9601-00 [PSEMI]

2200 MHz UltraCMOS? Integer-N PLL for Rad Hard Applications; 2200兆赫UltraCMOS⑩整数N分频PLL,抗辐射应用
9601-00
型号: 9601-00
厂家: Peregrine Semiconductor    Peregrine Semiconductor
描述:

2200 MHz UltraCMOS? Integer-N PLL for Rad Hard Applications
2200兆赫UltraCMOS⑩整数N分频PLL,抗辐射应用

文件: 总14页 (文件大小:257K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Product Specification  
PE9601  
2200 MHz UltraCMOS™ Integer-N PLL  
for Rad Hard Applications  
Product Description  
Features  
2200 MHz operation  
Peregrine’s PE9601 is a high performance integer-N PLL  
capable of frequency synthesis up to 2200 MHz. The device  
is designed for superior phase noise performance while  
providing an order of magnitude reduction in current  
consumption, when compared with existing commercial  
space PLLs.  
10/11 prescaler  
Internal phase detector with charge  
pump  
Serial, parallel or hardwired  
The PE9601 features a 10/11 dual modulus prescaler,  
counters and a phase comparator as shown in Figure 1.  
Counter values are programmable through either a serial or  
parallel interface and can also be directly hard wired.  
programmable  
Low power – 25 mA at 3 V  
Targeted at Q3236 PLL replacement  
100 Krad total dose  
The PE9601 is optimized for commercial space applications.  
Single Event Latch up (SEL) is physically impossible and  
Single Event Upset (SEU) is better than 10-9 errors per bit/  
day. Fabricated in Peregrine’s UltraCMOSprocess  
technology, the PE9601 offers excellent RF performance and  
intrinsic radiation tolerance.  
44-lead CQFJ  
Figure 2. Package Type  
44-lead CQFJ  
Figure 1. Block Diagram  
Fin  
Fin  
Prescaler  
10/11  
Main  
fp  
Counter  
13  
D(7:0)  
8
Sdata  
Primary  
20-bit  
Secon-  
dary  
PD_U  
Charge  
Pump  
Phase  
20  
20  
20  
Latch  
CP  
20-bit  
Latch  
20  
16  
Detector  
PD_D  
Pre_en  
M(6:0)  
A(3:0)  
R(3:0)  
6
6
fr  
R Counter  
fc  
Document No. 70-0025-05 www.psemi.com  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Page 1 of 14  
PE9601  
Product Specification  
Figure 3. Pin Configuration  
6
5
4
3
2
1
44 43 42 41 40  
D0, M0  
D1, M1  
fc  
V
7
8
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
DD_fc  
D2, M2  
N/C  
CP  
9
D3, M3  
10  
11  
12  
13  
14  
15  
16  
17  
VDD  
VDD  
Cext  
VDD  
Dout  
VDD_fp  
fp  
VDD  
S_WR, D4, M4  
Sdata, D5, M5  
Sclk, D6, M6  
FSELS, D7, Pre_en  
GND  
GND  
18 19 20 21 22 23 24 25 26 27 28  
Table 1. Pin Descriptions  
Pin No.  
Pin Name  
Interface Mode  
ALL  
Type  
Description  
Power supply input. Input may range from 2.85 V to 3.15 V. Bypassing  
recommended.  
1
VDD  
(Note 1)  
2
3
4
5
6
R0  
Direct  
Direct  
Direct  
Direct  
ALL  
Input  
R Counter bit0 (LSB).  
R Counter bit1.  
R1  
Input  
R2  
Input  
R Counter bit2.  
R3  
Input  
R Counter bit3.  
GND  
D0  
(Note 1)  
Input  
Ground.  
Parallel  
Direct  
Parallel  
Direct  
Parallel  
Direct  
Parallel  
Direct  
ALL  
Parallel data bus bit0 (LSB).  
M Counter bit0 (LSB).  
Parallel data bus bit1.  
M Counter bit1.  
7
8
M0  
D1  
Input  
Input  
M1  
D2  
Input  
9
Input  
Parallel data bus bit2.  
M Counter bit2.  
M2  
D3  
Input  
10  
Input  
Parallel data bus bit3.  
M Counter bit3.  
M3  
VDD  
VDD  
Input  
11  
12  
(Note 1)  
(Note 1)  
Same as pin 1.  
ALL  
Same as pin 1.  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0025-05 UltraCMOS™ RFIC Solutions  
Page 2 of 14  
PE9601  
Product Specification  
Table 1. Pin Descriptions (continued)  
Pin No.  
Pin Name  
Interface Mode  
Type  
Description  
Serial load enable input. While S_WR is “low”, Sdata can be serially clocked.  
Primary register data are transferred to the secondary register on S_WR or  
Hop_WR rising edge.  
S_WR  
Serial  
Input  
13  
D4  
Parallel  
Direct  
Input  
Input  
Parallel data bus bit4  
M Counter bit4  
M4  
Sdata  
D5  
Serial  
Input  
Input  
Input  
Binary serial data input. Input data entered MSB first.  
Parallel data bus bit5.  
14  
15  
Parallel  
Direct  
M5  
M Counter bit5.  
Serial clock input. Sdata is clocked serially into the 20-bit primary register (E_WR  
“low”) or the 8-bit enhancement register (E_WR “high”) on the rising edge of Sclk.  
Sclk  
Serial  
Input  
D6  
Parallel  
Direct  
Input  
Input  
Parallel data bus bit6.  
M Counter bit6.  
M6  
Selects contents of primary register (FSELS=1) or secondary register (FSELS=0)  
for programming of internal counters while in Serial Interface Mode.  
FSELS  
Serial  
Input  
16  
D7  
Parallel  
Direct  
ALL  
Input  
Input  
Parallel data bus bit7 (MSB).  
Pre_en  
GND  
Prescaler enable, active “low”. When “high”, Fin bypasses the prescaler.  
Ground.  
17  
18  
Selects contents of primary register (FSELP=1) or secondary register (FSELP=0)  
for programming of internal counters while in Parallel Interface Mode.  
FSELP  
A0  
Parallel  
Direct  
Serial  
Input  
Input  
Input  
A Counter bit0 (LSB).  
Enhancement register write enable. While E_WR is “high”, Sdata can be serially  
clocked into the enhancement register on the rising edge of Sclk.  
E_WR  
Enhancement register write. D[7:0] are latched into the enhancement register on  
the rising edge of E_WR.  
19  
Parallel  
Direct  
Input  
Input  
Input  
Input  
Input  
A1  
A Counter bit1.  
M2 write. D[3:0] are latched into the primary register (R[5:4], M[8:7]) on the rising  
edge of M2_WR.  
M2_WR  
A2  
Parallel  
Direct  
20  
21  
A Counter bit2.  
Selects serial bus interface mode (Bmode=0, Smode=1) or Parallel Interface Mode  
(Bmode=0, Smode=0).  
Smode  
Serial, Parallel  
A3  
Direct  
ALL  
Input  
A Counter bit3 (MSB).  
22  
23  
Bmode  
VDD  
Input  
Selects direct interface mode (Bmode=1).  
Same as pin 1.  
ALL  
(Note 1)  
M1 write. D[7:0] are latched into the primary register (Pre_en, M[6:0]) on the rising  
24  
25  
26  
27  
M1_WR  
A_WR  
Hop_WR  
Fin  
Parallel  
Input  
Input  
Input  
Input  
Input  
edge of M1_WR.  
A write. D[7:0] are latched into the primary register (R[3:0], A[3:0]) on the rising  
edge of A_WR.  
Parallel  
Hop write. The contents of the primary register are latched into the secondary  
register on the rising edge of Hop_WR.  
Serial, Parallel  
ALL  
Prescaler input from the VCO. Input voltage = 223 mV RMS for guaranteed  
operation.  
Prescaler complementary input. A bypass capacitor should be placed as close as  
possible to this pin and be connected directly to the ground plane.  
28  
29  
Fin  
ALL  
ALL  
GND  
Ground.  
Document No. 70-0025-05 www.psemi.com  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Page 3 of 14  
PE9601  
Product Specification  
Table 1. Pin Descriptions (continued)  
Pin No.  
Pin Name  
fp  
Interface Mode  
ALL  
Type  
Output  
Description  
Monitor pin for main divider output. Switching activity can be disabled through  
enhancement register programming or by floating or grounding VDD pin 31.  
30  
31  
32  
33  
VDD-fp  
Dout  
VDD  
ALL  
(Note 2)  
Output  
VDD for fp.  
Data Out. The MSEL signal and the raw prescaler output are available on Dout  
through enhancement register programming.  
Serial, Parallel  
ALL  
(Note 1)  
Same as pin 1.  
Logical “OR” of PD_U and PD_D terminated through an on chip, 2 kW series  
resistor. Connecting Cext to an external capacitor will low pass filter the input to the  
inverting amplifier used for driving LD.  
34  
Cext  
ALL  
Output  
35  
36  
VDD  
CP  
ALL  
ALL  
(Note 1)  
Output  
Same as pin 1.  
Charge pump current is sourced for “up” when fc leads fp and sinked for “down”  
when fc lags fp.  
37  
38  
NC  
ALL  
ALL  
No connection.  
VDD for fc  
VDD-fc  
(Note 2)  
Output  
Monitor pin for reference divider output. Switching activity can be disabled through  
enhancement register programming or by floating or grounding VDD pin 38.  
39  
fc  
ALL  
40  
41  
42  
GND  
GND  
fr  
ALL  
ALL  
ALL  
Ground.  
Ground.  
Input  
Reference frequency input. See Figure 4.  
Output,  
OD  
Lock detect and open drain logical inversion of Cext. When the loop is in lock, LD  
is high impedance, otherwise LD is a logic low (“0”).  
43  
44  
LD  
ALL  
Enhancement mode. When asserted low (“0”), enhancement register bits are  
functional.  
Enh  
Serial, Parallel  
Input  
Note 1: VDD pins 1, 11, 12, 23, 33, and 35 are connected by diodes and must be supplied with the same positive voltage level.  
Note 2: VDD pins 31 and 38 are used to enable test modes and should be left floating.  
Note 3: All digital input pins have 70k ohm pull-down resistors to ground.  
Figure 4. Looking into the device PIN 42 - fr  
PIN 42  
2.8pF  
125K  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0025-05 UltraCMOS™ RFIC Solutions  
Page 4 of 14  
PE9601  
Product Specification  
Table 2. Absolute Maximum Ratings  
Table 4. ESD Ratings  
Symbol  
Parameter/Conditions  
Level  
Units  
Symbol  
Parameter/Conditions Min Max Units  
VESD  
ESD voltage (Human Body  
Model) – Note 1  
1000  
V
VDD  
Supply voltage  
-0.3  
4.0  
V
VI  
Voltage on any input  
-0.3  
VDD  
0.3  
+
V
Note 1: Periodically sampled, not 100% tested. Tested per MIL-  
STD-883, M3015 C2  
II  
DC into any input  
-10  
-10  
-65  
+10  
+10  
150  
mA  
mA  
°C  
Electrostatic Discharge (ESD) Precautions  
IO  
DC into any output  
When handling this UTSi device, observe the  
same precautions that you would use with other  
ESD-sensitive devices. Although this device  
contains circuitry to protect it from damage due to  
ESD, precautions should be taken to avoid  
exceeding the rating specified in Table 4.  
Tstg  
Storage temperature range  
Absolute Maximum Ratings are those values  
listed in the above table. Exceeding these values  
may cause permanent device damage.  
Functional operation should be restricted to the  
limits in the DC Electrical Specifications table.  
Exposure to absolute maximum ratings for  
extended periods may affect device reliability.  
Latch-Up Avoidance  
Unlike conventional CMOS devices, UltraCMOS™  
devices are immune to latch-up.  
Table 3. Operating Ratings  
Symbol  
Parameter/Conditions  
Min Max Units  
VDD  
Supply voltage  
2.85  
3.15  
V
TA  
Operating ambient  
temperature range  
-40  
85  
°C  
Document No. 70-0025-05 www.psemi.com  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Page 5 of 14  
PE9601  
Product Specification  
Table 5. DC Characteristics  
VDD = 3.0 V, -40° C < TA < 85° C, unless otherwise specified  
Symbol  
Parameter  
Test Program Name  
Conditions  
Min  
Typ  
Max  
Units  
IDD  
Operational supply current;  
IDD_T_oper_at_2 GHz  
VDD = 2.85 to 3.15 V  
Prescaler enabled 2 GHz  
center frequency with 10  
MHz reference input.  
24  
mA  
Digital Inputs: All except fr, R0, Fin, Fin  
VIH  
VIL  
IIH  
High level input voltage  
Low level input voltage  
High level input current  
LEVELS_”xxx”_VIH(V)  
where “xxx” is name of pin  
being tested  
VDD = 2.85 to 3.15 V  
0.7 x VDD  
V
V
LEVELS_”xxx”_VIL(V)  
where “xxx” is name of pin  
being tested  
V
DD = 2.85 to 3.15 V  
0.3 x VDD  
+100  
IIH_”xxx”_(A) where “xxx”  
is name of pin being  
tested  
VIH = VDD = 3.15 V  
µA  
(Pull-down resistor on  
input)  
IIL  
Low level input current  
IIL_”xxx”_(A) where “xxx”  
is name of pin being  
tested  
VIL = 0, VDD = 3.15 V  
-1  
µA  
Reference Divider input: fr  
IIHR High level input current  
IILR Low level input current  
R0 Input (Pull-up Resistor): R0  
IIHR High level input current  
IIH_FR_(A)  
IIL_FR_(A)  
VIH = VDD = 3.15 V  
+50  
µA  
µA  
VIL = 0, VDD = 3.15 V  
-50  
IIH_R0_(A)  
IIL_R0_(A)  
VIH = VDD = 3.15 V  
+100  
µA  
µA  
(Pull-down resistor on  
input)  
IILR  
Low level input current  
VIL = 0, VDD = 3.15 V  
Iout = 6 mA  
-3  
Counter and phase detector outputs: fc, fp.  
VOLD  
Output voltage LOW  
LEVELS_”xxx”_VOL(V)  
where “xxx” is name of pin  
being tested  
0.4  
V
V
VOHD  
Output voltage HIGH  
LEVELS_”xxx”_VOH(V)  
where “xxx” is name of pin  
being tested  
I
out = -3 mA  
VDD - 0.4  
Lock detect outputs: Cext, LD  
VOLC  
VOHC  
VOLLD  
Output voltage LOW, Cext  
LEVELS_CEXT_VOL(V)  
LEVELS_CEXT_VOH(V)  
LEVELS_ LD_VOL(V)  
Iout = 0.1 mA  
Iout = -0.1 mA  
Iout = 6 mA  
0.4  
0.4  
V
V
V
Output voltage HIGH, Cext  
Output voltage LOW, LD  
VDD - 0.4  
Charge Pump output: CP  
I
CP - Source  
Drive current  
Drive current  
Leakage current  
CP_src_at_0.5 VDD (A)  
CP_snk_at_0.5 VDD (A)  
CP_lkg_PD_DX (A)  
VCP = VDD / 2  
VCP = VDD / 2  
-2.6  
1.4  
-1  
-2  
2
-1.4  
2.6  
1
mA  
mA  
µA  
I
CP – Sink  
ICPL  
1.0 V < VCP < VDD  
1.0 V  
ICP – Source  
vs. ICP Sink  
Sink vs. source mismatch  
CP_srcvsnk_at_0.5 VDD  
V
CP = VDD / 2,  
25  
25  
%
%
TA = 25° C  
ICP vs. VCP  
Output current magnitude  
variation vs. voltage  
CP_snk_var,  
CP_src_var  
1.0V < VCP < VDD –  
1.0 V TA = 25° C  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0025-05 UltraCMOS™ RFIC Solutions  
Page 6 of 14  
PE9601  
Product Specification  
Table 6. AC Characteristics  
VDD = 3.0 V, -40° C < TA < 85° C, unless otherwise specified  
Symbol  
Parameter  
Test Program Name  
Conditions  
Min  
Max  
Units  
Control Interface and Latches (see Figure 5 and Figure 6)  
fClk  
tClkH  
tClkL  
tDSU  
Serial data clock frequency  
Serial clock HIGH time  
Serial clock LOW time  
(Note 1)  
10  
MHz  
ns  
t_clk_H (s)  
t_clk_L (s)  
30  
30  
10  
ns  
Sdata set-up time after Sclk rising  
edge, D[7:0] set-up time to  
M1_WR, M2_WR, A_WR, E_WR  
rising edge  
t_dsu_”xxx” (s) where  
“xxx” is name of pin being  
tested  
ns  
tDHLD  
Sdata hold time after Sclk rising  
edge, D[7:0] hold time to M1_WR,  
M2_WR, A_WR rising edge  
t_dhid_”xxx” (s) where  
“xxx” is name of pin being  
tested  
10  
30  
30  
ns  
ns  
ns  
tPW  
S_WR, M1_WR, M2_WR, A_WR,  
E_WR pulse width  
t_pw_”xxx” (s) where “xxx”  
is name of pin being  
tested  
tCWR  
Sclk rising edge to S_WR rising  
edge. S_WR, M1_WR, M2_WR,  
A_WR falling edge to Hop_WR  
rising edge  
t_cwr_”xxx” (s) where  
“xxx” is name of pin being  
tested  
tCE  
Sclk falling edge to E_WR  
transition  
t_ce (s)  
30  
30  
ns  
ns  
tWRC  
S_WR falling edge to Sclk rising  
edge. Hop_WR falling edge to  
S_WR, M1_WR, M2_WR, A_WR  
rising edge  
t_wrc_”xxx” (s) where  
“xxx” is name of pin being  
tested  
tEC  
E_WR transition to Sclk rising  
edge  
t_ec (s)  
30  
ns  
Main Divider (Including Prescaler)  
Fin  
Operating frequency  
Input level range  
RF_sens  
RF_sens  
200  
0
2200  
5
MHz  
dBm  
PFin  
External AC coupling  
External AC coupling  
Main Divider (Prescaler Bypassed)  
Fin  
Operating frequency  
Input level range  
20  
-5  
220  
5
MHz  
dBm  
PFin  
Reference Divider  
fr  
Operating frequency  
Fc_sens  
Fc_sens  
(Note 3)  
100  
MHz  
dBm  
Pfr  
Reference input power (Note 2)  
Single ended input  
-2  
Phase Detector  
fc  
Comparison frequency  
(Note 3)  
20  
MHz  
Note 1: Fclk is verified during the functional pattern test. Serial programming sections of the functional pattern are clocked at 10 MHz to verify Fclk  
specification.  
Note 2: CMOS logic levels can be used to drive reference input if DC coupled. Voltage input needs to be a minimum of 0.5Vp-p  
.
Note 3: Parameter is guaranteed through characterization only and is not tested.  
Document No. 70-0025-05 www.psemi.com  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Page 7 of 14  
PE9601  
Product Specification  
Functional Description  
The PE9601 consists of a prescaler, counters, a  
phase detector, a charge pump and control logic.  
The dual modulus prescaler divides the VCO  
frequency by either 10 or 11, depending on the  
value of the modulus select. Counters “R” and “M”  
divide the reference and prescaler output,  
respectively, by integer values stored in a 20-bit  
register. An additional counter (“A”) is used in the  
modulus select logic. The phase-frequency  
detector generates up and down frequency control  
signals, which are implemented as a pulse width  
modulated current by the charge pump. The  
control logic includes a selectable chip interface.  
Data can be written via serial bus, parallel bus, or  
hardwired direct to the pins. There are also  
various operational and test modes and lock  
detect.  
Figure 5. Functional Block Diagram  
R Counter  
(6-bit)  
fr  
fc  
PD_U  
D(7:0)  
Sdata  
R(5:0)  
M(8:0)  
A(3:0)  
Phase  
Detector  
Control  
Logic  
Charge  
Pump  
PD_D  
C
Control  
Pins  
LD  
Cext  
2 k  
Modulus  
Select  
Fin  
Fin  
10/11  
Prescaler  
M Counter  
(9-bit)  
fp  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0025-05 UltraCMOS™ RFIC Solutions  
Page 8 of 14  
PE9601  
Product Specification  
Main Counter Chain  
Parallel input data, D[7:0], are latched in a parallel  
fashion into one of three, 8-bit primary register  
sections on the rising edge of M1_WR, M2_WR, or  
A_WR per the mapping shown in Table 7 on page  
10. The contents of the primary register are  
transferred into a secondary register on the rising  
edge of Hop_WR according to the timing diagram  
shown in Figure 6. Data are transferred to the  
counters as shown in Table 7 on page 10.  
The main counter chain divides the RF input  
frequency, Fin, by an integer derived from the user  
defined values in the “M” and “A” counters. It is  
composed of the 10/11 dual modulus prescaler,  
modulus select logic, and 9 bit M counter. Setting  
Pre_en “low” enables the 10/11 prescaler. Setting  
Pre_en “high” allows Fin to bypass the prescaler and  
powers down the prescaler.  
The secondary register acts as a buffer to allow  
rapid changes to the VCO frequency. This double  
buffering for “ping-pong” counter control is  
programmed via the FSELP input. When FSELP is  
“high”, the primary register contents set the counter  
inputs. When FSELP is “low”, the secondary register  
contents are utilized.  
The output from the main counter chain, fp, is related  
to the VCO frequency, Fin, by the following equation:  
fp = Fin / [10 x (M + 1) + A]  
(1)  
where A M + 1, M ¹ 0  
When the loop is locked, Fin is related to the  
reference frequency, fr, by the following equation:  
The FSELP input is synchronized with the loading of  
the counters in order to minimize glitches in the  
“ping-pong” case. Due to this attribute, applications  
using a single register should use the secondary  
register (i.e. tie FSELP “low”) to avoid problems with  
the prescaler powering up in the disabled state.  
Fin = [10 x (M + 1) + A] x (fr / (R+1))  
(2)  
where A M + 1, M ¹ 0  
A consequence of the upper limit on A is that Fin  
must be greater than or equal to 90 x (fr / (R+1)) to  
obtain contiguous channels. Programming the M  
Counter with the minimum value of “1” will result in a  
minimum M Counter divide ratio of “2”.  
Parallel input data, D[7:0], are latched into the  
enhancement register on the rising edge of E_WR  
according to the timing diagram shown in Figure 6.  
This data provides control bits as shown in Table 8  
on page 10 with bit functionality enabled by  
asserting the Enh input “low”.  
In Direct Interface Mode, main counter inputs M7 and  
M8 are internally forced low.  
Reference Counter  
Direct Interface Mode  
The reference counter chain divides the reference  
frequency, fr, down to the phase detector  
comparison frequency, fc.  
Direct Interface Mode is selected by setting the  
Bmode input “high”.  
The output frequency of the 6 bit R Counter is  
related to the reference frequency by the following  
equation:  
Counter control bits are set directly at the pins as  
shown in Table 7. In Direct Interface Mode, main  
counter inputs M7 and M8, and R Counter inputs R4  
and R5 are internally forced low (“0”)  
fc = fr / (R + 1)  
where R > 0  
(3)  
Serial Interface Mode  
Serial Interface Mode is selected by setting the  
Bmode input “low” and the Smode input “high”.  
Note that programming R equal to “0” will pass the  
reference frequency, fr, directly to the phase  
detector.  
While the E_WR input is “low” and the S_WR input  
is “low”, serial input data (Sdata input), B0 to B19, are  
clocked serially into the primary register on the rising  
edge of Sclk, MSB (B0) first. The contents from the  
primary register are transferred into the secondary  
register on the rising edge of either S_WR or  
Hop_WR according to the timing diagram shown in  
Figure 6 and Figure 7. Data are transferred to the  
counters as shown in Table 7 on page 10.  
In Direct Interface Mode, R Counter inputs R4 and R5  
are internally forced low (“0”).  
Register Programming  
Parallel Interface Mode  
Parallel Interface Mode is selected by setting the  
Bmode input “low” and the Smode input “low”.  
Document No. 70-0025-05 www.psemi.com  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Page 9 of 14  
PE9601  
Product Specification  
The double buffering provided by the primary and  
secondary registers allows for “ping-pong” counter  
control using the FSELS input. When FSELS is  
“high”, the primary register contents set the  
counter inputs. When FSELS is “low”, the  
secondary register contents are utilized.  
The enhancement register is double buffered to  
prevent inadvertent control changes during serial  
loading, with buffer capture of the serially entered  
data performed on the falling edge of E_WR  
according to the timing diagram shown in Figure  
7. After the falling edge of E_WR, the data  
provide control bits as shown in Table 8 with bit  
functionality enabled by asserting the Enh input  
“low”.  
While the E_WR input is “high” and the S_WR  
input is “low”, serial input data (Sdata input), B0 to  
B7, are clocked serially into the enhancement  
register on the rising edge of Sclk, MSB (B0) first.  
Table 7. Primary Register Programming  
Interface  
Mode  
Enh  
Bmode Smode  
R5  
R4  
M8  
M7 Pre_en M6  
M5  
M4  
M3  
M2  
M1  
M0  
R3  
R2  
R1  
R0  
A3  
A2  
A1  
A0  
Parallel  
1
0
0
M2_WR rising edge load  
M1_WR rising edge load  
A_WR rising edge load  
D3  
B0  
0
D2  
B1  
0
D1  
B2  
0
D0  
B3  
0
D7  
B4  
D6  
B5  
D5  
B6  
M5  
D4  
B7  
M4  
D3  
B8  
M3  
D2  
B9  
M2  
D1  
B10  
M1  
D0  
B11  
M0  
D7  
B12  
R3  
D6  
B13  
R2  
D5  
B14  
R1  
D4  
B15  
R0  
D3  
B16  
A3  
D2  
B17  
A2  
D1  
D0  
Serial*  
Direct  
1
1
0
1
1
B18 B19  
A1 A0  
X
Pre_en M6  
*Serial data clocked serially on Sclk rising edge while E_WR “low” and captured in secondary register on S_WR rising edge.  
MSB (first in)  
(last in) LSB  
Table 8. Enhancement Register Programming  
Interface  
Mode  
Power  
down  
Counter  
load  
MSEL  
output  
Prescaler  
output  
Enh  
Bmode Smode  
Reserved  
Reserved  
Reserved  
fc, fp OE  
E_WR rising edge load  
Parallel  
Serial*  
0
0
X
X
0
1
D7  
B0  
D6  
B1  
D5  
B2  
D4  
D3  
D2  
B5  
D1  
B6  
D0  
B7  
B3  
B4  
*Serial data clocked serially on Sclk rising edge while E_WR “high” and captured in the double buffer on E_WR falling edge.  
MSB (first in)  
(last in) LSB  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0025-05 UltraCMOS™ RFIC Solutions  
Page 10 of 14  
PE9601  
Product Specification  
Figure 6. Parallel Interface Mode Timing Diagram  
tDSU  
tDHLD  
D 7 : 0  
[ ]  
tPW  
tCWR  
tWRC  
M1_WR  
M2_WR  
A_WR  
tPW  
E_WR  
Hop_WR  
Figure 7. Serial Interface Mode Timing Diagram  
Sdata  
E_WR  
tEC  
tCE  
Sclk  
S_WR  
tDSU  
tDHLD  
tClkH  
tClkL  
tCWR  
tPW  
tWRC  
Document No. 70-0025-05 www.psemi.com  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Page 11 of 14  
PE9601  
Product Specification  
Enhancement Register  
The functions of the enhancement register bits are shown below with all bits active “high”.  
Table 9. Enhancement Register Bit Functionality  
Bit Function  
Reserved**  
Description  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Reserved**  
Reserved**  
Power down  
Counter load  
Power down of all functions except programming interface.  
Immediate and continuous load of counter programming as directed by the Bmode and  
Bit 5  
Bit 6  
Bit 7  
MSEL output  
Prescaler output  
fp, fc OE  
Drives the internal dual modulus prescaler modulus select (MSEL) onto the Dout output.  
Drives the raw internal prescaler output (fmain) onto the Dout output.  
fp, fc outputs disabled.  
** Program to 0  
Phase Detector  
The phase detector is triggered by rising edges  
from the main Counter (fp) and the reference  
counter (fc). It has two outputs, namely PD_U,  
and PD_D. If the divided VCO leads the divided  
reference in phase or frequency (fp leads fc),  
PD_D pulses “high”. If the divided reference leads  
the divided VCO in phase or frequency (fr leads  
fp), PD_U pulses “high”. The width of either pulse  
is directly proportional to phase offset between the  
two input signals, fp and fc.  
The current pulses from pin CP are low pass fil-  
tered externally and then connected to the VCO  
tune voltage. PD_U pulses result in a current  
source, which increases the VCO frequency and  
PD_D results in a current sink, which decreases  
VCO frequency.  
A lock detect output, LD is also provided, via the  
pin Cext. Cext is the logical “OR” of PD_U and  
PD_D waveforms, which is driven through a series  
2 k ohm resistor. Connecting Cext to an external  
shunt capacitor provides integration. Cext also  
drives the input of an internal inverting comparator  
with an open drain output. Thus LD is an “NOR”  
function of PD_U and PD_D.  
The signals from the phase detector couple di-  
rectly to a charge pump. PD_U controls a current  
source at pin CP with constant amplitude and  
pulse duration approximately the same as PD_U.  
PD_D similarly drives a current sink at pin CP.  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0025-05 UltraCMOS™ RFIC Solutions  
Page 12 of 14  
PE9601  
Product Specification  
Figure 8. Package Drawing  
44-lead CQFJ  
All dimensions are in mils  
Table 10. Ordering Information  
Order Code  
9601-01  
Part Marking  
PE9601  
Description  
Engineering Samples  
Package  
44-pin CQFJ  
Shipping Method  
40 units / Tray  
40 units / Tray  
1 / Box  
9601-11  
PE9601  
Flight Units  
44-pin CQFJ  
9601-00  
PE9601EK  
Evaluation Board  
Document No. 70-0025-05 www.psemi.com  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Page 13 of 14  
PE9601  
Product Specification  
Sales Offices  
The Americas  
North Asia Pacific  
Peregrine Semiconductor Corp.  
9450 Carroll Park Drive  
San Diego, CA 92121  
Peregrine Semiconductor K.K.  
5A-5, 5F Imperial Tower  
1-1-1 Uchisaiwaicho, Chiyoda-ku  
Tokyo 100-0011 Japan  
Tel 858-731-9400  
Fax 858-731-9499  
Tel: +81-3-3502-5211  
Fax: +81-3-3502-5213  
Europe  
South Asia Pacific  
Peregrine Semiconductor Europe  
Commercial Products:  
Bâtiment Maine  
13-15 rue des Quatre Vents  
F- 92380 Garches, France  
Tel: +33-1-47-41-91-73  
Peregrine Semiconductor  
28G, Times Square,  
No. 500 Zhangyang Road,  
Shanghai, 200122, P.R. China  
Tel: +86-21-5836-8276  
Fax: +86-21-5836-7652  
Fax : +33-1-47-41-91-73  
Space and Defense Products:  
180 Rue Jean de Guiramand  
13852 Aix-En-Provence cedex 3, France  
Tel: +33(0) 4 4239 3361  
Fax: +33(0) 4 4239 7227  
For a list of representatives in your area, please refer to our Web site at: www.psemi.com  
Data Sheet Identification  
Advance Information  
The information in this data sheet is believed to be reliable.  
However, Peregrine assumes no liability for the use of this  
information. Use shall be entirely at the user’s own risk.  
The product is in a formative or design stage. The data  
sheet contains design target specifications for product  
development. Specifications and features may change in  
any manner without notice.  
No patent rights or licenses to any circuits described in this  
data sheet are implied or granted to any third party.  
Preliminary Specification  
Peregrine’s products are not designed or intended for use in  
devices or systems intended for surgical implant, or in other  
applications intended to support or sustain life, or in any  
application in which the failure of the Peregrine product could  
create a situation in which personal injury or death might occur.  
Peregrine assumes no liability for damages, including  
consequential or incidental damages, arising out of the use of  
its products in such applications.  
The data sheet contains preliminary data. Additional data  
may be added at a later date. Peregrine reserves the right  
to change specifications at any time without notice in order  
to supply the best possible product.  
Product Specification  
The data sheet contains final data. In the event Peregrine  
decides to change the specifications, Peregrine will notify  
customers of the intended changes by issuing a DCN  
(Document Change Notice).  
The Peregrine name, logo, and UTSi are registered trademarks  
and UltraCMOS is a trademark of Peregrine Semiconductor  
Corp.  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0025-05 UltraCMOS™ RFIC Solutions  
Page 14 of 14  

相关型号:

9601-01

2200 MHz UltraCMOS? Integer-N PLL for Rad Hard Applications
PSEMI

9601-11

2200 MHz UltraCMOS? Integer-N PLL for Rad Hard Applications
PSEMI

9601-36

PLUGS AND CABLES
ETRI

9601-36/36

PLUGS AND CABLES
ETRI

9601-36/3M

PLUGS AND CABLES
ETRI

9601-36/60

PLUGS AND CABLES
ETRI

9601-36/90

PLUGS AND CABLES
ETRI

9601-43

METAL FINGER GUARDS
ETRI

9601-E3-01-10

Board Connector
ECS

9601-K1-02-80-PP

Board Connector
ECS

960102-6203-AR

2 CONTACT(S), FEMALE, STRAIGHT TWO PART BOARD CONNECTOR, SOLDER, SOCKET, ROHS COMPLIANT
3M

960102-6302-AR

2 CONTACT(S), FEMALE, STRAIGHT TWO PART BOARD CONNECTOR, SOLDER, SOCKET, ROHS COMPLIANT
3M