HYB18T4G802AF-2.5 [QIMONDA]

DDR DRAM, 512MX8, 0.6ns, CMOS, PBGA71, GREEN, PLASTIC, TFBGA-71;
HYB18T4G802AF-2.5
型号: HYB18T4G802AF-2.5
厂家: QIMONDA AG    QIMONDA AG
描述:

DDR DRAM, 512MX8, 0.6ns, CMOS, PBGA71, GREEN, PLASTIC, TFBGA-71

动态存储器 双倍数据速率
文件: 总56页 (文件大小:2497K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
April 2008  
HYB18T4G402AF  
HYB18T4G802AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
DDR2 SDRAM  
RoHS Compliant Products  
Internet Data Sheet  
Rev. 1.00  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
Revision History: Rev. 1.00, 2008-04  
Adapted internet edition  
Final revision  
Previous Revision: Rev. 0.50, 2008-02  
First revision  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
techdoc@qimonda.com  
qag_techdoc_A4, 4.20, 2008-01-25  
07192007-CK80-SF4Y  
2
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
1
Overview  
This chapter gives an overview of the 4-Gbit Double-Data-Rate-Two SDRAM product family and describes its main  
characteristics.  
1.1  
Features  
The 4-Gbit Double-Data-Rate-Two SDRAM offers the following key features:  
1.8 V ± 0.1 V Power Supply  
Off-Chip-Driver impedance adjustment (OCD) and  
On-Die-Termination (ODT) for better signal quality  
Auto-Precharge operation for read and write bursts  
Auto-Refresh, Self-Refresh and power saving Power-  
Down modes  
1.8 V ± 0.1 V (SSTL_18) compatible I/O  
DRAM organizations with 4,8 data in/outputs  
Double Data Rate architecture:  
– two data transfers per clock cycle  
– eight internal banks for concurrent operation  
Programmable CAS Latency: 3, 4, 5, 6 and 7  
Programmable Burst Length: 4 and 8  
Operating temperature range 0 °C to 95 °C  
Average Refresh Period 7.8 µs at a TCASE lower  
than 85 °C, 3.9 µs between 85 °C and 95 °C  
Programmable self refresh rate via EMRS2 setting  
Programmable partial array refresh via EMRS2 settings  
DCC enabling via EMRS2 setting  
Differential clock inputs (CK and CK)  
Bi-directional, differential data strobes (DQS and DQS) are  
transmitted / received with data. Edge aligned with read  
data and center-aligned with write data.  
DLL aligns DQ and DQS transitions with clock  
DQS can be disabled for single-ended data strobe  
operation  
Full and reduced Strength Data-Output Drivers  
1KB page size for ×4 and ×8  
Packages: PG-TFBGA-71  
RoHS Compliant Products1)  
Commands entered on each positive clock edge, data and  
data mask are referenced to both edges of DQS  
Data masks (DM) for write data  
Posted CAS by programmable additive latency for better  
command and data bus efficiency  
All Speed grades faster than DDR2–400 comply with  
DDR2–400 timing specifications when run at a clock rate  
of 200 MHz.  
1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined  
in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury,  
lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers.  
For more information please visit www.qimonda.com/green_products.  
Rev. 1.00, 2008-04  
3
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
TABLE 1  
Performance Table  
QAG Speed Code  
–25F  
–2.5  
–3S  
–3.7  
Unit  
Note  
DRAM Speed Grade  
DDR2  
–800D  
5–5–5  
–800E  
6–6–6  
–667D  
5–5–5  
–533C  
4–4–4  
CAS-RCD-RP latencies  
tCK  
Max. Clock Frequency  
CL3  
CL4  
CL5  
CL6  
fCK3  
fCK4  
fCK5  
fCK6  
tRCD  
tRP  
tRAS  
tRC  
tPREA  
200  
266  
400  
12.5  
12.5  
45  
200  
266  
333  
400  
15  
15  
45  
60  
17.5  
200  
266  
333  
15  
15  
45  
60  
18  
200  
266  
266  
15  
15  
45  
60  
18.75  
MHz  
MHz  
MHz  
MHz  
ns  
ns  
ns  
ns  
ns  
Min. RAS-CAS-Delay  
Min. Row Precharge Time  
Min. Row Active Time  
Min. Row Cycle Time  
Precharge-All (8 banks) command  
period  
57.5  
15  
1)2)  
1) This tPREA value is the minimum value at which this chip will be functional.  
2) Precharge-All command for an 8 bank device will equal to tRP + 1 × tCK or tnRP + 1 × nCK, depending on the speed bin,  
where tnRP = RU{ tRP / tCK(avg) } and tRP is the value for a single bank precharge.  
1.2  
Description  
The 4-Gbit DDR2 DRAM consists of two 2-Gbit Double Data-  
Rate-Two dies in one package. Each 2-Gbit device is  
organized as 64 Mbit ×4 I/O ×8 banks or 32 Mbit ×8 I/O ×8  
banks chip.  
These synchronous devices achieve high speed transfer  
rates starting at 400 Mb/sec/pin for general applications. See  
Table 1 for performance figures.  
The device is designed to comply with all DDR2 DRAM key  
features:  
1. Posted CAS with additive latency.  
2. Write latency = read latency - 1.  
3. Normal and weak strength data-output driver.  
4. Off-Chip Driver (OCD) impedance adjustment.  
5. On-Die Termination (ODT) function.  
All of the control and address inputs are synchronized with a  
pair of externally supplied differential clocks. Inputs are  
latched at the cross point of differential clocks (CK rising and  
CK falling). All I/Os are synchronized with a single ended  
DQS or differential DQS-DQS pair in a source synchronous  
fashion.  
A 18 bit address bus for ×4 and ×8 organised components is  
used to convey row, column and bank address information in  
a RAS-CAS multiplexing style.  
Since dual-die components share the same DQ bus, each of  
the two 2-Gbit dies can be individually selected by its own CS,  
CKE and ODT signal. All other signals are common for both  
dies.  
The DDR2 device operates with a 1.8 V ± 0.1 V power  
supply. An Auto-Refresh and Self-Refresh mode is provided  
along with various power-saving power-down modes.  
The functionality described and the timing specifications  
included in this data sheet are for the DLL Enabled mode of  
operation.  
The DDR2 SDRAM is available in TFBGA package.  
Rev. 1.00, 2008-04  
4
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
TABLE 2  
Ordering Information for RoHS Compliant Products  
Product Type1)  
Org. Speed  
CAS-RCD-RP Clock (MHz) Package  
Note5)  
Latencies2)3)4)  
Standard Temperature Range (0 °C - 95 °C)  
DDR2-800E( 6-6-6 )  
HYB18T4G802AF-2.5  
HYB18T4G402AF-2.5  
DDR2-800D( 5-5-5 )  
HYB18T4G802AF-25F  
HYB18T4G402AF-25F  
DDR2-667D( 5-5-5 )  
HYB18T4G402AF-3S  
HYB18T4G802AF-3S  
DDR2-533C( 4-4-4 )  
HYB18T4G802AF-3.7  
HYB18T4G402AF-3.7  
×8  
×4  
DDR2-800E 6-6-6  
DDR2-800E 6-6-6  
400  
400  
PG-TFBGA-71  
PG-TFBGA-71  
×8  
×4  
DDR2-800D 5-5-5  
DDR2-800D 5-5-5  
400  
400  
PG-TFBGA-71  
PG-TFBGA-71  
×4  
×8  
DDR2-667D 5-5-5  
DDR2-667D 5-5-5  
333  
333  
PG-TFBGA-71  
PG-TFBGA-71  
×8  
×4  
DDR2-533C 4-4-4  
DDR2-533C 4-4-4  
266  
266  
PG-TFBGA-71  
PG-TFBGA-71  
1) For detailed information regarding product type of Qimonda please see chapter "Product Nomenclature" of this data sheet.  
2) CAS: Column Address Strobe  
3) RCD: Row Column Delay  
4) RP: Row Precharge  
5) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined  
in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury,  
lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers. For more information please visit  
www.qimonda.com/green_products.  
Rev. 1.00, 2008-04  
5
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
2
Configuration  
This chapter contains the chip configuration.  
2.1  
Configuration for FBGA-71  
The chip configuration of a DDR2 SDRAM is listed by function in Table 3. The abbreviations used in the Ball# Type columns  
are explained in Table 4 and Table 5 respectively. The ball numbering for the FBGA package is depicted in Figures.  
TABLE 3  
Configuration  
Ball#  
Name  
Ball  
Buffer  
Type  
Function  
Type  
Clock Signals ×4 /×8 Organizations  
J8  
CK  
CK  
CKE0  
CKE1  
I
I
I
I
SSTL  
SSTL  
SSTL  
SSTL  
Clock Signal CK, CK  
Clock Enable  
K8  
K2  
M1  
Control Signals ×4 /×8 Organizations  
K7  
L7  
K3  
L8  
L9  
RAS  
CAS  
WE  
CS0  
CS1  
I
I
I
I
I
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
Row Address Strobe (RAS), Column Address Strobe (CAS),  
Write Enable (WE)  
Chip Select  
Address Signals ×4 /×8 Organizations  
L2  
L3  
L1  
BA0  
BA1  
BA2  
I
I
I
SSTL  
SSTL  
SSTL  
Bank Address Bus 2:0  
Rev. 1.00, 2008-04  
6
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
Ball#  
Name  
Ball  
Buffer  
Type  
Function  
Type  
M8  
M3  
M7  
N2  
N8  
N3  
N7  
P2  
P8  
P3  
M2  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
Address Signal 14:0, Address Signal 10/Autoprecharge  
A8  
A9  
A10  
AP  
A11  
A12  
A13  
A14  
P7  
R2  
R8  
R3  
Data Signals ×4 Organization  
G8  
G2  
H7  
H3  
DQ0  
DQ1  
DQ2  
DQ3  
I/O  
I/O  
I/O  
I/O  
SSTL  
SSTL  
SSTL  
SSTL  
Data Signal 3:0  
Data Signal 7:0  
Data Signals × 8 Organization  
G8  
G2  
H7  
H3  
H1  
H9  
F1  
F9  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
Data Strobe ×4 /×8 Organizations  
F7  
E8  
DQS  
DQS  
I/O  
I/O  
SSTL  
SSTL  
Data Strobe  
Data Strobe ×8 Organization  
F3  
E2  
RDQS  
RDQS  
O
O
SSTL  
SSTL  
Read Data Strobe  
Data Mask  
Data Mask ×4 /×8 Organizations  
F3 DM  
I
SSTL  
Rev. 1.00, 2008-04  
7
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
Ball#  
Name  
Ball  
Buffer  
Type  
Function  
Type  
Power Supplies ×4 /×8 Organizations  
G1, G3, E9, G7, VDDQ  
PWR  
I/O Driver Power Supply  
G9  
E1, R1, J9, M9 VDD  
PWR  
PWR  
Power Supply  
I/O Driver Power Supply  
F2, H2, E7, F8, VSSQ  
H8  
E3, J3, N1, P9 VSS  
PWR  
Al  
PWR  
PWR  
Power Supply  
I/O Reference Voltage  
Power Supply  
J2  
J1  
J7  
VREF  
VDDL  
VSSDL  
Power Supply  
Not Connected ×4 Organization  
E2, F1, H1, H9, NC  
R7, F9, A1, A2,  
A8, A9, W1,  
NC  
Not Connected  
W2, W8, W9  
Not Connected ×8 Organization  
R7, A1, A2, A8, NC  
A9, W1, W2,  
W8, W9  
NC  
Not Connected  
Other Balls ×4 /×8 Organizations  
K9  
N9  
ODT0  
ODT1  
I
I
SSTL  
SSTL  
On-Die Termination Control  
TABLE 4  
Abbreviations for Ball Type  
Abbreviation  
Description  
I
O
Standard input-only ball. Digital levels.  
Output. Digital levels.  
I/O is a bidirectional input/output signal.  
Input. Analog levels.  
Power  
I/O  
AI  
PWR  
GND  
NC  
Ground  
Not Connected  
TABLE 5  
Abbreviations for Buffer Type  
Abbreviation  
Description  
SSTL  
LV-CMOS  
Serial Stub Terminated Logic (SSTL_18)  
Low Voltage CMOS  
Rev. 1.00, 2008-04  
8
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
Abbreviation  
Description  
CMOS  
OD  
CMOS Levels  
Open Drain. The corresponding ball has 2 operational states, active low and tristate, and  
allows multiple devices to share as a wire-OR.  
FIGURE 1  
Configuration for x 4 Component, TFBGA-71 (Top View)  
$
%
&
'
(
)
1&  
1&  
1&  
1&  
9''  
966  
9664  
9''4  
1&  
'46  
9664  
9664  
1&  
'0  
'46  
1&  
9''4  
9''4  
9''4  
9''4  
*
+
-
'4ꢃ  
'4ꢀ  
9664  
9664  
1&  
'4ꢅ  
'4ꢇ  
966'/  
5$6  
&$6  
$ꢇ  
1&  
9''/  
95()  
966  
9''  
&.  
&.  
&6ꢀ  
$ꢀ  
.
/
&.(ꢀ  
%$ꢀ  
:(  
%$ꢃ  
$ꢃ  
2'7ꢀ  
%$ꢇ  
&6ꢃ  
9''  
0
1
3
5
7
&.(ꢃ $ꢃꢀꢄ$3  
966  
$ꢅ  
$ꢈ  
$ꢊ  
$ꢁ  
2'7ꢃ  
966  
$ꢆ  
$ꢉ  
$ꢃꢃ  
1&  
$ꢂ  
9''  
$ꢃꢇ  
$ꢃꢁ  
$ꢃꢅ  
8
9
:
1&  
1&  
1&  
1&  
0337ꢀꢁꢂꢀ  
Note: VDDL and VSSDL are power and ground for the DLL. VDDL is connected to VDD on the device. VDD, VDDQ, VSSDL, VSS, and  
SSQ are isolated on the device.  
V
Rev. 1.00, 2008-04  
9
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
FIGURE 2  
Configuration for x 8 Component, TFBGA-71 (Top View)  
$
%
&
'
(
)
1&  
1&  
1&  
1&  
18ꢅ  
5'46  
9''  
966  
9664  
9''4  
'46  
'0ꢅ  
5'46  
9664  
9664  
'4ꢃ  
'46  
'4ꢇ  
9''4  
9''4  
9''4  
9''4  
*
+
-
'4ꢄ  
'4ꢀ  
9664  
9664  
'4ꢁ  
'4ꢆ  
'4ꢈ  
966'/  
5$6  
&$6  
$ꢈ  
'4ꢉ  
9''/  
95()  
966  
9''  
&.  
&.  
&6ꢀ  
$ꢀ  
.
/
&.(ꢀ  
%$ꢀ  
:(  
%$ꢄ  
$ꢄ  
2'7ꢀ  
%$ꢈ  
&6ꢄ  
9''  
0
1
3
5
7
&.(ꢄ $ꢄꢀꢅ$3  
966  
$ꢆ  
$ꢉ  
$ꢃ  
$ꢁ  
2'7ꢄ  
966  
$ꢇ  
$ꢂ  
$ꢄꢄ  
1&  
$ꢊ  
9''  
$ꢄꢈ  
$ꢄꢁ  
$ꢄꢆ  
8
9
:
1&  
1&  
1&  
1&  
0337ꢀꢁꢂꢀ  
Notes  
1. RDQS / RDQS are enabled by EMRS(1) command.  
2. If RDQS / RDQS is enabled, the DM function is disabled  
3. When enabled, RDQS & RDQS are used as strobe signals during reads.  
4. VDDL and VSSDL are power and ground for the DLL. They are connected on the device from VDD, VDDQ, VSS and VSSQ  
.
Rev. 1.00, 2008-04  
10  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
2.2  
Addressing  
This chapter describes the DDR2 addressing.  
TABLE 6  
Addressing  
Note  
Configuration  
2 x 512 Mb x 41)  
2 x 256 Mb x 82)  
Number of Dies  
Bank Address  
Number of Banks  
Auto Precharge  
Row Address  
Column Address  
Chip Select  
Number of Column Address Bits  
Number of I/Os  
2
2
BA[2:0]  
8
BA[2:0]  
8
A10 / AP  
A[14:0]  
A11, A[9:0]  
CS[1:0]  
11  
A10 / AP  
A[14:0]  
A[9:0]  
CS[1:0]  
10  
3)  
4)  
4
8
Page Size [Bytes]  
1024 (1 K)  
1024 (1 K)  
1) Referred to as ’org’  
2) Referred to as ’org’  
3) Referred to as ’colbits’  
4) PageSize = 2colbits × org/8 [Bytes]  
Rev. 1.00, 2008-04  
11  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
3
Functional Description  
This chapter contains the functional description.  
3.1  
Mode Register Set (MRS)  
The mode register stores the data for controlling the various operating modes of DDR2 SDRAM.  
%$ꢀ %$ꢃ %$ꢂ $ꢃꢉ $ꢃꢄ $ꢃꢀ $ꢃꢃ $ꢃꢂ $ꢅ $ꢆ $ꢇ $ꢁ $ꢈ $ꢉ $ꢄ $ꢀ  
$ꢃ $ꢂ  
%/  
:5  
Z
'// 70  
&/  
Z
%7  
Z
3'  
Z
Z
Z
Z
UHJꢊꢋDGGU  
03%7ꢀꢀꢁꢂ  
TABLE 7  
Mode Register Definition, BA2:0 = 000B  
Field  
Bits  
Type1)  
Description  
BA2  
BA1  
BA0  
17  
16  
15  
reg. addr.  
Bank Address  
0B  
0B  
0B  
BA2 Bank Address 2  
BA1 Bank Address 1  
BA0 Bank Address 0  
A14  
A13  
14  
13  
Address Bus  
0B  
0B  
A14 Address bit 14  
A13 Address bit 13  
PD  
12  
w
w
Active Power-Down Mode Select  
0B  
1B  
PD Fast exit  
PD Slow exit  
WR  
[11:9]  
Write Recovery2)  
Note: All other bit combinations are illegal.  
001B WR 2  
010B WR 3  
011B WR 4  
100B WR 5  
101B WR 6  
DLL  
TM  
8
7
w
w
DLL Reset  
0B  
1B  
DLL No  
DLL Yes  
Test Mode  
0B  
1B  
TM Normal Mode  
TM Vendor specific test mode  
Rev. 1.00, 2008-04  
12  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
Field  
Bits  
Type1)  
Description  
CL  
[6:4]  
w
CAS Latency  
Note: All other bit combinations are illegal.  
011B CL 3  
100B CL 4  
101B CL 5  
110B CL 6  
111B CL 7  
BT  
BL  
3
w
w
Burst Type  
0B  
1B  
BT Sequential  
BT Interleaved  
Burst Length  
[2:0]  
Note: All other bit combinations are illegal.  
010B BL 4  
011B BL 8  
1) w = write only register bits  
2) Number of clock cycles for write recovery during auto-precharge. WR in clock cycles is calculated by dividing tWR (in ns) by tCK (in ns) and  
rounding up to the next integer: WR [cycles] tWR (ns) / tCK (ns). The mode register must be programmed to fulfill the minimum requirement  
for the analogue tWR timing WRMIN is determined by tCK.MAX and WRMAX is determined by tCK.MIN  
.
Rev. 1.00, 2008-04  
13  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
3.2  
Extended Mode Register EMR(1)  
The Extended Mode Register EMR(1) stores the data for  
enabling or disabling the DLL, output driver strength, additive  
latency, OCD program, ODT, DQS and output buffers  
disable, RDQS and RDQS enable.  
%$ꢀ %$ꢃ %$ꢂ $ꢃꢉ $ꢃꢄ $ꢃꢀ $ꢃꢃ $ꢃꢂ $ꢅ $ꢆ $ꢁ $ꢇ $ꢈ $ꢉ $ꢄ $ꢀ  
$ꢃ $ꢂ  
5'46  
'46 2&'ꢋ3URJUDP 5WW  
$/  
Z
5WW ',& '//  
4RII  
Z
Z
Z
Z
Z
Z
Z
UHJꢊꢋDGGU  
03%7ꢀꢀꢁꢂ  
TABLE 8  
Extended Mode Register Definition, BA2:0 = 001B  
Field  
Bits Type1)  
Description  
BA2  
BA1  
BA0  
17  
16  
15  
reg. addr.  
Bank Address  
0B  
0B  
0B  
BA2 Bank Address 2  
BA1 Bank Address 1  
BA1 Bank Address 0  
A14  
A13  
14  
13  
w
w
Address Bus  
0B  
0B  
A14 Address bit 14  
A13 Address bit 13  
Qoff  
12  
w
w
w
w
Output Disable  
0B  
1B  
QOff Output buffers enabled  
QOff Output buffers disabled  
RDQS  
DQS  
11  
Read Data Strobe Output (RDQS, RDQS)  
0B  
1B  
RDQS Disable  
RDQS Enable  
10  
Complement Data Strobe (DQS Output)  
0B  
1B  
DQS Enable  
DQS Disable  
OCD  
Program  
[9:7]  
Off-Chip Driver Calibration Program  
000B OCD OCD calibration mode exit, maintain setting  
001B OCD Drive (1)  
010B OCD Drive (0)  
100B OCD Adjust mode  
111B OCD OCD calibration default  
AL  
[5:3]  
w
Additive Latency  
Note: All other bit combinations are illegal.  
000B AL 0  
001B AL 1  
010B AL 2  
011B AL 3  
100B AL 4  
Rev. 1.00, 2008-04  
14  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
Field  
Bits Type1)  
Description  
RTT  
6,2  
w
Nominal Termination Resistance of ODT  
Note: See Table 18 “ODT DC Electrical Characteristics” on Page 22  
00B RTT (ODT disabled)  
01B RTT 75 Ohm  
10B RTT 150 Ohm  
11B RTT 50 Ohm  
DIC  
DLL  
1
0
w
w
Off-chip Driver Impedance Control  
0B  
1B  
DIC Full (Driver Size = 100%)  
DIC Reduced  
DLL Enable  
0B  
1B  
DLL Enable  
DLL Disable  
1) w = write only register bits  
Rev. 1.00, 2008-04  
15  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
3.3  
Extended Mode Register EMR(2)  
The Extended Mode Registers EMR(2) and EMR(3) are reserved for future use and must be programmed when setting the  
mode register during initialization.  
%$ꢀ %$ꢃ %$ꢂ $ꢃꢉ $ꢃꢄ $ꢃꢀ $ꢃꢃ $ꢃꢂ $ꢅ $ꢁ $ꢆ $ꢇ $ꢈ $ꢉ $ꢄ $ꢀ  
65) '&&  
$ꢃ $ꢂ  
3$65  
UHJꢊꢋDGGU  
03%7ꢀꢀꢁꢂ  
TABLE 9  
EMR(2) Programming Extended Mode Register Definition, BA2:0=010B  
Description  
Field Bits  
Type1)  
BA2  
16  
w
Bank Address  
0B  
BA2 Bank Address  
BA  
[15:14]  
w
Bank Adress  
00B BA MRS  
01B BA EMRS(1)  
10B BA EMRS(2)  
11B BA EMRS(3): Reserved  
A
[14:8]  
7
w
w
Address Bus  
0000000B A Address bits  
SRF  
Address Bus, High Temperature Self Refresh Rate for TCASE > 85°C  
0B  
1B  
A7 disable  
A7 enable 2)  
A
[6:4]  
3
w
w
Address Bus  
000B A Address bits  
DCC  
Address Bus, Duty Cycle Correction (DCC)  
0B  
1B  
A3 DCC disabled  
A3 DCC enabled  
Partial Self Refresh for 8 banks  
PASR [2:0]  
w
Address Bus, Partial Array Self Refresh for 8 Banks3)  
Note: Only for 1G and 2G components  
000B PASR0 Full Array  
001B PASR1 Half Array (BA[2:0]=000, 001, 010 & 011)  
010B PASR2 Quarter Array (BA[2:0]=000, 001)  
011B PASR3 1/8 array (BA[2:0] = 000)  
100B PASR4 3/4 array (BA[2:0]= 010, 011, 100, 101, 110 & 111)  
101B PASR5 Half array (BA[2:0]=100, 101, 110 & 111)  
110B PASR6 Quarter array (BA[2:0]= 110 & 111)  
111B PASR7 1/8 array(BA[2:0]=111)  
1) w = write only  
2) When DRAM is operated at 85°C TCase 95°C the extended self refresh rate must be enabled by setting bit A7 to 1 before the self refresh  
mode can be entered.  
3) If PASR (Partial Array Self Refresh) is enabled, data located in areas of the array beyond the specified location will be lost if self refresh  
is entered. Data integrity will be maintained if tREF conditions are met and no Self Refresh command is issued.  
Rev. 1.00, 2008-04  
16  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
3.4  
Extended Mode Register EMR(3)  
The Extended Mode Register EMR(3) is reserved for future use and all bits except BA0 and BA1 must be programmed to 0  
when setting the mode register during initialization.  
%$ꢀ %$ꢃ %$ꢂ $ꢃꢉ $ꢃꢄ $ꢃꢀ $ꢃꢃ $ꢃꢂ $ꢁ $ꢅ $ꢆ $ꢇ $ꢈ $ꢉ $ꢄ $ꢀ  
$ꢃ $ꢂ  
UHJꢊꢋDGGU  
03%7ꢀꢀꢁꢂ  
TABLE 10  
EMR(3) Programming Extended Mode Register Definition, BA2:0=011B  
Description  
Field  
Bits  
Type1)  
BA2  
16  
reg.addr  
Bank Address 2  
0B  
BA2 Bank Address  
BA1  
BA0  
A
15  
Bank Adress 1  
1B  
BA1 Bank Address  
14  
Bank Adress 0  
1B  
BA0 Bank Address  
[14:0]  
w
Address Bus  
000000000000000BA[14:0] Address bits  
1) w = write only  
Rev. 1.00, 2008-04  
17  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
3.5  
Burst Mode Operation  
TABLE 11  
Burst Length and Sequence  
Burst Length  
Starting Address  
(A2 A1 A0)  
Sequential Addressing  
Interleave Addressing  
(decimal)  
(decimal)  
4
× 0 0  
× 0 1  
×1 0  
0, 1, 2, 3  
1, 2, 3, 0  
2, 3, 0, 1  
0, 1, 2, 3  
1, 0, 3, 2  
2, 3, 0, 1  
×1 1  
3, 0, 1, 2  
3, 2, 1, 0  
8
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0, 1, 2, 3, 4, 5, 6, 7  
1, 2, 3, 0, 5, 6, 7, 4  
2, 3, 0, 1, 6, 7, 4, 5  
3, 0, 1, 2, 7, 4, 5, 6  
4, 5, 6, 7, 0, 1, 2, 3  
5, 6, 7, 4, 1, 2, 3, 0  
6, 7, 4, 5, 2, 3, 0, 1  
7, 4, 5, 6, 3, 0, 1, 2  
0, 1, 2, 3, 4, 5, 6, 7  
1, 0, 3, 2, 5, 4, 7, 6  
2, 3, 0, 1, 6, 7, 4, 5  
3, 2, 1, 0, 7, 6, 5, 4  
4, 5, 6, 7, 0, 1, 2, 3  
5, 4, 7, 6, 1, 0, 3, 2  
6, 7, 4, 5, 2, 3, 0, 1  
7, 6, 5, 4, 3, 2, 1, 0  
Rev. 1.00, 2008-04  
18  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
4
Truth Tables  
The truth tables in this chapter summarize the commands and there signal coding to control a standard Double-Data-Rate-Two  
SDRAM.  
TABLE 12  
Command Truth Table  
Function  
CKE  
CS RAS CAS WE BA0 A[14:11] A10 A[9:0]  
Note1)2)3)  
BA1  
BA2  
Previous Current  
Cycle  
Cycle  
4)5)6)  
4)  
(Extended) Mode Register Set H  
H
H
L
L
L
L
H
L
L
L
L
L
L
L
L
L
H
H
L
H
L
L
L
L
X
H
L
L
L
H
H
H
H
H
X
X
H
X
H
L
L
L
X
H
H
H
H
L
L
L
L
H
X
X
H
X
H
L
BA OP Code  
Auto-Refresh  
Self-Refresh Entry  
Self-Refresh Exit  
H
H
L
H
H
X
H
L
L
H
L
X
X
X
X
X
X
X
X
X
X
X
X
4)7)  
4)7)8)  
H
4)5)  
Single Bank Precharge  
Precharge all Banks  
Bank Activate  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
X
X
L
BA  
X
X
X
L
H
X
X
4)5)  
4)5)  
BA Row Address  
4)5)9)  
4)5)9)  
4)5)9)  
4)5)9)  
4)  
Write  
BA Column  
BA Column  
BA Column  
BA Column  
L
H
L
H
X
X
X
Column  
Column  
Column  
Column  
X
Write with Auto-Precharge  
Read  
Read with Auto-Precharge  
No Operation  
Device Deselect  
Power Down Entry  
L
H
H
H
X
X
H
X
H
X
X
X
X
X
X
4)  
X
X
4)10)  
4)10)  
Power Down Exit  
L
H
X
X
X
X
1) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh.  
2) “X” means H or L (but a defined logic level).  
3) Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down  
and then restarted through the specified initialization sequence before normal operation can continue.  
4) All DDR2 SDRAM commands are defined by states of CS, WE, RAS, CAS and CKE at the rising edge of the clock.  
5) Bank addresses BA[2:0] determine which bank is to be operated upon. For (E)MRS BA[2:0] selects an (Extended) Mode Register.  
6) All banks must be in a precharged idle state, CKE must be high at least for tXP and all read/write bursts must be finished before the  
(Extended) Mode Register set Command is issued.  
7)  
VREF must be maintained during Self Refresh operation.  
8) Self Refresh Exit is asynchronous.  
9) Burst reads or writes at BL = 4 cannot be terminated. See Chapter 3.5 for details.  
10) The Power Down Mode does not perform any refresh operations. The duration of Power Down is therefore limited by the refresh  
requirements.  
Rev. 1.00, 2008-04  
19  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
TABLE 13  
Clock Enable (CKE) Truth Table for Synchronous Transitions  
Current State1)  
CKE  
Command  
(N)2)3)RAS, CAS, WE,  
CS  
Action (N)2)  
Note4)5)  
Previous Cycle6) Current Cycle6)  
(N-1)  
(N)  
7)8)11)  
Power-Down  
Self Refresh  
L
L
L
L
H
H
L
H
L
H
L
L
X
Maintain Power-Down  
Power-Down Exit  
Maintain Self Refresh  
Self Refresh Exit  
Active Power-Down Entry  
Precharge Power-Down  
Entry  
7)9)10)11)  
8)11)12)  
DESELECT or NOP  
X
DESELECT or NOP  
DESELECT or NOP  
DESELECT or NOP  
9)11)12)13)14)  
7)9)10)11)15)  
9)10)11)15)  
Bank(s) Active  
All Banks Idle  
7)11)14)16)  
17)  
H
H
L
H
AUTOREFRESH  
Refer to the Command Truth Table  
Self Refresh Entry  
Any State other than  
listed above  
1) Current state is the state of the DDR2 SDRAM immediately prior to clock edge N.  
2) Command (N) is the command registered at clock edge N, and Action (N) is a result of Command (N).  
3) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh. .  
4) CKE must be maintained HIGH while the device is in OCD calibration mode.  
5) Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down  
and then restarted through the specified initialization sequence before normal operation can continue.  
6) CKE (N) is the logic state of CKE at clock edge N; CKE (N-1) was the state of CKE at the previous clock edge.  
7) The Power-Down Mode does not perform any refresh operations. The duration of Power-Down Mode is therefor limited by the refresh  
requirements.  
8) “X” means “don’t care (including floating around VREF)” in Self Refresh and Power Down. However ODT must be driven HIGH or LOW in  
Power Down if the ODT function is enabled (Bit A2 or A6 set to 1 in EMRS(1)).  
9) All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document.  
10) Valid commands for Power-Down Entry and Exit are NOP and DESELECT only.  
11) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the  
entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during  
the time period of tIS + 2 × tCK + tIH.  
12) VREF must be maintained during Self Refresh operation.  
13) On Self Refresh Exit DESELECT or NOP commands must be issued on every clock edge occurring during the tXSNR period. Read  
commands may be issued only after tXSRD (200 clocks) is satisfied.  
14) Valid commands for Self Refresh Exit are NOP and DESELCT only.  
15) Power-Down and Self Refresh can not be entered while Read or Write operations, (Extended) mode Register operations, Precharge or  
Refresh operations are in progress.  
16) Self Refresh mode can only be entered from the All Banks Idle state.  
17) Must be a legal command as defined in the Command Truth Table.  
TABLE 14  
Data Mask (DM) Truth Table  
Name (Function)  
DM  
DQs  
Note  
1)  
Write Enable  
Write Inhibit  
L
H
Valid  
X
1) Used to mask write data; provided coincident with the corresponding data.  
Rev. 1.00, 2008-04  
20  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
5
Electrical Characteristics  
This chapter describes the Electrical Characteristics.  
5.1  
Absolute Maximum Ratings  
Caution is needed not to exceed absolute maximum ratings of the DRAM device listed in Table 15 at any time.  
TABLE 15  
Absolute Maximum Ratings  
Symbol  
Parameter  
Rating  
Min.  
Unit  
Note  
Max.  
1)  
VDD  
VDDQ  
VDDL  
VIN, VOUT  
TSTG  
Voltage on VDD pin relative to VSS  
Voltage on VDDQ pin relative to VSS  
Voltage on VDDL pin relative to VSS  
Voltage on any pin relative to VSS  
Storage Temperature  
–1.0  
–0.5  
–0.5  
–0.5  
–55  
+2.3  
+2.3  
+2.3  
+2.3  
+100  
V
V
V
V
1)2)  
1)2)  
1)  
1)2)  
°C  
1) When VDD and VDDQ and VDDL are less than 500 mV; VREF may be equal to or less than 300 mV.  
2) Storage Temperature is the case surface temperature on the center/top side of the DRAM.  
Attention: Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to  
the device. This is a stress rating only and functional operation of the device at these or any other  
conditions above those indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect reliability.  
TABLE 16  
DRAM Component Operating Temperature Range  
Symbol  
Parameter  
Rating  
Unit  
Note  
Min.  
Max.  
TOPER  
Operating Temperature  
1) Operating Temperature is the case surface temperature on the center / top side of the DRAM.  
0
+95  
°C  
1)2)3)4)5) Standard  
2) The operating temperature range are the temperatures where all DRAM specification will be supported.  
3) During operation, the DRAM case temperature must be maintained between 0 - 95 °C under all other specification parameters.  
4) Above 85 °C the Auto-Refresh command interval has to be reduced to tREFI= 3.9 µs.  
5) When operating this product in the 85 °C to 95 °C TCASE temperature range, the High Temperature Self Refresh has to be enabled by  
setting EMR(2) bit A7 to 1. When the High Temperature Self Refresh is enabled there is an increase of IDD6 by approximately 50%.  
Rev. 1.00, 2008-04  
21  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
5.2  
DC Characteristics  
Input and output capacitances are higher with dual-die components compared to standard single-die components, due to the  
double loading of the input / output pins, except for CS[1:0], CKE[1:0 and ODT[1:0] and the additional package internal wiring.  
TABLE 17  
Recommended DC Operating Conditions (SSTL_18)  
Symbol  
Parameter  
Rating  
Min.  
Unit  
Note  
Typ.  
Max.  
1)  
VDD  
Supply Voltage  
1.7  
1.7  
1.7  
0.49 × VDDQ  
1.8  
1.8  
1.8  
0.5 × VDDQ  
VREF  
1.9  
1.9  
1.9  
0.51 × VDDQ  
V
V
V
V
V
1)  
VDDDL  
VDDQ  
VREF  
VTT  
Supply Voltage for DLL  
Supply Voltage for Output  
Input Reference Voltage  
Termination Voltage  
1)  
2)3)  
4)  
V
REF – 0.04  
VREF + 0.04  
1)  
VDDQ tracks with VDD, VDDDL tracks with VDD. AC parameters are measured with VDD, VDDQ and VDDDL tied together.  
2) The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is expected to  
be about 0.5 × VDDQ of the transmitting device and VREF is expected to track variations in VDDQ  
3) Peak to peak ac noise on VREF may not exceed ± 2% VREF (dc)  
.
4)  
VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal to VREF, and  
must track variations in die dc level of VREF  
.
TABLE 18  
ODT DC Electrical Characteristics  
Parameter / Condition  
Symbol Min. Nom. Max. Unit Note  
1)  
Termination resistor impedance value for EMRS(1)[A6,A2] = [0,1]; 75 Ohm Rtt1(eff) 60  
Termination resistor impedance value for EMRS(1)[A6,A2] =[1,0]; 150 Ohm Rtt2(eff) 120  
Termination resistor impedance value for EMRS(1)(A6,A2)=[1,1]; 50 Ohm  
Deviation of VM with respect to VDDQ / 2  
75  
150  
50  
90  
180  
60  
%
1)  
1)2)  
3)  
Rtt3(eff) 40  
delta VM –6.00  
+6.00  
1) Measurement Definition for Rtt(eff): Apply VIH(ac) and VIL(ac) to test pin separately, then measure current I(VIHac) and I(VILac) respectively.  
Rtt(eff) = (VIH(ac) – VIL(ac)) /(I(VIHac) – I(VILac)).  
2) Optional for DDR2-400, DDR2-533 and DDR2-667, mandatory for DDR2-800.  
3) Measurement Definition for VM: Turn ODT on and measure voltage (VM) at test pin (midpoint) with no load: delta VM = ((2 x VM / VDDQ) –  
1) x 100%  
TABLE 19  
Input and Output Leakage Currents  
Symbol  
Parameter / Condition  
Min.  
Max.  
Unit  
Note  
1)  
IIL  
IOL  
Input Leakage Current; any input 0 V < VIN < VDD  
Output Leakage Current; 0 V < VOUT < VDDQ  
–2  
–5  
+2  
+5  
µA  
µA  
2)  
1) All other pins not under test = 0 V  
2) DQ’s, LDQS, LDQS, UDQS, UDQS, DQS, DQS, RDQS, RDQS are disabled and ODT is turned off  
Rev. 1.00, 2008-04  
22  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
5.3  
DC & AC Characteristics  
DDR2 SDRAM pin timing are specified for either single ended  
or differential mode depending on the setting of the EMRS(1)  
“Enable DQS” mode bit; timing advantages of differential  
mode are realized in system design. The method by which the  
DDR2 SDRAM pin timing are measured is mode dependent.  
In single ended mode, timing relationships are measured  
In differential mode, these timing relationships are measured  
relative to the crosspoint of DQS and its complement, DQS.  
This distinction in timing methods is verified by design and  
characterization but not subject to production test. In single  
ended mode, the DQS (and RDQS) signals are internally  
disabled and don’t care.  
relative to the rising or falling edges of DQS crossing at VREF  
.
TABLE 20  
DC & AC Logic Input Levels  
Symbol  
Parameter  
DDR2-667, DDR2-800  
Min. Max.  
REF + 0.125  
–0.3  
REF + 0.200  
DDR2-533  
Units  
Min.  
Max.  
VIH(dc)  
VIL(dc)  
VIH(ac)  
VIL(ac)  
DC input logic HIGH  
DC input LOW  
AC input logic HIGH  
AC input LOW  
V
V
V
DDQ + 0.3  
REF – 0.125  
V
REF + 0.125  
V
V
DDQ + 0.3  
REF – 0.125  
V
V
V
V
–0.3  
V
V
REF + 0.250  
VREF – 0.200  
VREF - 0.250  
TABLE 21  
Single-ended AC Input Test Conditions  
Symbol  
Condition  
Value  
Unit  
Notes  
1)  
VREF  
VSWING.MAX  
SLEW  
Input reference voltage  
Input signal maximum peak to peak swing  
Input signal minimum Slew Rate  
0.5 x VDDQ  
1.0  
1.0  
V
V
V / ns  
1)  
2)3)  
1) Input waveform timing is referenced to the input signal crossing through the VREF level applied to the device under test.  
2) The input signal minimum Slew Rate is to be maintained over the range from VIH(ac).MIN to VREF for rising edges and the range from VREF  
to VIL(ac).MAX for falling edges as shown in Figure 3  
3) AC timings are referenced with input waveforms switching from VIL(ac) to VIH(ac) on the positive transitions and VIH(ac) to VIL(ac) on the negative  
transitions.  
Rev. 1.00, 2008-04  
23  
07192007-CK80-SF4Y  
9
9
                                 
75ꢀ  
                                  
&
                                                                    
U
                                                                    
                                                                     
                                                                      
V
                                                                       
L
                                                                       
                                                                        
                                                                          
3
                                                                           
RLQWꢀ  
                                                                            
                                                                            
                                                                             
R
V
Q
Jꢀ  
9,'ꢀ  
                                         
                                         
9
                                                            
,
                                                            
;ꢀ  
                                                              
R
                                                               
Uꢀ92;ꢀ  
                                                                
                                                                 
                                                                  
                                
&3ꢀ  
                                  
9
                                                                               
                                                                                 
                                                                                  
664ꢀ  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
FIGURE 3  
Single-ended AC Input Test Conditions Diagram  
9''4  
9,+ꢄDFꢅPLQ  
9,+ꢄGFꢅPLQ  
95()  
96:,1*ꢄ0$;ꢅ  
9,/ꢄGFꢅPD[  
9,/ꢄDFꢅPD[  
966  
'HOWDꢃ7)  
'HOWDꢃ75  
95()ꢃꢆꢃ9,/ꢄDFꢅPD[  
'HOWDꢃ7)  
9,+ꢄDFꢅPLQꢃꢆꢃ95()  
)DOOLQJꢃ6OHZꢃ  
5LVLQJꢃ6OHZꢃ  
'HOWDꢃ75  
03(7ꢀꢁꢂꢀ  
TABLE 22  
Differential DC and AC Input and Output Logic Levels  
Symbol  
Parameter  
DC input signal voltage  
DC differential input voltage  
AC differential input voltage  
AC differential cross point input voltage  
Min.  
Max.  
Unit  
Notes  
1)  
2)  
3)  
4)  
5)  
VIN(dc)  
VID(dc)  
VID(ac)  
VIX(ac)  
VOX(ac)  
–0.3  
0.25  
0.5  
V
V
V
DDQ + 0.3  
DDQ + 0.6  
DDQ + 0.6  
V
V
V
0.5 × VDDQ – 0.175  
0.5 × VDDQ + 0.175  
0.5 × VDDQ + 0.125  
AC differential cross point output voltage 0.5 × VDDQ – 0.125  
1)  
2)  
3)  
V
V
V
IN(dc) specifies the allowable DC execution of each input of differential pair such as CK, CK, DQS, DQS etc.  
ID(dc) specifies the input differential voltage VTRVCP required for switching. The minimum value is equal to VIH(dc) VIL(dc)  
.
ID(ac) specifies the input differential voltage VTR VCP required for switching. The minimum value is equal to VIH(ac) VIL(ac)  
.
4) The value of VIX(ac) is expected to equal 0.5 × VDDQ of the transmitting device and VIX(ac) is expected to track variations in VDDQ. VIX(ac)  
indicates the voltage at which differential input signals must cross.  
5) The value of VOX(ac) is expected to equal 0.5 × VDDQ of the transmitting device and VOX(ac) is expected to track variations in VDDQ. VOX(ac)  
indicates the voltage at which differential input signals must cross.  
FIGURE 4  
Differential DC and AC Input and Output Logic Levels Diagram  
9
                                                                               
''4ꢀ  
                                                                                
                                                                                  
Rev. 1.00, 2008-04  
24  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
5.4  
Output Buffer Characteristics  
This chapter describes the Output Buffer Characteristics.  
TABLE 23  
SSTL_18 Output DC Current Drive  
Symbol  
Parameter  
SSTL_18  
Unit  
Notes  
1)2)  
IOH  
IOL  
Output Minimum Source DC Current  
Output Minimum Sink DC Current  
–13.4  
13.4  
mA  
mA  
2)3)  
1)  
VDDQ = 1.7 V; VOUT = 1.42 V. (VOUTVDDQ) / IOH must be less than 21 for values of VOUT between VDDQ and VDDQ – 280 mV.  
2) The values of IOH(dc) and IOL(dc) are based on the conditions given in 1) and 3). They are used to test drive current capability to ensure VIH.MIN  
plus a noise margin and VIL.MAX minus a noise margin are delivered to an SSTL_18 receiver. The actual current values are derived by  
shifting the desired driver operating points along 21 Ohm load line to define a convenient current for measurement.  
.
3)  
VDDQ = 1.7 V; VOUT = 280 mV. VOUT / IOL must be less than 21 Ohm for values of VOUT between 0 V and 280 mV.  
TABLE 24  
SSTL_18 Output AC Test Conditions  
Symbol  
Parameter  
SSTL_18  
Unit  
Note  
1)  
VOH  
VOL  
VOTR  
Minimum Required Output Pull-up  
Maximum Required Output Pull-down  
Output Timing Measurement Reference Level  
VTT + 0.603  
VTT – 0.603  
0.5 × VDDQ  
V
V
V
1)  
1) SSTL_18 test load for VOH and VOL is different from the referenced load . The SSTL_18 test load has a 20 Ohm series resistor additionally  
to the 25 Ohm termination resistor into VTT. The SSTL_18 definition assumes that ± 335 mV must be developed across the effectively 25  
Ohm termination resistor (13.4 mA × 25 Ohm = 335 mV). With an additional series resistor of 20 Ohm this translates into a minimum  
requirement of 603 mV swing relative to VTT, at the ouput device (13.4 mA × 45 Ohm = 603 mV).  
Rev. 1.00, 2008-04  
25  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
TABLE 25  
OCD Default Characteristics  
Symbol Description  
Min.  
Nominal  
Max.  
Unit  
Notes  
1)2)  
Output Impedance  
1)2)3)  
4)  
SOUT  
Pull-up / Pull down mismatch  
Output Impedance step size for OCD calibration  
Output Slew Rate  
0
0
1.5  
4
1.5  
5.0  
1)5)6)7)  
V / ns  
1)  
VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V  
2) Impedance measurement condition for output source dc current: VDDQ = 1.7 V, VOUT = 1420 mV; (VOUTVDDQ) / IOH must be less than 23.4  
ohms for values of VOUT between VDDQ and VDDQ – 280 mV. Impedance measurement condition for output sink dc current: VDDQ = 1.7 V;  
V
OUT = –280 mV; VOUT / IOL must be less than 23.4 Ohms for values of VOUT between 0 V and 280 mV.  
3) Mismatch is absolute value between pull-up and pull-down, both measured at same temperature and voltage.  
4) This represents the step size when the OCD is near 18 ohms at nominal conditions across all process parameters and represents only the  
DRAM uncertainty. A 0 Ohm value (no calibration) can only be achieved if the OCD impedance is 18 ± 0.75 Ohms under nominal  
conditions.  
5) The absolute value of the Slew Rate as measured from DC to DC is equal to or greater than the Slew Rate as measured from AC to AC.  
This is verified by design and characterization but not subject to production test.  
6) Timing skew due to DRAM output Slew Rate mis-match between DQS / DQS and associated DQ’s is included in tDQSQ and tQHS  
specification.  
7) DRAM output Slew Rate specification applies to 400, 533 and 667 MT/s speed bins.  
Rev. 1.00, 2008-04  
26  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
5.5  
Input / Output Capacitance  
This chapter contains the Input / Output Capacitance.  
TABLE 26  
Input / Output Capacitance  
Symbol  
Parameter  
DDR2-800  
Min.  
DDR2-667  
Min.  
DDR2-533  
Unit  
Max.  
Max.  
Min.  
Max.  
CCK  
CDCK  
CI1  
Input capacitance, CK and CK  
Input capacitance delta, CK and CK  
Input capacitance  
CS[1:0], CKE[1:0],ODT[1:0]  
3.5  
1.75  
7.5  
0.375  
3.5  
3.5  
1.75  
7.5  
0.375  
3.5  
3.5  
1.75  
7.5  
0.375  
3.75  
pF  
pF  
pF  
CDI1  
CI2  
Input capacitance delta  
0.5  
0.5  
0.5  
pF  
pF  
pF  
pF  
pF  
CS[1:0], CKE[1:0],ODT[1:0]  
Input capacitance  
RAS, CAS, WE, A[14:0], BA[2:0]  
Input capacitance delta  
RAS, CAS, WE, A[14:0], BA[2:0]  
Input/output capacitance,  
DQ, DM, DQS, DQS  
Input/output capacitance delta,  
DQ, DM, DQS, DQS  
3.25  
7.5  
3.25  
7.5  
3.25  
7.5  
CDI2  
CIO  
0.5  
0.5  
0.5  
5.5  
10.5  
0.75  
5.5  
10.5  
0.75  
5.5  
10.5  
0.75  
CDIO  
Rev. 1.00, 2008-04  
27  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
5.6  
Overshoot and Undershoot Specification  
This chapter contains Overshoot and Undershoot Specification.  
TABLE 27  
AC Overshoot / Undershoot Specification for Address and Control Pins  
Parameter  
DDR2-533  
DDR2-667  
DDR2-800  
Unit  
Maximum peak amplitude allowed for  
overshoot area  
0.9  
0.9  
0.9  
V
Maximum peak amplitude allowed for  
undershoot area  
0.9  
0.9  
0.9  
V
Maximum overshoot area above VDD  
Maximum undershoot area below VSS  
1.00  
1.00  
0.8  
0.8  
0.66  
0.66  
V-ns  
V-ns  
FIGURE 5  
AC Overshoot / Undershoot Diagram for Address and Control Pins  
0D[LPXPꢂ$PSOLWXGHꢂꢂ  
9ROWVꢂꢃ9ꢄ  
2YHUVKRRWꢂ$UHD  
9''  
966  
8QGHUVKRRWꢂ$UHD  
0D[LPXPꢂ$PSOLWXGHꢂꢂ  
7LPHꢂꢃQVꢄ  
03(7ꢀꢁꢀꢀ  
Rev. 1.00, 2008-04  
28  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
TABLE 28  
AC Overshoot / Undershoot Specification for Clock, Data, Strobe and Mask Pins  
Parameter  
DDR2-533  
DDR2-667  
DDR2-800  
Unit  
Maximum peak amplitude allowed for overshoot 0.9  
area  
0.9  
0.9  
V
Maximum peak amplitude allowed for  
undershoot area  
0.9  
0.9  
0.9  
V
Maximum overshoot area above VDDQ  
Maximum undershoot area below VSSQ  
0.28  
0.28  
0.23  
0.23  
0.23  
0.23  
V-ns  
V-ns  
FIGURE 6  
AC Overshoot / Undershoot Diagram for Clock, Data, Strobe and Mask Pins  
0D[LPXPꢃ$PSOLWXGHꢃꢃ  
9ROWVꢃꢄ9ꢅ  
2YHUVKRRWꢃ$UHD  
9''4  
9664  
8QGHUVKRRWꢃ$UHD  
0D[LPXPꢃ$PSOLWXGHꢃꢃ  
7LPHꢃꢄQVꢅ  
03(7ꢀꢁꢂꢀ  
Rev. 1.00, 2008-04  
29  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
6
Currents Measurement Conditions  
This chapter describes the Current Measurement, Specifications and Conditions.  
TABLE 29  
IDD Measurement Conditions  
Parameter  
Symbol Note  
1)2)3)4)5)6)  
Operating Current - One bank Active - Precharge  
IDD0  
t
CK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), CKE is HIGH, CS is HIGH between valid commands.  
Address and control inputs are switching; Databus inputs are switching.  
1)2)3)4)5)6)  
Operating Current - One bank Active - Read - Precharge  
IDD1  
I
OUT = 0 mA, BL = 4, tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), tRCD = tRCD(IDD), AL = 0, CL = CL(IDD);  
CKE is HIGH, CS is HIGH between valid commands. Address and control inputs are switching;  
Databus inputs are switching.  
1)2)3)4)5)6)  
1)2)3)4)5)6)  
1)2)3)4)5)6)  
1)2)3)4)5)6)  
1)2)3)4)5)6)  
1)2)3)4)5)6)  
1)2)3)4)5)6)  
Precharge Power-Down Current  
IDD2P  
All banks idle; CKE is LOW; tCK = tCK(IDD);Other control and address inputs are stable; Data bus inputs  
are floating.  
Precharge Standby Current  
IDD2N  
All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are switching,  
Data bus inputs are switching.  
Precharge Quiet Standby Current  
IDD2Q  
IDD3P(0)  
IDD3P(1)  
IDD3N  
All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are stable,  
Data bus inputs are floating.  
Active Power-Down Current  
All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable; Data bus inputs  
are floating. MRS A12 bit is set to 0 (Fast Power-down Exit).  
Active Power-Down Current  
All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable, Data bus inputs  
are floating. MRS A12 bit is set to 1 (Slow Power-down Exit);  
Active Standby Current  
All banks open; tCK = tCK(IDD); tRAS = tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid  
commands. Address inputs are switching; Data Bus inputs are switching;  
Operating Current  
IDD4R  
Burst Read: All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CL(IDD); tCK = tCK(IDD); tRAS  
=
=
t
RAS.MAX.(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are  
switching; Data Bus inputs are switching; IOUT = 0 mA.  
1)2)3)4)5)6)  
Operating Current  
IDD4W  
Burst Write: All banks open; Continuous burst writes; BL = 4; AL = 0, CL = CL(IDD); tCK = tCK(IDD); tRAS  
t
RAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are  
switching; Data Bus inputs are switching;  
1)2)3)4)5)6)  
1)2)3)4)5)6)  
Burst Refresh Current  
IDD5B  
t
CK = tCK(IDD), Refresh command every tRFC = tRFC(IDD) interval, CKE is HIGH, CS is HIGH between valid  
commands, Other control and address inputs are switching, Data bus inputs are switching.  
Distributed Refresh Current  
IDD5D  
t
CK = tCK(IDD), Refresh command every tREFI = 7.8 µs interval, CKE is LOW and CS is HIGH between  
valid commands, Other control and address inputs are switching, Data bus inputs are switching.  
Rev. 1.00, 2008-04  
30  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
Parameter  
Symbol Note  
1)2)3)4)5)6)  
Self-Refresh Current  
IDD6  
CKE 0.2 V; external clock off, CK and CK at 0 V; Other control and address inputs are floating, Data  
bus inputs are floating.  
1)2)3)4)5)6)  
Operating Bank Interleave Read Current  
IDD7  
1. All banks interleaving reads, IOUT = 0 mA; BL = 4, CL = CL(IDD), AL = tRCD(IDD) -1 × tCK(IDD); tCK  
=
t
CK(IDD), tRC = tRC(IDD), tRRD = tRRD(IDD); tFAW = tFAW(IDD); CKE is HIGH, CS is HIGH between valid  
commands. Address bus inputs are stable during deselects; Data bus is switching.  
2. Timing pattern: see Detailed IDD7 timings shown below.  
1)  
2)  
3)  
V
DDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V.  
I
DD specifications are tested after the device is properly initialized.  
DD parameter are specified with ODT disabled.  
I
4) Data Bus consists of DQ, DM, DQS, DQS, RDQS, RDQS, LDQS, LDQS, UDQS and UDQS.  
5) Definitions for IDD , see Table 30.  
6) Timing parameter minimum and maximum values for IDD current measurements are defined in Chapter 7.  
Detailed IDD7  
The detailed timings are shown below for IDD7. Changes will be required if timing parameter changes are made to the  
specification. Legend: A = Active; RA = Read with Autoprecharge; D = Deselect.  
I
DD7 : Operating Current: All Bank Interleave Read operation  
All banks are being interleaved at minimum tRC.IDD without violating tRRD.IDD and tFAW.IDD using a burst length of 4. Control and  
address bus inputs are STABLE during DESELECTs. IOUT = 0 mA.  
Timing Patterns for devices with 1KB page size  
DDR2-533: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D A4 RA4 A5 RA5 A6 RA6 A7 RA7 D D  
DDR2-667: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D A4 RA4 D A5 RA5 D A6 RA6 D A7 RA7 D D  
DDR2-800: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D A4 RA4 D A5 RA5 D A6 RA6 D A7 RA7 D D D  
TABLE 30  
Definition for IDD  
Parameter  
Description  
LOW  
Defined as VIN VIL.AC.MAX  
HIGH  
Defined as VIN VIH.AC.MIN  
STABLE  
FLOATING  
SWITCHING  
Defined as inputs are stable at a HIGH or LOW level  
Defined as inputs are VREF = VDDQ / 2  
Defined as: Inputs are changing between high and low every other clock (once per two clocks) for address  
and control signals, and inputs changing between high and low every other clock (once per clock) for DQ  
signals not including mask or strobes  
Rev. 1.00, 2008-04  
31  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
TABLE 31  
I
DD Specification  
Symbol  
–25F  
–2.5  
–3S  
–3.7  
Unit  
Note  
DDR2-800D  
Max.  
DDR2-800E  
Max.  
DDR2-667D  
Max.  
DDR2-533C  
Max.  
1)  
IDD0  
IDD1  
IDD2N  
IDD2P  
IDD2Q  
IDD3N  
150  
154  
126  
32  
122  
138  
70  
150  
154  
126  
32  
122  
138  
70  
139  
144  
116  
32  
110  
126  
66  
125  
130  
100  
32  
98  
114  
64  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
1)  
2)  
2)  
2)  
2)  
2)3)  
2)4)  
1)  
I
I
DD3P_0 (fast)  
DD3P_1 (slow)  
34  
34  
34  
34  
IDD4R  
IDD4W  
IDD5B  
IDD5D  
IDD6  
206  
217  
285  
40  
32  
269  
206  
217  
285  
40  
32  
269  
188  
197  
273  
40  
32  
247  
172  
174  
260  
40  
32  
234  
1)  
1)  
2)5)  
2)5)  
1)  
IDD7  
1) One Die is in IDDx state, the other Die is in IDD2N state  
2) Both dies are in the same state  
3) MRS(12)=0  
4) MRS(12)=1  
5) For IDD5D and IDD6 0° ≤ TCASE 85 °C  
Rev. 1.00, 2008-04  
32  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
7
Timing Characteristics  
This chapter contains speed grade definition, AC timing parameter and ODT tables.  
7.1  
Speed Grade Definitions  
TABLE 32  
Speed Grade Definition  
Speed Grade  
DDR2–800D  
–25F  
DDR2–800E  
–2.5  
Unit  
Note  
QAG Sort Name  
CAS-RCD-RP latencies  
Parameter  
5–5–5  
Min.  
6–6–6  
tCK  
Symbol  
Max.  
Min.  
Max.  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)5)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
Clock Period  
@ CL = 3  
tCK  
tCK  
tCK  
tCK  
tRAS  
tRC  
tRCD  
tRP  
5
8
8
8
8
70k  
5
3.75  
3
2.5  
45  
60  
15  
15  
8
8
8
8
70k  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
@ CL = 4  
@ CL = 5  
@ CL = 6  
3.75  
2.5  
2.5  
45  
57.5  
12.5  
12.5  
Row Active Time  
Row Cycle Time  
RAS-CAS-Delay  
Row Precharge Time  
Rev. 1.00, 2008-04  
33  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
TABLE 33  
Speed Grade Definition  
Speed Grade  
DDR2–667D  
–3S  
DDR2–533C  
–3.7  
Unit  
Note  
QAG Sort Name  
CAS-RCD-RP latencies  
Parameter  
5–5–5  
4–4–4  
tCK  
Symbol  
Min.  
Max.  
Min.  
Max.  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)5)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
Clock Period  
@ CL = 3  
@ CL = 4  
@ CL = 5  
tCK  
tCK  
tCK  
tRAS  
tRC  
tRCD  
tRP  
5
3.75  
3
45  
60  
15  
15  
8
8
8
70k  
5
8
8
8
70k  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3.75  
3.75  
45  
60  
15  
Row Active Time  
Row Cycle Time  
RAS-CAS-Delay  
Row Precharge Time  
15  
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew  
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. .  
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,  
input reference level is the crosspoint when in differential strobe mode. CKDQS RDQS  
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ  
4) The output timing reference voltage level is VTT  
.
5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI  
.
Rev. 1.00, 2008-04  
34  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
7.2  
Component AC Timing Parameters  
The AC timings parameters are guaranteed with CK/CK clock  
differential slew rate of 2.0 V/ns. For data strobe signals  
timings are guaranteed with a differential slew rate of 2.0 V/ns  
in differential strobe mode and a slew rate of 1 V/ns in single  
ended mode. If slew rates can’t be met, the basic values for  
setup and hold times have to be derated. The component  
data sheet provides derating tables for these parameters.  
Timings are further guaranteed for normal OCD drive strength  
(EMR1 A1 = 0). The CK / CK input reference level (for timing  
referenced to CK / CK) is the point at which CK and CK cross.  
The DQS/DQS, RDQS/RDQS reference level is the  
crosspoint when in differential strobe mode. For single-ended  
strobe mode see the respective section in the component  
data sheet. Inputs are not recognized as valid until VREF  
stabilizes.  
During the period before VREF stabilizes, CKE = 0.2 x VDDQ is  
recognized as LOW. The output timing reference voltage  
level is VTT.  
Rev. 1.00, 2008-04  
35  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
TABLE 34  
DRAM Component Timing Parameter by Speed Grade - DDR2–800 and DDR2–667  
Parameter  
Symbol DDR2–800  
DDR2–667  
Unit  
Note1)2)3  
)4)5)6)7)  
Min.  
Max.  
Min.  
Max.  
8)36)  
9)10)  
11)  
DQ output access time from CK / CK tAC  
–400  
2
0.48  
2500  
3
+600  
0.52  
8000  
–450  
2
0.48  
3000  
3
+650  
0.52  
8000  
ps  
CAS to CAS command delay  
Average clock high pulse width  
Average clock period  
tCCD  
tCH.AVG  
tCK.AVG  
nCK  
tCK.AVG  
ps  
CKE minimum pulse width ( high and tCKE  
nCK  
low pulse width)  
Average clock low pulse width  
Auto-Precharge write recovery +  
precharge time  
9)10)  
tCL.AVG  
tDAL  
0.48  
WR + tnRP  
0.52  
0.48  
WR + tnRP  
0.52  
tCK.AVG  
nCK  
12)13)  
Minimum time clocks remain ON after tDELAY  
tIS + tCK .AVG ––  
+ tIH  
tIS +  
––  
ns  
CKE asynchronously drops LOW  
tCK .AVG + tIH  
14)18)19)38)  
8)37)  
DQ and DM input hold time  
tDH.BASE  
125  
0.35  
––  
175  
0.35  
––  
ps  
tCK.AVG  
DQ and DM input pulse width for each tDIPW  
input  
DQS output access time from CK / CK tDQSCK  
DQS input high pulse width  
DQS input low pulse width  
–350  
0.35  
0.35  
+550  
–400  
0.35  
0.35  
+600  
ps  
tDQSH  
tDQSL  
tCK.AVG  
tCK.AVG  
ps  
15)  
16)  
DQS-DQ skew for DQS & associated tDQSQ  
200  
240  
DQ signals  
DQS latching rising transition to  
associated clock edges  
DQ and DM input setup time  
DQS falling edge hold time from CK tDSH  
DQS falling edge to CK setup time tDSS  
tDQSS  
– 0.25  
+ 0.25  
– 0.25  
+ 0.25  
tCK.AVG  
17)18)19)38)  
tDS.BASE  
50  
––  
100  
0.2  
0.2  
––  
ps  
16)  
16)  
34)  
0.2  
0.2  
35  
tCK.AVG  
tCK.AVG  
ns  
Four Activate Window for 1KB page tFAW  
37.5  
size products  
34)  
Four Activate Window for 2KB page tFAW  
45  
50  
ns  
ps  
ps  
size products  
20)  
CK half pulse width  
tHP  
Min(tCH.ABS  
,
__  
Min(tCH.ABS  
,
__  
tCL.ABS  
)
tCL.ABS)  
8)21)  
22)24)38)  
Data-out high-impedance time from tHZ  
tAC.MAX  
tAC.MAX  
CK / CK  
Address and control input hold time tIH.BASE  
250  
0.6  
275  
0.6  
ps  
tCK.AVG  
Control & address input pulse width tIPW  
for each input  
23)24)38)  
8)21)  
Address and control input setup time tIS.BASE  
DQ low impedance time from CK/CK tLZ.DQ  
175  
2 × tAC.MIN  
tAC.MIN  
tAC.MAX  
tAC.MAX  
200  
2 × tAC.MIN  
tAC.MIN  
tAC.MAX  
tAC.MAX  
ps  
ps  
ps  
8)21)  
DQS/DQS low-impedance time from tLZ.DQS  
CK / CK  
Rev. 1.00, 2008-04  
36  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
Parameter  
Symbol DDR2–800  
Min.  
DDR2–667  
Min.  
Unit  
Note1)2)3  
)4)5)6)7)  
Max.  
Max.  
34)  
MRS command to ODT update delay tMOD  
0
2
12  
0
2
12  
ns  
nCK  
Mode register set command cycle  
time  
tMRD  
34)  
OCD drive mode output delay  
tOIT  
0
12  
300  
7.8  
3.9  
0
12  
340  
7.8  
3.9  
ns  
ps  
ps  
µs  
µs  
ns  
25)  
DQ/DQS output hold time from DQS tQH  
t
HP tQHS  
t
HP tQHS  
26)  
DQ hold skew factor  
Average periodic refresh Interval  
tQHS  
tREFI  
195  
195  
27)28)  
27)29)  
30)  
Auto-Refresh to Active/Auto-Refresh tRFC  
command period  
31)32)  
31)33)  
34)  
Read preamble  
Read postamble  
tRPRE  
tRPST  
0.9  
0.4  
7.5  
1.1  
0.6  
0.9  
0.4  
7.5  
1.1  
0.6  
tCK.AVG  
tCK.AVG  
ns  
Active to active command period for tRRD  
1KB page size products  
34)  
Internal Read to Precharge command tRTP  
7.5  
7.5  
ns  
delay  
Write preamble  
Write postamble  
Write recovery time  
Internal write to read command delay tWTR  
Exit active power down to read  
command  
Exit active power down to read  
command (slow exit, lower power)  
Exit precharge power-down to any  
command  
Exit self-refresh to a non-read  
command  
Exit self-refresh to read command  
Write command to DQS associated  
clock edges  
tWPRE  
tWPST  
tWR  
0.35  
0.4  
15  
7.5  
2
0.6  
0.35  
0.4  
15  
7.5  
2
0.6  
tCK.AVG  
tCK.AVG  
ns  
ns  
nCK  
34)  
34)35)  
tXARD  
tXARDS  
tXP  
8 – AL  
2
7 – AL  
2
nCK  
nCK  
ns  
34)  
tXSNR  
t
RFC +10  
tRFC +10  
tXSRD  
WL  
200  
RL – 1  
200  
RL–1  
nCK  
nCK  
1) VDDQ = 1.8 V ± 0.1V; VDD = 1.8 V ± 0.1 V.  
2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down  
and then restarted through the specified initialization sequence before normal operation can continue.  
3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew  
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.  
4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,  
input reference level is the crosspoint when in differential strobe mode. DQS RDQS  
5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.  
6) The output timing reference voltage level is VTT  
.
7) New units, ‘tCK.AVG‘ and ‘nCK‘, are introduced in DDR2–667 and DDR2–800. Unit ‘tCK.AVG‘ represents the actual tCK.AVG of the input clock  
under operation. Unit ‘nCK‘ represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2–400 and  
DDR2–533, ‘tCK‘ is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command  
may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min)  
.
Rev. 1.00, 2008-04  
37  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
8) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output  
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tERR(6-10PER).MIN = – 272  
ps and tERR(6- 10PER).MAX = + 293 ps, then tDQSCK.MIN(DERATED) = tDQSCK.MIN tERR(6-10PER).MAX = – 400 ps – 293 ps = – 693 ps and  
t
DQSCK.MAX(DERATED) = tDQSCK.MAX tERR(6-10PER).MIN = 400 ps + 272 ps = + 672 ps. Similarly, tLZ.DQ for DDR2–667 derates to tLZ.DQ.MIN(DERATED)  
= - 900 ps – 293 ps = – 1193 ps and tLZ.DQ.MAX(DERATED) = 450 ps + 272 ps = + 722 ps. (Caution on the MIN/MAX usage!)  
9) Input clock jitter spec parameter. These parameters and the ones in Chapter 7.3 are referred to as 'input clock jitter spec parameters' and  
these parameters apply to DDR2–667 and DDR2–800 only. The jitter specified is a random jitter meeting a Gaussian distribution.  
10) These parameters are specified per their average values, however it is understood that the relationship as defined in Chapter 7.3 between  
the average timing and the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations  
of Chapter 7.3).  
11) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the  
entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during  
the time period of tIS + 2 x tCK + tIH.  
12) DAL = WR + RU{tRP(ns) / tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result  
of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period. Example: For  
DDR2–533 at tCK = 3.75 ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks.  
13) tDAL.nCK = WR [nCK] + tnRP.nCK = WR + RU{tRP [ps] / tCK.AVG[ps] }, where WR is the value programmed in the EMR.  
14) Input waveform timing tDH with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to  
the input signal crossing at the VIH.DC level for a falling signal and from the differential data strobe crosspoint to the input signal crossing  
at the VIL.DC level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL.DC.MAX and  
VIH.DC.MIN. See Figure 8.  
15) tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output  
slew rate mismatch between DQS / DQS and associated DQ in any given cycle.  
16) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing.  
The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as these are relative to the clock signal  
crossing. That is, these parameters should be met whether clock jitter is present or not.  
17) Input waveform timing tDS with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the VIH.AC level  
to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL.AC level to the differential data strobe  
crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(DC)MAX and Vih(DC)MIN. See  
Figure 8.  
18) If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed.  
19) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal  
((L/U/R)DQS / DQS) crossing.  
20) tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter.  
It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the  
following equation; tHP = MIN (tCH.ABS, tCL.ABS), where, tCH.ABS is the minimum of the actual instantaneous clock high time; tCL.ABS is the  
minimum of the actual instantaneous clock low time.  
21) tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level  
which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) .  
22) input waveform timing is referenced from the input signal crossing at the VIL.DC level for a rising signal and VIH.DC for a falling signal applied  
to the device under test. See Figure 9.  
23) Input waveform timing is referenced from the input signal crossing at the VIH.AC level for a rising signal and VIL.AC for a falling signal applied  
to the device under test. See Figure 9.  
24) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to  
its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC  
,
etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should  
be met whether clock jitter is present or not.  
25) tQH = tHP tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under  
the max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.}  
Examples: 1) If the system provides tHP of 1315 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 975 ps minimum. 2) If the system  
provides tHP of 1420 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 1080 ps minimum.  
26) tQHS accounts for: 1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is  
transferred to the output; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next  
transition, both of which are independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation  
of the output drivers.  
27) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C  
and 95 °C.  
28) 0 °CTCASE 85 °C.  
29) 85 °C < TCASE 95 °C.  
Rev. 1.00, 2008-04  
38  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
30) A maximum of eight Refresh commands can be posted to any given DDR2 SDRAM, meaning that the maximum absolute interval between  
any Refresh command and the next Refresh command is 9 x tREFI  
.
31) tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving  
(tRPST), or begins driving (tRPRE). Figure 7 shows a method to calculate these points when the device is no longer driving (tRPST), or begins  
driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the  
calculation is consistent.  
32) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.PER of the input clock. (output  
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.PER.MIN = – 72 ps  
and tJIT.PER.MAX = + 93 ps, then tRPRE.MIN(DERATED) = tRPRE.MIN + tJIT.PER.MIN = 0.9 x tCK.AVG – 72 ps = + 2178 ps and tRPRE.MAX(DERATED) = tRPRE.MAX  
+ tJIT.PER.MAX = 1.1 x tCK.AVG + 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!).  
33) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.DUTY of the input clock. (output  
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.DUTY.MIN = – 72 ps  
and tJIT.DUTY.MAX = + 93 ps, then tRPST.MIN(DERATED) = tRPST.MIN + tJIT.DUTY.MIN = 0.4 x tCK.AVG – 72 ps = + 928 ps and tRPST.MAX(DERATED) = tRPST.MAX  
+ tJIT.DUTY.MAX = 0.6 x tCK.AVG + 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!).  
34) For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK.AVG}, which is in clock  
cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK.AVG}, which is in  
clock cycles, if all input clock jitter specifications are met. This means: For DDR2–667 5–5–5, of which tRP = 15 ns, the device will support  
t
nRP = RU{tRP / tCK.AVG} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at  
Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter.  
35) tWTR is at lease two clocks (2 x tCK) independent of operation frequency.  
36) Dual-die component has extra capacitance on both data and clock path therefore clock to data out time minimum and maximum values  
are shifted.  
37) Dual-die component has extra capacitance on both DQS and clock path therefore clock to data out time minimum and maximum values  
are shifted.  
38) These numbers are based on the single die component with the slew rates which are mentioned in the single die component data sheet.  
As a dual die component has higher capacitance compared to single die component, all the input signal drivers should be strong enough  
to achieve the same slew rate and input levels as for a single die. Otherwise, it is necessary to change the setup and hold timings.  
Rev. 1.00, 2008-04  
39  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
TABLE 35  
DRAM Component Timing Parameter by Speed Grade - DDR2–533  
Parameter  
Symbol  
DDR2–533  
Unit  
Notes1)2)3)4)5)  
6)  
Min.  
Max.  
22)  
DQ output access time from CK / CK  
CAS to CAS command delay  
CK high pulse width  
tAC  
tCCD  
tCH  
–500  
2
0.45  
3
0.45  
WR + tRP  
+700  
0.55  
0.55  
ps  
tCK  
tCK  
tCK  
tCK  
tCK  
CKE minimum high and low pulse width tCKE  
CK low pulse width  
tCL  
7)  
Auto-Precharge write recovery +  
precharge time  
Minimum time clocks remain ON after  
CKE asynchronously drops LOW  
tDAL  
8)  
tDELAY  
tIS + tCK + tIH  
225  
––  
––  
ns  
ps  
ps  
tCK  
9)24)  
10)24)  
DQ and DM input hold time (differential tDH.BASE  
data strobe)  
DQ and DM input hold time (single ended tDH1.BASE  
–25  
data strobe)  
DQ and DM input pulse width for each  
input  
tDIPW  
0.35  
23)  
10)  
DQS output access time from CK / CK  
DQS input HIGH pulse width  
DQS input LOW pulse width  
DQS-DQ skew (for DQS & associated  
DQ signals)  
tDQSCK  
tDQSH  
tDQSL  
tDQSQ  
–450  
0.35  
0.35  
+650  
ps  
tCK  
tCK  
ps  
300  
DQS latching rising transition to  
associated clock edges  
tDQSS  
– 0.25  
100  
+ 0.25  
tCK  
ps  
ps  
10)24)  
10)24)  
DQ and DM input setup time (differential tDS.BASE  
strobe)  
DQ and DM input setup time (single  
ended strobe)  
tDS1.BASE  
–25  
DQS falling edge hold time from CK  
DQS falling edge to CK setup time  
tDSH  
tDSS  
0.2  
0.2  
37.5  
tCK  
tCK  
ns  
Four Activate Window for 1KB page size tFAW  
products  
12)  
Four Activate Window for 2KB page size tFAW  
50  
ns  
ps  
ps  
products  
11)  
CK half pulse width  
tHP  
Min(tCH.ABS  
,
__  
tCL.ABS  
)
12)  
Data-out high-impedance time from CK / tHZ  
tAC.MAX  
CK  
10)24)  
Address and control input hold time  
tIH.BASE  
375  
0.6  
ps  
tCK  
Address and control input pulse width for tIPW  
each input  
10)24)  
Address and control input setup time  
tIS.BASE  
250  
40  
ps  
Rev. 1.00, 2008-04  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
Parameter  
Symbol  
DDR2–533  
Min.  
Unit  
Notes1)2)3)4)5)  
6)  
Max.  
13)  
13)  
DQ low-impedance time from CK / CK  
tLZ.DQ  
2 × tAC.MIN  
tAC.MIN  
tAC.MAX  
tAC.MAX  
ps  
ps  
DQS/DQS low-impedance time from CK / tLZ.DQS  
CK  
MRS command to ODT update delay  
Mode register set command cycle time  
OCD drive mode output delay  
Data output hold time from DQS  
Data hold skew factor  
Average periodic refresh Interval  
Average periodic refresh Interval  
Auto-Refresh to Active/Auto-Refresh  
command period  
tMOD  
tMRD  
tOIT  
0
2
0
12  
12  
400  
7.8  
3.9  
ns  
tCK  
ns  
ps  
ps  
µs  
µs  
ns  
tQH  
tHP tQHS  
tQHS  
tREFI  
tREFI  
tRFC  
13)14)  
15)17)  
16)  
195  
13)  
Read preamble  
Read postamble  
tRPRE  
tRPST  
0.9  
0.40  
7.5  
1.1  
0.60  
tCK  
tCK  
ns  
13)  
13)17)  
Active bank A to Active bank B command tRRD  
period for 1 KB page size  
Internal Read to Precharge command  
delay  
tRTP  
7.5  
ns  
Write preamble  
Write postamble  
Write recovery time  
Internal Write to Read command delay  
tWPRE  
tWPST  
tWR  
0.35  
0.40  
15  
7.5  
2
0.60  
tCK  
tCK  
ns  
ns  
tCK  
tCK  
18)  
19)  
20)  
20)  
tWTR  
Exit active power down to read command tXARD  
Exit active power down to read command tXARDS  
6 – AL  
(slow exit, lower power)  
Exit precharge power down to any non- tXP  
2
tCK  
read command  
Exit Self-Refresh to non-read command tXSNR  
t
RFC +10  
200  
WR/tCK  
ns  
tCK  
tCK  
Exit Self-Refresh to Read command  
tXSRD  
21)  
Write recovery time for write with Auto-  
Precharge  
WR  
t
1) VDDQ = 1.8 V ± 0.1V; VDD = 1.8 V ± 0.1 V.  
2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down  
and then restarted through the specified initialization sequence before normal operation can continue.  
3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew  
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.  
4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,  
input reference level is the crosspoint when in differential strobe mode. DQS RDQS  
5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.  
6) The output timing reference voltage level is VTT  
.
7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to  
the WR parameter stored in the MR.  
8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode.  
9) For timing definition, refer to the Component data sheet.  
Rev. 1.00, 2008-04  
41  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
10) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate  
mis-match between DQS / DQS and associated DQ in any given cycle.  
11) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can  
be greater than the minimum specification limits for tCL and tCH).  
12) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving  
(tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These  
parameters are verified by design and characterization, but not subject to production test.  
13) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C  
and 95 °C.  
14) 0 °CTCASE 85 °C.  
15) 85 °C < TCASE 95 °C.  
16) A maximum of eight Refresh commands can be posted to any given DDR2 SDRAM, meaning that the maximum absolute interval between  
any Refresh command and the next Refresh command is 9 x tREFI  
.
17) The tRRD timing parameter depends on the page size of the DRAM organization.  
18) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system  
performance (bus turnaround) degrades accordingly.  
19) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz.  
20) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active power-  
down mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow  
power-down exit timing tXARDS has to be satisfied.  
21) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded  
up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK  
refers to the application clock period. WR refers to the WR parameter stored in the MRS.  
22) Dual-die component has extra capacitance on both data and clock path therefore clock to data out time minimum and maximum values  
are shifted.  
23) Dual-die component has extra capacitance on both DQS and clock path therefore clock to data out time minimum and maximum values  
are shifted.  
24) These numbers are based on the single die component with the slew rates which are mentioned in the single die component data sheet.  
As a dual die component has higher capacitance compared to single die component, all the input signal drivers should be strong enough  
to achieve the same slew rate and input levels as for a single die. Otherwise, it is necessary to change the setup and hold timings.  
FIGURE 7  
Method for Calculating Transitions and Endpoint  
ꢐꢑꢁꢇꢒꢇ ꢇꢓꢐ  
ꢐꢆꢆꢇꢕꢇꢏ ꢇꢓꢐ  
ꢐꢆꢆꢇꢕꢇ ꢇꢓꢐ  
ꢐꢑꢁꢇꢒꢇꢏ ꢇꢓꢐ  
ꢀꢔꢂ  
ꢀꢁꢂ  
ꢀꢃꢄꢃꢖꢇ  
ꢀꢃꢄꢅꢆꢈꢉꢊꢇꢋꢌꢍꢉꢀ  
ꢗꢈꢘꢍꢉꢇꢋꢌꢍꢉꢀ  
ꢐꢑꢇꢏ ꢇꢓꢐ  
ꢐꢑꢇ ꢇꢓꢐ  
ꢐꢆꢆꢇꢒꢇ ꢇꢓꢐ  
ꢐꢆꢆꢇꢒꢇꢏ ꢇꢓꢐ  
ꢆꢎ  
ꢆꢏ  
ꢆꢎ  
ꢆꢏ  
ꢀꢁꢂꢙꢀꢃꢄꢅꢆꢇ  
ꢈꢉꢊꢇꢋꢌꢍꢉꢇꢚꢇꢏꢛꢆꢎꢒꢆꢏ  
ꢀꢔꢂꢙꢀꢃꢄꢃꢖꢇ  
ꢗꢈꢘꢍꢉꢇꢋꢌꢍꢉꢇꢚꢇꢏꢛꢆꢎꢒꢆꢏ  
ꢜꢄꢖꢆꢝꢞꢎꢝ  
Rev. 1.00, 2008-04  
07192007-CK80-SF4Y  
42  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
FIGURE 8  
Differential Input Waveform Timing - tDS and tDH  
'46  
'46  
W'6  
W'6  
W'+  
W'+  
9''4  
'4  
9,+ꢀ$&ꢀ0,1  
9,+ꢀ'&ꢀ0,1  
95()  
9,/ꢀ'&ꢀ0$;  
9,/ꢀ$&ꢀ0$;  
966  
03(7ꢁꢂꢂꢃ  
Rev. 1.00, 2008-04  
43  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
FIGURE 9  
Differential Input Waveform Timing - tlS and tlH  
&.  
&.  
W,6  
W,+  
W,6  
W,+  
9''4  
&0'  
9,+ꢀ$&ꢀ0,1  
$GGUHVV  
9,+ꢀ'&ꢀ0,1  
95()  
9,/ꢀ'&ꢀ0$;  
9,/ꢀ$&ꢀ0$;  
966  
03(7ꢁꢂꢂꢁ  
Rev. 1.00, 2008-04  
44  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
7.3  
Jitter Definition and Clock Jitter Specification  
Generally, jitter is defined as “the short-term variation of a signal with respect to its ideal position in time”. The following table  
provides an overview of the terminology.  
TABLE 36  
Average Clock and Jitter Symbols and Definition  
Symbol  
Parameter  
Description  
Units  
tCK.AVG  
Average clock period tCK.AVG is calculated as the average clock period within any consecutive ps  
200-cycle window:  
ꢉ  
ꢀꢁꢂꢃꢆ  
ꢀꢁ ꢂꢊ  
N = 200  
tJIT.PER  
Clock-period jitter  
t
JIT.PER is defined as the largest deviation of any single tCK from tCK.AVG  
:
ps  
t
JIT.PER = Min/Max of {tCKi tCK.AVG} where i = 1 to 200  
t
t
JIT.PER defines the single-period jitter when the DLL is already locked.  
JIT.PER is not guaranteed through final production testing.  
t
JIT(PER, LCK)  
Clock-period jitter  
during DLL-locking  
period  
Cycle-to-cycle clock  
period jitter  
t
JIT(PER,LCK) uses the same definition as tJIT.PER, during the DLL-locking ps  
period only.  
t
t
JIT(PER,LCK) is not guaranteed through final production testing.  
JIT.CC is defined as the absolute difference in clock period between two ps  
tJIT.CC  
consecutive clock cycles:  
t
JIT.CC = Max of ABS{tCKi+1 tCKi}  
t
t
JIT.CC defines the cycle - to - cycle jitter when the DLL is already locked.  
JIT.CC is not guaranteed through final production testing.  
t
JIT(CC, LCK)  
Cycle-to-cycle clock  
period jitter during  
DLL-locking period  
Cumulative error  
across 2 cycles  
t
JIT(CC,LCK) uses the same definition as tJIT.CC during the DLL-locking  
ps  
period only.  
t
t
JIT(CC,LCK) is not guaranteed through final production testing.  
ERR.2PER is defined as the cumulative error across 2 consecutive cycles ps  
tERR.2PER  
from tCK.AVG  
:
ꢀꢁꢂ ꢂ ꢃ ꢄꢅ ꢆ  
ꢀꢇ ꢈꢉ  
ꢀ ꢇꢈ ꢍꢎ ꢏ  
n = 2 for tERR(2per)  
where i = 1 to 200  
Rev. 1.00, 2008-04  
45  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
Symbol  
Parameter  
Description  
Units  
tERR.nPER  
Cumulative error  
across n cycles  
t
ERR.2PER is defined as the cumulative error across n consecutive cycles ps  
from tCK.AVG  
:
ꢀꢁꢂ ꢂ ꢃ ꢄꢅ ꢆ  
ꢀꢇ ꢈꢉ  
ꢀ ꢇꢈ ꢌꢍ ꢎ  
where, i = 1 to 200 and  
n = 3 for tERR.3PER  
n = 4 for tERR.4PER  
n = 5 for tERR.5PER  
6 n 10 for tERR.6-10PER  
11 n 50 for tERR.11-50PER  
tCH.AVG  
Average high-pulse  
width  
t
CH.AVG is defined as the average high-pulse width, as calculated across tCK.AVG  
any consecutive 200 high pulses:  
ꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉ  
ꢀꢁ ꢂ ꢃ ꢄꢅ  
ꢀꢁ ꢂꢋ  
ꢀ ꢁꢈ ꢃꢄ ꢅ  
N = 200  
tCL.AVG  
Average low-pulse  
width  
t
CL.AVG is defined as the average low-pulse width, as calculated across any tCK.AVG  
consecutive 200 low pulses:  
ꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉ  
ꢀꢁ ꢂ ꢃ ꢄꢅ  
ꢀꢁ ꢂꢋ  
ꢀ ꢁꢈ ꢃꢄ ꢅ  
N = 200  
tJIT.DUTY  
Duty-cycle jitter  
t
t
t
t
t
JIT.DUTY = Min/Max of {tJIT.CH , tJIT.CL}, where:  
ps  
JIT.CH is the largest deviation of any single tCH from tCH.AVG  
JIT.CL is the largest deviation of any single tCL from tCL.AVG  
JIT.CH = {tCHi - tCH.AVG × tCK.AVG} where i=1 to 200  
JIT.CL = {tCLi - tCL.AVG × tCK.AVG} where i=1 to 200  
The following parameters are specified per their average values however, it is understood that the following relationship  
between the average timing and the absolute instantaneous timing holds all the time.  
Rev. 1.00, 2008-04  
46  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
TABLE 37  
Absolute Jitter Value Definitions  
Symbol Parameter  
Min.  
Max.  
Unit  
tCK.ABS  
tCH.ABS  
Clock period  
Clock high-pulse width  
t
CK.AVG(Min) + tJIT.PER(Min)  
t
t
CK.AVG(Max) + tJIT.PER(Max)  
CH.AVG(Max) x tCK.AVG(Max) +  
ps  
ps  
tCH.AVG(Min) x tCK.AVG(Min) + tJIT.DUTY(Min)  
tJIT.DUTY(Max)  
tCL.ABS  
Clock low-pulse width  
tCL.AVG(Min) x tCK.AVG(Min) + tJIT.DUTY(Min) tCL.AVG(Max) x tCK.AVG(Max)  
+
ps  
tJIT.DUTY(Max)  
Example: for DDR2-667, tCH.ABS.MIN = (0.48 x 3000ps) – 125 ps = 1315 ps = 0.438 x 3000 ps.  
Table 38 shows clock-jitter specifications.  
TABLE 38  
Clock-Jitter Specifications for –667, –800  
Symbol  
Parameter  
DDR2 -667  
DDR2 -800  
Unit  
Min.  
Max.  
Min.  
Max.  
tCK.AVG  
tJIT.PER  
tJIT(PER,LCK)  
tJIT.CC  
tJIT(CC,LCK)  
tERR.2PER  
tERR.3PER  
tERR.4PER  
tERR.5PER  
tERR(6-10PER)  
Average clock period nominal w/o jitter  
Clock-period jitter  
Clock-period jitter during DLL locking period  
Cycle-to-cycle clock-period jitter  
Cycle-to-cycle clock-period jitter during DLL-locking period  
Cumulative error across 2 cycles  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
Cumulative error across 5 cycles  
Cumulative error across n cycles with n = 6 .. 10, inclusive  
3000  
–125  
–100  
–250  
–200  
–175  
–225  
–250  
–250  
–350  
–450  
0.48  
8000  
125  
100  
250  
200  
175  
225  
250  
250  
350  
450  
0.52  
0.52  
125  
2500  
–100  
–80  
8000  
100  
80  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
tCK.AVG  
tCK.AVG  
ps  
–200  
–160  
–150  
–175  
–200  
–200  
–300  
–450  
0.48  
200  
160  
150  
175  
200  
200  
300  
450  
0.52  
0.52  
100  
tERR(11-50PER) Cumulative error across n cycles with n = 11 .. 50, inclusive  
tCH.AVG  
tCL.AVG  
tJIT.DUTY  
Average high-pulse width  
Average low-pulse width  
Duty-cycle jitter  
0.48  
–125  
0.48  
–100  
Rev. 1.00, 2008-04  
47  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
7.4  
ODT AC Electrical Characteristics  
This chapter describes the ODT AC electrical characteristics.  
TABLE 39  
ODT AC Characteristics and Operating Conditions for DDR2-667 , DDR2-800  
Symbol  
Parameter / Condition  
Values  
Unit  
Note  
Min.  
Max.  
1)  
tAOND  
tAON  
ODT turn-on delay  
ODT turn-on  
2
2
nCK  
ns  
ns  
nCK  
ns  
1)2)  
1)  
tAC.MIN  
tAC.MAX + 0.7 ns  
2 tCK + tAC.MAX + 1 ns  
2.5  
tAC.MAX + 0.6 ns  
2.5 tCK + tAC.MAX + 1 ns ns  
tAONPD  
tAOFD  
tAOF  
ODT turn-on (Power-Down Modes)  
ODT turn-off delay  
ODT turn-off  
tAC.MIN + 2 ns  
1)  
2.5  
tAC.MIN  
1)3)  
1)  
tAOFPD  
tANPD  
tAXPD  
ODT turn-off (Power-Down Modes)  
ODT to Power Down Mode Entry Latency  
ODT Power Down Exit Latency  
tAC.MIN + 2 ns  
1)  
3
8
nCK  
nCK  
1)  
1) New units, “tCK.AVG” and “nCK”, are introduced in DDR2-667 and DDR2-800 Unit “tCK.AVG” represents the actual tCK.AVG of the input clock  
under operation. Unit “nCK” represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2-400 and  
DDR2-533, “tCK” is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may  
be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min)  
.
2) ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when  
the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-667/800 tAOND is  
2 clock cycles after the clock edge that registered a first ODT HIGH counting the actual input clock edges.  
3) ODT turn off time min is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance.  
Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-667/800, if tCK(avg) = 3 ns is assumed,  
t
AOFD is 1.5 ns (= 0.5 x 3 ns) after the second trailing clock edge counting from the clock edge that registered a first ODT LOW and by  
counting the actual input clock edges.  
Rev. 1.00, 2008-04  
48  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
TABLE 40  
ODT AC Characteristics and Operating Conditions for DDR2-533  
Symbol  
Parameter / Condition  
Values  
Unit  
Note  
Min.  
Max.  
tAOND  
tAON  
tAONPD  
tAOFD  
tAOF  
tAOFPD  
tANPD  
tAXPD  
ODT turn-on delay  
ODT turn-on  
ODT turn-on (Power-Down Modes)  
ODT turn-off delay  
ODT turn-off  
ODT turn-off (Power-Down Modes)  
ODT to Power Down Mode Entry Latency  
ODT Power Down Exit Latency  
2
2
tCK  
ns  
ns  
tCK  
ns  
ns  
tCK  
tCK  
1)  
2)  
tAC.MIN  
tAC.MAX + 1 ns  
2 tCK + tAC.MAX + 1 ns  
2.5  
tAC.MAX + 0.6 ns  
2.5 tCK + tAC.MAX + 1 ns  
tAC.MIN + 2 ns  
2.5  
tAC.MIN  
tAC.MIN + 2 ns  
3
8
1) ODT turn on time min. is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when  
the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-400/533, tAOND is  
10 ns (= 2 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns.  
2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance.  
Both are measured from tAOFD. Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-400/533, tAOFD is  
12.5 ns (= 2.5 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns.  
Rev. 1.00, 2008-04  
49  
07192007-CK80-SF4Y  
                                                   
                                                    
ꢀꢀ  
                                                      
ꢂꢇꢌ  
                                                       
 ꢀꢄ  
                                                           
                                                            
ꢌꢀ[  
ꢉꢇꢉꢀ  
ꢂꢇꢌꢀ  
                                                               
ꢂꢇꢋꢀ  
                                                                                       
ꢂꢇ  
                                                               
ꢄꢀ  
&ꢀ  
ꢂꢇꢄꢀ  
                                                                                       
                                                               
                                                                
[ꢀ  
“
                                                                      
ꢂꢇ  
                                                                       
ꢂꢅ  
                                                                        
¡
                                                  
ꢂꢇꢉꢅꢀ  
                                                   
                                                    
0ꢀ  
6
                                                                                    
                                                                                     
                                                                                      
                                                                                       
                                                                                       
1*  
                                                                                         
                                                                                          
3
                                                                                            
/
                                                                                             
$
                                                                                              
1(  
                                                                                               
(
$7,  
¡ꢂ  
¡ꢂ  
                                                              
                                                               
ꢄꢅꢀ  
                                                                
$ꢀ %ꢀ  
                                                              
                                                               
ꢂꢌꢀ  
                                                                
/
                                  
H
                                   
                                    
                                     
IU  
                                      
                                      
                                       
                                        
VR  
                                         
                                          
                                           
                                            
                                             
                                              
E
                                               
                                                
                                                
                                                
                                                  
                                                   
                                                    
                                                     
                                                      
                                                       
                                                        
R
                                                         
                                                         
                                                          
                                                           
                                                            
E
                                                             
                                                              
                                                              
                                                               
D
Gꢀ  
ꢄꢆꢀ'  
ꢋꢆꢀ%  
H
Hꢀ  
O
G
H
Uꢀ  
DO  
WK  
Jꢀꢊ  
WD  
DF  
O
Vꢀꢊ  
J
U
H
H
QꢀV  
Oꢀ  
ꢆꢀꢊ  
Nꢀ$  
O
GH  
Uꢀ  
D
R
O
O
Vꢆꢀ  
                                   
X
                                    
                                     
                                      
P\  
GꢀX WꢀP  
FN HꢀRU  
UꢀE Oꢀ  
                                        
ꢀS  
                                         
                                          
                                           
                                            
                                             
                                               
L
                                               
                                               
                                                
                                                 
                                                  
                                                   
                                                    
                                                     
                                                      
P
D
G
VꢀZ  
R
X
WꢀE  
80  
QꢀP  
KꢀI FL  
D
O
                                   
                                    
                                     
                                      
                                       
                                        
                                         
                                          
                                           
D
                                            
                                             
                                             
L
Q
                                              
                                               
                                                 
                                                  
                                                   
                                                      
                                                       
                                                       
                                                        
                                                         
                                                           
                                                            
                                                             
                                                              
D
Q
L
U
N
Q
%
O
L
J
K
Wꢀ ꢀJ  
R
Gꢆꢀ  
Oꢆꢀ  
ZꢀF  
ꢈꢆꢀ3  
                                   
D
                                    
                                     
                                      
D
                                       
                                       
                                        
                                          
                                           
                                           
L
                                            
                                             
                                              
                                              
                                               
                                                
L
                                                
                                                 
                                                  
                                                    
D
                                                     
                                                     
                                                       
                                                        
J
H
W
R
U
ꢄꢀ  
%$  
ꢉꢆꢀ6  
ꢅꢆꢀ0  
                                   
                                    
                                     
                                     
                                      
                                       
                                        
                                         
                                          
                                           
                                           
D
                                            
                                             
                                             
                                              
                                               
                                                 
                                                 
L
                                                 
                                                  
                                                   
                                                    
                                                    
                                                     
                                                       
                                                        
                                                         
                                                          
                                                           
                                                           
L
                                                            
                                                             
                                                              
                                                               
                                                               
                                                                
R
O
G
H
D
O
WW  
G
X
D
Oꢀꢊ  
6
I
G
X
FL  
D
                                   
L
                                    
                                     
                                      
                                      
                                       
                                        
R
                                         
                                          
S
                                           
                                            
                                             
                                              
D
                                               
                                                
                                                 
ꢀH  
                                                  
                                                   
                                                    
                                                     
                                                      
G
G
O
Hꢀ  
Iꢀ  
D
FN  
PH  
HW  
J
HV  
G
J
H
Vꢀ  
Vꢀ  
ꢍꢆꢀ6  
S
                                   
                                    
                                     
                                     
                                      
                                       
                                        
                                         
                                          
                                           
                                           
G
                                            
                                             
                                              
                                               
                                                
                                                 
                                                 
                                                  
U
                                                   
                                                    
                                                     
                                                     
                                                      
                                                       
WR  
                                                        
                                                         
S
                                                          
                                                           
                                                            
                                                             
U
                                                             
                                                              
                                                               
                                                               
                                                                
                                                                  
                                                                   
R
                                                                    
                                                                     
                                                                      
                                                                       
                                                                       
                                                                        
L
                                                                        
                                                                         
R
O
G
H
UꢀE  
D
O
Oꢀ  
L
D
WH  
ꢀꢂ  
Uꢀ  
H
IH  
U
R
VW  
H
IO  
R
Q
G
X
FW  
R
Qꢀ  
                                    
                                    
                                      
O
                                      
                                       
Z
                                        
ꢀG  
                                         
                                          
                                           
                                            
                                             
                                              
                                              
H
                                               
                                                 
                                                  
                                                   
ꢀP  
                                                    
                                                      
Pꢀ  
)
                                                                                                              
32  
                                                                                                               
                                                                                                                 
                                                                                                                 
                                                                                                                   
                                                                                                                     
7)%*  
                                                                                                                      
                                                                                                                       
                                                                                                                        
                                                                                                                         
                                                                                                                          
                                                                                                                           
Bꢁ  
                                                                                                                             
ꢂꢃꢄ  
                                                                                                                              
                                                                                                                               
                                                                                                                                
ꢂꢅ  
                                                                                                                                 
                                                                                                                                  
UH I R  
LDP  
U
B3*ꢁ  
$B  
ꢂꢀ  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
8
Package Outline  
This chapter contains the package dimension figures.  
Notes  
1. Drawing according to ISO 8015  
2. Dimensions in mm  
3. General tolerances +/- 0.15  
FIGURE 10  
Package Outline PG-TFBGA-71  
                                                       
ꢄꢇ  
                                                        
ꢌꢀ  
%ꢀ ꢅꢆꢀ  
ꢅꢆꢀ  
ꢉꢆꢀ  
ꢄꢆꢀ  
ꢋꢆꢀ ꢈꢆꢀ  
$ꢀ  
&ꢀ  
ꢍꢆꢀ  
&ꢀ  
&ꢀ  
&ꢀ  
0ꢀ  
Rev. 1.00, 2008-04  
50  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
9
Product Nomenclature  
For reference the Qimonda SDRAM component nomenclature is enclosed in this chapter.  
TABLE 41  
Examples for Nomenclature Fields  
Example for  
Field Number  
1
2
3
4
5
6
7
8
9
10  
DDR2 DRAM  
HYB  
18  
T
2G  
16  
0
A
F
–3.7  
TABLE 42  
DDR2 Memory Components  
Field Description  
Values  
Coding  
1
Qimonda Component Prefix  
HYB  
HYI  
18  
Memory components, standard temperature range (0°C – +95 °C)  
Memory components, industrial temperature range (-40°C – +95 °C)  
SSTL_18, + 1.8 V (± 0.1 V)  
2
Interface Voltage [V]  
15  
SSTL_15, + 1.5 V (± 0.1 V)  
3
4
DRAM Technology  
Component Density [Mbit]  
T
32  
64  
128  
256  
512  
1G  
2G  
4G  
40  
DDR2  
32 Mbit  
64 Mbit  
128 Mbit  
256 Mbit  
512 Mbit  
1 Gbit  
2 Gbit  
4 Gbit  
× 4  
5
Number of I/Os  
80  
× 8  
16  
× 16  
6
7
Product Variant  
Die Revision  
0 .. 9  
A ( 0...9 ) First  
B ( 0...9 ) Second  
C ( 0...9 ) Third  
8
9
Package,  
C
F
FBGA, lead-containing  
FBGA, lead-free  
Standard power product  
Low power product  
Lead-Free Status  
Power  
L
Rev. 1.00, 2008-04  
51  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
Field Description  
10 Speed Grade  
Values  
Coding  
–19F  
–1.9  
–25F  
–2.5  
–3  
–3S  
–3.7  
–5  
DDR2–1066 6–6–6  
DDR2–1066 7–7–7  
DDR2–800 5–5–5  
DDR2–800 6–6–6  
DDR2–667 4–4–4  
DDR2–667 5–5–5  
DDR2–533 4–4–4  
DDR2–400 3–3–3  
Rev. 1.00, 2008-04  
52  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
List of Illustrations  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Figure 10  
Configuration for x 4 Component, TFBGA-71 (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Configuration for x 8 Component, TFBGA-71 (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Single-ended AC Input Test Conditions Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Differential DC and AC Input and Output Logic Levels Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
AC Overshoot / Undershoot Diagram for Address and Control Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
AC Overshoot / Undershoot Diagram for Clock, Data, Strobe and Mask Pins . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Method for Calculating Transitions and Endpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Differential Input Waveform Timing - tDS and tDH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Differential Input Waveform Timing - tlS and tlH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Package Outline PG-TFBGA-71. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Rev. 1.00, 2008-04  
53  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
List of Tables  
Table 1  
Performance Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Ordering Information for RoHS Compliant Products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Abbreviations for Ball Type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Abbreviations for Buffer Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Mode Register Definition, BA2:0 = 000B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Extended Mode Register Definition, BA2:0 = 001B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
EMR(2) Programming Extended Mode Register Definition, BA2:0=010B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
EMR(3) Programming Extended Mode Register Definition, BA2:0=011B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Burst Length and Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Command Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Clock Enable (CKE) Truth Table for Synchronous Transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Data Mask (DM) Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
DRAM Component Operating Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Recommended DC Operating Conditions (SSTL_18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
ODT DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Input and Output Leakage Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
DC & AC Logic Input Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Single-ended AC Input Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Differential DC and AC Input and Output Logic Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
SSTL_18 Output DC Current Drive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
SSTL_18 Output AC Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
OCD Default Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Input / Output Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
AC Overshoot / Undershoot Specification for Address and Control Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
AC Overshoot / Undershoot Specification for Clock, Data, Strobe and Mask Pins . . . . . . . . . . . . . . . . . . . . . 29  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Table 9  
Table 10  
Table 11  
Table 12  
Table 13  
Table 14  
Table 15  
Table 16  
Table 17  
Table 18  
Table 19  
Table 20  
Table 21  
Table 22  
Table 23  
Table 24  
Table 25  
Table 26  
Table 27  
Table 28  
Table 29  
Table 30  
Table 31  
Table 32  
Table 33  
Table 34  
Table 35  
Table 36  
Table 37  
Table 38  
Table 39  
Table 40  
Table 41  
Table 42  
I
DD Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Definition for IDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
IDD Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Speed Grade Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Speed Grade Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
DRAM Component Timing Parameter by Speed Grade - DDR2–800 and DDR2–667 . . . . . . . . . . . . . . . . . . 36  
DRAM Component Timing Parameter by Speed Grade - DDR2–533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Average Clock and Jitter Symbols and Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Absolute Jitter Value Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Clock-Jitter Specifications for –667, –800. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
ODT AC Characteristics and Operating Conditions for DDR2-667 , DDR2-800 . . . . . . . . . . . . . . . . . . . . . . . 48  
ODT AC Characteristics and Operating Conditions for DDR2-533. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Examples for Nomenclature Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
DDR2 Memory Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Rev. 1.00, 2008-04  
54  
07192007-CK80-SF4Y  
Internet Data Sheet  
HYB18T4G[40/80]2AF  
4-Gbit Dual Die Double-Data-Rate-Two SDRAM  
Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1.1  
1.2  
2
Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Configuration for FBGA-71. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.1  
2.2  
3
Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Mode Register Set (MRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Extended Mode Register EMR(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Extended Mode Register EMR(2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Extended Mode Register EMR(3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Burst Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.1  
3.2  
3.3  
3.4  
3.5  
4
Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5
Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
DC & AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Output Buffer Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Input / Output Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Overshoot and Undershoot Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
6
Currents Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
7
Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Speed Grade Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Component AC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Jitter Definition and Clock Jitter Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
ODT AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
7.1  
7.2  
7.3  
7.4  
8
9
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Product Nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Rev. 1.00, 2008-04  
55  
07192007-CK80-SF4Y  
Internet Data Sheet  
Edition 2008-04  
Published by Qimonda AG  
Gustav-Heinemann-Ring 212  
D-81739 München, Germany  
© Qimonda AG 2008.  
All Rights Reserved.  
Legal Disclaimer  
THE INFORMATION GIVEN IN THIS INTERNET DATA SHEET SHALL IN NO EVENT BE REGARDED AS A GUARANTEE  
OF CONDITIONS OR CHARACTERISTICS. WITH RESPECT TO ANY EXAMPLES OR HINTS GIVEN HEREIN, ANY  
TYPICAL VALUES STATED HEREIN AND/OR ANY INFORMATION REGARDING THE APPLICATION OF THE DEVICE,  
QIMONDA HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND, INCLUDING WITHOUT  
LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office.  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in question please  
contact your nearest Qimonda Office.  
Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a  
failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect  
the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human  
body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health  
of the user or other persons may be endangered.  
www.qimonda.com  

相关型号:

HYB18T4G802AF-25F

DDR DRAM, 512MX8, 0.6ns, CMOS, PBGA71, GREEN, PLASTIC, TFBGA-71
QIMONDA

HYB18T4G802AF-3.7

DDR DRAM, 512MX8, 0.7ns, CMOS, PBGA71, GREEN, PLASTIC, TFBGA-71
QIMONDA

HYB18T512160AC-3

DDR DRAM, 32MX16, 0.45ns, CMOS, PBGA84, 12.50 X 10 MM, MO-207DK-Z, FBGA-84
INFINEON

HYB18T512160AC-3.7

DDR DRAM, 32MX16, 0.5ns, CMOS, PBGA84, PLASTIC, TFBGA-84
INFINEON

HYB18T512160AC-37

512-Mbit Double-Data-Rate-Two SDRAM
INFINEON

HYB18T512160AC-3S

DDR DRAM, 32MX16, 0.45ns, CMOS, PBGA84, 12.50 X 10 MM, MO-207DK-Z, FBGA-84
INFINEON

HYB18T512160AC-5

512-Mbit Double-Data-Rate-Two SDRAM
INFINEON

HYB18T512160AF

512-Mbit DDR2 SDRAM
INFINEON

HYB18T512160AF

240-Pin Unbuffered DDR2 SDRAM Modules
QIMONDA

HYB18T512160AF-3

512-Mbit DDR2 SDRAM
INFINEON

HYB18T512160AF-3

512-Mbit Double-Data-Rate-Two SDRAM
QIMONDA

HYB18T512160AF-3.7

512-Mbit DDR2 SDRAM
INFINEON