TOP223G [POWERINT]

Three-terminal Off-line PWM Switch; 三端离线式PWM开关
TOP223G
型号: TOP223G
厂家: Power Integrations    Power Integrations
描述:

Three-terminal Off-line PWM Switch
三端离线式PWM开关

开关
文件: 总20页 (文件大小:179K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
TOP221-227  
®
TOP S w it c h -II Family  
Three-terminal Off-line PWM Switch  
Product Highlights  
AC  
IN  
• Lowest cost, lowest component count switcher solution  
• Cost competitive with linears above 5W  
• Very low AC/DC losses – up to 90% efficiency  
• Built-in Auto-restart and Current limiting  
• Latching Thermal shutdown for system level protection  
• Implements Flyback, Forward, Boost or Buck topology  
• Works with primary or opto feedback  
• Stable in discontinuous or continuous conduction mode  
• Source connected tab for low EMI  
D
S
CONTROL  
C
TOP S w it c h  
• Circuit simplicity and Design Tools reduce time to market  
PI-1951-091996  
Description  
Figure 1. Typical Flyback Application.  
The second generation TOPSwitch-II family is more cost  
effective and provides several enhancements over the first  
generationTOPSwitchfamily. TheTOPSwitch-IIfamilyextends  
the power range from 100W to 150W for 100/115/230 VAC  
input and from 50W to 90W for 85-265 VAC universal input.  
This brings TOPSwitch technology advantages to many new  
applications, i.e. TV, Monitor, Audio amplifiers, etc. Many  
significant circuit enhancements that reduce the sensitivity to  
board layout and line transients now make the design even  
easier. The standard 8L PDIP package option reduces cost in  
lower power, high efficiency applications. The internal lead  
frame of this package uses six of its pins to transfer heat from  
the chip directly to the board, eliminating the cost of a heat sink.  
TOPSwitch incorporates all functions necessary for a switched  
modecontrolsystemintoathreeterminalmonolithicIC:power  
MOSFET, PWM controller, high voltage start up circuit, loop  
compensation and fault protection circuitry.  
OUTPUT POWER TABLE  
TO-220 (Y) Package1  
8L PDIP (P) or 8L SMD (G) Package2  
3
Single Voltage Input3  
Wide Range Input  
85 to 265 VAC  
.
Single Voltage Input  
Wide Range Input  
85 to 265 VAC  
PART  
ORDER  
NUMBER  
PART  
ORDER  
NUMBER  
100/115/230 VAC ±15%  
100/115/230 VAC ±15%  
4,6  
4,6  
5,6  
5,6  
PMAX  
PMAX  
PMAX  
PMAX  
TOP221Y  
TOP222Y  
TOP223Y  
TOP224Y  
TOP225Y  
TOP226Y  
TOP227Y  
7 W  
TOP221P or TOP221G  
TOP222P or TOP222G  
TOP223P or TOP223G  
TOP224P or TOP224G  
9 W  
6 W  
12 W  
15 W  
25 W  
30 W  
10 W  
15 W  
20 W  
25 W  
15 W  
30 W  
45 W  
60 W  
75 W  
90 W  
50 W  
75 W  
100 W  
125 W  
150 W  
Notes: 1. Package outline: Y03A 2. Package Outline: P08A or G08A 3. 100/115 VAC with doubler input 4. Assumes appropriate heat  
sinking to keep the maximum TOPSwitch junction temperature below 100˚ C. 5. Soldered to 1 sq. in.( 6.45 cm2), 2 oz. copper clad  
(610 gm/m2) 6. P  
is the maximum practical continuous power output level for conditions shown. The continuous power capability  
in a given applicatMioAnX depends on thermal environment, transformer design, efficiency required, minimum specified input voltage, input  
storage capacitance, etc. 7. Refer to key application considerations section when using TOPSwitch-II in an existing TOPSwitch design.  
December 1997  
TOP221-227  
V
C
0
1
CONTROL  
DRAIN  
INTERNAL  
SUPPLY  
Z
C
SHUTDOWN/  
AUTO-RESTART  
SHUNT REGULATOR/  
ERROR AMPLIFIER  
+
-
÷ 8  
-
5.7 V  
4.7 V  
5.7 V  
+
+
-
V
I
LIMIT  
I
FB  
THERMAL  
SHUTDOWN  
S
R
Q
POWER-UP  
RESET  
Q
CONTROLLED  
TURN-ON  
GATE  
DRIVER  
OSCILLATOR  
D
MAX  
CLOCK  
SAW  
S
Q
Q
-
LEADING  
EDGE  
+
R
BLANKING  
PWM  
COMPARATOR  
MINIMUM  
ON-TIME  
DELAY  
R
E
SOURCE  
PI-1935-091696  
Figure 2. Functional Block Diagram.  
Pin Functional Description  
Tab Internally  
DRAIN Pin:  
Connected to Source Pin  
Output MOSFET drain connection. Provides internal bias  
current during start-up operation via an internal switched high-  
voltage current source. Internal current sense point.  
DRAIN  
SOURCE  
CONTROL Pin:  
CONTROL  
Error amplifier and feedback current input pin for duty cycle  
control. Internal shunt regulator connection to provide internal  
bias current during normal operation. It is also used as the  
connection point for the supply bypass and auto-restart/  
compensation capacitor.  
TO-220 (YO3A)  
1
8
7
6
5
SOURCE  
SOURCE  
SOURCE  
CONTROL  
SOURCE (HV RTN)  
SOURCE (HV RTN)  
SOURCE (HV RTN)  
DRAIN  
2
3
4
SOURCE Pin:  
Y package – Output MOSFET source connection for high  
voltage power return. Primary side circuit  
common and reference point.  
P and G package – Primary side control circuit common and  
reference point.  
DIP-8 (P08A)  
SMD-8 (G08A)  
PI-2084-052198  
SOURCE (HV RTN) Pin: (P and G package only)  
Output MOSFET source connection for high voltage power return.  
Figure 3. Pin Configuration.  
C
2
12/97  
TOP221-227  
TOP S w it c h Family Functional Description  
TOPSwitch is a self biased and protected linear control current-  
to-duty cycle converter with an open drain output. High  
efficiencyisachievedthrough theuseofCMOSandintegration  
of the maximum number of functions possible. CMOS process  
significantly reduces bias currents as compared to bipolar or  
discrete solutions. Integration eliminates external power  
resistors used for current sensing and/or supplying initial start-  
up bias current.  
Auto-restart  
I
B
D
MAX  
Slope = PWM Gain  
During normal operation, the duty cycle of the internal output  
MOSFET decreases linearly with increasing CONTROL pin  
current as shown in Figure 4. To implement all the required  
control, bias, and protection functions, the DRAIN and  
CONTROL pins each perform several functions as described  
D
MIN  
I
2.0  
6.0  
CD1  
I
(mA)  
C
PI-2040-050197  
Figure 4. Relationship of Duty Cycle to CONTROL Pin Current.  
below. Refer to Figure 2 for a block diagram and to Figure 6 for  
timing and voltage waveforms of the TOPSwitch integrated  
circuit.  
I
C
Charging C  
T
5.7 V  
4.7 V  
V
C
0
Off  
V
IN  
0
DRAIN  
Switching  
(a)  
I
CD2  
Discharging C  
I
I
T
C
CD1  
Discharging C  
Charging C  
T
T
5.7 V  
4.7 V  
V
C
8 Cycles  
95%  
0
5%  
Off  
Off  
Off  
V
IN  
0
DRAIN  
Switching  
Switching  
(b)  
C is the total external capacitance  
T
connected to the CONTROL pin  
PI-1956-092496  
Figure 5. Start-up Waveforms for (a) Normal Operation and (b) Auto-restart.  
C
3
12/97  
TOP221-227  
TOP S w it c h Family Functional Description (cont.)  
Control Voltage Supply  
and MOSFET gate drive current.  
CONTROL pin voltage VC is the supply or bias voltage for the  
controller and driver circuitry. An external bypass capacitor  
closely connected between the CONTROL and SOURCE pins  
is required to supply the gate drive current. The total amount  
of capacitance connected to this pin (CT) also sets the auto-  
restart timing as well as control loop compensation. VC is  
regulated in either of two modes of operation. Hysteretic  
regulation is used for initial start-up and overload operation.  
Shunt regulation is used to separate the duty cycle error signal  
from the control circuit supply current. During start-up,  
CONTROLpin currentissuppliedfromahigh-voltageswitched  
current source connected internally between the DRAIN and  
CONTROLpins. Thecurrentsourceprovidessufficientcurrent  
to supply the control circuitry as well as charge the total  
external capacitance (CT).  
Oscillator  
The internal oscillator linearly charges and discharges the  
internal capacitance between two voltage levels to create a  
sawtoothwaveformforthepulsewidthmodulator. Theoscillator  
setsthepulsewidthmodulator/currentlimitlatchatthebeginning  
of each cycle. The nominal frequency of 100 kHz was chosen  
to minimize EMI and maximize efficiency in power supply  
applications. Trimming of the current reference improves  
oscillator frequency accuracy.  
Pulse Width Modulator  
The pulse width modulator implements a voltage-mode control  
loop by driving the output MOSFET with a duty cycle inversely  
proportional to the current into the CONTROL pin which  
generates a voltage error signal across RE. The error signal  
across RE is filtered by an RC network with a typical corner  
frequency of 7 kHz to reduce the effect of switching noise. The  
filtered error signal is compared with the internal oscillator  
sawtooth waveform to generate the duty cycle waveform. As  
the control current increases, the duty cycle decreases. A clock  
signal from the oscillator sets a latch which turns on the output  
MOSFET. The pulse width modulator resets the latch, turning  
off the output MOSFET. The maximum duty cycle is set by the  
symmetry of the internal oscillator. The modulator has a  
minimum ON-time to keep the current consumption of the  
TOPSwitchindependentoftheerrorsignal. Notethataminimum  
current must be driven into the CONTROL pin before the duty  
cycle begins to change.  
The first time VC reaches the upper threshold, the high-voltage  
current source is turned off and the PWM modulator and output  
transistorareactivated,asshowninFigure5(a). Duringnormal  
operation (when the output voltage is regulated) feedback  
control current supplies the VC supply current. The shunt  
regulator keeps VC at typically 5.7 V by shunting CONTROL  
pin feedback current exceeding the required DC supply current  
through the PWM error signal sense resistor RE. The low  
dynamic impedance of this pin (ZC) sets the gain of the error  
amplifier when used in a primary feedback configuration. The  
dynamic impedance of the CONTROL pin together with the  
externalresistanceandcapacitancedeterminesthecontrolloop  
compensation of the power system.  
IftheCONTROLpinexternalcapacitance(CT)shoulddischarge  
to the lower threshold, then the output MOSFET is turned off  
and the control circuit is placed in a low-current standby mode.  
The high-voltage current source turns on and charges the  
external capacitance again. Charging current is shown with a  
negative polarity and discharging current is shown with a  
positive polarity in Figure 6. The hysteretic auto-restart  
comparator keeps VC within a window of typically 4.7 to 5.7 V  
by turning the high-voltage current source on and off as shown  
in Figure 5(b). The auto-restart circuit has a divide-by-8  
counter which prevents the output MOSFET from turning on  
again until eight discharge-charge cycles have elapsed. The  
counter effectively limits TOPSwitch power dissipation by  
reducing the auto-restart duty cycle to typically 5%. Auto-  
restart continues to cycle until output voltage regulation is  
again achieved.  
Gate Driver  
The gate driver is designed to turn the output MOSFET on at a  
controlledratetominimizecommon-modeEMI. Thegatedrive  
current is trimmed for improved accuracy.  
Error Amplifier  
The shunt regulator can also perform the function of an error  
amplifierinprimaryfeedbackapplications. Theshuntregulator  
voltageisaccuratelyderivedfromthetemperaturecompensated  
bandgap reference. The gain of the error amplifier is set by the  
CONTROL pin dynamic impedance. The CONTROL pin  
clamps external circuit signals to the VC voltage level. The  
CONTROL pin current in excess of the supply current is  
separated by the shunt regulator and flows through RE as a  
voltage error signal.  
Cycle-By-Cycle Current Limit  
Bandgap Reference  
The cycle by cycle peak drain current limit circuit uses the  
output MOSFET ON-resistance as a sense resistor. A current  
limitcomparatorcomparestheoutputMOSFETON-statedrain-  
source voltage, VDS(ON) with a threshold voltage. High drain  
current causes VDS(ON) to exceed the threshold voltage and turns  
All critical TOPSwitch internal voltages are derived from a  
temperature-compensated bandgap reference. This reference  
is also used to generate a temperature-compensated current  
sourcewhichistrimmedtoaccuratelysettheoscillatorfrequency  
C
4
12/97  
TOP221-227  
V
IN  
V
IN  
0
DRAIN  
V
OUT  
0
0
I
OUT  
1
1
2
2
8
8
1
1
2
2
8
8
1
1
• • •  
• • •  
• • •  
• • •  
V
V
C
C(reset)  
0
0
I
C
1
3
1
1
2
PI-2030-042397  
Figure 6. Typical Waveforms for (1) Normal Operation, (2) Auto-restart, and (3) Power Down Reset.  
the output MOSFET off until the start of the next clock cycle.  
The current limit comparator threshold voltage is temperature  
compensatedtominimizevariationoftheeffectivepeakcurrent  
limit due to temperature related changes in output MOSFET  
When the fault condition is removed, the power supply output  
becomes regulated, VC regulation returns to shunt mode, and  
normal operation of the power supply resumes.  
RDS(ON)  
.
Overtemperature Protection  
Temperature protection is provided by a precision analog  
circuit that turns the output MOSFET off when the junction  
temperature exceeds the thermal shutdown temperature  
(typically 135 °C). Activating the power-up reset circuit by  
removingandrestoringinputpowerormomentarilypullingthe  
CONTROL pin below the power-up reset threshold resets the  
latch and allows TOPSwitch to resume normal power supply  
operation. VC is regulated in hysteretic mode and a 4.7 V to  
5.7V(typical)sawtoothwaveformispresentontheCONTROL  
pin when the power supply is latched off.  
The leading edge blanking circuit inhibits the current limit  
comparator for a short time after the output MOSFET is turned  
on. The leading edge blanking time has been set so that current  
spikescausedbyprimary-sidecapacitancesandsecondary-side  
rectifier reverse recovery time will not cause premature  
termination of the switching pulse.  
Thecurrentlimitcanbelowerforashortperiodaftertheleading  
edge blanking time as shown in Figure 12. This is due to  
dynamic characteristics of the MOSFET. To avoid triggering  
thecurrentlimitinnormaloperation,thedraincurrentwaveform  
should stay within the envelope shown.  
High-voltage Bias Current Source  
ThiscurrentsourcebiasesTOPSwitchfromtheDRAINpinand  
charges the CONTROL pin external capacitance (CT) during  
start-up or hysteretic operation. Hysteretic operation occurs  
during auto-restart and overtemperature latched shutdown.  
The current source is switched on and off with an effective duty  
cycle of approximately 35%. This duty cycle is determined by  
the ratio of CONTROL pin charge (IC) and discharge currents  
(ICD1 and ICD2). This current source is turned off during normal  
operation when the output MOSFET is switching.  
Shutdown/Auto-restart  
To minimize TOPSwitch power dissipation, the shutdown/  
auto-restart circuit turns the power supply on and off at an auto-  
restart duty cycle of typically 5% if an out of regulation  
condition persists. Loss of regulation interrupts the external  
current into the CONTROL pin. VC regulation changes from  
shuntmodetothehystereticauto-restartmodedescribedabove.  
C
5
12/97  
TOP221-227  
L1  
3.3µH  
D2  
UF5401  
+5V  
C2  
C3  
+
330 µF  
100 µF  
R3  
47K  
C1  
2.2 nF  
1KV  
VR1  
10V  
10V  
RTN  
D1  
UF4005  
R2  
100 Ω  
D3  
IN4148  
R1  
10 Ω  
Wide-Range  
DC Input  
T1  
+
U1  
C4  
100 µF  
16V  
D
TOP221P  
TOP S w it c h -II  
CONTROL  
C
U2  
PC817A  
12V Non-Isolated  
C5  
47 µF  
10V  
S
-
-
PI-2115-111797  
Figure 7. Schematic Diagram of a 4W TOPSwitch-II Stand-by Power Supply using an 8 lead PDIP.  
Application Examples  
Following are just two of the many possible TOPSwitch  
implementations. RefertotheDataBookandDesignGuidefor  
additional examples.  
vary from 100V to 380V DC which corresponds to the full  
universal AC input range. The TOP221 is packaged in a 8 pin  
power dip package.  
4W Stand-by Supply using 8 Lead PDIP  
The output voltage (5V) is directly sensed by the zener diode  
(VR1)andtheoptocoupler(U2). Theoutputvoltageisdetermined  
by the sum of the zener voltage and the voltage drop across the  
LEDoftheoptocoupler(thevoltagedropacrossR1isnegligible).  
The output transistor of the optocoupler drives the CONTROL  
pinoftheTOP221. C5bypassestheCONTROLpinandprovides  
control loop compensation and sets the auto-restart frequency.  
Figure 7 shows a 4W stand-by supply. This supply is used in  
appliances where certain stand-by functions (e.g. real time  
clock, remote control port) must be kept active even while the  
main power supply is turned off.  
The 5V secondary is used to supply the stand-by function and  
the 12V non-isolated output is used to supply power for the  
PWM controller of the main power supply and other primary  
side functions.  
Thetransformer’sleakageinductancevoltagespikesaresnubbed  
by R3 and C1 through diode D1. The bias winding is rectified  
and filtered by D3 and C4 providing a non-isolated 12V output  
which is also used to bias the collector of the optocoupler’s  
output transistor. The isolated 5V output winding is rectified by  
D2 and filtered by C2, L1 and C3.  
For this application the input rectifiers and input filter are sized  
for the main supply and are not shown. The input DC rail may  
C
6
12/97  
TOP221-227  
L1  
D2  
3.3 µH  
MUR420  
+12V  
C2  
C3  
VR1  
330 µF  
35 V  
220 µF  
35 V  
P6KE200  
RTN  
D1  
BYV26C  
BR1  
400 V  
L2  
22 mH  
D3  
1N4148  
R1  
100 Ω  
C1  
47 µF  
400 V  
C4  
0.1 µF  
U1  
TOP224P  
C6  
R2  
D
S
0.1 µF  
220 Ω  
T1  
TOP S w it c h -II  
CONTROL  
250 VAC  
C
U2  
PC817A  
R3  
6.8 Ω  
F1  
3.15 A  
VR2  
1N5241B  
11 V  
C7  
1 nF  
250 VAC  
Y1  
J1  
C5  
47 µF  
L
N
PI-2019-033197  
Figure 8. Schematic Diagram of a 20W Universal Input TOPSwitch-II Power Supply using an 8 lead PDIP.  
20W Universal Supply using 8 Lead PDIP  
Figure8showsa12V, 20Wsecondaryregulatedflybackpower  
supply using the TOP224P in an eight lead PDIP package and  
operating from universal 85 to 265 VAC input voltage. This  
example demonstrates the advantage of the higher power 8 pin  
leadframe used with the TOPSwitch-II family. This low cost  
package transfers heat directly to the board through six source  
pins,eliminatingtheheatsinkandtheassociatedcost. Efficiency  
is typically 80% at low line input. Output voltage is directly  
sensed by optocoupler U2 and Zener diode VR2. The output  
voltage is determined by the Zener diode (VR2) voltage and the  
voltagedropsacrosstheoptocoupler(U2)LEDandresistorR1.  
Other output voltages are possible by adjusting the transformer  
turns ratio and value of Zener diode VR2.  
leading-edge voltage spikes caused by transformer leakage  
inductance. The power secondary winding is rectified and  
filtered by D2, C2, L1, and C3 to create the 12V output voltage.  
R2 and VR2 provide a slight pre-load on the 12V output to  
improve load regulation at light loads. The bias winding is  
rectified and filtered by D3 and C4 to create a TOPSwitch bias  
voltage. L2 and Y1-safety capacitor C7 attenuate common  
mode emission currents caused by high voltage switching  
waveforms on the DRAIN side of the primary winding and the  
primary to secondary capacitance. Leakage inductance of L2  
with C1 and C6 attenuates differential-mode emission currents  
caused by the fundamental and harmonics of the trapezoidal or  
triangular primary current waveform. C5 filters internal  
MOSFET gate drive charge current spikes on the CONTROL  
pin, determines the auto-restart frequency, and together with  
R1 and R3, compensates the control loop.  
AC power is rectified and filtered by BR1 and C1 to create the  
high voltage DC bus applied to the primary winding of T1. The  
other side of the transformer primary is driven by the integrated  
TOPSwitch-II high-voltage MOSFET. D1 and VR1 clamp  
C
7
12/97  
TOP221-227  
Key Application Considerations  
• Short interruptions of AC power may cause TOPSwitch to  
enter the 8-count auto-restart cycle before starting again.  
This is because the input energy storage capacitors are not  
completelydischargedandtheCONTROLpincapacitance  
has not discharged below the internal power-up reset  
voltage.  
General Guidelines  
• Keep the SOURCE pin length very short. Use a Kelvin  
connection to the SOURCE pin for the CONTROL pin  
bypass capacitor. Use single point grounding techniques at  
the SOURCE pin as shown in Figure 9.  
• In some cases, minimum loading may be necessary to keep  
a lightly loaded or unloaded output voltage within the  
desired range due to the minimum ON-time.  
• Minimize peak voltage and ringing on the DRAIN voltage  
at turn-off. Use a Zener or TVS Zener diode to clamp the  
DRAIN voltage below the breakdown voltage rating of  
TOPSwitch under all conditions, including start-up and  
overload. The maximum recommended clamp Zener  
voltage for the TOP2XX series is 200V and the  
corresponding maximum reflected output voltage on the  
primary is 135V. Please see Step 4: AN-16 in the Data  
Book and Design Guide.  
ReplacingTOPSwitch with TOPSwitch-II  
There is no external latching shutdown function in TOPSwitch-  
II. Otherwise, the functionality of the TOPSwitch-II devices is  
same as that of the TOPSwitch family. However, before  
considering TOPSwitch-II as a 'drop in' replacement in an  
existing TOPSwitch design, the design should be verified as  
described below.  
• The transformer should be designed such that the rate of  
change of drain current due to transformer saturation is  
within the absolute maximum specification (ID in 100ns  
before turn off as shown in Figure 13). As a guideline, for  
most common transformer cores, this can be achieved by  
maintaining the Peak Flux Density (at maximum Ilimit  
current) below 4200 Gauss (420mT). The transformer  
spreadsheets Rev. 2.1 (or later) for continuous and Rev.1.0  
(or later) for discontinuous conduction mode provide the  
necessary information.  
The new TOPSwitch-II family offers more power capability  
than the original TOPSwitch family for the same MOSFET  
RDS(ON). Therefore, the original TOPSwitch design must be  
reviewed to make sure that the selected TOPSwitch-II  
replacement device and other primary components are not over  
stressed under abnormal conditions.  
The following verification steps are recommended:  
• Do not plug TOPSwitch into a “hot” IC socket during test.  
External CONTROL pin capacitance may be charged to  
excessive voltage and cause TOPSwitch damage.  
• Checkthetransformerdesigntomakesurethatitmeetsthe  
ID specification as outlined in the General Guidelines  
section above.  
• While performing TOPSwitch device tests, do not exceed  
maximum CONTROL pin voltage of 9 V or maximum  
CONTROL pin current of 100 mA.  
• Thermal: Higher power capability of the TOPSwitch-II  
would in many instances allow use of a smaller MOSFET  
device (higher RDS(ON)) for reduced cost. This may affect  
TOPSwitchpowerdissipationandpowersupplyefficiency.  
Therefore thermal performance of the power supply must  
be verified with the selected TOPSwitch-II device.  
• Under some conditions, externally provided bias or supply  
current driven into the CONTROL pin can hold the  
TOPSwitch in one of the 8 auto-restart cycles indefinitely  
and prevent starting. To avoid this problem when doing  
bench evaluations, it is recommended that the VC power  
supply be turned on before the DRAIN voltage is applied.  
TOPSwitch can also be reset by shorting the CONTROL  
pin to the SOURCE pin momentarily.  
• Clamp Voltage: Reflected and Clamp voltages should be  
verified not to exceed recommended maximums for the  
TOP2XXSeries:135VReflected/200VClamp. Pleasesee  
Step 4: AN-16 in the Data Book and Design Guide and  
readme.txt file attached to the transformer design  
spreadsheets.  
• CONTROL pin currents during auto-restart operation are  
much lower at low input voltages (< 36 V) which increases  
the auto-restart cycle time (see the IC vs. DRAIN Voltage  
Characteristic curve).  
AgencyApproval:MigratingtoTOPSwitch-IImayrequire  
agency re-approval.  
C
8
12/97  
TOP221-227  
TO-220 PACKAGE  
Bias/Feedback  
Return  
High Voltage  
Return  
Kelvin-connected  
auto-restart/bypass capacitor C5  
and/or compensation network  
Do not bend SOURCE pin.  
Keep it short.  
S
D
C
Bend DRAIN pin  
forward if needed  
for creepage.  
C5  
PC Board  
Bias/Feedback  
Input  
Kelvin-connected  
auto-restart/bypass  
capacitor C5  
and/or compensation  
network  
High-voltage Return  
C5  
Bias/Feedback Input  
Bias/Feedback Return  
TOP VIEW  
DIP-8/SMD-8 PACKAGE  
Bias/Feedback  
Return  
SOURCE  
SOURCE  
High Voltage  
Return  
C5  
CONTROL  
DRAIN  
Kelvin-connected  
Bias/Feedback  
Input  
auto-restart/bypass capacitor C5  
and/or compensation network  
TOP VIEW  
PI-2021-041798  
Figure 9. Recommended TOPSwitch Layout.  
Design Tools  
Alldatasheets, applicationliteratureandup-to-dateversionsof  
theTransformerDesignSpreadsheetscanbedownloadedfrom  
our web site at www.powerint.com. A diskette of the  
Transformer Design Spreadsheets may also be obtained by  
sending in the completed form provided at the end of this data  
sheet.  
The following tools available from Power Integrations greatly  
simplify TOPSwitch based power supply design.  
DataBookandDesignGuideincludesextensiveapplication  
information  
• Excel Spreadsheets for Transformer Design - Use of this  
toolisstronglyrecommendedforallTOPSwitchdesigns.  
• Reference design boards – Production viable designs that  
are assembled and tested.  
C
9
12/97  
TOP221-227  
ABSOLUTE MAXIMUM RATINGS1  
Operating Junction Temperature(3) ................ -40 to 150 °C  
Lead Temperature(4) ................................................ 260 °C  
Thermal Impedance: Y Package (θJA)(5) .................70 °C/W  
(θJC)(6) ...................2 °C/W  
DRAIN Voltage ............................................ -0.3 to 700 V  
DRAIN Current Increase (ID) in 100 ns except during  
blanking time ......................................... 0.1 x ILIMIT(MAX)  
(2)  
CONTROL Voltage ..................................... - 0.3 V to 9 V  
CONTROL Current ...............................................100 mA  
Storage Temperature ..................................... -65 to 125 °C  
Notes:  
P/G Package:  
(θJA) .........45 °C/W(7); 35 °C/W(8)  
(θJC)(6)...............................5 °C/W  
5. Free standing with no heatsink.  
1. All voltages referenced to SOURCE, TA = 25 °C.  
2. Related to transformer saturation – see Figure 13.  
3. Normally limited by internal circuitry.  
4. 1/16" from case for 5 seconds.  
6. Measured at tab closest to plastic interface or source pin.  
7. Soldered to 0.36 sq. inch (232 mm2), 2 oz. (610 gm/m2) copper clad.  
8. Soldered to 1 sq. inch (645 mm2), 2 oz. (610 gm/m2) copper clad.  
Conditions  
(Unless Otherwise Specified)  
See Figure 14  
Parameter  
Symbol  
Min  
Typ Max  
Units  
SOURCE = 0 V; Tj = -40 to 125 °C  
CONTROL FUNCTIONS  
Output  
fOSC  
IC = 4 mA, Tj = 25 ˚C  
90  
64  
100  
67  
110  
70  
kHz  
%
Frequency  
Maximum  
Duty Cycle  
DMAX  
IC = ICD1 + 0.4 mA, See Figure 10  
Minimum  
Duty Cycle  
0.7  
1.7  
2.7  
DMIN  
%
IC = 10 mA, See Figure 10  
IC = 4 mA, Tj = 25 ˚C  
See Figure 4  
PWM  
Gain  
%/mA  
%/mA/˚C  
mA  
-21  
-16  
-0.05  
2.0  
-11  
PWM Gain  
Temperature Drift  
See Note A  
External  
Bias Current  
See Figure 4  
IB  
0.8  
10  
3.3  
22  
IC = 4 mA, Tj = 25 ˚C  
See Figure 11  
Dynamic  
Impedance  
ZC  
15  
Dynamic Impedance  
Temperature Drift  
%/˚C  
0.18  
SHUTDOWN/AUTO-RESTART  
VC = 0 V  
Tj = 25 ˚C  
-2.4  
-2  
-1.9  
-1.5  
-1.2  
-0.8  
CONTROL Pin  
Charging Current  
IC  
mA  
VC = 5 V  
Charging Current  
Temperature Drift  
See Note A  
%/˚C  
0.4  
C
10  
12/97  
TOP221-227  
Conditions  
(Unless Otherwise Specified)  
See Figure 14  
Parameter  
Symbol  
Min  
Typ Max  
Units  
SOURCE = 0 V; Tj = -40 to 125°C  
SHUTDOWN/AUTO-RESTART (cont.)  
Auto-restart  
VC(AR)  
S1 open  
S1 open  
S1 open  
5.7  
4.7  
1.0  
V
V
Threshold Voltage  
UV Lockout  
Threshold Voltage  
4.4  
0.6  
5.0  
Auto-restart  
Hysteresis Voltage  
V
TOP221-222  
TOP223-227  
2
2
5
5
9
8
Auto-restart  
S1 open  
%
Hz  
Duty Cycle  
Auto-restart  
Frequency  
1.2  
S1 open  
CIRCUIT PROTECTION  
di/dt = 40 mA/µs,  
TOP221Y  
TOP221P  
TOP222Y  
0.23  
0.45  
0.90  
0.25  
0.50  
1.00  
0.28  
0.55  
1.10  
Tj = 25°C  
di/dt = 80 mA/µs,  
Tj = 25°C  
di/dt = 160 mA/µs,  
Tj = 25°C  
TOP222P  
TOP223Y  
TOP223P  
TOP224Y  
TOP224P  
TOP225Y  
Self-protection  
Current Limit  
di/dt = 240 mA/µs,  
Tj = 25°C  
ILIMIT  
A
1.35  
1.80  
1.50  
2.00  
1.65  
2.20  
di/dt = 320 mA/µs,  
Tj = 25°C  
di/dt = 400 mA/µs,  
Tj = 25°C  
TOP226Y  
TOP227Y  
2.25  
2.70  
2.50  
3.00  
2.75  
3.30  
di/dt = 480 mA/µs,  
Tj = 25°C  
0.75 x  
ILIMIT(MIN)  
85 VAC  
(Rectified Line Input)  
Initial Current  
Limit  
IINIT  
See Figure 12  
Tj = 25˚C  
A
0.6 x  
265 VAC  
ILIMIT(MIN)  
(Rectified Line Input)  
IC = 4 mA,  
Tj = 25˚C  
Leading Edge  
Blanking Time  
tLEB  
ns  
180  
C
11  
12/97  
TOP221-227  
Conditions  
(Unless Otherwise Specified)  
See Figure 14  
Parameter  
Symbol  
Min  
Typ Max  
Units  
SOURCE = 0 V; Tj = -40 to 125 °C  
CIRCUIT PROTECTION (cont.)  
Current Limit  
IC = 4 mA  
tILD  
ns  
°C  
V
100  
135  
Delay  
Thermal Shutdown  
Temperature  
125  
2.0  
IC = 4 mA  
S2 open  
Power-up Reset  
Threshold Voltage  
VC(RESET)  
3.3  
4.3  
OUTPUT  
TOP221  
Tj = 25 °C  
31.2  
51.4  
15.6  
25.7  
36.0  
60.0  
18.0  
30.0  
ID = 25 mA  
TOP222  
Tj = 100 °C  
Tj = 25 °C  
Tj = 100 °C  
Tj = 25 °C  
Tj = 100 °C  
Tj = 25 °C  
Tj = 100 °C  
Tj = 25 °C  
Tj = 100 °C  
Tj = 25 °C  
ID = 50 mA  
TOP223  
7.8  
9.0  
ID = 100 mA  
TOP224  
12.9  
15.0  
ON-State  
RDS(ON)  
5.2  
8.6  
3.9  
6.4  
3.1  
5.2  
2.6  
4.3  
6.0  
10.0  
4.5  
7.5  
3.6  
6.0  
3.0  
5.0  
Resistance  
ID = 150 mA  
TOP225  
ID = 200 mA  
TOP226  
ID = 250 mA  
TOP227  
Tj = 100 °C  
Tj = 25 °C  
Tj = 100 °C  
ID = 300 mA  
See Note B  
OFF-State  
IDSS  
Current  
µA  
250  
VDS = 560 V, TA = 125 °C  
See Note B  
Breakdown  
BVDSS  
V
700  
ID = 100 µA, TA = 25 °C  
Voltage  
Rise  
Time  
tr  
ns  
ns  
100  
50  
Measured in a Typical Flyback  
Converter Application.  
Fall  
Time  
tf  
C
12  
12/97  
TOP221-227  
Conditions  
(Unless Otherwise Specified)  
See Figure 14  
Parameter  
Symbol  
Min  
Typ Max  
Units  
SOURCE = 0 V; Tj = -40 to 125 °C  
OUTPUT (cont.)  
DRAIN Supply  
Voltage  
V
V
See Note C  
IC = 4 mA  
36  
Shunt Regulator  
Voltage  
VC(SHUNT)  
5.5  
5.7  
6.0  
Shunt Regulator  
Temperature Drift  
±50  
ppm/˚C  
Output  
TOP221-224  
TOP225-227  
0.6  
0.7  
1.2  
1.4  
1.6  
1.8  
ICD1  
ICD2  
MOSFET Enabled  
CONTROL Supply/  
Discharge Current  
mA  
Output MOSFET Disabled  
0.5  
0.8  
1.1  
NOTES:  
A. For specifications with negative values, a negative temperature coefficient corresponds to an increase in  
magnitude with increasing temperature, and a positive temperature coefficient corresponds to a decrease in  
magnitude with increasing temperature.  
B. The breakdown voltage and leakage current measurements can be accomplished as shown in Figure 15 by using  
the following sequence:  
i. The curve tracer should initially be set at 0 V. The base output should be adjusted through a voltage sequence  
of 0 V, 6.5 V, 4.3 V, and 6.5 V, as shown. The base current from the curve tracer should not exceed 100 mA. This  
CONTROL pin sequence interrupts the Auto-restart sequence and locks the TOPSwitch internal MOSFET in the  
OFF State.  
ii. The breakdown and the leakage measurements can now be taken with the curve tracer. The maximum  
voltage from the curve tracer must be limited to 700 V under all conditions.  
C. It is possible to start up and operate TOPSwitch at DRAIN voltages well below 36 V. However, the CONTROL pin  
charging current is reduced, which affects start-up time, auto-restart frequency, and auto-restart duty cycle. Refer  
to the characteristic graph on CONTROL pin charge current (IC) vs. DRAIN voltage for low voltage operation  
characteristics.  
C
13  
12/97  
TOP221-227  
120  
100  
80  
t
2
t
60  
1
HV  
90%  
90%  
40  
Dynamic  
Impedance  
1
=
t
t
DRAIN  
VOLTAGE  
1
2
Slope  
D =  
20  
10%  
0
0 V  
0
2
4
6
8
10  
CONTROL Pin Voltage (V)  
PI-2039-043097  
Figure 10. TOPSwitch Duty Cycle Measurement.  
Figure 11. TOPSwitch CONTROL Pin I-V Characteristic.  
t
(Blanking Time)  
LEB  
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
100 nS  
I
@ 85VAC  
tLEB  
INIT(MIN)  
ID  
I
@ 265VAC  
INIT(MIN)  
DRAIN  
CURRENT  
I
I
@ 25 ˚C  
@ 25 ˚C  
LIMIT(MAX)  
LIMIT(MIN)  
0
0 A  
0
1
2
3
4
5
6
7
8
Time (us)  
PI-2031-042397  
Figure 12. Self-protection Current Limit Envelope.  
Figure 13. Example of ID on Drain Current Waveform with  
Saturated Transformer.  
C
14  
12/97  
TOP221-227  
470 Ω  
5 W  
S2  
D
S
CONTROL  
470 Ω  
C
TOP S w it c h  
S1  
40 V  
0.1 µF  
47 µF  
0-50 V  
NOTES: 1. This test circuit is not applicable for current limit or output characteristic measurements.  
2. For P package, short all SOURCE and SOURCE (HV RTN) pins together.  
PI-1964-110696  
Figure 14. TOPSwitch General Test Circuit.  
Curve  
Tracer  
C
B
E
D
S
CONTROL  
C
TOP S w it c h  
6.5V  
4.3V  
NOTE: This CONTROL pin sequence interrupts the Auto-restart sequence and  
locks the TOPSwitch internal MOSFET in the OFF State.  
PI-2109-092397  
Figure 15. Breakdown Voltage and Leakage Current Measurement Test Circuit.  
C
15  
12/97  
TOP221-227  
BENCH TEST PRECAUTIONS FOR EVALUATION OF ELECTRICAL CHARACTERISTICS  
The following precautions should be followed when testing  
TOPSwitch by itself outside of a power supply. The schematic  
shown in Figure 14 is suggested for laboratory testing of  
TOPSwitch.  
Auto-restart mode, there is onlya 12.5% chance that the control  
pin oscillation will be in the correct state (DRAIN active state)  
so that the continuous DRAIN voltage waveform may be  
observed. It is recommended that the VC power supply be  
turnedonfirstandtheDRAINpowersupplysecondifcontinuous  
drainvoltagewaveformsaretobeobserved. The12.5%chance  
ofbeinginthecorrectstateisduetothe8:1counter. Temporarily  
shorting the CONTROL pin to the SOURCE pin will reset  
TOPSwitch, which then will come up in the correct state.  
When the DRAIN supply is turned on, the part will be in the  
Auto-restart mode. The CONTROL pin voltage will be  
oscillating at a low frequency from 4.7 to 5.7 V and the DRAIN  
isturnedoneveryeighthcycleoftheCONTROLpinoscillation.  
If the CONTROL pin power supply is turned on while in this  
Typical Performance Characteristics  
BREAKDOWN vs. TEMPERATURE  
FREQUENCY vs. TEMPERATURE  
1.1  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.0  
0.9  
0
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
Junction Temperature (°C)  
Junction Temperature (°C)  
CURRENT LIMIT vs. TEMPERATURE  
I vs. DRAIN VOLTAGE  
C
1.2  
2
V
= 5 V  
C
1.0  
0.8  
0.6  
0.4  
0.2  
1.6  
1.2  
0.8  
0.4  
0
0
-50 -25  
0
25 50 75 100 125 150  
0
20  
40  
60  
80  
100  
Junction Temperature (°C)  
DRAIN Voltage (V)  
C
16  
12/97  
TOP221-227  
Typical Performance Characteristics (cont.)  
OUTPUT CHARACTERISTICS  
3
C
vs. DRAIN VOLTAGE  
OSS  
1000  
TCASE=25˚C  
TCASE=100˚C  
Scaling Factors:  
TOP227 1.00  
TOP226 0.83  
TOP225 0.67  
TOP224 0.50  
TOP223 0.33  
TOP222 0.17  
TOP221 0.09  
2
100  
Scaling Factors:  
TOP227 1.00  
1
TOP226 0.83  
TOP225 0.67  
TOP224 0.50  
TOP223 0.33  
TOP222 0.17  
TOP221 0.09  
0
10  
0
2
4
6
8
10  
0
200  
400  
600  
DRAIN Voltage (V)  
DRAIN Voltage (V)  
DRAIN CAPACITANCE POWER  
500  
Scaling Factors:  
TOP227 1.00  
TOP226 0.83  
TOP225 0.67  
TOP224 0.50  
TOP223 0.33  
400  
TOP222 0.17  
TOP221 0.09  
300  
200  
100  
0
0
200  
400  
600  
DRAIN Voltage (V)  
C
17  
12/97  
TOP221-227  
Free TOPSwitch Flyback Transformer Design Spreadsheets  
To receive your free copy of the latest version of the spreadsheets on a 3 1/2" IBM compatible floppy (Excel 4.0 format), please visit  
our Website at www.powerint.com or fill out this form completely and mail/fax it to us at the address/phone number noted below.  
Name:__________________________________________________________________________________________________  
Position/Title:____________________________________________________________________________________________  
Company:________________________________________________________________________________________________  
Address:________________________________________________________________________________________________  
City:________________________________________ State:________________________Zip/PostalCode:__________________  
Country:_________________________________________________________________________________________________  
Phone:_______________________________________________Fax:_______________________________________________  
E-mail:__________________________________________________________________________________________________  
EndApplication:____________________________________________________________________________________________  
PowerRequirement:_________________________________________________________________________________________  
InputVoltage:____________________________________________________________________________________________  
EstimatedDesignCompletionDate:___________________________________________________________________________  
Power supply that I am designing is  
the end product of my company  
is incorporated as part of an end product. If so, please specify the end product_____________________________________  
To qualify for this free offer, this form must be filled out completely.  
Fax or mail this request to:  
Free Flyback Transformer Design Spreadsheet Program Offer  
Power Integrations, Inc.  
477 N. Mathilda Avenue  
Sunnyvale, CA 94086  
Attn: Customer Service  
Fax: 408-523-9365  
C
18  
12/97  
TOP221-227  
P08A  
Plastic DIP-8  
D S .004 (.10)  
DIM  
inches  
mm  
8
5
-E-  
A
B
C
G
H
0.370-0.385  
0.245-0.255  
0.125-0.135  
0.015-0.040  
0.120-0.135  
9.40-9.78  
6.22-6.48  
3.18-3.43  
0.38-1.02  
3.05-3.43  
B
J1 0.060 (NOM) 1.52 (NOM)  
J2  
K
L
0.014-0.022  
0.010-0.012  
0.090-0.110  
0.030 (MIN)  
0.300-0.320  
0.300-0.390  
0.300 BSC  
0.36-0.56  
0.25-0.30  
2.29-2.79  
0.76 (MIN)  
7.62-8.13  
7.62-9.91  
7.62 BSC  
M
N
P
1
4
A
-D-  
-F-  
M
J1  
N
Q
Notes:  
C
1. Package dimensions conform to JEDEC  
specification MS-001-AB for standard dual  
in-line (DIP) package .300 inch row spacing  
(PLASTIC) 8 leads (issue B, 7/85)..  
2. Controlling dimensions are inches.  
3. Dimensions shown do not include mold  
flash or other protrusions. Mold flash or  
protrusions shall not exceed .006 (.15) on  
any side.  
H
K
G
Q
J2  
4. D, E and F are reference datums on the  
molded body.  
L
P
PI-2076-031197  
G08A  
Plastic SMD-8  
D S .004 (.10)  
DIM  
inches  
mm  
8
5
-E-  
A
B
C
G
H
0.370-0.385  
0.245-0.255  
0.125-0.135  
0.004-0.012  
0.036-0.044  
9.40-9.78  
6.22-6.48  
3.18-3.43  
0.10-0.30  
0.91-1.12  
E S .010 (.25)  
P
B
J1 0.060 (NOM) 1.52 (NOM)  
J2  
J3  
J4  
K
0.048-0.053  
0.032-0.037  
0.007-0.011  
0.010-0.012  
0.100 BSC  
0.030 (MIN)  
0.372-0.388  
0-8˚  
1.22-1.35  
0.81-0.94  
0.18-0.28  
0.25-0.30  
2.54 BSC  
0.76 (MIN)  
9.45-9.86  
0-8˚  
1
4
L
L
A
-D-  
M
P
M
J1  
α
C
Notes:  
K
1. Package dimensions conform to JEDEC  
specification MS-001-AB (issue B, 7/85)  
except for lead shape and size.  
2. Controlling dimensions are inches.  
3. Dimensions shown do not include mold  
flash or other protrusions. Mold flash or  
protrusions shall not exceed .006 (.15) on  
any side.  
-F-  
.004 (.10)  
J3  
J4  
.010 (.25) M A S  
α
G
H
J2  
4. D, E and F are reference datums on the  
molded body.  
PI-2077-071597  
C
19  
12/97  
TOP221-227  
Y03A  
Plastic TO-220/3  
mm  
DIM  
inches  
11.68-12.19  
10.16-10.54  
5.99-6.60  
6.10 - REF.  
13.21-14.22  
.71-.97  
A
B
C
D
E
F
.460-.480  
.400-.415  
.236-.260  
.240 - REF.  
.520-.560  
.028-.038  
.045-.055  
.090-.110  
.165-.185  
.045-.055  
.095-.115  
.015-.020  
.705-.715  
.146-.156  
.103-.113  
J
B
K
P
Notes:  
C
1. Package dimensions conform to  
JEDEC specification TO-220 AB for  
standard flange mounted, peripheral  
lead package; .100 inch lead spacing  
(Plastic) 3 leads (issue J, March 1987)  
2. Controlling dimensions are inches.  
3. Pin numbers start with Pin 1, and  
continue from left to right when  
viewed from the top.  
4. Dimensions shown do not include  
mold flash or other protrusions. Mold  
flash or protrusions shall not exceed  
.006 (.15 mm) on any side.  
O
1.14-1.40  
2.29-2.79  
4.19-4.70  
1.14-1.40  
2.41-2.92  
.38-.51  
G
H
J
A
N
K
L
L
M
N
O
P
D
5. Position of terminals to be  
measured at a position .25 (6.35 mm)  
from the body.  
17.91-18.16  
3.71-3.96  
2.62-2.87  
E
6. All terminals are solder plated.  
F
M
G
H
PI-1848-050696  
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability.  
Power Integrations does not assume any liability arising from the use of any device or circuit described herein, nor does it  
convey any license under its patent rights or the rights of others.  
PI Logo and TOP S w it c h are registered trademarks of Power Integrations, Inc.  
©Copyright 1998, Power Integrations, Inc. 477 N. Mathilda Avenue, Sunnyvale, CA 94086 http://www.powerint.com  
WORLD HEADQUARTERS  
NORTH AMERICA - WEST  
Power Integrations, Inc.  
NORTH AMERICA - EAST  
& SOUTH AMERICA  
Power Integrations, Inc.  
EUROPE & AFRICA  
Power Integrations (Europe) Ltd.  
Mountbatten House  
TAIWAN  
Power Integrations International  
Holdings, Inc.  
477 N. Mathilda Avenue  
Sunnyvale, CA 94086 USA  
Eastern Area Sales Office  
1343 Canton Road, Suite C1  
Marietta, GA 30066 USA  
Fair Acres Windsor  
Berkshire SL4 4LE,  
United Kingdom  
2F, #508, Chung Hsiao E. Rd., Sec. 5,  
Taipei 105, Taiwan  
Main:  
+1•408•523•9200  
Phone:  
Fax:  
+886•2•2727•1221  
+886•2•2727•1223  
Customer Service:  
Phone:  
Fax:  
+1•770•424•5152  
+1•770•424•6567  
Phone:  
Fax:  
+44•(0)•1753•622•208  
+44•(0)•1753•622•209  
Phone:  
Fax:  
+1•408•523•9265  
+1•408•523•9365  
JAPAN  
KOREA  
Power Integrations International  
Holdings, Inc.  
Rm# 402, Handuk Building,  
649-4 Yeoksam-Dong, Kangnam-Gu,  
Seoul, Korea  
Phone:  
Fax:  
INDIA (Technical Support)  
Innovatech  
#1, 8th Main Road  
Vasanthnagar  
APPLICATIONS HOTLINE  
Power Integrations, K.K.  
Keihin-Tatemono 1st Bldg.  
12-20 Shin-Yokohama 2-Chome,  
Kohoku-ku, Yokohama-shi,  
Kanagawa 222, Japan  
World Wide  
+1•408•523•9260  
APPLICATIONS FAX  
Bangalore 560052, India  
World Wide  
+1•408•523•9361  
Phone:  
Fax:  
+91•80•226•6023  
+91•80•228•2191  
Phone:  
Fax:  
+81•(0)•45•471•1021  
+81•(0)•45•471•3717  
+82•2•568•7520  
+82•2•568•7474  
C
20  
12/97  

相关型号:

TOP223GN

Three-Terminal Off-Line PWM Switch
POWERINT

TOP223GNTL

Three-Terminal Off-Line PWM Switch
POWERINT

TOP223P

Three-terminal Off-line PWM Switch
POWERINT

TOP223PN

Three-Terminal Off-Line PWM Switch
POWERINT

TOP223PNTL

Three-Terminal Off-Line PWM Switch
POWERINT

TOP223Y

Three-terminal Off-line PWM Switch
POWERINT

TOP223YN

Three-Terminal Off-Line PWM Switch
POWERINT

TOP223YNTL

Three-Terminal Off-Line PWM Switch
POWERINT

TOP224

Three-Terminal Off-Line PWM Switch
POWERINT

TOP224G

Three-terminal Off-line PWM Switch
POWERINT

TOP224GN

Three-terminal Off-line PWM Switch
POWERINT

TOP224GNTL

Three-Terminal Off-Line PWM Switch
POWERINT