3339-11 [PSEMI]

3.0 GHz Integer-N PLL for Low Phase Noise Applications; 3.0 GHz的整数N分频PLL的低相位噪声应用
3339-11
型号: 3339-11
厂家: Peregrine Semiconductor    Peregrine Semiconductor
描述:

3.0 GHz Integer-N PLL for Low Phase Noise Applications
3.0 GHz的整数N分频PLL的低相位噪声应用

文件: 总12页 (文件大小:143K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRODUCT SPECIFICATION  
PE3339  
3.0 GHz Integer-N PLL for Low  
Phase Noise Applications  
Product Description  
Peregrine’s PE3339 is a high performance integer-N PLL  
capable of frequency synthesis up to 3.0 GHz. The  
superior phase noise performance of the PE3339 makes  
it ideal for applications such as wireless local loop  
basestations, LMDS systems and other demanding  
terrestrial systems.  
Features  
3.0 GHz operation  
÷10/11 dual modulus prescaler  
Internal phase detector with  
charge pump  
Serial programmable  
Low power 23 mA at 3 V  
Ultra-low phase noise  
The PE3339 features a 10/11 dual modulus prescaler,  
counters, phase detector and a charge pump as shown  
in Figure 1. Counter values are programmable through a  
three wire serial interface.  
Available in 20-lead TSSOP  
Fabricated in Peregrine’s patented UTSi® (Ultra Thin  
Silicon) CMOS technology, the PE3339 offers excellent  
RF performance with the economy and integration of  
conventional CMOS.  
Figure 1. Block Diagram  
Fin  
Fin  
Prescaler  
10/11  
Main  
Counter  
13  
Primary  
20-bit  
Latch  
Secon-  
dary  
20-bit  
Latch  
PD_U  
Charge  
Pump  
Phase  
Detector  
20  
20  
20  
CP  
Sdata  
PD_D  
6
6
fr  
R Counter  
PEREGRINE SEMICONDUCTOR CORP. ® | http://www.psemi.com  
Copyright © Peregrine Semiconductor Corp. 2004  
Page 1 of 12  
PE3339  
Advance Information  
Figure 2. Pin Configuration  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VDD  
fr  
2
Enh  
GND  
N/C  
CP  
3
S_WR  
4
Sdata  
5
Sclk  
VDD  
Dout  
LD  
6
GND  
7
FSELS  
8
E_WR  
Cext  
GND  
9
VDD  
10  
Fin  
Fin  
Table 1. Pin Descriptions  
Pin No.  
Pin Name  
Type  
Description  
Power supply input. Input may range from 2.85 V to 3.15 V. Bypassing required.  
1
VDD  
(Note 1)  
Enhancement mode. When asserted low (“0”), enhancement register bits are functional. Internal 70 kpull-up  
resistor.  
2
Enh  
Input  
Serial load enable input. While S_WR is “low”, Sdata can be serially clocked. Primary register data are  
transferred to the secondary register on S_WR rising edge.  
3
4
5
6
7
S_WR  
Sdata  
Sclk  
Input  
Input  
Input  
Binary serial data input. Input data entered MSB first.  
Serial clock input. Sdata is clocked serially into the 20-bit primary register (E_WR “low”) or the 8-bit  
enhancement register (E_WR “high”) on the rising edge of Sclk.  
GND  
Ground.  
Selects contents of primary register (FSELS=1) or secondary register (FSELS=0) for programming of internal  
counters. Internal 70 kpull-down resistor.  
FSELS  
Input  
Input  
Enhancement register write enable. While E_WR is “high”, Sdata can be serially clocked into the enhancement  
register on the rising edge of Sclk. Internal 70 kpull-down resistor.  
8
E_WR  
9
VDD  
Fin  
(Note 1)  
Input  
Same as pin 1.  
10  
Prescaler input from the VCO. Max frequency input is 3.0 GHz.  
Prescaler complementary input. A bypass capacitor should be placed as close as possible to this pin and be  
connected in series with a 50 resistor to the ground plane.  
11  
12  
13  
Fin  
Input  
GND  
Cext  
Ground.  
Logical “NAND” of PD_U and PD_D terminated through an on chip, 2 kseries resistor. Connecting Cext to an  
external capacitor will low pass filter the input to the inverting amplifier used for driving LD.  
Output  
Output,  
OD  
Lock detect is an open drain logical inversion of CEXT. When the loop is in lock, LD is high impedance,  
otherwise LD is a logic low (“0”).  
14  
LD  
15  
16  
Dout  
VDD  
Output  
Data out function, Dout, enabled in enhancement mode.  
Same as pin 1.  
(Note 1)  
File No. 70/0048~02A | UTSi ® CMOS RFIC SOLUTIONS  
Copyright © Peregrine Semiconductor Corp. 2004  
Page 2 of 12  
PE3339  
Advance Information  
Pin No.  
Pin Name  
Type  
Output  
Output  
Description  
17  
18  
19  
20  
CP  
NC  
GND  
fr  
Charge pump current is sourced when fc leads fp and sinked when fc lags fp.  
No connection.  
Ground.  
Input  
Reference frequency input.  
Note 1: VDD pins 1, 9, and 16 are connected by diodes and must be supplied with the same positive voltage level.  
Table 2. Absolute Maximum Ratings  
Electrostatic Discharge (ESD) Precautions  
When handling this UTSi device, observe the same  
precautions that you would use with other ESD-  
sensitive devices. Although this device contains  
circuitry to protect it from damage due to ESD,  
precautions should be taken to avoid exceeding the  
rating specified in Table 4.  
Symbol  
Parameter/Conditions Min Max Units  
VDD  
VI  
Supply voltage  
-0.3  
-0.3  
4.0  
V
V
Voltage on any input  
VDD  
+ 0.3  
II  
DC into any input  
DC into any output  
-10  
-10  
-65  
+10  
+10  
150  
mA  
mA  
°C  
IO  
Tstg  
Storage temperature  
range  
Latch-Up Avoidance  
Unlike conventional CMOS devices, UTSi CMOS  
devices are immune to latch-up.  
Table 3. Operating Ratings  
Symbol  
Parameter/Conditions Min Max Units  
VDD  
TA  
Supply voltage  
2.85  
-40  
3.15  
85  
V
Operating ambient  
temperature range  
°C  
Table 4. ESD Ratings  
Symbol  
Parameter/Conditions  
Level Units  
1000  
VESD  
ESD voltage human body  
model (Note 1)  
V
Note 1: Periodically sampled, not 100% tested. Tested per MIL-  
STD-883, M3015 C2  
PEREGRINE SEMICONDUCTOR CORP. ® | http://www.psemi.com  
Copyright © Peregrine Semiconductor Corp. 2004  
Page 3 of 12  
PE3339  
Advance Information  
Table 5. DC Characteristics  
VDD = 3.0 V, -40° C < TA < 85° C, unless otherwise specified  
Symbol  
Parameter  
Operational supply current;  
Prescaler enabled  
Digital Inputs: S_WR, Sdata, Sclk  
Conditions  
Min  
Typ  
Max  
Units  
IDD  
VDD = 2.85 to 3.15 V  
23  
35  
mA  
VIH  
VIL  
IIH  
High level input voltage  
VDD = 2.85 to 3.15 V  
VDD = 2.85 to 3.15 V  
VIH = VDD = 3.15 V  
VIL = 0, VDD = 3.15 V  
0.7 x VDD  
V
V
Low level input voltage  
High level input current  
Low level input current  
0.3 x VDD  
+1  
µA  
µA  
IIL  
-1  
Digital Inputs: Enh (contains a 70 kpull-up resistor)  
VIH  
VIL  
IIH  
High level input voltage  
Low level input voltage  
High level input current  
Low level input current  
VDD = 2.85 to 3.15 V  
VDD = 2.85 to 3.15 V  
VIH = VDD = 3.15 V  
VIL = 0, VDD = 3.15 V  
0.7 x VDD  
V
V
0.3 x VDD  
+1  
µA  
µA  
IIL  
-100  
Digital Inputs: FSELS, E_WR (contains a 70 kpull-down resistor)  
VIH  
VIL  
IIH  
High level input voltage  
Low level input voltage  
High level input current  
Low level input current  
VDD = 2.85 to 3.15 V  
VDD = 2.85 to 3.15 V  
VIH = VDD = 3.15 V  
VIL = 0, VDD = 3.15 V  
0.7 x VDD  
V
V
0.3 x VDD  
+100  
µA  
µA  
IIL  
-1  
Reference Divider input: fr  
IIHR High level input current  
IILR Low level input current  
Counter output: Dout  
VIH = VDD = 3.15 V  
+100  
0.4  
µA  
µA  
VIL = 0, VDD = 3.15 V  
-100  
VOLD  
VOHD  
Output voltage LOW  
Output voltage HIGH  
Iout = 6 mA  
Iout = -3 mA  
V
V
VDD - 0.4  
VDD - 0.4  
Lock detect outputs: (Cext, LD)  
VOLC  
VOHC  
VOLLD  
Output voltage LOW, Cext  
Iout = 0.1 mA  
Iout = -0.1 mA  
Iout = 1 mA  
0.4  
0.4  
V
V
V
Output voltage HIGH, Cext  
Output voltage LOW, LD  
Charge Pump output: CP  
ICP – Source  
ICP – Sink  
ICPL  
Drive current  
VCP = VDD / 2  
-2.6  
1.4  
-1  
-2  
2
-1.4  
2.6  
1
mA  
mA  
µA  
%
Drive current  
VCP = VDD / 2  
Leakage current  
1.0 V < VCP < VDD – 1.0 V  
ICP – Source  
VS. ICP Sink  
Sink vs. source mismatch  
15  
VCP = VDD / 2, TA = 25° C  
ICP VS. VCP  
Output current magnitude variation vs. voltage  
1.0 V < VCP < VDD – 1.0 V TA  
15  
%
= 25° C  
File No. 70/0048~02A | UTSi ® CMOS RFIC SOLUTIONS  
Copyright © Peregrine Semiconductor Corp. 2004  
Page 4 of 12  
PE3339  
Advance Information  
Table 6. AC Characteristics  
VDD = 3.0 V, -40° C < TA < 85° C, unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Max  
Units  
Control Interface and Latches (see Figures 3, 4, 5)  
fClk  
tClkH  
tClkL  
tDSU  
tDHLD  
tPW  
Serial data clock frequency  
(Note 1)  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial clock HIGH time  
30  
30  
10  
10  
30  
30  
30  
30  
30  
Serial clock LOW time  
Sdata set-up time to Sclk rising edge  
Sdata hold time after Sclk rising edge  
S_WR pulse width  
tCWR  
tCE  
tWRC  
tEC  
Sclk rising edge to S_WR rising edge  
Sclk falling edge to E_WR transition  
S_WR falling edge to Sclk rising edge  
E_WR transition to Sclk rising edge  
Main Divider (Including Prescaler)  
Fin  
Operating frequency  
Input level range  
500  
-5  
3000  
5
MHz  
dBm  
PFin  
External AC coupling  
External AC coupling  
Main Divider (Prescaler Bypassed)  
Fin  
Operating frequency  
Input level range  
50  
-5  
300  
5
MHz  
dBm  
PFin  
Reference Divider  
fr  
Operating frequency  
(Note 3)  
100  
20  
MHz  
dBm  
Pfr  
Reference input power (Note 2)  
Single ended input  
-2  
Phase Detector  
fc  
Comparison frequency  
(Note 3)  
MHz  
SSB Phase Noise (Fin = 1.3 GHz, fr = 10 MHz, fc = 1.25 MHz, LBW = 70 kHz, VDD = 3.0 V, Temp = -40° C)  
100 Hz Offset  
1 kHz Offset  
-75  
-85  
dBc/Hz  
dBc/Hz  
Note 1: fclk is verified during the functional pattern test. Serial programming sections of the functional pattern are clocked at 10 MHz to verify fclk  
specification.  
Note 2: CMOS logic levels can be used to drive reference input if DC coupled. Voltage input needs to be a minimum of 0.5 Vp-p. For optimum phase  
noise performance, the reference input falling edge rate should be faster than 80mV/ns.  
Note 3: Parameter is guaranteed through characterization only and is not tested.  
PEREGRINE SEMICONDUCTOR CORP. ® | http://www.psemi.com  
Copyright © Peregrine Semiconductor Corp. 2004  
Page 5 of 12  
PE3339  
Advance Information  
Functional Description  
The PE3339 consists of a prescaler, counters, a  
phase detector, charge pump and control logic .  
The dual modulus prescaler divides the VCO  
frequency by either 10 or 11, depending on the  
value of the modulus select. Counters “R” and “M”  
divide the reference and prescaler output,  
respectively, by integer values stored in a 20-bit  
register. An additional counter (“A”) is used in the  
modulus select logic.  
The phase-frequency detector generates up and  
down frequency control signals which direct the  
charge pump operation. The control logic includes a  
selectable chip interface. Data is written into the  
internal registers via the three wire serial bus.  
There are also various operational and test modes  
and a lock detect output.  
Figure 3. Functional Block Diagram  
R Counter  
(6-bit)  
fr  
fc  
PD_U  
R(5:0)  
M(8:0)  
A(3:0)  
Sdata  
Phase  
Detector  
Control  
Logic  
Charge  
Pump  
CP  
PD_D  
Control  
Pins  
LD  
Cext  
Modulus  
Select  
Fin  
Fin  
10/11  
Prescaler  
M Counter  
(9-bit)  
fp  
File No. 70/0048~02A | UTSi ® CMOS RFIC SOLUTIONS  
Copyright © Peregrine Semiconductor Corp. 2004  
Page 6 of 12  
PE3339  
Advance Information  
Main Counter Chain  
Note that programming R with “0” will pass the  
reference frequency (fr) directly to the phase  
detector.  
Normal Operating Mode  
Setting the Pre_en control bit “low” enables the  
÷10/11 prescaler. The main counter chain then  
divides the RF input frequency (Fin) by an integer  
derived from the values in the “M” and “A” counters.  
Register Programming  
Serial Interface Mode  
In this mode, the output from the main counter  
chain (fp) is related to the VCO frequency (Fin) by  
the following equation:  
While the E_WR input is “low” and the S_WR input  
is “low”, serial input data (Sdata input), B0 to B19,  
are clocked serially into the primary register on the  
rising edge of Sclk, MSB (B0) first. The contents  
from the primary register are transferred into the  
secondary register on the rising edge of either  
S_WR according to the timing diagrams shown in  
Figure 4. Data are transferred to the counters as  
shown in Table 7 on page 9.  
fp = Fin / [10 x (M + 1) + A]  
(1)  
where A M + 1, 1 M 511  
When the loop is locked, Fin is related to the  
reference frequency (fr) by the following equation:  
Fin = [10 x (M + 1) + A] x (fr / (R+1))  
(2)  
where A M + 1, 1 M 511  
The double buffering provided by the primary and  
secondary registers allows for “ping-pong” counter  
control using the FSELS input. When FSELS is  
“high”, the primary register contents set the counter  
inputs. When FSELS is “low”, the secondary  
register contents are utilized.  
A consequence of the upper limit on A is that Fin  
must be greater than or equal to 90 x (fr / (R+1)) to  
obtain contiguous channels. The A counter can  
accept values as high as 15, but in typical operation  
it will cycle from 0 to 9 between increments in M.  
While the E_WR input is “high” and the S_WR input  
is “low”, serial input data (Sdata input), B0 to B7, are  
clocked serially into the enhancement register on  
the rising edge of Sclk, MSB (B0) first. The  
enhancement register is double buffered to prevent  
inadvertent control changes during serial loading,  
with buffer capture of the serially entered data  
performed on the falling edge of E_WR according to  
the timing diagram shown in Figure 4. After the  
falling edge of E_WR, the data provide control bits  
as shown in Table 8 on page 9 will have their bit  
functionality enabled by asserting the Enh input  
“low”.  
Programming the M counter with the minimum  
allowed value of “1” will result in a minimum M  
counter divide ratio of “2”.  
Prescaler Bypass Mode  
Setting the frequency control register bit Pre_en  
“high” allows Fin to bypass the ÷10/11 prescaler. In  
this mode, the prescaler and A counter are powered  
down, and the input VCO frequency is divided by  
the M counter directly. The following equation  
relates Fin to the reference frequency fr:  
Fin = (M + 1) x (fr / (R+1))  
(3)  
where 1 M 511  
Reference Counter  
The reference counter chain divides the reference  
frequency fr down to the phase detector comparison  
frequency fc.  
The output frequency of the 6-bit R Counter is  
related to the reference frequency by the following  
equation:  
fc = fr / (R + 1)  
(4)  
where 0 R 63  
PEREGRINE SEMICONDUCTOR CORP. ® | http://www.psemi.com  
Copyright © Peregrine Semiconductor Corp. 2004  
Page 7 of 12  
PE3339  
Advance Information  
Table 7. Primary Register Programming  
Interface Mode  
Enh  
R5  
R4  
M8  
M7 Pre_en M6  
B3 B4 B5  
M5  
M4  
M3  
M2  
M1  
M0  
R3  
R2  
R1  
R0  
A3  
A2  
A1  
A0  
Serial*  
1
B0  
B1  
B2  
B6  
B7  
B8  
B9  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
*Serial data clocked serially on Sclk rising edge while E_WR “low” and captured in secondary register on S_WR rising edge.  
MSB (first in)  
(last in) LSB  
Table 8. Enhancement Register Programming  
Interface  
Mode  
Power  
down  
Counter  
load  
MSEL  
output  
fc output  
Enh  
Reserved  
Reserved  
fp Output  
Reserved  
Serial*  
0
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
*Serial data clocked serially on Sclk rising edge while E_WR “high” and captured in the double buffer on E_WR falling edge.  
MSB (first in)  
(last in) LSB  
Figure 4. Serial Interface Mode Timing Diagram  
Sdata  
E_WR  
tEC  
tCE  
Sclk  
S_WR  
tDSU  
tDHLD  
tClkH  
tClkL  
tCWR  
tPW  
tWRC  
File No. 70/0048~02A | UTSi ® CMOS RFIC SOLUTIONS  
Copyright © Peregrine Semiconductor Corp. 2004  
Page 8 of 12  
PE3339  
Advance Information  
Enhancement Register  
The functions of the enhancement register bits are shown below with all bits active “high”.  
Table 9. Enhancement Register Bit Functionality  
Bit Function  
Reserved**  
Description  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Reserved**  
fp output  
Drives the M counter output onto the Dout output.  
Power down  
Counter load  
MSEL output  
fc output  
Power down of all functions except programming interface.  
Immediate and continuous load of counter programming.  
Drives the internal dual modulus prescaler modulus select (MSEL) onto the Dout output.  
Drives the reference counter output onto the Dout output  
Reserved**  
** Program to 0  
Phase Detector  
The phase detector is triggered by rising edges  
from the main Counter (fp) and the reference  
counter (fc). It has two outputs, namely PD_U, and  
PD_D. If the divided VCO leads the divided  
reference in phase or frequency (fp leads fc), PD_D  
pulses “low”. If the divided reference leads the  
divided VCO in phase or frequency (fc leads fp),  
PD_U pulses “low”. The width of either pulse is  
directly proportional to phase offset between the  
two input signals, fp and fc.  
current pulses from pin CP are low pass filtered  
externally and then connected to the VCO tune  
voltage. PD_U pulses result in a current source,  
which increases the VCO frequency and PD_D  
results in a current sink, which decreases VCO  
frequency when using a positive Kv VCO.  
A lock detect output, LD is also provided, via the pin  
Cext. Cext is the logical “NAND” of PD_U and  
PD_D waveforms, which is driven through a series  
2 kohm resistor. Connecting Cext to an external  
shunt capacitor provides low pass filtering of this  
signal. Cext also drives the input of an internal  
inverting comparator with an open drain output.  
Thus LD is an “AND” function of PD_U and PD_D.  
The signals from the phase detector couple directly  
to a charge pump. PD_U controls a current source  
at pin CP with constant amplitude and pulse  
duration approximately the same as PD_U. PD_D  
similarly drives a current sink at pin CP. The  
Figure 5. Typical PE3339 Loop Filter Application Example  
Charge  
Pump  
R
To VCO  
Tune  
C2  
C1  
PEREGRINE SEMICONDUCTOR CORP. ® | http://www.psemi.com  
Copyright © Peregrine Semiconductor Corp. 2004  
Page 9 of 12  
PE3339  
Advance Information  
Figure 6. Package Drawing  
20-lead TSSOP (JEDEC MO-153-AC)  
TOP VIEW  
0.65BSC  
20 19  
18 17 16 15 14 13 12 11  
12o REF  
3.20  
2X  
0.20  
R 0.90 MIN  
4.40±0.10  
Ø1.00±0.10  
R 0.90 MIN  
GAGE  
PLANE  
0o  
8o  
1.00  
12o REF  
0.25  
- B -  
+.15  
-.10  
1.0 REF  
0.60  
.20 C B A  
1
2
3
4
5
6
7
8
9
10  
1.00  
0.325  
- A -  
6.50±0.10  
0.90±0.05  
1.10 MAX  
- C -  
0.10  
C
0.30 MAX  
C B A  
0.10±0.05  
6.40  
0.10  
FRONT VIEW  
SIDE VIEW  
File No. 70/0048~02A | UTSi ® CMOS RFIC SOLUTIONS  
Copyright © Peregrine Semiconductor Corp. 2004  
Page 10 of 12  
PE3339  
Advance Information  
Table 10. Ordering Information  
Order  
Shipping  
Method  
Part Marking  
Code  
Description  
PE3339-20TSSOP-74A  
Package  
3339-11  
3339-12  
3339-00  
PE3339  
20-lead TSSOP  
20-lead TSSOP  
20-lead TSSOP  
74 units / Tube  
2000 units / T&R  
1 / Box  
PE3339  
PE3339-20TSSOP-200C  
PE3339EK  
PE3339-20TSSOP-EVAL KIT  
PEREGRINE SEMICONDUCTOR CORP. ® | http://www.psemi.com  
Copyright © Peregrine Semiconductor Corp. 2004  
Page 11 of 12  
PE3339  
Advance Information  
Sales Offices  
United States  
Japan  
Peregrine Semiconductor Corp.  
9450 Carroll Park Drive  
San Diego, CA 92121  
Peregrine Semiconductor K.K.  
5A-5, 5F Imperial Tower  
1-1-1 Uchisaiwaicho, Chiyoda-ku  
Tokyo 100-0011 Japan  
Tel 1-858-731-9400  
Fax 1-858-731-9499  
Tel: (+81)-03-3507-5755  
Fax: (+81)-03-3507-5601  
Europe  
Peregrine Semiconductor Europe  
Bâtiment Maine  
13-15 rue des Quatre Vents  
F- 92380 Garches France  
Tel (+33)-1-47-41-91-73  
Fax (+33)-1-47-41-91-73  
For a list of representatives in your area, please refer to our Web site at: http://www.psemi.com  
Data Sheet Identification  
Advance Information  
The information in this data sheet is believed to be  
reliable. However, Peregrine assumes no liability for the  
use of this information. Use shall be entirely at the  
user’s own risk.  
The product is in a formative or design stage. The data  
sheet contains design target specifications for product  
development. Specifications and features may change  
in any manner without notice.  
No patent rights or licenses to any circuits described in  
this data sheet are implied or granted to any third party.  
Preliminary Specification  
The data sheet contains preliminary data. Additional  
data may be added at a later date. Peregrine reserves  
the right to change specifications at any time without  
notice in order to supply the best possible product.  
Peregrine’s products are not designed or intended for  
use in devices or systems intended for surgical implant,  
or in other applications intended to support or sustain  
life, or in any application in which the failure of the  
Peregrine product could create a situation in which  
personal injury or death might occur. Peregrine  
assumes no liability for damages, including  
Product Specification  
The data sheet contains final data. In the event  
Peregrine decides to change the specifications,  
Peregrine will notify customers of the intended changes  
by issuing a DCN (Document Change Notice).  
consequential or incidental damages, arising out of the  
use of its products in such applications.  
Peregrine, the Peregrine logotype, Peregrine Semiconductor Corp.,  
and UTSi are registered trademarks of Peregrine Semiconductor Corporation.  
Copyright © 2004 Peregrine Semiconductor Corp. All rights reserved.  
File No. 70/0048~02A | UTSi ® CMOS RFIC SOLUTIONS  
Copyright © Peregrine Semiconductor Corp. 2004  
Page 12 of 12  

相关型号:

3339-12

3.0 GHz Integer-N PLL for Low Phase Noise Applications
PSEMI

33390

Class B Serial Transceiver
MOTOROLA

33390

Class B Serial Transceiver
FREESCALE

33391

General Purpose Inductor, 21.8uH, 12%, 1 Element,
VISHAY

33392

General Purpose Inductor, 27.6uH, 12%, 1 Element
VISHAY

33393

General Purpose Inductor, 34.1uH, 12%, 1 Element,
VISHAY

33394

Switch Mode Power Supply with Multiple Linear Regulators and High Speed CAN Transcelver
FREESCALE

33395

Three-Phase Gate Driver IC
FREESCALE

33395T

Three-Phase Gate Driver IC
FREESCALE

33396

General Purpose Inductor, 57.7uH, 12%, 1 Element,
VISHAY

33397

General Purpose Inductor, 66.9uH, 12%, 1 Element,
VISHAY

33398

General Purpose Inductor, 76.8uH, 12%, 1 Element,
VISHAY