EPR-12 [POWERINT]

Engineering Prototype Report for EP-12 - 145 W PC Forward Converter with TOP247 and 10 W 5 V Output Standby Flyback with TNY266; 对于EP- 12工程原型报告 - 145 W¯¯ PC正激变换器TOP247和10 W 5 V输出反激式待机与TNY266
EPR-12
型号: EPR-12
厂家: Power Integrations    Power Integrations
描述:

Engineering Prototype Report for EP-12 - 145 W PC Forward Converter with TOP247 and 10 W 5 V Output Standby Flyback with TNY266
对于EP- 12工程原型报告 - 145 W¯¯ PC正激变换器TOP247和10 W 5 V输出反激式待机与TNY266

PC
文件: 总40页 (文件大小:1498K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Engineering Prototype Report for EP-12 -  
145 W PC Forward Converter with TOP247 and  
10 W 5 V Output Standby Flyback with TNY266  
Title  
Specification  
Application  
Author  
PC Main and PC Standby  
PI Applications  
Document  
Number  
EPR-12  
01-Feb-05  
1.3  
Date  
Revision  
Objective  
This document describes the operation and provides the performance data of a design  
using TOP247 as a forward converter for 145 W PC supply application and TNY266 as a  
10 W flyback for PC standby.  
Power Integrations  
5245 Hellyer Avenue, San Jose, CA 95138 USA.  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
Applications Hotline: Tel: +1 408 414 9660 Fax: +1 408 414 9760  
www.powerint.com  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
01-Feb-05  
Table of Contents  
Table of Contents............................................................................................................... 2  
1
2
Introduction ................................................................................................................. 3  
Supply Requirements.................................................................................................. 5  
2.1 Power Supply Specification..................................................................................... 5  
2.2 Conditions for Cross Regulation Test...................................................................... 6  
2.3 Output Characteristics............................................................................................. 6  
2.4 Transient Overshoot................................................................................................ 6  
2.5 Short Circuit Protection............................................................................................ 6  
Schematics ................................................................................................................. 7  
Circuit Description..................................................................................................... 10  
PCB Layout............................................................................................................... 12  
Bill Of Materials......................................................................................................... 14  
6.1 Electrical Bill of Materials....................................................................................... 14  
6.2 Hardware Bill of Materials...................................................................................... 16  
6.3 Output Cable Bill of Materials................................................................................ 16  
6.4 Heatsinks Bill of Materials ..................................................................................... 17  
Transformer Specification......................................................................................... 18  
7.1 145 W Forward Transformer ................................................................................. 18  
7.1.1 Electrical Specifications.................................................................................. 18  
7.1.2 Materials......................................................................................................... 18  
7.1.3 Transformer Build Diagram ............................................................................ 19  
7.1.4 Transformer Construction............................................................................... 19  
7.2 10 W PC Standby Transformer ............................................................................. 21  
7.2.1 Electrical Specifications.................................................................................. 21  
7.2.2 Materials......................................................................................................... 21  
7.2.3 Transformer Build Diagram ............................................................................ 22  
7.2.4 Transformer Construction............................................................................... 22  
7.3 Output Coupled Inductor ....................................................................................... 23  
7.3.1 The Toroid Layout.......................................................................................... 23  
7.3.2 Inductances.................................................................................................... 23  
7.4 The Mag Amp Inductor.......................................................................................... 24  
7.4.1 Core Specification .......................................................................................... 24  
7.4.2 Winding Instruction......................................................................................... 24  
PIXls Design Spreadsheet ........................................................................................ 25  
Test Results.............................................................................................................. 30  
3
4
5
6
7
8
9
10 Performance Data..................................................................................................... 31  
10.1 Efficiency and Regulation .................................................................................. 31  
10.2 Power Limit vs. Input Line.................................................................................. 32  
11 Waveforms................................................................................................................ 33  
11.1 Drain Switching Waveforms............................................................................... 34  
11.2 Output Ripple Measurements ............................................................................ 36  
12 Conducted EMI ......................................................................................................... 37  
13 Revision History ........................................................................................................ 38  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 2 of 40  
01-Feb-05  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
Important Note:  
Although the EP-12 is designed to satisfy safety isolation requirements, this  
engineering prototype has not been agency approved. Therefore, all testing should be  
performed using an isolation transformer to provide the AC input to the prototype board.  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
Page 3 of 40  
www.powerint.com  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
01-Feb-05  
1
Introduction  
The following engineering report gives the detailed description and test data for a  
TOP247 forward converter designed for 145 W PC main applications and a TNY266  
flyback for PC standby. The requirements listed below are typical of a PC power supply.  
Figure 1 - EP-12 Populated Circuit Board.  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 4 of 40  
01-Feb-05  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
2
Supply Requirements  
2.1 Power Supply Specification  
Description  
Symbol  
Min  
Typ  
Max  
Units  
Comment  
Input  
Doubler Input  
Voltage  
Frequency  
Standby Input Power (115 VAC)  
Blue Angel Input Power (240 VAC)  
VIN  
fLINE  
90  
47  
115  
50/60  
0.91  
4.2  
132  
63  
1
VAC  
Hz  
W
0.5 W Output From Standby  
2.5 W output From Standby  
5
W
Output  
4%  
Output Voltage 1  
Output Ripple Voltage 1  
Output Current 1  
Output Voltage 2  
Output Ripple Voltage 2  
Output Current 2  
VOUT1  
VRIPPLE1  
IOUT1  
VOUT2  
VRIPPLE2  
IOUT2  
3.17  
3.30  
5.00  
3.43  
50  
12  
5.25  
50  
15  
V
mV  
A
V
mV  
A
20 MHz Bandwidth  
0.5  
4.75  
5%  
20 MHz Bandwidth  
0.4  
7%  
Output Voltage 3  
Output Ripple Voltage 3  
Output Current 3  
Output Voltage 4 (standby)  
Output Ripple Voltage 4  
Output Current 4  
VOUT3  
VRIPPLE3  
IOUT3  
VOUT4  
VRIPPLE4  
IOUT4  
11.16 12.0 12.84  
120  
V
mV  
A
V
mV  
A
20 MHz Bandwidth  
5 A, 15 s Surge  
5%  
0.05  
4.75  
3
5.25  
50  
5.00  
20 MHz Bandwidth  
2.5 A, 15 s Surge  
0
2.0  
Total Output Power  
Continuous Output Power (main)  
Continuous Output Power (s/b)  
PO_main  
PO_s/b  
150  
10  
175  
12.5  
W
W
Efficiency  
Measured at PO_main =150 W  
Meets CISPR22B / EN55022B  
Main Converter  
65  
71  
%
ηmain  
Environmental  
Conducted EMI  
Designed to Meet IEC950,  
UL1950 Class II  
Safety  
1.2/50 µs Surge, IEC 1000-4-5,  
12 Series Impedance,  
Differential and Common Mode  
Surge  
4
kV  
100 kHz Ring Wave, 500 A Short  
Circuit Current, Differential and  
Common Mode  
Surge  
4
0
kV  
oC  
Free Convection, Sea Level  
Ambient Temperature  
TAMB  
50  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 5 of 40  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
01-Feb-05  
2.2 Conditions for Cross Regulation Test  
Load  
+5 V  
11 A  
15 A  
2 A  
0.4 A  
5 A  
15 A  
12 A  
0 A  
+3.3 V  
12 A  
7 A  
2 A  
0.5 A  
3 A  
7 A  
12 A  
0 A  
+12 V  
3 A  
3 A  
3 A  
0.05 A  
1 A  
3 A  
5 A (15 s)  
0 A  
1
2
3
4
5
6
7
8
2.3 Output Characteristics  
a. Rise time: all outputs of the power supply must rise from 10% to 90% of their rated  
output voltages within 2 ms to 20 ms at nominal line, maximum load.  
b. Turn-on delay time: 1000 ms maximum at nominal line, full load.  
c. Hold-up time: 16 ms minimum for all outputs at 110 VAC, 60 Hz, and full load.  
2.4 Transient Overshoot  
a. +5 V, +12 V and +3.3 V dynamic load transient response. Transient response is  
measured by switching the output load from 80% to 100% to 80% of its maximum  
load, other outputs are under maximum load with an input voltage from 90 VRMS to  
132 VRMS and at a frequency of 100 Hz and 50% duty cycle, step load change is  
0.5 A/µs. The peak transient amplitude is less than or equal to +5% / -5% of +5 V,  
+12 V, +3.3 V output. The recovery time is less than 5 ms.  
b. Overshoot: +5 V: 5.5 V maximum  
+3.3 V: 3.63 V maximum  
2.5 Short Circuit Protection  
The main supply shall latch off from a shorted output condition. The latch is reset through  
toggling remote ON/OFF.  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 6 of 40  
01-Feb-05  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
3
Schematics  
Figure 2 – EP-12 Main Forward Converter Primary Side.  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 7 of 40  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
01-Feb-05  
Figure 3 - EP-12 Main Forward Converter Secondary Side.  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 8 of 40  
01-Feb-05  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
Figure 4 – EP-12 Standby Flyback Converter.  
Figure 5 – EP-12 Remote ON / OFF Interface.  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 9 of 40  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
01-Feb-05  
4 Circuit Description  
With line feed forward, duty factor reduction, programmable primary current limit, line-  
sense for input UV and OV, and soft-start function for smooth start-up, the  
TOPSwitchGX family has all the needed functions to operate in an off-line, single-  
ended forward converter configuration. Also the TOPSwitchGX family has a sufficient  
power capability to bring PC main applications easily within its reach.  
In the present design the LINE-SENSE pin (L pin, please refer to TOPSwitchGX data  
sheet) senses the rectified DC input voltage through the combination of R3, R5, and R6  
and inhibits the supply from switching until the minimum voltage of 80 VAC (doubled  
mains) or 160 VAC is reached. Upon reaching this voltage and activation of switching,  
current sourced from R8 will immediately establish a maximum duty factor limit by  
injecting the appropriate amount of current into the LINE-SENSE pin (adjusting maximum  
duty factor, please refer to TOPSwitchGX data sheet). The input from R8 is a quasi-  
integrated, DC-rectified forward voltage sourced from the bias winding and will restrict  
the duty factor to a greater degree as the line voltage is increased. This is a very  
significant function to ensure that the transformer will not saturate, even in extreme  
transient load conditions.  
A TOP247 was selected for this 145 W application and its primary current limit was  
adjusted to limit at approximately 2.5 A by R12 when U3 is on. This allows approximately  
170 W of peak output power.  
Lowering the input voltage will cause the converter to shut off by means of the under-  
voltage lockout circuit around Q1. When input voltage is low enough to bias on Q1, the  
collector of Q1 will pull up the X pin of the TOP247 via R39 and shut off the main  
converter.  
This design uses a Zener primary clamp (D3, D4, D5) with a capacitor (C4) in parallel  
that is coupled to the drain of the TOPSwitchGX through a diode (D1). This is a very  
efficient snubber as it allows the maximum flyback voltage to develop during the off time  
which returns a significant amount of energy back to the transformer during the reverse  
time recovery of the diode D1. The total dissipation of the primary snubber clamp circuit  
was measured to be only 0.8 W at maximum load.  
It is necessary to use voltage mode control in the regulation loop when using  
TOPSwitchGX. As the data will show, the transient response is very good and there  
appears to be no difficulty in compensating the voltage mode control loop for optimal  
performance.  
The remote ON/OFF function is implemented by using a very simple circuit around Q3.  
When the ON line (green wire in output cable) is grounded to secondary return, Q3 is  
turned on and drives the LED of U3 on, which will ground R12 on the primary side and  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 10 of 40  
01-Feb-05  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
enable the TOP247 via its X pin. If the output comes up into regulation before C19  
completely discharges, Q3 is sustained on through R28 and the converter remains  
running. Upon loss of regulation, Q3 will turn off and the converter will shut off. Toggling  
the ON/OFF input will allow the converter to retry operation.  
When the ON line is open, it is internally pulled up to the +5 V standby and the main  
converter remains in the inhibit state. The +5 V standby is always operating provided  
there is sufficient AC input to the supply. By connecting the ON line to output return, the  
main supply will turn on, provided there is sufficient input voltage and there is no fault  
condition. If there is a fault then the supply will latch off. A retry is accomplished by  
simply toggling the ON line.  
Note: If the remote ON line is connected to output return (main power enabled) while  
turning on AC into the supply, the main converter will automatically turn on. However, if  
AC is brought up too slowly (i.e. adjusting a variac), the supply will not turn on and the  
ON line will have to be toggled to turn on the supply. The output interconnect board  
provided has the ON line already connected to an ON/OFF switch for manual  
ON/OFF control via the ON line.  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
Page 11 of 40  
www.powerint.com  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
01-Feb-05  
5
PCB Layout  
Figure 6 – EP-12 Assembly Diagram.  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 12 of 40  
01-Feb-05  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
Figure 7 – EP-12 Top View.  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 13 of 40  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
01-Feb-05  
6
Bill Of Materials  
6.1 Electrical Bill of Materials  
Item Qty Reference  
Part Number  
KBL06  
Manufacturer  
Gen. Semi.  
Description  
KBL06  
1
2
3
4
5
6
7
8
1
1
1
1
2
2
2
1
1
2
7
BR1  
CX1  
CX2  
CY1  
CY4, CY3  
C3, C2  
C102, C4  
C5  
C19  
C6  
ECQ-U2A104ML  
ECQ-U2A334MG  
440LQ47  
ECK-ATS222ME  
200AXW330MK1835  
200 pF, 1000 V, Y5P, 10%  
ECA-2AHG010  
ECA-1CHG220  
ECA-1CHG470  
ECU-S1H104MEA  
Panasonic  
Panasonic  
Vishay/Sprague  
Vishay/Sprague  
Rubycon  
0.1 µF, 250 VAC  
0.33 µF, 250 VAC  
47 pF, 1 kV (Safety)  
2.2 nF(Safety)  
330 µF, 200 V  
2.2 nF, 1 kV  
Xicon  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
1 µF, 100 V  
9
10  
11  
22 µF, 16 V  
47 µF, 16 V  
C7, C13, C14,  
C18, C103, C107  
C8, C23  
C9  
0.1 µF, 50 V  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
2
1
1
1
2
2
1
1
1
1
2
1
1
2
2
2
1
2
1
3
2
1
2
1
1
1
9
ECU-S1H333MEA  
K473K15X7RF5TL2  
ECU-S1H102JCB  
EEU-FC1C102  
EEU-FC0J222  
ECA-1AFQ122  
ECU-S1H331JCA  
ECA-2AHG2R2  
ECU-SIH101JCA  
10,000 pF, 500 V, Y5P, 10%  
ECA-1AFQ102L  
ECA-1AH6471  
1N5407  
BZY97C-180  
BAV20  
MBR2045CT  
MBR3045WT  
UF4002-1  
1N5228B-D7  
Panasonic  
BC Components 0.047 µF, 50 V  
0.033 µF  
C10  
C11  
C15, C12  
C16, C17  
C20  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Xicon  
Panasonic  
Panasonic  
Diodes Inc.  
Philips  
Diodes Inc.  
Int. Rect.  
Int. Rect.  
Fagor  
Gen. Semi.  
Diodes Inc.  
Philips  
0.001 µF, 50 V  
1000 µF, 16 V  
2200 µF, 6.3 V  
1200 µF, 10 V  
330 pF, 50 V  
2.2 µF, 100 V  
100 pF, 50 V  
0.01 µF, 500 V  
1000 µF, 10 V  
470 µF, 10 V  
1N5407  
BZY97C-180  
BAV20  
MBR2045  
MBR3045  
UF4002  
C21  
C22  
C101  
C104, C105  
C106  
D1  
D4, D5  
D6, D18  
D7, D9  
D8  
D11, D10  
D12  
1N5228  
1N4148  
BZX79-C B4V3  
1N4006  
BZY97-C200  
1N5822  
D13, D104, D105 1N4148-T  
D14, D19  
D101  
1N4006G-T  
BZY97-C200  
1N5822  
3721400041  
Sleeving (Alpha TFT250 #18) Alpha  
Diodes Inc.  
Philips  
Gen Semi  
Wickmann  
D3, D102  
D103  
F1  
4 A  
JP9 Sleeving  
JP2, JP3, JP4,  
JP5, JP6, JP7  
Insulation/Sleeving  
JUMPER  
(cut from wire roll)  
Belden  
8019 000 #18  
JP8, JP9, JP10, JP11  
39  
40  
41  
42  
43  
44  
45  
1
2
1
1
1
1
1
L1 coupled choke 13 µH/15 A  
L5, L2  
L3  
DT Magnetics  
Prem Mag  
DT Magnetics  
J.W. Miller  
Panasonic  
TOKO  
13 µH  
SPE-119-0  
0.5 µH  
Mag amp  
20 µH, 12 A  
8.2 mH  
10 µH, 2 A  
2N3906  
L4  
5702  
L7  
L101  
Q1  
ELF-18D650C  
R622LY-100K  
TO-92 Transistor/PNP  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 14 of 40  
01-Feb-05  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
Item Qty Reference  
Part Number  
Manufacturer  
Description  
TIP32C  
2N3904  
MPSA42  
MPSA92  
10 Ω  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
1
2
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
3
2
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
2
1
2
1
Q2  
Q3, Q7  
Q4  
Q6  
RT1  
RV1  
R1, R2  
R3  
R4  
R6  
R7  
R8  
R5  
R9  
R10  
R39  
R12  
R13  
R14  
R15  
R16, R23, R35  
R31, R17  
R18  
R19  
R20  
R21  
R22  
R24  
R25  
R26  
R11, R27  
R28, R33  
R29,  
R30  
R32  
R34  
TO-220 Power Transistor/PNP  
TO-92 Transistor/NPN  
TO-92 transistor/PNP 300 V  
TO-92 transistor/NPN 300 V  
RL3004-6.56-59-S7  
ERZ-V14D431  
Keystone  
Panasonic  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
DT Magnetics  
275 V, 14 mm  
330 kΩ  
CFR-25JB-330k  
CFR-25JB-2M2  
CFR-25JB-2M2  
CFR-25JB-2M2  
CFR-25JB-560K  
MFR-25FBF-130K  
CFR-25JB-180K  
CFR-25JB-47R  
CFR-50JB-560K  
CFR-25JB-3K3  
CFR-25JB-7K5  
CFR-25JB-10R  
CFR-25JB-75K  
CFR-25JB-1K8  
CFR-25JB-1K0  
CFR-25JB-15K  
CFR-25JB-4K64  
CFR-25JB-4K12  
CFR-25JB-150K  
CFR-25JB-270R  
CFR-25JB-3R0  
CFR-25JB-3K48  
CFR-25JB-2K2  
CFR-25JB-10K  
CFR-25JB-390R  
CFR-25JB-4K7  
CFR-25JB-100K  
RSF100JB-1R0  
CFR-25JB-27K  
CFR-25JB-33R  
MFR-25FBF-43K2  
CFR-25JB-10K  
CFR-25JB-51R  
CFR-25JB-4M0  
CFR-25JB-430R  
CFR-25JB-5k1  
2.2 MΩ  
2.2 MΩ  
2.2 MΩ  
560 kΩ  
130 k, 1%  
180 kΩ  
47 Ω  
560 k, 1/2 W  
3.3 kΩ  
7.5 kΩ  
10 Ω  
75 kΩ  
1.8 kΩ  
1 kΩ  
15 kΩ  
4.64 k, 1%  
4.12 k, 1%  
150 k, 1%  
270 Ω  
3 Ω  
3.48 k, 1%  
2.7 kΩ  
10 kΩ  
390 Ω  
4.7 kΩ  
100 kΩ  
1 , 1 W  
27 kΩ  
33 Ω  
43.2 k, 1%  
10 kΩ  
51 Ω  
1 M, 1%  
430 Ω  
5.1 kΩ  
27 kΩ  
PC Main  
Transformer  
PC Standby  
Transformer  
TOP247Y1  
SFH615A-2  
LTV817  
TL431  
R36  
R37  
R101  
R103, R102  
R104  
R105, R38  
R106  
T1  
CFR-25JB-27K  
EER-28L  
1
90  
1
T101  
EE-16  
DT Magnetics  
91  
92  
93  
94  
95  
1
1
2
2
1
U1  
U2  
U102, U3  
U6, U5  
U101  
TOP247Y1  
SFH615A-2  
LTV817  
TL431  
TNY266P  
Power Integrations  
Sharp  
Power Integrations  
TNY266P  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 15 of 40  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
01-Feb-05  
6.2 Hardware Bill of Materials  
Item Qty Reference  
Description  
PCB, Assembly Main  
P/N  
DAK-12  
Manufacturer  
Power  
1
1 ea PCB, Main  
Integrations  
N/A  
2
1 kit Enclosure/Hardware  
Top & Bottom  
N/A  
Enclosure, Fan,  
Fan Screws (2 ea),  
AC Input Conn,  
Voltage Selection Switch  
Conn, Spade  
3
4
5
6
7
8
1 ea Conn, Spade  
2 ea Cap  
31887  
AMP  
16-22 AWG, #10 PIDG  
Cap, 470 pF, 20%  
250 V, Ceramic Y2/X1  
Wire, Grn/Yel, 18 AWG  
UL1015, Pretinned  
Wire, Wht, 18 AWG  
UL1015, Pretinned  
Wire, Blk, 18 AWG  
UL1015, Pretinned  
Wire, Wht, 22 AWG  
UL1015, Pretinned  
Tie Wrap, 4", Nylon  
Screw, M3 X 5 mm  
Screw, #6 X ¼  
ECK-ATS471MB Panasonic  
2.5” N/A  
Any  
Any  
4”  
4”  
N/A  
N/A  
1015-18/1-0  
Any  
Any  
12” N/A  
9
10  
11  
4 ea N/A  
2 ea N/A  
7 ea N/A  
PLT1M  
PANDUIT  
Any  
Any  
6N25PPBZZ  
Pan Head, Type B,  
Self Tap, Zinc Pltd  
Insulator, Fishpaper Rev D  
12  
1 ea N/A  
6.3 Output Cable Bill of Materials  
Item Qty Reference  
Description  
P/N  
Manufacturer  
1
1 ea P2  
Recp, 2 X 10  
4.2 mm Mini-Fit Jr  
39-01-2205  
(94V-0)  
MOLEX  
2
17 ea N/A  
Terminal, Crimp, Fem  
AWG 18-24, Tin  
39-00-0039  
MOLEX  
3
4
5
6
7
8
9
70” N/A  
30” N/A  
30” N/A  
10” N/A  
10” N/A  
10” N/A  
4 ea Conn A, B, C, F  
Wire, Blk, 18 AWG, UL 1015  
Wire, Red, 18 AWG, UL 1015  
Wire, Org, 18 AWG, UL 1015  
Wire, Yel, 18 AWG, UL 1015  
Wire, Grn, 22 AWG, UL 1015  
Wire, Vio, 22 AWG, UL 1015  
Conn, Wire Pin  
Any  
Any  
Any  
Any  
Any  
Any  
MOLEX  
19211-0001  
11-01-0197  
Term 10-12 AWG  
Tool, Hand Crimper  
10  
Tool  
MOLEX  
Mini-Fit Jr. 18-24 AWG  
Tool, Extraction Mini-Fit Jr  
Tool, Hand Crimper  
11  
12  
Tool  
Tool  
11-03-0044  
19285-0063  
MOLEX  
MOLEX  
Wire Pin Term (Molex 19211-0001)  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 16 of 40  
01-Feb-05  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
6.4 Heatsinks Bill of Materials  
Item Qty Part Reference  
Description  
P/N  
Manufacturer  
1
2
3
4
5
6
7
8
1
1
4
1
1
4
4
1
Fab, H.S. Primary, EP-12 Rev. D  
Fab, H.S. Secondary, EP-12 Rev. C  
Scr, Phil Pan, M3 X 8, Stl, Znc  
Scr, Phil Pan, M3 X 10, Stl, Znc  
Wshr, Split Lock, M3  
Wshr, Shldr, #4 [M2, 5]  
Sil-Pad 600, Heatsink, TO-220  
Sil-Pad TO-3P Heatsink, TO-247  
U1, D7, D9, Q2  
D8  
U1  
U1, D7, D9, Q2  
U1, D7, D9, Q2  
D8  
Olander Co.  
Olander Co.  
Olander Co.  
Keystone  
Berquist  
Berquist  
3049  
BER102  
BER109  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 17 of 40  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
01-Feb-05  
7
Transformer Specification  
7.1 145 W Forward Transformer  
Figure 8 - EP-12 145 W Forward Transformer.  
7.1.1Electrical Specifications  
Electrical strength  
Primary Inductance  
Resonant Frequency  
Primary leakage inductance  
60 Hz, 1 min, from Pins 1-7 to Pins 10-14  
All windings open  
3000 VAC  
4.5 mH or Higher  
0.2 MHz minimum  
8 µH maximum  
All windings open  
Pins 6-14 shorted  
7.1.2Materials  
Item  
Description  
Core: PC40 EER28L  
Bobbin: BEER28L-1114CPH  
[1]  
[2]  
Magnet Wire: #28 AWG Heavy Nyleze  
Magnet Wire: #30 AWG Heavy Nyleze  
Magnet Wire: #20 AWG Heavy Nyleze  
Copper ribbon .670x .008″  
Tape: 3M 1298 Polyester Film (white) 21.8 mm wide by 2.2 mils thick  
Tape: 3M 1298 Polyester Film (white) 15.8 mm wide by 2.2 mils thick  
Tape: 3M 44 Margin tape (cream) 3.0 mm wide by 5.5 mils thick  
[3]  
[4]  
[5]  
[6]  
[7]  
[8]  
[9]  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 18 of 40  
01-Feb-05  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
7.1.3 Transformer Build Diagram  
Figure 9 – EP-12 145 W Forward Transformer Build Diagram.  
7.1.4Transformer Construction  
Margin Taping  
Primary Winding  
Basic Insulation  
Margin Taping  
Use item [9] for the right and left margins.  
Start at pin 5. Wind 45 turns of item [3] from left to right. Wind  
uniformly in a single layer. End at pin 1.  
1 Layer of tape [8] for basic insulation.  
Use item [9] for the right and left margins.  
Start at pin 3. Wind trifilar 6 turns of item [4] from left to right.  
Wind uniformly in a single layer, across entire width of bobbin.  
Finish on pin 7.  
Bias Winding  
Reinforce Insulation  
3 Layers of tape [7] for insulation.  
Prepare copper ribbon [6] as shown in Figure 10. Match pin A  
of the foil to pin 11 or 12 of the bobbin. Wind 3 turns of item  
[6]. Finish by matching pin B of the foil to pins 8 and 9 of the  
bobbin.  
Copper Foil Winding  
(5 V)  
Reinforce Insulation  
Margin Taping  
3 Layers of tape [7] for insulation.  
Use item [9] for the right and left margins.  
Start at pin 13. Wind 4 turns of item [5] from left to right. Wires  
are populated in middle of bobbin. Finish at pin 14.  
3 Layers of tape [7] for insulation.  
12 V Winding  
Outer Insulation  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 19 of 40  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
01-Feb-05  
Figure 10 – +5 V Foil (measurements are in mm).  
Figure 11 – +5 V Foil and Tape.  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 20 of 40  
01-Feb-05  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
7.2  
10 W PC Standby Transformer  
Figure 12 - EP-12 10 W Standby Transformer.  
7.2.1Electrical Specifications  
Electrical Strength  
Primary Inductance  
Resonant Frequency  
1 min, 60 Hz, from pins 1-4 to pins 5-10  
All windings open  
All windings open  
3000 VAC  
2.3 mH  
800 kHz minimum  
Primary Leakage Inductance  
Pins 6-10 shorted  
130 µH maximum  
7.2.2Materials  
Item  
Description  
Core: EE16  
Bobbin: BE-16  
Magnet Wire: #35 AWG Heavy Nyleze  
Triple Insulated Wire: #26 AWG  
Magnet wire #30 AWG heavy Nyleze  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
Tape: 3M 1298 Polyester Film (white) 9.0 mm wide by 2.2 mils thick  
Varnish  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 21 of 40  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
7.2.3 Transformer Build Diagram  
01-Feb-05  
Figure 13 - EP-12 10 W Standby Transformer Build Diagram.  
7.2.4Transformer Construction  
Start at Pin 7. Wind 158 turns of item [3] from left to right, then from right to left  
until done. It takes about 3 1/4 layers. Apply 1 layer of tape, item [5] between each  
winding layer for basic insulation. Finish the wiring on Pin 5.  
Primary Layer  
Insulation  
Bias Winding  
Insulation  
1 Layer of tape [6] for insulation.  
Start at pin 9. Wind 17 turns of item [5] from left to right. Finish on pin 10.  
1 Layer of tape [6] for insulation.  
Start at Pin 2. Wind 7 bifilar turns of item [4] from left to right. Wind uniformly, in a  
single layer, across entire width of bobbin. Finish on Pin 1.  
3 Layer of tape [6] for insulation.  
Secondary Winding  
Outer Insulation  
Final Assembly  
Assemble and secure core halves. Impregnate uniformly [7].  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 22 of 40  
01-Feb-05  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
7.3 Output Coupled Inductor  
7.3.1The Toroid Layout  
Figure 14 - The Side View.  
Figure 15 - Bottom Plate Viewed from Top.  
(Measurements are in inches).  
(Measurements are in inches).  
Figure 16 – EP-12 Inductor.  
7.3.2 Inductances  
Pin #  
6-1  
5-2  
AWG #  
18  
Color  
Red  
Red  
# of Turns  
Inductance (µH)  
13 20%  
12  
12  
16  
18  
18  
13 20%  
23 20%  
3-4  
Natural  
Note:  
1
2
All dimensions are 0.02”  
Core = T 106 – 26  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 23 of 40  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
01-Feb-05  
7.4 The Mag Amp Inductor  
7.4.1Core Specification  
Figure 17 – EP-12 Core Measurements.  
Figure 18 – EP-12 Core.  
Core Number  
MP1305P-4AS  
OD  
14.4 mm  
ID  
7.9 mm  
HT  
6.6 mm  
7.4.2Winding Instruction  
Use number 18 AWG wire (heavy gauge Nyleze wire) to wind 7 turns around the  
core as shown in Figure 18. Leave the wire legs about 1long.  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 24 of 40  
01-Feb-05  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
8
PIXls Design Spreadsheet  
ACDC_TOPGXForward_Rev_1.03_061  
802 Copyright Power Integrations Inc. INPUT  
2002  
ACDC_TOPGXFwd_061802_r103.xls:  
TOPSwitch-GX Forward Transformer  
Design Spreadsheet  
INFO  
OUTPUT  
UNIT  
OUTPUT VOLTAGE AND CURRENT  
EP12 PC Main power supply  
Main output voltage  
VMAIN  
5
Volts  
IMAIN  
12  
3.3  
12  
12  
4
Amps  
Volts  
Amps  
Volts  
Amps  
Volts  
Amps  
Main output current  
VMAINMA  
IMAINMA  
VAUX1  
IAUX1  
VIND1  
IND1  
Magamp output voltage  
Magamp output current  
Auxiliary output voltage  
Auxiliary output current  
Independent output voltage  
Independent output current  
Total output power  
PO  
147.6 Watts  
ENTER APPLICATION VARIABLES  
Minimum AC input voltage. Input voltage  
doubler circuit is assumed.  
VACMIN  
90  
AC volts  
Maximum AC input voltage. Input voltage  
doubler circuit is assumed.  
VACMAX  
132  
AC volts  
188 Volts  
373 Volts  
uFarads  
Hz  
VMIN  
Minimum DC Bus voltage at low line input  
Maximum DC Bus voltage at high line input  
VMAX  
Equivalent bulk input capacitance. Input  
voltage doubler circuit is assumed.  
CIN  
165  
fL  
tc  
50  
Input AC line frequency  
3.0  
mSeconds Estimate input bridge diode conduction time  
Minimum required hold-up time from  
VDROPOUT to VHOLDUP  
Efficiency estimate to determine minimum  
DC bus voltage  
th  
16.0  
0.75  
mSeconds  
EFF  
DC Bus voltage at start of hold-up time  
(default VMIN)  
VHOLDUP  
188 Volts  
VDROPOUT  
DMAX GOAL  
VDSOP  
132  
0.7  
132 Volts  
0.70  
DC Bus Voltage at end of hold-up time  
Maximum duty cycle at DC dropout voltage  
Maximum operating drain voltage  
580 Volts  
Maximum output current ripple factor at  
maximum DC Bus voltage  
KDI  
0.15  
Enter one ("1") for DC stacked, zero ("0")  
Independent winding  
REF AUX1  
1
DC Stack  
ENTER TOPSWITCH VARIABLES  
TOPSwitch  
Chosen Device  
ILIMIT  
top247  
TOP247  
Universal  
Doubled 115V/230V  
Power Out  
-
165 W  
3.348 3.852  
Amps  
Hertz  
From TOPSwitch-GX datasheet  
From TOPSwitch-GX+H76 datasheet  
fS  
124000 132000  
limit reduction (KI=1.0 for default ILIMIT, KI  
<1.0 for lower ILIMIT)  
KI  
0.81  
Maximum current limit resistance to ensure  
KI >= 0.81 setting  
RX  
7.78 kOhm  
2.712 Amps  
8.1 Volts  
ILIMITEXT  
VDS  
External current limit  
TOPSwitch-GX average on-state Drain to  
Source Voltage  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 25 of 40  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
01-Feb-05  
DIODE Vf SELECTION  
Main output rectifiers forward voltage drop  
(Schottky)  
Magamp output rectifiers forward voltage  
drop (Schottky)  
Auxiliary output rectifiers forward voltage  
drop (Ultrafast)  
VDMAIN  
0.5 Volts  
0.5 Volts  
0.7 Volts  
VDMAINMA  
VDAUX1  
Independent output rectifiers forward voltage  
drop (Schottky)  
VDIND1  
VDB  
0 Volts  
0.7 Volts  
Bias output rectifier conduction drop  
BRIDGE RECTIFIER DIODE  
SELECTION  
Maximum voltage across Bridge rectifier  
diode  
VPIVAC  
IDAVBR  
467 Volts  
0.773 Amps  
Average Bridge Rectifier Current  
TRANSFORMER CORE SELECTION  
Core Type  
eer28l  
Core  
EER28L  
P/N:  
P/N:  
PC40EER28L-Z  
EER28L_  
BC  
Bobbin  
BEER-28L-112CPH  
AE  
LE  
0.814 cm^2  
7.55 cm  
Core Effective Cross Sectional Area  
Core Effective Path Length  
AL  
BW  
2520 nH/T^2  
21.8 mm  
Ungapped Core Effective Inductance  
Bobbin Physical Winding Width  
Maximum actual gap when zero gap  
specified  
LG MAX  
0.02 mm  
Percentage of total PS losses lost in  
transformer windings; default 10%  
R FACTOR  
9%  
3.0  
9% %  
mm  
M
Transformer margin  
L
0.80  
Transformer primary layers  
Main rounded turns  
NMAIN  
3
TRANSFORMER DESIGN  
PARAMETERS  
NP  
45  
45  
6
Primary rounded turns  
Bias turns to maintain 8V minimum input  
voltage, light load  
NB  
Auxiliary rounded turns (DC stacked on  
Main winding)  
NAUX1  
4
Approx. Aux output voltage with NASUX1 =  
4 Turns and DC stack  
Independent rounded turns (separate  
winding)  
VAUX1 ACTUAL  
NIND1  
11.63 Volts  
0
Approximate independent output voltage  
with NIND1 = 0 turns  
VIND1 ACTUAL  
0.00 Volts  
Maximum operating flux density at minimum  
switching frequency  
Maximum peak flux density at minimum  
switching frequency  
BM  
1816 Gauss  
2884 Gauss  
BP  
Minimum primary magnetizing inductance  
(assumes LGMAX=20um)  
LP MIN  
3.419 mHenries  
Peak magnetizing current at minimum input  
voltage  
IMAG  
0.189 Amps  
0.33 mm  
OD_P  
AWG_P  
Primary wire outer diameter  
Primary Wire Gauge (rounded to maximum  
AWG value)  
28 AWG  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 26 of 40  
01-Feb-05  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
CURRENT WAVESHAPE  
PARAMETERS  
Maximum peak primary current at maximum  
DC Bus voltage  
IP  
2.451 Amps  
Maximum primary RMS current at minimum  
DC Bus voltage  
IPRMS  
1.460 Amps  
INDUCTOR OUTPUT PARAMETERS  
Main / Auxiliary coupled output inductance  
(referred to Main winding)  
LMAIN  
10.0 uHenries  
Main / Auxiliary coupled output inductor full-  
load stored energy  
WLMAIN  
KDIMAIN  
2286 uJoules  
0.150  
Current ripple factor for Magamp output  
LMAINMA  
12.3 uHenries  
888 uJoules  
0.150  
Magamp output inductance  
Magamp output inductor full-load stored  
energy  
WLMAINMA  
KDIMAINMA  
Current ripple factor for Magamp output  
LIND1  
0.0 uHenries  
0.0 uJoules  
0.000  
Independent output inductance  
Independent output inductor full-load stored  
energy  
WLIND1  
KDIIND1  
Current ripple factor for independent output  
SECONDARY OUTPUT PARAMETERS  
Maximum transformer secondary RMS  
current (DC Stack)  
Maximum transformer secondary RMS  
current (DC Stack)  
Maximum transformer secondary RMS  
current (DC Stack)  
ISMAINRMSLL  
15.61 Amps  
2.42 Amps  
0.00 Amps  
ISAUX1RMSLL  
ISIND1RMSDLL  
Maximum average current, Main rectifier  
(single device rating)  
Maximum average current, Magamp rectifier  
(single device rating)  
Maximum average current, Auxiliary rectifier  
(single device rating)  
Maximum average current, Independent  
rectifier (single device rating)  
IDAVMAIN  
IDAVMAINMA  
IDAVAUX1  
IDAVIND1  
12.3 Amps  
9.3 Amps  
3.1 Amps  
0.0 Amps  
Maximum RMS current, Main output  
capacitor  
Maximum RMS current, Magamp output  
capacitor  
Maximum RMS current, Auxiliary output  
capacitor  
Maximum RMS current, Independent output  
capacitor  
IRMSMAIN  
IRMSMAINMA  
IRMSAUX1  
IRMSIND1  
0.52 Amps  
0.52 Amps  
0.17 Amps  
0.00 Amps  
DIODE PIV  
No derating  
VPIVMAIN  
29.5 Volts  
29.5 Volts  
Main output rectifiers peak-inverse voltage  
Magamp output rectifiers peak-inverse  
voltage  
Auxiliary output rectifiers peak-inverse  
voltage  
VPIVMAINMA  
VPIVAUX1  
34.9 Volts  
Independent output rectifiers peak-inverse  
voltage  
VPIVIND1  
VPIVB  
0.0 Volts  
102.1 Volts  
Bias output rectifier peak-inverse voltage  
Optocoupler  
VCEO OPTO  
49.8 Volts  
Maximum optocoupler collector-emitter  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 27 of 40  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
01-Feb-05  
voltage  
UNDER-VOLTAGE LOCKOUT CIRCUIT  
PARAMETERS  
AC undervoltage lockout voltage; On-Off  
transition  
AC undervoltage lockout voltage; Off-On  
transition  
VACUVL  
VACUV  
68 AC volts  
78 AC volts  
VACUVX  
RUVA  
68  
2.23 MOhm  
523.73 kOhm  
75.91 kOhm  
Resistor RUVA value  
Resistor RUVB value  
Resistor RUVC value  
RUVB  
RUVC  
Actual AC undervoltage lockout voltage; On-  
Off transition  
Actual AC undervoltage lockout voltage; Off-  
On transition  
VACUVL ACTUAL  
VACUVX ACTUAL  
67.50 AC volts  
70.36 AC volts  
DUTY CYCLE LIMIT CIRCUIT PARAMETERS  
VZ  
6.80 Volts  
Zener voltage used within DLIM circuit  
Approximate frequency reduction voltage  
(determines CVS value)  
VOV  
380 Volts  
RA  
2.20 MOhm  
2.20 MOhm  
40.26 kOhm  
126.70 kOhm  
92.98 pF  
Resistor RA value  
Resistor RB value  
Resistor RC value  
Resistor RD value  
Capacitor CVS value  
RB  
RC  
RD  
CVS  
DUTY CYCLE PARAMETERS (see  
graph)  
Dropout Duty-Cycle Parameters  
Operating Duty cycle at DC Bus dropout  
voltage  
Transformer Reset Minimum duty cycle at  
DC Bus dropout voltage  
Device Min Duty cycle limit at DC Bus  
dropout voltage  
!!! >DMASRESET from VMIN to  
VDROPOUT. NOT hazardous  
DMAX ACTUAL  
DMAX RESET  
DXDO MIN  
0.69  
0.79  
0.70  
0.79  
DXDO MAX  
Caution  
DLL ACTUAL  
DXLL MIN  
0.47  
0.55  
0.67  
0.69  
Duty cycle at minimum DC Bus voltage  
Duty cycle minimum limit at minimum DC  
Bus voltage  
Duty cycle maximum limit at minimum DC  
Bus voltage  
Minimum duty cycle to reset transformer at  
low line  
DXLL MAX  
DLL RESET  
High Line Duty-Cycle Parameters  
DHL ACTUAL  
DXHL MIN  
0.23  
0.24  
Duty cycle at minimum DC Bus voltage  
Duty cycle minimum limit at maximum DC  
Bus voltage  
Duty cycle maximum limit at maximum DC  
Bus voltage  
DXHL MAX  
0.35  
Minimum duty cycle to reset transformer at  
high line  
DHL RESET  
0.36  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 28 of 40  
01-Feb-05  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
DX_MAX  
D_RESET  
D_ACTUAL  
DX_MIN  
Figure 19 – PIXls Duty Cycle Reduction Parameters Chart.  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 29 of 40  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
01-Feb-05  
9
Test Results  
Thermal and Dissipation Data  
TOP247 dissipation at 90 VAC and 5 V at 15 A, 3.3 V at 7 A, 12 V at 4 A (approximately  
140 W) was measured 5.4 W.  
The unit was enclosed in a standard ATX enclosure. The ambient external temperature  
around the enclosure was 25 °C and the internal ambient in the enclosure in the box  
near TOP247 heatsink was measured 37 °C.  
The TOP247 source tab temperature for above conditions was measured 53 °C.  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 30 of 40  
01-Feb-05  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
10 Performance Data  
10.1 Efficiency and Regulation  
Output Current  
Output Voltage  
Pin  
Efficiency  
Load Input VAC  
+5 V  
(A)  
0.4  
0.4  
0.4  
0.4  
15  
+12 V +3.3 V +5 VSB +5 V  
+12 V +3.3 V +5 VSB  
(A)  
0.05  
0.05  
3
(A)  
0.5  
12  
(A)  
0
(V)  
5.09  
5.07  
5.11  
5.1  
(V)  
(V)  
(V)  
(W)  
10  
1
2
132  
132  
132  
132  
90  
12.02  
11.92  
11.6  
3.31  
3.21  
3.29  
3.23  
3.28  
3.2  
5.05  
4.89  
4.84  
5.1  
43%  
71%  
77%  
72%  
76%  
74%  
77%  
71%  
73%  
64%  
67%  
74%  
2
72  
3
0.5  
12  
2
62  
4
3
0
11.54  
12.41  
12.45  
11.95  
11.92  
11.93  
103  
114  
154  
146  
223  
217  
3.9  
20  
5
0.05  
0.05  
3
0.5  
12  
2
5
4.8  
6
90  
15  
0
5
5.07  
5.13  
4.86  
4.83  
4.87  
4.87  
4.87  
7
90  
15  
0.5  
12  
0
5.02  
4.99  
4.99  
3.28  
3.2  
8
90  
15  
3
2
9
115  
230  
115  
115  
15  
3
12  
2
3.21  
10  
11  
12  
0.5  
2
0.4  
15  
0.0168  
1.9690  
0.5  
12  
5.1  
12.1  
3.33  
3.2  
2
4.99  
12.03  
198  
Note: 12 V load table does not include the 100 mA internal load, which is equivalent to  
fan loading.  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
Page 31 of 40  
www.powerint.com  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
01-Feb-05  
10.2 Power Limit vs. Input Line  
Total Output Power (Watts) at Threshold  
of Over Power Shutdown  
179  
178  
177  
176  
175  
174  
173  
172  
171  
90  
100  
110  
120  
130  
140  
AC Input (Volts)  
Figure 20 – Power Limit vs. Input Line.  
Standby Input Power  
The input power with standby loaded to 0.5 W and main supply off at 115 VAC input is  
0.91 W.  
Note: when measuring for less than 1 W input power spec and output interconnect board  
is used, the yellow standby on LED on the board dissipates 0.07 W. This should be  
considered part of the output loading.  
Blue Angel  
240 VAC input, main converter inhibited, +5 V standby loaded to 2.5 A.  
Input power is 4.2 W.  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 32 of 40  
01-Feb-05  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
11 Waveforms  
+ 5 V output  
3.3 V Output  
0.5 A/div  
Figure 21 – Primary Drain Current at Start-up,  
Activated from Remote ON/OFF  
with 120 VAC Input.  
Figure 22 – +5 V and 3.3 V Rise at Turn-on from  
Remote ON/OFF , 120 VAC Input,  
5 V out at 12 A, 3.3 V at 12 A,  
0 A on +12 V.  
5 V Standby  
5 V Main  
5 V Standby  
5 V Main  
Figure 23 – 5 V Main and 5 V Standby Start-up  
Figure 24 – 5 V and 5 V Standby Drop out After  
AC off Max Load on 5 V Standby, Min  
Load on all Other Outputs.  
(120 VAC). Max Load on all Outputs.  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 33 of 40  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
01-Feb-05  
11.1 Drain Switching Waveforms  
5 V @ 12 A, 3.3 V @ 12 A, 12 V @ 3 A  
Figure 25 – Drain to Source Voltage of TOP247  
Figure 26 – Drain to Source Voltage of TOP247  
at 165 VAC.  
at 220 VAC.  
Figure 27 – Drain to Source Voltage of TOP247  
Figure 28 – Drain to Source Voltage of TOP247  
at 270 VAC Input 3.3 V Output  
Shorted at PC Board.  
at 270 VAC.  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 34 of 40  
01-Feb-05  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
5 V Standby  
5 V Output  
Input Line Current  
Figure 30 – Drain Switching Voltage of TNY266  
(PC Standby) 230 VAC Input  
Figure 29 110 VAC Applied Line Terminated  
with Following Loads: 5 V at 13 A,  
3.3 V at 12 A, 12 V at 3.5 A.  
5 V Loaded to 1.5 A.  
Figure 31 – 5 V Step Load (8 A/15 A)  
Maximum Continuous Load  
on Other Outputs.  
Figure 32 – 3.3 V Step Load 6 A/12 A.  
+ 5 V Standby Output  
Step Load 0.3 A to 1.5 A  
Figure 33 – +5 V Standby Step Load Response.  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 35 of 40  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
01-Feb-05  
11.2 Output Ripple Measurements  
Output ripple measured with following load:  
12 V @ 3 A, 5 V @ 12 A, 3.3 V @ 12 A, 5 V standby @ 2 A.  
Figure 34 – +12 V Output Ripple.  
Figure 35 – +5 V Output Ripple.  
Figure 36 – +3.3 V Output Ripple.  
Figure 37 – +5 V Standby Output Ripple.  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 36 of 40  
01-Feb-05  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
12 Conducted EMI  
Figure 38 – 230 VAC, Neutral Input, Maximum Load on all Outputs.  
Figure 39 – 230 VAC Line Input, Maximum Load on all Outputs.  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 37 of 40  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
01-Feb-05  
13 Revision History  
Date  
Author  
Revision Description & Changes  
09-Jul-02  
AO  
1.0  
1.1  
1.2  
First release  
Corrected schematic on page 8 and  
caption on Figure 22  
30-Aug-02  
21-Oct-02  
AO  
AO  
Corrected Figure 11  
Corrected 7.2.1 Primary Inductance on  
page 21 and added missing Part  
Numbers on page 15  
01-Feb-05  
AO  
1.3  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 38 of 40  
01-Feb-05  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
Notes  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 39 of 40  
EPR-12 – PC Forward Converter with Standby Flyback Power Supply  
01-Feb-05  
For the latest updates, visit our website: www.powerint.com  
Power Integrations may make changes to its products at any time. Power Integrations has no liability arising from your use of any  
information, device or circuit described herein nor does it convey any license under its patent rights or the rights of others. POWER  
INTEGRATIONS MAKES NO WARRANTIES HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES  
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A  
PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.  
PATENT INFORMATION  
The products and applications illustrated herein (including circuits external to the products and transformer construction) may be  
covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power  
Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com.  
The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch and EcoSmart are registered trademarks of  
Power Integrations. PI Expert and PI FACTS are trademarks of Power Integrations. © Copyright 2005 Power Integrations.  
Power Integrations Worldwide Sales Support Locations  
WORLD HEADQUARTERS  
5245 Hellyer Avenue,  
San Jose, CA 95138, USA  
GERMANY  
Rueckertstrasse 3,  
D-80336, Munich, Germany  
JAPAN  
TAIWAN  
5F-1, No. 316, Nei Hu Rd., Sec. 1  
Nei Hu Dist.  
Taipei, Taiwan 114, R.O.C.  
Phone:  
Fax:  
Keihin-Tatemono 1st Bldg.  
12-20 Shin-Yokohama,  
2-Chome,  
Kohoku-ku, Yokohama-shi,  
Kanagawa 222-0033, Japan  
Main:  
+1-408-414-9200  
Phone:  
Fax:  
+49-895-527-3910  
+49-895-527-3920  
Customer Service:  
+886-2-2659-4570  
+886-2-2659-4550  
Phone:  
Fax:  
+1-408-414-9665  
+1-408-414-9765  
e-mail: eurosales@powerint.com  
Phone:  
Fax:  
+81-45-471-1021  
+81-45-471-3717  
e-mail:  
taiwansales@powerint.com  
e-mail: usasales@powerint.com  
e-mail:  
japansales@powerint.com  
CHINA (SHANGHAI)  
Rm 807-808A, Pacheer,  
Commercial Centre,  
555 Nanjing West Road,  
Shanghai, 200041, China  
INDIA (TECHNICAL SUPPORT)  
261/A, Ground Floor  
7th Main, 17th Cross,  
Sadashivanagar  
KOREA  
RM 602, 6FL  
Korea City Air Terminal B/D,  
159-6,  
Samsung-Dong, Kangnam-Gu,  
Seoul, Korea  
UK (EUROPE & AFRICA  
HEADQUARTERS)  
1st Floor, St. James’s House  
East Street  
Farnham, Surrey GU9 7TJ  
United Kingdom  
Bangalore 560080  
Phone:  
Fax:  
+86-21-6215-5548  
+86-21-6215-2468  
Phone:  
Fax:  
+91-80-5113-8020  
+91-80-5113-8023  
Phone:  
Fax:  
+82-2-2016-6610  
+82-2-2016-6630  
Phone:  
Fax:  
+44 (0) 1252-730-140  
+44 (0) 1252-727-689  
e-mail: chinasales@powerint.com  
e-mail: indiasales@powerint.com  
e-mail:  
e-mail: eurosales@powerint.com  
koreasales@powerint.com  
CHINA (SHENZHEN)  
Room 2206-2207, Block A,  
Electronics Science & Technology  
Bldg.,  
2070 Shennan Zhong Road,  
Shenzhen, Guangdong,  
China, 518031  
ITALY  
Via Vittorio Veneto 12,  
Bresso  
Milano, 20091, Italy  
Phone: +39-028-928-6001  
Fax: +39-028-928-6009  
e-mail: eurosales@powerint.com  
SINGAPORE  
APPLICATIONS HOTLINE  
World Wide +1-408-414-9660  
51 Newton Road,  
#15-08/10 Goldhill Plaza,  
Singapore, 308900  
APPLICATIONS FAX  
World Wide +1-408-414-9760  
Phone:  
Fax:  
+65-6358-2160  
+65-6358-2015  
e-mail:  
Phone:  
Fax:  
+86-755-8379-3243  
+86-755-8379-5828  
singaporesales@powerint.com  
e-mail: chinasales@powerint.com  
Power Integrations  
Tel: +1 408 414 9200 Fax: +1 408 414 9201  
www.powerint.com  
Page 40 of 40  

相关型号:

EPR-16

Engineering Prototype Report for EP-16 2.75 W Charger/Adapter Using LNK501
POWERINT

EPR-18

Engineering Prototype Report for EP-18 10 W, Multiple Output, Isolated Power Supply with
POWERINT

EPR-21

Engineering Prototype Report (EP-21) - 30 W DC-DC Converter with DPA424
POWERINT

EPR-29

Engineering Prototype Report for EP-29 - Multiple Output 11 W (15.5 W peak) AC-DC Power Supply using TNY268P
POWERINT

EPR-31

Engineering Prototype Report for EP-31 Multiple Output 180 W AC-DC Power
POWERINT

EPR-32

Engineering Prototype Report for EP-32 − TOPSwitch-GX 25 W Multiple Output DVD, Set-top Box Power Supply Using TOP245P
POWERINT

EPR-33

Engineering Prototype Report for EP 33 - 45 W LCD Monitor External Power Supply using TOP247Y (TOPSwitch-GX)
POWERINT

EPR-34

Engineering Prototype Report for EP 34 - Single Output 30 W AC-DC Power Supply
POWERINT

EPR-48

Engineering Prototype Report for EP48 - 1.4 W Non-Isolated Buck Converter Using LNK304P
POWERINT

EPR-54

Engineering Prototype Report for EP 54 - 2.75 W Charger/Adapter Using LNK520P
POWERINT

EPR-68

Engineering Prototype Report for EP 68 - 6.6 W DC-DC Flyback Converter Using DPA-Switch- (DPA423G)
POWERINT

EPR-71

Engineering Prototype Report for EP 71 - 6.6 W DC-DC Converter Using DPA Switch- (DPA423G)
POWERINT