3236-22 [PSEMI]

2200 MHz UltraCMOS-TM Integer-N PLL for Low Phase Noise Applications; 2200兆赫的UltraCMOS -TM整数N分频PLL的低相位噪声应用
3236-22
型号: 3236-22
厂家: Peregrine Semiconductor    Peregrine Semiconductor
描述:

2200 MHz UltraCMOS-TM Integer-N PLL for Low Phase Noise Applications
2200兆赫的UltraCMOS -TM整数N分频PLL的低相位噪声应用

文件: 总15页 (文件大小:252K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Product Specification  
PE3236  
2200 MHz UltraCMOS™ Integer-N PLL  
for Low Phase Noise Applications  
Product Description  
Features  
Peregrine’s PE3236 is a high performance integer-N PLL  
capable of frequency synthesis up to 2.2 GHz. The  
superior phase noise performance of the PE3236 is ideal  
for applications such as LMDS / MMDS / WLL basestations  
and demanding terrestrial systems.  
2.2 GHz operation  
÷10/11 dual modulus prescaler  
Internal phase detector  
The PE3236 features a 10/11 dual modulus prescaler,  
counters and a phase comparator as shown in Figure 1.  
Counter values are programmable through either a serial or  
parallel interface and can also be directly hard wired. This  
programming flexibility, combined with the dual latch  
architecture enabling ping-pong loading of the main divide  
counter, makes these PLLs well suited as the core for  
fractional-N or sigma-delta implementation.  
Serial, parallel or hardwired  
programmable  
Low power— 22 mA at 3 V  
Q3236 PLL replacement  
Ultra-low phase noise  
Available in 44-lead PLCC package  
The PE3236 is optimized for terrestrial applications. It is  
manufactured on Peregrine’s UltraCMOS™ process, a  
patented variation of silicon-on-insulator (SOI) technology  
on a sapphire substrate, offering the performance of GaAs  
with the economy and integration of conventional CMOS.  
Figure 1. Block Diagram  
Fin  
Fin  
Prescaler  
10 / 11  
Main  
Counter  
fp  
13  
D(7:0)  
8
Sdata  
Primary  
20-bit  
Latch  
Secon-  
dary  
20-bit  
Latch  
PD_U  
Phase  
Detector  
PD_D  
20  
20  
20  
20  
16  
Pre_en  
M(6:0)  
A(3:0)  
R(3:0)  
6
6
fr  
R Counter  
fc  
Document No. 70-0026-03 www.psemi.com  
©2003-2005 Peregrine Semiconductor Corp. All rights reserved.  
Page 1 of 15  
PE3236  
Product Specification  
Figure 2. Pin Configurations (Top View)  
Figure 3. Package Type  
44-lead PLCC  
6
5
4
3
2
1
44 43 42 41 40  
D0, M0  
D1, M1  
fc  
7
8
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
VDD_fc  
PD_U  
PD_D  
VDD  
D2, M2  
9
D3, M3  
10  
11  
12  
13  
14  
15  
16  
17  
VDD  
VDD  
Cext  
S_WR, D4, M4  
Sdata, D5, M5  
Sclk, D6, M6  
FSELS, D7, Pre_en  
GND  
VDD  
Dout  
VDD_fp  
fp  
GND  
18 19 20 21 22 23 24 25 26 27 28  
Table 1. Pin Descriptions  
Pin No. Pin Name  
Interface Mode  
Type  
Description  
Power supply input. Input may range from 2.85 V to 3.15 V. Bypassing  
recommended.  
1
VDD  
ALL  
(Note 1)  
2
3
4
5
6
R0  
Direct  
Direct  
Direct  
Direct  
ALL  
Input  
R Counter bit0 (LSB).  
R Counter bit1.  
R1  
Input  
R2  
Input  
R Counter bit2.  
R3  
Input  
R Counter bit3.  
GND  
D0  
(Note 1)  
Input  
Ground.  
Parallel  
Direct  
Parallel  
Direct  
Parallel  
Direct  
Parallel  
Direct  
ALL  
Parallel data bus bit0 (LSB).  
M Counter bit0 (LSB).  
Parallel data bus bit1.  
M Counter bit1.  
7
8
M0  
D1  
Input  
Input  
M1  
D2  
Input  
9
Input  
Parallel data bus bit2.  
M Counter bit2.  
M2  
D3  
Input  
10  
Input  
Parallel data bus bit3.  
M Counter bit3.  
M3  
VDD  
VDD  
Input  
11  
12  
(Note 1)  
(Note 1)  
Same as pin 1.  
ALL  
Same as pin 1.  
©2003-2005 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0026-03 UltraCMOS™ RFIC Solutions  
Page 2 of 15  
PE3236  
Product Specification  
Table 1. Pin Descriptions (continued)  
Pin No. Pin Name  
Interface Mode  
Type  
Description  
Serial load enable input. While S_WR is “low”, Sdata can be serially clocked.  
Primary register data are transferred to the secondary register on S_WR or Hop_WR  
rising edge.  
S_WR  
Serial  
Input  
13  
D4  
Parallel  
Direct  
Input  
Input  
Parallel data bus bit4.  
M Counter bit4.  
M4  
Sdata  
Serial  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Binary serial data input. Input data entered MSB first.  
Parallel data bus bit5.  
14  
15  
16  
D5  
Parallel  
Direct  
M5  
M Counter bit5.  
Serial clock input. Sdata is clocked serially into the 20-bit primary register (E_WR  
“low”) or the 8-bit enhancement register (E_WR “high”) on the rising edge of Sclk.  
Sclk  
D6  
Serial  
Parallel  
Direct  
Parallel data bus bit6.  
M Counter bit6.  
M6  
Selects contents of primary register (FSELS=1) or secondary register (FSELS=0) for  
programming of internal counters while in Serial Interface Mode.  
FSELS  
D7  
Serial  
Parallel  
Direct  
Parallel data bus bit7 (MSB).  
Pre_en  
GND  
FSELP  
A0  
Prescaler enable, active “low”. When “high”, Fin bypasses the prescaler.  
Ground.  
17  
18  
ALL  
Selects contents of primary register (FSELP=1) or secondary register (FSELP=0) for  
programming of internal counters while in Parallel Interface Mode.  
Parallel  
Direct  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
(Note 1)  
Input  
Input  
Input  
Input  
A Counter bit0 (LSB).  
Enhancement register write enable. While E_WR is “high”, Sdata can be serially  
clocked into the enhancement register on the rising edge of Sclk.  
Enhancement register write. D[7:0] are latched into the enhancement register on the  
rising edge of E_WR.  
Serial  
E_WR  
19  
Parallel  
Direct  
A1  
A Counter bit1.  
M2 write. D[3:0] are latched into the primary register (R[5:4], M[8:7]) on the rising  
edge of M2_WR.  
M2_WR  
A2  
Parallel  
Direct  
20  
21  
A Counter bit2.  
Selects serial bus interface mode (Bmode=0, Smode=1) or Parallel Interface Mode  
(Bmode=0, Smode=0).  
Smode  
A3  
Serial, Parallel  
Direct  
A Counter bit3 (MSB).  
Bmode  
VDD  
Selects direct interface mode (Bmode=1).  
Same as pin 1.  
22  
23  
24  
25  
26  
27  
ALL  
ALL  
M1 write. D[7:0] are latched into the primary register (Pre_en, M[6:0]) on the rising  
edge of M1_WR.  
A write. D[7:0] are latched into the primary register (R[3:0], A[3:0]) on the rising edge  
of A_WR.  
Hop write. The contents of the primary register are latched into the secondary  
register on the rising edge of Hop_WR.  
M1_WR  
A_WR  
Parallel  
Parallel  
Serial, Parallel  
ALL  
Hop_WR  
Fin  
Prescaler input from the VCO. 2.2 GHz max frequency.  
Prescaler complementary input. A bypass capacitor in series with a 51 resistor  
should be placed as close as possible to this pin and be connected directly to the  
ground plane.  
Fin  
28  
29  
ALL  
ALL  
Input  
GND  
Ground.  
Document No. 70-0026-03 www.psemi.com  
©2003-2005 Peregrine Semiconductor Corp. All rights reserved.  
Page 3 of 15  
PE3236  
Product Specification  
Table 1. Pin Descriptions (continued)  
Pin No. Pin Name  
Interface Mode  
Type  
Description  
Monitor pin for main divider output. Switching activity can be disabled through  
enhancement register programming or by floating or grounding VDD pin 31.  
30  
31  
32  
33  
fp  
ALL  
Output  
VDD-fp  
Dout  
VDD  
ALL  
(Note 2)  
Output  
VDD for fp.  
Data Out. The MSEL signal and the raw prescaler output are available on Dout  
through enhancement register programming.  
Serial, Parallel  
ALL  
(Note 1)  
Same as pin 1.  
Logical “NAND” of PD_U and PD_D terminated through an on chip, 2 kseries  
resistor. Connecting Cext to an external capacitor will low pass filter the input to the  
inverting amplifier used for driving LD.  
34  
Cext  
ALL  
Output  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
VDD  
ALL  
(Note 1)  
Output  
Same as pin 1.  
PD_D  
PD_U  
VDD-fc  
fc  
PD_D is pulse down when fp leads fc.  
PD_U is pulse down when fc leads fp.  
VDD for fc.  
ALL  
ALL  
ALL  
(Note 2)  
Output  
Monitor pin for reference divider output. Switching activity can be disabled through  
enhancement register programming or by floating or grounding VDD pin 38.  
ALL  
GND  
GND  
fr  
ALL  
Ground.  
ALL  
Ground.  
ALL  
Input  
Reference frequency input.  
Output,  
OD  
Lock detect and open drain logical inversion of Cext. When the loop is in lock, LD is  
high impedance, otherwise LD is a logic low (“0”).  
LD  
ALL  
Enhancement mode. When asserted low (“0”), enhancement register bits are  
functional.  
Enh  
Serial, Parallel  
Input  
Note 1: VDD pins 1, 11, 12, 23, 31, 33, 35, and 38 are connected by diodes and must be supplied with the same positive voltage level.  
Note 2: VDD pins 31 and 38 are used to power the fp and fc outputs and can alternatively be left floating or connected to GND to disable the fp  
and fc outputs.  
©2003-2005 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0026-03 UltraCMOS™ RFIC Solutions  
Page 4 of 15  
PE3236  
Product Specification  
Table 2. Absolute Maximum Ratings  
Table 4. ESD Ratings  
Symbol  
Parameter/Conditions Min Max Units  
Symbol  
Parameter/Conditions  
Level  
Units  
ESD voltage (Human Body  
Model)  
VDD  
VI  
Supply voltage  
-0.3  
-0.3  
-10  
-10  
-65  
4.0  
VDD  
V
V
VESD  
1000  
V
+
Voltage on any input  
DC into any input  
0.3  
Note 1: Periodically sampled, not 100% tested. Tested per MIL-  
STD-883, M3015 C2  
II  
+10  
mA  
mA  
°C  
Electrostatic Discharge (ESD) Precautions  
IO  
DC into any output  
Storage temperature range  
+10  
150  
When handling this UltraCMOS™ device, observe  
the same precautions that you would use with  
other ESD-sensitive devices. Although this device  
contains circuitry to protect it from damage due to  
ESD, precautions should be taken to avoid  
exceeding the specified rating in Table 4.  
Tstg  
Table 3. Operating Ratings  
Symbol  
Parameter/Conditions Min Max Units  
VDD  
Supply voltage  
2.85  
3.15  
V
Latch-Up Avoidance  
Operating ambient  
temperature range  
TA  
-40  
85  
°C  
Unlike conventional CMOS devices, UltraCMOS™  
devices are immune to latch-up.  
Table 5. DC Characteristics: VDD = 3.0 V, -40° C < TA < 85° C, unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Operational supply current;  
Prescaler enabled  
IDD  
VDD = 2.85 to 3.15 V  
22  
35  
mA  
Digital Inputs: All except fr, R0, Fin, Fin  
VIH  
VIL  
IIH  
High level input voltage  
Low level input voltage  
High level input current  
Low level input current  
VDD = 2.85 to 3.15 V  
VDD = 2.85 to 3.15 V  
VIH = VDD = 3.15 V  
0.7 x VDD  
V
V
0.3 x VDD  
+1  
µA  
µA  
IIL  
VIL = 0, VDD = 3.15 V  
-1  
Reference Divider input: fr  
IIHR High level input current  
IILR Low level input current  
R0 Input (Pull-up Resistor): R0  
IIHRO High level input current  
IILRO Low level input current  
Counter and phase detector outputs: fc, fp  
VIH = VDD = 3.15 V  
+100  
+5  
µA  
µA  
VIL = 0, VDD = 3.15 V  
-100  
VIH = VDD = 3.15 V  
µA  
µA  
VIL = 0, VDD = 3.15 V  
-5  
VOLD  
VOHD  
Output voltage LOW  
Output voltage HIGH  
Iout = 6 mA  
Iout = -3 mA  
0.4  
V
V
VDD - 0.4  
Lock detect outputs: Cext, LD  
VOLC  
VOHC  
VOLLD  
Output voltage LOW, Cext  
Iout = 0.1 mA  
Iout = -0.1 mA  
Iout = 1 mA  
0.4  
0.4  
V
V
V
Output voltage HIGH, Cext  
Output voltage LOW, LD  
VDD - 0.4  
Document No. 70-0026-03 www.psemi.com  
©2003-2005 Peregrine Semiconductor Corp. All rights reserved.  
Page 5 of 15  
PE3236  
Product Specification  
Table 6. AC Characteristics: VDD = 3.0 V, -40° C < TA < 85° C, unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Max  
Units  
Control Interface and Latches (see Figures 4, 5, 6)  
fClk  
tClkH  
tClkL  
Serial data clock frequency  
Serial clock HIGH time  
Serial clock LOW time  
(Note 1)  
10  
MHz  
ns  
30  
30  
ns  
Sdata set-up time to Sclk rising edge, D[7:0] set-up time to  
M1_WR, M2_WR, A_WR rising edge  
tDSU  
10  
ns  
Sdata hold time after Sclk rising edge, D[7:0] hold time to  
M1_WR, M2_WR, A_WR, E_WR rising edge  
tDHLD  
tPW  
tCWR  
tCE  
tWRC  
tEC  
10  
30  
30  
30  
30  
30  
ns  
ns  
ns  
ns  
ns  
ns  
S_WR, M1_WR, M2_WR, A_WR, E_WR pulse width  
Sclk rising edge to S_WR rising edge. S_WR, M1_WR,  
M2_WR, A_WR falling edge to Hop_WR rising edge  
Sclk falling edge to E_WR transition  
S_WR falling edge to Sclk rising edge. Hop_WR falling  
edge to S_WR, M1_WR, M2_WR, A_WR rising edge  
E_WR transition to Sclk rising edge  
Main Divider (Including Prescaler)  
Fin  
Operating frequency  
Input level range  
200  
-5  
2200  
5
MHz  
dBm  
PFin  
External AC coupling  
External AC coupling  
Main Divider (Prescaler Bypassed)  
Fin  
Operating frequency  
Input level range  
20  
-5  
220  
5
MHz  
dBm  
PFin  
Reference Divider  
fr  
Operating frequency  
(Note 3)  
100  
20  
MHz  
dBm  
Pfr  
Reference input power (Note 2)  
Single ended input  
-2  
Phase Detector  
fc  
Comparison frequency  
(Note 3)  
MHz  
SSB Phase Noise (Fin = 1.3 GHz, fr = 10 MHz, fc = 1.25 MHz, LBW = 70 kHz, VDD = 3.0 V, Temp = -40° C)  
100 Hz Offset  
1 kHz Offset  
-75  
-85  
dBc/Hz  
dBc/Hz  
Note 1: Fclk is verified during the functional pattern test. Serial programming sections of the functional pattern are clocked at 10 MHz to verify Fclk  
specification.  
Note 2: CMOS logic levels can be used to drive the reference input if DC coupled. Voltage input needs to be a minimum of 0.5 Vp-p. For optimum  
phase noise performance, the reference input falling edge rate should be faster than 80mV/ns.  
Note 3: Parameter is guaranteed through characterization only and is not tested.  
©2003-2005 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0026-03 UltraCMOS™ RFIC Solutions  
Page 6 of 15  
PE3236  
Product Specification  
Functional Description  
The PE3236 consists of a prescaler, counters, a  
phase detector and control logic. The dual  
modulus prescaler divides the VCO frequency by  
either 10 or 11, depending on the value of the  
modulus select. Counters “R” and “M” divide the  
reference and prescaler output, respectively, by  
integer values stored in a 20-bit register. An  
additional counter (“A”) is used in the modulus  
select logic. The phase-frequency detector  
generates up and down frequency control signals.  
The control logic includes a selectable chip  
interface. Data can be written via serial bus,  
parallel bus, or hardwired direct to the pins. There  
are also various operational and test modes and  
lock detect.  
Figure 4. Functional Block Diagram  
R Counter  
fr  
fc  
(6-bit)  
D(7:0)  
R(5:0)  
M(8:0)  
A(3:0)  
PD_U  
PD_D  
Phase  
Control  
Logic  
Sdata  
Detector  
Control  
Pins  
LD  
Cext  
Modulus  
Select  
Fin  
Fin  
10/11  
M Counter  
(9-bit)  
fp  
Prescaler  
Document No. 70-0026-03 www.psemi.com  
©2003-2005 Peregrine Semiconductor Corp. All rights reserved.  
Page 7 of 15  
PE3236  
Product Specification  
Main Counter Chain  
Register Programming  
The main counter chain divides the RF input  
frequency, Fin, by an integer derived from the user  
defined values in the “M” and “A” counters. It is  
composed of the 10/11 dual modulus prescaler,  
modulus select logic, and 9 bit M counter. Setting  
Pre_en “low” enables the 10/11 prescaler. Setting  
Pre_en “high” allows Fin to bypass the prescaler  
and powers down the prescaler.  
Parallel Interface Mode  
Parallel Interface Mode is selected by setting the  
Bmode input “low” and the Smode input “low”.  
Parallel input data, D[7:0], are latched in a  
parallel fashion into one of three, 8-bit primary  
register sections on the rising edge of M1_WR,  
M2_WR, or A_WR per the mapping shown in  
Table 7 on page 9. The contents of the primary  
register are transferred into a secondary register  
on the rising edge of Hop_WR according to the  
timing diagram shown in Figure 5. Data are  
transferred to the counters as shown in Table 7  
on page 9.  
The output from the main counter chain, fp, is  
related to the VCO frequency, Fin, by the following  
equation:  
fp = Fin / [10 x (M + 1) + A]  
(1)  
where A M + 1, 1 M 511  
The secondary register acts as a buffer to allow  
rapid changes to the VCO frequency. This  
double buffering for “ping-pong” counter control  
is programmed via the FSELP input. When  
FSELP is “high”, the primary register contents  
set the counter inputs. When FSELP is “low”, the  
secondary register contents are utilized.  
When the loop is locked, Fin is related to the  
reference frequency, fr, by the following equation:  
Fin = [10 x (M + 1) + A] x (fr / (R+1))  
(2)  
where A M + 1, 1 M 511  
A consequence of the upper limit on A is that Fin  
must be greater than or equal to 90 x (fr / (R+1)) to  
obtain contiguous channels. Programming the M  
Counter with the minimum value of “1” will result in  
a minimum M Counter divide ratio of “2”.  
Parallel input data, D[7:0], are latched into the  
enhancement register on the rising edge of  
E_WR according to the timing diagram shown in  
Figure 5. This data provides control bits as  
shown in Table 8 on page 9 with bit functionality  
enabled by asserting the Enh input “low”.  
When the prescaler is bypassed, the equation  
becomes:  
Fin = (M + 1) x (fr / (R+1))  
(3)  
Serial Interface Mode  
where 1 M 511  
Serial Interface Mode is selected by setting the  
Bmode input “low” and the Smode input “high”.  
In Direct Interface Mode, main counter inputs M7  
and M8 are internally forced low.  
While the E_WR input is “low” and the S_WR  
input is “low”, serial input data (Sdata input), B0  
to B19, are clocked serially into the primary  
register on the rising edge of Sclk, MSB (B0)  
first. The contents from the primary register are  
transferred into the secondary register on the  
rising edge of either S_WR or Hop_WR  
according to the timing diagram shown in  
Figures 5-6. Data are transferred to the counters  
as shown in Table 7 on page 9.  
Reference Counter  
The reference counter chain divides the reference  
frequency, fr, down to the phase detector  
comparison frequency, fc.  
The output frequency of the 6-bit R Counter is  
related to the reference frequency by the following  
equation:  
fc = fr / (R + 1)  
(4)  
The double buffering provided by the primary  
and secondary registers allows for “ping-pong”  
counter control using the FSELS input. When  
FSELS is “high”, the primary register contents  
set the counter inputs. When FSELS is “low”, the  
secondary register contents are utilized.  
where 0 R 63  
Note that programming R equal to “0” will pass the  
reference frequency, fr, directly to the phase  
detector.  
In Direct Interface Mode, R Counter inputs R4 and  
R5 are internally forced low (“0”).  
While the E_WR input is “high” and the S_WR  
input is “low”, serial input data (Sdata input), B0  
©2003-2005 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0026-03 UltraCMOS™ RFIC Solutions  
Page 8 of 15  
PE3236  
Product Specification  
to B7, are clocked serially into the enhancement  
register on the rising edge of Sclk, MSB (B0) first.  
The enhancement register is double buffered to  
prevent inadvertent control changes during serial  
loading, with buffer capture of the serially entered  
data performed on the falling edge of E_WR  
according to the timing diagram shown in Figure  
6. After the falling edge of E_WR, the data provide  
control bits as shown in Table 8 on with bit  
functionality enabled by asserting the Enh input  
“low”.  
Direct Interface Mode  
Direct Interface Mode is selected by setting the  
Bmode input “high”.  
Counter control bits are set directly at the pins as  
shown in Table 7. In Direct Interface Mode, main  
counter inputs M7 and M8, and R Counter inputs  
R4 and R5 are internally forced low (“0”).  
Table 7. Primary Register Programming  
Interface  
Mode  
Smode  
R5  
R4  
M8  
M7  
M6  
M5  
M4  
M3  
M2  
M1  
M0  
R3  
R2  
R1  
R0  
A3  
A2  
A1  
A0  
Enh  
Bmode  
Pre_en  
M2_WR rising edge load  
M1_WR rising edge load  
A_WR rising edge load  
Parallel  
1
0
0
D3  
B0  
0
D2  
B1  
0
D1  
B2  
0
D0  
B3  
0
D7  
B4  
D6  
B5  
D5  
B6  
D4  
B7  
D3  
B8  
D2  
B9  
D1  
B10  
M1  
D0  
B11  
M0  
D7  
B12  
R3  
D6  
B13  
R2  
D5  
B14  
R1  
D4  
B15  
R0  
D3  
B16  
A3  
D2  
B17  
A2  
D1  
D0  
Serial*  
Direct  
1
1
0
1
1
B18 B19  
A1 A0  
X
Pre_en M6  
M5  
M4  
M3  
M2  
*Serial data clocked serially on Sclk rising edge while E_WR “low” and captured in secondary register on S_WR rising edge.  
MSB (first in)  
(last in) LSB  
Table 8. Enhancement Register Programming  
Interface  
Mode  
Power  
down  
Counter  
load  
MSEL  
output  
Prescaler  
output  
Smode  
Reserved  
Reserved  
Reserved  
fc, fp OE  
Enh  
Bmode  
E_WR rising edge load  
Parallel  
Serial*  
0
0
X
X
0
1
D7  
B0  
D6  
B1  
D5  
B2  
D4  
B3  
D3  
B4  
D2  
B5  
D1  
B6  
D0  
B7  
*Serial data clocked serially on Sclk rising edge while E_WR “high” and captured in the double buffer on E_WR falling edge.  
MSB (first in)  
(last in) LSB  
Document No. 70-0026-03 www.psemi.com  
©2003-2005 Peregrine Semiconductor Corp. All rights reserved.  
Page 9 of 15  
PE3236  
Product Specification  
Figure 5. Parallel Interface Mode Timing Diagram  
tDSU  
tDHLD  
[7: 0]  
D
tPW  
tCWR  
tWRC  
M1_WR  
M2_WR  
A_WR  
tPW  
E_WR  
Hop_WR  
Figure 6. Serial Interface Mode Timing Diagram  
Sdata  
E_WR  
tEC  
tCE  
Sclk  
S_WR  
tDSU  
tDHLD  
tClkH  
tClkL  
tCWR  
tPW  
tWRC  
©2003-2005 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0026-03 UltraCMOS™ RFIC Solutions  
Page 10 of 15  
PE3236  
Product Specification  
Enhancement Register  
The functions of the enhancement register bits are shown below with all bits active “high”.  
Table 9. Enhancement Register Bit Functionality  
Bit Function  
Description  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Reserved**  
Reserved**  
Reserved**  
Power down  
Counter load  
MSEL output  
Prescaler output  
fp, fc OE  
Power down of all functions except programming interface.  
Immediate and continuous load of counter programming as directed by the Bmode and Smode inputs.  
Drives the internal dual modulus prescaler modulus select (MSEL) onto the Dout output.  
Drives the raw internal prescaler output onto the Dout output.  
fp, fc outputs disabled.  
** Program to 0  
Phase Detector  
The phase detector is triggered by rising edges  
from the main Counter (fp) and the reference  
counter (fc). It has two outputs, namely PD_U,  
and PD_D. If the divided VCO leads the divided  
reference in phase or frequency (fp leads fc),  
PD_D pulses “low”. If the divided reference leads  
the divided VCO in phase or frequency (fc leads  
fp), PD_U pulses “low”. The width of either pulse  
is directly proportional to phase offset between the  
two input signals, fp and fc.  
A lock detect output, LD is also provided, via the  
pin Cext. Cext is the logical “NAND” of PD_U and  
PD_D waveforms, which is driven through a series  
2 kresistor. Connecting Cext to an external  
shunt capacitor provides integration. Cext also  
drives the input of an internal inverting comparator  
with an open drain output. Thus LD is an “AND”  
function of PD_U and PD_D.  
PD_U and PD_D drive an active loop filter which  
controls the VCO tune voltage. PD_U pulses  
result in an increase in VCO frequency and PD_D  
results in a decrease in VCO frequency.  
Document No. 70-0026-03 www.psemi.com  
©2003-2005 Peregrine Semiconductor Corp. All rights reserved.  
Page 11 of 15  
PE3236  
Product Specification  
Figure 7. PE3236 Typical Phase Noise vs. Offset (VDD = 3.0 V, Temp = 25° C)  
-60  
-70  
Frequency = 1915MHz.  
Reference Frequency = 10MHz.  
Loop Band Width = 40kHz.  
-80  
-90  
Comparison Frequency = 1MHz.  
-100  
-110  
-120  
100  
1000  
104  
105  
106  
Offset From Carrier (Hz.)  
Figure 8. PE3236 Typical Input Sensitivity vs. Frequency (VDD = 3.0 V, Temp = 25° C)  
10  
0
-10  
-20  
-30  
-40  
500  
1000  
1500  
2000  
Frequency (Hz.)  
©2003-2005 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0026-03 UltraCMOS™ RFIC Solutions  
Page 12 of 15  
PE3236  
Product Specification  
Handling Requirements  
All surface mount products which do not meet  
Level 1 moisture sensitivity requirements are  
processed through dry bake and pack procedure.  
The necessary data is recorded on the caution  
label of each shipment. The 44-lead PLCC  
package is moisture sensitivity Level 3.  
Level 3 Caution Label  
Level and Body temperature defined by:  
IPC/JEDEC-J-STD-020  
The caution label should contain the following  
information for Level 3 devices:  
1. Calculated shelf life in sealed bag: 12 months  
at <40 °C and <90% relative humidity (RH)  
For Dry Bake Procedures, see:  
IPC/JEDEC-J-STD-033  
2. Peak package body temperature is 225 °C.  
Operator must observe ESD precautions per  
ESD Control Procedure and Parts Handling and  
shipping Procedure.  
3. After bag is opened, devices that will be  
subjected to reflow solder or other high  
temperature process must  
a) Be mounted within 168 hours of factory  
conditions <30 °C/60% RH, or  
b) Be stored at <10% RH  
4. Devices require bake, before mounting, if:  
a) Humidity Indicator Card is > 10% when  
read at 23 ± 5 °C  
b) 3a or 3b are not met  
5. If baking is required, devices may be baked for  
48 hours at 125 +5/-0 °C  
Note: If device containers cannot be subjected to  
high temperature or shorter bake times are  
desired, reference IPC/JEDEC-J-STD-033 for  
bake procedure.  
Document No. 70-0026-03 www.psemi.com  
©2003-2005 Peregrine Semiconductor Corp. All rights reserved.  
Page 13 of 15  
PE3236  
Product Specification  
Figure 9. Package Drawing  
44-lead PLCC  
0.690±0.005  
0.653±0.003  
0.045 X 45°  
0.010 X 45°  
1*  
4*  
0.020 MIN.  
R0.025  
PIN 1  
SURFACE  
MOUNT  
POINT  
0.610 ±0.020  
2*  
3*  
A
DETAIL  
BOTTOM VIEW  
0.027 (WIDTH OF LEAD SLOT)  
*EJECT PIN POSITION  
0.070  
Ø0.040  
DIMENSIONS ARE IN INCHES  
TOLERANCES ARE ± 0.004  
50X 45°  
0.180 MAX.  
0.070  
0.004  
0.010  
SEE DETAIL A  
Table 10. Ordering Information  
Order Code  
3236-21  
Part Marking  
PE3236  
Description  
Package  
Shipping Method  
PE3236-44PLCC-27A  
44-lead PLCC  
44-lead PLCC  
44-lead PLCC  
27 units / Tube  
500 units / T&R  
1 / Box  
3236-22  
PE3236  
PE3236-44PLCC-500C  
3236-00  
PE3236EK  
PE3236-44PLCC-EVAL KIT  
©2003-2005 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0026-03 UltraCMOS™ RFIC Solutions  
Page 14 of 15  
PE3236  
Product Specification  
Sales Offices  
The Americas  
North Asia Pacific  
Peregrine Semiconductor Corporation  
Peregrine Semiconductor K.K.  
9450 Carroll Park Drive  
San Diego, CA 92121  
Tel: 858-731-9400  
Teikoku Hotel Tower 10B-6  
1-1-1 Uchisaiwai-cho, Chiyoda-ku  
Tokyo 100-0011 Japan  
Fax: 858-731-9499  
Tel: +81-3-3502-5211  
Fax: +81-3-3502-5213  
Europe  
Peregrine Semiconductor, Korea  
#B-2402, Kolon Tripolis, #210  
Geumgok-dong, Bundang-gu, Seongnam-si  
Gyeonggi-do, 463-480 S. Korea  
Tel: +82-31-728-4300  
Peregrine Semiconductor Europe  
Bâtiment Maine  
13-15 rue des Quatre Vents  
F-92380 Garches, France  
Tel: +33-1-47-41-91-73  
Fax : +33-1-47-41-91-73  
Fax: +82-31-728-4305  
South Asia Pacific  
Space and Defense Products  
Americas:  
Peregrine Semiconductor, China  
Shanghai, 200040, P.R. China  
Tel: +86-21-5836-8276  
Tel: 858-731-9453  
Fax: +86-21-5836-7652  
Europe, Asia Pacific:  
180 Rue Jean de Guiramand  
13852 Aix-En-Provence Cedex 3, France  
Tel: +33(0) 4 4239 3361  
Fax: +33(0) 4 4239 7227  
For a list of representatives in your area, please refer to our Web site at: www.psemi.com  
Data Sheet Identification  
Advance Information  
The information in this data sheet is believed to be reliable.  
However, Peregrine assumes no liability for the use of this  
information. Use shall be entirely at the user’s own risk.  
The product is in a formative or design stage. The data  
sheet contains design target specifications for product  
development. Specifications and features may change in  
any manner without notice.  
No patent rights or licenses to any circuits described in this  
data sheet are implied or granted to any third party.  
Preliminary Specification  
Peregrine’s products are not designed or intended for use in  
devices or systems intended for surgical implant, or in other  
applications intended to support or sustain life, or in any  
application in which the failure of the Peregrine product could  
create a situation in which personal injury or death might occur.  
Peregrine assumes no liability for damages, including  
consequential or incidental damages, arising out of the use of  
its products in such applications.  
The data sheet contains preliminary data. Additional data  
may be added at a later date. Peregrine reserves the right  
to change specifications at any time without notice in order  
to supply the best possible product.  
Product Specification  
The data sheet contains final data. In the event Peregrine  
decides to change the specifications, Peregrine will notify  
customers of the intended changes by issuing a DCN  
(Document Change Notice).  
The Peregrine name, logo, and UTSi are registered trademarks  
and UltraCMOS and HaRP are trademarks of Peregrine  
Semiconductor Corp.  
Document No. 70-0026-03 www.psemi.com  
©2003-2005 Peregrine Semiconductor Corp. All rights reserved.  
Page 15 of 15  

相关型号:

3236-22-D11-10

Card Edge Connector, 72 Contact(s), 2 Row(s), Straight, 0.156 inch Pitch, Solder Terminal, #4-40, Receptacle
ECS

3236-22-D11-20

Card Edge Connector, 72 Contact(s), 2 Row(s), Straight, 0.156 inch Pitch, Solder Terminal, #4-40, Receptacle
ECS

3236-22-D11-30

Card Edge Connector, 72 Contact(s), 2 Row(s), Straight, 0.156 inch Pitch, Solder Terminal, #4-40, Receptacle
ECS

3236-22-D21-10

Card Edge Connector, 72 Contact(s), 2 Row(s), Straight, 0.156 inch Pitch, Solder Terminal, #4-40, Receptacle
ECS

3236-22-D21-20

Card Edge Connector, 72 Contact(s), 2 Row(s), Straight, 0.156 inch Pitch, Solder Terminal, #4-40, Receptacle
ECS

3236-22-D21-30

Card Edge Connector, 72 Contact(s), 2 Row(s), Straight, 0.156 inch Pitch, Solder Terminal, #4-40, Receptacle
ECS

32360

Circular Connector, Receptacle
MOLEX

32360AL

Circular Connector
MOLEX

323676

WIRE TERMINAL PIDG, RING TONGUE
MACOM

323696

STRATO-THERM Terminals & Splices for High Temperature Applications
AIC

323698

STRATO-THERM Terminals & Splices for High Temperature Applications
AIC

3237

DIGITAL HiTESTER
ASM-SENSOR