/source three LS  
TTL inputs, and drive CMOS inputs without external pull-ups. Port 3 also serves the special functions  
listed below:  
36  
37  
38  
39  
40  
41  
42  
43  
I
O
I
I
I
I
O
O
RxD (P3.0): Serial input port  
TxD (P3.1): Serial output port  
INT0 (P3.2): External interrupt  
INT1 (P3.3): External interrupt  
T0 (P3.4): Timer 0 external input  
T1 (P3.5): Timer 1 external input  
WR (P3.6): External data memory write strobe  
RD (P3.7): External data memory read strobe  
P4.0–P4.7  
P5.0–P5.7  
P6.0–P6.7  
26-19  
44-51  
59-66  
I/O  
I/O  
I/O  
Port 4: Port 4 is a 8-bit (LCC) bidirectional I/O port with internal pull-ups. Port 4 can sink/source three  
LS TTL inputs and drive CMOS inputs without external pull-ups.  
Port 5: Port 5 is a 8-bit (LCC) bidirectional I/O port with internal pull-ups. Port 5 can sink/source three  
LS TTL inputs and drive CMOS inputs without external pull-ups.  
Port 6: Port 6 is a specialized 8-bit bidirectional I/O port with internal pull-ups. This special port can  
sink/source three LS TTL inputs and drive CMOS inputs without external pull-ups. Port 6 can be used in  
a strobed or non-strobed mode of operation. Port 6 works in conjunction with four control pins that  
serve the functions listed below:  
ODS  
55  
56  
57  
58  
35  
I
I
ODS: Output data strobe  
IDS  
IDS: Input data strobe  
BFLAG  
AFLAG  
RST  
I/O  
I/O  
I
BFLAG: Bidirectional I/O pin with internal pull-ups  
AFLAG: Bidirectional I/O pin with internal pull-ups  
Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An  
internal pull-down resistor permits a power-on reset using only an external capacitor connected to V  
.
CC  
ALE/PROG  
68  
I/O  
Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the address during  
an access to external memory. ALE is activated at a constant rate of 1/6 the oscillator frequency except  
during an external data memory access, at which time one ALE is skipped. ALE can sink/source three  
LS TTL inputs and drive CMOS inputs without external pull-ups. This pin is also the program pulse  
during EPROM programming.  
PSEN  
67  
O
Program Store Enable: The read strobe to external program memory. PSEN is activated twice each  
machine cycle during fetches from external program memory. However, when executing out of external  
program memory, two activations of PSEN are skipped during each access to external program  
memory. PSEN is not activated during fetches from internal program memory. PSEN can sink/source  
eight LS TTL inputs and drive CMOS inputs without an external pull-up. This pin should be tied low  
during programming.  
EA/V  
1
I
Instruction Execution Control/Programming Supply Voltage: When EA is held high, the CPU  
executes out of internal program memory, unless the program counter exceeds 0FFFH. When EA is  
held low, the CPU executes out of external program memory. EA must never be allowed to float. This  
PP  
pin also receives the 12.75V programming supply voltage (V ) during EPROM programming.  
PP  
XTAL1  
XTAL2  
53  
52  
I
Crystal 1: Input to the inverting oscillator amplifier that forms the oscillator. This input receives the  
external oscillator when an external oscillator is used.  
O
Crystal 2: An output of the inverting amplifier that forms the oscillator. This pin should be floated when  
an external oscillator is used.  
5
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
4K/128 OTP/ROM/ROMless, expanded I/O  
80C451/83C451/87C451  
I/O Port Structure  
Processor Bus Interface  
The 8XC451 has a total of seven parallel I/O ports. The first four  
ports, P0 through P3, are identical in function to those present on  
the 80C51 family. The added ports 4 and 5 are identical in function  
to port 1; that is, they are standard quasi-bidirectional ports with no  
alternate functions and the standard output drive characteristics.  
Port 6 is a specialized 8-bit bidirectional I/O port with internal  
pullups.  
Port 6 allows the use of an 8XC451 as an element on a  
microprocessor type bus. The host processor could be a general  
purpose MPU or the data bus of a microcontroller like the 8XC451  
itself. Setting up the 8XC451 as a processor bus interface allows  
single or multiple microcontrollers to be used on a bus as flexible  
peripheral processing elements. Applications can include: keyboard  
scanners, serial I/O controllers, servo controllers, etc.  
On reset, port 6 is programmed correctly (that is, Special Function  
registers CSR and P6) for use as a bus interface. This prevents the  
interface from disrupting data on the bus of a host processor during  
power-up.  
Ports 4 and 5  
Ports 4 and 5 are bidirectional I/O ports with internal pull-ups. Port 4  
is an 8-bit port. Port 4 and port 5 pins with ones written to them, are  
pulled high by the internal pull-ups, and in that state can be used as  
inputs. Port 4 and 5 are addressed at the special function register  
addresses shown in Table 1.  
Standard Quasi-bidirectional I/O Port  
To use port 6 as a common I/O port, all of the control pins should be  
tied to ground. On hardware reset, bits 2-7 of the CSR are set to  
one. With the control pins grounded, the port’s operation and  
electrical characteristics will be identical to port 1 on the 80C51. No  
further software initialization is required.  
Port 6  
Port 6 is a special 8-bit bidirectional I/O port with internal pull-ups  
(see Figure 1). This special port can sink/source three LS TTL  
inputs and drive CMOS inputs without external pullups. The flexibility  
of this port facilitates high-speed parallel data communications. This  
port can be used as a standard I/O port, or in strobed modes of  
operation in conjunction with four special control lines: ODS, IDS,  
AFLAG, and BFLAG. Port 6 operating modes are controlled by the  
port 6 control status register (CSR). Port 6 and the CSR are  
addressed at the special function register addresses shown in Table  
1. The following four control pins are used in conjunction with port 6:  
Parallel Printer Port  
The 8XC451 has the capacity to permit all of the intelligent features  
of a common printer to be handled by a single chip. The features of  
port 6 allow a parallel port to be designed with only line driving and  
receiving chips required as additional hardware. The onboard UART  
allows RS232 interfacing with only level shifting chips added. The  
8-bit parallel ports 0 to 6 are ample to drive onboard control  
functions, even when ports are used for external memory access,  
interrupts, and other functions. The RAM addressing ability of ports  
0 to 2 can be used to address up to 64k bytes of a hardware  
buffer/spooler.  
ODS – Output data strobe (Active Low) for port 6. ODS can be  
programmed to control the port 6 output drivers and the output  
buffer full flag (OBF), or to clear only the OBF flag bit in the CSR  
(output-always mode). ODS is active low for output driver control.  
the OBF flag can be programmed to be cleared on the negative or  
positive edge of ODS.  
In addition, either end of a parallel interface can be implemented  
using port 6, and the interfaces can be interrupt driven or polled in  
either case. For more detailed information on port 6 usage, refer to  
the application notes entitled “80C451 Operation of Port 6” and  
“256k Centronics Printer Buffer Using the SC87C451  
Microcontroller.”  
IDS – Input data strobe (Active Low) for port 6. IDS is used to  
control the port 6 input latch and input buffer full flag (IBF) bit in the  
CSR. The input data latch can be programmed to be transparent  
when IDS is low and latched on the positive transition of IDS, or to  
latch only on the positive transition of IDS. Correspondingly, the IBF  
flag is set on the negative or positive transition of IDS.  
CONTROL STATUS REGISTER  
The control status register (CSR) establishes the mode of operation  
for port 6 and indicates the current status of port 6 I/O registers. All  
control status register bits can be read and written by the CPU,  
except bits 0 and 1, which are read only. Reset writes ones to bits 2  
through 7, and writes zeros to bits 0 and 1 (see Table 3).  
BFLAG – BFLAG is a bidirectional I/O pin which can be  
programmed to be an output, set high or low under program control,  
or to output the state of the input buffer full flag. BFLAG can also be  
programmed to input an enable signal for port 6. When BFLAG is  
used as an enable input, port 6 output drivers are in the  
high-impedance state, and the input latch does not respond to the  
IDS strobe when BFLAG is high. Both features are enabled when  
BFLAG is low. This feature facilitates the use of the SC8XC451 in  
bused multiprocessor systems.  
CSR.0 Input Buffer Full Flag (IBF) (Read Only) – The IBF bit is  
set to a logic 1 when port 6 data is loaded into the input buffer under  
control of IDS. This can occur on the negative or positive edge of  
IDS, as determined by CSR.2 IBF is cleared when the CPU reads  
the input buffer register.  
AFLAG – AFLAG is a bidirectional I/O pin which can be  
programmed to be an output set high or low under program control,  
or to output the state of the output buffer full flag. AFLAG can also  
be programmed to be an input which selects whether the contents of  
the output buffer, or the contents of the port 6 control status register  
will output on port 6. This feature grants complete port 6 status to  
external devices.  
CSR.1 Output Buffer Full Flag (OBF) (Read Only) – The OBF flag  
is set to a logic 1 when the CPU writes to the port 6 output data  
buffer. OBF is cleared by the positive or negative edge of ODS, as  
determined by CSR.3.  
CSR.2 IDS Mode Select (IDSM) – When CSR.2 = 0, a low-to-high  
transition on the IDS pin sets the IBF flag. The Port 6 input buffer is  
loaded on the IDS positive edge. When CSR.2 = 1, a high-to-low  
transition on the IDS pin sets the IBF flag. Port 6 input buffer is  
transparent when IDS is low, and latched when IDS is high.  
Port 6 can be used in a number of different ways to facilitate data  
communication. It can be used as a processor bus interface, as a  
standard quasi-bidirectional I/O port, or as a parallel printer port  
(either polled or interrupt driven).  
6
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
4K/128 OTP/ROM/ROMless, expanded I/O  
80C451/83C451/87C451  
CSR.3 Output Buffer Full Flag Clear Mode (OBFC) – When  
CSR.3 = 1, the positive edge of the ODS input clears the OBF flag.  
When CSR.3 = 0, the negative edge of the ODS input clears the  
OBF flag.  
CSR.6, CSR.7 BFLAG Mode Select  
(MB0, MB1) – Bits 6 and 7 select the mode operation as follows:  
MB1 MB0  
BFLAG Function  
Logic 0 output  
Logic 1 output  
IBF flag output (CSR.0)  
Port enable (PE)  
0
0
1
1
0
1
0
1
CSR.4, CSR.5 AFLAG Mode Select  
(MA0, MA1) – Bits 4 and 5 select the mode of operation for the  
AFLAG pin as follows:  
MA1 MA0  
AFLAG Function  
Logic 0 output  
Logic 1 output  
OBF flag output (CSR.1)  
Select (SEL) input mode  
In the port enable mode, IDS and ODS inputs are disabled when  
BFLAG input is high. When the BFLAG input is low, the port is  
enabled for I/O.  
0
0
1
1
0
1
0
1
SPECIAL FUNCTION REGISTER ADDRESSES  
The SFRs are identical to those of the standard 80C51 with the  
exception of four registers that have been added to allow control of  
the three additional I/O ports P4, P5, and P6. The additional  
registers are P4, P5, P6, and CSR. Registers P4, P5, and P6  
function as port latches for ports 4, 5, and 6, respectively. These  
registers operate identically to those for ports 0 through 3 of the  
80C51.  
The select (SEL) input mode is used to determine whether the port 6  
data register or the control status register is output on port 6. When  
the select feature is enabled, the AFLAG input controls the source of  
port 6 output data. A logic 0 on AFLAG input selects the port 6 data  
register, and a logic 1 on AFLAG input selects the control status  
register.  
Table 1. Special Function Register Addresses  
REGISTER ADDRESS  
BIT ADDRESS  
NAME  
SYMBOL  
ADDRESS  
MSB  
LSB  
Port 4  
Port 5  
Port 6 data  
Port 6 control status  
P4  
P5  
P6  
C0  
C8  
D8  
E8  
C7  
CF  
DF  
EF  
C6  
CE  
DE  
EE  
C5  
CD  
DD  
ED  
C4  
CC  
DC  
EC  
C3  
CB  
DB  
EB  
C2  
CA  
DA  
EA  
C1  
C9  
D9  
E9  
C0  
C8  
D8  
E8  
CSR  
PORT 6  
AFLAG  
BFLAG ODS  
IDS  
BFLAG/ODS  
MODE  
(CSR.6/.7)  
INPUT  
BUFFER  
(P6 READ)  
IDS  
MODE  
OUTPUT  
DRIVERS  
INPUT BUFFER  
FULL (CSR.0)  
AFLAG  
MODE  
EDGE/LEVEL  
SELECT (CSR.2)  
MUX  
(CSR.4/.5)  
OUTPUT BUFFER  
FULL (CSR.1)  
CONTROL/STATUS  
REGISTER (CSR)  
OUTPUT BUFFER  
(P6 WRITE)  
INTERNAL BUS  
SU00087  
Figure 1. Port 6 Block Diagram  
7
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
4K/128 OTP/ROM/ROMless, expanded I/O  
80C451/83C451/87C451  
Table 2.  
8XC451 Special Function Registers  
DIRECT  
DESCRIPTION  
BIT NAMES AND ADDRESSES  
RESET  
VALUE  
SYMBOL  
ADDRESS MSB  
LSB  
E0  
ACC*  
B*  
Accumulator  
B register  
E0H  
F0H  
E7  
F7  
E6  
F6  
E5  
F5  
E4  
F4  
E3  
F3  
EB  
E2  
F2  
EA  
E1  
F1  
00H  
F0  
00H  
EF  
EE  
ED  
EC  
E9  
E8  
CSR*#  
DPTR  
DPH  
Port 6 command/status  
Data pointer (2 bytes)  
Data pointer high  
E8H  
MB1  
MB0  
MA1  
MA0  
OBFC IDSM  
OBF  
IBF  
FCH  
83H  
82H  
00H  
00H  
DPL  
Data pointer low  
BF  
BE  
BD  
BC  
PS  
BB  
BA  
B9  
B8  
IP*  
Interrupt priority  
B8H  
PT1  
PX1  
PT0  
PX0  
xxx00000B  
AF  
EA  
87  
AE  
AD  
AC  
ES  
84  
AB  
ET1  
83  
AA  
EX1  
82  
A9  
ET0  
81  
A8  
EX0  
80  
IE*  
Interrupt enable  
Port 0  
A8H  
80H  
90H  
A0H  
B0H  
C0H  
C8H  
D8H  
0xx00000B  
FFH  
P0*  
B6  
96  
A6  
B6  
C6  
CE  
DE  
85  
95  
A5  
B5  
C5  
CD  
DD  
P1*  
Port 1  
97  
94  
93  
92  
91  
90  
FFH  
P2*  
Port 2  
A7  
B7  
C7  
CF  
DF  
A4  
B4  
C4  
CC  
DC  
A3  
A2  
A1  
B1  
C1  
C9  
D9  
A0  
B0  
C0  
C8  
D8  
FFH  
P3*  
Port 3  
B3  
B2  
FFH  
P4*#  
P5*#  
P6*#  
Port 4  
C3  
CB  
DB  
C2  
CA  
DA  
FFH  
Port 5  
FFH  
Port 6  
FFH  
PCON  
Power control  
87H  
SMOD  
GF1  
GF0  
PD  
IDL  
0xxx0000B  
D7  
CY  
D6  
AC  
D5  
F0  
D4  
D3  
D2  
D1  
D0  
P
PSW*  
SBUF  
Program status word  
Serial data buffer  
D0H  
99H  
RS1  
RS0  
OV  
00H  
xxxxxxxxB  
9F  
9E  
9D  
9C  
9B  
9A  
99  
TI  
98  
RI  
SCON*  
SP  
Serial port control  
Stack pointer  
98H  
81H  
SM0  
SM1  
SM2  
REN  
TB8  
RB8  
00H  
07H  
8F  
8E  
8D  
8C  
8B  
8A  
89  
88  
TCON*  
Timer/counter control  
88H  
TF1  
TR1  
TF0  
TR0  
IE1  
IT1  
IE0  
IT0  
00H  
TMOD  
TH0  
TH1  
TL0  
Timer/counter mode  
Timer 0 high byte  
Timer 1 high byte  
Timer 0 low byte  
Timer 1 low byte  
89H  
8CH  
8DH  
8AH  
8BH  
GATE  
C/T  
M1  
M0  
GATE  
C/T  
M1  
M0  
00H  
00H  
00H  
00H  
00H  
TL1  
*
#
SFRs are bit addressable.  
SFRs are modified from or added to the 80C51 SFRs.  
8
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
4K/128 OTP/ROM/ROMless, expanded I/O  
80C451/83C451/87C451  
Table 3. Control Status Register (CSR)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
MA0  
Bit 3  
Bit 2  
Bit 1  
OBF  
Bit 0  
IBF  
MB1  
MB0  
MA1  
OBFC  
IDSM  
BFLAG Mode Select  
AFLAG Mode Select  
Output Buffer  
Flag Clear  
Mode  
Input Data  
Strobe Mode  
Output Buffer  
Flag Full  
Input Buffer  
Flag Full  
0/0 = Logic 0 output*  
0/1 = Logic 1 output*  
1/0 = IBF output  
1/1 = PE input  
0/0 = Logic 0 output*  
0/1 = Logic 1 output*  
1/0 = OBF output  
1/1 = SEL input  
0 = Negative  
edge of ODS  
1 = Positive  
edge o ODS  
0 = Positive  
edge of IDS  
1 = Low level  
of IDS  
0 = Output  
data buffer  
empty  
1 = Output  
data buffer full  
0 = Input data  
buffer empty  
1 = Input data  
buffer full  
(0 = Select)  
(0 = Select)  
(1 = Disable I/O)  
(1 = Control/status)  
NOTE:  
*
Output-always mode: MB1 = 0, MA1 = 1, and MA0 = 0. In this mode, port 6 is always enabled for output. ODS only clears the OBF flag.  
1, 2, 3  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
RATING  
0 to +70  
UNIT  
°C  
Operating temperature under bias  
Storage temperature range  
–65 to +150  
–0.5 to +6.5  
1.5  
°C  
Voltage on any other pin to V  
V
SS  
Power dissipation (based on package heat transfer limitations, not device power consumption)  
W
NOTES:  
1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any conditions other than those described in the AC and DC Electrical Characteristics section  
of this specification is not implied.  
2. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static  
charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maxima.  
3. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V unless otherwise  
SS  
noted.  
9
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
4K/128 OTP/ROM/ROMless, expanded I/O  
80C451/83C451/87C451  
1
DC ELECTRICAL CHARACTERISTICS  
amb  
T
= 0°C to +70°C, V = 5V ±10%, V = 0V (87C451, 83C451, 80C451)  
CC SS  
TEST  
LIMITS  
1
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
–0.5  
0
TYPICAL  
MAX  
0.2V –0.1  
UNIT  
V
V
V
V
V
V
V
V
Input low voltage; except EA  
IL  
CC  
Input low voltage to EA  
0.2V –0.3  
V
IL1  
IH  
CC  
Input high voltage; except XTAL1, RST  
Input high voltage; XTAL1, RST  
Output low voltage; ports 1, 2, 3, 4, 5, 6  
Output low voltage; port 0, ALE, PSEN  
Output high voltage; ports 1, 2, 3, 4, 5, 6  
0.2V +0.9  
V
+0.5  
+0.5  
V
CC  
CC  
CC  
0.7V  
V
V
IH1  
OL  
OL1  
OH  
CC  
2
I
I
I
= 1.6mA  
0.45  
0.45  
V
OL  
OL  
OH  
2
= 3.2mA  
V
= –60µA,  
= –25µA  
= –10µA  
2.4  
V
V
V
I
I
0.75V  
OH  
OH  
CC  
CC  
0.9V  
V
OH1  
Output high voltage (port 0 in external bus mode, ALE,  
PSEN)  
I
I
= –800µA,  
= –300µA  
2.4  
V
V
V
OH  
OH  
I
3
0.75V  
CC  
CC  
= –80µA  
0.9V  
OH  
I
I
I
I
Logical 0 input current,; ports 1, 2, 3, 4, 5, 6  
Logical 1-to-0 transition current; ports 1, 2, 3, 4, 5, 6  
Input leakage current; port 0  
V
= 0.45V  
–50  
–650  
+10  
µA  
µA  
µA  
IL  
IN  
See note 4  
= V or V  
IH  
TL  
LI  
V
IN  
IL  
Power supply current:  
See note 6  
CC  
5
Active mode @ 12MHz  
11.5  
1.3  
3
25  
4
50  
mA  
mA  
µA  
5
Idle mode @ 12MHz  
Power down mode  
R
C
Internal reset pull-down resistor  
50  
300  
10  
kΩ  
RST  
IO  
7
Pin capacitance  
pF  
NOTES:  
1. Typical ratings are based on a limited number of samples taken from early manufacturing lots and are not guaranteed. The values listed are  
at room temperature, 5V.  
2. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the V s of ALE and ports 1 and 3. The noise is due  
OL  
to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the  
worst cases (capacitive loading > 100pF), the noise pulse on the ALE pin may exceed 0.8V. In such cases, it may be desirable to qualify  
ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.  
3. Capacitive loading on ports 0 and 2 may cause the V on ALE and PSEN to momentarily fall below the 0.9V specification when the  
OH  
CC  
address bits are stabilizing.  
4. Pins of ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its  
maximum value when V is approximately 2V.  
IN  
5. I  
at other frequencies is given by:  
CCMAX  
Active mode: I  
= 0.94 X FREQ + 13.71  
= 0.14 X FREQ +2.31  
CCMAX  
Idle mode: I  
CCMAX  
where FREQ is the external oscillator frequency in MHz. I  
is given in mA. See Figure 13.  
CCMAX  
6. See Figures 14 through 17 for I test conditions.  
CC  
7. C applies to ports 1 through 6, AFLAG, BFLAG, XTAL1, XTAL2.  
IO  
10  
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
4K/128 OTP/ROM/ROMless, expanded I/O  
80C451/83C451/87C451  
1
AC ELECTRICAL CHARACTERISTICS  
2
T
= 0°C to +70°C, V = 5V ±10%, V = 0V (87C451, 83C451, 80C451)  
amb  
CC SS  
12MHz CLOCK  
VARIABLE CLOCK  
SYMBOL  
1/t  
FIGURE  
PARAMETER  
Oscillator frequency: Speed Versions  
MIN  
MAX  
MIN  
MAX  
UNIT  
CLCL  
SC8XC451  
SC8XC451  
C
G
3.5  
3.5  
12  
16  
MHz  
MHz  
t
t
t
t
t
t
t
t
t
t
t
2
2
2
2
2
2
2
2
2
2
2
ALE pulse width  
127  
28  
2t  
–40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LHLL  
CLCL  
Address valid to ALE low  
Address hold after ALE low  
ALE low to valid instruction in  
ALE low to PSEN low  
PSEN pulse width  
t
t
–55  
AVLL  
LLAX  
LLIV  
CLCL  
CLCL  
48  
–35  
234  
145  
4t  
3t  
–100  
CLCL  
43  
t
–40  
LLPL  
PLPH  
PLIV  
PXIX  
PXIZ  
AVIV  
PLAZ  
CLCL  
205  
3t  
CLCL  
–45  
PSEN low to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address to valid instruction in  
PSEN low to address float  
–105  
CLCL  
0
0
59  
312  
10  
t
–25  
CLCL  
5t  
CLCL  
–105  
10  
Data Memory  
t
t
t
t
t
t
t
t
t
t
t
t
t
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
RD pulse width  
400  
400  
6t  
–100  
–100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RLRH  
WLWH  
RLDV  
RHDX  
RHDZ  
LLDV  
CLCL  
WR pulse width  
6t  
CLCL  
RD low to valid data in  
Data hold after RD  
252  
5t  
–165  
CLCL  
0
0
Data float after RD  
97  
2t  
–70  
CLCL  
ALE low to valid data in  
Address to valid data in  
ALE low to RD or WR low  
Address valid to WR low or RD low  
Data valid to WR transition  
Data hold after WR  
517  
585  
300  
8t  
–150  
–165  
CLCL  
CLCL  
9t  
AVDV  
LLWL  
AVWL  
QVWX  
WHQX  
RLAZ  
WHLH  
200  
203  
23  
3t  
–50  
3t  
+50  
CLCL  
CLCL  
4t  
t
–130  
–60  
CLCL  
CLCL  
CLCL  
33  
t
–50  
RD low to address float  
RD or WR high to ALE high  
0
0
43  
123  
t
–40  
t
+40  
CLCL  
CLCL  
Shift Register  
t
t
t
t
t
5
5
5
5
5
Serial port clock cycle time  
1.0  
700  
50  
0
12t  
µs  
ns  
ns  
ns  
ns  
XLXL  
CLCL  
Output data setup to clock rising edge  
Output data hold after clock rising edge  
Input data hold after clock rising edge  
Clock rising edge to input data valid  
10t  
–133  
QVXH  
XHQX  
XHDX  
XHDV  
CLCL  
2t  
CLCL  
–117  
0
700  
10t  
–133  
CLCL  
NOTES: SEE NEXT PAGE  
11  
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
4K/128 OTP/ROM/ROMless, expanded I/O  
80C451/83C451/87C451  
1
AC ELECTRICAL CHARACTERISTICS (continued)  
2
T
= 0°C to +70°C, V = 5V ±10%, V = 0V (87C451, 83C451, 80C451)  
amb  
CC SS  
12MHz CLOCK  
VARIABLE CLOCK  
SYMBOL  
FIGURE  
PARAMETER  
MIN  
MAX  
MIN  
MAX  
UNIT  
Port 6 input (input rise and fall times = 5ns)  
t
t
t
t
t
8
8
8
8
9
PE width  
270  
270  
0
3t  
3t  
+20  
ns  
ns  
ns  
ns  
ns  
FLFH  
CLCL  
IDS width  
+20  
ILIH  
CLCL  
Data setup to IDS high or PE high  
Data hold after IDS high or PE high  
IDS to BFLAG (IBF) delay  
0
DVIH  
IHDX  
IVFV  
30  
30  
130  
130  
Port 6 output  
t
t
t
t
t
t
t
6
7
6
6
6
6
7
ODS width  
270  
3t  
CLCL  
+20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
OLOH  
FVDV  
OLDV  
OHDZ  
OVFV  
FLDV  
OHFH  
SEL to data out delay  
ODS to data out delay  
ODS to data float delay  
ODS to AFLAG (OBF) delay  
PE to data out delay  
ODS to AFLAG (SEL) delay  
85  
80  
85  
80  
35  
35  
100  
120  
100  
120  
100  
100  
External Clock  
t
t
t
t
10  
10  
10  
10  
High time  
Low time  
Rise time  
Fall time  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
CHCX  
CLCX  
CLCH  
CHCL  
20  
20  
20  
20  
NOTES:  
1. Parameters are valid over operating temperature range unless otherwise specified.  
2. Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.  
12  
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
4K/128 OTP/ROM/ROMless, expanded I/O  
80C451/83C451/87C451  
EXPLANATION OF THE AC SYMBOLS  
Each timing symbol has five characters. The first character is always  
P – PSEN  
‘t’ (= time). The other characters, depending on their positions,  
indicate the name of a signal or the logical status of that signal. The  
Q – Output data  
R – RD signal  
designations are:  
A – Address  
t – Time  
V – Valid  
C – Clock  
W – WR signal  
D – Input data  
H – Logic level high  
X – No longer a valid logic level  
Z – Float  
I
– Instruction (program memory contents)  
Examples: t  
= Time for address valid to ALE low.  
= Time for ALE low to PSEN low.  
AVLL  
LLPL  
L – Logic level low, or ALE  
t
t
LHLL  
ALE  
t
t
LLPL  
AVLL  
t
PLPH  
t
LLIV  
t
PLIV  
PSEN  
t
LLAX  
t
PXIZ  
t
PLAZ  
t
PXIX  
A0–A7  
INSTR IN  
A0–A7  
PORT 0  
PORT 2  
t
AVIV  
A0–A15  
A8–A15  
SU00006  
Figure 2. External Program Memory Read Cycle  
ALE  
PSEN  
RD  
t
WHLH  
t
LLDV  
t
t
LLWL  
RLRH  
t
RHDZ  
t
LLAX  
t
t
RLDV  
AVLL  
t
RLAZ  
t
RHDX  
A0–A7  
FROM RI OR DPL  
PORT 0  
PORT 2  
DATA IN  
A0–A7 FROM PCL  
INSTR IN  
t
AVWL  
t
AVDV  
P2.0–P2.7 OR A8–A15 FROM DPH  
A0–A15 FROM PCH  
SU00007  
Figure 3. External Data Memory Read Cycle  
13  
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
4K/128 OTP/ROM/ROMless, expanded I/O  
80C451/83C451/87C451  
ALE  
t
WHLH  
PSEN  
t
t
WLWH  
LLWL  
WR  
t
LLAX  
t
t
WHQX  
t
AVLL  
QVWX  
A0–A7  
FROM RI OR DPL  
PORT 0  
PORT 2  
DATA OUT  
A0–A7 FROM PCL  
A0–A15 FROM PCH  
INSTR IN  
t
AVWL  
P2.0–P2.7 OR A8–A15 FROM DPH  
SU00008  
Figure 4. External Data Memory Write Cycle  
INSTRUCTION  
ALE  
0
1
2
3
4
5
6
7
8
t
XLXL  
CLOCK  
t
XHQX  
t
QVXH  
OUTPUT DATA  
0
1
2
3
4
5
6
7
WRITE TO SBUF  
t
XHDX  
t
SET TI  
VALID  
XHDV  
INPUT DATA  
CLEAR RI  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
SET RI  
SU00027  
Figure 5. Shift Register Mode Timing  
14  
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
4K/128 OTP/ROM/ROMless, expanded I/O  
80C451/83C451/87C451  
OBF (AFLAG)  
t
OVFV  
t
OVFV  
PE (BFLAG)  
t
OLOH  
ODS  
t
t
OHDZ  
OLDV  
PORT 6  
t
FLDV  
SU00088  
Figure 6. Port 6 Output  
ODS  
t
OHFH  
SEL (AFLAG)  
t
t
FVDV  
FVDV  
PORT 6  
DATA  
CSR  
DATA  
SU00089  
Figure 7. Port 6 Select Mode  
t
FLFH  
PE (BFLAG)  
t
ILIH  
IDS  
t
IHDZ  
t
DVIH  
PORT 6  
SU00090  
Figure 8. Port 6 Input  
IBF (BFLAG)  
t
t
IVFV  
IVFV  
IDS  
SU00091A  
Figure 9. IBF Flag Output  
15  
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
4K/128 OTP/ROM/ROMless, expanded I/O  
80C451/83C451/87C451  
V
–0.5  
CC  
0.7V  
CC  
–0.1  
0.45V  
0.2V  
CC  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
t
CLCL  
SU00009  
Figure 10. External Clock Drive  
V
–0.5  
CC  
0.2V  
0.2V  
+0.9  
–0.1  
CC  
CC  
0.45V  
NOTE:  
AC inputs during testing are driven at V –0.5 for a logic ‘1’ and 0.45V for a logic ‘0’.  
CC  
Timing measurements are made at V min for a logic ‘1’ and V max for a logic ‘0’.  
IH  
IL  
SU00010  
Figure 11. AC Testing Input/Output  
V
V
+0.1V  
LOAD  
V
V
–0.1V  
TIMING  
REFERENCE  
POINTS  
OH  
V
LOAD  
–0.1V  
LOAD  
+0.1V  
OL  
NOTE:  
For timing purposes, a port is no longer floating when a 100mV change from load voltage occurs,  
and begins to float when a 100mV change from the loaded V /V level occurs. I /I ≥ ±20mA.  
OH OL  
OH OL  
SU00011  
Figure 12. Float Waveform  
30  
25  
20  
15  
10  
5
MAX ACTIVE MODE  
TYP ACTIVE MODE  
I
mA  
CC  
MAX IDLE MODE  
TYP IDLE MODE  
4MHz  
8MHz  
12MHz  
16MHz  
FREQ AT XTAL1  
VALID ONLY WITHIN FREQUENCY SPECIFICATIONS OF THE DEVICE UNDER TEST.  
SU00092  
Figure 13.  
I
vs. FREQ  
CC  
16  
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
4K/128 OTP/ROM/ROMless, expanded I/O  
80C451/83C451/87C451  
V
V
CC  
CC  
I
I
CC  
CC  
V
V
CC  
CC  
V
V
V
RST  
CC  
CC  
CC  
P0  
P0  
EA  
RST  
EA  
V
(NC)  
XTAL2  
XTAL1  
CC  
(NC)  
XTAL2  
V
CC  
CLOCK SIGNAL  
CLOCK SIGNAL  
XTAL1  
V
IDS  
V
SS  
IDS  
SS  
ODS  
ODS  
SU00093  
SU00094  
Figure 14.  
I
Test Condition, Active Mode  
Figure 15.  
I
Test Condition, Idle Mode  
CC  
CC  
All other pins are disconnected  
All other pins are disconnected  
V
–0.5  
CC  
0.7V  
CC  
–0.1  
0.45V  
0.2V  
CC  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
t
CLCL  
SU00009  
Figure 16. Clock Signal Waveform for I Tests in Active and Idle Modes  
CC  
t
= t  
= 5ns  
CHCL  
CLCH  
V
CC  
CC  
I
CC  
V
CC  
RST  
V
V
P0  
EA  
(NC)  
XTAL2  
XTAL1  
CC  
V
IDS  
SS  
ODS  
SU00095  
Figure 17.  
I
Test Condition, Power Down Mode  
CC  
All other pins are disconnected. V = 2V to 5.5V  
CC  
17  
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
4K/128 OTP/ROM/ROMless, expanded I/O  
80C451/83C451/87C451  
programmed, further programming of the code memory and  
encryption table is disabled. However, the other lock bit can still be  
programmed.  
EPROM CHARACTERISTICS  
The 87C451 is programmed by using a modified Quick-Pulse  
Programming algorithm. It differs from older methods in the value  
used for V (programming supply voltage) and in the width and  
number of the ALE/PROG pulses.  
PP  
Note that the EA/V pin must not be allowed to go above the  
PP  
maximum specified V level for any amount of time. Even a narrow  
PP  
glitch above that voltage can cause permanent damage to the  
The 87C451 contains two signature bytes that can be read and used  
by an EPROM programming system to identify the device. The  
signature bytes identify the device as an 87C451 manufactured by  
Philips Semiconductors.  
device. The V source should be well regulated and free of glitches  
PP  
and overshoot.  
Program Verification  
Table 4 shows the logic levels for reading the signature byte, and for  
programming the program memory, the encryption table, and the  
lock bits. The circuit configuration and waveforms for quick-pulse  
programming are shown in Figures 18 and 19. Figure 20 shows the  
circuit configuration for normal program memory verification.  
If lock bit 2 has not been programmed, the on-chip program memory  
can be read out for program verification. The address of the program  
memory locations to be read is applied to ports 1 and 2 as shown in  
Figure 20. The other pins are held at the ‘Verify Code Data’ levels  
indicated in Table 4. The contents of the address location will be  
emitted on port 0. External pull-ups are required on port 0 for this  
operation.  
Quick-Pulse Programming  
The setup for microcontroller quick-pulse programming is shown in  
Figure 18. Note that the 87C451 is running with a 4 to 6MHz  
oscillator. The reason the oscillator needs to be running is that the  
device is executing internal address and program data transfers.  
If the encryption table has been programmed, the data presented at  
port 0 will be the exclusive NOR of the program byte with one of the  
encryption bytes. The user will have to know the encryption table  
contents in order to correctly decode the verification data. The  
encryption table itself cannot be read out.  
The address of the EPROM location to be programmed is applied to  
ports 1 and 2, as shown in Figure 18. The code byte to be  
programmed into that location is applied to port 0. RST, PSEN and  
pins of ports 2 and 3 specified in Table 4 are held at the ‘Program  
Code Data’ levels indicated in Table 4. The ALE/PROG is pulsed  
low 25 times as shown in Figure 19.  
Reading the Signature Bytes  
The signature bytes are read by the same procedure as a normal  
verification of locations 030H and 031H, except that P3.6 and P3.7  
need to be pulled to a logic low. The values are:  
(030H) = 15H indicates manufactured by Philips  
(031H) = 90H indicates 87C451  
To program the encryption table, repeat the 25 pulse programming  
sequence for addresses 0 through 1FH, using the ‘Pgm Encryption  
Table’ levels. Do not forget that after the encryption table is  
programmed, verification cycles will produce only encrypted data.  
Program/Verify Algorithms  
Any algorithm in agreement with the conditions listed in Table 4, and  
which satisfies the timing specifications, is suitable.  
To program the lock bits, repeat the 25 pulse programming  
sequence using the ‘Pgm Lock Bit’ levels. After one lock bit is  
Table 4. EPROM Programming Modes  
MODE  
RST  
PSEN  
ALE/PROG  
EA/V  
P2.7  
P2.6  
P3.7  
P3.6  
PP  
Read signature  
1
1
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
1
1
0
0
0
0
1
1
0
1
1
1
1
0
0
1
1
0
1
0
Program code data  
Verify code data  
Pgm encryption table  
Pgm lock bit 1  
0*  
1
V
PP  
1
0*  
0*  
0*  
V
PP  
PP  
PP  
V
V
Pgm lock bit 2  
NOTES:  
1. ‘0’ = Valid low for that pin, ‘1’ = valid high for that pin.  
2. V = 12.75V ±0.25V.  
PP  
3. V = 5V ±10% during programming and verification.  
CC  
*
ALE/PROG receives 25 programming pulses while V is held at 12.75V. Each programming pulse is low for 100µs (±10µs) and high for a  
PP  
minimum of 10µs.  
Trademark phrase of Intel Corporation.  
18  
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
4K/128 OTP/ROM/ROMless, expanded I/O  
80C451/83C451/87C451  
+5V  
V
CC  
P0  
A0–A7  
PGM DATA  
P1  
1
1
1
RST  
P3.6  
+12.75V  
EA/V  
PP  
25 100µs PULSES TO GROUND  
ALE/PROG  
PSEN  
0
1
87C451  
P3.7  
XTAL2  
P2.7  
0
P2.6  
4–6MHz  
XTAL1  
A8–A12  
P2.0–P2.4  
V
SS  
SU00096  
Figure 18. Programming Configuration  
25 PULSES  
1
0
ALE/PROG:  
ALE/PROG:  
10µs MIN  
100µs+10  
1
0
SU00018  
Figure 19. PROG Waveform  
+5V  
V
CC  
P0  
A0–A7  
PGM DATA  
P1  
1
1
1
RST  
P3.6  
1
1
EA/V  
PP  
ALE/PROG  
PSEN  
0
87C451  
P3.7  
0 ENABLE  
XTAL2  
P2.7  
0
P2.6  
4–6MHz  
XTAL1  
A8–A12  
P2.0–P2.4  
V
SS  
SU00097  
Figure 20. Program Verification  
19  
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
4K/128 OTP/ROM/ROMless, expanded I/O  
80C451/83C451/87C451  
EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS  
T
amb  
= 21°C to +27°C, V = 5V±10%, V = 0V (See Figure 21)  
CC SS  
SYMBOL  
PARAMETER  
MIN  
MAX  
13.0  
50  
UNIT  
V
V
PP  
Programming supply voltage  
Programming supply current  
Oscillator frequency  
12.5  
I
PP  
mA  
MHz  
1/t  
CLCL  
4
6
t
t
t
t
t
t
t
t
t
t
t
t
Address setup to PROG low  
Address hold after PROG  
Data setup to PROG low  
Data hold after PROG  
48t  
AVGL  
CLCL  
CLCL  
CLCL  
CLCL  
CLCL  
48t  
48t  
48t  
48t  
GHAX  
DVGL  
GHDX  
EHSH  
SHGL  
GHSL  
GLGH  
AVQV  
ELQZ  
EHQZ  
GHGL  
P2.7 (ENABLE) high to V  
PP  
V
PP  
V
PP  
setup to PROG low  
hold after PROG  
10  
10  
90  
µs  
µs  
µs  
PROG width  
110  
Address to data valid  
48t  
CLCL  
CLCL  
CLCL  
ENABLE low to data valid  
Data float after ENABLE  
PROG high to PROG low  
48t  
48t  
0
10  
µs  
PROGRAMMING*  
ADDRESS  
VERIFICATION*  
ADDRESS  
P1.0–P1.7  
P2.0–P2.4  
t
AVQV  
PORT 0  
DATA IN  
DATA OUT  
t
t
t
DVGL  
GHDX  
GHAX  
t
AVGL  
ALE/PROG  
t
t
GLGH  
GHGL  
t
t
SHGL  
GHSL  
LOGIC 1  
LOGIC 1  
EA/V  
PP  
LOGIC 0  
t
t
t
EHSH  
ELQV  
EHQZ  
P2.7  
ENABLE  
SU00020  
NOTE:  
*
FOR PROGRAMMING VERIFICATION SEE FIGURE 18.  
FOR VERIFICATION CONDITIONS SEE FIGURE 20.  
Figure 21. EPROM Programming and Verification  
20  
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
4K/128 OTP/ROM/ROMless, expanded I/O  
80C451/83C451/87C451  
PLCC68: plastic leaded chip carrier; 68 leads; pedestal  
SOT188-3  
21  
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
4K/128 OTP/ROM/ROMless, expanded I/O  
80C451/83C451/87C451  
Data sheet status  
[1]  
Data sheet  
status  
Product  
status  
Definition  
Objective  
specification  
Development  
This data sheet contains the design target or goal specifications for product development.  
Specification may change in any manner without notice.  
Preliminary  
specification  
Qualification  
This data sheet contains preliminary data, and supplementary data will be published at a later date.  
Philips Semiconductors reserves the right to make chages at any time without notice in order to  
improve design and supply the best possible product.  
Product  
specification  
Production  
This data sheet contains final specifications. Philips Semiconductors reserves the right to make  
changes at any time without notice in order to improve design and supply the best possible product.  
[1] Please consult the most recently issued datasheet before initiating or completing a design.  
Definitions  
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one  
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or  
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended  
periods may affect device reliability.  
Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips  
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or  
modification.  
Disclaimers  
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications  
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.  
RighttomakechangesPhilipsSemiconductorsreservestherighttomakechanges, withoutnotice, intheproducts, includingcircuits,standard  
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless  
otherwise specified.  
Philips Semiconductors  
811 East Arques Avenue  
P.O. Box 3409  
Copyright Philips Electronics North America Corporation 1998  
All rights reserved. Printed in U.S.A.  
Sunnyvale, California 94088–3409  
Telephone 800-234-7381  
Date of release: 05-98  
Document order number:  
9397 75003857  
Philips  
Semiconductors  

相关型号:

SC83C451CCN64

Microcontroller, 8-Bit, MROM, 12MHz, CMOS, PDIP64
YAGEO

SC83C451CGA68

80C51 8-bit microcontroller family 4K/128 OTP/ROM/ROMless, expanded I/O
NXP

SC83C451CGA68-T

Microcontroller, 8-Bit, MROM, 16MHz, CMOS, PQCC68
YAGEO

SC83C451CGN64

Microcontroller, 8-Bit, MROM, 16MHz, CMOS, PDIP64
YAGEO

SC841110

Power Solid State Relay
CELDUC

SC841114

Power Solid State Relay
CELDUC

SC841810

Power Solid State Relay
CELDUC

SC841910

Power Solid State Relay
CELDUC

SC842110

Power Solid State Relay
CELDUC

SC842810

Power Solid State Relay
CELDUC

SC842910

Power Solid State Relay
CELDUC

SC844110

Power Solid State Relay
CELDUC