PE9704EK [PSEMI]

3.0 GHz Integer-N PLL for Rad Hard Apllications; 3.0 GHz的整数N分频PLL,抗辐射Apllications
PE9704EK
型号: PE9704EK
厂家: Peregrine Semiconductor    Peregrine Semiconductor
描述:

3.0 GHz Integer-N PLL for Rad Hard Apllications
3.0 GHz的整数N分频PLL,抗辐射Apllications

文件: 总11页 (文件大小:251K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADVANCE INFORMATION  
PE9704  
3.0 GHz Integer-N PLL for Rad  
Product Description  
Hard Applications  
Peregrine’s PE9704 is a high-performance integer-N PLL  
capable of frequency synthesis up to 3.0 GHz. The  
device is designed for superior phase noise performance  
while providing an order of magnitude reduction in  
current consumption, when compared with existing  
commercial space PLLs.  
Features  
3.0 GHz operation  
÷10/11 dual modulus prescaler  
Phase detector output  
Serial interface or hardwired  
programmable  
The PE9704 features a ÷10/11 dual modulus prescaler,  
counters, and a phase comparator as shown in Figure 1.  
Counter values are programmable through a serial  
interface, and can also be directly hard wired.  
Ultra-low phase noise  
SEU < 10-9 errors / bit-day  
100 Krad (Si) total dose  
44-lead CQFJ  
The PE9704 is optimized for commercial space  
applications. Single Event Latch-up (SEL) is physically  
impossible and Single Event Upset (SEU) is better than  
10-9 errors per bit / day. Fabricated in Peregrine’s  
patented UTSi® (Ultra Thin Silicon) CMOS technology,  
the PE9704 offers excellent RF performance and intrinsic  
radiation tolerance.  
Figure 1. Block Diagram  
Prescaler  
FIN  
Main  
10 / 11  
Counter  
13  
MSEL  
20-Bit  
fp  
Frequency  
Register  
Serial  
PD_U  
PD_D  
Phase  
Control  
3
Detector  
20  
19*  
fc  
M(8:0)  
A(3:0)  
R(5:0)  
Direct  
LD  
Control  
6
6
C ext  
FR  
R Counter  
* prescaler bypass not available in Direct mode  
PEREGRINE SEMICONDUCTOR CORP. | http://www.peregrine-semi.com  
Copyright Peregrine Semiconductor Corp. 2003  
Page 1 of 12  
PE9704  
Advance Information  
Figure 2. Pin Configuration  
6
5
4
3
2
1
44 43 42 41 40  
R4  
R5  
7
8
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
CEXT  
VDD  
M0  
PD_U  
PD_D  
GND  
N/C  
9
M1  
10  
11  
12  
13  
14  
15  
16  
17  
VDD  
VDD  
M2  
VDD  
M3  
DOUT  
VDD  
S_WR, M4  
DATA, M5  
GND  
N/C  
GND  
18 19 20 21 22 23 24 25 26 27 28  
Table 1. Pin Descriptions  
Pin No.  
Pin Name  
Interface Mode  
Type  
Description  
Power supply input. Input may range from 2.85 V to 3.15 V. Bypassing  
recommended.  
1
VDD  
Both  
(Note 1)  
2
R0  
Direct  
Direct  
Direct  
Direct  
Both  
Input  
R Counter bit0  
R Counter bit1  
R Counter bit2  
R Counter bit3  
Ground  
3
R1  
Input  
4
R2  
Input  
5
R3  
Input  
6
GND  
R4  
(Note 1)  
Input  
7
Direct  
Direct  
Direct  
Direct  
Both  
R Counter bit4  
R Counter bit5 (MSB)  
M Counter bit0  
M Counter bit1  
Same as pin 1  
Same as pin 1  
M Counter bit2  
M Counter bit3  
8
R5  
Input  
9
M0  
M1  
VDD  
VDD  
M2  
M3  
Input  
10  
11  
12  
13  
14  
Input  
(Note 1)  
(Note 1)  
Input  
Both  
Direct  
Direct  
Input  
Frequency register load enable input. Buffered data is transferred to the frequency  
register on S_WR rising edge.  
S_WR  
M4  
Serial  
Direct  
Input  
Input  
15  
16  
M Counter bit4  
Binary serial data input. Data is entered LSB first, and is clocked serially into the 20-  
bit frequency control register (E_WR “low”) or the 8-bit enhancement register (E_WR  
“high”) on the rising edge of CLOCK.  
DATA  
Serial  
Input  
File No. 70/0083~00B | | UTSi CMOS RFIC SOLUTIONS  
Copyright Peregrine Semiconductor Corp. 2003  
Page 2 of 12  
PE9704  
Advance Information  
Pin No.  
Pin Name  
Interface Mode  
Type  
Description  
M5  
Direct  
Both  
Input  
M Counter bit5  
Ground  
17  
GND  
Clock input. Data is clocked serially into either the 20-bit primary register (E_WR  
“low”) or the 8-bit enhancement register (E_WR “high”) on the rising edge of CLOCK.  
CLOCK  
Serial  
Input  
18  
M6  
Direct  
Direct  
Direct  
Direct  
Both  
Input  
M Counter bit6  
19  
20  
21  
22  
23  
M7  
Input  
M Counter bit7  
M8  
Input  
M Counter bit8 (MSB)  
A0  
Input  
A Counter bit0  
DMODE  
VDD  
Input  
Selects direct interface mode (DMODE=1) or serial interface mode (DMODE=0)  
Same as pin 1  
Both  
(Note 1)  
Enhancement register write enable. While E_WR is “high”, DATA can be serially  
clocked into the enhancement register on the rising edge of CLOCK.  
E_WR  
Serial  
Input  
24  
A1  
Direct  
Direct  
Direct  
Both  
Input  
Input  
Input  
Input  
A Counter bit1.  
25  
26  
27  
28  
29  
30  
31  
A2  
A Counter bit2  
A3  
A Counter bit3 (MSB)  
FIN  
RF prescaler input from the VCO. 3.0 GHz maximum frequency.  
GND  
GND  
N/C  
VDD  
Both  
Ground.  
Both  
Ground.  
No connect.  
Same as pin 1  
Both  
Serial  
Both  
(Note 1)  
Output  
Data Out. The Main Counter output, R Counter output, or dual modulus prescaler  
select (MSEL) can be routed to DOUT through enhancement register programming.  
32  
DOUT  
33  
34  
35  
36  
37  
38  
VDD  
(Note 1)  
Same as pin 1  
N/C  
No connect.  
GND  
PD_D  
PD_U  
VDD  
Both  
Both  
Both  
Both  
Ground.  
Output  
PD_D pulses down when fp leads fc.  
PD_U pulses down when fc leads fp.  
Same as pin 1  
(Note 1)  
Output  
Logical “NAND” of PD_U and PD_D, passed through an on-chip, 2 kseries resistor.  
Connecting CEXT to an external capacitor will low pass filter the input to the inverting  
amplifier used for driving LD.  
39  
CEXT  
Both  
40  
41  
42  
GND  
GND  
FR  
Both  
Both  
Both  
Ground  
Ground  
Input  
Reference frequency input  
Enhancement mode. When asserted low (“0”), enhancement register bits are  
functional.  
43  
44  
ENH  
Both  
Output, OD  
Lock detect output, the open-drain logical inversion of CEXT. When the loop is locked,  
LD is high impedance; otherwise LD is a logic low (“0”).  
LD  
Serial  
Output  
Note 1: VDD pins 1, 11, 12, 23, 31, 33, 35, and 38 are connected by diodes and must be supplied with the same positive voltage level.  
Note 2: All digital input pins have 70 kpull-down resistors to ground.  
PEREGRINE SEMICONDUCTOR CORP. | http://www.peregrine-semi.com  
Copyright Peregrine Semiconductor Corp. 2003  
Page 3 of 12  
PE9704  
Advance Information  
Table 2. Absolute Maximum Ratings  
Electrostatic Discharge (ESD) Precautions  
When handling this UTSi device, observe the same  
precautions that you would use with other ESD-  
sensitive devices. Although this device contains  
circuitry to protect it from damage due to ESD,  
precautions should be taken to avoid exceeding the  
rating specified in Table 4.  
Symbol  
Parameter/Conditions Min Max Units  
VDD  
VI  
Supply voltage  
Voltage on any input  
-0.3  
-0.3  
4.0  
V
V
VDD  
+ 0.3  
II  
IO  
Tstg  
DC into any input  
DC into any output  
Storage temperature  
range  
-10  
-10  
-65  
+10  
+10  
150  
mA  
mA  
°C  
Latch-Up Avoidance  
Unlike conventional CMOS devices, UTSi CMOS  
Table 3. Operating Ratings  
devices are immune to latch-up.  
Symbol  
Parameter/Conditions Min Max Units  
VDD  
TA  
Supply voltage  
Operating ambient  
temperature range  
2.85  
-40  
3.15  
85  
V
°C  
Table 4. ESD Ratings  
Symbol  
Parameter/Conditions  
Level Units  
VESD  
ESD voltage (Human Body  
Model) – Note 1  
1000  
V
Note 1: Periodically sampled, not 100% tested. Tested per MIL-  
STD-883, M3015 C2  
File No. 70/0083~00B | | UTSi CMOS RFIC SOLUTIONS  
Copyright Peregrine Semiconductor Corp. 2003  
Page 4 of 12  
PE9704  
Advance Information  
Table 5. DC Characteristics  
VDD = 3.0 V, -40° C < TA < 85° C, unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
IDD  
Operational supply current;  
Prescaler disabled  
Prescaler enabled  
VDD = 2.85 to 3.15 V  
10  
24  
mA  
mA  
31  
Digital Inputs: All except FR, FIN (all digital inputs have 70k ohm pull-up resistors)  
VIH  
VIL  
IIH  
High level input voltage  
Low level input voltage  
High level input current  
Low level input current  
VDD = 2.85 to 3.15 V  
VDD = 2.85 to 3.15 V  
VIH = VDD = 3.15 V  
VIL = 0, VDD = 3.15 V  
0.7 x VDD  
V
V
0.3 x VDD  
+70  
µA  
µA  
IIL  
-1  
Reference Divider input: FR  
IIHR High level input current  
IILR Low level input current  
Counter and phase detector outputs: fc, fp.  
VIH = VDD = 3.15 V  
+100  
0.4  
µA  
µA  
VIL = 0, VDD = 3.15 V  
-100  
VOLD  
VOHD  
Output voltage LOW  
Output voltage HIGH  
Iout = 6 mA  
Iout = -3 mA  
V
V
VDD - 0.4  
VDD - 0.4  
Lock detect outputs: CEXT, LD  
VOLC  
VOHC  
VOLLD  
Output voltage LOW, CEXT  
Output voltage HIGH, CEXT  
Output voltage LOW, LD  
Iout = 100 µ  
Iout = -100 µ  
Iout = 6 mA  
0.4  
0.4  
V
V
V
PEREGRINE SEMICONDUCTOR CORP. | http://www.peregrine-semi.com  
Copyright Peregrine Semiconductor Corp. 2003  
Page 5 of 12  
PE9704  
Advance Information  
Table 6. AC Characteristics  
VDD = 3.0 V, -40° C < TA < 85° C, unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Max  
Units  
Control Interface and Latches (see Figures 1and 3)  
fClk  
tClkH  
tClkL  
tDSU  
tDHLD  
tPW  
tCWR  
tCE  
tWRC  
tEC  
CLOCK Serial data clock frequency  
CLOCK Serial clock HIGH time  
CLOCK Serial clock LOW time  
(Note 1)  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
30  
30  
10  
10  
30  
30  
30  
30  
30  
DATA set-up time after CLOCK rising edge  
DATA hold time after CLOCK rising edge  
S_WR pulse width  
CLOCK rising edge to S_WR rising edge.  
CLOCK falling edge to E_WR transition  
S_WR falling edge to CLOCK rising edge.  
E_WR transition to CLOCK rising edge  
MSEL data out delay after FIN rising edge  
tMDO  
CL = 12 pf  
8
Main Divider (Including Prescaler)  
FIN  
PFin  
Operating frequency  
Input level range  
500  
-5  
3000  
5
MHz  
dBm  
External AC coupling  
External AC coupling  
Main Divider (Prescaler Bypassed)  
FIN  
PFin  
Operating frequency  
Input level range  
50  
-5  
300  
5
MHz  
dBm  
Reference Divider  
FR  
PFr  
Operating frequency  
Reference input power (Note 2)  
(Note 3)  
Single-ended input  
100  
MHz  
dBm  
-2  
Phase Detector  
fc  
Comparison frequency  
(Note 3)  
20  
MHz  
Note 1: Fclk is verified during the functional pattern test. Serial programming sections of the functional pattern are clocked at 10 MHz to verify Fclk  
specification.  
Note 2: CMOS logic levels can be used to drive reference input if DC coupled. Voltage input needs to be a minimum of 0.5Vp-p  
.
Note 3: Parameter is guaranteed through characterization only and is not tested.  
File No. 70/0083~00B | | UTSi CMOS RFIC SOLUTIONS  
Copyright Peregrine Semiconductor Corp. 2003  
Page 6 of 12  
PE9704  
Advance Information  
Functional Description  
The PE9704 consists of a prescaler, counters, a  
phase detector, and control logic. The dual  
modulus prescaler divides the VCO frequency by  
either 10 or 11, depending on the value of the  
modulus select. Counters “R” and “M” divide the  
reference and prescaler output, respectively, by  
integer values stored in a 20-bit register. An  
additional counter (“A”) is used in the modulus  
select logic. The phase-frequency detector  
generates up and down frequency control signals.  
The control logic includes a selectable chip  
interface. Data can be written via a serial bus or  
hardwired directly to the pins. There are also  
various operational and test modes and a lock  
detect output.  
Prescaler Bypass Mode  
Setting the frequency control register bit PB “high”  
allows FIN to bypass the ÷10/11 prescaler. In this  
mode, the prescaler and A counter are powered  
down, and the input VCO frequency is divided by  
the M counter directly. This mode is only available  
when using the serial port to set the frequency  
control bits. The following equation relates FIN to  
the reference frequency FR:  
FIN = (M + 1) x (FR / (R+1)) )  
(3)  
where 1 M 511  
Reference Counter  
The reference counter chain divides the reference  
frequency FR down to the phase detector  
comparison frequency fc.  
The output frequency of the 6-bit R Counter is  
related to the reference frequency by the following  
equation:  
Main Counter Chain  
Normal Operating Mode  
Setting the PB control bit “low” enables the ÷10/11  
prescaler. The main counter chain then divides the  
RF input frequency (FIN) by an integer derived from  
the values in the “M” and “A” counters.  
In this mode, the output from the main counter  
chain (fp) is related to the VCO frequency (FIN) by  
the following equation:  
fc = FR / (R + 1)  
(4)  
where 0 R 63  
Note that programming R with “0” will pass the  
reference frequency (FR) directly to the phase  
detector.  
fp = FIN / [10 x (M + 1) + A]  
(1)  
where A M + 1, 1 M 511  
When the loop is locked, FIN is related to the  
reference frequency (FR) by the following equation:  
FIN = [10 x (M + 1) + A] x (FR / (R+1))  
(2)  
where A M + 1, 1 M 511  
A consequence of the upper limit on A is that FIN  
must be greater than or equal to 90 x (FR / (R+1)) to  
obtain contiguous channels. The A counter can  
accept values as high as 15, but in typical operation  
it will cycle from 0 to 9 between increments in M.  
Programming the M counter with the minimum  
allowed value of “1” will result in a minimum M  
counter divide ratio of “2”.  
PEREGRINE SEMICONDUCTOR CORP. | http://www.peregrine-semi.com  
Copyright Peregrine Semiconductor Corp. 2003  
Page 7 of 12  
PE9704  
Advance Information  
Register Programming  
Serial Interface Mode  
contents from this buffer register are transferred into  
the enhancement register on the falling edge of  
E_WR according to the timing diagram shown in  
Figure 3. After the falling edge of E_WR, the data  
provides control bits as shown in Table 8. These  
bits are active when the Enh input is “low”.  
Serial Interface Mode is selected by setting the  
DMODE input “low”.  
While the E_WR input is “low”, serial data (DATA  
input), B0 to B19, is clocked into a buffer register on  
the rising edge of CLOCK, LSB (B0) first. The  
contents from this buffer register are transferred into  
the frequency control register on the rising edge of  
S_WR according to the timing diagram shown in  
Figure 3. This data controls the counters as shown  
in Table 7.  
While the E_WR input is “high”, serial data (DATA  
input), B0 to B7, is clocked into a buffer register on  
the rising edge of CLOCK, LSB (B0) first. The  
Direct Interface Mode  
Direct Interface Mode is selected by setting the  
D
MODE input “high”. In this mode, the counter values  
are set directly at external pins as shown in Table 7  
and Figure 2. All frequency control register bits are  
addressable except PB (it is not possible to bypass  
the ÷10/11 dual modulus prescaler in Direct Mode).  
Table 7. Frequency Register Programming  
Interface  
Enh  
DMODE  
R5  
B0  
R5  
R4  
B1  
R4  
M8  
B2  
M7  
B3  
PB  
B4  
0
M6  
B5  
M5  
B6  
M4  
B7  
M3  
B8  
M2  
B9  
M1  
B10  
M1  
M0  
B11  
M0  
R3  
B12  
R3  
R2  
B13  
R2  
R1  
B14  
R1  
R0  
B15  
R0  
A3  
B16  
A3  
A2  
B17  
A2  
A1  
B18 B19  
A1 A0  
A0  
Mode  
Serial*  
1
0
1
Direct  
1
M8  
M7  
M6  
M5  
M4  
M3  
M2  
* Data is clocked serially on CLOCK rising edge while E_WR is “low” and transferred to frequency register on S_WR rising edge.  
LSB (first in)  
MSB (last in)  
Table 8. Enhancement Register Programming  
Interface  
Power  
down  
Counter  
load  
MSEL  
fc output  
Enh  
DMODE  
Reserved*  
Reserved*  
fp output  
Reserved*  
B7  
Mode  
output  
Serial**  
0
X
B0  
B1  
B2  
B3  
B4  
B5  
B6  
* Program to 0  
* Data is clocked serially on CLOCK rising edge while E_WR is “low” and transferred to frequency register on S_WR rising edge.  
LSB (first in)  
MSB (last in)  
File No. 70/0083~00B | | UTSi CMOS RFIC SOLUTIONS  
Copyright Peregrine Semiconductor Corp. 2003  
Page 8 of 12  
PE9704  
Advance Information  
Figure 3. Serial Interface Mode Timing Diagram  
DATA  
E_WR  
tEC  
tCE  
CLOCK  
S_WR  
tDSU  
tDHLD  
tClkH  
tClkL  
tCWR  
tPW  
tWRC  
Enhancement Register  
The functions of the enhancement register bits are shown below. All bits are active high. Operation is  
undefined if more than one output is sent to DOUT  
.
Table 9. Enhancement Register Bit Functionality  
Bit Function  
Description  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Reserved**  
Reserved**  
fp output  
Drives the M counter output onto the DOUT output.  
Power down  
Counter load  
MSEL output  
fc output  
Power down of all functions except programming interface.  
Immediate and continuous load of counter programming.  
Drives the internal dual modulus prescaler modulus select (MSEL) onto the DOUT output.  
Drives the R counter output onto the DOUT output  
Reserved**  
** Program to 0  
PEREGRINE SEMICONDUCTOR CORP. | http://www.peregrine-semi.com  
Copyright Peregrine Semiconductor Corp. 2003  
Page 9 of 12  
PE9704  
Advance Information  
Phase Detector Outputs  
Lock Detect Output  
The phase detector is triggered by rising edges  
from the main counter (fp) and the reference counter  
(fc). It has two outputs, PD_U, and PD_D. If the  
divided VCO leads the divided reference in phase  
or frequency (fp leads fc), PD_D pulses “low”. If the  
divided reference leads the divided VCO in phase  
or frequency (fc leads fp), PD_U pulses “low”. The  
width of either pulse is directly proportional to phase  
offset between the two input signals, fp and fc. The  
phase detector gain is 430 mV / radian.  
PD_U and PD_D are designed to drive an active  
loop filter which controls the VCO tune voltage.  
PD_U pulses result in an increase in VCO  
frequency and PD_D results in a decrease in VCO  
frequency.  
A lock detect signal is provided at pin LD, via the  
pin CEXT (see Figure 1). CEXT is the logical “NAND”  
of PD_U and PD_D waveforms, driven through a  
series 2k ohm resistor. Connecting CEXT to an  
external shunt capacitor provides integration of this  
signal.  
The CEXT signal is then sent to the LD pin through  
an internal inverting comparator with an open drain  
output. Thus LD is an “AND” function of PD_U and  
PD_D.  
Software tools for designing the active loop filter  
can be found at Peregrine’s web site  
(www.peregrine-semi.com).  
File No. 70/0083~00B | | UTSi CMOS RFIC SOLUTIONS  
Copyright Peregrine Semiconductor Corp. 2003  
Page 10 of 12  
PE9704  
Advance Information  
Figure 4. Package Drawing  
44-lead CQFJ  
All dimensions are in mils  
Table 10. Ordering Information  
Order  
Shipping  
Method  
Part Marking  
Description  
Package  
Code  
9704-01  
9704-11  
9704-00  
PE9704 ES  
PE9704  
PE9704 EK  
Engineering Samples  
Flight Units  
Evaluation Kit  
44-pin CQFJ  
44-pin CQFJ  
40 units / Tray  
40 units / Tray  
1 / Box  
PEREGRINE SEMICONDUCTOR CORP. | http://www.peregrine-semi.com  
Copyright Peregrine Semiconductor Corp. 2003  
Page 11 of 12  

相关型号:

PE9704ES

3.0 GHz Integer-N PLL for Rad Hard Apllications
PSEMI

PE9704_06

3000 MHz UltraCMOS™ Integer-N PLL Rad Hard for Space Applications
PSEMI

PE9705

Mini UHF Male to FME Plug Adapter
PASTERNACK

PE9706

FME PLUG TO MINI UHF MALE RITGT ANGLE
PASTERNACK

PE9707

SMA Male to FME Jack Adapter
PASTERNACK

PE9708

SMA Female to FME Jack Adapter
PASTERNACK

PE9709

FME JACK TO MINI UHF MALE
PASTERNACK

PE9710

Mini UHF Female to FME Jack Adapter
PASTERNACK

PE9711

FME Jack to BNC Male Adapter
PASTERNACK

PE9712

FME Jack to BNC Female Adapter
PASTERNACK

PE9713

TNC Male to FME Jack Adapter
PASTERNACK

PE9714

TNC Female to FME Jack Adapter
PASTERNACK