PL663-29 [PLL]

Analog Frequency Multiplier; 模拟倍频器
PL663-29
型号: PL663-29
厂家: PHASELINK CORPORATION    PHASELINK CORPORATION
描述:

Analog Frequency Multiplier
模拟倍频器

倍频器
文件: 总15页 (文件大小:484K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Analog Frequency Multiplier  
PL660 and PL663 XO Families  
DESCRIPTION  
PhaseLink’s Analog Frequency Multipliers TM  
FEATURES  
Non-PLL frequency multiplication  
(AFMs) are the industry’s first “Balanced Oscillator”  
utilizing analog multiplication of the fundamental  
frequency (at double or quadruple frequency),  
combined with an attenuation of the fundamental of  
the reference crystal, without using a phase-locked  
loop (PLL), in CMOS technology.  
Input frequency from 30-200 MHz  
Output frequency from 60-800 MHz  
Low phase noise and jitter (equivalent to fundamental  
at the output frequency)  
Ultra-low jitter  
o RMS phase jitter < 0.25 ps (12 kHz to 20 MHz)  
o RMS period jitter < 2.5 ps typ.  
Low phase noise  
o -145 dBc/Hz @ 100 kHz offset from 155.52 MHz  
o -150 dBc/Hz @ 10 MHz offset from 155.52 MHz  
Low input frequency eliminates the need for expensive  
crystals  
PhaseLink’s patent pending PL66x family of AFM  
products can achieve up to 800 MHz differential  
PECL, LVDS, or single-ended CMOS output with  
little jitter or phase noise deterioration.  
PL66x-xx family of products utilize a low-power  
CMOS technology and are housed in GREEN/  
RoHS compliant 16-pin TSSOP and 3x3 QFN  
packages.  
Differential PECL/LVDS, or single-ended CMOS output  
Single 2.5V or 3.3V +/- 10% power supply  
Optional industrial temperature range (-40°C to +85°C)  
Available in 16-pin GREEN/RoHS compliant TSSOP, and  
16-pin 3x3 QFN packages.  
Figure 1: 2X AFM Phase Noise at 212.5 MHz (106.25 MHz 3rd overtone crystal)  
47745 Fremont Blvd., Fremont, California 94538 TEL (510) 492-0990, FAX (510) 492-0991  
www.phaselink.com  
Rev. 3/20/07 Page 1  
Analog Frequency Multiplier  
PL660 and PL663 XO Families  
L 2 X  
O E  
X IN  
Q B A R  
Q
F re q u e n c y  
X 2  
O s c illa to r  
A m p lifie r  
R
F re q u e n c y  
X 4  
X O U T  
O n ly re q u ire d in x 4 d e s ig n s  
L 4 X  
Figure 2: Block Diagram of AFM XO  
Figure 3 shows the period jitter histogram of the 2x Analog Frequency Multiplier at 212.5 MHz, while  
Figure 4 shows the very low levels of sub-harmonics that correspond to the exceptional performance (i.e.  
low jitter).  
Figure 3: Period Jitter Histogram at 212.5MHz  
Analog Frequency Multiplier (2x),  
with 106.25 MHz crystal  
Figure 4: Spectrum Analysis at 212.5MHz  
Analog Frequency Multiplier (2x),  
with sub-harmonics below –69 dBc  
OE LOGIC SELECTION  
OUTPUT  
OESEL  
OE  
Output State  
0 (Default)  
Enabled  
Tri-state  
Tri-state  
Enabled  
Tri-state  
Enabled  
Enabled  
Tri-state  
0 (Default)  
1
0
PECL  
1
0 (Default)  
1
1 (Default)  
0
1 (Default)  
0 (Default)  
1
LVDS or CMOS  
OESEL and OE: Connect to VDD to set to “1”, connect to GND to set to “0”. [The ‘Default’ state is set by internal pull up/down resistor.]  
47745 Fremont Blvd., Fremont, California 94538 TEL (510) 492-0990, FAX (510) 492-0991  
www.phaselink.com  
Rev. 3/20/07 Page 2  
Analog Frequency Multiplier  
PL660 and PL663 XO Families  
PRODUCT SELECTOR GUIDE  
FREQUENCY VERSUS PHASE NOISE PERFORMANCE  
Phase Noise at Frequency Offset From Carrier (dBc/Hz)  
Input  
Frequency  
Range  
Analog  
Frequency  
Multiplication  
Factor  
Output  
Frequency Output  
Range  
(MHz)  
Part  
Number  
Type  
Carrier  
Freq.  
(MHz)  
100  
Hz  
10  
KHz  
100  
KHz  
1
MHz  
10  
10 Hz  
1 KHz  
(MHz)  
MHz  
PL660-08  
PL660-09  
PL663-07  
PL663-08  
PL663-09  
PL663-17  
PL663-18  
PL663-19  
PL663-28  
PL663-29  
30 - 80  
30 - 80  
4
4
2
2
2
2
2
2
2
2
120 - 320  
120 - 320  
60 - 160  
PECL  
LVDS  
CMOS  
PECL  
LVDS  
CMOS  
PECL  
LVDS  
PECL  
LVDS  
155.52  
155.52  
156.25  
156.25  
156.25  
212.5  
-72  
-72  
-75  
-75  
-75  
-70  
-70  
-70  
-60  
-60  
-100  
-100  
-105  
-105  
-105  
-100  
-100  
-100  
-92  
-125  
-125  
-130  
-130  
-130  
-130  
-130  
-130  
-122  
-122  
-132  
-132  
-140  
-140  
-140  
-140  
-140  
-140  
-140  
-140  
-142  
-142  
-145  
-145  
-145  
-145  
-145  
-145  
-142  
-142  
-147  
-147  
-150  
-150  
-150  
-148  
-148  
-148  
-146  
-146  
-149  
-149  
-150  
-150  
-150  
-148  
-148  
-148  
-146  
-148  
30 - 80  
30 - 80  
60 - 160  
30 - 80  
60 - 160  
75 - 140  
75 - 140  
75 - 140  
140 - 160  
140 - 160  
150 - 280  
150 - 280  
150 - 280  
280 - 320  
280 - 320  
212.5  
212.5  
311.04  
311.04  
-92  
FREQUENCY VERSUS JITTER, AND SUB-HARMONIC PERFORMANCE  
RMS Period Peak to Peak  
RMS  
Accumulated  
(L.T.) Jitter (ps)  
Phase Jitter  
(12 KHz-20MHz)  
(ps)  
Spectral Specifications / Sub-harmonic Content  
Jitter  
(ps)  
Period Jitter  
(ps)  
(dBc)  
Frequency (MHz)  
Output  
Freq.  
(MHz)  
Part  
Number  
Carrier  
@
@
@
@
@
@
Freq.  
MHz  
(Fc)  
Min. Typ. Max. Min. Typ. Max. Min. Typ. Max.  
Min. Typ. Max.  
-75% -50% -25% +25% +50% +75%  
(Fc)  
(Fc) (Fc)  
(Fc)  
(Fc)  
(Fc)  
PL660-08  
PL660-09  
PL663-07  
PL663-08  
PL663-09  
PL663-17  
PL663-18  
PL663-19  
PL663-28  
PL663-29  
155.52  
155.52  
156.25  
156.25  
156.25  
212.50  
212.50  
212.50  
311.04  
311.04  
3
3
5
5
3
3
3
4
4
4
4
4
21 30  
21 30  
18 20  
18 20  
18 20  
18 20  
18 20  
18 20  
18 20  
18 20  
5
5
3
3
3
4
4
4
4
4
0.25  
0.25  
0.24  
0.24  
0.24  
0.19  
0.19  
0.19  
0.16  
0.16  
155.52  
155.52  
156.25  
156.25  
156.25  
212.50  
212.50  
212.50  
311.04  
311.04  
-66  
-66  
-61  
-61  
-70  
-70  
-70  
-70  
-70  
-70  
-65  
-65  
-67  
-67  
-75  
-75  
-75  
-75  
-75  
-75  
-70  
-70  
-70  
-70  
2
2
2
2.5  
2.5  
2.5  
2.5  
2.5  
Note: Wavecrest data 10,000 hits. No Filtering was used in Jitter Calculations.  
Agilent E5500 was used for phase jitter measurements.  
Spectral specifications were obtained using Agilent E7401A.  
47745 Fremont Blvd., Fremont, California 94538 TEL (510) 492-0990, FAX (510) 492-0991  
www.phaselink.com  
Rev. 3/20/07 Page 3  
Analog Frequency Multiplier  
PL660 and PL663 XO Families  
BOARD LAYOUT CONSIDERATIONS AND CRYSTAL SPECIFICATIONS  
BOARD LAYOUT CONSIDERATIONS  
To minimize parasitic effects and improve performance, do the following:  
Place the crystal as close as possible to the IC.  
Make the board traces that are connected to the crystal pins symmetrical. The board trace  
symmetry is very important, as it reduces the negative parasitic effects to produce clean  
frequency multiplication with low jitter.  
CRYSTAL SPECIFICATIONS  
Crystal  
Resonator  
CL (xtal)  
Typical  
ESR(RE)  
Max.  
C0  
C0/C1  
Max.  
Part Number  
Mode  
Frequency  
)
Max.  
(FXIN  
PL660-08  
PL660-09  
Fundamental or  
3rd overtone  
25~75MHz  
30~80MHz  
5 pF  
5 pF  
5 pF  
5 pF  
30  
30  
60  
60  
4.5 pF  
4.5 pF  
4.0 pF  
4.0 pF  
N.A.  
N.A.  
N.A.  
N.A.  
PL663-07  
PL663-08  
PL663-09  
Fundamental or  
3rd overtone  
PL663-17  
PL663-18  
PL663-19  
Fundamental or  
3rd overtone  
75~140MHz  
140~200MHz  
PL663-28  
PL663-29  
Fundamental or  
3rd overtone  
Note: Non-specified parameters can be chosen as standard values from crystal suppliers.  
CL ratings larger than 5pF require a crystal frequency adjustment.  
Request detailed crystal specifications from PhaseLink.  
47745 Fremont Blvd., Fremont, California 94538 TEL (510) 492-0990, FAX (510) 492-0991  
www.phaselink.com  
Rev. 3/20/07 Page 4  
Analog Frequency Multiplier  
PL660 and PL663 XO Families  
EXTERNAL COMPONENT VALUES  
INDUCTOR VALUE OPTIMIZATION  
The required inductor value(s) for the best performance depends on the operating frequency, and the board layout  
specifications. The listed values in this datasheet are based on the calculated parasitic values from PhaseLink’s  
evaluation board design. These inductor values provide the user with a starting point to determine the optimum  
inductor values. Additional fine-tuning may be required to determine the optimal solution.  
To assist with the inductor value optimization, PhaseLink has developed the “AFM Tuning Assistant” software. You  
can download this software from PhaseLink’s web site (www.phaselink.com). The software consists of two  
worksheets. The first worksheet (named L2) is used to fine-tune the ‘L2’ inductor value, and the second worksheet  
(named L4) is used for fine tuning of the ‘L4’ (used in 4x AFMs only) inductor value.  
For those designs using PhaseLink’s recommended board layout, you can use the “AFM Tuning Assistant” to  
determine the optimum values for the required inductors. This software is developed based on the parasitic  
information from PhaseLink’s board layout and can be used to determine the required inductor and parallel  
capacitor (see LWB1 and Cstray parameters) values. For those employing a different board layout in their design,  
we recommend to use the parasitic information of their board layout to calculate the optimized inductor values.  
Please use the following fine tuning procedure:  
Figure 5: Diagram Representation of the Related System Inductance and Capacitance  
DIE SIDE  
- Cinternal = Based on AFM Device  
PCB side  
- LWB1 = 2 nH, (2 places), Stray inductance  
- Cpad = 2.0 pF, Bond pad and its ESD circuitry - Cstray = 1.0 pF, Stray capacitance  
- L2X (L4X) = 2x or 4x inductor  
- C11 = 0.4 pF, The following amplifier stage  
- C2X (C4X) = range (0.1 to 2.7), Fine tune inductor if  
used  
47745 Fremont Blvd., Fremont, California 94538 TEL (510) 492-0990, FAX (510) 492-0991  
www.phaselink.com  
Rev. 3/20/07 Page 5  
Analog Frequency Multiplier  
PL660 and PL663 XO Families  
There are two default variables that normally will not need to be modified. These are Cpad, and C11 and are  
found in cells B22 and B27 of ‘AFM Tuning Assistant’, respectively.  
LWB1 is the combined stray inductance in the layout. The DIE wire bond is ~ 0.6 nH and in the case of a  
leaded part an additional 1.0 nH is added. Your layout inductance must be added to these. There are 2 of  
these and they are assumed to be approximately symmetrical so you only need to enter this inductance once  
in cell B23.  
Enter the stray parasitic capacitance into cell B26. An additional 0.5 pF must be added to this value if a  
leaded part is used.  
Enter the appropriate value for Cinternal into B21 based on the device used (see column D). Use the ‘AFM  
Tuning Assistant’ software to calculate L2X (and C2X if used) for your resonance frequency.  
For 4X AFMs, repeat the same procedure in the L4X worksheet.  
See the examples below.  
DETERMINING STRAY L’s AND C’s IN A LAYOUT  
Figure 6: Diagram Representation of PL660-08 Board Layout  
Let’s take the PL660-08 (4x XO) for example, as shown in Figure 6. This takes a crystal input range of 30 to 80  
MHz and multiplies this to an output of 120 to 320 MHz. To determine the stray L’s and C’s of the layout we will  
assemble two test units. One AFM will be tuned to the lower range of the device (120 MHz), and the other to the  
upper range of the device (320 MHz).  
47745 Fremont Blvd., Fremont, California 94538 TEL (510) 492-0990, FAX (510) 492-0991  
www.phaselink.com  
Rev. 3/20/07 Page 6  
Analog Frequency Multiplier  
PL660 and PL663 XO Families  
120 MHz AFM Tuning: Using the “AFM Tuning Assistant” find the PL660-0x in the L2X worksheet. Enter the  
Cinternal value found next to it into cell B21. In cell B24 enter the closest standard inductor value (see CoilCraft  
0603CS series for example) to achieve the closest peak frequency to 60 MHz. Repeat the same procedure for  
L4X at 120 MHz.  
Results: L2X = 180 nH, L4X = 82 nH.  
320 MHz AFM tuning: Repeat the previous procedure for L2X at 120 MHz and L4X at 320 MHz.  
Results: L2X = 24 nH, L4X = 10 nH.  
Proceed and assemble the test units.  
Measuring 120 MHz L2X: Connect the RF generator and scope probe as shown in Figure 6. While power is  
applied to the PCB, set the generator output to +12 dBm and the frequency to 30 MHz. Since this is the 2x port,  
the scope will show 60 MHz with ~ 3V pk-pk amplitude. Vary the generator above and below 30 MHz until the  
amplitude on the scope is maximum and record the generator frequency. For example peak recorded at 29.8x2 or  
59.6 MHz.  
Measuring 320 MHz L2X: Connect the RF generator and scope probe as shown in Figure 6. While power is  
applied to the PCB, set the generator output to +12 dBm and the frequency to 80 MHz. Since this is the 2x port the  
scope will show 160 MHz with ~ 3V pk-pk amplitude. Vary the generator above and below 80 MHz until the  
amplitude on the scope is maximum and record the generator frequency. For example peak recorded at 78.0 x 2 =  
156 MHz  
In the AFM Tuning Assistant, add the scope’s probe capacitance to the Cstray cell. For our example 0.5 pF + 1.0  
pF = 1.5 pF. With L2X at 24 nH adjust LWB1 (cell B23) until the peak frequency reads 156 MHz. Next replace the  
L2X value with 180 nH and see if it peaks at 59.6 MHz. If it does not, adjust the Cstray until 59.4 MHz is achieved.  
Again enter 24 nH for L2X and fine tune LWB1 for 156 MHz.  
Results: LWB1 = 1.6 nH, Cstray = 2.9 pF-0.5 pF = 2.4 pF (subtract scope probe stray)  
Repeat the same steps for the L4X: Set the generator to 80 MHz. The 82 nH peaks at 118 MHz and the 10 nH  
peaks at 304 MHz.  
Results: LWB1 = 1.8 nH, Cstray = 2.5 pF-0.5 pF = 2.0 pF (subtract scope probe stray)  
Internal Capacitor Selection by Device  
Device Number  
Cinternal (pF)  
2X  
4X  
PL660-0X  
PL663-0X  
PL663-1X  
PL663-2X  
34.125  
46.500  
14.625  
14.625  
16.500  
47745 Fremont Blvd., Fremont, California 94538 TEL (510) 492-0990, FAX (510) 492-0991  
www.phaselink.com  
Rev. 3/20/07 Page 7  
Analog Frequency Multiplier  
PL660 and PL663 XO Families  
EXTERNAL COMPONENT VALUES – 3RD OVERTONE RESISTOR SELECTIONS (R3rd)  
This resistor is only required when a third overtone crystal is used. The chart below indicates the calculated and  
the nearest “E12” resistor values versus frequency.  
PL660-08/09  
PL663-07/08/09  
E12  
Pick  
PL663-017/18/19  
E12  
Pick  
PL663-28/29  
Freq. R3rd  
E12  
Pick  
K  
E24  
Pick  
KΩ  
Freq.  
(MHz)  
R3rd  
()  
Freq. R3rd  
Freq. R3rd  
(MHz)  
()  
(MHz)  
()  
(MHz)  
()  
K  
KΩ  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
64  
66  
68  
70  
72  
74  
76  
12,396  
11,442  
10,625  
9,917  
9,297  
8,750  
8,264  
7,829  
7,438  
7,083  
6,761  
6,467  
6,198  
5,950  
5,721  
5,509  
5,313  
5,129  
4,958  
4,798  
4,648  
4,508  
4,375  
4,250  
4,132  
4,020  
3,914  
12  
12  
10  
10  
10  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
64  
66  
68  
70  
72  
74  
76  
78  
80  
9,917  
9,297  
8,750  
8,264  
7,829  
7,438  
7,083  
6,761  
6,467  
6,198  
5,950  
5,721  
5,509  
5,313  
5,129  
4,958  
4,798  
4,648  
4,508  
4,375  
4,250  
4,132  
4,020  
3,914  
3,814  
3,719  
10  
10  
75  
77.5  
80  
82.5  
85  
87.5  
90  
92.5  
95  
97.5  
100  
102.5  
105  
107.5  
110  
112.5  
115  
117.5  
120  
122.5  
125  
127.5  
130  
132.5  
135  
2,125  
2,056  
1,992  
1,932  
1,875  
1,821  
1,771  
1,723  
1,678  
1,635  
1,594  
1,555  
1,518  
1,483  
1,449  
1,417  
1,386  
1,356  
1,328  
1,301  
1,275  
1,250  
1,226  
1,203  
1,181  
1,159  
1,138  
2.2  
2.2  
2.2  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
140.0  
142.0  
144.0  
146.0  
148.0  
150.0  
152.0  
154.0  
156.0  
158.0  
160.0  
162.0  
164.0  
166.0  
168.0  
170.0  
172.0  
174.0  
176.0  
178.0  
180.0  
182.0  
184.0  
186.0  
188.0  
190.0  
192.0  
194.0  
196.0  
198.0  
200.0  
915  
902  
890  
878  
866  
854  
843  
832  
821  
811  
801  
790  
780  
770  
759  
749  
740  
730  
720  
711  
701  
692  
683  
674  
665  
656  
647  
639  
630  
622  
614  
0.91  
0.91  
0.91  
0.91  
0.91  
0.82  
0.82  
0.82  
0.82  
0.82  
0.82  
0.82  
0.75  
0.75  
0.75  
0.75  
0.75  
0.75  
0.75  
0.68  
0.68  
0.68  
0.68  
0.68  
0.68  
0.68  
0.62  
0.62  
0.62  
0.62  
0.62  
8.2  
8.2  
8.2  
6.8  
6.8  
6.8  
6.8  
6.8  
5.6  
5.6  
5.6  
5.6  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
3.9  
3.9  
3.9  
3.9  
3.9  
3.9  
8.2  
8.2  
8.2  
6.8  
6.8  
6.8  
6.8  
6.8  
5.6  
5.6  
5.6  
5.6  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
3.9  
3.9  
3.9  
3.9  
137.5  
140  
47745 Fremont Blvd., Fremont, California 94538 TEL (510) 492-0990, FAX (510) 492-0991  
www.phaselink.com  
Rev. 3/20/07 Page 8  
Analog Frequency Multiplier  
PL660 and PL663 XO Families  
ELECTRICAL SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS  
PARAMETERS  
SYMBOL  
MIN.  
MAX.  
UNITS  
Supply Voltage  
VDD  
VI  
4.6  
VDD+0.5  
VDD+0.5  
+150  
+85  
V
Input Voltage, DC  
GND-0.5  
GND-0.5  
-55  
V
Output Voltage, DC  
VO  
V
Storage Temperature  
TS  
°C  
°C  
°C  
°C  
°C  
Industrial Ambient Operating Temperature  
Commercial Ambient Operating Temperature  
Junction Temperature  
TA_I  
TA_C  
TJ  
-40  
0
+70  
125  
Lead Temperature (soldering, 10s)  
260  
Exposure of the device under conditions beyond the limits specified by Maximum Ratings for extended periods may cause permanent damage to the  
device and affect product reliability. These conditions represent a stress rating only, and functional operations of the device at these or any other  
conditions above the operational limits noted in this specification is not implied.  
PECL ELECTRICAL CHARACTERISTICS  
PARAMETERS  
SYMBOL CONDITIONS  
MIN.  
TYP.  
MAX. UNITS  
Supply Current (with loaded outputs)  
IDD  
Fout = 212.5 MHz  
@ VDD – 1.3V  
58  
65  
75  
mA  
V
Operating Supply Voltage  
Output Clock Duty Cycle  
Short Circuit Current  
VDD  
2.25  
45  
3.63  
50  
50  
55  
%
mA  
V
RL = 50 Ω to  
VDD – 2V  
Output High Voltage  
VOH  
V
DD – 1.025  
VDD  
1.620  
Output Low Voltage  
Clock Rise Time  
Clock Fall Time  
VOL  
tr  
RL = 50 Ω to VDD – 2V  
@20/80%  
V
0.25  
0.25  
0.45  
0.45  
ns  
ns  
tf  
@80/20%  
PECL Levels Test Circuit  
PECL Transistion Time Waveform  
DUTY CYCLE  
OUT  
VDD  
45 - 55%  
55 - 45%  
50Ω  
2.0V  
OUT  
80%  
50Ω  
20%  
OUT  
OUT  
tR  
tF  
47745 Fremont Blvd., Fremont, California 94538 TEL (510) 492-0990, FAX (510) 492-0991  
www.phaselink.com  
Rev. 3/20/07 Page 9  
Analog Frequency Multiplier  
PL660 and PL663 XO Families  
LVDS ELECTRICAL CHARACTERISTICS  
PARAMETERS  
SYMBOL  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNITS  
Supply Current (with loaded outputs)  
IDD  
Fout = 212.5 MHz  
55  
60  
mA  
Operating Supply Voltage  
Output Clock Duty Cycle  
Output Differential Voltage  
VDD Magnitude Change  
Output High Voltage  
VDD  
2.25  
45  
3.63  
55  
V
%
@ 1.25V  
50  
VOD  
VOD  
VOH  
247  
-50  
355  
454  
50  
mV  
mV  
V
1.4  
1.1  
1.2  
3
1.6  
RL = 100 Ω  
(see figure)  
Output Low Voltage  
VOL  
0.9  
1.125  
0
V
Offset Voltage  
VOS  
1.375  
25  
V
Offset Magnitude Change  
mV  
VOS  
V
out = VDD or GND  
Power-off Leakage  
IOXD  
µA  
1
10  
VDD = 0V  
Output Short Circuit Current  
Differential Clock Rise Time  
IOSD  
tr  
-5.7  
0.5  
-8  
mA  
ns  
RL = 100 Ω  
CL = 10 pF  
(see figure)  
0.2  
0.2  
0.7  
Differential Clock Fall Time  
tf  
0.5  
0.7  
ns  
LVDS Transistion Time Waveform  
LVDS Levels Test Circuit  
LVDS Switching Test Circuit  
OUT  
OUT  
0V (Differential)  
OUT  
OUT  
CL = 10pF  
50  
VOD  
VOS  
VDIFF  
RL = 100Ω  
80%  
80%  
VDIFF  
0V  
50  
CL = 10pF  
20%  
20%  
OUT  
OUT  
tR  
tF  
47745 Fremont Blvd., Fremont, California 94538 TEL (510) 492-0990, FAX (510) 492-0991  
www.phaselink.com  
Rev. 3/20/07 Page 10  
Analog Frequency Multiplier  
PL660 and PL663 XO Families  
CMOS ELECTRICAL CHARACTERISTICS  
PARAMETERS  
SYMBOL  
CONDITIONS  
MIN.  
TYP.  
MAX.  
40  
UNITS  
Supply Current, Dynamic, with  
Loaded Outputs  
IDD  
At 100MHz, load=15pF  
32  
mA  
Operating Supply Voltage  
Output High Voltage (LVTTL)  
Output Low Voltage (LVTTL)  
Output High Voltage (LVCMOS)  
Output High Voltage  
VDD  
2.25  
2.4  
3.63  
V
V
V
V
V
V
VOH3.3  
VOL3.3  
VOHC3.3  
VOH2.5  
VOL2.5  
IOH = -8.5mA, 3.3V Supplies  
IOL = 8.5mA, 3.3V Supplies  
IOH = -4mA, 3.3V Supplies  
IOH = 1mA, 2.5V Supplies  
IOL = 1mA, 2.5V Supplies  
0.4  
0.2  
VDD – 0.4  
VDD – 0.2  
Output Low Voltage  
VOL = 0.4V, VOH = 2.4V  
(per output)  
Output drive current  
IOSD  
Tr/Tf  
8.5  
mA  
10% ~ 90% VDD with 10 pF  
load  
Output Clock Rise/Fall Time  
Output Clock Duty Cycle  
Short Circuit Current  
1.2  
50  
50  
1.6  
55  
ns  
%
Measured @ 50% VDD  
45  
IS  
mA  
47745 Fremont Blvd., Fremont, California 94538 TEL (510) 492-0990, FAX (510) 492-0991  
www.phaselink.com  
Rev. 3/20/07 Page 11  
Analog Frequency Multiplier  
PL660 and PL663 XO Families  
BOARD DESIGN AND LAYOUT CONSIDERATIONS  
L2X and L4X: Reduce the PCB trace inductance to a  
minimum by placing L2X and L4X as physically close to  
their respective pins as possible. Also be sure to bypass  
each VDD connection especially taking care to place a 0.01  
uF bypass at the VDD side of L2X and L4X (see  
recommended layout).  
Crystal Connections: Be sure to keep the ground plane  
under the crystal connections continuous so that the stray  
capacitace is consistent on both crystal connections. Also  
be sure to keep the crystal connections symmetrical with  
respect to one another and the crystal connection pins of  
the IC. If you chose to use a series capacitance and/or  
inductor to fine tune the crystal frequency, be sure to put  
symmetrical pads for this cap on both crystal pins (see  
Cadj in recommended layout), even if one of the capacitors  
will be a 0.01 uF and the other is used to tune the  
PL660 (4x AFM) TSSOP Layout  
frequency. To further maintain a symmetrical balance on a  
crystal that may have more internal Cstray on one pin or  
the other, place capacitor pads (Cbal) on each crystal lead  
to ground (see recommended layout). R3rd is only  
required if a 3rd overtone crystal is used.  
VDD and GND: Bypass VDDANA and VDDBUF with  
separate bypass capacitors and if a VDD plane is used, feed  
each bypass cap with its own via. Be sure to connect any  
ground pin including the bypass caps with short via  
connection to the ground plane.  
OESEL: J1 is recommended so the same PCB layout can  
be used for both OESEL settings.  
PL663 (2x AFM) TSSOP Layout  
47745 Fremont Blvd., Fremont, California 94538 TEL (510) 492-0990, FAX (510) 492-0991  
www.phaselink.com  
Rev. 3/20/07 Page 12  
Analog Frequency Multiplier  
PL660 and PL663 XO Families  
PACKAGE PIN DESCRIPTION AND ASSIGNMENT  
1
2
3
4
5
6
7
8
DNC  
GNDOSC  
DNC  
OSCOFFSEL  
GNDOSC  
16  
L2X  
1
2
3
4
5
6
7
8
L2X  
16  
15  
14  
13  
12  
11  
10  
9
1
2
1
1
1
0
9
VDDOSC  
OESEL  
VDDANA  
VDDBUF  
QBAR  
15  
14  
13  
12  
VDDOSC  
VDDANA  
OESEL  
VDDBUF  
QBAR  
1
2
1
1
1
0
1
3
1
4
1
5
1
6
9
8
7
6
5
VDDANA  
OESEL  
VDDOSC  
L2X  
VDDOSC  
L4X  
1
3
1
4
1
5
1
6
8
7
6
5
OESEL  
VDDANA  
VDDOSC  
L2X  
GNDANA  
DNC  
XIN  
DNC  
OE  
PL660-XX  
XIN  
PL663-XX  
OE  
XOUT  
OE  
XOUT  
OE  
XOUT  
1
2
3
4
XOUT  
1
2
3
4
11  
10  
9
DNC  
L4X  
Q
Q
GNDANA  
VDDOSC  
GNDBUF  
GNDBUF  
2x AFM Package Pin Out  
4x AFM Package Pin Out  
Description  
PIN ASSIGNMENTS  
Name  
DNC  
Pin #  
Type Product  
2X  
Do Not Connect.  
1
I
Set to “0” (GND) to turn off the oscillator when outputs are disabled (OE). Default (no connect) is  
OSC always on.  
OSCOFFSEL  
4X  
GNDOSC  
DNC  
2
3
4
5
6
P
I
2X & 4X  
2X & 4X  
2X & 4X  
2X & 4X  
2X & 4X  
2X  
GND connection for oscillator.  
Do Not Connect.  
XIN  
I
Input from crystal oscillator circuitry.  
Output from crystal oscillator circuitry.  
XOUT  
O
I
OE  
Output Enable input. See “OE LOGIC SELECTION TABLE”.  
Do Not Connect.  
DNC  
External inductor connection. The inductor is recommended to be a high Q small size 0402 or  
0603 SMD component, and must be placed between L4X and adjacent VDDOSC. Place inductor  
as close to the IC as possible to minimize parasitic effects and to maintain inductor Q. This  
inductor is used with 4x AFMs.  
7
8
I
L4X  
4X  
GNDANA  
VDDOSC  
2X  
4X  
GND connection.  
P
VDD connection for oscillator circuitry. VDDOSC should be separately decoupled from other  
VDDs whenever possible.  
GNDBUF  
Q
9
P
O
O
2X & 4X  
2X & 4X  
2X & 4X  
GND connection.  
10  
11  
PECL/LVDS/CMOS output.  
QBAR  
Complementary PECL/LVDS output or in-phase CMOS.  
VDD connection for output buffer circuitry. VDDBUF should be separately decoupled from other  
VDDs whenever possible.  
VDDBUF  
OESEL  
12  
P
I
2X & 4X  
13  
14  
14  
13  
2X  
4X  
2X  
4X  
Selector input to choose the OE control logic (see “OE SELECTION TABLE”). If no connection  
is applied, value will be set to default through internal pull-down resistor.  
VDD connection for analog circuitry.VDDANA should be separately decoupled from other VDDs  
whenever possible.  
VDDANA  
VDDOSC  
P
P
VDD connection for oscillator. VDD should be separately decoupled from other VDDs whenever  
possible.  
15  
2X & 4X  
External inductor connection. The inductor is recommended to be a high Q small size 0402 or  
0603 SMD component, and must be placed between L2X and adjacent VDDOSC. Place inductor  
as close to the IC as possible to minimize parasitic effects and to maintain inductor Q.  
L2X  
16  
I
2X & 4X  
Note: 663-xx devices are 2x multipliers, and 660-xx devices are 4x multipliers.  
47745 Fremont Blvd., Fremont, California 94538 TEL (510) 492-0990, FAX (510) 492-0991 www.phaselink.com  
Rev. 3/20/07 Page 13  
Analog Frequency Multiplier  
PL660 and PL663 XO Families  
PACKAGE INFORMATION  
16 PIN TSSOP  
16 PIN TSSOP ( mm )  
Symbol  
Min.  
-
Max.  
1.20  
0.15  
0.30  
0.20  
5.10  
4.50  
E
H
A
A1  
B
0.05  
0.19  
0.09  
4.90  
4.30  
D
C
D
E
A
H
L
6.40 BSC  
A1  
0.45  
0.75  
C
e
0.65 BSC  
L
B
e
16 PIN 3x3 QFN  
47745 Fremont Blvd., Fremont, California 94538 TEL (510) 492-0990, FAX (510) 492-0991  
www.phaselink.com  
Rev. 3/20/07 Page 14  
Analog Frequency Multiplier  
PL660 and PL663 XO Families  
ORDERING INFORMATION  
To order parts, please contact our Sales Department:  
47745 Fremont Blvd., Fremont, CA 94538, USA  
Tel: (510) 492-0990 Fax: (510) 492-0991  
PART NUMBER  
The order number for this device is a combination of the following:  
Device number, Package type and Operating temperature range  
PL66X-XX X X X X  
NONE= TUBE  
R= TAPE AND REEL  
PART NUMBER  
NONE= NORMAL PACKAGE  
L= GREEN PACKAGE  
PACKAGE TYPE  
O=TSSOP  
Q= QFN 3x3  
TEMPERATURE  
C=COMMERCIAL  
I=INDUSTRIAL  
Order Number  
Marking  
P66X-XX OC  
Package Option  
PL66X-XXOC  
TSSOP – Tube  
PL66X-XXOC-R  
PL66X-XXOCL  
PL66X-XXOCL-R  
PL66X-XXQC  
P66X-XX OC  
P66X-XX OC  
P66X-XX OC  
P66X-XX QC  
P66X-XX QC  
P66X-XX QC  
P66X-XX QC  
TSSOP – Tape and Reel  
TSSOP (GREEN)– Tube  
TSSOP (GREEN)– Tape and Reel  
QFN – Tube  
PL66X-XXQC-R  
PL66X-XXQCL  
PL66X-XXQCL-R  
QFN – Tape and Reel  
QFN (GREEN)– Tube  
QFN (GREEN)– Tape and Reel  
PhaseLink Corporation, reserves the right to make changes in its products or specifications, or both at any time without notice. The information  
furnished by Phaselink is believed to be accurate and reliable. However, PhaseLink makes no guarantee or warranty concerning the accuracy of said  
information and shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon this product.  
LIFE SUPPORT POLICY: PhaseLink’s products are not authorized for use as critical components in life support devices or systems without the  
express written approval of the President of PhaseLink Corporation.  
47745 Fremont Blvd., Fremont, California 94538 TEL (510) 492-0990, FAX (510) 492-0991  
www.phaselink.com  
Rev. 3/20/07 Page 15  

相关型号:

PL663-29OC

Converter
MICROCHIP

PL663-29OC-R

CRYSTAL OSCILLATOR, CLOCK, LVDS OUTPUT
MICROCHIP

PL663-29QC

LVDS Output Clock Oscillator
MICROCHIP

PL66X-XXOC

Analog Frequency Multiplier
PLL

PL66X-XXOC-R

Analog Frequency Multiplier
PLL

PL66X-XXOCL

Analog Frequency Multiplier
PLL

PL66X-XXOCL-R

Analog Frequency Multiplier
PLL

PL66X-XXQC

Analog Frequency Multiplier
PLL

PL66X-XXQC-R

Analog Frequency Multiplier
PLL

PL66X-XXQCL

Analog Frequency Multiplier
PLL

PL66X-XXQCL-R

Analog Frequency Multiplier
PLL

PL671-01CSC

OTHER CLOCK GENERATOR
MICROCHIP