IDSH51-04A1F1C-16J [QIMONDA]

DDR DRAM, 32MX16, 20ns, CMOS, PBGA96, 0.80 MM PITCH, GREEN, PLASTIC, TFBGA-96;
IDSH51-04A1F1C-16J
型号: IDSH51-04A1F1C-16J
厂家: QIMONDA AG    QIMONDA AG
描述:

DDR DRAM, 32MX16, 20ns, CMOS, PBGA96, 0.80 MM PITCH, GREEN, PLASTIC, TFBGA-96

时钟 动态存储器 双倍数据速率 内存集成电路
文件: 总46页 (文件大小:1520K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
April 2008  
IDSH51–02A1F1C  
IDSH51–03A1F1C  
IDSH51–04A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
DDR3 SDRAM  
RoHS Compliant Products  
Advance  
Internet Data Sheet  
Rev. 0.92  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
Revision History: Rev. 0.92, 2008-04  
Overview major changes since last revision  
Adapted internet edition  
All  
Editorial Changes  
Previous Revision: Rev. 0.91, 2007-09  
Added new figure mpth0535  
Added new column “EDA Signal Name“ in table 3  
Added new notes after table “Clock to Data Strobe Relationship”  
Changed the footnote 12 in table 65, Maximum external load capacitance on ZQ signal: 5 pF  
Changed text in chapter “ZQ Calibration Commands”  
Added new figure “Definition of Output Crosspoint Voltage for DQS and DQS”  
Changed text for Vox in table “AC Output Levels for Differential Signals”  
Added more text to table :”Cross Point Voltage for Differential Input Signals “  
new text for Single-Ended Requirements for Differential Signals  
Corrected Table 42 according industry standard letter ballot  
In Tabelle 41 "DC and AC Input Levels for Single-Ended Signals" :  
- VIH.DC set to VDD  
- VIL.DC set to VSS  
29  
5
Corrected CWL in table 11, MR2 Mode register Definition (BA[2:0]=010B)  
Updated the ordering information, added Supported CAS latencies  
Previous Revision: Rev. 0.90, 2007-05  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
techdoc@qimonda.com  
qag_techdoc_rev400 / 3.2 QAG / 2006-08-01  
02092007-PWZB-VR0U  
2
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
1
Overview  
This chapter gives an overview of the 512-Mbit Double-Data-Rate-Three (DDR3) SDRAM component product family and  
describes its main characteristics.  
1.1  
Features  
The 512Mbit DDR3 SDRAM offers the following key features:  
1.5 V ± 0.075 V supply voltage for VDD and VDDQ  
SDRAM configurations with ×4, ×8 and ×16 data in/outputs  
Eight internal banks for concurrent operation  
8-Bit prefetch architecture  
Page Size:1 kByte page size for ×4 and ×8; 2 kByte page  
size for ×16 components  
Burst length 8 (BL8) and burst chop 4(BC4) modes: fixed  
via mode register (MRS) or selectable On-The-Fly (OTF)  
Programmable read burst ordering: interleaved or nibble  
sequential  
Multi-purpose register (MPR) for readout of non-memory  
related information  
System level timing calibration support via write leveling  
and MPR read pattern  
Differential clock inputs (CK/CK)  
Bi-directional, differential data strobe pair (DQS/DQS) is  
transmitted / received with data. Edge aligned with read  
data and center-aligned with write data  
DLL aligns transmitted read data and strobe pair transition  
with clock  
Asynchronous RESET  
Auto-Precharge operation for read and write commands  
Refresh, Self-Refresh and power saving Power-down  
modes; Auto Self-refresh (ASR) and Partial array self  
refresh (PASR)  
Average Refresh Period 7.8 µs at a TOPER up to 85 °C,  
3.9 µs up to 95 °C  
Operating temperature range 0 - 85 °C and 85 - 95 °C  
Data mask function for write operation  
Commands can be entered on each positive clock edge  
Data and data mask are referenced to both edges of a  
differential data strobe pair (double data rate)  
CAS latency (CL): 5, 6, 7, 8, 9 and 10  
Posted CAS with programmable additive latency (AL = 0,  
CL–1 and CL–2) for improved command, address and  
data bus efficiency  
Push-pull output driver with nominal RON of 34 Ω at  
V
OUT = VDDQ/2  
Programmable on-die termination (ODT) for data, data  
mask and differential strobe pairs  
Dynamic ODT mode for improved signal integrity and pre-  
selectable termination impedances during writes  
ZQ Calibration for output driver and on-die termination  
using external reference resistor to ground  
Read Latency RL = AL + CL  
Programmable CAS Write Latency (CWL) per operating  
frequency  
Two reference voltage inputs VREFDQ, VREFCA  
Lead and halogen free packages: 78 ball (PG-TFBGA-78)  
for ×4 and ×8 components; 96 ball (PG-TFBGA-96) for ×16  
components, 0.8 × 0.8 mm ball pitch  
Write Latency WL = AL + CWL  
Rev. 0.92, 2008-04  
3
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
1.2  
Product List  
Table 1 shows all possible products within the 512 Mbit DDR3 SDRAM first component generation. Availability depends on  
application needs. For Qimonda part number nomenclature see Chapter 6.  
TABLE 1  
Ordering Information for 512 Mbit DDR3 Components  
QAG Part Number  
Max. Clock  
frequency  
CAS-RCD-RP  
latencies  
Supported CAS Speed Sort  
Package  
latencies  
Name  
512 Mbit DDR3 SDRAM Components in × 4 Organization (128 Mbit × 4)  
IDSH51–02A1F1C–08D  
IDSH51–02A1F1C–08E  
IDSH51–02A1F1C–10E  
IDSH51–02A1F1C–10F  
IDSH51–02A1F1C–10G  
IDSH51–02A1F1C–13G  
IDSH51–02A1F1C–13H  
IDSH51–02A1F1C–13J  
IDSH51–02A1F1C–16H  
IDSH51–02A1F1C–16J  
400 MHz  
400 MHz  
533 MHz  
533 MHz  
533 MHz  
667 MHz  
667 MHz  
667 MHz  
800 MHz  
800 MHz  
5–5–5  
5, 6  
DDR3–800D  
DDR3–800E  
DDR3–1066E  
DDR3–1066F  
DDR3–1066G  
DDR3–1333G  
DDR3–1333H  
DDR3–1333J  
DDR3–1600H  
DDR3–1600J  
PG-TFBGA-78  
PG-TFBGA-78  
PG-TFBGA-78  
PG-TFBGA-78  
PG-TFBGA-78  
PG-TFBGA-78  
PG-TFBGA-78  
PG-TFBGA-78  
PG-TFBGA-78  
PG-TFBGA-78  
6–6–6  
6
6–6–6  
5, 6, 7, 8  
6, 7, 8  
7–7–7  
8–8–8  
6, 8  
8–8–8  
5, 6, 7, 8, 9, 10  
6, 8, 9, 10  
6, 8,10  
9–9–9  
10–10–10  
9–9–9  
5, 6, 7, 8, 9, 10  
5, 6, 7, 8, 9, 10  
10–10–10  
512 Mbit DDR3 SDRAM Components in × 8 Organization (64 Mbit × 8)  
IDSH51–03A1F1C–08D  
IDSH51–03A1F1C–08E  
IDSH51–03A1F1C–10E  
IDSH51–03A1F1C–10F  
IDSH51–03A1F1C–10G  
IDSH51–03A1F1C–13G  
IDSH51–03A1F1C–13H  
IDSH51–03A1F1C–13J  
IDSH51–03A1F1C–16H  
IDSH51–03A1F1C–16J  
400 MHz  
400 MHz  
533 MHz  
533 MHz  
533 MHz  
667 MHz  
667 MHz  
667 MHz  
800 MHz  
800 MHz  
5–5–5  
5, 6  
DDR3–800D  
DDR3–800E  
DDR3–1066E  
DDR3–1066F  
DDR3–1066G  
DDR3–1333G  
DDR3–1333H  
DDR3–1333J  
DDR3–1600H  
DDR3–1600J  
PG-TFBGA-78  
PG-TFBGA-78  
PG-TFBGA-78  
PG-TFBGA-78  
PG-TFBGA-78  
PG-TFBGA-78  
PG-TFBGA-78  
PG-TFBGA-78  
PG-TFBGA-78  
PG-TFBGA-78  
6–6–6  
6
6–6–6  
5, 6, 7, 8  
6, 7, 8  
7–7–7  
8–8–8  
6, 8  
8–8–8  
5, 6, 7, 8, 9, 10  
6, 8, 9, 10  
6, 8,10  
9–9–9  
10–10–10  
9–9–9  
5, 6, 7, 8, 9, 10  
5, 6, 7, 8, 9, 10  
10–10–10  
512 Mbit DDR3 SDRAM Components in × 16 Organization (32 Mbit × 16)  
IDSH51–04A1F1C–08D  
IDSH51–04A1F1C–08E  
IDSH51–04A1F1C–10E  
IDSH51-04A1F1C–10F  
IDSH51–04A1F1C–10G  
IDSH51–04A1F1C–13G  
IDSH51–04A1F1C–13H  
IDSH51–04A1F1C–13J  
IDSH51–04A1F1C–16H  
IDSH51–04A1F1C–16J  
400 MHz  
400 MHz  
533 MHz  
533 MHz  
533 MHz  
667 MHz  
667 MHz  
667 MHz  
800 MHz  
800 MHz  
5–5–5  
5, 6  
DDR3–800D  
DDR3–800E  
DDR3–1066E  
DDR3–1066F  
DDR3–1066G  
DDR3–1333G  
DDR3–1333H  
DDR3–1333J  
DDR3–1600H  
DDR3–1600J  
PG-TFBGA-96  
PG-TFBGA-96  
PG-TFBGA-96  
PG-TFBGA-96  
PG-TFBGA-96  
PG-TFBGA-96  
PG-TFBGA-96  
PG-TFBGA-96  
PG-TFBGA-96  
PG-TFBGA-96  
6–6–6  
6
6–6–6  
5, 6, 7, 8  
6, 7, 8  
7–7–7  
8–8–8  
6, 8  
8–8–8  
5, 6, 7, 8, 9, 10  
6, 8, 9, 10  
6, 8,10  
9–9–9  
10–10–10  
9–9–9  
5, 6, 7, 8, 9, 10  
5, 6, 7, 8, 9, 10  
10–10–10  
Rev. 0.92, 2008-04  
4
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
1.3  
DDR3 SDRAM Addressing  
TABLE 2  
512 Mbit DDR3 SDRAM Addressing  
Configuration  
128Mb × 4  
64Mb × 8  
32Mb × 16  
Note  
Internal Organization  
Number of Banks  
Bank Address  
8 banks × 16 Mbits × 4  
8 banks × 8 Mbits × 8  
8 banks × 4 Mbits × 16  
8
8
8
BA[2:0]  
A[12:0]  
8k  
BA[2:0]  
A[12:0]  
8k  
BA[2:0]  
A[11:0]  
4k  
Row Address  
Number of addressable Rows  
Column Address  
A[9:0], A11  
A[9:0]  
1024  
A[9:0]  
1024  
1)  
2)  
Number of addressable Columns 2048  
(page length)  
Page Size  
1KB  
1KB  
2KB  
Auto-Precharge  
Burst length on-the-fly bit  
A10 / AP  
A12/BC  
A10 / AP  
A10 / AP  
A12/BC  
A12/BC  
1) Page length is the number of addressable columns and is defined as 2COLBITS, where COLBITS is the number of column address bits,  
excluding A10/AP and A12/BC  
2) Page size is the number of bytes of data delivered from the array to the internal sense amplifiers when an ACTIVE command is registered.  
Page size is per memory bank and calculated as follows: Page Size = 2COLBITS × ORG/8, where COLBITS is the number of column address  
bits and ORG is the number of DQ bits for a given SDRAM configuration (×4, ×8 or ×16).  
Rev. 0.92, 2008-04  
5
02092007-PWZB-VR0U  
96  
1&ꢃꢃ  
96 ꢃꢃ  
                                                                        
6
                                                                        
ꢃꢃ 9664ꢃꢃ  
95  
                                
()'4ꢃꢃ  
                                 
                                 
                                  
                                  
                                   
                                     
                                     
9''4ꢃꢃ  
1&ꢃꢃ  
&.(ꢃꢃ  
1&ꢃꢃ  
1&ꢃꢃ  
2'7ꢃꢃ  
1&ꢃꢃ  
966ꢃꢃ  
9''ꢃꢃ  
966ꢃꢃ  
9''ꢃꢃ  
966ꢃꢃ  
9''ꢃꢃ  
&6ꢃꢃ  
%$ꢀꢃꢃ  
$ꢅꢃꢃ  
&.ꢃꢃ  
&.ꢃꢃ  
                                                                        
6
                                                                        
ꢁꢃꢃ  
ꢄꢃꢃ  
ꢅꢃꢃ  
ꢆꢃꢃ ꢇꢃꢃ ꢈꢃꢃ  
ꢉꢃꢃ  
ꢊꢃꢃ  
96  
ꢂꢃꢃ  
966ꢃꢃ  
966ꢃꢃ  
9''ꢃꢃ  
9664ꢃꢃ '4ꢀꢃꢃ  
1&ꢃꢃ  
1&ꢃꢃ  
'0ꢃꢃ  
'4ꢁꢃꢃ  
9''ꢃꢃ  
1&ꢃꢃ  
6
ꢃꢃ  
9''ꢃꢃ  
9664ꢃꢃ 9''4ꢃꢃ  
'4ꢅꢃꢃ 9664ꢃꢃ  
9''4ꢃꢃ '4ꢄꢃꢃ  
9664ꢃꢃ 1&ꢃꢃ  
9''4ꢃꢃ  
'46ꢃꢃ  
'46ꢃꢃ  
1&ꢃꢃ  
5$6ꢃꢃ  
&$6ꢃꢃ  
:(ꢃꢃ  
%$ꢄꢃꢃ  
$ꢀꢃꢃ  
9''ꢃꢃ  
=4ꢃꢃ  
$ꢁꢀꢋ$3ꢃꢃ  
5()&$ꢃꢃ 966ꢃꢃ  
1&ꢃꢃ 9ꢃꢃ  
$ꢁꢄꢃꢋꢃ%  
$ꢁꢃꢃ  
.ꢃꢃ  
/ꢃꢃ  
                                                                  
                                                                   
9''ꢃꢃ  
966ꢃꢃ  
9''ꢃꢃ  
966ꢃꢃ  
.ꢃꢃ  
/ꢃꢃ  
&ꢃ%$ꢁꢃꢃ  
$ꢆꢃꢃ  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
1.4  
Package Ballout  
Figure 1, Figure 2 and Figure 3 show the ballouts for DDR3 SDRAM components. See Chapter 6 for package outlines.  
1.4.1  
Ballout for 512 Mb × 4 Components  
FIGURE 1  
Ballout for 512 Mb ×4 Components (PG-TFBGA-78)  
$ꢃꢃ  
%ꢃꢃ  
&ꢃꢃ  
'ꢃꢃ  
(ꢃꢃ  
)ꢃꢃ  
*ꢃꢃ  
+ꢃꢃ  
-ꢃꢃ  
                                                                        
                                                                        
$ꢃꢃ  
%ꢃꢃ  
&ꢃꢃ  
'ꢃꢃ  
(ꢃꢃ  
)ꢃꢃ  
*ꢃꢃ  
+ꢃꢃ  
-ꢃꢃ  
$ꢇꢃꢃ  
$ꢉꢃꢃ  
$ꢄꢃꢃ  
$ꢂꢃꢃ  
1&ꢃꢃ  
0ꢃꢃ  
1ꢃꢃ  
$ꢁꢁꢃꢃ  
1&ꢃꢃ  
$ꢈꢃꢃ  
$ꢊꢃꢃ  
0ꢃꢃ  
1ꢃꢃ  
966ꢃꢃ 5(6(7ꢃꢃ  
7RSꢃ9LHZ  
'5$0  
033+ꢀꢁꢂꢀ  
Rev. 0.92, 2008-04  
02092007-PWZB-VR0U  
6
96  
                                                                        
6
                                                                         
ꢃꢃ 9664ꢃꢃ  
95  
                                
()'4ꢃꢃ  
                                
                                 
                                 
                                  
                                  
9''  
                                     
                                     
4ꢃꢃ '4ꢆꢃꢃ  
'4ꢇꢃꢃ 9''4ꢃꢃ  
1&ꢃꢃ  
2'7ꢃꢃ  
1&ꢃꢃ  
966ꢃꢃ  
9''ꢃꢃ  
966ꢃꢃ  
9''ꢃꢃ  
966ꢃꢃ  
9''ꢃꢃ  
&6ꢃꢃ  
%$ꢀꢃꢃ  
$ꢅꢃꢃ  
5$6ꢃꢃ  
&$6ꢃꢃ  
:(ꢃꢃ  
%$ꢄꢃꢃ  
$ꢀꢃꢃ  
$ꢄꢃꢃ  
$ꢂꢃꢃ  
1&ꢃꢃ  
96  
                                                                        
6
                                                                         
ꢃꢃ  
1&ꢃꢃ  
&.(ꢃꢃ  
1&ꢃꢃ  
ꢁꢃꢃ  
ꢄꢃꢃ  
ꢅꢃꢃ  
ꢆꢃꢃ ꢇꢃꢃ ꢈꢃꢃ  
ꢉꢃꢃ  
ꢊꢃꢃ  
96  
ꢂꢃꢃ  
966ꢃꢃ  
966ꢃꢃ  
9''4ꢃꢃ '4ꢄꢃꢃ  
9664ꢃꢃ '4ꢈꢃꢃ  
9''ꢃꢃ  
9664ꢃꢃ '4ꢀꢃꢃ  
1&ꢃꢃ  
1&ꢃꢃ  
'0ꢃꢃ  
'4ꢁꢃꢃ  
9''ꢃꢃ  
'4ꢉꢃꢃ  
&.ꢃꢃ  
6
ꢃꢃ  
9''ꢃꢃ  
9664ꢃꢃ 9''4ꢃꢃ  
'4ꢅꢃꢃ 9664ꢃꢃ  
'46ꢃꢃ  
'46ꢃꢃ  
&.ꢃꢃ  
$ꢁꢀꢋ$3ꢃꢃ  
5()&$ꢃꢃ 966ꢃꢃ  
1&ꢃꢃ 9ꢃꢃ  
$ꢁꢄꢃꢋꢃ%  
$ꢁꢃꢃ  
9''ꢃꢃ  
=4ꢃꢃ  
.ꢃꢃ  
/ꢃꢃ  
                                                                  
                                                                   
9''ꢃꢃ  
966ꢃꢃ  
9''ꢃꢃ  
966ꢃꢃ  
.ꢃꢃ  
/ꢃꢃ  
&ꢃꢃ %$ꢁꢃꢃ  
$ꢆꢃꢃ  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
1.4.2  
Ballout for 512 Mb × 8 Components  
FIGURE 2  
Ballout for 512 Mb × 8 Components (PG-TFBGA-78)  
$ꢃꢃ  
%ꢃꢃ  
&ꢃꢃ  
'ꢃꢃ  
(ꢃꢃ  
)ꢃꢃ  
*ꢃꢃ  
+ꢃꢃ  
-ꢃꢃ  
                                                                        
                                                                         
$ꢃꢃ  
%ꢃꢃ  
&ꢃꢃ  
'ꢃꢃ  
(ꢃꢃ  
)ꢃꢃ  
*ꢃꢃ  
+ꢃꢃ  
-ꢃꢃ  
$ꢇꢃꢃ  
$ꢉꢃꢃ  
0ꢃꢃ  
1ꢃꢃ  
$ꢁꢁꢃꢃ  
1&ꢃꢃ  
$ꢈꢃꢃ  
$ꢊꢃꢃ  
0ꢃꢃ  
1ꢃꢃ  
966ꢃꢃ 5(6(7ꢃꢃ  
7RSꢃ9LHZ  
'5$0  
033+ꢀꢄꢀꢀ  
Rev. 0.92, 2008-04  
02092007-PWZB-VR0U  
7
                                                                
                                                                 
                                                                        
                                                                        
                                                                         
                                                                         
                                                                
                                                                 
                                                                        
                                                                        
                                                                         
                                                                         
                                    
                                    
                                                                 
                                                                  
                                              
                                              
                                                                        
                                                                        
                                
                                 
                                 
                                  
                                  
                                   
                                     
                                     
                                                                        
                                                                        
                                                                  
                                                                   
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
1.4.3  
Ballout for 512 Mb × 16 Components  
FIGURE 3  
Ballout for 512 Mb × 16 Components (PG-TFBGA-96)  
ꢁꢃꢃ  
ꢄꢃꢃ  
ꢅꢃꢃ  
ꢆꢃꢃ ꢇꢃꢃ ꢈꢃꢃ  
ꢉꢃꢃ  
ꢊꢃꢃ  
ꢂꢃꢃ  
$ꢃꢃ  
%ꢃꢃ  
&ꢃꢃ  
'ꢃꢃ  
(ꢃꢃ  
)ꢃꢃ  
*ꢃꢃ  
+ꢃꢃ  
-ꢃꢃ  
9''4ꢃꢃ '48ꢇꢃꢃ '48ꢉꢃꢃ  
9664ꢃꢃ 9''ꢃꢃ 966ꢃꢃ  
9''4ꢃꢃ '48ꢅꢃꢃ '48ꢁꢃꢃ  
9664ꢃꢃ 9''4ꢃꢃ '08ꢃꢃ  
966ꢃꢃ 9664ꢃꢃ '4/ꢀꢃꢃ  
9''4ꢃꢃ '4/ꢄꢃꢃ '46/ꢃꢃ  
'48ꢆ  
                                                                 
                                                                  
ꢃꢃ 9''4ꢃꢃ 966ꢃꢃ  
$ꢃꢃ  
%ꢃꢃ  
&ꢃꢃ  
'ꢃꢃ  
(ꢃꢃ  
)ꢃꢃ  
*ꢃꢃ  
+ꢃꢃ  
-ꢃꢃ  
'46  
'46  
'48ꢀ  
8ꢃꢃ '4  
8ꢈ  
8ꢄ  
ꢃꢃ 9664ꢃꢃ  
ꢃꢃ 9''4ꢃꢃ  
8ꢃꢃ '4  
ꢃꢃ 9664ꢃꢃ 9''ꢃꢃ  
'0/ꢃꢃ 9664ꢃꢃ 9''4ꢃꢃ  
'4/ꢁꢃꢃ '4/ꢅꢃꢃ 9664ꢃꢃ  
9''ꢃꢃ  
'4/ꢉꢃꢃ '4/ꢇꢃꢃ 9''4ꢃꢃ  
&.ꢃꢃ  
&.ꢃꢃ  
9664ꢃꢃ '4/ꢈꢃꢃ '46/  
ꢃꢃ  
96  
6
ꢃꢃ 9664ꢃꢃ  
95  
()'4ꢃꢃ  
9''  
4ꢃꢃ '4/ꢆꢃꢃ  
1&ꢃꢃ  
2'7ꢃꢃ  
1&ꢃꢃ  
966ꢃꢃ  
9''ꢃꢃ  
966ꢃꢃ  
9''ꢃꢃ  
966ꢃꢃ  
9''ꢃꢃ  
&6ꢃꢃ  
%$ꢀꢃꢃ  
$ꢅꢃꢃ  
5$6ꢃꢃ  
&$6ꢃꢃ  
:(ꢃꢃ  
%$ꢄꢃꢃ  
$ꢀꢃꢃ  
96  
9''ꢃꢃ  
=4ꢃꢃ  
6
ꢃꢃ  
1&ꢃꢃ  
&.(ꢃꢃ  
1&ꢃꢃ  
.ꢃꢃ  
/ꢃꢃ  
.ꢃꢃ  
/ꢃꢃ  
$ꢁꢀꢋ$3ꢃꢃ  
1&ꢃꢃ 9ꢃ  
0ꢃꢃ  
1ꢃꢃ  
3ꢃꢃ  
5ꢃꢃ  
7ꢃꢃ  
5
()&$ꢃꢃ 966ꢃꢃ  
0ꢃꢃ  
1ꢃꢃ  
3ꢃꢃ  
5ꢃꢃ  
7ꢃꢃ  
$ꢁꢄꢃꢋꢃ%  
$ꢁꢃꢃ  
&ꢃ%$ꢁꢃꢃ  
$ꢆꢃꢃ  
9''ꢃꢃ  
966ꢃꢃ  
9''ꢃꢃ  
966ꢃꢃ  
$ꢇꢃꢃ  
$ꢉꢃꢃ  
$ꢄꢃꢃ  
$ꢂꢃꢃ  
$ꢁꢁꢃꢃ  
1&ꢃꢃ  
$ꢈꢃꢃ  
$ꢊꢃꢃ  
966ꢃꢃ 5(6(7ꢃꢃ  
1&ꢃꢃ  
7RSꢃ9LHZ  
'5$0  
033+ꢀꢄꢁꢀ  
Rev. 0.92, 2008-04  
02092007-PWZB-VR0U  
8
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
1.5  
Input / Output Signal Functional Description  
TABLE 3  
Input / Output Signal Functional Description  
Symbol  
EDA Signal Name1) Type  
Function  
CK, CK  
ck_t, ck_c  
Input  
Clock: CK and CK are differential clock inputs. All address and control  
input signals are sampled on the crossing of the positive edge of CK  
and negative edge of CK.  
CKE  
cke  
Input  
Clock Enable: CKE High activates, and CKE Low deactivates internal  
clock signals and device input buffers and output drivers. Taking CKE  
Low provides Precharge Power-Down and Self-Refresh operation (all  
banks idle), or Active Power-Down ( active row in any bank). CKE is  
asynchronous for Self-Refresh exit. After VREFCA and VREFDQ have  
become stable during the power on and initialization sequence, they  
must be maintained during all operations (including Self-Refresh). CKE  
must be maintained High throughout read and write accesses. Input  
buffers, excluding CK, CK, ODT, CKE and RESET are disabled during  
Power-down. Input buffers, excluding CKE and RESET are disabled  
during self refresh.  
CS  
cs_n  
Input  
Chip Select: All command are masked when CS is registered High. CS  
provides for external Rank selection on systems with multiple ranks. CS  
is considered part of the command code.  
RAS, CAS, WE  
ODT  
ras_n, cas_n, we_n Input  
Command Inputs: RAS, CAS and WE (along with CS) define the  
command being entered.  
odt  
Input  
On-Die Termination: ODT (registered High) enables termination  
resistance internal to the DDR3 SDRAM. When enabled, ODT is only  
applied to each DQ, DQS, DQS and DM signal for ×4/×8 configurations.  
For ×16 configuration ODT is applied to each DQ, DQSU, DQSU,  
DQSL, DQSL, DMU and DML signal. The ODT signal will be ignored if  
the Mode Register MR1 is programmed to disable ODT and during Self  
Refresh.  
DM, (DMU, DML) dm, (dmu, dml)  
Input  
Input Data Mask: DM is an input mask signal for write data. Input data  
is masked when DM is sampled High coincident with that input data  
during a Write access. DM is sampled on both edges of DQS. DMU and  
DML are the input mask signals for ×16 components and control the  
lower or upper bytes.  
BA0 - BA2  
A0 - A15  
ba0 - ba2  
a0 - a15  
Input  
Input  
Bank Address Inputs: Define to which bank an Active, Read, Write or  
Precharge command is being applied. Bank address also determines  
which mode register is to be accessed during a mode register set cycle.  
Address Inputs: Provides the row address for Active commands and  
the column address for Read/Write commands to select one location  
out of the memory array in the respective bank. (A10/AP and A12/BC  
have additional functions, see below). The address inputs also provide  
the op-code during Mode Register Set commands. For numbers of  
addresses used on this assembly see Table 2.  
Rev. 0.92, 2008-04  
9
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
Symbol  
EDA Signal Name1) Type  
Function  
A10 / AP  
a10  
Input  
Auto-Precharge: A10/AP is sampled during Read/Write commands to  
determine whether Auto-Precharge should be performed to the  
accessed bank after the Read/Write operation. (High: Auto-Precharge,  
Low: no Auto-Precharge). A10/AP is sampled during Precharge  
command to determine whether the Precharge applies to one bank  
(A10 Low) or all banks (A10 High). If only one bank is to be precharged,  
the bank is selected by bank addresses.  
A12 / BC  
DQ  
a12  
dq  
Input  
Burst Chop: A12/BC is sampled during Read and Write commands to  
determine if burst chop (on-the-fly) will be performed. (High: no burst  
chop, Low: burst chopped). See “Command Truth Table” on Page 11  
for details.  
Input/  
Data Input/Output: Bi-directional data bus.  
Output  
DQS / DQS  
dqs_t / dqs_c  
Input/  
Data Strobe: output with read data, input with write data. Edge-aligned  
(DQSL, DQSL,  
DQSU DQSU)  
(dqsl_t, dqsl_c,  
dqsu_t, dqsu_c)  
Output with read data, centered in write data. For the ×16, DQSL corresponds  
to the data on DQL0 - DQL7; DQSU corresponds to the data on DQU0-  
DQU7.The data strobes DQS, DQSL and DQSU are paired with  
differential signals DQS, DQSL and DQSU, respectively, to provide  
differential pair signaling to the system during both reads and writes.  
DDR3 SDRAM supports differential data strobe only and does not  
support single-ended.  
RESET  
reset_n  
CMOS Active Low Asynchronous Reset: Reset is active when RESET is  
Input  
Low, and inactive when RESET is High. RESET must be High during  
normal operation. RESET is a CMOS rail to rail signal with DC High and  
Low are 80% and 20% of VDD, RESET active is destructive to data  
contents.  
NC  
No Connect: no internal electrical connection is present  
VDDQ  
VSSQ  
VDD  
vddq  
vssq  
vdd  
Supply DQ Power Supply: 1.5 V ± 0.075 V  
Supply DQ Ground  
Supply Power Supply: 1.5 V ± 0.075 V  
Supply Ground  
VSS  
vss  
VREFDQ  
VREFCA  
ZQ  
vrefdq  
vrefca  
zq  
Supply Reference Voltage for DQ  
Supply Reference Voltage for Command and Address inputs  
Supply Reference ball for ZQ calibration  
1) The EDA Signal Name is used in Qimonda's Simulation Models such as IBIS, Verilog, etc.  
Note: Input only pins (BA0-BA2, A0-A15, RAS, CAS, WE, CS, CKE, ODT, and RESET) do not supply termination.  
Rev. 0.92, 2008-04  
10  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
2
Functional Description  
2.1  
Truth Tables  
The truth tables list the input signal values at a given clock  
edge which represent a command or state transition expected  
to be executed by the DDR3 SDRAM. Table 4 lists all valid  
commands to the DDR3 SDRAM. For a detailed description  
of the various power mode entries and exits please refer to  
Table 5. In addition, the DM functionality is described in  
Table 6.  
TABLE 4  
Command Truth Table  
Function  
Abbr.  
CKE  
CS RAS CAS WE BA2 A15 A12/ A10/ A11, Note  
BC AP A9-A0  
-
-
Prev. Curr.  
Cycle Cycle  
BA0 A13  
1)2)3)4)5)  
Mode Register Set  
Refresh  
MRS  
REF  
SRE  
SRX  
H
H
H
L
H
H
L
L
L
L
H
L
L
L
L
L
L
L
L
V
H
L
L
L
H
L
L
BA OP Code  
1)2)3)4)5)  
L
H
H
V
H
L
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
1)2)3)4)5)6)7)8)  
1)2)3)4)5)6)7)8)9)  
Self-Refresh Entry  
Self-Refresh Exit  
L
H
V
H
H
H
H
L
1)2)3)4)5)  
1)2)3)4)5)  
1)2)3)4)5)  
1)2)3)4)5)10)  
Single Bank Precharge  
Precharge all Banks  
Active  
PRE  
PREA  
ACT  
WR  
H
H
H
H
H
H
H
H
BA  
V
V
V
V
V
L
V
V
L
H
H
L
BA RA (Row Address)  
Write (BL8MRS or  
BC4MRS)  
BA RFU V  
L
CA  
1)2)3)4)5)10)  
1)2)3)4)5)10)  
1)2)3)4)5)10)  
Write (BC4OTF)  
Write (BL8OTF)  
WRS4  
WRS8  
H
H
H
H
H
H
L
L
L
H
H
H
L
L
L
L
L
L
BA RFU L  
BA RFU H  
BA RFU V  
L
L
CA  
CA  
CA  
Write w/AP (BL8MRS or WRA  
BC4MRS)  
H
1)2)3)4)5)10)  
1)2)3)4)5)10)  
1)2)3)4)5)10)  
Write w/AP (BC4OTF)  
Write w/AP (BL8OTF)  
WRAS4 H  
WRAS8 H  
H
H
H
L
L
L
H
H
H
L
L
L
L
L
BA RFU L  
BA RFU H  
BA RFU V  
H
H
L
CA  
CA  
CA  
Read (BL8MRS or  
BC4MRS)  
RD  
H
H
1)2)3)4)5)10)  
1)2)3)4)5)10)  
1)2)3)4)5)10)  
Read (BC4OTF)  
Read (BL8OTF)  
RDS4  
RDS8  
H
H
H
H
H
H
L
L
L
H
H
H
L
L
L
H
H
H
BA RFU L  
BA RFU H  
BA RFU V  
L
L
H
CA  
CA  
CA  
Read w/AP (BL8MRS or RDA  
BC4MRS)  
1)2)3)4)5)10)  
1)2)3)4)5)10)  
1)2)3)4)5)11)  
Read w/AP (BC4OTF)  
Read w/AP (BL8OTF)  
No Operation  
RDAS4  
H
H
H
H
H
H
L
L
L
H
H
H
L
L
H
H
H
BA RFU L  
BA RFU H  
H
H
V
CA  
CA  
V
RDAS8  
NOP  
H
V
V
V
Rev. 0.92, 2008-04  
11  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
Function  
Abbr.  
CKE  
CS RAS CAS WE BA2 A15 A12/ A10/ A11, Note  
-
-
BC AP A9-A0  
Prev. Curr.  
Cycle Cycle  
BA0 A13  
1)2)3)4)5)12)  
Device Deselect  
DES  
PDE  
H
H
H
L
H
L
X
H
V
H
V
H
H
X
H
V
H
V
H
H
X
H
V
H
V
L
X
V
X
V
X
V
X
V
X
V
1)2)3)4)5)8)13)  
Power Down Entry  
H
1)2)3)4)5)8)13)  
Power Down Exit  
PDX  
L
H
L
V
V
V
V
V
H
1)2)3)4)5)  
1)2)3)4)5)  
ZQ Calibration Short  
ZQ Calibration Long  
ZQCS  
ZQCL  
H
H
H
H
L
L
X
X
X
X
X
X
L
X
X
L
H
1) BA = Bank Address, RA = Row Address, CA = Column Address, BC = Burst Chop, AP = Auto Precharge, X = Don’t care, V = valid  
2) All DDR3 SDRAM commands are defined by states of CS, RAS, CAS, WE and CKE at the rising edge of the clock. The higher order  
address bits of BA, RA and CA are device density and IO configuration (×4, ×8, ×16) dependent.  
3) RESET is a low active signal which will be used only for asynchronous reset. It must be maintained High during any function.  
4) Bank addresses (BA) determine which bank is to be operated upon. For MRS, BA selects a Mode Register.  
5) V means H or L (but a defined logic level) and X means either “defined or undefined (like floating) logic level”.  
6) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh  
7)  
VREF (both VREFCA and VREFDQ) must be maintained during Self Refresh operation.  
8) Refer to “Clock Enable (CKE) Truth Table for Synchronous Transitions” on Page 13 for more detail with CKE transition.  
9) Self refresh exit is asynchronous.  
10) Burst reads or writes cannot be terminated or interrupted and Fixed/on-the-Fly BL will be defined by MRS.  
11) The No Operation (NOP) command should be used in cases when the DDR3 SDRAM is in an idle or a wait state. The purpose of the NOP  
command is to prevent the DDR3 SDRAM from registering any unwanted commands between operations. A NOP command will not  
terminate a previous operation that is still executing, such as a read or write burst.  
12) The Deselect command (DES) performs the same function as a No Operation command.  
13) The Power Down Mode does not perform any refresh operation.  
Rev. 0.92, 2008-04  
12  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
TABLE 5  
Clock Enable (CKE) Truth Table for Synchronous Transitions  
Current State 1) CKE(N-1)2) CKE(N)2)  
Command (N)3)RAS, Action (N)3)  
CAS, WE, CS  
Note  
Previous  
Cycle  
Current  
Cycle  
4)5)6)7)8)9)  
Power Down  
Self Refresh  
L
L
H
L
H
L
L
L
L
L
L
L
X
Maintain Power Down  
4)5)6)7)8)10)  
L
DES or NOP  
X
Power Down Exit  
4)5)6)7)9)11)  
L
Maintain Self Refresh  
Self Refresh Exit  
4)5)6)7)11)12)13)  
4)5)6)7)8)10)14)  
4)5)6)7)8)10)14)15)  
4)5)6)7)8)10)14)15)  
4)5)6)7)8)10)14)15)  
4)5)6)7)10)  
L
DES or NOP  
DES or NOP  
DES or NOP  
DES or NOP  
DES or NOP  
DES or NOP  
DES or NOP  
REF  
Bank(s) Active  
Reading  
H
H
H
H
H
H
H
Active Power Down Entry  
Power Down Entry  
Writing  
Power Down Entry  
Precharging  
Refreshing  
All Banks Idle  
Power Down Entry  
Precharge Power Down Entry  
Precharge Power Down Entry  
Self Refresh Entry  
4)5)6)7)10)8)14)16)  
4)5)6)7)14)16)17)  
4)5)6)7)18)  
Any other state  
Refer to “Command Truth Table” on Page 11 for more detail with all command signals  
1) Current state is defined as the state of the DDR3 SDRAM immediately prior to clock edge N.  
2) CKE(N) is the logic state of CKE at clock edge N; CKE (N-1) was the state of CKE at the previous clock edge.  
3) COMMAND (N) is the command registered at clock edge N, and ACTION (N) is a result of COMMAND (N),ODT is not included here.  
4) All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document.  
5) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh.  
6) CKE must be registered with the same value on tCKE.MIN consecutive positive clock edges. CKE must remain at the valid input level the  
entire time it takes to achieve the tCKE.MIN clocks of registeration. Thus, after any CKE transition, CKE may not transition from its valid level  
during the time period of tIS + tCKE.MIN + tIH.  
7) DES and NOP are defined in “Command Truth Table” on Page 11.  
8) The Power Down does not perform any refresh operations  
9) X means Don’t care (including floating around VREFCA) in Self Refresh and Power Down. It also applies to address pins.  
10) Valid commands for Power Down Entry and Exit are NOP and DES only  
11) VREF (both VREFCA and VREFDQ) must be maintained during Self Refresh operation.  
12) On Self Refresh Exit DES or NOP commands must be issued on every clock edge occurring during the tXS period. Read, or ODT  
commands may be issued only after tXSDLL is satisfied.  
13) Valid commands for Self Refresh Exit are NOP and DES only.  
14) Self Refresh can not be entered while Read or Write operations are in progress.  
15) If all banks are closed at the conclusion of a read, write or precharge command then Precharge Power-down is entered, otherwise Active  
Power-down is entered.  
16) ‘Idle state’ is defined as all banks are closed (tRP, tDAL, etc. satisfied), no data bursts are in progress, CKE is High, and all timings from  
previous operations are satisfied (tMRD, tMOD, tRFC, tZQ.INIT, tZQ.OPER, tZQCS, etc.) as well as all Self-Refresh exit and Power-Down Exit  
parameters are satisfied (tXS, tXP, tXPDLL, etc.).  
17) Self Refresh mode can only be entered from the All Banks Idle state.  
18) Must be a legal command as defined in “Command Truth Table” on Page 11.  
Rev. 0.92, 2008-04  
13  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
TABLE 6  
Data Mask (DM) Truth Table  
Name (Function)  
DM  
DQs  
Write Enable  
Write Inhibit  
L
Valid  
X
H
Rev. 0.92, 2008-04  
14  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
2.2  
Mode Register 0 (MR0)  
The mode register MR0 stores the data for controlling various  
operating modes of DDR3 SDRAM. It controls burst length,  
read burst type, CAS latency, test mode, DLL reset, WR  
(write recovery time for auto-precharge) and DLL control for  
precharge Power-Down, which includes various vendor  
specific options to make DDR3 SDRAM useful for various  
applications. The mode register is written by asserting Low on  
CS, RAS, CAS, WE, BA0, BA1, and BA2, while controlling the  
states of address pins according to Table 7.  
BA2 BA1 BA0 A13 A12 A11 A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
DLL  
res  
0
0
0
01)  
PPD  
WR  
TM  
CL  
RBT  
CL  
BL  
TABLE 7  
MR0 Mode register Definition (BA[2:0]=000B)  
Field  
Bits1)  
Description  
Burst Length (BL) and Control Method  
BL  
A[1:0]  
Number of sequential bits per DQ related to one Read/Write command.  
00B BL8MRS mode with fixed burst length of 8. A12/BC at Read or Write command time is Don’t care  
at read or write command time.  
01B BLOTF on-the-fly (OTF) enabled using A12/BC at Read or Write command time. When A12/BC is  
High during Read or Write command time a burst length of 8 is selected (BL8OTF mode). When  
A12/BC is Low, a burst chop of 4 is selected (BC4OTF mode). Auto-Precharge can be enabled or  
disabled.  
10B BC4MRS mode with fixed burst chop of 4 with tCCD = 4 × nCK. A12/BC is Don’t care at Read or  
Write command time.  
11B TBD Reserved  
RBT  
CL  
A3  
Read Burst Type  
0B  
1B  
Nibble Sequential  
Interleaved  
A[6:4,2] CAS Latency (CL)  
CAS Latency is the delay, in clock cycles, between the internal Read command and the availability of the  
first bit of output data.  
Note: For more information on the supported CL and AL settings based on the operating clock frequency,  
refer to “Speed Bins” on Page 35.  
Note: All other bit combinations are reserved.  
0000B RESERVED  
0010B  
0100B  
0110B  
1000B  
1010B  
5
6
7
8
9
1100B 10  
1110B RESERVED  
Rev. 0.92, 2008-04  
15  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
Field  
Bits1)  
Description  
Test Mode  
TM  
A7  
The normal operating mode is selected by MR0(bit A7 = 0) and all other bits set to the desired values  
shown in this table. Programming bit A7 to a 1 places the DDR3 SDRAM into a test mode that is only  
used by the SDRAM manufacturer and should NOT be used. No operations or functionality is guaranteed  
if A7 = 1.  
0B  
1B  
Normal Mode  
Vendor specific test mode  
DLLres A8  
DLL Reset  
The internal DLL Reset bit is self-clearing, meaning it returns back to the value of 0 after the DLL reset  
function has been issued. Once the DLL is enabled, a subsequent DLL Reset should be applied. Any  
time the DLL reset function is used, tDLLK must be met before any functions that require the DLL can be  
used (i.e. Read commands or synchronous ODT operations).  
0B  
1B  
No DLL Reset  
DLL Reset triggered  
WR  
A[11:9] Write Recovery for Auto-Precharge  
Number of clock cycles for write recovery during Auto-Precharge. WRMIN in clock cycles is calculated by  
dividing tWR.MIN (in ns) by the actual tCK.AVG (in ns) and rounding up to the next integer: WR.MIN [nCK] =  
Roundup(tWR.MIN[ns] / tCK.AVG[ns]). The WR value in the mode register must be programmed to be equal  
or larger than WR.MIN. The resulting WR value is also used with tRP to determine tDAL. Since WR of 9  
and 11 is not implemented in DDR3 and the above formula results in these values, higher values have  
to be programmed.  
000B Reserved  
001B  
010B  
011B  
100B  
5
6
7
8
101B 10  
110B 12  
111B Reserved  
PPD  
A12  
Precharge Power-Down DLL Control  
Active Power-Down will always be with DLL-on. Bit A12 will have no effect in this case. For Precharge  
Power-Down, bit A12 in MR0 is used to select the DLL usage as shown below.  
0B  
Slow Exit. DLL is frozen during precharge Power-down.Read and synchronous ODT commands  
are only allowed after tXPDLL  
.
1B  
Fast Exit. DLL remains on during precharge Power-down.Any command can be applied after tXP,  
provided that other timing parameters are satisfied.  
1) A13, A14 and A15 - even if not available on a specific device - must be programmed to 0B.  
Rev. 0.92, 2008-04  
16  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
2.3  
Mode Register 1 (MR1)  
The Mode Register MR1 stores the data for enabling or  
disabling the DLL, output driver strength, RTT_Nom  
impedance, additive latency (AL), Write leveling enable and  
Qoff (output disable). The Mode Register MR1 is written by  
asserting Low on CS, RAS, CAS, WE, High on BA0 and Low  
on BA1and BA2, while controlling the states of address pins  
according to Table 8.  
BA2 BA1 BA0 A13 A12 A11 A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
RTT_  
nom  
RTT_  
nom  
RTT_  
nom  
DLL  
dis  
0
0
1
01)  
Qoff  
0
0
0
Level  
DIC  
AL  
DIC  
TABLE 8  
MR1 Mode Register Definition (BA[2:0]=001B)  
Field  
Bits1)  
Description  
DLL Disable  
DLLdis  
A0  
The DLL must be enabled for normal operation. DLL enable is required during power up initialization,  
after reset and upon returning to normal operation after having the DLL disabled. During normal  
operation (DLL-on) with MR1(A0 = 0), the DLL is automatically disabled when entering Self-Refresh  
operation and is automatically re-enabled and reset upon exit of Self-Refresh operation. Any time the  
DLL is enabled, a DLL reset must be issued afterwards. Any time the DLL is reset, tDLLK clock cycles  
must occur before a Read or synchronous ODT command can be issued to allow time for the internal  
clock to be synchronized with the external clock. Failing to wait for synchronization to occur may  
result in a violation of the tDQSCK, tAON, tAOF or tADC parameters. During tDLLK, CKE must continuously  
be registered high. DDR3 SDRAM does not require DLL for any Write operation.  
0B  
1B  
DLL is enabled  
DLL is disabled  
DIC  
A[5, 1]  
Output Driver Impedance Control  
Note: All other bit combinations are reserved.  
01B  
Nominal Drive Strength RON34 = RQZ/7 (nominal 34.3 Ω, with nominal RZQ = 240 Ω)  
RTT_NOM  
A[9, 6, 2] Nominal Termination Resistance of ODT  
Notes  
1. If RTT_NOM is used during Writes, only the values RZQ/2, RZQ/4 and RZQ/6 are allowed.  
2. In Write leveling Mode (MR1[bit7] = 1) with MR1[bit12] = 1, all RTT_Nom settings are allowed; in  
Write Leveling Mode (MR1[bit7] = 1) with MR1[bit12] = 0, only RTT_NOM settings of RZQ/2, RZQ/4  
and RZQ/6 are allowed.  
3. All other bit combinations are reserved.  
000B ODT disabled, RTT_NOM = off, Dynamic ODT mode disabled  
001B RTT60 = RZQ / 4 (nominal 60 Ω with nominal RZQ = 240 Ω)  
010B RTT120 = RZQ / 2 (nominal 120 Ω with nominal RZQ = 240 Ω  
011B RTT40 = RZQ / 6 (nominal 40 Ω with nominal RZQ = 240 Ω)  
100B RTT20 = RZQ / 12 (nominal 20 Ω with nominal RZQ = 240 Ω)  
101B RTT30 = RZQ / 8 (nominal 30 Ω with nominal RZQ = 240 Ω)  
Rev. 0.92, 2008-04  
17  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
Field  
Bits1)  
Description  
AL  
A[4, 3]  
Additive Latency (AL)  
Any read or write command is held for the time of Additive Latency (AL) before it is issued as internal  
read or write command.  
Notes  
1. AL has a value of CL - 1 or CL - 2 as per the CL value programmed in the MR0 register.  
00B  
01B  
10B  
11B  
AL = 0 (AL disabled)  
AL = CL - 1  
AL = CL - 2  
Reserved  
Write  
A7  
Write Leveling Mode  
Leveling  
enable  
0B  
1B  
Write Leveling Mode Disabled, Normal operation mode  
Write Leveling Mode Enabled  
TDQS  
enable  
A11  
A12  
Reserved bit for TDQS/TDQS implementation on future products (× 8 components only)  
Attention! The TDQS/TDQS feature is not supported on this product.  
Qoff  
Output Disable  
Under normal operation, the SDRAM outputs are enabled during read operation and write leveling  
for driving data (Qoff bit in the MR1 is set to 0B). When the Qoff bit is set to 1B, the SDRAM outputs  
(DQ, DQS, DQS, also on upper byte lane in case of ×16) will be disabled - also during write leveling.  
Disabling the SDRAM outputs allows users to run write leveling on multiple ranks and to measure IDD  
currents during Read operations, without including the output.  
oB  
1B  
Output buffer enabled  
Output buffer disabled  
1) A13, A14, A15 - even if not available on a specific device - must be programmed to 0B.  
Rev. 0.92, 2008-04  
18  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
2.4  
Mode Register 2 (MR2)  
The Mode Register MR2 stores the data for controlling  
refresh related features, RTT_WR impedance, and CAS write  
latency. The Mode Register MR2 is written by asserting Low  
on CS, RAS, CAS, WE, High on BA1 and Low on BA0 and  
BA2, while controlling the states of address signals according  
to Table 9.  
%$ꢄ %$ꢁ %$ꢀ  
$ꢁꢅ $ꢁꢄ $ꢁꢁ $ꢁꢀ  
$ꢂ  
$ꢊ  
$ꢉ  
$ꢈ  
$ꢇ  
$ꢆ  
$ꢅ  
$ꢄ  
$ꢁ  
$ꢀ  
&:/  
577B:5  
657  
3$65  
UHJꢌꢃDGGU  
03%+ꢀꢁꢁꢀ  
TABLE 9  
MR2 Mode Register Definition (BA[2:0]=010B)  
Field  
Bits1)  
Description  
Partial Array Self Refresh (PASR)  
PASR  
A[2:0]  
If PASR (Partial Array Self Refresh) is enabled, data located in areas of the array beyond the  
specified self refresh location may get lost if self refresh is entered. During non-self-refresh operation,  
data integrity will be maintained if tREFI conditions are met.  
000B Full array (Banks 000B - 111B)  
001B Half Array(Banks 000B - 011B)  
010B Quarter Array(Banks 000B - 001B)  
011B 1/8th array (Banks 000B )  
100B 3/4 array(Banks 010B - 111B)  
101B Half array(Banks 100B - 111B)  
110B Quarter array(Banks 110B - 111B)  
111B 1/8th array(Banks 111B )  
CWL  
A[5:3]  
CAS Write Latency (CWL)  
Number of clock cycles from internal write command to first write data in.  
Note: All other bit combinations are reserved.  
000B 5 (3.3 ns tCK.AVG 2.5 ns)  
001B 6 (2.5 ns > tCK.AVG 1.875 ns)  
010B 7 (1.875 ns > tCK.AVG 1.5 ns)  
011B 8 (1.5 ns > tCK.AVG 1.25 ns)  
Note: Besides CWL limitations on tCK.AVG, there are also tAA.MIN/MAX restrictions that need to be  
observed. For details, please refer to Chapter 4.1, Speed Bins.  
RFU  
A6  
Reserved for Auto Self Refresh (ASR)  
This bit must be programmed to 0B.  
Rev. 0.92, 2008-04  
02092007-PWZB-VR0U  
19  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
Field  
Bits1)  
Description  
SRT  
A7  
Self-Refresh Temperature Range (SRT)  
The SRT bit must be programmed to indicate TOPER during subsequent self refresh operation.  
0B  
Normal operating temperature range  
1B  
Extended operating temperature range  
RTT_WR  
A[10:9]  
Dynamic ODT mode and RTT_WR Pre-selection  
Notes  
1. All other bit combinations are reserved.  
2. The RTT_WR value can be applied during writes even when RTT_NOM is disabled. During write  
leveling, Dynamic ODT is not available.  
00B  
01B  
10B  
Dynamic ODT mode disabled  
Dynamic ODT mode enabled with RTT_WR = RZQ/4 = 60 Ω  
Dynamic ODT mode enabled with RTT_WR = RZQ/2 = 120Ω  
1) A13, A14, A15 - even if not available on a specific device - must be programmed to 0B.  
Rev. 0.92, 2008-04  
20  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
2.5  
Mode Register 3 (MR3)  
The Mode Register MR3 controls Multi purpose registers and  
optional On-die thermal sensor (ODTS) feature. The Mode  
Register MR3 is written by asserting Low on CS, RAS, CAS,  
WE, High on BA1 and BA0, and Low on BA2 while controlling  
the states of address signals according to Table 10.  
BA2 BA1 BA0 A13 A12 A11 A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
0
1
1
01)  
0
0
0
0
0
0
0
0
0
0
MPR  
MPR loc  
TABLE 10  
MR3 Mode Register Definition (BA[2:0]=011B)  
Field  
Bits1)  
Description  
Multi Purpose Register Location  
MPR loc  
A[1:0]  
00B  
01B  
10B  
11B  
Pre-defined data pattern for read synchronization  
RFU  
RFU  
ODTS On-Die Thermal sensor readout (optional)  
MPR  
A2  
Multi Purpose Register Enable  
Note: When MPR is disabled, MR3 A[1:0] will be ignored.  
0B  
1B  
MPR disabled, normal memory operation  
Dataflow from the Multi Purpose register MPR  
1) A13, A14 and A15 - even if not available on a specific device - must be programmed to 0B.  
Rev. 0.92, 2008-04  
21  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
2.6  
Burst Order  
Accesses within a given burst may be interleaved or nibble  
sequential depending on the programmed bit A3 in the mode  
register MR0.  
column address bits CA[2:0] are ignored during the write  
command. For writes with a burst being chopped to 4, the  
input on column address 2 (CA[2]) determines if the lower or  
upper four burst bits are selected. In this case, the inputs on  
the lower 2 column address bits CA[1:0] are ignored during  
the write command.The following table shows burst order  
versus burst start address for reads and writes of bursts of 8  
as well as of bursts of 4 operation (burst chop).  
Regarding read commands, the lower 3 column address bits  
CA[2:0] at read command time determine the start address  
for the read burst.  
Regarding write commands, the burst order is always fixed.  
For writes with a burst length of 8, the inputs on the lower 3  
TABLE 11  
Bit Order during Burst  
Burst Command Column Address Interleaved Burst Sequence  
Nibble Sequential Burst  
Sequence  
Note  
Length  
2:0  
Bit Order within Burst  
Bit Order within Burst  
CA2 CA1 CA0 1. 2. 3. 4. 5. 6. 7. 8. 1. 2. 3. 4. 5. 6. 7. 8.  
1)  
8
READ  
0
0
0
1
1
0
0
1
1
V
0
0
1
1
0
0
1
1
V
V
0
1
0
1
0
1
0
1
V
0
1
0
1
0
1
0
1
V
V
0
1
2
3
4
5
6
7
0
0
1
2
3
4
5
6
7
0
4
1
0
3
2
5
4
7
6
1
1
0
3
2
5
4
7
6
1
5
2
3
0
1
6
7
4
5
2
2
3
0
1
6
7
4
5
2
6
3
2
1
0
7
6
5
4
3
3
2
1
0
7
6
5
4
3
7
4
5
6
7
0
1
2
3
4
T
T
T
T
T
T
T
T
X
X
5
4
7
6
1
0
3
2
5
T
T
T
T
T
T
T
T
X
X
6
7
4
5
2
3
0
1
6
T
T
T
T
T
T
T
T
X
X
7
6
5
4
3
2
1
0
7
T
T
T
T
T
T
T
T
X
X
0
1
2
3
4
5
6
7
0
0
1
2
3
4
5
6
7
0
4
1
2
3
0
5
6
7
4
1
1
2
3
0
5
6
7
4
1
5
2
3
0
1
6
7
4
5
2
2
3
0
1
6
7
4
5
2
6
3
0
1
2
7
4
5
6
3
3
0
1
2
7
4
5
6
3
7
4
5
6
7
0
1
2
3
4
T
T
T
T
T
T
T
T
X
X
5
6
7
4
1
2
3
0
5
T
T
T
T
T
T
T
T
X
X
6
7
4
5
2
3
0
1
6
T
T
T
T
T
T
T
T
X
X
7
4
5
6
3
0
1
2
7
T
T
T
T
T
T
T
T
X
X
1)  
0
1)  
0
0
1
1
1
1
1)  
1)  
1)  
1)  
1)  
1)2)  
WRITE  
READ  
V
1)3)4)  
1)3)4)  
1)3)4)  
1)3)4)  
1)3)4)  
1)3)4)  
1)3)4)  
1)3)4)  
1)2)4)5)  
1)2)4)5)  
4
0
(Burst  
Chop  
Mode)  
0
0
0
1
1
1
1
WRITE  
0
1
1) 0...7 bit number is value of CA[2:0] that causes this bit to be the first read during a burst.  
2) V: a valid logic level (0 or 1), but respective buffer input ignores level on input pins.  
3) T: output drivers for data and strobe are in high impedance.  
4) In case of BC4MRS (burst length being fixed to 4 by MR0 setting), the internal write operation starts two clock cycles earlier than for the  
BL8 modes. This means that the starting point for tWR and tWTR will be pulled in by two clocks. In case of BC4OTF mode (burst length being  
selected on-the-fly via A12/BC), the internal write operation starts at the same point in time as a burst of 8 write operation. This means that  
during on-the-fly control, the starting point for tWR and tWTR will not be pulled in by two clocks.  
5) X: Don’t Care  
Rev. 0.92, 2008-04  
22  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
3
Operating Conditions and  
Interface Specification  
3.1  
Absolute Maximum Ratings  
TABLE 12  
Absolute Maximum Ratings  
Parameter  
Symbol  
Rating  
Min.  
Unit  
Note  
Max.  
1)2)  
1)2)  
1)  
Voltage on VDD ball relative to VSS  
Voltage on VDDQ ball relative to VSS  
Voltage on any ball relative to VSS  
Storage Temperature  
VDD  
–0.4  
–0.4  
–0.4  
–55  
+1.975  
+1.975  
+1.975  
+100  
V
VDDQ  
V
VIN, VOUT  
TSTG  
V
1)3)  
°C  
1) Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating  
only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
2)  
V
V
DD and VDDQ must be within 300mV of each other at all times. VREFDQ and VREFCA must not be greater than 0.6 x VDDQ. When VDD and  
DDQ are less than 500 mV, VREFDQ and VREFCA may be equal or less than 300 mV.  
3) Storage Temperature is the case surface temperature on the center/top side of the SDRAM. For the measurement conditions, please refer  
to JESD51-2 standard.  
Rev. 0.92, 2008-04  
23  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
3.2  
Operating Conditions  
TABLE 13  
SDRAM Component Operating Temperature Range  
Parameter  
Symbol  
Rating  
Unit  
Note  
Min.  
Max.  
1)2)3)  
1)3)4)  
Normal Operating Temperature Range  
Extended Temperature Range  
TOPER  
0
85  
95  
°C  
°C  
85  
1) Operating Temperature TOPER is the case surface temperature on the center / top side of the SDRAM. For measurement conditions, please  
refer to the industry standard document JESD51-2.  
2) The Normal Temperature Range specifies the temperatures where all SDRAM specification will be supported.  
3) During operation, the SDRAM operating temperature must be maintained above 0 °C under all operating conditions. Either the device  
operating temperature rating or the optional ODTS MPR Readout function (See Chapter 2.18, On-Die Thermal Sensor (ODTS)) may be  
used to set an appropriate refresh rate and/or to monitor the maximum operating temperature. When using the optional ODTS MPR  
Readout function, the actual device operating temperature may be higher than the TOPER rating that applies for the Normal or Extended  
Temperature Ranges. For example, TCASE may be above 85 °C when the ODTS indicates that 1X refresh is supported.  
4) Some application require operation of the DRAM in the Extended Temperature Range between 85 °C and 95 °C operating temperature.  
Full specifications are provided in this range, but the following additional conditions apply:  
a) Refresh commands have to be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs.  
b) If Self-Refresh operation is required in the Extended Temperature Range, than it is mandatory to use the Manual Self-Refresh mode  
with Extended Temperature Range capability (MR2 A6 = 0B and MR2 A7 = 1B) . For SDRAM operations on DIMM module refer to DIMM  
module data sheets and SPD bytes for Extended Temperature and Auto Self-Refresh option availability.  
TABLE 14  
DC Operating Conditions  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit Note  
1)2)  
Supply Voltage  
VDD  
1.425  
1.425  
1.5  
1.5  
1.575  
1.575  
V
1)2)  
Supply Voltage for Output  
VDDQ  
V
3)4)  
Reference Voltage for DQ, DM inputs  
Reference Voltage for ADD, CMD inputs  
VREFDQ.DC 0.49 x VDD 0.5 x VDD 0.51 x VDD  
VREFCA.DC 0.49 x VDD 0.5 x VDD 0.51 x VDD  
V
3)4)  
V
5)  
External Calibration Resistor connected from ZQ ball to ground RZQ  
DDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together  
2) Under all conditions VDDQ must be less than or equal to VDD  
237.6  
240.0  
242.4  
Ω
1)  
V
.
3) The ac peak noise on VREF may not allow VREF to deviate from VREF.DC by more than ±1% VDD (for reference: approx. ± 15 mV).  
4) For reference: approx. VDD/2 ± 15 mV.  
5) The external calibration resistor RZQ can be time-shared among DRAMs in multi-rank DIMMs.  
Rev. 0.92, 2008-04  
24  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
TABLE 15  
Input and Output Leakage Currents  
Parameter  
Symbol  
Condition  
Rating  
Unit  
Note  
Min.  
Max.  
1)2)  
2)3)  
Input Leakage Current  
Output Leakage Current  
IIL  
Any input 0 V < VIN < VDD  
0V < VOUT < VDDQ  
–2  
–5  
+2  
+5  
µA  
µA  
IOL  
1) All other pins not under test = 0 V.  
2) Values are shown per ball.  
3) DQ’s, DQS, DQS and ODT are disabled.  
3.3  
Interface Test Conditions  
Figure 4 represents the effective reference load of 25 Ω used  
in defining the relevant timing parameters of the device as  
well as for output slew rate measurements. It is not intended  
as either a precise representation of the typical system  
environment nor a depiction of the actual load presented by a  
production tester. System designers should use IBIS or other  
simulation tools to correlate the timing reference load to a  
system environment. Manufacturers correlate to their  
production test conditions, generally one or more coaxial  
transmission lines terminated at the tester electronics.  
FIGURE 4  
Reference Load for AC Timings and Output Slew Rates  
VDDQ  
DQ  
CK, CK  
DQS  
DUT  
VTT = VDDQ / 2  
DQS  
25 :  
Timing Reference Points  
The Timing Reference Points are the idealized input and  
output nodes / terminals on the outside of the packaged  
SDRAM device as they would appear in a schematic or an  
IBIS model.  
The output timing reference voltage level for single ended  
signals is the cross point with VTT.  
The output timing reference voltage level for differential  
signals is the cross point of the true (e.g. DQS) and the  
complement (e.g. DQS) signal.  
Rev. 0.92, 2008-04  
25  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
3.4  
Voltage Levels  
3.4.1  
DC and AC Logic Input Levels  
Single-Ended Signals  
Table 16 shows the input levels for single-ended input signals.  
TABLE 16  
DC and AC Input Levels for Single-Ended Command, Address and Control Signals  
Parameter  
Symbol  
DDR3-800, DDR3-1066  
DDR3-1333, DDR3-1600  
Unit  
Note  
Min.  
REF + 0.100  
VSS  
REF + 0.175  
See 2)  
1) For input only pins except RESET: VREF = VREF.CA  
Max.  
Min.  
REF + 0.100  
VSS  
REF + 0.175  
See 2)  
Max.  
1)  
1)  
1)  
1)  
DC input logic high VIH.CA.DC  
DC input logic low VIL.CA.DC  
AC input logic high VIH.CA.AC  
AC input logic low VIL.CA.AC  
V
VDD  
V
VDD  
V
V
V
V
V
REF - 0.100  
VREF - 0.100  
V
See 2)  
V
See 2)  
V
REF - 0.175  
VREF - 0.175  
2) See Chapter 3.9, Overshoot and Undershoot Specification.  
TABLE 17  
DC and AC Input Levels for Single-Ended DQ and DM Signals  
Parameter  
Symbol  
DDR3-800, DDR3-1066  
DDR3-1333, DDR3-1600  
Unit  
Note  
Min.  
REF + 0.100 VDD  
VIL.DQ.DC VSS REF - 0.100  
AC input logic high VIH.DQ.AC  
REF + 0.175 See 2)  
AC input logic low VIL.DQ.AC REF - 0.175  
See 2)  
Max.  
Min.  
REF + 0.100  
VSS  
REF + 0.150  
See 2)  
Max.  
1)  
DC input logic high VIH.DQ.DC  
DC input logic low  
V
V
VDD  
V
V
V
V
1)  
V
V
REF - 0.100  
1) 3)  
1) 3)  
V
V
See 2)  
V
VREF - 0.150  
1) For DQ and DM: VREF = VREFDQ, for input only signals except RESET: VREF = VREFCA  
2) See Chapter 3.9, Overshoot and Undershoot Specification.  
3) Single ended swing requirement for DQS, DQS# is 350 mV (peak to peak). Differential swing requirement for DQS, DQS# is 700 mV (peak  
to peak).  
Rev. 0.92, 2008-04  
26  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
Differential Swing Requirement for Differential Signals  
Table 18 shows the input levels for differential input signals.  
TABLE 18  
Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS)  
Parameter  
Symbol  
DDR3–800, DDR3–1066, DDR3–1333  
Unit  
Note  
Min.  
Max.  
2)  
2)  
4)  
4)  
Differential input high  
Differential input low  
VIH.DIFF  
+0.200  
See1)  
See 1)  
V
V
V
V
VIL.DIFF  
–0.200  
See 1)  
3)  
Differential input high AC  
Differential input low AC  
VIH.DIFF.AC  
VIL.DIFF.AC  
2 x (VIH.AC - VREF  
See 1)  
)
5)  
2 x (VREF - VIL.AC  
)
1) These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the  
respective limits ( VIH.DC.MAX , VIL.DC.MIN ) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to  
Chapter 3.9 .  
2) Used to define a differential signal slew-rate.  
3) Clock: use V  
for V  
. Strobe: use V  
for V  
IH.AC  
.
IH.CA.AC  
IH.AC  
IH.DQ.AC  
4) For CK - CK use VIH /VIL.AC of ADD/CMD and VREFCA; for DQS - DQS, DQSL - /DQSL, DQSU - DQSU use VIH /VIL.AC of DQs and VREFDQ  
;
if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here.  
5) Clock: use V  
for V  
. Strobe: use V  
IL.AC  
for V  
IL.DQ.AC IL.AC  
.
IL.CA.AC  
TABLE 19  
Allowed Time Before Ringback (tDVAC) for CLK - CLK and DQS - DQS  
Slew Rate [V/ns]  
t
DVAC [ps]  
t
DVAC [ps]  
@ |VIH/IL.DIFF.AC| = 350mV  
@ |VIH/IL.DIFF.AC| = 300mV  
Min. Max.  
75  
Min.  
Max.  
> 4.0  
4.0  
175  
170  
167  
163  
162  
161  
159  
155  
150  
150  
57  
50  
38  
34  
29  
22  
13  
0
3.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
<1.0  
0
Single-Ended Requirements for Differential Signals  
Each individual component of a differential signal (CK, DQS,  
DQSL, DQSU, CK, DQS, DQSL or DQSU) has also to comply  
with certain requirements for single-ended signals.  
DQS, DQSL, DQSU, DQS, DQSL have to reach VSEH.MIN  
/
V
SEL.MAX (approximately the ac-levels ( VIH.AC / VIL.AC ) for DQ  
signals) in every half-cycle preceeding and following a valid  
transition.  
CK and CK have to approximately reach VSEH.MIN / VSEL.MAX  
(approximately equal to the ac-levels (VIH.AC / VIL.AC) for  
ADD/CMD signals) in every half-cycle.  
Note that the applicable ac-levels for ADD/CMD and DQs  
might be different per speed-bin etc. E.g. if VIH150.AC / VIL150.AC  
is used for ADD/CMD signals, then these ac-levels apply also  
for the single-ended signals CK and CK.  
Rev. 0.92, 2008-04  
27  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
Note that while ADD/CMD and DQ signal requirements are  
with respect to Vref, the single-ended components of  
differential signals have a requirement with respect to VDD/2;  
this is nominally the same. The transition of single-ended  
signals through the ac-levels is used to measure setup time.  
For single-ended components of differential signals the  
requirement to reach VSEL.MAX, VSEH.MIN has no bearing on  
timing, but adds a restriction on the common mode  
charateristics of these signals.  
TABLE 20  
Each Single-Ended Levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU  
Parameter  
Symbol  
DDR3–800, DDR3–1066, DDR3–1333  
Unit  
Note  
Min.  
IH.AC - VREFDQ+ VDDQ/2  
IH.AC - VREFCA + VDD/2  
See 1)  
See 1)  
Max.  
2)3)  
Single-ended highlevel for strobes VSEH  
Single-ended high-level for CK, CK VSEH  
Single-ended low-level for strobes VSEL  
Single-ended low-level for CK, CK VSEL  
V
See 1)  
See 1)  
V
V
V
V
V
V
V
IL.AC + VREFDQ - VDDQ/2  
IL.AC + VREFCA - VDD/2  
1) These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the  
respective limits ( VIH.DC.MAX , VIL.DC.MIN ) for single-ended signals as well as the limitations for overshoot and undershoot.  
2) For CK, CK use VIH.AC /VIL.AC of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use VIH.AC/VIL.AC of DQs.  
3)  
V
IH.AC/VIL.AC for DQs is based on VREFDQ; VIH.AC/VIL.AC for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a  
signal group, then the reduced level applies also here.  
TABLE 21  
Cross Point Voltage for Differential Input Signals (CK, DQS)  
Symbol Parameter  
DDR3-800, DDR3-1066, DDR3-1333  
Unit Note  
Min.  
Max.  
VIX  
VIX  
Differential Input Cross Point Voltage relative to VDD/2 for –150  
150  
175  
mV  
1)  
CK - CK  
–175  
mV  
Differential Input Cross Point Voltage relative to VDD/2 for –150  
150  
mV  
DQS -DQS  
1) Extended range for VIX is only allowed for clock and if single-ended clock input signals CK and CK are monotonic, have a single-ended  
swing VSEL/VSEH (see Single-Ended Requirements for Differential Signals) of at least VDD/2 +/-250 mV and if the differential slew rate  
of CK - CK is larger than 3 V/ns.  
3.4.2  
DC and AC Output Measurements Levels  
TABLE 22  
DC and AC Output Levels for Single-Ended Signals  
Parameter  
Symbol Value  
Unit Note  
DC output high measurement level (for output impedance measurement)  
DC output mid measurement level (for output impedance measurement)  
DC output low measurement level (for output impedance measurement)  
VOH.DC  
VOM.DC  
VOL.DC  
0.8 x VDDQ  
V
V
V
0.5 x VDDQ  
0.2 x VDDQ  
Rev. 0.92, 2008-04  
28  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
Parameter  
Symbol Value  
Unit Note  
1)  
AC output high measurement level (for output slew rate)  
AC output low measurement level (for output slew rate)  
VOH.AC  
VOL.AC  
V
TT + 0.1 x VDDQ  
TT - 0.1 x VDDQ  
V
1)  
V
V
1) Background: the swing of ± 0.1 x VDDQ is based on approximately 50% of the static differential output high or low swing with a driver  
impedance of 40 Ω and an effective test load of 25 Ω to VTT = VDDQ / 2.  
TABLE 23  
AC Output Levels for Differential Signals  
Parameter  
Symbol  
Value  
Unit Note  
Min.  
Max.  
1)  
AC differential output high measurement level (for output slew rate)  
AC differential output low measurement level (for output slew rate)  
VOH.DIFF.AC +0.2 x VDDQ  
VOL.DIFF.AC –0.2 x VDDQ  
V
1)  
V
2)  
Deviation of the output cross point  
voltage from the termination voltage  
VOX  
-100  
100  
mV  
1) Background: the swing of ± 0.2 x VDDQ is based on approximately 50% of the static differential output high or low swing with a driver  
impedance of 40 Ω and an effective test load of 25 Ω to VTT =VDDQ / 2 at each of the differential outputs.  
2) With an effective test load of 25 Ω to VTT = VDDQ/2 at each of the differential outputs (see chapter Chapter 3.3, Interface Test Conditions).  
3.5  
Output Slew Rates  
TABLE 24  
Output Slew Rates  
Parameter  
Symbol  
DDR3–800 / –1066 / –1333  
Unit  
Note  
Min.  
Max.  
1)2)  
Single-ended Output Slew Rate  
SRQse  
SRQdiff  
2.5  
5
5
V / ns  
V / ns  
Differential Output Slew Rate  
10  
1) For RON = RZQ/7 settings only.  
2) Background for Symbol Nomenclature: SR: Slew Rate; Q: Query Output; se: single-ended; diff: differential  
Rev. 0.92, 2008-04  
29  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
3.6  
ODT DC Impedance and Mid-Level Characteristics  
Table 25 provides the ODT DC impedance and mid-level characteristics.  
TABLE 25  
ODT DC Impedance and Mid-Level Characteristics  
Symbol  
Description  
VOUT Condition  
Min. Nom. Max. Unit  
Note  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)5)  
RTT120  
RTT60  
RTT40  
RTT30  
RTT20  
ΔVM  
R
R
R
R
R
TT effective = 120 Ω  
TT effective = 60 Ω  
TT effective = 40 Ω  
TT effective = 30 Ω  
TT effective = 20 Ω  
V
IL.AC and VIH.AC  
0.9  
0.9  
0.9  
0.9  
0.9  
–5  
1.0  
1.0  
1.0  
1.0  
1.0  
1.6  
1.6  
1.6  
1.6  
1.6  
+5  
R
R
R
R
R
ZQ/2  
ZQ/4  
ZQ/6  
ZQ/8  
ZQ/12  
Deviation of VM with respect to VDDQ / 2  
floating  
%
1) With RZQ = 240 Ω.  
2) Measurement definition for RTT : Apply VIH.AC and VIL.AC to test ball separately, then measure current I (VIH.AC) and I (VIL.AC) respectively.  
TT = [VIH.AC - VIL.AC] / [I (VIH.AC) - I (VIL.AC)]  
R
3) The tolerance limits are specified after calibration with stable voltage and temperature. For the behaviour of the tolerance limits if  
temperature or voltage changes after calibration, see the ODT DC Impedance Sensitivity on Temperature and Voltage Drifts.  
4) The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS  
.
5) Measurement Definition for ΔVM: Measure voltage (VM) at test ball (midpoint) with no load: ΔVM = (2 × VM / VDDQ - 1) × 100%  
3.7  
ODT DC Impedance Sensitivity on Temperature and  
Voltage Drifts  
If temperature and/or voltage change after calibration, the tolerance limits widen for RTT according to the following tables. The  
following definitions are used:  
ΔT = T - T (at calibration)  
ΔV = VDDQ- VDDQ (at calibration)  
V
DD = VDDQ  
TABLE 26  
ODT DC Impedance after proper IO Calibration and Voltage/Temperature Drift  
Symbol Value  
Min.  
Unit  
Note  
Max.  
1)  
RTT  
0.9 - dRTTdT x |ΔT| - dRTTdV x |ΔV|  
1.6 + dRTTdT x |ΔT| + dRTTdV x |ΔV|  
RZQ / TISFRTT  
1) TISFRTT: Termination Impedance Scaling Factor for RTT  
TISFRTT = 12 for RTT020  
:
TISFRTT = 8 for RTT030  
TISFRTT = 6 for RTT040  
TISFRTT = 4 for RTT060  
TISFRTT = 2 for RTT120  
Rev. 0.92, 2008-04  
30  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
TABLE 27  
OTD DC Impedance Sensitivity Parameters  
Symbol  
Value  
Min.  
Unit  
Note  
Max.  
1)  
dRTTdT  
dRTTdV  
0
0
1.5  
%/°C  
0.15  
%/mV  
1) These parameters may not be subject to production test. They are verified by design and characterization.  
Rev. 0.92, 2008-04  
31  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
3.8  
Interface Capacitance  
Definition and values for interface capacitances are provided in the following table.  
TABLE 28  
Interface Capacitance Values  
Parameter  
Signals  
Symbol  
DDR3–800 DDR3–1066 DDR3–1333 DDR3–1600 Unit Note  
Min. Max. Min. Max. Min. Max. Min. Max.  
1)2)3)  
Input/Output  
Capacitance  
DQ, DM, DQS,  
DQS  
CIO  
1.5 3.0  
1.5  
3.0  
1.5  
2.5  
1.5  
2.3  
pF  
pF  
2)3)  
Input Capacitance CK, CK  
CCK  
0.8 1.6  
0.8  
0
1.6  
0.8  
0
1.4  
0.8  
0
1.4  
2)3)4)  
Input Capacitance CK, CK  
Delta  
CDCK  
0
0
0.15  
0.2  
0.15  
0.15  
0.15 pF  
2)3)5)  
Input/Output  
DQS, DQS  
CDDQS  
0
0.2  
0
0.15  
0
0.15 pF  
Capacitance delta  
DQS and DQS  
2)3)6)  
Input Capacitance All other input-only CI  
0.75 1.5  
–0.5 0.3  
0.75 1.5  
–0.5 0.3  
–0.5 0.5  
–0.5 0.3  
0.75 1.3  
–0.4 0.2  
–0.4 0.4  
–0.5 0.3  
0.75 1.3  
–0.4 0.2  
–0.4 0.4  
–0.5 0.3  
pF  
pF  
pF  
pF  
pF  
pins  
2)3)7)8)  
Input Capacitance All CTRL input-only CDI_CTRL  
delta  
pins  
2)3)9)  
10)  
Input Capacitance All ADD and CMD CDI_ADD_CMD –0.5 0.5  
delta  
input-only pins  
DQ, DM, DQS,  
2)3)11)  
Input/Output  
CDIO  
CZQ  
–0.5 0.3  
Capacitance delta DQS  
12)  
ZQ Capacitance ZQ  
3
3
3
3
1) Although the DM signal has different function, the loading matches DQ and DQS  
2) This parameter is not subject to production test. It is verified by design and characterization. Capacitance is measured according to JEP147  
(Procedure for measuring input capacitance using a vector network analyzer (VNA) with VDD, VDDQ, VSS, VSSQ applied and all other balls  
floating (except the ball under test, CKE, RESET and ODT as necessary). VDD = VDDQ = 1.5 V, VBIAS = VDD/2 and on-die termination off  
3) This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here  
4) Absolute value of CCK - CCK#  
5) Absolute value of CIO.DQS - CIO.DQS#  
6) CI applies to ODT, CS, CKE, A[15:0], BA[2:0], RAS, CAS, WE  
7)  
8)  
9)  
C
C
C
DI_CTRL applies to ODT, CS and CKE  
DI_CTRL = CI.CTRL - 0.5 × (CI.CK + CI.CK#  
DI_ADD_CMD applies to A[15:0], BA[2:0], RAS, CAS and WE  
)
10) CDI_ADD_CMD = CI.ADD,CMD - 0.5 × (CI.CK + CI.CK#  
)
11) CDIO = CIO.DQ,DM - 0.5 × (CIO.DQS + CIO.DQS#  
)
12) Maximum external load capacitance on ZQ signal: 5 pF  
Rev. 0.92, 2008-04  
32  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
3.9  
Overshoot and Undershoot Specification  
TABLE 29  
AC Overshoot / Undershoot Specification for Address and Control Signals  
Parameter  
DDR3–800 DDR3–1066 DDR3–1333 DDR3–1600 Unit  
Note  
1)  
Maximum peak amplitude allowed for overshoot area 0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
V
V
1)  
Maximum peak amplitude allowed for undershoot  
area  
0.4  
1)  
1)  
Maximum overshoot area above VDD  
Maximum undershoot area below VSS  
0.67  
0.67  
0.5  
0.5  
0.4  
0.4  
0.33  
0.33  
V × ns  
V × ns  
1) Applies for the following signals: A[15:0], BA[3:0], CS, RAS, CAS, WE, CKE and ODT  
FIGURE 5  
AC Overshoot / Undershoot Definitions for Address and Control Signals  
Maximum Amplitude  
Overshoot Area  
VDD  
VSS  
Undershoot Area  
Maximum Amplitude  
Time (ns)  
TABLE 30  
AC Overshoot / Undershoot Specification for Clock, Data, Strobe and Mask Signals  
Parameter  
DDR3–  
800  
DDR3–  
1066  
DDR3–  
1333  
DDR3–  
1600  
Unit  
Note  
1)  
1)  
Maximum peak amplitude allowed for overshoot area 0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
V
V
Maximum peak amplitude allowed for undershoot  
area  
0.4  
1)  
1)  
Maximum overshoot area above VDDQ  
0.25  
0.25  
0.19  
0.19  
0.15  
0.15  
0.13  
0.13  
V × ns  
V × ns  
Maximum undershoot area below VSSQ  
1) Applies for CK, CK, DQ, DQS, DQS & DM  
Rev. 0.92, 2008-04  
33  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
FIGURE 6  
AC Overshoot / Undershoot Definitions for Clock, Data, Strobe and Mask Signals  
Maximum Amplitude  
Overshoot Area  
VDDQ  
VSSQ  
Undershoot Area  
Maximum Amplitude  
Time (ns)  
Rev. 0.92, 2008-04  
02092007-PWZB-VR0U  
34  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
4
Speed Bins and Timing Parameter  
The following AC timings are provided with CK/CK and  
DQS/DQS differential slew rate of 2.0 V/ns. Timings are  
further provided for calibrated OCD drive strength under the  
“Reference Load for Timing Measurements” according to  
Chapter 3.3 only.  
The CK/CK input reference level (for timing referenced to  
CK/CK) is the point at which CK and CK cross. The DQS/DQS  
reference level (for timing referenced to DQS/DQS) is the  
point at which DQS and DQS cross. The output timing  
reference voltage level is VTT.  
4.1  
Speed Bins  
The following tables show DDR3 speed bins and relevant  
timing parameters. Other timing parameters are provided in  
the following chapter. For availability and ordering information  
of products for a specific speed bin, please see Table 1.  
The absolute specification for all speed bins is TOPER and  
VDD = VDDQ = 1.5 V +/-0.075 V. In addition the following  
general notes apply.  
General Notes for Speed Bins:  
The CL setting and CWL setting result in tCK.AVG.MIN and  
CLSELECTED‘Reserved’ settings are not allowed. User  
must program a different value  
Any DDR3-1066 speed bin also supports functional  
operation at lower frequencies as shown in the tables  
which are not subject to Production Tests but verified by  
Design/Characterization  
Any DDR3-1333 speed bin also supports functional  
operation at lower frequencies as shown in the tables  
which are not subject to Production Tests but verified by  
Design/Characterization  
Any DDR3-1600 speed bin also supports functional  
operation at lower frequencies as shown in the tables  
which are not subject to Production Tests but verified by  
Design/Characterization  
t
t
CK.AVG.MAX requirements. When making a selection of  
CK.AVG, both need to be fulfiled: Requirements from CL  
setting as well as requirements from CWL setting  
t
CK.AVG.MIN limits: Since CAS Latency is not purely analog -  
data and strobe output are synchronized by the DLL - all  
possible intermediate frequencies may not be guaranteed.  
An application should use the next smaller industry  
standard tCK.AVG value (2.5, 1.875, 1.5, or 1.25 ns) when  
calculating CL [nCK] = tAA [ns] / tCK.AVG [ns], rounding up to  
the next ‘Supported CL’  
tCK.AVG.MAX limits: Calculate tCK.AVG = tAA.MAX /  
CLSELECTED and round the resulting tCK.AVG down to the  
next valid speed bin limit (i.e. 3.3 ns or 2.5 ns or 1.875 ns  
or 1.25 ns). This result is tCK.AVG.MAX corresponding to  
Rev. 0.92, 2008-04  
35  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
TABLE 31  
DDR3-800 Speed Bins  
Speed Bin  
DDR3-800D  
5-5-5  
DDR3-800E  
Unit Note  
CL-nRCD-nRP  
6-6-6  
QAG Partnumber Extension  
Parameter  
-08D  
-08E  
Symbol  
Min.  
Max.  
Min.  
Max.  
1)  
Internal read command to first data  
ACT to internal read or write delay time  
PRE command period  
tAA  
12.5  
12.5  
12.5  
50.0  
5, 6  
5
20.0  
15.0  
15.0  
15.0  
52.5  
6
20.0  
ns  
1)  
tRCD  
ns  
1)  
tRP  
ns  
1)  
ACT to ACT or REF command period  
Supported CL Settings  
tRC  
ns  
1)  
Sup_CL  
Sup_CWL  
tCK.AVG.CL05.CWL05  
tCK.AVG.CL06.CWL05  
nCK  
1)  
Supported CWL Settings  
5
nCK  
1)2)  
Average Clock Period with CL = 5; CWL = 5  
Average Clock Period with CL = 6; CWL = 5  
2.5  
3.3  
3.3  
RESERVED  
2.5 3.3  
ns  
1)2)  
2.5  
ns  
1) Please refer to "General Notes for Speed Bins" at beginning of this chapter.  
2) Max. limits are exclusive. E.g. if tCK.AVG.MAX value is 2.5 ns, tCK.AVG needs to be < 2.5 ns.  
Rev. 0.92, 2008-04  
36  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
TABLE 32  
DDR3-1066 Speed Bins  
Speed Bin  
DDR3-1066E  
6-6-6  
DDR3-1066F  
7-7-7  
DDR3-1066G  
Unit Note  
CL-nRCD-nRP  
8-8-8  
QAG Partnumber Extension  
Parameter  
-10E  
-10F  
-10G  
Symbol  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
1)  
Internal read command to first data tAA  
11.25 20.0  
13.125 20.0  
15.0  
15.0  
20.0  
ns  
1)  
ACT to internal read or write delay  
time  
tRCD  
11.25  
13.125  
ns  
1)  
PRE command period  
tRP  
tRC  
11.25  
48.75  
13.125  
50.625  
15.0  
52.5  
ns  
1)  
ACT to ACT or REF command  
period  
ns  
1)  
Supported CL Settings  
Supported CWL Settings  
Sup_CL  
5, 6, 7, 8  
5, 6  
6, 7, 8  
5, 6  
6, 8  
5, 6  
nCK  
1)  
Sup_CWL  
nCK  
1)2)  
Average Clock Period with CL = 5; tCK.AVG.CL05.CWL05 2.5  
3.3  
RESERVED  
RESERVED  
ns  
CWL = 5  
1)2)  
Average Clock Period with CL = 5; tCK.AVG.CL05.CWL06 RESERVED  
RESERVED  
RESERVED  
ns  
CWL = 6  
1)2)  
Average Clock Period with CL = 6; tCK.AVG.CL06.CWL05 2.5  
3.3  
2.5  
3.3  
2.5  
3.3  
ns  
CWL = 5  
1)2)  
Average Clock Period with CL = 6; tCK.AVG.CL06.CWL06 1.875 2.5  
CWL = 6  
RESERVED  
RESERVED  
1.875 2.5  
RESERVED  
1.875 2.5  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
1.875 2.5  
ns  
1)2)  
Average Clock Period with CL = 7; tCK.AVG.CL07.CWL05 RESERVED  
CWL = 5  
ns  
1)2)  
Average Clock Period with CL = 7; tCK.AVG.CL07.CWL06 1.875 2.5  
CWL = 6  
ns  
1)2)  
Average Clock Period with CL = 8; tCK.AVG.CL08.CWL05 RESERVED  
CWL = 5  
ns  
1)2)  
Average Clock Period with CL = 8; tCK.AVG.CL08.CWL06 1.875 2.5  
ns  
CWL = 6  
1) Please refer to "General Notes for Speed Bins" at beginning of this chapter.  
2) Max. limits are exclusive. E.g. if tCK.AVG.MAX value is 2.5 ns, tCK.AVG needs to be < 2.5 ns.  
Rev. 0.92, 2008-04  
37  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
TABLE 33  
DDR3-1333 Speed Bins  
Speed Bin  
DDR3-  
1333G  
DDR3-  
1333H  
DDR3-1333J Unit Note  
CL-nRCD-nRP  
8-8-8  
-13G  
9-9-9  
-13H  
10-10-10  
-13J  
QAG Partnumber Extension  
Parameter  
Symbol  
Min. Max. Min. Max. Min. Max.  
1)  
1)  
1)  
1)  
1)  
Internal read command to first data  
ACT to internal read or write delay time  
PRE command period  
tAA  
12.0 20.0 13.5 20.0 15.0 20.0 ns  
tRCD  
tRP  
12.0  
12.0  
48.0  
13.5  
13.5  
49.5  
15.0  
15.0  
51.0  
ns  
ns  
ACT to ACT or REF command period  
Supported CL Settings  
tRC  
ns  
Sup_CL  
5, 6, 7, 8, 9, 6, 8, 9, 10  
10  
6, 8, 10  
nCK  
1)  
Supported CWL Settings  
Sup_CWL  
5, 6, 7  
5, 6, 7  
5, 6, 7  
nCK  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
Average Clock Period with CL = 5; CWL = 5 tCK.AVG.CL05.CWL05 2.5  
3.3  
RESERVED RESERVED ns  
Average Clock Period with CL = 5; CWL = 6 tCK.AVG.CL05.CWL06 RESERVED RESERVED RESERVED ns  
Average Clock Period with CL = 5; CWL = 7 tCK.AVG.CL05.CWL07 RESERVED RESERVED RESERVED ns  
Average Clock Period with CL = 6; CWL = 5 tCK.AVG.CL06.CWL05 2.5  
3.3  
2.5  
3.3  
2.5  
3.3  
ns  
Average Clock Period with CL = 6; CWL = 6 tCK.AVG.CL06.CWL06 RESERVED RESERVED RESERVED ns  
Average Clock Period with CL = 6; CWL = 7 tCK.AVG.CL06.CWL07 RESERVED RESERVED RESERVED ns  
Average Clock Period with CL = 7; CWL = 5 tCK.AVG.CL07.CWL05 RESERVED RESERVED RESERVED ns  
Average Clock Period with CL = 7; CWL = 6 tCK.AVG.CL07.CWL06 1.875 2.5  
RESERVED RESERVED ns  
Average Clock Period with CL = 7; CWL = 7 tCK.AVG.CL07.CWL07 RESERVED RESERVED RESERVED ns  
Average Clock Period with CL = 8; CWL = 5 tCK.AVG.CL08.CWL05 RESERVED RESERVED RESERVED ns  
Average Clock Period with CL = 8; CWL = 6 tCK.AVG.CL08.CWL06 1.875 2.5  
1.875 2.5  
1.875 2.5  
ns  
Average Clock Period with CL = 8; CWL = 7 tCK.AVG.CL08.CWL07 1.5 1.875 RESERVED RESERVED ns  
Average Clock Period with CL = 9; CWL = 5 tCK.AVG.CL09.CWL05 RESERVED RESERVED RESERVED ns  
Average Clock Period with CL = 9; CWL = 6 tCK.AVG.CL09.CWL06 RESERVED RESERVED RESERVED ns  
Average Clock Period with CL = 9; CWL = 7 tCK.AVG.CL09.CWL07 1.5  
1.875 1.5  
1.875 RESERVED ns  
Average Clock Period with CL = 10; CWL = 5 tCK.AVG.CL10.CWL05 RESERVED RESERVED RESERVED ns  
Average Clock Period with CL = 10; CWL = 6 tCK.AVG.CL10.CWL06 RESERVED RESERVED RESERVED ns  
Average Clock Period with CL = 10; CWL = 7 tCK.AVG.CL10.CWL07 1.5  
1.875 1.5  
1.875 1.5  
1.875 ns  
1) Please refer to "General Notes for Speed Bins" at beginning of this chapter.  
2) Max. limits are exclusive. E.g. if tCK.AVG.MAX value is 2.5 ns, tCK.AVG needs to be < 2.5 ns.  
Rev. 0.92, 2008-04  
38  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
TABLE 34  
DDR3-1600 Speed Bins  
Speed Bin  
DDR3-1600H  
9-9-9  
DDR3-1600J  
10-10-10  
-16J  
Unit Note  
CL-nRCD-nRP  
QAG Partnumber Extension  
Parameter  
-16H  
Symbol  
Min.  
Max.  
Min.  
Max.  
1)  
Internal read command to first data  
tAA  
11.25 20.0  
12.5  
12.5  
12.5  
47.5  
20.0  
ns  
1)  
ACT to internal read or write delay time  
PRE command period  
tRCD  
11.25  
11.25  
46.25  
ns  
1)  
tRP  
ns  
1)  
ACT to ACT or REF command period  
tRC  
ns  
1)  
Supported CL Settings  
Sup_CL  
5, 6, 7, 8, 9, 10 5, 6, 7, 8, 9, 10 nCK  
1)  
Supported CWL Settings  
Sup_CWL  
5, 6, 7, 8  
2.5  
5, 6, 7, 8  
2.5 3.3  
nCK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
Average Clock Period with CL = 5; CWL = 5  
Average Clock Period with CL = 5; CWL = 6  
Average Clock Period with CL = 5; CWL = 7  
Average Clock Period with CL = 5; CWL = 8  
Average Clock Period with CL = 6; CWL = 5  
Average Clock Period with CL = 6; CWL = 6  
Average Clock Period with CL = 6; CWL = 7  
Average Clock Period with CL = 6; CWL = 8  
Average Clock Period with CL = 7; CWL = 5  
Average Clock Period with CL = 7; CWL = 6  
Average Clock Period with CL = 7; CWL = 7  
Average Clock Period with CL = 7; CWL = 8  
Average Clock Period with CL = 8; CWL = 5  
Average Clock Period with CL = 8; CWL = 6  
Average Clock Period with CL = 8; CWL = 7  
Average Clock Period with CL = 8; CWL = 8  
Average Clock Period with CL = 9; CWL = 5  
Average Clock Period with CL = 9; CWL = 6  
Average Clock Period with CL = 9; CWL = 7  
Average Clock Period with CL = 9; CWL = 8  
Average Clock Period with CL = 10; CWL = 5  
Average Clock Period with CL = 10; CWL = 6  
Average Clock Period with CL = 10; CWL = 7  
Average Clock Period with CL = 10; CWL = 8  
tCK.AVG.CL05.CWL05  
tCK.AVG.CL05.CWL06  
tCK.AVG.CL05.CWL07  
tCK.AVG.CL05.CWL08  
tCK.AVG.CL06.CWL05  
tCK.AVG.CL06.CWL06  
tCK.AVG.CL06.CWL07  
tCK.AVG.CL06.CWL08  
tCK.AVG.CL07.CWL05  
tCK.AVG.CL07.CWL06  
tCK.AVG.CL07.CWL07  
tCK.AVG.CL07.CWL08  
tCK.AVG.CL08.CWL05  
tCK.AVG.CL08.CWL06  
tCK.AVG.CL08.CWL07  
tCK.AVG.CL08.CWL08  
tCK.AVG.CL09.CWL05  
tCK.AVG.CL09.CWL06  
tCK.AVG.CL09.CWL07  
tCK.AVG.CL09.CWL08  
tCK.AVG.CL10.CWL05  
tCK.AVG.CL10.CWL06  
tCK.AVG.CL10.CWL07  
tCK.AVG.CL10.CWL08  
3.3  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
2.5  
3.3  
2.5  
3.3  
1.875 2.5  
RESERVED  
RESERVED  
RESERVED  
1.875 2.5  
RESERVED  
RESERVED  
RESERVED  
1.875 2.5  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
1.875 2.5  
RESERVED  
RESERVED  
RESERVED  
1.875 2.5  
1.5  
1.875 RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
1.5  
1.875 1.5  
1.875 ns  
1.25  
1.5  
RESERVED  
RESERVED  
RESERVED  
ns  
ns  
ns  
RESERVED  
RESERVED  
1.5  
1.875 1.5  
1.5 1.25  
1.875 ns  
1.5 ns  
1.25  
1) Please refer to "General Notes for Speed Bins" at beginning of this chapter.  
2) Max. limits are exclusive. E.g. if tCK.AVG.MAX value is 2.5 ns, tCK.AVG needs to be < 2.5 ns.  
Rev. 0.92, 2008-04  
39  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
5
Package Outlines  
Figure 7 reflects the current status of the outline dimensions of the DDR3 packages for 512 Mbit components in x4, x8 and  
x16 configuration. For functional description of each ball see Chapter 1.4.  
FIGURE 7  
Package Outline Dimensions  
ꢀꢍꢊ  
ꢀꢍꢊ  
ꢀꢍꢊ  
ꢀꢍꢊ  
ꢈꢌꢆ  
ꢈꢌꢆ  
ꢁꢀꢍꢀ  
ꢁꢀꢍꢀ  
Rev. 0.92, 2008-04  
02092007-PWZB-VR0U  
40  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
6
Product Type Nomenclature  
For reference the applicable Qimonda DDR3 component nomenclature is listed in this chapter.  
TABLE 35  
Example for Nomenclature Fields  
Example for  
Field Number  
1
2
3
4
5
6
7
8
9
10  
11  
12  
DDR3 SDRAM Component  
ID  
SH  
51  
0
2
A1  
F1  
C
08  
E
TABLE 36  
DDR3 SDRAM Nomenclature  
Field Description  
Value  
Coding  
1
2
3
Qimonda SDRAM Component Prefix ID  
Qimonda SDRAM  
Standard DDR3  
512 Mbit  
SDRAM Technology  
Component Density  
SH  
51  
1G  
0
1 GBit  
4
5
Module Type / ECC Support  
Number of Chip Select  
No ECC support on SDRAM level  
1 Chip Select (20)  
2 Chip Select (21)  
4 DQ lines (22)  
1
6
Number of DQs  
2
3
8 DQ lines (23)  
4
16 DQ lines (24)  
32 DQ lines (25)  
First Die  
5
7
8
Die Revision  
Package  
A1  
F1  
F2  
C
Planar FBGA, lead- and halogen-free  
Dual Die FBGA, lead- and halogen-free  
Commercial (0 °C - 95 °C)  
9
Temperature Range  
Reserved For Future Use  
Band Width Per DQ  
10  
11  
08  
10  
13  
16  
RFU  
DDR3–800 = 800 Mbit per ball per second, tCK = 2.5 ns  
DDR3–1066 = 1066 Mbit per ball per second, tCK = 1.875 ns  
DDR3–1333 = 1333 Mbit per ball per second, tCK = 1.5 ns  
DDR3–1600 = 1600 Mbit per ball per second, tCK = 1.25 ns  
Rev. 0.92, 2008-04  
41  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
Field Description  
12 Latencies  
Value  
Coding  
D
E
F
G
H
J
CL–RCD–RP = 5–5–5  
CL–RCD–RP = 6–6–6  
CL–RCD–RP = 7–7–7  
CL–RCD–RP = 8–8–8  
CL–RCD–RP = 9–9–9  
CL–RCD–RP = 10–10–10  
Rev. 0.92, 2008-04  
42  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
List of Figures  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
industry standardBallout for 512 Mb ×4 Components (PG-TFBGA-78) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
industry standardBallout for 512 Mb × 8 Components (PG-TFBGA-78). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
industry standardBallout for 512 Mb × 16 Components (PG-TFBGA-96). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
industry standardReference Load for AC Timings and Output Slew Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
industry standardAC Overshoot / Undershoot Definitions for Address and Control Signals. . . . . . . . . . . . . . . 33  
industry standardAC Overshoot / Undershoot Definitions for Clock, Data, Strobe and Mask Signals . . . . . . . 34  
industry standardPackage Outline Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Rev. 0.92, 2008-04  
43  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
List of Tables  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
industry standardOrdering Information for 512 Mbit DDR3 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
industry standard512 Mbit DDR3 SDRAM Addressing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
industry standardInput / Output Signal Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
industry standardCommand Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
industry standardClock Enable (CKE) Truth Table for Synchronous Transitions . . . . . . . . . . . . . . . . . . . . . . . 13  
industry standardData Mask (DM) Truth Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
industry standardMR0 Mode register Definition (BA[2:0]=000B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
industry standardMR1 Mode Register Definition (BA[2:0]=001B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
industry standardMR2 Mode Register Definition (BA[2:0]=010B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
industry standardMR3 Mode Register Definition (BA[2:0]=011B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
industry standardBit Order during Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
industry standardAbsolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
industry standardSDRAM Component Operating Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
industry standardDC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
industry standardInput and Output Leakage Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
industry standardDC and AC Input Levels for Single-Ended Command, Address and Control Signals. . . . . . 26  
industry standardDC and AC Input Levels for Single-Ended DQ and DM Signals . . . . . . . . . . . . . . . . . . . . . . 26  
industry standardDifferential swing requirement for clock (CK - CK) and strobe (DQS - DQS) . . . . . . . . . . . . 27  
industry standardAllowed Time Before Ringback (tDVAC) for CLK - CLK and DQS - DQS . . . . . . . . . . . . . . . . 27  
industry standardEach Single-Ended Levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU. . . . . . 28  
industry standardCross Point Voltage for Differential Input Signals (CK, DQS) . . . . . . . . . . . . . . . . . . . . . . . . 28  
industry standardDC and AC Output Levels for Single-Ended Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
industry standardAC Output Levels for Differential Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
industry standardOutput Slew Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
industry standardODT DC Impedance and Mid-Level Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
industry standardODT DC Impedance after proper IO Calibration and Voltage/Temperature Drift . . . . . . . . . 30  
industry standardOTD DC Impedance Sensitivity Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
industry standardInterface Capacitance Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
industry standardAC Overshoot / Undershoot Specification for Address and Control Signals. . . . . . . . . . . . . 33  
industry standardAC Overshoot / Undershoot Specification for Clock, Data, Strobe and Mask Signals . . . . . 33  
industry standardDDR3-800 Speed Bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
industry standardDDR3-1066 Speed Bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
industry standardDDR3-1333 Speed Bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
industry standardDDR3-1600 Speed Bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
industry standardExample for Nomenclature Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
industry standardDDR3 SDRAM Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 9  
Table 10  
Table 11  
Table 12  
Table 13  
Table 14  
Table 15  
Table 16  
Table 17  
Table 18  
Table 19  
Table 20  
Table 21  
Table 22  
Table 23  
Table 24  
Table 25  
Table 26  
Table 27  
Table 28  
Table 29  
Table 30  
Table 31  
Table 32  
Table 33  
Table 34  
Table 35  
Table 36  
Rev. 0.92, 2008-04  
44  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
IDSH51–0[2/3/4]A1F1C  
512-Mbit Double-Data-Rate-Three SDRAM  
Table of Contents  
1
1.1  
1.2  
1.3  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Product List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
DDR3 SDRAM Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Package Ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Ballout for 512 Mb × 4 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Ballout for 512 Mb × 8 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Ballout for 512 Mb × 16 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Input / Output Signal Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
1.4  
1.4.1  
1.4.2  
1.4.3  
1.5  
2
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Mode Register 0 (MR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Mode Register 1 (MR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Mode Register 2 (MR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Mode Register 3 (MR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Burst Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
3
Operating Conditions and  
Interface Specification 23  
3.1  
3.2  
3.3  
3.4  
3.4.1  
3.4.2  
3.5  
3.6  
3.7  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Interface Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Voltage Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
DC and AC Logic Input Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
DC and AC Output Measurements Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Output Slew Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
ODT DC Impedance and Mid-Level Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
ODT DC Impedance Sensitivity on Temperature and Voltage Drifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Interface Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Overshoot and Undershoot Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.8  
3.9  
4
Speed Bins and Timing Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
4.1  
Speed Bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
5
6
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Product Type Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Rev. 0.92, 2008-04  
45  
02092007-PWZB-VR0U  
Advance Internet Data Sheet  
Edition 2008-04  
Published by Qimonda AG  
Gustav-Heinemann-Ring 212  
D-81739 München, Germany  
© Qimonda AG 2008.  
All Rights Reserved.  
Legal Disclaimer  
The information given in this Internet Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics  
(“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind,  
including without limitation warranties of non-infringement of intellectual property rights of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office.  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in question please  
contact your nearest Qimonda Office.  
Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a  
failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect  
the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human  
body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health  
of the user or other persons may be endangered.  
www.qimonda.com  

相关型号:

IDSR

The IDSR combines a 600 VDC capability with indication to provide an ideal solution for many DC applications.
LITTELFUSE

IDSR.100

Electric Fuse, Time Delay Blow, 0.1A, 600VAC, 600VDC, 200000A (IR), Inline/holder,
LITTELFUSE

IDSR.125

Electric Fuse, Time Delay Blow, 0.125A, 600VAC, 600VDC, 200000A (IR), Inline/holder,
LITTELFUSE

IDSR.150

Electric Fuse, Time Delay Blow, 0.15A, 600VAC, 600VDC, 200000A (IR), Inline/holder,
LITTELFUSE

IDSR.200

Electric Fuse, Time Delay Blow, 0.2A, 600VAC, 600VDC, 200000A (IR), Inline/holder,
LITTELFUSE

IDSR.250

Electric Fuse, Time Delay Blow, 0.25A, 600VAC, 600VDC, 200000A (IR), Inline/holder,
LITTELFUSE

IDSR.300

Electric Fuse, Time Delay Blow, 0.3A, 600VAC, 600VDC, 200000A (IR), Inline/holder,
LITTELFUSE

IDSR.400

Electric Fuse, Time Delay Blow, 0.4A, 600VAC, 600VDC, 200000A (IR), Inline/holder,
LITTELFUSE

IDSR.800

Electric Fuse, Time Delay Blow, 0.8A, 600VAC, 600VDC, 200000A (IR), Inline/holder,
LITTELFUSE

IDSR001ID

Electric Fuse, Time Delay Blow, 1A, 600VAC, 600VDC, 200000A (IR), Inline/holder
LITTELFUSE

IDSR002

Electric Fuse, Time Delay Blow, 2A, 600VAC, 600VDC, 200000A (IR), Inline/holder,
LITTELFUSE

IDSR002ID

Electric Fuse, Time Delay Blow, 2A, 600VAC, 600VDC, 200000A (IR), Inline/holder
LITTELFUSE