HYB18T1G160BC-2.5 [QIMONDA]

1-Gbit Double-Data-Rate-Two SDRAM; 1千兆位双数据速率- SDRAM双
HYB18T1G160BC-2.5
型号: HYB18T1G160BC-2.5
厂家: QIMONDA AG    QIMONDA AG
描述:

1-Gbit Double-Data-Rate-Two SDRAM
1千兆位双数据速率- SDRAM双

动态存储器
文件: 总74页 (文件大小:4044K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
July 2007  
HY[B/I]18T1G400B[F/C](L)  
HY[B/I]18T1G800B[F/C](L)  
HY[B/I]18T1G16[0/7]B[F/C](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
DDR2 SDRAM  
RoHS Compliant Products  
Internet Data Sheet  
Rev. 1.3  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
HY[B/I]18T1G400B[F/C](L), HY[B/I]18T1G16[0/7]B[F/C](L/V), HY[B/I]18T1G800B[F/C](L)  
Revision History: 2007-07, Rev. 1.3  
Page  
Subjects (major changes since last revision)  
All  
Adapted internet edition  
Added PG-TFBGA-92  
HYB18T1G167BF-3.7, HYB18T1G167BF-3S, HYB18T1G167BF-3, HYB18T1G167BF-2.5,  
HYB18T1G167BF-25F, HYB18T1G160BFV-3.7, HYB18T1G160BFV-3S  
Previous Revision: 2007-05, Rev. 1.2  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
techdoc@qimonda.com  
qag_techdoc_rev400 / 3.2 QAG / 2006-07-21  
03062006-ZNH8-HURV  
2
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
1
Overview  
This chapter gives an overview of the 1-Gbit Double-Data-Rate-Two SDRAM product family and describes its main  
characteristics.  
1.1  
Features  
The 1-Gbit Double-data-Rate SDRAM offers the following key features:  
1.8 V ± 0.1 V Power Supply  
Off-Chip-Driver impedance adjustment (OCD) and On-  
Die-Termination (ODT) for better signal quality  
Auto-Precharge operation for read and write bursts  
Auto-Refresh, Self-Refresh and power saving Power-  
Down modes  
Average Refresh Period 7.8 µs at a TCASE lower than  
85 °C, 3.9 µs between 85 °C and 95 °C  
Programmable self refresh rate via EMRS2 setting  
Programmable partial array refresh via EMRS2 settings  
DCC enabling via EMRS2 setting  
1.8 V ± 0.1 V (SSTL_18) compatible I/O  
DRAM organizations with 4, 8 and 16 data in/outputs  
Double Data Rate architecture: two data transfers per  
clock cycle four internal banks for concurrent operation  
Programmable CAS Latency: 3, 4, 5 and 6  
Programmable Burst Length: 4 and 8  
Differential clock inputs (CK and CK)  
Bi-directional, differential data strobes (DQS and DQS) are  
transmitted / received with data. Edge aligned with read  
data and center-aligned with write data  
DLL aligns DQ and DQS transitions with clock  
DQS can be disabled for single-ended data strobe  
operation  
Commands entered on each positive clock edge, data and  
data mask are referenced to both edges of DQS  
Data masks (DM) for write data  
Posted CAS by programmable additive latency for better  
command and data bus efficiency  
Full and reduced Strength Data-Output Drivers  
1K page size for ×4 & ×8, 2K page size for ×16  
Package: P(G)-TFBGA-68 , P(G)-TFBGA-84  
and PG-TFBGA-92  
RoHS Compliant Products1)  
All Speed grades faster than DDR2–400 comply with  
DDR2–400 timing specifications when run at a clock rate  
of 200 MHz.  
TABLE 1  
Performance Tables for –2.5(F)  
Product Type Speed Code  
Speed Grade  
–2.5F  
–2.5  
Unit  
DDR2–800D 5–5–5  
DDR2–800E 6–6–6  
Max. Clock Frequency  
@CL6 fCK6 400  
@CL5 fCK5 400  
400  
333  
266  
200  
15  
MHz  
MHz  
MHz  
MHz  
ns  
@CL4 fCK4 266  
@CL3 fCK3 200  
tRCD 12.5  
Min. RAS-CAS-Delay  
Min. Row Precharge Time  
Min. Row Active Time  
Min. Row Cycle Time  
tRP 12.5  
15  
ns  
tRAS 45  
45  
ns  
tRC 57.5  
60  
ns  
1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined  
in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury,  
lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers.  
Rev. 1.3, 2007-07  
3
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
TABLE 2  
Performance Table for –3(S)  
Product Type Speed Code  
Speed Grade  
–3  
–3S  
Unit  
DDR2–667C 4–4–4  
DDR2–667D 5–5–5  
Max. Clock Frequency  
@CL5 fCK5 333  
@CL4 fCK4 333  
333  
266  
200  
15  
MHz  
MHz  
MHz  
ns  
@CL3 fCK3 200  
tRCD 12  
Min. RAS-CAS-Delay  
Min. Row Precharge Time  
Min. Row Active Time  
Min. Row Cycle Time  
tRP 12  
15  
ns  
tRAS 45  
45  
ns  
tRC 57  
60  
ns  
TABLE 3  
Performance table for –3.7  
Product Type Speed Code  
–3.7  
Unit  
Speed Grade  
DDR2–533C 4–4–4  
Max. Clock Frequency  
@CL5  
@CL4  
@CL3  
fCK5  
fCK4  
fCK3  
tRCD  
tRP  
266  
266  
200  
15  
MHz  
MHz  
MHz  
ns  
Min. RAS-CAS-Delay  
Min. Row Precharge Time  
Min. Row Active Time  
Min. Row Cycle Time  
15  
ns  
tRAS  
tRC  
45  
ns  
60  
ns  
TABLE 4  
Performance Table for –5  
Product Type Speed Code  
–5  
Units  
Speed Grade  
DDR2–400B 3–3–3  
Max. Clock Frequency  
@CL5  
@CL4  
@CL3  
fCK5  
fCK4  
fCK3  
tRCD  
tRP  
200  
200  
200  
15  
MHz  
MHz  
MHz  
ns  
Min. RAS-CAS-Delay  
Min. Row Precharge Time  
Min. Row Active Time  
Min. Row Cycle Time  
15  
ns  
tRAS  
tRC  
40  
ns  
55  
ns  
Rev. 1.3, 2007-07  
4
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
1.2  
Description  
The 1-Gbit DDR2 DRAM is a high-speed Double-Data-Rate-  
Two CMOS Synchronous DRAM device, containing  
1,073,741,824 bits and internally configured as anoctal  
quadbank DRAM. The 1-Gbit device is organized as either  
32 Mbit ×4 I/O ×8 banks, 16 Mbit ×8 I/O ×8 banks or 8 Mbit  
×16 I/O ×8 banks chip. These devices achieve high speed  
transfer rates starting at 400 Mb/sec/pin for general  
applications.  
latched at the cross point of differential clocks (CK rising and  
CK falling). All I/Os are synchronized with a single ended  
DQS or differential DQS-DQS pair in a source synchronous  
fashion.  
A 17-bit address bus for ×4 and ×8 organised components  
and a 16 bit address bus for ×16 components is used to  
convey row, column and bank address information in a RAS-  
CAS multiplexing style.  
The device is designed to comply with all DDR2 SDRAM key  
features:  
The DDR2 device operates with a 1.8 V ± 0.1 V power  
supply. An Auto-Refresh and Self-Refresh mode is provided  
along with various power-saving power-down modes.  
1. Posted CAS with additive latency,  
2. Write latency = read latency - 1,  
The functionality described and the timing specifications  
included in this data sheet are for the DLL Enabled mode of  
operation.  
3. Normal and weak strength data-output driver,  
4. Off-Chip Driver (OCD) impedance adjustment  
5. On-Die Termination (ODT) function.  
The DDR2 SDRAM is available in P(G)-TFBGA-68 and P(G)-  
TFBGA-84 packages.  
All of the control and address inputs are synchronized with a  
pair of externally supplied differential clocks. Inputs are  
TABLE 5  
Ordering Information for Lead-Free Products (RoHS Compliant)  
Product Type  
Org. Speed  
CAS-RCD-RP Latencies1)2)3) Clock (MHz) Package  
Note  
Standard Temperature Range (0 °C - +70 °C)  
4)  
HYB18T1G400BF-2.5F  
HYB18T1G800BF-2.5F  
HYB18T1G160BF-2.5F  
HYB18T1G167BF-2.5F  
HYB18T1G400BF-2.5  
HYB18T1G800BF-2.5  
HYB18T1G160BF-2.5  
HYB18T1G167BF-2.5  
HYB18T1G400BF-3  
HYB18T1G800BF-3  
HYB18T1G160BF-3  
HYB18T1G167BF-3  
HYB18T1G400BF-3S  
HYB18T1G400BFL-3S  
HYB18T1G800BF-3S  
HYB18T1G800BFL-3S  
HYB18T1G160BF-3S  
HYB18T1G160BFL-3S  
HYB18T1G160BFV-3S  
HYB18T1G167BF-3S  
×4  
DDR2-800D 5-5-5  
400  
400  
333  
333  
PG-TFBGA-68  
×8  
×16  
×16  
×4  
PG-TFBGA-84  
PG-TFBGA-92  
PG-TFBGA-68  
DDR2-800E 6-6-6  
DDR2-667C 4-4-4  
DDR2-667D 5-5-5  
×8  
×16  
×16  
×4  
PG-TFBGA-84  
PG-TFBGA-92  
PG-TFBGA-68  
×8  
×16  
×16  
×4  
PG-TFBGA-84  
PG-TFBGA-92  
PG-TFBGA-68  
×4  
×8  
×8  
×16  
×16  
×16  
×16  
PG-TFBGA-84  
PG-TFBGA-92  
Rev. 1.3, 2007-07  
5
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
Product Type  
Org. Speed  
CAS-RCD-RP Latencies1)2)3) Clock (MHz) Package  
Note  
HYB18T1G400BF-3.7  
HYB18T1G400BFL-3.7  
HYB18T1G800BF-3.7  
HYB18T1G800BFL-3.7  
HYB18T1G160BF-3.7  
HYB18T1G160BFL-3.7  
HYB18T1G160BFV-3.7  
HYB18T1G167BF-3.7  
HYB18T1G400BF-5  
HYB18T1G400BFL-5  
HYB18T1G800BF-5  
HYB18T1G800BFL-5  
HYB18T1G160BF-5  
HYB18T1G160BFL-5  
×4  
DDR2-533C 4-4-4  
266  
PG-TFBGA-68  
×4  
×8  
×8  
×16  
×16  
×16  
×16  
×4  
PG-TFBGA-84  
PG-TFBGA-92  
PG-TFBGA-68  
DDR2-400B 3-3-3  
200  
×4  
×8  
×8  
×16  
×16  
PG-TFBGA-84  
PG-TFBGA-68  
Industrial Temperature Range (–40 °C - +85 °C)  
4)  
HYI18T1G400BF-2.5F  
HYI18T1G800BF-2.5F  
HYI18T1G160BF-2.5F  
HYI18T1G400BF-2.5  
HYI18T1G800BF-2.5  
HYI18T1G160BF-2.5  
HYI18T1G400BF-3  
HYI18T1G800BF-3  
HYI18T1G160BF-3  
HYI18T1G400BF-3S  
HYI18T1G800BF-3S  
HYI18T1G160BF-3S  
HYI18T1G400BF-3.7  
HYI18T1G800BF-3.7  
HYI18T1G160BF-3.7  
HYI18T1G400BF-5  
HYI18T1G800BF-5  
HYI18T1G160BF-5  
×4  
DDR2-800D 5-5-5  
DDR2-800E 6-6-6  
DDR2-667C 4-4-4  
DDR2-667D 5-5-5  
DDR2-533C 4-4-4  
DDR2-400B 3-3-3  
400  
400  
333  
333  
266  
200  
×8  
×16  
×4  
PG-TFBGA-84  
PG-TFBGA-68  
×8  
×16  
×4  
PG-TFBGA-84  
PG-TFBGA-68  
×8  
×16  
×4  
PG-TFBGA-84  
PG-TFBGA-68  
×8  
×16  
×4  
PG-TFBGA-84  
PG-TFBGA-68  
×8  
×16  
×4  
PG-TFBGA-84  
PG-TFBGA-68  
×8  
×16  
PG-TFBGA-84  
1) CAS: Column Address Strobe  
2) RCD: Row Column Delay  
3) RP: Row Precharge  
4) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined  
in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury,  
lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers.  
Rev. 1.3, 2007-07  
6
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
TABLE 6  
Ordering Information for Lead-Containing Products  
Product Type  
Org. Speed  
CAS-RCD-RP Latencies1)2)3)  
Clock (MHz)  
Package  
Standard Temperature Range (0 °C - +70 °C)  
HYB18T1G400BC-2.5F  
HYB18T1G800BC-2.5F  
HYB18T1G160BC-2.5F  
HYB18T1G400BC-2.5  
HYB18T1G800BC-2.5  
HYB18T1G160BC-2.5  
HYB18T1G400BC-3  
HYB18T1G800BC-3  
HYB18T1G160BC-3  
HYB18T1G400BC-3S  
HYB18T1G800BC-3S  
HYB18T1G160BC-3S  
HYB18T1G400BC-3.7  
HYB18T1G800BC-3.7  
HYB18T1G160BC-3.7  
HYB18T1G400BC-5  
HYB18T1G800BC-5  
HYB18T1G160BC-5  
×4  
DDR2-800D 5-5-5  
400  
P-TFBGA-68  
×8  
×16  
×4  
P-TFBGA-84  
P-TFBGA-68  
DDR2-800E  
6-6-6  
400  
333  
333  
266  
200  
×8  
×16  
×4  
P-TFBGA-84  
P-TFBGA-68  
DDR2-667C 4-4-4  
DDR2-667D 5-5-5  
DDR2-533C 4-4-4  
×8  
×16  
×4  
P-TFBGA-84  
P-TFBGA-68  
×8  
×16  
×4  
P-TFBGA-84  
P-TFBGA-68  
×8  
×16  
×4  
P-TFBGA-84  
P-TFBGA-68  
DDR2-400B  
3-3-3  
×8  
×16  
P-TFBGA-84  
P-TFBGA-68  
Industrial Temperature Range (–40 °C - +85 °C)  
HYI18T1G400BC-2.5F  
HYI18T1G800BC-2.5F  
HYI18T1G160BC-2.5F  
HYI18T1G400BC-2.5  
HYI18T1G800BC-2.5  
HYI18T1G160BC-2.5  
HYI18T1G400BC-3  
HYI18T1G800BC-3  
HYI18T1G160BC-3  
HYI18T1G400BC-3S  
HYI18T1G800BC-3S  
HYI18T1G160BC-3S  
HYI18T1G400BC-3.7  
HYI18T1G800BC-3.7  
HYI18T1G160BC-3.7  
HYI18T1G400BC-5  
HYI18T1G800BC-5  
HYI18T1G160BC-5  
×4  
DDR2-800D 5-5-5  
400  
400  
333  
333  
266  
200  
×8  
×16  
×4  
P-TFBGA-84  
P-TFBGA-68  
DDR2-800E  
6-6-6  
×8  
×16  
×4  
P-TFBGA-84  
P-TFBGA-68  
DDR2-667C 4-4-4  
DDR2-667D 5-5-5  
DDR2-533C 4-4-4  
×8  
×16  
×4  
P-TFBGA-84  
P-TFBGA-68  
×8  
×16  
×4  
P-TFBGA-84  
P-TFBGA-68  
×8  
×16  
×4  
P-TFBGA-84  
P-TFBGA-68  
DDR2-400B  
3-3-3  
×8  
×16  
P-TFBGA-84  
Rev. 1.3, 2007-07  
7
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
1) CAS: Column Address Strobe  
2) RCD: Row Column Delay  
3) RP: Row Precharge  
Note: For product nomenclature see Chapter 9 of this data sheet  
Rev. 1.3, 2007-07  
8
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
2
Configuration  
This chapter contains the chip configuration and addressing.  
2.1  
Chip Configuration for PG-TFBGA-68  
The chip configuration of a DDR2 SDRAM is listed by function in Table 7. The abbreviations used in the Ball# and Buffer Type  
columns are explained in Table 8 and Table 9 respectively. The ball numbering for the FBGA package is depicted in figures.  
TABLE 7  
Chip Configuration of DDR2 SDRAM  
Ball#  
Name  
Ball  
Type  
Buffer  
Type  
Function  
Clock Signals ×4×8 Organizations  
J8  
CK  
I
I
I
SSTL  
SSTL  
SSTL  
Clock Signal CK, CK  
Clock Enable  
K8  
K2  
CK  
CKE  
Control Signals ×4×8 Organizations  
K7  
L7  
K3  
L8  
RAS  
CAS  
WE  
I
I
I
I
SSTL  
SSTL  
SSTL  
SSTL  
Row Address Strobe (RAS), Column Address Strobe (CAS), Write  
Enable (WE)  
CS  
Chip Select  
Address Signals ×4×8 Organizations  
L2  
L3  
L1  
BA0  
BA1  
BA2  
I
I
I
SSTL  
SSTL  
SSTL  
Bank Address Bus 1:0  
Bank Address Bus 2  
Note: 1 Gbit components and higher  
Rev. 1.3, 2007-07  
9
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
Ball#  
Name  
Ball  
Type  
Buffer  
Type  
Function  
M8  
M3  
M7  
N2  
N8  
N3  
N7  
P2  
P8  
P3  
M2  
A0  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
Address Signal 12:0, Address Signal 10/Autoprecharge  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
AP  
A11  
A12  
A13  
P7  
R2  
R8  
Address Signal 13  
Note: 1 Gbit ×4/×8 components  
Data Signals ×4×8 Organizations  
G8  
G2  
H7  
H3  
H1  
H9  
F1  
F9  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
Data Signal 3:0  
Note: Bi-directional data bus.  
DQ[3:0] for ×4 components  
DQ[7:0] for ×8 components  
Data Signal 7:4  
Data Strobe ×4×8 Organizations  
F7  
E8  
DQS  
DQS  
I/O  
I/O  
SSTL  
SSTL  
Data Strobe  
Data Strobe ×8 Organizations  
F3  
E2  
RDQS  
RDQS  
O
O
SSTL  
SSTL  
Read Data Strobe  
Data Mask ×4×8 Organizations  
F3 DM  
Power Supplies ×4×8 Organizations  
I
SSTL  
Data Mask  
E9, G1, G3, G7, VDDQ  
PWR  
I/O Driver Power Supply  
G9  
E1, J9, M9, R1 VDD  
PWR  
PWR  
Power Supply  
E7, F2, F8, H2, VSSQ  
I/O Driver Power Supply  
H8  
E3, J3, N1, P9 VSS  
PWR  
Al  
Power Supply  
J2  
VREF  
I/O Reference Voltage  
Rev. 1.3, 2007-07  
10  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
Ball#  
Name  
Ball  
Type  
Buffer  
Type  
Function  
J1  
J7  
VDDL  
PWR  
PWR  
Power Supply  
Power Supply  
VSSDL  
Not Connected ×4 Organizations  
A1, A2, A8, A9, NC  
E2, F9, H1,F1,  
R7, H9, W1,  
W2, W8, W9,  
R3  
NC  
Not Connected  
Not Connected ×8 Organization  
A1, A2, A8, A9, NC  
R7, W1, W2,  
NC  
Not Connected  
W8, W9, R3  
Other Balls ×4×8 Organizations  
K9  
ODT  
I
SSTL  
On-Die Termination Control  
TABLE 8  
Abbreviations for Ball Type  
Abbreviation  
Description  
I
Standard input-only ball. Digital levels.  
Output. Digital levels.  
I/O is a bidirectional input/output signal.  
Input. Analog levels.  
Power  
O
I/O  
AI  
PWR  
GND  
NC  
Ground  
Not Connected  
TABLE 9  
Abbreviations for Buffer Type  
Abbreviation  
Description  
SSTL  
Serial Stub Terminated Logic (SSTL_18)  
Low Voltage CMOS  
LV-CMOS  
CMOS  
OD  
CMOS Levels  
Open Drain. The corresponding ball has 2 operational states, active low and tristate, and  
allows multiple devices to share as a wire-OR.  
Rev. 1.3, 2007-07  
11  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
FIGURE 1  
Ball Configuration for ×4 components, PG-TFBGA-68 (top view)  
$
%
&
'
(
)
1&  
1&  
1&  
1&  
9''  
966  
9664  
9''4  
1&  
'46  
9664  
9664  
1&  
'0  
'46  
1&  
9''4  
9''4  
9''4  
9''4  
*
+
-
'4ꢃ  
'4ꢀ  
9664  
9664  
1&  
'4ꢅ  
'4ꢄ  
966'/  
5$6  
&$6  
$ꢄ  
1&  
9''/  
95()  
966  
9''  
&.  
&.  
.
/
&.(  
%$ꢀ  
$ꢃꢀꢌ$3  
$ꢅ  
:(  
%$ꢃ  
$ꢃ  
2'7  
%$ꢄ  
&6  
9''  
0
1
3
5
7
$ꢀ  
966  
$ꢁ  
$ꢉ  
$ꢈ  
966  
$ꢆ  
$ꢂ  
$ꢃꢃ  
1&  
$ꢇ  
9''  
$ꢃꢄ  
1&  
1&ꢊꢋ$ꢃꢅ  
8
9
:
1&  
1&  
1&  
1&  
0337ꢀꢁꢂꢀ  
Note: VDDL and VSSDL are power and ground for the DLL. VDDL is connected to VDD on the device. VDD, VDDQ, VSSDL, VSS and  
SSQ are isolated on the device.  
V
Rev. 1.3, 2007-07  
12  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
FIGURE 2  
Ball Configuration for ×8 components, PG-TFBGA-68 (top view)  
$
%
&
'
(
)
1&  
1&  
1&  
1&  
18ꢌ  
5'46  
9''  
966  
9664  
9''4  
'46  
'0ꢌ  
5'46  
9664  
9664  
'4ꢉ  
'46  
'4ꢆ  
9''4  
9''4  
9''4  
9''4  
*
+
-
'4ꢃ  
'4ꢀ  
9664  
9664  
'4ꢈ  
'4ꢅ  
'4ꢄ  
966'/  
5$6  
&$6  
$ꢄ  
'4ꢁ  
9''/  
95()  
966  
9''  
&.  
&.  
.
/
&.(  
%$ꢀ  
$ꢃꢀꢌ$3  
$ꢅ  
:(  
%$ꢃ  
$ꢃ  
2'7  
%$ꢄ  
&6  
9''  
0
1
3
5
7
$ꢀ  
966  
$ꢁ  
$ꢉ  
$ꢈ  
966  
$ꢆ  
$ꢂ  
$ꢃꢃ  
1&  
$ꢇ  
9''  
$ꢃꢄ  
1&  
1&ꢊꢋ$ꢃꢅ  
8
9
:
1&  
1&  
1&  
1&  
0337ꢀꢉꢀꢀ  
Notes  
1. RDQS / RDQS are enabled by EMRS(1) command.  
2. If RDQS / RDQS is enabled, the DM function is disabled  
3. When enabled, RDQS & RDQS are used as strobe signals during reads.  
4. VDDL and VSSDL are power and ground for the DLL. They are connected on the device from VDD, VDDQ, VSS and VSSQ  
.
Rev. 1.3, 2007-07  
13  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
2.2  
Chip Configuration for PG-TFBGA-84  
The chip configuration of a DDR2 SDRAM is listed by function in Table 10. The abbreviations used in the Ball#/Buffer Type  
columns are explained in Table 11 and Table 12 respectively.  
TABLE 10  
Chip Configuration of DDR SDRAM  
Ball#  
Name  
Ball  
Type  
Buffer  
Type  
Function  
Clock Signals ×16 Organization  
J8  
CK  
I
I
I
SSTL  
SSTL  
SSTL  
Clock Signal CK, CK  
Clock Enable  
K8  
K2  
CK  
CKE  
Control Signals ×16 Organization  
K7  
L7  
K3  
L8  
RAS  
CAS  
WE  
I
I
I
I
SSTL  
SSTL  
SSTL  
SSTL  
Row Address Strobe (RAS), Column Address Strobe (CAS), Write  
Enable (WE)  
CS  
Chip Select  
Address Signals ×16 Organization  
L2  
BA0  
BA1  
BA2  
A0  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
Bank Address Bus 2:0  
Note: 1 Gbit components and higher  
L3  
L1  
M8  
M3  
M7  
N2  
N8  
N3  
N7  
P2  
P8  
P3  
M2  
Address Signal 12:0, Address Signal 10/Autoprecharge  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
AP  
A11  
A12  
P7  
R2  
Rev. 1.3, 2007-07  
14  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
Ball#  
Name  
Ball  
Type  
Buffer  
Type  
Function  
Data Signals ×16 Organization  
G8  
G2  
H7  
H3  
H1  
H9  
F1  
F9  
C8  
C2  
D7  
D3  
D1  
D9  
B1  
B9  
DQ0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
Data Signal 15:0  
Note: Bi-directional data bus. DQ[15:0] for ×16 components  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DQ8  
DQ9  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
Data Strobe ×16 Organization  
B7  
A8  
F7  
E8  
UDQS  
UDQS  
LDQS  
LDQS  
I/O  
I/O  
I/O  
I/O  
SSTL  
SSTL  
SSTL  
SSTL  
Data Strobe Upper Byte  
Data Strobe Lower Byte  
Data Mask ×16 Organization  
B3  
F3  
UDM  
LDM  
I
I
SSTL  
SSTL  
Data Mask Upper Byte  
Data Mask Lower Byte  
Power Supplies ×16 Organization  
J2  
VREF  
AI  
I/O Reference Voltage  
C1, C3, C7, C9, VDDQ  
E9, G1, G3, G7,  
G9, A9  
PWR  
I/O Driver Power Supply  
J1  
VDDL  
PWR  
PWR  
Power Supply  
Power Supply  
A1, E1, J9, M9, VDD  
R1  
A7, D2, D8, E7, VSSQ  
PWR  
Power Supply  
F2, F8, H2, H8  
J7  
VSSDL  
PWR  
PWR  
Power Supply  
Power Supply  
A3, E3, J3, N1, VSS  
P9  
Not Connected ×16 Organization  
A2, E2, R3, R7, NC  
R8  
NC  
Not Connected  
Rev. 1.3, 2007-07  
15  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
Ball#  
Name  
Ball  
Type  
Buffer  
Type  
Function  
Other Balls ×16 Organization  
K9  
ODT  
I
SSTL  
On-Die Termination Control  
TABLE 11  
Abbreviations for Ball Type  
Abbreviation  
Description  
I
Standard input-only ball. Digital levels.  
Output. Digital levels.  
I/O is a bidirectional input/output signal.  
Input. Analog levels.  
Power  
O
I/O  
AI  
PWR  
GND  
NC  
Ground  
Not Connected  
TABLE 12  
Abbreviations for Buffer Type  
Abbreviation  
Description  
SSTL  
Serial Stub Terminated Logic (SSTL_18)  
Low Voltage CMOS  
LV-CMOS  
CMOS  
OD  
CMOS Levels  
Open Drain. The corresponding ball has 2 operational states, active low and tristate, and  
allows multiple devices to share as a wire-OR.  
Rev. 1.3, 2007-07  
16  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
FIGURE 3  
Chip Configuration for x16 Components in PG–TFBGA–84 (Top view)  
$
%
&
'
(
)
9''  
1&  
966  
9664  
9''4  
8'46  
9664  
9664  
'4ꢃꢈ  
8'0  
8'46  
'4ꢃꢁ  
9''4  
9''4  
9''4  
9''4  
'4ꢂ  
'4ꢇ  
9664  
9664  
'4ꢃꢄ  
'4ꢃꢃ  
'4ꢃꢀ  
'4ꢃꢅ  
9''  
966  
9664  
9''4  
1&  
/'46  
9664  
9664  
'4ꢉ  
/'0  
/'46  
'4ꢆ  
9''4  
9''4  
9''4  
9''4  
*
+
-
'4ꢃ  
'4ꢀ  
9664  
9664  
'4ꢈ  
'4ꢅ  
'4ꢄ  
966'/  
5$6  
&$6  
$ꢄ  
'4ꢁ  
9''/  
95()  
966  
9''  
&.  
&.  
&6  
$ꢀ  
$ꢈ  
$ꢇ  
1&  
.
/
&.(  
%$ꢀ  
$ꢃꢀꢌ$3  
$ꢅ  
:(  
%$ꢃ  
$ꢃ  
2'7  
%$ꢄ  
9''  
0
1
3
5
966  
$ꢁ  
$ꢉ  
966  
$ꢆ  
$ꢂ  
$ꢃꢃ  
9''  
$ꢃꢄ  
1&  
1&  
03%7ꢀꢆꢈꢀ  
Rev. 1.3, 2007-07  
03062006-ZNH8-HURV  
17  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
2.3  
Chip Configuration for PG-TFBGA-92  
The chip configuration of a DDR2 SDRAM is listed by function in Table 13. The abbreviations used in the Ball#/Buffer Type  
columns are explained in Table 14 and Table 15 respectively.  
TABLE 13  
Chip Configuration of DDR SDRAM  
Ball#  
Name  
Ball  
Type  
Buffer  
Type  
Function  
Clock Signals ×16 Organization  
M8  
N8  
N2  
CK  
I
I
I
SSTL  
SSTL  
SSTL  
Clock Signal CK, CK  
Clock Enable  
CK  
CKE  
Control Signals ×16 Organization  
N7  
P7  
N3  
P8  
RAS  
CAS  
WE  
I
I
I
I
SSTL  
SSTL  
SSTL  
SSTL  
Row Address Strobe (RAS), Column Address Strobe (CAS), Write  
Enable (WE)  
CS  
Chip Select  
Address Signals ×16 Organization  
P2  
P3  
P1  
R8  
R3  
R7  
T2  
T8  
T3  
T7  
U2  
U8  
U3  
R2  
BA0  
BA1  
BA2  
A0  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
Bank Address Bus 2:0  
Note: 1 Gbit components and higher  
Address Signal 12:0, Address Signal 10/Autoprecharge  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
AP  
A11  
A12  
U7  
V2  
Rev. 1.3, 2007-07  
18  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
Ball#  
Name  
Ball  
Type  
Buffer  
Type  
Function  
Data Signals ×16 Organization  
K8  
K2  
L7  
L3  
L1  
L9  
J1  
DQ0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
Data Signal 15:0  
Note: Bi-directional data bus. DQ[15:0] for ×16 components  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
J9  
DQ7  
F8  
F2  
G7  
G3  
G1  
G9  
E1  
E9  
DQ8  
DQ9  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
Data Strobe ×16 Organization  
E7  
D8  
J7  
UDQS  
UDQS  
LDQS  
LDQS  
I/O  
I/O  
I/O  
I/O  
SSTL  
SSTL  
SSTL  
SSTL  
Data Strobe Upper Byte  
Data Strobe Lower Byte  
H8  
Data Mask ×16 Organization  
E3  
J3  
UDM  
LDM  
I
I
SSTL  
SSTL  
Data Mask Upper Byte  
Data Mask Lower Byte  
Power Supplies ×16 Organization  
M2  
VREF  
AI  
I/O Reference Voltage  
F1, F3, F7, F9, VDDQ  
H9, K1, K3, K7,  
K9, D9  
PWR  
I/O Driver Power Supply  
M1  
VDDL  
PWR  
PWR  
Power Supply  
Power Supply  
D1, H1, M9, R9, VDD  
V1  
D7, E2, E8, H7, VSSQ  
G2, G8, J2, J8,  
L2, L8  
PWR  
Power Supply  
M7  
VSSDL  
PWR  
PWR  
Power Supply  
Power Supply  
D3, H3, M3, T1, VSS  
U9  
Rev. 1.3, 2007-07  
19  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
Ball#  
Name  
Ball  
Type  
Buffer  
Type  
Function  
Not Connected ×16 Organization  
A1, A2, A8, A9, NC  
D2, V3, V7, V8,  
AA1, AA2, AA8,  
AA9  
NC  
Not Connected  
Other Balls ×16 Organization  
N9  
ODT  
I
SSTL  
On-Die Termination Control  
TABLE 14  
Abbreviations for Ball Type  
Abbreviation  
Description  
I
Standard input-only ball. Digital levels.  
Output. Digital levels.  
I/O is a bidirectional input/output signal.  
Input. Analog levels.  
Power  
O
I/O  
AI  
PWR  
GND  
NC  
Ground  
Not Connected  
TABLE 15  
Abbreviations for Buffer Type  
Abbreviation  
Description  
SSTL  
Serial Stub Terminated Logic (SSTL_18)  
Low Voltage CMOS  
LV-CMOS  
CMOS  
OD  
CMOS Levels  
Open Drain. The corresponding ball has 2 operational states, active low and tristate, and  
allows multiple devices to share as a wire-OR.  
Rev. 1.3, 2007-07  
20  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
2.4  
1-Gbit DDR2 Addressing  
This chapter describes the 1-Gbit DDR2 addressing.  
TABLE 16  
DDR2 Addressing for ×4 Organization  
Configuration  
256Mb x 41)  
Note  
Bank Address  
BA[2:0]  
8
Number of Banks  
Auto-Precharge  
A10 / AP  
A[13:0]  
A11, A[9:0]  
11  
Row Address  
Column Address  
Number of Column Address Bits  
Number of I/Os  
2)  
3)  
4
Page Size [Bytes]  
1024 (1K)  
1) Referred to as ’org’  
2) Referred to as ’colbits’  
3) PageSize = 2colbits × org/8 [Bytes]  
TABLE 17  
DDR2 Addressing for ×8 Organization  
Configuration  
128Mb x 81)  
Note  
Bank Address  
BA[2:0]  
8
Number of Banks  
Auto-Precharge  
A10 / AP  
A[13:0]  
A[9:0]  
10  
Row Address  
Column Address  
Number of Column Address Bits  
Number of I/Os  
2)  
3)  
8
Page Size [Bytes]  
1024 (1K)  
1) Referred to as ’org’  
2) Referred to as ’colbits’  
3) PageSize = 2colbits × org/8 [Bytes]  
Rev. 1.3, 2007-07  
21  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
TABLE 18  
DDR2 Addressing for ×16 Organization  
Configuration  
64Mb x 161)  
Note  
Bank Address  
BA[2:0]  
8
Number of Banks  
Auto-Precharge  
A10 / AP  
A[12:0]  
A[9:0]  
10  
Row Address  
Column Address  
Number of Column Address Bits  
Number of I/Os  
2)  
3)  
16  
Page Size [Bytes]  
2048 (2K)  
1) Referred to as ’org’  
2) Referred to as ’colbits’  
3) PageSize = 2colbits × org/8 [Bytes]  
Rev. 1.3, 2007-07  
22  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
3
Functional Description  
This chapter contains the functional description.  
%$ꢄ %$ꢃ %$ꢀ $ꢃꢅ $ꢃꢄ $ꢃꢃ $ꢃꢀ $ꢂ  
$ꢇ  
$ꢆ  
70  
$ꢉ  
$ꢁ  
&/  
$ꢈ  
$ꢅ  
%7  
$ꢄ  
$ꢃ  
%/  
$ꢀ  
:5  
Z
'//  
3'  
Z
UHJꢍꢋDGGU  
Z
Z
Z
Z
Z
03%7ꢀꢈꢃꢀ  
TABLE 19  
Mode Register Definition (BA[2:0] = 000B)  
Field  
Bits  
Type1)  
Description  
BA2  
16  
reg. addr.  
Bank Address [2]  
Note: BA2 not available on 256 Mbit and 512 Mbit components  
0B BA2 Bank Address  
Bank Address [1]  
BA1  
BA0  
A13  
15  
14  
13  
0B  
BA1 Bank Address  
Bank Address [0]  
0B  
BA0 Bank Address  
Address Bus[13]  
Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration  
0B  
A13 Address bit 13  
PD  
12  
w
w
Active Power-Down Mode Select  
0B  
1B  
PD Fast exit  
PD Slow exit  
WR  
[11:9]  
Write Recovery2)  
Note: All other bit combinations are illegal.  
001B WR 2  
010B WR 3  
011B WR 4  
100B WR 5  
101B WR 6  
DLL  
TM  
8
7
w
w
DLL Reset  
0B  
1B  
DLL No  
DLL Yes  
Test Mode  
0B  
1B  
TM Normal Mode  
TM Vendor specific test mode  
Rev. 1.3, 2007-07  
23  
03062006-ZNH8-HURV  
                                                     
                                                      
                                                        
                                                         
                                                         
                                                          
                                                           
                                                            
                                                             
                                       
                                         
                                          
                                              
                                               
                                                                              
                                                                                              
                                                                                               
                                                                                                    
                                                                                                     
                                                                                                    
                                                                                                                                   
                                               
                                                
U
              
HJ  
               
ꢍꢋD  
                 
                  
G
                   
G
                    
Uꢋ  
Zꢋ  
Zꢋ  
Zꢋ  
Zꢋ  
Zꢋ  
Zꢋ  
Zꢋ  
Zꢋ  
0
                                                                                                                            
3
                                                                                                                             
%
                                                                                                                              
7ꢀ  
                                                                                                                               
                                                                                                                                
ꢅꢇ  
                                                                                                                                 
                                                                                                                                  
ꢀꢋ  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
Field  
Bits  
Type1)  
Description  
CL  
[6:4]  
w
CAS Latency  
Note: All other bit combinations are illegal.  
011B CL 3  
100B CL 4  
101B CL 5  
110B CL 6  
111B CL 7  
BT  
BL  
3
w
w
Burst Type  
0B  
1B  
BT Sequential  
BT Interleaved  
[2:0]  
Burst Length  
Note: All other bit combinations are illegal.  
010B BL 4  
011B BL 8  
1) w = write only register bits  
2) Number of clock cycles for write recovery during auto-precharge. WR in clock cycles is calculated by dividing tWR (in ns) by tCK (in ns) and  
rounding up to the next integer: WR [cycles] tWR (ns) / tCK (ns). The mode register must be programmed to fulfill the minimum requirement  
for the analogue tWR timing WRMIN is determined by tCK.MAX and WRMAX is determined by tCK.MIN  
.
%
            
$
             
ꢄꢋ %  
                 
$
                  
ꢃꢋ %  
                      
$
                       
ꢀꢋ $  
                           
                            
ꢅꢋ $  
                               
                                
ꢄꢋ $  
                                    
ꢃꢃ  
                                     
 $  
                                         
                                          
ꢀꢋ  
$
                                               
ꢂꢋ  
&'  
$
                                                   
ꢇꢋ  
$
                                                        
ꢆꢋ  
$
                                                             
ꢉꢋ  
$
                                                                  
ꢁꢋ  
$
                                                                       
ꢈꢋ  
/ꢋ  
$
                                                                            
ꢅꢋ  
$
                                                                                 
ꢄꢋ  
$
                                                                                      
ꢃꢋ  
$ꢀꢋ  
                                                                                          
2
3U  
R
J
U
DPꢋ  
ꢀꢋ  
4ꢋ I 5'  
4
6ꢋ '4  
6
5W  
$
5W  
',&ꢋ '/  
/ꢋ  
ꢀꢋ  
ꢃꢋ  
ꢀꢋ  
Wꢀ  
Wꢀ  
RI ꢀ  
TABLE 20  
Extended Mode Register Definition (BA[2:0] = 001B)  
Field  
Bits  
Type1)  
Description  
Bank Address [2]  
Note: BA2 not available on 256 Mbit and 512 Mbit components  
0B BA2 Bank Address  
Bank Address [1]  
BA2  
16  
reg. addr.  
BA1  
BA0  
A13  
15  
14  
13  
0B  
BA1 Bank Address  
Bank Address [0]  
1B  
BA0 Bank Address  
w
w
Address Bus [13]  
Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration  
0B  
A13 Address bit 13  
Qoff  
12  
Output Disable  
0B  
1B  
QOff Output buffers enabled  
QOff Output buffers disabled  
Rev. 1.3, 2007-07  
24  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
Field  
Bits  
Type1)  
Description  
RDQS  
11  
w
Read Data Strobe Output (RDQS, RDQS)  
0B  
1B  
RDQS Disable  
RDQS Enable  
DQS  
10  
w
w
Complement Data Strobe (DQS Output)  
0B  
1B  
DQS Enable  
DQS Disable  
OCD  
[9:7]  
Off-Chip Driver Calibration Program  
Program  
000B OCD OCD calibration mode exit, maintain setting  
001B OCD Drive (1)  
010B OCD Drive (0)  
100B OCD Adjust mode  
111B OCD OCD calibration default  
AL  
[5:3]  
w
Additive Latency  
Note: All other bit combinations are illegal.  
000B AL 0  
001B AL 1  
010B AL 2  
011B AL 3  
100B AL 4  
101B AL 5  
RTT  
6,2  
w
Nominal Termination Resistance of ODT  
Note: See Table 31 “ODT DC Electrical Characteristics” on Page 33  
00B RTT (ODT disabled)  
01B RTT 75 Ohm  
10B RTT 150 Ohm  
11B RTT 50 Ohm  
DIC  
DLL  
1
0
w
w
Off-chip Driver Impedance Control  
0B  
1B  
DIC Full (Driver Size = 100%)  
DIC Reduced  
DLL Enable  
0B  
1B  
DLL Enable  
DLL Disable  
1) w = write only register bits  
Rev. 1.3, 2007-07  
25  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
%$ꢄ %$ꢃ %$ꢀ $ꢃꢅ $ꢃꢄ $ꢃꢃ $ꢃꢀ  
$ꢂ  
$ꢇ  
$ꢆ  
$ꢉ  
$ꢁ  
$ꢈ  
$ꢅ  
$ꢄ  
$ꢃ  
$ꢀ  
65)  
'&&  
3$65  
UHJꢍꢋDGGU  
03%7ꢀꢁꢄꢀ  
TABLE 21  
EMRS(2) Programming Extended Mode Register Definition (BA[2:0]=010B)  
Field Bits  
Type1)  
Description  
BA2  
16  
w
Bank Address  
Note: BA2 is not available on 256 Mbit and 512 Mbit components  
0B  
BA2 Bank Address  
BA  
[15:14]  
w
Bank Adress  
00B BA MRS  
01B BA EMRS(1)  
10B BA EMRS(2)  
11B BA EMRS(3): Reserved  
A
[13:8]  
7
w
w
Address Bus  
Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration  
000000B A Address bits  
SRF  
Address Bus, High Temperature Self Refresh Rate for TCASE > 85°C  
0B  
1B  
A7 disable  
A7 enable 2)  
A
[6:4]  
3
w
w
Address Bus  
000B A Address bits  
DCC  
Address Bus, Duty Cycle Correction (DCC)  
0B  
1B  
A3 DCC disabled  
A3 DCC enabled  
Partial Self Refresh for 4 banks  
PASR [2:0]  
w
Address Bus, Partial Array Self Refresh for 4 Banks3)  
Note: Only for 256 Mbit and 512 Mbit components  
000B PASR0 Full Array  
001B PASR1 Half Array (BA[1:0]=00, 01)  
010B PASR2 Quarter Array (BA[1:0]=00)  
011B PASR3 Not defined  
100B PASR4 3/4 array (BA[1:0]=01, 10, 11)  
101B PASR5 Half array (BA[1:0]=10, 11)  
110B PASR6 Quarter array (BA[1:0]=11)  
111B PASR7 Not defined  
Rev. 1.3, 2007-07  
26  
03062006-ZNH8-HURV  
UH  
                                                
                                                 
JꢍꢋD  
                                                   
                                                    
GGUꢋ  
                                                     
                                                      
0
                                                                                                                           
3
                                                                                                                            
%
                                                                                                                              
7ꢀ  
                                                                                                                               
                                                                                                                                
ꢈꢀꢀꢋ  
                                                                                                                                 
                                                                                                                                 
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
Field Bits  
Type1)  
Description  
Partial Self Refresh for 8 banks  
PASR [2:0]  
w
Address Bus, Partial Array Self Refresh for 8 Banks3)  
Note: Only for 1G and 2G components  
000B PASR0 Full Array  
001B PASR1 Half Array (BA[2:0]=000, 001, 010 & 011)  
010B PASR2 Quarter Array (BA[2:0]=000, 001)  
011B PASR3 1/8 array (BA[2:0] = 000)  
100B PASR4 3/4 array (BA[2:0]= 010, 011, 100, 101, 110 & 111)  
101B PASR5 Half array (BA[2:0]=100, 101, 110 & 111)  
110B PASR6 Quarter array (BA[2:0]= 110 & 111)  
111B PASR7 1/8 array(BA[2:0]=111)  
1) w = write only  
2) When DRAM is operated at 85°C TCase 95°C the extended self refresh rate must be enabled by setting bit A7 to "1" before the self  
refresh mode can be entered.  
3) If PASR (Partial Array Self Refresh) is enabled, data located in areas of the array beyond the specified location will be lost if self refresh  
is entered. Data integrity will be maintained if tREF conditions are met and no Self Refresh command is issued  
%
            
$
             
ꢄꢋ %  
                
$
                  
ꢃꢋ %  
                     
$
                      
ꢀꢋ $  
                          
                           
ꢅꢋ $  
                               
                                
ꢄꢋ $  
                                    
ꢃꢃ  
                                     
 $  
                                         
                                          
ꢀꢋ  
$
                                              
ꢂꢋ  
$
                                                   
ꢇꢋ  
$
                                                        
ꢆꢋ  
ꢀꢋ  
$ꢉꢋ  
                                                             
$
                                                                  
ꢁꢋ  
$
                                                                       
ꢈꢋ  
$
                                                                           
ꢅꢋ  
$ꢄꢋ  
                                                                                
$
                                                                                     
ꢃꢋ  
$ꢀꢋ  
                                                                                          
ꢀꢋ  
ꢃꢋ  
ꢃꢋ  
TABLE 22  
EMR(3) Programming Extended Mode Register Definition(BA[2:0]=011B)  
Field  
Bits  
Type1)  
Description  
BA2  
16  
reg.addr  
Bank Address[2]  
Note: BA2 is not available on 256 Mbit and 512 Mbit components  
0B  
BA2 Bank Address  
BA1  
BA0  
A
15  
Bank Adress[1]  
1B  
BA1 Bank Address  
14  
Bank Adress[0]  
1B  
BA0 Bank Address  
[13:0]  
w
Address Bus[13:0]  
Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration  
00000000000000BA[13:0] Address bits  
1) w = write only  
Rev. 1.3, 2007-07  
27  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
TABLE 23  
ODT Truth Table  
Input Pin  
EMRS(1) Address Bit A10  
EMRS(1) Address Bit A11  
×4 Components  
DQ[3:0]  
DQS  
X
X
0
DQS  
X
DM  
X
×8 Components  
DQ[7:0]  
DQS  
X
X
0
DQS  
X
1
1
0
RDQS  
X
0
RDQS  
DM  
X
×16 Components  
DQ[7:0]  
DQ[15:8]  
LDQS  
X
X
X
0
LDQS  
X
X
UDQS  
X
0
UDQS  
LDM  
X
X
UDM  
Note: X = don’t care; 0 = bit set to low; 1 = bit set to high  
Rev. 1.3, 2007-07  
28  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
TABLE 24  
Burst Length and Sequence  
Burst Length  
Starting Address  
(A2 A1 A0)  
Sequential Addressing  
(decimal)  
Interleave Addressing  
(decimal)  
4
× 0 0  
× 0 1  
×1 0  
0, 1, 2, 3  
0, 1, 2, 3  
1, 2, 3, 0  
1, 0, 3, 2  
2, 3, 0, 1  
2, 3, 0, 1  
×1 1  
3, 0, 1, 2  
3, 2, 1, 0  
8
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0, 1, 2, 3, 4, 5, 6, 7  
1, 2, 3, 0, 5, 6, 7, 4  
2, 3, 0, 1, 6, 7, 4, 5  
3, 0, 1, 2, 7, 4, 5, 6  
4, 5, 6, 7, 0, 1, 2, 3  
5, 6, 7, 4, 1, 2, 3, 0  
6, 7, 4, 5, 2, 3, 0, 1  
7, 4, 5, 6, 3, 0, 1, 2  
0, 1, 2, 3, 4, 5, 6, 7  
1, 0, 3, 2, 5, 4, 7, 6  
2, 3, 0, 1, 6, 7, 4, 5  
3, 2, 1, 0, 7, 6, 5, 4  
4, 5, 6, 7, 0, 1, 2, 3  
5, 4, 7, 6, 1, 0, 3, 2  
6, 7, 4, 5, 2, 3, 0, 1  
7, 6, 5, 4, 3, 2, 1, 0  
Rev. 1.3, 2007-07  
29  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
4
Truth Tables  
The truth tables in this chapter summarize the commands and there signal coding to control a standard Double-Data-Rate-Two  
SDRAM.  
TABLE 25  
Command Truth Table  
Function  
CKE  
CS RAS CAS WE BA0 A[13:11] A10 A[9:0]  
Note1)2)3)  
BA1  
BA2  
Previous Current  
Cycle  
Cycle  
4)5)  
(Extended) Mode  
Register Set  
H
H
L
L
L
L
BA  
OP Code  
4)  
Auto-Refresh  
H
H
L
H
L
L
L
H
L
L
L
L
L
L
L
L
H
H
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
4)6)  
4)6)7)  
Self-Refresh Entry  
Self-Refresh Exit  
L
L
H
X
H
L
X
H
H
H
H
L
4)5)  
Single Bank Precharge  
Precharge all Banks  
Bank Activate  
H
H
H
H
H
H
H
H
H
H
BA  
X
X
X
L
X
X
4)  
L
L
H
4)5)  
L
H
L
BA  
BA  
BA  
Row Address  
4)5)8)  
4)5)8)  
Write  
H
H
Column  
Column  
L
Column  
Column  
Write with Auto-  
Precharge  
L
L
H
4)5)8)  
4)5)8)  
Read  
H
H
H
H
L
L
H
H
L
L
H
H
BA  
BA  
Column  
Column  
L
Column  
Column  
Read with Auto-  
Precharge  
H
4)  
No Operation  
H
H
H
X
X
L
L
H
X
X
H
X
H
H
X
X
H
X
H
H
X
X
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
4)  
Device Deselect  
Power Down Entry  
H
H
L
4)9)  
4)9)  
Power Down Exit  
L
H
H
L
X
X
X
X
1) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh.  
2) “X” means “H or L (but a defined logic level)”.  
3) Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down  
and then restarted through the specified initialization sequence before normal operation can continue.  
4) All DDR2 SDRAM commands are defined by states of CS, WE, RAS, CAS, and CKE at the rising edge of the clock.  
5) Bank addresses BA[2:0] determine which bank is to be operated upon. For (E)MRS BA[2:0] selects an (Extended) Mode Register.  
6) VREF must be maintained during Self Refresh operation.  
7) Self Refresh Exit is asynchronous.  
8) Burst reads or writes at BL = 4 cannot be terminated.  
9) The Power Down Mode does not perform any refresh operations. The duration of Power Down is therefore limited by the refresh  
requirements.  
Rev. 1.3, 2007-07  
30  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
TABLE 26  
Clock Enable (CKE) Truth Table for Synchronous Transitions  
Current State1) CKE  
Previous Cycle6)  
Command (N)2) 3)  
RAS, CAS, WE  
Action (N)2)  
Note4)5)  
Current Cycle6)  
(N)  
(N-1)  
7)8)11)  
Power-Down  
Self Refresh  
L
L
L
H
L
X
Maintain Power-Down  
Power-Down Exit  
7)9)10)11)  
8)11)12)  
DESELECT or NOP  
X
L
Maintain Self Refresh  
Self Refresh Exit  
9)11)12)13)14)  
7)9)10)11)15)  
9)10)11)15)  
L
H
L
DESELECT or NOP  
DESELECT or NOP  
DESELECT or NOP  
Bank(s) Active  
All Banks Idle  
H
H
Active Power-Down Entry  
L
Precharge Power-Down  
Entry  
7)11)14)16)  
17)  
H
H
L
AUTOREFRESH  
Self Refresh Entry  
Any State other  
than  
H
Refer to the Command Truth Table  
listed above  
1) Current state is the state of the DDR2 SDRAM immediately prior to clock edge N.  
2) Command (N) is the command registered at clock edge N, and Action (N) is a result of Command (N)  
3) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh.  
4) CKE must be maintained HIGH while the device is in OCD calibration mode.  
5) Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down  
and then restarted through the specified initialization sequence before normal operation can continue.  
6) CKE (N) is the logic state of CKE at clock edge N; CKE (N-1) was the state of CKE at the previous clock edge.  
7) The Power-Down Mode does not perform any refresh operations. The duration of Power-Down Mode is therefor limited by the refresh  
requirements  
8) “X” means “don’t care (including floating around VREF)” in Self Refresh and Power Down. However ODT must be driven HIGH or LOW in  
Power Down if the ODT function is enabled (Bit A2 or A6 set to “1” in EMRS(1)).  
9) All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document.  
10) Valid commands for Power-Down Entry and Exit are NOP and DESELECT only.  
11) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the  
entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during  
the time period of tIS + 2 × tCK + tIH.  
12) VREF must be maintained during Self Refresh operation.  
13) On Self Refresh Exit DESELECT or NOP commands must be issued on every clock edge occurring during the tXSNR period. Read  
commands may be issued only after tXSRD (200 clocks) is satisfied.  
14) Valid commands for Self Refresh Exit are NOP and DESELCT only.  
15) Power-Down and Self Refresh can not be entered while Read or Write operations, (Extended) mode Register operations, Precharge or  
Refresh operations are in progress.  
16) Self Refresh mode can only be entered from the All Banks Idle state.  
17) Must be a legal command as defined in the Command Truth Table.  
TABLE 27  
Data Mask (DM) Truth Table  
Name (Function)  
DM  
DQs  
Note  
1)  
Write Enable  
L
Valid  
X
1)  
Write Inhibit  
H
1) Used to mask write data; provided coincident with the corresponding data.  
Rev. 1.3, 2007-07  
31  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
5
Electrical Characteristics  
This chapter describes the electrical characteristics.  
5.1  
Absolute Maximum Ratings  
Caution is needed not to exceed absolute maximum ratings of the DRAM device listed in Table 28 at any time.  
5.1.1  
Absolute Maximum Ratings  
Caution is needed not to exceed absolute maximum ratings of the DRAM device listed in Table 28 at any time.  
TABLE 28  
Absolute Maximum Ratings  
Symbol  
Parameter  
Rating  
Min.  
Unit  
Note  
Max.  
1)  
VDD  
Voltage on VDD pin relative to VSS  
Voltage on VDDQ pin relative to VSS  
Voltage on VDDL pin relative to VSS  
Voltage on any pin relative to VSS  
Storage Temperature  
–1.0  
–0.5  
–0.5  
–0.5  
–55  
+2.3  
+2.3  
+2.3  
+2.3  
+100  
V
1)2)  
1)2)  
1)  
VDDQ  
VDDL  
V
V
VIN, VOUT  
TSTG  
V
1)2)  
°C  
1) When VDD and VDDQ and VDDL are less than 500 mV; VREF may be equal to or less than 300 mV.  
2) Storage Temperature is the case surface temperature on the center/top side of the DRAM.  
Attention: Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to  
the device. This is a stress rating only and functional operation of the device at these or any other  
conditions above those indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect reliability.  
TABLE 29  
DRAM Component Operating Temperature Range  
Symbol  
Parameter  
Rating  
Min.  
Unit  
Note  
Max.  
TOPER  
Operating Temperature  
0
95  
85  
°C  
°C  
1)2)3)4) for HYB...  
for HYI...  
–40  
1) Operating Temperature is the case surface temperature on the center / top side of the DRAM.  
2) The operating temperature range are the temperatures where all DRAM specification will be supported. During operation, the DRAM case  
temperature must be maintained between 0 - 95 °C under all other specification parameters.  
3) Above 85 °C the Auto-Refresh command interval has to be reduced to tREFI= 3.9 µs  
4) When operating this product in the 85 °C to 95 °C TCASE temperature range, the High Temperature Self Refresh has to be enabled by  
setting EMR(2) bit A7 to “1”. When the High Temperature Self Refresh is enabled there is an increase of IDD6 by approximately 50%  
Rev. 1.3, 2007-07  
32  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
5.2  
DC Characteristics  
Input and output 0s are higher with dual-die components compared to standard single-die components, due to the double  
loading of the input / output pins, except CS[1:0], CKE[1:0] and ODT[1:0] and the additional package internal wiring.  
TABLE 30  
Recommended DC Operating Conditions (SSTL_18)  
Symbol  
Parameter  
Rating  
Min.  
Unit  
Note  
Typ.  
Max.  
1)  
VDD  
Supply Voltage  
1.7  
1.8  
1.9  
V
V
V
V
V
1)  
VDDDL  
VDDQ  
VREF  
VTT  
Supply Voltage for DLL  
Supply Voltage for Output  
Input Reference Voltage  
Termination Voltage  
1.7  
1.8  
1.9  
1)  
1.7  
1.8  
1.9  
2)3)  
4)  
0.49 × VDDQ  
0.5 × VDDQ  
VREF  
0.51 × VDDQ  
V
REF – 0.04  
VREF + 0.04  
1)  
VDDQ tracks with VDD, VDDDL tracks with VDD. AC parameters are measured with VDD, VDDQ and VDDDL tied together.  
2) The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is expected to  
be about 0.5 × VDDQ of the transmitting device and VREF is expected to track variations in VDDQ  
3) Peak to peak ac noise on VREF may not exceed ± 2 % VREF (dc)  
.
4)  
VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal to VREF, and  
must track variations in die dc level of VREF  
.
TABLE 31  
ODT DC Electrical Characteristics  
Parameter / Condition  
Symbol  
Min.  
Nom.  
Max.  
Unit  
Note  
1)  
Termination resistor impedance value for  
EMRS(1)[A6,A2] = [0,1]; 75 Ohm  
Rtt1(eff)  
60  
75  
90  
1)  
1)  
2)  
Termination resistor impedance value for  
EMRS(1)[A6,A2] =[1,0]; 150 Ohm  
Rtt2(eff)  
Rtt3(eff)  
delta VM  
120  
40  
150  
50  
180  
%
Termination resistor impedance value for  
EMRS(1)(A6,A2)=[1,1]; 50 Ohm  
60  
Deviation of VM with respect to VDDQ / 2  
–6.00  
+ 6.00  
1) Measurement Definition for Rtt(eff): Apply VIH(ac) and VIL(ac) to test pin separately, then measure current I(VIHac) and I(VILac) respectively.  
Rtt(eff) = (VIH(ac) VIL(ac)) /(I(VIHac) – I(VILac)).  
2) Measurement Definition for VM: Turn ODT on and measure voltage (VM) at test pin (midpoint) with no load: delta VM = ((2 x VM / VDDQ) –  
1) x 100 %  
TABLE 32  
Input and Output Leakage Currents  
Symbol  
Parameter / Condition  
Min.  
Max.  
Unit  
Note  
1)  
IIL  
Input Leakage Current; any input 0 V < VIN < VDD  
Output Leakage Current; 0 V < VOUT < VDDQ  
–2  
–5  
+2  
+5  
µA  
µA  
2)  
IOL  
1) All other pins not under test = 0 V  
2) DQ’s, LDQS, LDQS, UDQS, UDQS, DQS, DQS, RDQS, RDQS are disabled and ODT is turned off  
Rev. 1.3, 2007-07  
33  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
5.3  
DC & AC Characteristics  
DDR2 SDRAM pin timing are specified for either single ended  
or differential mode depending on the setting of the EMRS(1)  
“Enable DQS” mode bit; timing advantages of differential  
mode are realized in system design. The method by which the  
DDR2 SDRAM pin timing are measured is mode dependent.  
In single ended mode, timing relationships are measured  
In differential mode, these timing relationships are measured  
relative to the crosspoint of DQS and its complement, DQS.  
This distinction in timing methods is verified by design and  
characterization but not subject to production test. In single  
ended mode, the DQS (and RDQS) signals are internally  
disabled and don’t care.  
relative to the rising or falling edges of DQS crossing at VREF  
.
TABLE 33  
DC & AC Logic Input Levels for DDR2-667 and DDR2-800  
Symbol  
Parameter  
DDR2-667, DDR2-800  
Units  
Min.  
Max.  
VIH(dc)  
VIL(dc)  
VIH(ac)  
VIL(ac)  
DC input logic high  
DC input low  
V
REF + 0.125  
V
V
DDQ + 0.3  
REF – 0.125  
V
V
V
V
–0.3  
AC input logic high  
AC input low  
V
REF + 0.200  
VREF – 0.200  
TABLE 34  
DC & AC Logic Input Levels for DDR2-533 and DDR2-400  
Symbol  
Parameter  
DDR2-533, DDR2-400  
Units  
Min.  
Max.  
VIH(dc)  
VIL(dc)  
VIH(ac)  
VIL(ac)  
DC input logic high  
DC input low  
V
REF + 0.125  
V
V
DDQ + 0.3  
REF - 0.125  
V
V
V
V
–0.3  
AC input logic high  
AC input low  
V
REF + 0.250  
VREF - 0.250  
TABLE 35  
Single-ended AC Input Test Conditions  
Symbol  
Condition  
Value  
Unit  
Note  
1)  
VREF  
Input reference voltage  
0.5 x VDDQ  
1.0  
V
1)  
VSWING.MAX  
SLEW  
Input signal maximum peak to peak swing  
Input signal minimum Slew Rate  
V
2)3)  
1.0  
V / ns  
1) Input waveform timing is referenced to the input signal crossing through the VREF level applied to the device under test.  
2) The input signal minimum Slew Rate is to be maintained over the range from VIH(ac).MIN to VREF for rising edges and the range from VREF to  
IL(ac).MAX for falling edges as shown in Figure 4  
V
3) AC timings are referenced with input waveforms switching from VIL(ac) to VIH(ac) on the positive transitions and VIH(ac) to VIL(ac) on the negative  
transitions.  
Rev. 1.3, 2007-07  
34  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
FIGURE 4  
Single-ended AC Input Test Conditions Diagram  
9''4  
9,+ꢎDFꢏPLQ  
9,+ꢎGFꢏPLQ  
95()  
96:,1*ꢎ0$;ꢏ  
9,/ꢎGFꢏPD[  
9,/ꢎDFꢏPD[  
966  
'HOWDꢋ7)  
'HOWDꢋ75  
95()ꢋꢐꢋ9,/ꢎDFꢏPD[  
'HOWDꢋ7)  
9,+ꢎDFꢏPLQꢋꢐꢋ95()  
)DOOLQJꢋ6OHZꢋ  
5LVLQJꢋ6OHZꢋ  
'HOWDꢋ75  
03(7ꢀꢅꢃꢀ  
TABLE 36  
Differential DC and AC Input and Output Logic Levels  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Note  
1)  
2)  
3)  
4)  
5)  
VIN(dc)  
VID(dc)  
VID(ac)  
VIX(ac)  
VOX(ac)  
DC input signal voltage  
–0.3  
V
V
V
DDQ + 0.3  
V
DC differential input voltage  
AC differential input voltage  
AC differential cross point input voltage  
0.25  
DDQ + 0.6  
DDQ + 0.6  
0.5  
0.5 × VDDQ – 0.175  
0.5 × VDDQ + 0.175  
0.5 × VDDQ + 0.125  
V
AC differential cross point output voltage 0.5 × VDDQ – 0.125  
V
1)  
2)  
3)  
V
V
V
IN(dc) specifies the allowable DC execution of each input of differential pair such as CK, CK, DQS, DQS etc.  
ID(dc) specifies the input differential voltage VTRVCP required for switching. The minimum value is equal to VIH(dc) VIL(dc)  
ID(ac) specifies the input differential voltage VTR VCP required for switching. The minimum value is equal to VIH(ac) VIL(ac)  
.
.
4) The value of VIX(ac) is expected to equal 0.5 × VDDQ of the transmitting device and VIX(ac) is expected to track variations in VDDQ. VIX(ac)  
indicates the voltage at which differential input signals must cross.  
5) The value of VOX(ac) is expected to equal 0.5 × VDDQ of the transmitting device and VOX(ac) is expected to track variations in VDDQ. VOX(ac)  
indicates the voltage at which differential input signals must cross.  
Rev. 1.3, 2007-07  
35  
03062006-ZNH8-HURV  
9
9
                      
75ꢋ  
                       
&
                                                      
U
                                                       
                                                        
                                                        
V
                                                         
L
                                                          
                                                           
                                                            
3
                                                             
RLQWꢋ  
                                                              
                                                               
                                                                
R
V
Q
Jꢋ  
9,'ꢋ  
                              
                               
9
                                                 
,
                                                  
;ꢋ  
                                                   
R
                                                    
Uꢋ9  
                                                     
                                                       
                                                        
2
;ꢋ  
                      
&3ꢋ  
                       
9
                                                                      
                                                                       
                                                                        
664ꢋ  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
FIGURE 5  
Differential DC and AC Input and Output Logic Levels Diagram  
9
                                                                     
''4ꢋ  
                                                                       
                                                                        
5.4  
Output Buffer Characteristics  
This chapter describes the Output Buffer Characteristics.  
TABLE 37  
SSTL_18 Output DC Current Drive  
Symbol  
Parameter  
SSTL_18  
Unit  
Note  
1)2)  
IOH  
IOL  
Output Minimum Source DC Current  
Output Minimum Sink DC Current  
–13.4  
13.4  
mA  
mA  
2)3)  
1)  
VDDQ = 1.7 V; VOUT = 1.42 V. (VOUTVDDQ) / IOH must be less than 21 Ohm for values of VOUT between VDDQ and VDDQ – 280 mV.  
2) The values of IOH(dc) and IOL(dc) are based on the conditions given in 1) and 3). They are used to test drive current capability to ensure VIH.MIN  
plus a noise margin and VIL.MAX minus a noise margin are delivered to an SSTL_18 receiver. The actual current values are derived by  
shifting the desired driver operating points along 21 Ohm load line to define a convenient current for measurement.  
.
3)  
VDDQ = 1.7 V; VOUT = 280 mV. VOUT / IOL must be less than 21 Ohm for values of VOUT between 0 V and 280 mV.  
TABLE 38  
SSTL_18 Output AC Test Conditions  
Symbol  
Parameter  
SSTL_18  
Unit  
Note  
1)  
VOH  
VOL  
Minimum Required Output Pull-up  
VTT + 0.603  
VTT – 0.603  
0.5 × VDDQ  
V
V
V
1)  
Maximum Required Output Pull-down  
Output Timing Measurement Reference Level  
VOTR  
1) SSTL_18 test load for VOH and VOL is different from the referenced load described. The SSTL_18 test load has a 20 Ohm series resistor  
additionally to the 25 Ohm termination resistor into VTT. The SSTL_18 definition assumes that ± 335 mV must be developed across the  
effectively 25 Ohm termination resistor (13.4 mA × 25 Ohm = 335 mV). With an additional series resistor of 20 Ohm this translates into a  
minimum requirement of 603 mV swing relative to VTT, at the ouput device (13.4 mA × 45 Ohm = 603 mV).  
Rev. 1.3, 2007-07  
36  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
TABLE 39  
OCD Default Characteristics  
Symbol  
Description  
Min.  
Nominal  
Max.  
Unit  
Note  
1)2)  
Output Impedance  
0
1)2)3)  
4)  
Pull-up / Pull down mismatch  
4
Output Impedance step size  
for OCD calibration  
0
1.5  
1)5)6)7)  
SOUT  
Output Slew Rate  
1.5  
5.0  
V / ns  
1)  
VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V  
2) Impedance measurement condition for output source dc current: VDDQ = 1.7 V, VOUT = 1420 mV; (VOUTVDDQ) / IOH must be less than  
23.4 Ohms for values of VOUT between VDDQ and VDDQ – 280 mV. Impedance measurement condition for output sink dc current:  
VDDQ = 1.7 V; VOUT = –280 mV; VOUT / IOL must be less than 23.4 Ohms for values of VOUT between 0 V and 280 mV.  
3) Mismatch is absolute value between pull-up and pull-down, both measured at same temperature and voltage.  
4) This represents the step size when the OCD is near 18 Ohms at nominal conditions across all process parameters and represents only  
the DRAM uncertainty. A 0 Ohm value (no calibration) can only be achieved if the OCD impedance is 18 ± 0.75 Ohms under nominal  
conditions.  
5) The absolute value of the Slew Rate as measured from DC to DC is equal to or greater than the Slew Rate as measured from AC to AC.  
This is verified by design and characterization but not subject to production test.  
6) Timing skew due to DRAM output Slew Rate mis-match between DQS / DQS and associated DQ’s is included in tDQSQ and tQHS  
specification.  
7) DRAM output Slew Rate specification applies to 400, 533 and 667 MT/s speed bins.  
Rev. 1.3, 2007-07  
37  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
5.5  
Input / Output Capacitance  
This chapter contains the input / output capacitance.  
TABLE 40  
Input / Output Capacitance for DDR2-800  
Symbol  
Parameter  
DDR2-800  
Min.  
Max.  
Unit  
CCK  
CDCK  
CI  
Input capacitance, CK and CK  
1.0  
2.0  
pF  
pF  
pF  
pF  
pF  
Input capacitance delta, CK and CK  
Input capacitance, all other input-only pins  
Input capacitance delta, all other input-only pins  
0.25  
1.75  
0.25  
3.5  
1.0  
CDI  
CIO  
Input/output capacitance,  
2.5  
DQ, DM, DQS, DQS, RDQS, RDQS  
CDIO  
Input/output capacitance delta,  
0.5  
pF  
DQ, DM, DQS, DQS, RDQS, RDQS  
TABLE 41  
Input / Output Capacitance for DDR2-667  
Symbol  
Parameter  
DDR2-667  
Min.  
Max.  
Unit  
CCK  
CDCK  
CI  
Input capacitance, CK and CK  
1.0  
2.0  
pF  
pF  
pF  
pF  
pF  
Input capacitance delta, CK and CK  
Input capacitance, all other input-only pins  
Input capacitance delta, all other input-only pins  
0.25  
2.0  
1.0  
CDI  
CIO  
0.25  
3.5  
Input/output capacitance,  
2.5  
DQ, DM, DQS, DQS, RDQS, RDQS  
CDIO  
Input/output capacitance delta,  
0.5  
pF  
DQ, DM, DQS, DQS, RDQS, RDQS  
Rev. 1.3, 2007-07  
38  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
TABLE 42  
Input / Output Capacitance for DDR2-533  
Symbol  
Parameter  
DDR2-533  
Min.  
Max.  
Unit  
CCK  
CDCK  
CI  
Input capacitance, CK and CK  
1.0  
2.0  
pF  
pF  
pF  
pF  
pF  
Input capacitance delta, CK and CK  
Input capacitance, all other input-only pins  
Input capacitance delta, all other input-only pins  
0.25  
2.0  
1.0  
CDI  
CIO  
0.25  
4.0  
Input/output capacitance,  
2.5  
DQ, DM, DQS, DQS, RDQS, RDQS  
CDIO  
Input/output capacitance delta,  
0.5  
pF  
DQ, DM, DQS, DQS, RDQS, RDQS  
TABLE 43  
Input / Output Capacitance for DDR2-400  
Symbol  
Parameter  
DDR2-400  
Min.  
Max.  
Unit  
CCK  
CDCK  
CI  
Input capacitance, CK and CK  
1.0  
2.0  
pF  
pF  
pF  
pF  
pF  
Input capacitance delta, CK and CK  
Input capacitance, all other input-only pins  
Input capacitance delta, all other input-only pins  
0.25  
2.0  
1.0  
CDI  
CIO  
0.25  
4.0  
Input/output capacitance,  
2.5  
DQ, DM, DQS, DQS, RDQS, RDQS  
CDIO  
Input/output capacitance delta,  
0.5  
pF  
DQ, DM, DQS, DQS, RDQS, RDQS  
Rev. 1.3, 2007-07  
39  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
5.6  
Overshoot and Undershoot Specification  
This chapter contains overshoot and undershoot specification.  
TABLE 44  
AC Overshoot / Undershoot Specification for Address and Control Pins  
Parameter  
DDR2-400  
DDR2-533  
DDR2-667  
DDR2-800  
Unit  
Maximum peak amplitude allowed for overshoot area  
Maximum peak amplitude allowed for undershoot area  
Maximum overshoot area above VDD  
0.9  
0.9  
0.9  
0.9  
V
0.9  
0.9  
0.9  
0.9  
V
1.33  
1.33  
1.00  
1.00  
0.80  
0.80  
0.66  
0.66  
V.ns  
V.ns  
Maximum undershoot area below VSS  
FIGURE 6  
AC Overshoot / Undershoot Diagram for Address and Control Pins  
0D[LPXPꢋ$PSOLWXGHꢋꢋ  
9ROWVꢋꢎ9ꢏ  
2YHUVKRRWꢋ$UHD  
9''  
966  
8QGHUVKRRWꢋ$UHD  
0D[LPXPꢋ$PSOLWXGHꢋꢋ  
7LPHꢋꢎQVꢏ  
03(7ꢀꢅꢀꢀ  
Rev. 1.3, 2007-07  
40  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
TABLE 45  
AC Overshoot / Undershoot Spec. for Clock, Data, Strobe and Mask Pins  
Parameter  
DDR2-400  
DDR2-533  
DDR2-667  
DDR2-800  
Unit  
Maximum peak amplitude allowed for overshoot area  
Maximum peak amplitude allowed for undershoot area  
Maximum overshoot area above VDDQ  
0.9  
0.9  
0.9  
0.9  
V
0.9  
0.9  
0.9  
0.9  
V
0.38  
0.38  
0.28  
0.28  
0.23  
0.23  
0.23  
0.23  
V.ns  
V.ns  
Maximum undershoot area below VSSQ  
FIGURE 7  
AC Overshoot / Undershoot Diagram for Clock, Data, Strobe and Mask Pins  
0D[LPXPꢋ$PSOLWXGHꢋꢋ  
9ROWVꢋꢎ9ꢏ  
2YHUVKRRWꢋ$UHD  
9''4  
9664  
8QGHUVKRRWꢋ$UHD  
0D[LPXPꢋ$PSOLWXGHꢋꢋ  
7LPHꢋꢎQVꢏ  
03(7ꢀꢄꢂꢀ  
Rev. 1.3, 2007-07  
03062006-ZNH8-HURV  
41  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
6
Currents Measurement Conditions  
This chapter describes the current measurement specifications and conditions.  
TABLE 46  
DD Measurement Conditions  
I
Parameter  
Symbol Note  
1)2)3)4)5)  
Operating Current - One bank Active - Precharge  
IDD0  
6)  
t
CK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), CKE is HIGH, CS is HIGH between valid commands.  
Address and control inputs are switching; Databus inputs are switching.  
1)2)3)4)5)  
Operating Current - One bank Active - Read - Precharge  
IDD1  
6)  
I
OUT = 0 mA, BL = 4, tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), tRCD = tRCD(IDD), AL = 0, CL = CL(IDD);  
CKE is HIGH, CS is HIGH between valid commands. Address and control inputs are switching; Databus  
inputs are switching.  
1)2)3)4)5)  
6)  
Precharge Power-Down Current  
All banks idle; CKE is LOW; tCK = tCK(IDD);Other control and address inputs are stable; Data bus inputs are  
IDD2P  
floating.  
1)2)3)4)5)  
6)  
Precharge Standby Current  
All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are switching,  
Data bus inputs are switching.  
IDD2N  
1)2)3)4)5)  
6)  
Precharge Quiet Standby Current  
All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are stable,  
Data bus inputs are floating.  
IDD2Q  
IDD3P(0)  
IDD3P(1)  
IDD3N  
1)2)3)4)5)  
6)  
Active Power-Down Current  
All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable; Data bus inputs  
are floating. MRS A12 bit is set to “0” (Fast Power-down Exit).  
1)2)3)4)5)  
6)  
Active Power-Down Current  
All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable, Data bus inputs  
are floating. MRS A12 bit is set to 1 (Slow Power-down Exit);  
1)2)3)4)5)  
6)  
Active Standby Current  
All banks open; tCK = tCK(IDD); tRAS = tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid  
commands. Address inputs are switching; Data Bus inputs are switching;  
1)2)3)4)5)  
6)  
Operating Current  
IDD4R  
Burst Read: All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CL(IDD); tCK = tCK(IDD)  
;
t
RAS = tRAS.MAX.(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are  
switching; Data Bus inputs are switching; IOUT = 0 mA.  
1)2)3)4)5)  
6)  
Operating Current  
IDD4W  
Burst Write: All banks open; Continuous burst writes; BL = 4; AL = 0, CL = CL(IDD); tCK = tCK(IDD)  
;
t
RAS = tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are  
switching; Data Bus inputs are switching;  
1)2)3)4)5)  
6)  
Burst Refresh Current  
IDD5B  
t
CK = tCK(IDD), Refresh command every tRFC = tRFC(IDD) interval, CKE is HIGH, CS is HIGH between valid  
commands, Other control and address inputs are switching, Data bus inputs are switching.  
1)2)3)4)5)  
6)  
Distributed Refresh Current  
IDD5D  
t
CK = tCK(IDD), Refresh command every tREFI = 7.8 µs interval, CKE is LOW and CS is HIGH between valid  
commands, Other control and address inputs are switching, Data bus inputs are switching.  
Rev. 1.3, 2007-07  
42  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
Parameter  
Symbol Note  
1)2)3)4)5)  
Self-Refresh Current  
IDD6  
6)  
CKE 0.2 V; external clock off, CK and CK at 0 V; Other control and address inputs are floating,  
Data bus inputs are floating.  
1)2)3)4)5)  
6)7)  
Operating Bank Interleave Read Current  
1. All banks interleaving reads, IOUT = 0 mA; BL = 4, CL = CL(IDD), AL = tRCD(IDD) -1 × tCK(IDD); tCK = tCK(IDD)  
IDD7  
,
t
RC = tRC(IDD), tRRD = tRRD(IDD); tFAW = tFAW(IDD); CKE is HIGH, CS is HIGH between valid commands.  
Address bus inputs are stable during deselects; Data bus is switching.  
2. Timing pattern:  
DDR2-400-333: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D (11 clocks)  
DDR2-533-333: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D (15 clocks)  
DDR2-667-444: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D (19 clocks)  
DDR2-667-555: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D (20 clocks)  
DDR2-800-555: A0 RA0 D D D A1 RA1 D D D A2 RA2 D D D A3 RA3 D D D D D(22 clocks)  
DDR2-800-666: A0 RA0 D D D A1 RA1 D D D A2 RA2 D D D A3 RA3 D D D D D D(23 clocks)  
1)  
2)  
3)  
VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V  
IDD specifications are tested after the device is properly initialized.  
DD parameter are specified with ODT disabled.  
I
4) Data Bus consists of DQ, DM, DQS, DQS, RDQS, RDQS, LDQS, LDQS, UDQS and UDQS.  
5) Definitions for IDD: see Table 47  
6) Timing parameter minimum and maximum values for IDD current measurements are defined in Chapter 7.  
7) A = Activate, RA = Read with Auto-Precharge, D=DESELECT  
TABLE 47  
Definition for IDD  
Parameter  
Description  
LOW  
defined as VIN VIL(ac).MAX  
HIGH  
defined as VIN VIH(ac).MIN  
STABLE  
FLOATING  
SWITCHING  
defined as inputs are stable at a HIGH or LOW level  
defined as inputs are VREF = VDDQ / 2  
defined as: Inputs are changing between high and low every other clock (once per two clocks) for address  
and control signals, and inputs changing between high and low every other clock (once per clock) for DQ  
signals not including mask or strobes  
Rev. 1.3, 2007-07  
43  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
TABLE 48  
DD Specification  
I
Symbol  
25F  
2.5  
3
3S  
3.7  
5
Unit Note  
DDR2 - 800 DDR2 - 800 DDR2 - 667 DDR2 - 667 DDR2 - 533 DDR2 - 400  
Max.  
Max.  
Max.  
Max.  
Max.  
Max.  
IDD0  
IDD1  
125  
150  
135  
160  
12  
125  
150  
135  
160  
12  
110  
135  
120  
145  
12  
110  
135  
120  
145  
12  
100  
125  
105  
130  
12  
95  
mA ×4/×8  
mA ×16  
mA ×4/×8  
mA ×16  
mA  
120  
100  
125  
12  
IDD2P  
IDD2N  
IDD2Q  
70  
70  
65  
65  
55  
50  
mA  
65  
65  
60  
60  
50  
45  
mA  
I
I
DD3P_0 (fast) 48  
DD3P_1 (slow) 15  
48  
45  
45  
38  
35  
mA  
15  
15  
15  
15  
15  
mA  
IDD3N  
IDD4R  
90  
90  
70  
70  
60  
55  
mA  
200  
240  
200  
240  
225  
13  
200  
240  
200  
240  
225  
13  
170  
205  
170  
205  
210  
13  
170  
205  
170  
205  
210  
13  
150  
175  
150  
175  
200  
13  
135  
150  
135  
150  
190  
13  
mA ×4/×8  
mA ×16  
mA ×4/×8  
mA ×16  
mA  
IDD4W  
IDD5B  
IDD5D  
IDD6  
1)  
mA  
10  
10  
10  
10  
10  
10  
mA 1) Standard  
3.7  
4.8  
3.7  
230  
300  
3.7  
4.8  
3.7  
225  
280  
3.7  
4.8  
mA 1) ×4/×8 Low power  
mA 1) ×16 Low power  
mA 1) ×16 Very low power  
mA ×4/×8  
IDD7  
270  
340  
270  
340  
230  
300  
215  
265  
mA ×16  
1) 0° ≤ TCASE 85 °C.  
Rev. 1.3, 2007-07  
44  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
7
Timing Characteristics  
This chapter contains speed grade definition, AC timing parameter and ODT tables.  
7.1  
Speed Grade Definitions  
All Speed grades faster than DDR2-400B comply with DDR2-400B timing specifications (tCK = 5ns with tRAS = 40ns).  
TABLE 49  
Speed Grade Definition Speed Bins for DDR2–800  
Speed Grade  
DDR2–800D  
DDR2–800E  
Unit  
Note  
QAG Sort Name  
CAS-RCD-RP latencies  
–2.5F  
–2.5  
5–5–5  
6–6–6  
tCK  
Parameter  
Symbol  
Min.  
Max.  
Min.  
Max.  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)5)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
Clock Frequency  
@ CL = 3  
@ CL = 4  
@ CL = 5  
@ CL = 6  
tCK  
5
8
5
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCK  
3.75  
2.5  
8
3.75  
3
8
tCK  
8
8
tCK  
2.5  
45  
8
2.5  
45  
60  
15  
15  
8
Row Active Time  
Row Cycle Time  
RAS-CAS-Delay  
Row Precharge Time  
tRAS  
tRC  
tRCD  
tRP  
70000  
70000  
57.5  
12.5  
12.5  
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew  
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal  
OCD drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements”.  
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,  
input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS / DQS,  
RDQS / RDQS is defined .  
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.  
4) The output timing reference voltage level is VTT  
.
5) RAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI  
t
.
Rev. 1.3, 2007-07  
45  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
TABLE 50  
Speed Grade Definition Speed Bins for DDR2–667  
Speed Grade  
DDR2–667C  
DDR2–667D  
Unit  
Note  
QAG Sort Name  
CAS-RCD-RP latencies  
–3  
–3S  
4–4–4  
5–5–5  
tCK  
Parameter  
Symbol  
Min.  
Max.  
Min.  
Max.  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)5)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
Clock Frequency  
@ CL = 3  
@ CL = 4  
@ CL = 5  
tCK  
5
8
5
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCK  
3
8
3.75  
3
8
tCK  
3
8
8
Row Active Time  
Row Cycle Time  
RAS-CAS-Delay  
Row Precharge Time  
tRAS  
tRC  
tRCD  
tRP  
45  
57  
12  
12  
70000  
45  
60  
15  
15  
70000  
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew  
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal  
OCD drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements”.  
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,  
input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS / DQS,  
RDQS / RDQS is defined.  
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.  
4) The output timing reference voltage level is VTT  
.
5) RAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI  
t
.
TABLE 51  
Speed Grade Definition Speed Bins for DDR2–533C  
Speed Grade  
DDR2–533C  
Unit  
Note  
QAG Sort Name  
CAS-RCD-RP latencies  
–3.7  
4–4–4  
tCK  
Parameter  
Symbol  
Min.  
Max.  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)5)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
Clock Frequency  
@ CL = 3  
@ CL = 4  
@ CL = 5  
tCK  
5
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCK  
3.75  
3.75  
45  
8
tCK  
8
Row Active Time  
Row Cycle Time  
RAS-CAS-Delay  
Row Precharge Time  
tRAS  
tRC  
tRCD  
tRP  
70000  
60  
15  
15  
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew  
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal  
OCD drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements”.  
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,  
input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS / DQS,  
RDQS / RDQS is defined.  
Rev. 1.3, 2007-07  
46  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.  
4) The output timing reference voltage level is VTT  
.
5) RAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI  
t
.
TABLE 52  
Speed Grade Definition Speed Bins for DDR2-400B  
Speed Grade  
DDR2–400B  
Unit  
Note  
QAG Sort Name  
CAS-RCD-RP latencies  
–5  
3–3–3  
tCK  
Parameter  
Symbol  
Min.  
Max.  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)5)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
Clock Frequency  
@ CL = 3  
@ CL = 4  
@ CL = 5  
tCK  
5
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCK  
5
8
tCK  
5
8
Row Active Time  
Row Cycle Time  
RAS-CAS-Delay  
Row Precharge Time  
tRAS  
tRC  
tRCD  
tRP  
40  
55  
15  
15  
70000  
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew  
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal  
OCD drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements”.  
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,  
input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS / DQS,  
RDQS / RDQS is defined.  
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.  
4) The output timing reference voltage level is VTT  
.
5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI  
.
Rev. 1.3, 2007-07  
47  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
7.2  
Component AC Timing Parameters  
List of Timing Parameters Tables.  
TABLE 53  
DRAM Component Timing Parameter by Speed Grade - DDR2–800  
Parameter  
Symbol  
DDR2–800  
Unit  
Note1)2)3)4)5)6)7)  
Min.  
Max.  
8)  
DQ output access time from CK / CK  
CAS to CAS command delay  
Average clock high pulse width  
Average clock period  
tAC  
–400  
2
+400  
ps  
tCCD  
nCK  
tCK.AVG  
ps  
9)10)  
9)10)  
11)  
tCH.AVG  
tCK.AVG  
0.48  
2500  
3
0.52  
8000  
CKE minimum pulse width ( high and low pulse tCKE  
nCK  
width)  
9)10)  
Average clock low pulse width  
tCL.AVG  
0.48  
0.52  
tCK.AVG  
nCK  
ns  
12)13)  
Auto-Precharge write recovery + precharge time tDAL  
WR + tnRP  
Minimum time clocks remain ON after CKE  
asynchronously drops LOW  
tDELAY  
tIS + tCK .AVG  
tIH  
+
––  
18)19)14)  
8)  
DQ and DM input hold time  
tDH.BASE  
tDIPW  
tDQSCK  
tDQSH  
125  
––  
ps  
DQ and DM input pulse width for each input  
DQS output access time from CK / CK  
DQS input high pulse width  
0.35  
–350  
0.35  
0.35  
tCK.AVG  
ps  
+350  
tCK.AVG  
tCK.AVG  
ps  
DQS input low pulse width  
tDQSL  
15)  
16)  
DQS-DQ skew for DQS & associated DQ signals tDQSQ  
200  
+ 0.25  
DQS latching rising transition to associated clock tDQSS  
– 0.25  
tCK.AVG  
edges  
17)18)19)  
16)  
DQ and DM input setup time  
tDS.BASE  
tDSH  
tDSS  
50  
0.2  
0.2  
35  
45  
––  
__  
ps  
DQS falling edge hold time from CK  
DQS falling edge to CK setup time  
tCK.AVG  
tCK.AVG  
ns  
16)  
34)  
Four Activate Window for 1KB page size products tFAW  
Four Activate Window for 2KB page size products tFAW  
34)  
ns  
20)  
CK half pulse width  
tHP  
Min(tCH.ABS  
,
ps  
tCL.ABS  
)
8)21)  
Data-out high-impedance time from CK / CK  
Address and control input hold time  
tHZ  
tAC.MAX  
ps  
22)24)  
tIH.BASE  
250  
0.6  
ps  
Control & address input pulse width for each input tIPW  
tCK.AVG  
ps  
23)24)  
8)21)  
8)21)  
34)  
Address and control input setup time  
DQ low impedance time from CK/CK  
DQS/DQS low-impedance time from CK / CK  
MRS command to ODT update delay  
Mode register set command cycle time  
OCD drive mode output delay  
tIS.BASE  
175  
tLZ.DQ  
tLZ.DQS  
tMOD  
tMRD  
tOIT  
2 x tAC.MIN  
tAC.MAX  
tAC.MAX  
12  
ps  
tAC.MIN  
ps  
0
2
0
ns  
nCK  
ns  
34)  
25)  
12  
DQ/DQS output hold time from DQS  
tQH  
t
HP tQHS  
ps  
Rev. 1.3, 2007-07  
48  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
Parameter  
Symbol  
DDR2–800  
Min.  
Unit  
Note1)2)3)4)5)6)7)  
Max.  
26)  
DQ hold skew factor  
tQHS  
tREFI  
300  
7.8  
3.9  
ps  
µs  
µs  
ns  
27)28)  
28)29)  
30)  
Average periodic refresh Interval  
Auto-Refresh to Active/Auto-Refresh command tRFC  
127.5  
period  
Precharge-All (8 banks) command period  
Read preamble  
tRP  
t
RP + 1 × tCK  
ns  
31)32)  
31)33)  
34)  
tRPRE  
tRPST  
tRRD  
0.9  
0.4  
7.5  
1.1  
0.6  
tCK.AVG  
tCK.AVG  
ns  
Read postamble  
Active to active command period for 1KB page  
size products  
34)  
34)  
Active to active command period for 2KB page  
size products  
tRRD  
10  
ns  
Internal Read to Precharge command delay  
Write preamble  
tRTP  
7.5  
0.35  
0.4  
15  
0.6  
ns  
tWPRE  
tWPST  
tWR  
tCK.AVG  
tCK.AVG  
ns  
Write postamble  
34)  
Write recovery time  
34)35)  
Internal write to read command delay  
Exit power down to read command  
tWTR  
tXARD  
7.5  
2
ns  
nCK  
nCK  
Exit active power-down mode to read command tXARDS  
8 – AL  
(slow exit, lower power)  
Exit precharge power-down to any valid  
command (other than NOP or Deselect)  
tXP  
2
nCK  
34)  
Exit self-refresh to a non-read command  
Exit self-refresh to read command  
tXSNR  
tXSRD  
t
RFC +10  
ns  
200  
nCK  
nCK  
Write command to DQS associated clock edges WL  
DDQ = 1.8 V ± 0.1V; VDD = 1.8 V ± 0.1 V.  
RL – 1  
1)  
V
2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down  
and then restarted through the specified initialization sequence before normal operation can continue.  
3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew  
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.  
4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,  
input reference level is the crosspoint when in differential strobe mode. The input reference level for signals other than CK/CK, DQS/DQS,  
RDQS / RDQS is defined.  
5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.  
6) The output timing reference voltage level is VTT  
.
7) New units, ‘tCK.AVG‘ and ‘nCK‘, are introduced in DDR2–667 and DDR2–800. Unit ‘tCK.AVG‘ represents the actual tCK.AVG of the input clock  
under operation. Unit ‘nCK‘ represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2–400 and  
DDR2–533, ‘tCK‘ is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command  
may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min)  
.
8) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output  
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tERR(6-10PER).MIN  
– 272 ps and tERR(6- 10PER).MAX = + 293 ps, then tDQSCK.MIN(DERATED) = tDQSCK.MIN tERR(6-10PER).MAX = – 400 ps – 293 ps = – 693 ps and  
=
tDQSCK.MAX(DERATED) = tDQSCK.MAX tERR(6-10PER).MIN = 400 ps + 272 ps = + 672 ps. Similarly, tLZ.DQ for DDR2–667 derates to tLZ.DQ.MIN(DERATED)  
= - 900 ps – 293 ps = – 1193 ps and tLZ.DQ.MAX(DERATED) = 450 ps + 272 ps = + 722 ps. (Caution on the MIN/MAX usage!)  
9) Input clock jitter spec parameter. These parameters and the ones in Chapter 7.3 are referred to as 'input clock jitter spec parameters' and  
these parameters apply to DDR2–667 and DDR2–800 only. The jitter specified is a random jitter meeting a Gaussian distribution.  
Rev. 1.3, 2007-07  
49  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
10) These parameters are specified per their average values, however it is understood that the relationship as defined in Chapter 7.3 between  
the average timing and the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations  
of Chapter 7.3).  
11) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the  
entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during  
the time period of tIS + 2 x tCK + tIH.  
12) DAL = WR + RU{tRP(ns) / tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result  
of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period.  
Example: For DDR2–533 at tCK = 3.75 ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks.  
13) tDAL.nCK = WR [nCK] + tnRP.nCK = WR + RU{tRP [ps] / tCK.AVG[ps] }, where WR is the value programmed in the EMR.  
14) Input waveform timing tDH with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to  
the input signal crossing at the VIH.DC level for a falling signal and from the differential data strobe crosspoint to the input signal crossing  
at the VIL.DC level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL.DC.MAX and  
VIH.DC.MIN. See Figure 9.  
15) tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output  
slew rate mismatch between DQS / DQS and associated DQ in any given cycle.  
16) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing.  
The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as these are relative to the clock signal  
crossing. That is, these parameters should be met whether clock jitter is present or not.  
17) Input waveform timing tDS with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the VIH.AC level  
to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL.AC level to the differential data strobe  
crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(DC)MAX and Vih(DC)MIN  
See Figure 9.  
.
18) If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed.  
19) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal  
((L/U/R)DQS / DQS) crossing.  
20) tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter.  
It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the  
following equation; tHP = MIN (tCH.ABS, tCL.ABS), where, tCH.ABS is the minimum of the actual instantaneous clock high time; tCL.ABS is the  
minimum of the actual instantaneous clock low time.  
21) tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level  
which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) .  
22) Input waveform timing is referenced from the input signal crossing at the VIL.DC level for a rising signal and VIH.DC for a falling signal applied  
to the device under test. See Figure 10.  
23) Input waveform timing is referenced from the input signal crossing at the VIH.AC level for a rising signal and VIL.AC for a falling signal applied  
to the device under test. See Figure 10.  
24) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to  
its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC  
,
etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should  
be met whether clock jitter is present or not.  
25) tQH = tHP tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under  
the max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.}  
Examples:  
1) If the system provides tHP of 1315 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 975 ps minimum.  
2) If the system provides tHP of 1420 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 1080 ps minimum.  
26) tQHS accounts for:  
1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is transferred to the output;  
and  
2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are  
independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation of the output drivers.  
27) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C  
and 95 °C.  
28) 0 °CTCASE 85 °C  
29) 85 °C < TCASE 95 °C  
30) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.  
31) tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving  
(tRPST), or begins driving (tRPRE). Figure 8 shows a method to calculate these points when the device is no longer driving (tRPST), or begins  
driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the  
calculation is consistent.  
Rev. 1.3, 2007-07  
50  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
32) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.PER of the input clock. (output  
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.PER.MIN = – 72 ps  
and tJIT.PER.MAX = + 93 ps, then tRPRE.MIN(DERATED) = tRPRE.MIN + tJIT.PER.MIN = 0.9 x tCK.AVG – 72 ps = + 2178 ps and tRPRE.MAX(DERATED) = tRPRE.MAX  
+ tJIT.PER.MAX = 1.1 x tCK.AVG + 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!).  
33) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.DUTY of the input clock. (output  
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.DUTY.MIN = – 72 ps  
and tJIT.DUTY.MAX = + 93 ps, then tRPST.MIN(DERATED) = tRPST.MIN + tJIT.DUTY.MIN = 0.4 x tCK.AVG – 72 ps = + 928 ps and tRPST.MAX(DERATED) = tRPST.MAX  
+ tJIT.DUTY.MAX = 0.6 x tCK.AVG + 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!).  
34) For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK.AVG}, which is in clock  
cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK.AVG}, which is in  
clock cycles, if all input clock jitter specifications are met. This means: For DDR2–667 5–5–5, of which tRP = 15 ns, the device will support  
tnRP = RU{tRP / tCK.AVG} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at  
Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter.  
35) tWTR is at lease two clocks (2 x tCK) independent of operation frequency.  
TABLE 54  
DRAM Component Timing Parameter by Speed Grade - DDR2–667  
Parameter  
Symbol  
DDR2–667  
Unit  
Note1)2)3)4)5)6)7)  
Min.  
Max.  
8)  
DQ output access time from CK / CK  
CAS to CAS command delay  
Average clock high pulse width  
Average clock period  
tAC  
–450  
2
+450  
ps  
tCCD  
nCK  
tCK.AVG  
ps  
9)10)  
11)  
tCH.AVG  
tCK.AVG  
0.48  
3000  
3
0.52  
8000  
CKE minimum pulse width ( high and low pulse tCKE  
nCK  
width)  
9)10)  
Average clock low pulse width  
tCL.AVG  
0.48  
0.52  
tCK.AVG  
nCK  
ns  
12)13)  
Auto-Precharge write recovery + precharge time tDAL  
WR + tnRP  
Minimum time clocks remain ON after CKE  
asynchronously drops LOW  
tDELAY  
tIS + tCK .AVG  
tIH  
+
––  
18)19)14)  
8)  
DQ and DM input hold time  
tDH.BASE  
tDIPW  
tDQSCK  
tDQSH  
175  
––  
ps  
DQ and DM input pulse width for each input  
DQS output access time from CK / CK  
DQS input high pulse width  
0.35  
–400  
0.35  
0.35  
tCK.AVG  
ps  
+400  
tCK.AVG  
tCK.AVG  
ps  
DQS input low pulse width  
tDQSL  
15)  
16)  
DQS-DQ skew for DQS & associated DQ signals tDQSQ  
240  
+ 0.25  
DQS latching rising transition to associated clock tDQSS  
– 0.25  
tCK.AVG  
edges  
17)18)19)  
16)  
DQ and DM input setup time  
tDS.BASE  
tDSH  
tDSS  
100  
0.2  
0.2  
37.5  
50  
––  
__  
ps  
DQS falling edge hold time from CK  
DQS falling edge to CK setup time  
tCK.AVG  
tCK.AVG  
ns  
16)  
34)  
Four Activate Window for 1KB page size products tFAW  
Four Activate Window for 2KB page size products tFAW  
34)  
ns  
20)  
CK half pulse width  
tHP  
Min(tCH.ABS  
,
ps  
tCL.ABS  
)
8)21)  
Data-out high-impedance time from CK / CK  
Address and control input hold time  
tHZ  
tAC.MAX  
ps  
ps  
24)22)  
tIH.BASE  
275  
Rev. 1.3, 2007-07  
51  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
Parameter  
Symbol  
DDR2–667  
Min.  
Unit  
Note1)2)3)4)5)6)7)  
Max.  
Control & address input pulse width for each input tIPW  
0.6  
tCK.AVG  
ps  
23)24)  
8)21)  
8)21)  
34)  
Address and control input setup time  
DQ low impedance time from CK/CK  
DQS/DQS low-impedance time from CK / CK  
MRS command to ODT update delay  
Mode register set command cycle time  
OCD drive mode output delay  
tIS.BASE  
200  
tLZ.DQ  
tLZ.DQS  
tMOD  
tMRD  
tOIT  
2 x tAC.MIN  
tAC.MAX  
tAC.MAX  
12  
ps  
tAC.MIN  
ps  
0
2
0
ns  
nCK  
ns  
34)  
12  
25)  
DQ/DQS output hold time from DQS  
DQ hold skew factor  
tQH  
t
HP tQHS  
ps  
26)  
tQHS  
tREFI  
340  
7.8  
3.9  
ps  
27)28)  
28)29)  
30)  
Average periodic refresh Interval  
µs  
µs  
Auto-Refresh to Active/Auto-Refresh command tRFC  
127.5  
ns  
period  
Precharge-All (8 banks) command period  
Read preamble  
tRP  
t
RP + 1 × tCK  
ns  
31)32)  
31)33)  
34)  
tRPRE  
tRPST  
tRRD  
0.9  
0.4  
7.5  
1.1  
0.6  
tCK.AVG  
tCK.AVG  
ns  
Read postamble  
Active to active command period for 1KB page  
size products  
34)  
34)  
Active to active command period for 2KB page  
size products  
tRRD  
10  
ns  
Internal Read to Precharge command delay  
Write preamble  
tRTP  
7.5  
0.35  
0.4  
15  
0.6  
ns  
tWPRE  
tWPST  
tWR  
tCK.AVG  
tCK.AVG  
ns  
Write postamble  
34)  
Write recovery time  
34)35)  
Internal write to read command delay  
Exit power down to read command  
tWTR  
tXARD  
7.5  
2
ns  
nCK  
nCK  
Exit active power-down mode to read command tXARDS  
7 – AL  
(slow exit, lower power)  
Exit precharge power-down to any valid  
command (other than NOP or Deselect)  
tXP  
2
nCK  
34)  
Exit self-refresh to a non-read command  
Exit self-refresh to read command  
tXSNR  
tXSRD  
t
RFC +10  
ns  
200  
nCK  
nCK  
Write command to DQS associated clock edges WL  
DDQ = 1.8 V ± 0.1V; VDD = 1.8 V ± 0.1 V.  
RL–1  
1)  
V
2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down  
and then restarted through the specified initialization sequence before normal operation can continue.  
3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew  
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.  
4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,  
input reference level is the crosspoint when in differential strobe mode. The input reference level for signals other than CK/CK, DQS/DQS,  
RDQS / RDQS is defined.  
5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.  
6) The output timing reference voltage level is VTT  
.
Rev. 1.3, 2007-07  
52  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
7) New units, ‘tCK.AVG‘ and ‘nCK‘, are introduced in DDR2–667 and DDR2–800. Unit ‘tCK.AVG‘ represents the actual tCK.AVG of the input clock  
under operation. Unit ‘nCK‘ represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2–400 and  
DDR2–533, ‘tCK‘ is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command  
may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min)  
.
8) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output  
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tERR(6-10PER).MIN  
– 272 ps and tERR(6- 10PER).MAX = + 293 ps, then tDQSCK.MIN(DERATED) = tDQSCK.MIN tERR(6-10PER).MAX = – 400 ps – 293 ps = – 693 ps and  
=
tDQSCK.MAX(DERATED) = tDQSCK.MAX tERR(6-10PER).MIN = 400 ps + 272 ps = + 672 ps. Similarly, tLZ.DQ for DDR2–667 derates to tLZ.DQ.MIN(DERATED)  
= - 900 ps – 293 ps = – 1193 ps and tLZ.DQ.MAX(DERATED) = 450 ps + 272 ps = + 722 ps. (Caution on the MIN/MAX usage!)  
9) Input clock jitter spec parameter. These parameters and the ones in Chapter 7.3 are referred to as 'input clock jitter spec parameters' and  
these parameters apply to DDR2–667 and DDR2–800 only. The jitter specified is a random jitter meeting a Gaussian distribution.  
10) These parameters are specified per their average values, however it is understood that the relationship as defined in Chapter 7.3 between  
the average timing and the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations  
of Chapter 7.3).  
11) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the  
entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during  
the time period of tIS + 2 x tCK + tIH.  
12) DAL = WR + RU{tRP(ns) / tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result  
of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period.  
Example: For DDR2–533 at tCK = 3.75 ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks.  
13) tDAL.nCK = WR [nCK] + tnRP.nCK = WR + RU{tRP [ps] / tCK.AVG[ps] }, where WR is the value programmed in the EMR.  
14) Input waveform timing tDH with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to  
the input signal crossing at the VIH.DC level for a falling signal and from the differential data strobe crosspoint to the input signal crossing  
at the VIL.DC level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL.DC.MAX and  
VIH.DC.MIN. See Figure 9.  
15) tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output  
slew rate mismatch between DQS / DQS and associated DQ in any given cycle.  
16) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing.  
The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as these are relative to the clock signal  
crossing. That is, these parameters should be met whether clock jitter is present or not.  
17) Input waveform timing tDS with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the VIH.AC level  
to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL.AC level to the differential data strobe  
crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(DC)MAX and Vih(DC)MIN  
See Figure 9.  
.
18) If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed.  
19) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal  
((L/U/R)DQS / DQS) crossing.  
20) tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter.  
It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the  
following equation; tHP = MIN (tCH.ABS, tCL.ABS), where, tCH.ABS is the minimum of the actual instantaneous clock high time; tCL.ABS is the  
minimum of the actual instantaneous clock low time.  
21) tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level  
which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) .  
22) Input waveform timing is referenced from the input signal crossing at the VIL.DC level for a rising signal and VIH.DC for a falling signal applied  
to the device under test. See Figure 10.  
23) Input waveform timing is referenced from the input signal crossing at the VIH.AC level for a rising signal and VIL.AC for a falling signal applied  
to the device under test. See Figure 10.  
24) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to  
its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC  
,
etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should  
be met whether clock jitter is present or not.  
25) tQH = tHP tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under  
the max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.}  
Examples:  
1) If the system provides tHP of 1315 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 975 ps minimum.  
2) If the system provides tHP of 1420 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 1080 ps minimum.  
Rev. 1.3, 2007-07  
53  
03062006-ZNH8-HURV  
                                                        
                                                              
                                                                                                 
5(ꢋEHJLꢋQꢋSRLQWꢋ  
                                                                                                                   
                                
7
                                 
H  
                                        
ꢋSRLꢋQW  
                                            
                                             
92/  
                                                        
ꢋꢑꢋꢄ[ꢋP9  
ꢋꢑꢋ[ꢋP9  
                                                              
977ꢋꢐꢋ[ꢋP  
                                                                            
9ꢋ  
92/  
                                                        
                                                              
977ꢋꢐꢋꢄ[ꢋP9ꢋ  
7ꢃꢋ 7ꢄꢋ  
                                             
W+=ꢊW536  
                                
7ꢋHQG  
                                 
                                           
ꢋSRLQ  
                                               
W  
 ꢋꢄꢒ  
                                            
7ꢃꢐ7ꢄꢋ  
                                              
                                               
W/=ꢊW  
                                                                 
535(ꢋE  
                                                                    
                                                                     
                                                                                        
                                                                                            
W  
 ꢋꢄꢒ7  
                                                                                 
ꢃꢐ7ꢄꢋ  
                                                                                    
                                                                                     
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
26) tQHS accounts for:  
1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is transferred to the output;  
and  
2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are  
independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation of the output drivers.  
27) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C  
and 95 °C.  
28) 0 °CTCASE 85 °C  
29) 85 °C < TCASE 95 °C  
30) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.  
31) tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving  
(tRPST), or begins driving (tRPRE). Figure 8 shows a method to calculate these points when the device is no longer driving (tRPST), or begins  
driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the  
calculation is consistent.  
32) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.PER of the input clock. (output  
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.PER.MIN = – 72 ps  
and tJIT.PER.MAX = + 93 ps, then tRPRE.MIN(DERATED) = tRPRE.MIN + tJIT.PER.MIN = 0.9 x tCK.AVG – 72 ps = + 2178 ps and tRPRE.MAX(DERATED) = tRPRE.MAX  
+ tJIT.PER.MAX = 1.1 x tCK.AVG + 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!).  
33) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.DUTY of the input clock. (output  
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.DUTY.MIN = – 72 ps  
and tJIT.DUTY.MAX = + 93 ps, then tRPST.MIN(DERATED) = tRPST.MIN + tJIT.DUTY.MIN = 0.4 x tCK.AVG – 72 ps = + 928 ps and tRPST.MAX(DERATED) = tRPST.MAX  
+ tJIT.DUTY.MAX = 0.6 x tCK.AVG + 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!).  
34) For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK.AVG}, which is in clock  
cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK.AVG}, which is in  
clock cycles, if all input clock jitter specifications are met. This means: For DDR2–667 5–5–5, of which tRP = 15 ns, the device will support  
tnRP = RU{tRP / tCK.AVG} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at  
Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter.  
35) tWTR is at lease two clocks (2 x tCK) independent of operation frequency.  
FIGURE 8  
Method for calculating transitions and endpoint  
92+  
                                                        
ꢋꢐꢋ[ꢋP9  
                                                             
977ꢋꢑꢋꢄ[ꢋP9ꢋ  
977ꢋꢑꢋ[ꢋP9ꢋ  
92+  
ꢋꢐꢋꢄ[ꢋP9ꢋ  
W/=ꢋ  
W53  
W+=ꢋ  
W536 QG  
7ꢃꢋ 7ꢄꢋ  
HJLQꢋSRLQ  
Rev. 1.3, 2007-07  
03062006-ZNH8-HURV  
54  
W'+ꢋ  
W'6ꢋ  
                                                                   
                                                                                                               
9,+ꢎDFꢏPLQ  
9,+ꢎGFꢏPLQ  
95 ()ꢎGFꢏꢋ  
                                                                                            
                                                                                                                
                                                                                            
                                                                                                                
9,/ꢎGFꢏPD[  
9,/ꢎDFꢏPD[  
96 6ꢋ  
                                                                                             
                                                                                                               
                                                                                                                
                                                                                             
                                                                                                               
                                                                                                                
W,+ꢋ  
                                                                        
W,+  
                                                      
W,6ꢋ  
W,6ꢋ  
                                                
                                                                                                               
                                                                                                                
ꢏꢋ  
                                                                                                                
ꢏꢋ  
9,/ꢎGF ꢋPD[  
                                                                                             
                                                                                                                
ꢏꢋ  
9,/ꢎDF ꢋPD[  
                                                                                             
                                                                                                                
ꢏꢋ  
'46ꢋ  
                                   
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
FIGURE 9  
Differential input waveform timing - tDS and tDS  
'46ꢋ  
W'+ꢋ  
W'6ꢋ  
9' '4  
FIGURE 10  
Differential input waveform timing - tlS and tlH  
&.ꢋ  
&.ꢋ  
9' '4  
9,+ꢎDF ꢋPLQꢋ  
9,+ꢎGF ꢋPLQꢋ  
95 ()ꢎGFꢏꢋ  
96 6ꢋ  
Rev. 1.3, 2007-07  
03062006-ZNH8-HURV  
55  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
TABLE 55  
DRAM Component Timing Parameter by Speed Grade - DDR2–533  
Parameter  
Symbol  
DDR2–533  
Unit  
Note1)2)3)4)5)  
6)  
Min.  
Max.  
DQ output access time from CK / CK  
CAS A to CAS B command period  
CK, CK high-level width  
tAC  
–500  
2
+500  
ps  
tCCD  
tCH  
tCKE  
tCL  
tCK  
tCK  
tCK  
tCK  
tCK  
0.45  
3
0.55  
CKE minimum high and low pulse width  
CK, CK low-level width  
0.45  
WR + tRP  
0.55  
7)17)  
8)  
Auto-Precharge write recovery + precharge  
time  
tDAL  
Minimum time clocks remain ON after CKE  
asynchronously drops LOW  
tDELAY  
tIS + tCK + tIH  
225  
––  
––  
ns  
ps  
ps  
9)  
DQ and DM input hold time (differential data  
strobe)  
t
t
DH(base)  
10)  
DQ and DM input hold time (single ended data  
strobe)  
DH1(base)  
–25  
DQ and DM input pulse width (each input)  
DQS output access time from CK / CK  
tDIPW  
0.35  
–450  
0.35  
tCK  
ps  
tCK  
ps  
tDQSCK  
+450  
DQS input low (high) pulse width (write cycle) tDQSL,H  
10)  
DQS-DQ skew (for DQS & associated DQ  
signals)  
tDQSQ  
300  
Write command to 1st DQS latching transition tDQSS  
– 0.25  
100  
+ 0.25  
tCK  
10)  
10)  
DQ and DM input setup time (differential data  
strobe)  
t
DS(base)  
ps  
DQ and DM input setup time (single ended data tDS1(base)  
strobe)  
–25  
0.2  
ps  
DQS falling edge hold time from CK (write  
cycle)  
tDSH  
tCK  
DQS falling edge to CK setup time (write cycle) tDSS  
0.2  
tCK  
ns  
ns  
Four Activate Window period  
Four Activate Window period  
Clock half period  
tFAW  
tFAW  
tHP  
37.5  
12)  
11)  
12)  
10)  
50  
MIN. (tCL, tCH  
)
Data-out high-impedance time from CK / CK  
Address and control input hold time  
tHZ  
tAC.MAX  
ps  
ps  
tCK  
tIH(base)  
tIPW  
375  
0.6  
Address and control input pulse width  
(each input)  
10)  
13)  
13)  
Address and control input setup time  
DQ low-impedance time from CK / CK  
DQS low-impedance from CK / CK  
MRS command to ODT update delay  
Mode register set command cycle time  
OCD drive mode output delay  
tIS(base)  
tLZ(DQ)  
tLZ(DQS)  
tMOD  
250  
ps  
ps  
ps  
ns  
tCK  
ns  
2 × tAC.MIN  
tAC.MAX  
tAC.MAX  
12  
tAC.MIN  
0
2
0
tMRD  
tOIT  
12  
Rev. 1.3, 2007-07  
56  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
Parameter  
Symbol  
DDR2–533  
Min.  
Unit  
Note1)2)3)4)5)  
6)  
Max.  
Data output hold time from DQS  
Data hold skew factor  
tQH  
t
HP tQHS  
tQHS  
tREFI  
tREFI  
tRFC  
400  
7.8  
3.9  
ps  
µs  
µs  
ns  
13)14)  
15)17)  
16)  
Average periodic refresh Interval  
Average periodic refresh Interval  
Auto-Refresh to Active/Auto-Refresh  
command period  
127.5  
Precharge-All (8 banks) command period  
Read preamble  
tRP  
t
RP + 1 × tCK  
ns  
tCK  
tCK  
ns  
13)  
tRPRE  
tRPST  
tRRD  
0.9  
1.1  
0.60  
13)  
Read postamble  
0.40  
7.5  
13)17)  
Active bank A to Active bank B command  
period  
15)21)  
Active bank A to Active bank B command  
period  
tRRD  
10  
ns  
Internal Read to Precharge command delay  
Write preamble  
tRTP  
7.5  
ns  
tCK  
tCK  
ns  
tWPRE  
tWPST  
tWR  
0.25  
0.40  
15  
18)  
Write postamble  
0.60  
Write recovery time for write without Auto-  
Precharge  
19)  
20)  
Internal Write to Read command delay  
tWTR  
7.5  
2
ns  
Exit power down to any valid command  
(other than NOP or Deselect)  
tXARD  
tCK  
20)  
Exit active power-down mode to Read  
command (slow exit, lower power)  
tXARDS  
tXP  
6 – AL  
2
tCK  
tCK  
Exit precharge power-down to any valid  
command (other than NOP or Deselect)  
Exit Self-Refresh to non-Read command  
Exit Self-Refresh to Read command  
tXSNR  
tXSRD  
WR  
t
RFC +10  
200  
WR/tCK  
ns  
tCK  
tCK  
21)  
Write recovery time for write with Auto-  
Precharge  
t
1)  
VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ±0.1 V.  
2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down  
and then restarted through the specified initialization sequence before normal operation can continue.  
3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew  
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.  
4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,  
input reference level is the crosspoint when in differential strobe mode. The input reference level for signals other than CK/CK, DQS/DQS,  
RDQS / RDQS is defined.  
5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.  
6) The output timing reference voltage level is VTT  
.
7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to  
the WR parameter stored in the MR.  
8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode.  
9) For timing definition, refer to the Component data sheet.  
10) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate  
mis-match between DQS / DQS and associated DQ in any given cycle.  
Rev. 1.3, 2007-07  
57  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
11) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can  
be greater than the minimum specification limits for tCL and tCH).  
12) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving  
(tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These  
parameters are verified by design and characterization, but not subject to production test.  
13) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C  
and 95 °C.  
14) 0 °CTCASE 85 °C  
15) 85 °C < TCASE 95 °C  
16) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.  
17) The tRRD timing parameter depends on the page size of the DRAM organization. See Table 5 “Ordering Information for Lead-Free  
Products (RoHS Compliant)” on Page 5.  
18) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system  
performance (bus turnaround) degrades accordingly.  
19) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz.  
20) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active power-  
down mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow  
power-down exit timing tXARDS has to be satisfied.  
21) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded  
up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK  
refers to the application clock period. WR refers to the WR parameter stored in the MRS.  
TABLE 56  
DRAM Component Timing Parameter by Speed Grade - DDR2-400  
Parameter  
Symbol  
DDR2–400  
Unit  
Note1)2)3)4)5)  
6)  
Min.  
Max.  
DQ output access time from CK / CK  
CAS A to CAS B command period  
CK, CK high-level width  
tAC  
–600  
2
+600  
ps  
tCCD  
tCH  
tCKE  
tCL  
tCK  
tCK  
tCK  
tCK  
tCK  
0.45  
3
0.55  
CKE minimum high and low pulse width  
CK, CK low-level width  
0.45  
WR + tRP  
0.55  
7)20)  
8)  
Auto-Precharge write recovery + precharge  
time  
tDAL  
Minimum time clocks remain ON after CKE  
asynchronously drops LOW  
tDELAY  
tIS + tCK + tIH  
275  
––  
––  
ns  
ps  
ps  
9)  
DQ and DM input hold time (differential data  
strobe)  
t
t
DH(base)  
10)  
DQ and DM input hold time (single ended data  
strobe)  
DH1(base)  
–25  
DQ and DM input pulse width (each input)  
DQS output access time from CK / CK  
tDIPW  
0.35  
–500  
0.35  
tCK  
ps  
tCK  
ps  
tDQSCK  
+500  
DQS input low (high) pulse width (write cycle) tDQSL,H  
10)  
10)  
DQS-DQ skew (for DQS & associated DQ  
signals)  
tDQSQ  
350  
Write command to 1st DQS latching transition tDQSS  
– 0.25  
150  
+ 0.25  
tCK  
DQ and DM input setup time (differential data  
strobe)  
t
DS(base)  
ps  
Rev. 1.3, 2007-07  
58  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
Parameter  
Symbol  
DDR2–400  
Unit  
Note1)2)3)4)5)  
6)  
Min.  
Max.  
10)  
DQ and DM input setup time (single ended  
data strobe)  
t
DS1(base)  
–25  
ps  
DQS falling edge hold time from CK (write  
cycle)  
tDSH  
0.2  
tCK  
DQS falling edge to CK setup time (write cycle) tDSS  
0.2  
tCK  
ns  
ns  
Four Activate Window period  
Four Activate Window period  
Clock half period  
tFAW  
tFAW  
tHP  
37.5  
12)  
11)  
12)  
10)  
50  
MIN. (tCL, tCH  
)
Data-out high-impedance time from CK / CK  
Address and control input hold time  
tHZ  
tAC.MAX  
ps  
ps  
tCK  
tIH(base)  
tIPW  
475  
0.6  
Address and control input pulse width  
(each input)  
10)  
13)  
13)  
Address and control input setup time  
DQ low-impedance time from CK / CK  
DQS low-impedance from CK / CK  
MRS command to ODT update delay  
Mode register set command cycle time  
OCD drive mode output delay  
tIS(base)  
tLZ(DQ)  
tLZ(DQS)  
tMOD  
tMRD  
tOIT  
350  
ps  
ps  
ps  
ns  
tCK  
ns  
2 × tAC.MIN  
tAC.MAX  
tAC.MAX  
12  
tAC.MIN  
0
2
0
12  
Data output hold time from DQS  
Data hold skew factor  
tQH  
t
HP tQHS  
tQHS  
450  
7.8  
3.9  
ps  
µs  
µs  
ns  
13)14)  
15)17)  
16)  
Average periodic refresh Interval  
Average periodic refresh Interval  
tREFI  
tREFI  
Auto-Refresh to Active/Auto-Refresh  
command period  
127.5  
Precharge-All (8 banks) command period  
Read preamble  
tRP  
t
RP + 1 × tCK  
ns  
tCK  
tCK  
ns  
13)  
tRPRE  
tRPST  
tRRD  
0.9  
1.1  
0.60  
13)  
Read postamble  
0.40  
7.5  
13)17)  
Active bank A to Active bank B command  
period  
15)21)  
Active bank A to Active bank B command  
period  
tRRD  
10  
ns  
Internal Read to Precharge command delay  
Write preamble  
tRTP  
7.5  
ns  
tCK  
tCK  
ns  
tWPRE  
tWPST  
tWR  
0.25  
0.40  
15  
18)  
Write postamble  
0.60  
Write recovery time for write without Auto-  
Precharge  
19)  
20)  
Internal Write to Read command delay  
tWTR  
10  
2
ns  
Exit power down to any valid command  
(other than NOP or Deselect)  
tXARD  
tCK  
20)  
Exit active power-down mode to Read  
command (slow exit, lower power)  
tXARDS  
6 – AL  
tCK  
Rev. 1.3, 2007-07  
59  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
Parameter  
Symbol  
DDR2–400  
Unit  
Note1)2)3)4)5)  
6)  
Min.  
Max.  
Exit precharge power-down to any valid  
command (other than NOP or Deselect)  
tXP  
2
tCK  
Exit Self-Refresh to non-Read command  
Exit Self-Refresh to Read command  
tXSNR  
tXSRD  
WR  
t
RFC +10  
200  
WR/tCK  
ns  
tCK  
tCK  
21)  
Write recovery time for write with Auto-  
Precharge  
t
1)  
VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ±0.1 V.  
2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down  
and then restarted through the specified initialization sequence before normal operation can continue.  
3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew  
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.  
4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,  
input reference level is the crosspoint when in differential strobe mode. The input reference level for signals other than CK/CK, DQS/DQS,  
RDQS / RDQS is defined.  
5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.  
6) The output timing reference voltage level is VTT  
.
7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to  
the WR parameter stored in the MR.  
8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode.  
9) For timing definition, refer to the Component data sheet.  
10) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate  
mis-match between DQS / DQS and associated DQ in any given cycle.  
11) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can  
be greater than the minimum specification limits for tCL and tCH).  
12) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving  
(tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These  
parameters are verified by design and characterization, but not subject to production test.  
13) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C  
and 95 °C.  
14) 0 °CTCASE 85 °C  
15) 85 °C < TCASE 95 °C  
16) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.  
17) The tRRD timing parameter depends on the page size of the DRAM organization. See Table 5 “Ordering Information for Lead-Free  
Products (RoHS Compliant)” on Page 5.  
18) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system  
performance (bus turnaround) degrades accordingly.  
19) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz.  
20) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active power-  
down mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow  
power-down exit timing tXARDS has to be satisfied.  
21) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded  
up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK  
refers to the application clock period. WR refers to the WR parameter stored in the MRS.  
Rev. 1.3, 2007-07  
60  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
7.3  
Jitter Definition and Clock Jitter Specification  
Generally, jitter is defined as “the short-term variation of a signal with respect to its ideal position in time”. The following table  
provides an overview of the terminology.  
TABLE 57  
Average Clock and Jitter Symbols and Definition  
Symbol  
Parameter  
Description  
Units  
tCK.AVG  
Average clock period tCK.AVG is calculated as the average clock period within any consecutive ps  
200-cycle window:  
N
1
N
.
---  
tCK.AVG =  
tCKj  
(1)  
j = 1  
N = 200  
tJIT.PER  
Clock-period jitter  
t
t
JIT.PER is defined as the largest deviation of any single tCK from tCK.AVG  
JIT.PER = Min/Max of {tCKi tCK.AVG} where i = 1 to 200  
:
ps  
t
t
JIT.PER defines the single-period jitter when the DLL is already locked.  
JIT.PER is not guaranteed through final production testing.  
t
JIT(PER, LCK)  
Clock-period jitter  
during DLL-locking  
period  
t
JIT(PER,LCK) uses the same definition as tJIT.PER, during the DLL-locking ps  
period only.  
t
JIT(PER,LCK) is not guaranteed through final production testing.  
tJIT.CC  
Cycle-to-cycle clock  
period jitter  
t
JIT.CC is defined as the absolute difference in clock period between two  
ps  
consecutive clock cycles:  
t
JIT.CC = Max of ABS{tCKi+1 tCKi}  
t
t
JIT.CC defines the cycle- to- cycle jitter when the DLL is already locked.  
JIT.CC is not guaranteed through final production testing.  
t
JIT(CC, LCK)  
Cycle-to-cycle clock  
period jitter during  
DLL-locking period  
t
JIT(CC,LCK) uses the same definition as tJIT.CC during the DLL-locking  
ps  
period only.  
t
JIT(CC,LCK) is not guaranteed through final production testing.  
tERR.2PER  
Cumulative error  
across 2 cycles  
t
ERR.2PER is defined as the cumulative error across 2 consecutive cycles ps  
from tCK.AVG  
:
i + n 1  
tERR(2per) =  
tCKj n × tCK(avg)  
(2)  
j = i  
n = 2 for tERR(2per)  
where i = 1 to 200  
Rev. 1.3, 2007-07  
61  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
Symbol  
Parameter  
Description  
Units  
tERR.nPER  
Cumulative error  
across n cycles  
t
ERR.2PER is defined as the cumulative error across n consecutive cycles ps  
from tCK.AVG  
:
i + n 1  
tERR(nper) =  
tCKj n × tCK(avg)  
(3)  
j = i  
where, i = 1 to 200 and  
n = 3 for tERR.3PER  
n = 4 for tERR.4PER  
n = 5 for tERR.5PER  
6 n 10 for tERR.6-10PER  
11 n 50 for tERR.11-50PER  
tCH.AVG  
tCL.AVG  
tJIT.DUTY  
Average high-pulse  
width  
tCH.AVG is defined as the average high-pulse width, as calculated across tCK.AVG  
any consecutive 200 high pulses:  
N
1
.
----------------------------------------  
tCH(avg) =  
tCHj  
(4)  
(N × tCK(avg))  
j = 1  
N = 200  
Average low-pulse  
width  
t
CL.AVG is defined as the average low-pulse width, as calculated across any tCK.AVG  
consecutive 200 low pulses:  
N
1
(5)  
.
----------------------------------------  
tCL(avg) =  
tCLj  
(N × tCK(avg))  
j = 1  
N = 200  
Duty-cycle jitter  
t
t
t
t
t
JIT.DUTY = Min/Max of {tJIT.CH , tJIT.CL}, where:  
ps  
JIT.CH is the largest deviation of any single tCH from tCH.AVG  
JIT.CL is the largest deviation of any single tCL from tCL.AVG  
JIT.CH = {tCHi - tCH.AVG × tCK.AVG} where i=1 to 200  
JIT.CL = {tCLi - tCL.AVG × tCK.AVG} where i=1 to 200  
The following parameters are specified per their average values however, it is understood that the following relationship  
between the average timing and the absolute instantaneous timing holds all the time.  
Rev. 1.3, 2007-07  
62  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
TABLE 58  
Absolute Jitter Value Definitions  
Symbol Parameter  
Min.  
Max.  
Unit  
tCK.ABS  
tCH.ABS  
Clock period  
t
t
CK.AVG(Min) + tJIT.PER(Min)  
t
CK.AVG(Max) + tJIT.PER(Max)  
CH.AVG(Max) x tCK.AVG(Max) +  
ps  
ps  
Clock high-pulse width  
CH.AVG(Min) x tCK.AVG(Min) + tJIT.DUTY(Min)  
t
tJIT.DUTY(Max)  
tCL.ABS  
Clock low-pulse width  
tCL.AVG(Min) x tCK.AVG(Min) + tJIT.DUTY(Min) tCL.AVG(Max) x tCK.AVG(Max)  
+
ps  
tJIT.DUTY(Max)  
Example: for DDR2-667, tCH.ABS(Min) = (0.48 x 3000ps) – 125 ps = 1315 ps = 0.438 x 3000 ps.  
Table 59 shows clock-jitter specifications.  
TABLE 59  
Clock-Jitter Specifications for –667 and –800  
Symbol  
Parameter  
DDR2 -667  
DDR2 -800  
Unit  
Min.  
Max.  
Min.  
Max.  
tCK.AVG  
Average clock period nominal w/o jitter  
Clock-period jitter  
3000  
–125  
–100  
–250  
–200  
8000  
+125  
+100  
+250  
+200  
2500  
–100  
–80  
8000  
+100  
+80  
ps  
ps  
ps  
ps  
ps  
tJIT.PER  
tJIT(PER,LCK)  
tJIT.CC  
Clock-period jitter during DLL locking period  
Cycle-to-cycle clock-period jitter  
–200  
–160  
+200  
+160  
tJIT(CC,LCK)  
Cycle-to-cycle clock-period jitter during DLL-  
locking period  
tERR.2PER  
tERR.3PER  
tERR.4PER  
tERR.5PER  
tERR(6-10PER)  
Cumulative error across 2 cycles  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
Cumulative error across 5 cycles  
–175  
–225  
–250  
–250  
–350  
+175  
+225  
+250  
+250  
+350  
–150  
–175  
–200  
–200  
–300  
+150  
+175  
+200  
+200  
+300  
ps  
ps  
ps  
ps  
ps  
Cumulative error across n cycles with n = 6 ..  
10, inclusive  
tERR(11-50PER)  
Cumulative error across n cycles with n = 11 .. –450  
50, inclusive  
+450  
–450  
+450  
ps  
tCH.AVG  
tCL.AVG  
tJIT.DUTY  
Average high-pulse width  
Average low-pulse width  
Duty-cycle jitter  
0.48  
0.48  
–125  
0.52  
0.52  
+125  
0.48  
0.48  
–100  
0.52  
0.52  
+100  
tCK.AVG  
tCK.AVG  
ps  
Rev. 1.3, 2007-07  
63  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
7.4  
ODT AC Electrical Characteristics  
This chapter describes the ODT AC electrical characteristics.  
TABLE 60  
ODT AC Characteristics and Operating Conditions for DDR2-533 and DDR2-400  
Symbol  
Parameter / Condition  
Values  
Unit  
Note  
Min.  
Max.  
tAOND  
tAON  
ODT turn-on delay  
2
2
tCK  
ns  
ns  
tCK  
ns  
ns  
tCK  
tCK  
1)  
2)  
ODT turn-on  
tAC.MIN  
tAC.MAX + 1 ns  
tAONPD  
tAOFD  
tAOF  
ODT turn-on (Power-Down Modes)  
ODT turn-off delay  
t
AC.MIN + 2 ns  
2 tCK + tAC.MAX + 1 ns  
2.5  
2.5  
ODT turn-off  
tAC.MIN  
tAC.MAX + 0.6 ns  
tAOFPD  
tANPD  
tAXPD  
ODT turn-off (Power-Down Modes)  
ODT to Power Down Mode Entry Latency  
ODT Power Down Exit Latency  
t
AC.MIN + 2 ns  
2.5 tCK + tAC.MAX + 1 ns  
3
8
1) ODT turn on time min. is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when  
the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-400/533, tAOND is  
10 ns (= 2 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns.  
2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance.  
Both are measured from tAOFD. Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-400/533, tAOFD is  
12.5 ns (= 2.5 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns.  
TABLE 61  
ODT AC Characteristics and Operating Conditions for DDR2-667 and DDR2-800  
Symbol  
Parameter / Condition  
Values  
Unit  
Note  
Min.  
Max.  
1)  
tAOND  
tAON  
ODT turn-on delay  
2
2
nCK  
ns  
1)2)  
1)  
ODT turn-on  
tAC.MIN  
tAC.MAX + 0.7 ns  
tAONPD  
tAOFD  
tAOF  
ODT turn-on (Power-Down Modes)  
ODT turn-off delay  
t
AC.MIN + 2 ns  
2 tCK +  
t
AC.MAX + 1 ns  
ns  
1)  
2.5  
2.5  
nCK  
ns  
1)3)  
1)  
ODT turn-off  
tAC.MIN  
tAC.MAX + 0.6 ns  
tAOFPD  
tANPD  
tAXPD  
ODT turn-off (Power-Down Modes)  
ODT to Power Down Mode Entry Latency  
ODT Power Down Exit Latency  
t
AC.MIN + 2 ns  
2.5 tCK +  
tAC.MAX + 1 ns  
ns  
1)  
3
8
nCK  
nCK  
1)  
1) New units, “tCK.AVG” and “nCK”, are introduced in DDR2-667 and DDR2-800. Unit “tCK.AVG” represents the actual tCK.AVG of the input clock  
under operation. Unit “nCK” represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2-400 and  
DDR2-533, “tCK” is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may  
be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min)  
.
2) ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the  
ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-667/800, tAOND is 2 clock  
cycles after the clock edge that registered a first ODT HIGH counting the actual input clock edges.  
3) ODT turn off time min is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance.  
Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-667/800, if tCK(avg) = 3 ns is assumed, tAOFD is 1.5  
ns (= 0.5 x 3 ns) after the second trailing clock edge counting from the clock edge that registered a first ODT LOW and by counting the  
actual input clock edges.  
Rev. 1.3, 2007-07  
64  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
8
Package Dimensions  
This chapter describes the package dimensions.  
FIGURE 11  
Package Outline P(G)-TFBGA-68  
ꢀꢁ  
ꢃꢄꢀꢂ 0$;ꢄ  
ꢀꢂ [ ꢃꢄꢂ   ꢀꢅꢄꢅ  
ꢃꢄꢂ  
ꢃꢄꢈ  
ꢈꢆ  
%
ꢈꢆ  
ꢀꢆ  
ꢅꢆ  
ꢇꢆ  
$
ꢃꢄꢀ  
&
ꢃꢄꢀ  
&
ꢊꢂ[  
¡ꢃꢄꢀꢉ  
¡ꢃꢄꢃꢂ  
“ꢃꢄꢃꢉ  
¡ꢃꢄꢅꢉ  
0
0
& $ %  
6($7,1* 3/$1(  
&
&
ꢀꢆ 'XPP\ SDGV ZLWKRXW EDOO  
ꢈꢆ 0LGGOH RI SDFNDJHV HGJHV  
ꢇꢆ 3DFNDJH RULHQWDWLRQ PDUN $ꢀ  
ꢅꢆ %DG XQLW PDUNLQJ ꢋ%80ꢆ  
)32B3*ꢌ7)%*$BBꢌꢃꢊꢂꢌꢃꢃꢊ  
Notes  
1. Drawing according to ISO 8015  
2. Dimensions in mm  
3. General tolerances +/- 0.15  
Rev. 1.3, 2007-07  
65  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
FIGURE 12  
Package Outline P(G)-TFBGA-84  
ꢀꢁ  
ꢃꢄꢀꢂ 0$;ꢄ  
ꢀꢅ [ ꢃꢄꢂ   ꢀꢀꢄꢈ  
ꢃꢄꢂ  
ꢃꢄꢈ  
ꢈꢆ  
%
ꢈꢆ  
ꢉꢆ  
ꢀꢆ  
ꢅꢆ  
ꢇꢆ  
$
ꢃꢄꢀ  
&
ꢃꢄꢀ  
&
ꢂꢅ[  
¡ꢃꢄꢀꢉ  
¡ꢃꢄꢃꢂ  
“ꢃꢄꢃꢉ  
¡ꢃꢄꢅꢉ  
0
0
& $ %  
&
6($7,1* 3/$1(  
&
/HDG IUHH VROGHU EDOOV ꢋJUHHQ VROGHU EDOOVꢆ  
ꢀꢆ 'XPP\ SDGV ZLWKRXW EDOO  
ꢈꢆ 0LGGOH RI SDFNDJHV HGJHV  
ꢇꢆ 3DFNDJH RULHQWDWLRQ PDUN $ꢀ  
ꢅꢆ %DG XQLW PDUNLQJ ꢋ%80ꢆ  
)32B3*ꢌ7)%*$BBꢌꢃꢂꢅꢌꢃꢀꢀ  
ꢉꢆ (PSW\ EDOO SDGV ꢋIRU RSWLRQDO VXSSRUWLQJ VROGHU EDOOVꢆ ꢂ[  
Notes  
1. Drawing according to ISO 8015  
2. Dimensions in mm  
3. General tolerances +/- 0.15  
Rev. 1.3, 2007-07  
66  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
FIGURE 13  
Package Outline PG-TFBGA-92  
ꢅꢇ  
ꢀꢁ X ꢁꢂꢃ ꢄ ꢅꢆ  
ꢁꢂꢃ  
ꢁꢂꢅꢃ -!8ꢂ  
ꢁꢂꢀ  
ꢀꢈ  
"
ꢀꢈ  
ꢅꢈ  
ꢌꢈ  
ꢉꢈ  
!
ꢁꢂꢅ  
#
ꢁꢂꢅ  
#
ꢋꢀX  
’ꢁꢂꢅꢊ  
’ꢁꢂꢁꢃ  
›ꢁꢂꢁꢊ  
’ꢁꢂꢌꢊ  
-
-
3%!4).' 0,!.%  
#
! "  
#
#
ꢅꢈ $UMMY PADS WITHOUT BALL  
ꢀꢈ -IDDLE OF PACKAGES EDGES  
ꢉꢈ 0ACKAGE ORIENTATION MARK !ꢅ  
ꢌꢈ "AD UNIT MARKING ꢎ"5-ꢈ  
&0/?0'ꢍ4&"'!??ꢍꢁꢋꢀꢍꢁꢁꢉ  
Notes  
1. Drawing according to ISO 8015  
2. Dimensions in mm  
3. General tolerances +/- 0.15  
Rev. 1.3, 2007-07  
67  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
9
Product Nomenclature  
For reference the Qimonda SDRAM component nomenclature is enclosed in this chapter.  
TABLE 62  
Examples for Nomenclature Fields  
Example for  
Field Number  
1
2
3
4
5
6
7
8
9
10  
11  
DDR2 SDRAM  
DDR2 SDRAM  
HYB  
HYB  
18  
18  
T
T
1G  
1G  
40  
16  
0
0
A
B
F
F
L
–3  
–3.7  
TABLE 63  
DDR2 Memory Components  
Field Description  
Values Coding  
1
Qimonda Component Prefix  
HYB  
HYI  
18  
Memory components  
Memory components, industrial temperature range (-40°C – +85 °C)  
2
3
4
Interface Voltage [V]  
DRAM Technology  
SSTL_18  
DDR2  
256 Mbit  
512 Mbit  
1 Gbit  
T
Component Density [Mbit]  
256  
512  
1G  
2G  
40  
2 Gbit  
5+6  
Number of I/Os  
×4  
80  
×8  
16  
×16  
7
8
Product Variations  
Die Revision  
0 .. 9  
look up table  
A(0 ..9) First  
B(0 ..9) Second  
C(0 ..9) Third  
9
Package,  
Lead-Free Status  
C
F
FBGA, lead-containing  
FBGA, lead-free  
10  
Power  
L
Standard power product  
Low power product  
Rev. 1.3, 2007-07  
68  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
Field Description  
11 Speed Grade  
Values Coding  
–1.9  
–25F  
–2.5  
–3  
DDR2–1066  
DDR2–800 5–5–5  
DDR2–800 6–6–6  
DDR2–667 4–4–4  
DDR2–667 5–5–5  
DDR2–533 4–4–4  
DDR2–400 3–3–3  
–3S  
–3.7  
–5  
Rev. 1.3, 2007-07  
69  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
List of Figures  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Ball Configuration for ×4 components, PG-TFBGA-68 (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Ball Configuration for ×8 components, PG-TFBGA-68 (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Chip Configuration for x16 Components in PG–TFBGA–84 (Top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Single-ended AC Input Test Conditions Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Differential DC and AC Input and Output Logic Levels Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
AC Overshoot / Undershoot Diagram for Address and Control Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
AC Overshoot / Undershoot Diagram for Clock, Data, Strobe and Mask Pins . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Method for calculating transitions and endpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Differential input waveform timing - tDS and tDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Differential input waveform timing - tlS and tlH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Package Outline P(G)-TFBGA-68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Package Outline P(G)-TFBGA-84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Package Outline PG-TFBGA-92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Rev. 1.3, 2007-07  
70  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
List of Tables  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Performance Tables for –2.5(F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Performance Table for –3(S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Performance table for –3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Performance Table for –5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Ordering Information for Lead-Free Products (RoHS Compliant). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Ordering Information for Lead-Containing Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Chip Configuration of DDR2 SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Abbreviations for Ball Type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Abbreviations for Buffer Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Chip Configuration of DDR SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Abbreviations for Ball Type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Abbreviations for Buffer Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Chip Configuration of DDR SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Abbreviations for Ball Type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Abbreviations for Buffer Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
DDR2 Addressing for ×4 Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
DDR2 Addressing for ×8 Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
DDR2 Addressing for ×16 Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Mode Register Definition (BA[2:0] = 000B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Extended Mode Register Definition (BA[2:0] = 001B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
EMRS(2) Programming Extended Mode Register Definition (BA[2:0]=010B). . . . . . . . . . . . . . . . . . . . . . . . . . 26  
EMR(3) Programming Extended Mode Register Definition(BA[2:0]=011B) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
ODT Truth Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Burst Length and Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Command Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Clock Enable (CKE) Truth Table for Synchronous Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Data Mask (DM) Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
DRAM Component Operating Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Recommended DC Operating Conditions (SSTL_18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
ODT DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Input and Output Leakage Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
DC & AC Logic Input Levels for DDR2-667 and DDR2-800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
DC & AC Logic Input Levels for DDR2-533 and DDR2-400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Single-ended AC Input Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Differential DC and AC Input and Output Logic Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
SSTL_18 Output DC Current Drive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
SSTL_18 Output AC Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
OCD Default Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Input / Output Capacitance for DDR2-800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Input / Output Capacitance for DDR2-667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Input / Output Capacitance for DDR2-533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Input / Output Capacitance for DDR2-400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
AC Overshoot / Undershoot Specification for Address and Control Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
AC Overshoot / Undershoot Spec. for Clock, Data, Strobe and Mask Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 9  
Table 10  
Table 11  
Table 12  
Table 13  
Table 14  
Table 15  
Table 16  
Table 17  
Table 18  
Table 19  
Table 20  
Table 21  
Table 22  
Table 23  
Table 24  
Table 25  
Table 26  
Table 27  
Table 28  
Table 29  
Table 30  
Table 31  
Table 32  
Table 33  
Table 34  
Table 35  
Table 36  
Table 37  
Table 38  
Table 39  
Table 40  
Table 41  
Table 42  
Table 43  
Table 44  
Table 45  
Table 46  
Table 47  
Table 48  
Table 49  
I
DD Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Definition for IDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
DD Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Speed Grade Definition Speed Bins for DDR2–800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
I
Rev. 1.3, 2007-07  
71  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
Table 50  
Table 51  
Table 52  
Table 53  
Table 54  
Table 55  
Table 56  
Table 57  
Table 58  
Table 59  
Table 60  
Table 61  
Table 62  
Table 63  
Speed Grade Definition Speed Bins for DDR2–667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Speed Grade Definition Speed Bins for DDR2–533C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Speed Grade Definition Speed Bins for DDR2-400B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
DRAM Component Timing Parameter by Speed Grade - DDR2–800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
DRAM Component Timing Parameter by Speed Grade - DDR2–667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
DRAM Component Timing Parameter by Speed Grade - DDR2–533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
DRAM Component Timing Parameter by Speed Grade - DDR2-400. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Average Clock and Jitter Symbols and Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Absolute Jitter Value Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Clock-Jitter Specifications for –667 and –800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
ODT AC Characteristics and Operating Conditions for DDR2-533 and DDR2-400 . . . . . . . . . . . . . . . . . . . . . 64  
ODT AC Characteristics and Operating Conditions for DDR2-667 and DDR2-800 . . . . . . . . . . . . . . . . . . . . . 64  
Examples for Nomenclature Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
DDR2 Memory Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Rev. 1.3, 2007-07  
72  
03062006-ZNH8-HURV  
Internet Data Sheet  
HY[B/I]18T1G[40/80/16]0B[C/F](L/V)  
1-Gbit Double-Data-Rate-Two SDRAM  
Table of Contents  
1
1.1  
1.2  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2
Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Chip Configuration for PG-TFBGA-68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Chip Configuration for PG-TFBGA-84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Chip Configuration for PG-TFBGA-92 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
1-Gbit DDR2 Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2.1  
2.2  
2.3  
2.4  
3
4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
5
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
DC & AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Output Buffer Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Input / Output Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Overshoot and Undershoot Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
5.1  
5.1.1  
5.2  
5.3  
5.4  
5.5  
5.6  
6
Currents Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
7
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Speed Grade Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Component AC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Jitter Definition and Clock Jitter Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
ODT AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
7.1  
7.2  
7.3  
7.4  
8
9
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Product Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Rev. 1.3, 2007-07  
73  
03062006-ZNH8-HURV  
Internet Data Sheet  
Edition 2007-07  
Published by Qimonda AG  
Gustav-Heinemann-Ring 212  
D-81739 München, Germany  
© Qimonda AG 2007.  
All Rights Reserved.  
Legal Disclaimer  
The information given in this Internet Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics  
(“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind,  
including without limitation warranties of non-infringement of intellectual property rights of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office.  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in question please  
contact your nearest Qimonda Office.  
Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a  
failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect  
the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human  
body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health  
of the user or other persons may be endangered.  
www.qimonda.com  

相关型号:

HYB18T1G160BC-2.5F

1-Gbit Double-Data-Rate-Two SDRAM
QIMONDA

HYB18T1G160BC-3

1-Gbit Double-Data-Rate-Two SDRAM
QIMONDA

HYB18T1G160BC-3.7

1-Gbit Double-Data-Rate-Two SDRAM
QIMONDA

HYB18T1G160BC-3S

1-Gbit Double-Data-Rate-Two SDRAM
QIMONDA

HYB18T1G160BC-5

1-Gbit Double-Data-Rate-Two SDRAM
QIMONDA

HYB18T1G160BF-2.5

1-Gbit Double-Data-Rate-Two SDRAM
QIMONDA

HYB18T1G160BF-2.5F

1-Gbit Double-Data-Rate-Two SDRAM
QIMONDA

HYB18T1G160BF-3

1-Gbit Double-Data-Rate-Two SDRAM
QIMONDA

HYB18T1G160BF-3.7

1-Gbit Double-Data-Rate-Two SDRAM
QIMONDA

HYB18T1G160BF-3S

1-Gbit Double-Data-Rate-Two SDRAM
QIMONDA

HYB18T1G160BF-5

1-Gbit Double-Data-Rate-Two SDRAM
QIMONDA

HYB18T1G160BFL

214-Pin Unbuffered DDR2 SDRAM MicroDIMM Modules Low Power
QIMONDA