7540 [RENESAS]

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER; 单片8位CMOS微机
7540
型号: 7540
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
单片8位CMOS微机

计算机
文件: 总88页 (文件大小:858K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
7540 Group  
REJ03B0011-0400  
Rev.4.00  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Jun 21, 2004  
DESCRIPTION  
The 7540 Group is the 8-bit microcomputer based on the 740 fam-  
APPLICATION  
Office automation equipment, factory automation equipment,  
ily core technology.  
The 7540 Group has a serial I/O, 8-bit timers, a 16-bit timer, and  
an A/D converter, and is useful for control of home electric appli-  
ances and office automation equipment.  
home electric appliances, consumer electronics, car, etc.  
Notes 1: Serial I/O2 can be used in the following cases;  
(1) Serial I/O1 is not used,  
(2) Serial I/O1 is used as UART and BRG output divided by 16 is  
selected as the synchronized clock.  
2: In this version, the operating temperature range and total time  
are limited as follows;  
55 °C to 85 °C: within total 6000 hours,  
85 °C to 125 °C: within total 1000 hours.  
FEATURES  
Basic machine-language instructions ...................................... 71  
The minimum instruction execution time ......................... 0.34µs  
(at 6 MHz oscillation frequency, double-speed mode for the  
shortest instruction)  
Memory size ROM............................................ 8 K to 32 K bytes  
RAM ............................................. 384 to 768 bytes  
Programmable I/O ports ....................... 29 (25 in 32-pin version)  
Interrupts ................................................. 15 sources, 15 vectors  
................................. (14 sources, 14 vectors for 32-pin version)  
Timers ............................................................................. 8-bit 4  
...................................................................................... 16-bit 1  
Serial I/O1 ................... 8-bit1 (UART or Clock-synchronized)  
Serial I/O2 (Note 1) ..................... 8-bit 1 (Clock-synchronized)  
A/D converter ............................................... 10-bit8 channels  
.................................................... (6 channels for 32-pin version)  
Clock generating circuit............................................. Built-in type  
(low-power dissipation by an on-chip oscillator enabled)  
(connect to external ceramic resonator or quartz-crystal oscilla-  
tor permitting RC oscillation)  
Watchdog timer ............................................................ 16-bit 1  
Power source voltage  
X
IN oscillation frequency at ceramic oscillation, in double-speed mode  
At 6 MHz .................................................................... 4.5 to 5.5 V  
XIN oscillation frequency at ceramic oscillation, in high-speed mode  
At 8 MHz .................................................................... 4.0 to 5.5 V  
At 4 MHz .................................................................... 2.4 to 5.5 V  
At 2 MHz .................................................................... 2.2 to 5.5 V  
XIN oscillation frequency at RC oscillation in high-speed mode or  
middle-speed mode  
At 4 MHz .................................................................... 4.0 to 5.5 V  
At 2 MHz .................................................................... 2.4 to 5.5 V  
At 1 MHz .................................................................... 2.2 to 5.5 V  
Power dissipation  
Mask ROM version ....................................... 22.5 mW (standard)  
One Time PROM version ................................ 30 mW (standard)  
Operating temperature range................................... –20 to 85 °C  
(–40 to 85 °C for extended operating temperature version)  
(–40 to 125 °C for extended operating temperature 125 °C ver-  
sion (Note 2))  
Rev.4.00 Jun 21, 2004 page 1 of 82  
REJ03B0011-0400Z  
7540 Group  
PIN CONFIGURATION (TOP VIEW)  
P0  
7
1
1
16  
15  
14  
13  
12  
11  
10  
9
25  
26  
27  
28  
29  
30  
31  
32  
P3  
P3  
P3  
P3  
P3  
4
3
2
1
0
(LED  
(LED  
(LED  
(LED  
(LED  
4
3
2
1
0
)
)
)
)
)
M37540Mx-XXXGP  
M37540MxT-XXXGP  
M37540MxV-XXXGP  
M37540ExGP  
M37540E8T-XXXGP  
M37540E8V-XXXGP  
P1  
P1  
0
/R  
X
D
D
1
/TX  
P1  
2
/SCLK1/SCLK2  
/SRDY1/SDATA2  
P1  
3
P1  
4
/CNTR  
P2 AN  
P2 AN  
0
V
X
X
SS  
0
/
/
0
OUT  
IN  
1
1
Package type: 32P6U-A  
Fig. 1 Pin configuration (32P6U-A type)  
1
2
3
4
P1  
2
/SCLK1/SCLK2  
36  
P1  
1
/T  
X
D
D
1
P1  
3
/SRDY1/SDATA2  
35  
34  
P10  
/R  
X
1
P1  
4
/CNTR  
0
P0  
P0  
P0  
P0  
7
6
5
4
P2  
P2  
P2  
P2  
0
1
2
3
/AN  
/AN  
/AN  
/AN  
0
1
2
3
33  
32  
5
6
31  
30  
29  
28  
7
P0  
3
/TXOUT  
8
P0  
2
/TZOUT  
P2  
P2  
P2  
P2  
4
5
6
/AN  
/AN  
/AN  
/AN  
4
5
6
9
P0  
1
/TYOUT  
10  
11  
12  
27  
26  
P00  
/CNTR  
1
7
7
P3  
P3  
P3  
P3  
P3  
P3  
P3  
P3  
7
6
5
4
3
/INT  
0
25  
24  
23  
VREF  
(LED  
(LED  
(LED  
(LED  
(LED  
(LED  
(LED  
6
5
4
3
)/INT  
1
13  
14  
15  
16  
17  
18  
)
)
)
)
)
)
RESET  
CNVSS  
22  
21  
20  
Vcc  
X
IN  
OUT  
SS  
2
1
0
2
1
0
X
19  
V
Package type: 36P2R-A  
Fig. 2 Pin configuration (36P2R-A type)  
Rev.4.00 Jun 21, 2004 page 2 of 82  
REJ03B0011-0400Z  
7540 Group  
P1  
2
/SCLK1/SCLK2  
32  
P11  
/TXD  
1
1
P13  
/SRDY1/SDATA2  
31  
30  
P1  
0
/R  
XD1  
2
3
4
P14/CNTR0  
P0  
P0  
P0  
P0  
7
29  
28  
P2  
0
1
2
/AN  
/AN  
/AN  
/AN  
/AN  
0
1
2
6
5
P2  
P2  
P2  
P2  
5
4
6
7
8
27  
26  
25  
P0  
P0  
P0  
3
/TXOUT  
3
4
3
4
2
/TZOUT  
24  
23  
9
1/TYOUT  
P2  
5
/AN5  
VREF  
10  
P00  
/CNTR  
1
P3  
7
/INT  
0
11  
12  
22  
21  
RESET  
CNVSS  
P3  
4
(LED  
4
)
13  
20  
19  
V
X
CC  
IN  
OUT  
P3  
P3  
3
2
(LED  
(LED  
3
2
)
)
14  
15  
P3  
1
0
(LED  
(LED  
1
0
)
)
X
18  
17  
16  
P3  
V
SS  
Package type: 32P4B  
Fig. 3 Pin configuration (32P4B-A type)  
P14/CNTR0  
NC  
1
42  
41  
40  
39  
38  
37  
P13/SRDY1/SDATA2  
P12/SCLK1/SCLK2  
P11/TXD1  
P10/RXD1  
P07  
2
3
NC  
P20/AN0  
P21/AN1  
NC  
4
5
6
P06  
36  
35  
7
P05  
P22/AN2  
P23/AN3  
8
P04  
34  
33  
32  
31  
9
P03/TXOUT  
P02/TZOUT  
P01/TYOUT  
P00/CNTR1  
NC  
P24/AN4  
P25/AN5  
P26/AN6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
P27/AN7  
NC  
30  
29  
P37/INT0  
NC  
VREF  
28  
27  
26  
25  
24  
23  
P36(LED6)/INT1  
P35(LED5)  
P34(LED4)  
P33(LED3)  
P32(LED2)  
P31(LED1)  
P30(LED0)  
RESET  
CNVSS  
Vcc  
XIN  
XOUT  
22  
VSS  
Outline 42S1M  
Fig. 4 Pin configuration (42S1M type)  
Rev.4.00 Jun 21, 2004 page 3 of 82  
REJ03B0011-0400Z  
7540 Group  
FUNCTIONAL BLOCK  
K e y - o n w a k e u p  
Fig. 5 Functional block diagram (32P6U package)  
Rev.4.00 Jun 21, 2004 page 4 of 82  
REJ03B0011-0400Z  
7540 Group  
K e y - o n w a k e u p  
Fig. 6 Functional block diagram (36P2R package)  
Rev.4.00 Jun 21, 2004 page 5 of 82  
REJ03B0011-0400Z  
7540 Group  
K e y - o n w a k e u p  
Fig. 7 Functional block diagram (32P4B package)  
Rev.4.00 Jun 21, 2004 page 6 of 82  
REJ03B0011-0400Z  
7540 Group  
PIN DESCRIPTION  
Table 1 Pin description  
Pin  
Name  
Function  
Function expect a port function  
Vcc, Vss  
Power source  
(Note 1)  
•Apply voltage of 2.2 to 5.5 V to Vcc, and 0 V to Vss.  
VREF  
Analog reference •Reference voltage input pin for A/D converter  
voltage  
CNVss  
RESET  
XIN  
CNVss  
•Chip operating mode control pin, which is always connected to Vss.  
Reset input  
Clock input  
•Reset input pin for active “L”  
•Input and output pins for main clock generating circuit  
•Connect a ceramic resonator or quartz crystal oscillator between the XIN and XOUT pins.  
•For using RC oscillator, short between the XIN and XOUT pins, and connect the capacitor and resistor.  
•If an external clock is used, connect the clock source to the XIN pin and leave the XOUT pin open.  
• When the on-chip oscillator is selected as the main clock, connect XIN pin to VSS and leave XOUT open.  
XOUT  
Clock output  
I/O port P0  
•8-bit I/O port.  
• Key-input (key-on wake up  
interrupt input) pins  
P00/CNTR1  
P01/TYOUT  
P02/TZOUT  
P03/TXOUT  
P04–P07  
•I/O direction register allows each pin to be individually pro-  
grammed as either input or output.  
• Timer Y, timer Z, timer X and  
timer A function pin  
•CMOS compatible input level  
•CMOS 3-state output structure  
•Whether a built-in pull-up resistor is to be used or not can be de-  
termined by program.  
P10/RxD1  
P11/TxD1  
• Serial I/O1 function pin  
•5-bit I/O port  
I/O port P1  
•I/O direction register allows each pin to be individually pro-  
grammed as either input or output.  
P12/SCLK1/SCLK2  
• Serial I/O1 function pin  
• Serial I/O2 function pin  
P1  
3/SRDY1/SDATA2  
•CMOS compatible input level  
P14/CNTR0  
• Timer X function pin  
•CMOS 3-state output structure  
•CMOS/TTL level can be switched for P10, P12 and P13  
•8-bit I/O port having almost the same function as P0  
•CMOS compatible input level  
P20/AN0–P27/AN7  
I/O port P2  
(Note 2)  
• Input pins for A/D converter  
•CMOS 3-state output structure  
P30–P35  
I/O port P3  
(Note 3)  
•8-bit I/O port  
•I/O direction register allows each pin to be individually programmed as either input or output.  
•CMOS compatible input level (CMOS/TTL level can be switched for P36 and P37).  
•CMOS 3-state output structure  
•P30 to P36 can output a large current for driving LED.  
• Interrupt input pins  
P36/INT1  
P37/INT0  
•Whether a built-in pull-up resistor is to be used or not can be de-  
termined by program.  
Notes 1: VCC = 2.4 to 5.5 V for the extended operating temperature version and the extended operating temperature 125 °C version.  
2: P26/AN6 and P27/AN7 do not exist for the 32-pin version, so that Port P2 is a 6-bit I/O port.  
3: P35 and P36/INT1 do not exist for the 32-pin version, so that Port P3 is a 6-bit I/O port.  
Rev.4.00 Jun 21, 2004 page 7 of 82  
REJ03B0011-0400Z  
7540 Group  
GROUP EXPANSION  
Renesas plans to expand the 7540 group as follow:  
Memory size  
ROM/PROM size ................................................. 8 K to 32 K bytes  
RAM size .............................................................. 384 to 768 bytes  
Memory type  
Support for Mask ROM version, One Time PROM version, and  
Emulator MCU .  
Package  
32P4B .................................................. 32-pin plastic molded SDIP  
32P6U-A ...................... 0.8 mm-pitch 32-pin plastic molded LQFP  
36P2R-A ...................... 0.8 mm-pitch 36-pin plastic molded SSOP  
42S1M.................................... 42-pin shrink ceramic PIGGY BACK  
ROM size  
(bytes)  
M37540E8V  
M37540E8T  
32K  
M37540E8  
M37540M4V  
M37540M4T  
M37540M4  
16K  
M37540E2  
M37540M2V  
8K  
M37540M2T  
M37540M2  
RAM size  
(bytes)  
384  
512  
768  
0
Fig. 8 Memory expansion plan  
Rev.4.00 Jun 21, 2004 page 8 of 82  
REJ03B0011-0400Z  
7540 Group  
Currently supported products are listed below.  
Table 2 List of supported products  
(P) ROM size (bytes) RAM size  
Part Number  
Package  
Remarks  
ROM size for User ()  
(bytes)  
384  
32P4B  
Mask ROM version  
Mask ROM version  
M37540M2-XXXSP  
M37540M2-XXXFP  
M37540M2T-XXXFP  
M37540M2V-XXXFP  
M37540M2-XXXGP  
M37540M2T-XXXGP  
M37540M2V-XXXGP  
M37540M4-XXXSP  
M37540M4-XXXFP  
M37540M4T-XXXFP  
M37540M4V-XXXFP  
M37540M4-XXXGP  
M37540M4T-XXXGP  
M37540M4V-XXXGP  
M37540E2SP  
8192  
36P2R-A  
(8062)  
Mask ROM version (extended operating temperature version)  
Mask ROM version (extended operating temperature 125 °C version)  
Mask ROM version  
32P6U-A  
Mask ROM version (extended operating temperature version)  
Mask ROM version (extended operating temperature 125 °C version)  
Mask ROM version  
32P4B  
16384  
512  
36P2R-A  
Mask ROM version  
(16254)  
Mask ROM version (extended operating temperature version)  
Mask ROM version (extended operating temperature 125 °C version)  
Mask ROM version  
32P6U-A  
Mask ROM version (extended operating temperature version)  
Mask ROM version (extended operating temperature 125 °C version)  
One Time PROM version (blank)  
32P4B  
36P2R-A  
32P6U-A  
32P4B  
8192  
384  
768  
One Time PROM version (blank)  
M37540E2FP  
(8062)  
One Time PROM version (blank)  
M37540E2GP  
One Time PROM version (blank)  
M37540E8SP  
32768  
36P2R-A  
One Time PROM version (blank)  
M37540E8FP  
(32638)  
One Time PROM version  
M37540E8T-XXXFP  
(shipped after programming, extended operating temperature version)  
One Time PROM version (shipped after programming, extended  
operating temperature 125 °C version)  
M37540E8V-XXXFP  
32P6U-A  
42S1M  
One Time PROM version (blank)  
M37540E8GP  
One Time PROM version  
M37540E8T-XXXGP  
(shipped after programming, extended operating temperature version)  
One Time PROM version (shipped after programming, extended  
operating temperature 125 °C version)  
M37540E8V-XXXGP  
M37540RSS  
Emulator MCU  
768  
Rev.4.00 Jun 21, 2004 page 9 of 82  
REJ03B0011-0400Z  
7540 Group  
FUNCTIONAL DESCRIPTION  
Stack pointer (S)  
The stack pointer is an 8-bit register used during subroutine calls  
and interrupts. The stack is used to store the current address data  
and processor status when branching to subroutines or interrupt  
routines.  
Central Processing Unit (CPU)  
The MCU uses the standard 740 family instruction set. Refer to  
the table of 740 family addressing modes and machine-language  
instructions or the SERIES 740 <SOFTWARE> USER’S MANUAL  
for details on each instruction set.  
The lower eight bits of the stack address are determined by the  
contents of the stack pointer. The upper eight bits of the stack ad-  
dress are determined by the Stack Page Selection Bit. If the Stack  
Page Selection Bit is “0”, then the RAM in the zero page is used  
as the stack area. If the Stack Page Selection Bit is “1”, then RAM  
in page 1 is used as the stack area.  
Machine-resident 740 family instructions are as follows:  
1. The FST and SLW instructions cannot be used.  
2. The MUL and DIV instructions can be used.  
3. The WIT instruction can be used.  
4. The STP instruction can be used. (This instruction cannot be  
used while an on-chip oscillator is operating.)  
The Stack Page Selection Bit is located in the SFR area in the  
zero page. Note that the initial value of the Stack Page Selection  
Bit varies with each microcomputer type. Also some microcom-  
puter types have no Stack Page Selection Bit and the upper eight  
bits of the stack address are fixed. The operations of pushing reg-  
ister contents onto the stack and popping them from the stack are  
shown in Fig. 10.  
Accumulator (A)  
The accumulator is an 8-bit register. Data operations such as data  
transfer, etc., are executed mainly through the accumulator.  
Index register X (X), Index register Y (Y)  
Both index register X and index register Y are 8-bit registers. In  
the index addressing modes, the value of the OPERAND is added  
to the contents of register X or register Y and specifies the real  
address.  
Program counter (PC)  
The program counter is a 16-bit counter consisting of two 8-bit  
registers PCH and PCL. It is used to indicate the address of the  
next instruction to be executed.  
When the T flag in the processor status register is set to “1”, the  
value contained in index register X becomes the address for the  
second OPERAND.  
b7  
b7  
b7  
b7  
b7  
b7  
b0  
b0  
b0  
b0  
b0  
b0  
A
X
Accumulator  
Index Register X  
Y
Index Register Y  
S
Stack Pointer  
b15  
PC  
H
PC  
L
Program Counter  
Processor Status Register (PS)  
N V T B D I Z C  
Carry Flag  
Zero Flag  
Interrupt Disable Flag  
Decimal Mode Flag  
Break Flag  
Index X Mode Flag  
Overflow Flag  
Negative Flag  
Fig. 9 740 Family CPU register structure  
Rev.4.00 Jun 21, 2004 page 10 of 82  
REJ03B0011-0400Z  
7540 Group  
On-going Routine  
Execute JSR  
Interrupt request  
(Note)  
M (S) (PCH)  
(S) (S – 1)  
M (S) (PCL)  
(S) (S – 1)  
M (S) (PS)  
(S) (S – 1)  
Store Return Address  
on Stack  
M (S) (PCH)  
(S) (S – 1)  
M (S) (PCL)  
(S) (S – 1)  
Subroutine  
Store Return Address  
on Stack  
Store Contents of Processor  
Status Register on Stack  
Interrupt  
Service Routine  
I Flag “0” to “1”  
Execute RTS  
(S) (S + 1)  
Fetch the Jump Vector  
Execute RTI  
(S) (S + 1)  
Restore Return  
Address  
Restore Contents of  
Processor Status Register  
(PCL) M (S)  
(S) (S + 1)  
(PCH) M (S)  
(PS)  
M (S)  
(S) (S + 1)  
(PCL) M (S)  
(S) (S + 1)  
Restore Return  
Address  
(PCH) M (S)  
Note : The condition to enable the interrupt  
Interrupt enable bit is “1”  
Interrupt disable flag is “0”  
Fig. 10 Register push and pop at interrupt generation and subroutine call  
Table 3 Push and pop instructions of accumulator or processor status register  
Push instruction to stack  
Pop instruction from stack  
Accumulator  
PHA  
PHP  
PLA  
PLP  
Processor status register  
Rev.4.00 Jun 21, 2004 page 11 of 82  
REJ03B0011-0400Z  
7540 Group  
Processor status register (PS)  
(5) Break flag (B)  
The processor status register is an 8-bit register consisting of  
flags which indicate the status of the processor after an arithmetic  
operation. Branch operations can be performed by testing the  
Carry (C) flag, Zero (Z) flag, Overflow (V) flag, or the Negative (N)  
flag. In decimal mode, the Z, V, N flags are not valid.  
The B flag is used to indicate that the current interrupt was gener-  
ated by the BRK instruction. The BRK flag in the processor status  
register is always “0”. When the BRK instruction is used to gener-  
ate an interrupt, the processor status register is pushed onto the  
stack with the break flag set to “1”. The saved processor status is  
the only place where the break flag is ever set.  
After reset, the Interrupt disable (I) flag is set to “1”, but all other  
flags are undefined. Since the Index X mode (T) and Decimal  
mode (D) flags directly affect arithmetic operations, they should  
be initialized in the beginning of a program.  
(6) Index X mode flag (T)  
When the T flag is “0”, arithmetic operations are performed be-  
tween accumulator and memory, e.g. the results of an operation  
between two memory locations is stored in the accumulator. When  
the T flag is “1”, direct arithmetic operations and direct data trans-  
fers are enabled between memory locations, i.e. between memory  
and memory, memory and I/O, and I/O and I/O. In this case, the  
result of an arithmetic operation performed on data in memory lo-  
cation 1 and memory location 2 is stored in memory location 1.  
The address of memory location 1 is specified by index register X,  
and the address of memory location 2 is specified by normal ad-  
dressing modes.  
(1) Carry flag (C)  
The C flag contains a carry or borrow generated by the arithmetic  
logic unit (ALU) immediately after an arithmetic operation. It can  
also be changed by a shift or rotate instruction.  
(2) Zero flag (Z)  
The Z flag is set if the result of an immediate arithmetic operation  
or a data transfer is “0”, and cleared if the result is anything other  
than “0”.  
(7) Overflow flag (V)  
(3) Interrupt disable flag (I)  
The V flag is used during the addition or subtraction of one byte  
of signed data. It is set if the result exceeds +127 to -128. When  
the BIT instruction is executed, bit 6 of the memory location oper-  
ated on by the BIT instruction is stored in the overflow flag.  
The I flag disables all interrupts except for the interrupt generated  
by the BRK instruction. Interrupts are disabled when the I flag is  
“1”.  
When an interrupt occurs, this flag is automatically set to “1” to  
prevent other interrupts from interfering until the current interrupt  
is serviced.  
(8) Negative flag (N)  
The N flag is set if the result of an arithmetic operation or data  
transfer is negative. When the BIT instruction is executed, bit 7 of  
the memory location operated on by the BIT instruction is stored in  
the negative flag.  
(4) Decimal mode flag (D)  
The D flag determines whether additions and subtractions are ex-  
ecuted in binary or decimal. Binary arithmetic is executed when  
this flag is “0”; decimal arithmetic is executed when it is “1”.  
Decimal correction is automatic in decimal mode. Only the ADC  
and SBC instructions can be used for decimal arithmetic.  
Table 4 Set and clear instructions of each bit of processor status register  
C flag  
SEC  
CLC  
Z flag  
I flag  
SEI  
D flag  
SED  
CLD  
B flag  
T flag  
SET  
CLT  
V flag  
N flag  
Set instruction  
Clear instruction  
CLI  
CLV  
Rev.4.00 Jun 21, 2004 page 12 of 82  
REJ03B0011-0400Z  
7540 Group  
[CPU mode register] CPUM  
The CPU mode register contains the stack page selection bit.  
This register is allocated at address 003B16.  
b7  
b0  
CPU mode register  
(CPUM: address 003B16, initial value: 8016  
)
Switching method of CPU mode register  
Processor mode bits (Note 1)  
b1 b0  
Switch the CPU mode register (CPUM) at the head of program af-  
ter releasing Reset in the following method.  
0
0
1
1
0
1
0
1
Single-chip mode  
Not available  
Stack page selection bit  
0
1
: 0 page  
: 1 page  
On-chip oscillator oscillation control bit  
0
1
: On-chip oscillator oscillation enabled  
: On-chip oscillator oscillation stop  
XIN oscillation control bit  
0
1
: Ceramic or RC oscillation enabled  
: Ceramic or RC oscillation stop  
Oscillation mode selection bit (Note 1)  
0
1
: Ceramic oscillation  
: RC oscillation  
Clock division ratio selection bits  
b7 b6  
0
0
1
1
0
1
0
1
:
:
:
:
f(φ) = f(XIN)/2 (High-speed mode)  
f(φ) = f(XIN)/8 (Middle-speed mode)  
applied from on-cihp oscillator  
f(φ) = f(XIN) (Double-speed mode)(Note 2)  
Note 1: The bit can be rewritten only once after releasing reset. After rewriting  
it is disable to write any data to the bit. However, by reset the bit is  
initialized and can be rewritten, again.  
(It is not disable to write any data to the bit for emulator MCU  
“M37540RSS”.)  
2: These bits are used only when a ceramic oscillation is selected.  
Do not use these when an RC oscillation is selected.  
Fig. 11 Structure of CPU mode register  
Start with an on-chip oscillator  
After releasing reset  
An initial value is set as a ceramic  
oscillation mode. When it is switched to an  
RC oscillation, its oscillation starts.  
Switch the oscillation mode  
selection bit (bit 5 of CPUM)  
When using a ceramic oscillation, wait until  
establlishment of oscillation from oscillation starts.  
When using an RC oscillation, wait time is not required  
basically (time to execute the instruction to switch from  
an on-chip oscillator meets the requirement).  
Wait by on-chip oscillator operation  
until establishment of oscillator clock  
Select 1/1, 1/2, 1/8 or on-chip oscillator.  
Switch the clock division ratio  
selection bits (bits 6 and 7 of CPUM)  
Main routine  
Fig. 12 Switching method of CPU mode register  
Rev.4.00 Jun 21, 2004 page 13 of 82  
REJ03B0011-0400Z  
7540 Group  
Memory  
Zero page  
Special function register (SFR) area  
The SFR area in the zero page contains control registers such as  
I/O ports and timers.  
The 256 bytes from addresses 000016 to 00FF16 are called the  
zero page area. The internal RAM and the special function regis-  
ters (SFR) are allocated to this area.  
The zero page addressing mode can be used to specify memory  
and register addresses in the zero page area. Access to this area  
with only 2 bytes is possible in the zero page addressing mode.  
RAM  
RAM is used for data storage and for a stack area of subroutine  
calls and interrupts.  
Special page  
ROM  
The 256 bytes from addresses FF0016 to FFFF16 are called the  
special page area. The special page addressing mode can be  
used to specify memory addresses in the special page area. Ac-  
cess to this area with only 2 bytes is possible in the special page  
addressing mode.  
The first 128 bytes and the last 2 bytes of ROM are reserved for  
device testing and the rest is a user area for storing programs.  
Interrupt vector area  
The interrupt vector area contains reset and interrupt vectors.  
000016  
SFR area  
Zero page  
004016  
010016  
RAM  
RAM area  
address  
XXXX16  
RAM capacity  
(bytes)  
XXXX16  
384  
512  
768  
01BF16  
023F16  
033F16  
Reserved area  
044016  
Not used  
YYYY16  
Reserved ROM area  
(128 bytes)  
ZZZZ16  
FF0016  
ROM  
ROM area  
ROM capacity  
(bytes)  
address  
YYYY16  
address  
ZZZZ16  
Special page  
FFDC16  
8192  
16384  
32768  
E00016  
C00016  
800016  
E08016  
C08016  
808016  
Interrupt vector area  
FFFE16  
Reserved ROM area  
FFFF16  
Fig. 13 Memory map diagram  
Rev.4.00 Jun 21, 2004 page 14 of 82  
REJ03B0011-0400Z  
7540 Group  
Timer Y, Z mode register (TYZM)  
Port P0 (P0)  
000016  
002016  
002116  
002216  
Port P0 direction register (P0D)  
Port P1 (P1)  
000116  
000216  
Prescaler Y (PREY)  
Timer Y secondary (TYS)  
Port P1 direction register (P1D)  
Timer Y primary (TYP)  
000316  
000416  
000516  
002316  
002416  
002516  
Timer Y, Z waveform output control register (PUM)  
Port P2 (P2)  
Port P2 direction register (P2D)  
Port P3 (P3)  
Prescaler Z (PREZ)  
Timer Z secondary (TZS)  
Timer Z primary (TZP)  
Prescaler 1 (PRE1)  
000616  
000716  
000816  
000916  
002616  
002716  
002816  
002916  
Port P3 direction register (P3D)  
Timer 1 (T1)  
One-shot start register (ONS)  
Timer X mode register (TXM)  
000A16  
000B16  
000C16  
000D16  
002A16  
002B16  
002C16  
002D16  
Prescaler X (PREX)  
Timer X (TX)  
Timer count source set register (TCSS)  
000E16  
000F16  
001016  
001116  
002E16  
002F16  
003016  
003116  
Serial I/O2 control register (SIO2CON)  
Serial I/O2 register (SIO2)  
001216  
001316  
001416  
001516  
003216  
003316  
003416  
003516  
A/D control register (ADCON)  
A/D conversion register (low-order) (ADL)  
A/D conversion register (high-order) (ADH)  
Pull-up control register (PULL)  
001616  
001716  
001816  
001916  
003616  
003716  
003816  
003916  
Port P1P3 control register (P1P3C)  
Transmit/Receive buffer register (TB/RB)  
Serial I/O1 status register (SIO1STS)  
Serial I/O1 control register (SIO1CON)  
MISRG  
Watchdog timer control register (WDTCON)  
Interrupt edge selection register (INTEDGE)  
001A16  
001B16  
001C16  
003A16  
003B16  
003C16  
UART control register (UARTCON)  
Baud rate generator (BRG)  
CPU mode register (CPUM)  
Interrupt request register 1 (IREQ1)  
Interrupt request register 2 (IREQ2)  
Interrupt control register 1 (ICON1)  
Timer A mode register (TAM)  
001D16  
003D16  
003E16  
003F16  
001E16 Timer A (low-order) (TAL)  
001F16  
Interrupt control register 2 (ICON2)  
Timer A (high-order) (TAH)  
Note : Do not access to the SFR area including nothing.  
Fig. 14 Memory map of special function register (SFR)  
Rev.4.00 Jun 21, 2004 page 15 of 82  
REJ03B0011-0400Z  
7540 Group  
I/O Ports  
[Pull-up control register] PULL  
[Direction registers] PiD  
By setting the pull-up control register (address 001616), ports P0  
and P3 can exert pull-up control by program. However, pins set to  
output are disconnected from this control and cannot exert pull-up  
control.  
The I/O ports have direction registers which determine the input/  
output direction of each pin. Each bit in a direction register corre-  
sponds to one pin, and each pin can be set to be input or output.  
When “1” is set to the bit corresponding to a pin, this pin becomes  
an output port. When “0” is set to the bit, the pin becomes an in-  
put port.  
Note: P26/AN6, P27/AN7, P35 and P36 do not exist for the 32-pin  
version.  
When data is read from a pin set to output, not the value of the pin  
itself but the value of port latch is read. Pins set to input are float-  
ing, and permit reading pin values.  
Accordingly, the following settings are required;  
. Set direction registers of ports P26 and P27 to output.  
. Set direction registers of ports P35 and P36 to output.  
If a pin set to input is written to, only the port latch is written to and  
the pin remains floating.  
[Port P1P3 control register] P1P3C  
By setting the port P1P3 control register (address 001716), a  
CMOS input level or a TTL input level can be selected for ports  
P10, P12, P13, P36, and P37 by program.  
b7  
b0  
Pull-up control register  
(PULL: address 001616, initial value: 0016  
)
P0  
0
pull-up control bit  
pull-up control bit  
P0  
P0  
P0  
P3  
P3  
P3  
P3  
1
2
4
0
4
5
7
, P03 pull-up control bit  
– P0  
7
pull-up control bit  
pull-up control bit  
– P3  
3
pull-up control bit  
, P3 pull-up control bit  
pull-up control bit  
0 : Pull-up Off  
1 : Pull-up On  
6
Note : Pins set to output ports are disconnected from pull-up control.  
Fig. 15 Structure of pull-up control register  
b7  
b0  
Port P1P3 control register  
(P1P3C: address 0017 16, initial value: 0016  
)
P3  
P3  
P1  
7
6
0
/INT0 input level selection bit  
0 : CMOS level  
1 : TTL level  
/INT1 input level selection bit  
0 : CMOS level  
1 : TTL level  
,P12,P13 input level selection bit  
0 : CMOS level  
1 : TTL level  
Not used  
6/INT1 input level selection bit  
Note: Keep setting the P3  
to “0” (initial value) for 32-pin version.  
Fig. 16 Structure of port P1P3 control register  
Rev.4.00 Jun 21, 2004 page 16 of 82  
REJ03B0011-0400Z  
7540 Group  
Table 5 I/O port function table  
Pin  
Name  
Input/output  
I/O format  
Non-port function  
Key input interrupt  
Timer X function output  
Timer Y function output  
Timer Z function output  
Timer A function input  
Related SFRs  
Diagram No.  
P00/CNTR1  
P01/TYOUT  
P02/TZOUT  
P03/TXOUT  
P04–P07  
I/O port P0 I/O individual •CMOS compatible  
Pull-up control register  
Timer Y mode register  
Timer Z mode register  
Timer X mode register  
Timer Y,Z waveform  
output control register  
Timer A mode register  
(1)  
(2)  
(3)  
(4)  
bits  
input level  
•CMOS 3-state output  
(Note 1)  
P10/RxD1  
P11/TxD1  
I/O port P1  
Serial I/O1 function  
input/output  
Serial I/O1 control register  
(5)  
(6)  
P12/SCLK1/SCLK2  
P13/SRDY1/SDATA2  
Serial I/O2 function  
input/output  
Serial I/O1 control register  
Serial I/O2 control register  
(7)  
(8)  
P14/CNTR0  
Timer X function input/output Timer X mode register  
(9)  
P20/AN0–  
P27/AN7  
I/O port P2  
(Note 2)  
A/D conversion input  
A/D control register  
(10)  
P30–P35  
I/O port P3  
(Note 3)  
(11)  
(12)  
P36/INT1  
P37/INT0  
External interrupt input  
Interrupt edge selection  
register  
Notes 1: Ports P10, P12, P13, P36, and P37 are CMOS/TTL level.  
2: P26/AN6 and P27/AN7 do not exist for the 32-pin version.  
3: P35 and P36/INT1 do not exist for the 32-pin version.  
Rev.4.00 Jun 21, 2004 page 17 of 82  
REJ03B0011-0400Z  
7540 Group  
(1)Port P00  
(2)Ports P01, P02  
Pull-up control  
Direction  
Pull-up control  
Direction  
register  
register  
Port latch  
Data bus  
Port latch  
Data bus  
**  
Programmable waveform generation mode  
Timer output  
CNTR1 interrupt input  
To key input interrupt  
generating circuit  
P0  
0 key-on wakeup  
To key input interrupt  
generating circuit  
selection bit  
(3)Port P03  
(4)Ports P04–P07  
Pull-up control  
Pull-up control  
Direction  
register  
Direction  
register  
Data bus  
Port latch  
Data bus  
Port latch  
Timer output  
P03/TXOUT  
output valid  
To key input interrupt  
generating circuit  
To key input interrupt  
generating circuit  
(5)Port P10  
(6)Port P11  
Serial I/O1 enable bit  
Receive enable bit  
P11/TxD1 P-channel output disable bit  
Serial I/O1 enable bit  
Transmit enable bit  
Direction  
register  
Direction  
register  
Data bus  
Port latch  
P1  
0
, P12  
, P13  
input level  
selection bit  
Data bus  
Port latch  
Serial I/O1 input  
*
(7)Port P12  
Serial I/O1 output  
S
CLK2 pin  
selection bit  
Serial I/O1 synchronous  
clock selection bit  
Serial I/O1 enable bit  
Serial I/O1 mode selection bit  
Serial I/O1 enable bit  
Direction  
register  
Data bus  
Port latch  
P1  
0
, P12, P13  
input level  
selection bit  
Serial I/O1, serial I/O2 clock output  
Serial I/O1, serial I/O2 clock input  
*
P1  
0
, P1  
2
, P1  
3
, P3  
6
, and P3  
7
input level are switched to the CMOS/TTL level by the port P1P3 control register.  
*
When the TTL level is selected, there is no hysteresis characteristics.  
P02/TZOUT;  
**Programmable waveform generation mode  
Programmable one-shot generation mode  
Programmable wait one-shot generation mode  
Fig. 17 Block diagram of ports (1)  
Rev.4.00 Jun 21, 2004 page 18 of 82  
REJ03B0011-0400Z  
7540 Group  
(8) Port P1  
3
(9) Port P1  
4
SDATA2 output in operation signal  
S
DATA2 pin selection bit  
Direction  
register  
Serial I/O mode selection bit  
Serial I/O1 enable bit  
SRDY1 output enable bit  
Direction  
register  
Port  
latch  
Data bus  
Data bus  
Port latch  
Pulse output mode  
Timer output  
P10, P12, P13  
input level  
CNTR0 interrupt input  
selection bit  
Serial I/O1 ready output  
Serial I/O2 output  
Serial I/O2 input  
*
(11) Ports P30–P35  
(10) Ports P20–P27  
Direction  
Pull-up control  
register  
Direction  
register  
Data bus  
Port latch  
Data bus  
Port  
latch  
A/D converter input  
Analog input pin  
selection bit  
(12) Ports P36, P37  
Pull-up control  
Direction  
register  
Data bus  
Port  
latch  
P3 input level  
selection bit  
INT interrupt input  
*
P1  
0
, P12, P13, P36, and P37 input level are switched to the CMOS/TTL level by the port P1P3 control register.  
*
When the TTL level is selected, there is no hysteresis characteristics.  
Fig. 18 Block diagram of ports (2)  
Rev.4.00 Jun 21, 2004 page 19 of 82  
REJ03B0011-0400Z  
7540 Group  
Interrupts  
Notes on use  
Interrupts occur by 15 different sources : 5 external sources, 9 in-  
When setting the followings, the interrupt request bit may be set to  
“1”.  
ternal sources and 1 software source.  
•When setting external interrupt active edge  
Related register: Interrupt edge selection register (address  
003A16)  
Interrupt control  
All interrupts except the BRK instruction interrupt have an interrupt  
request bit and an interrupt enable bit, and they are controlled by  
the interrupt disable flag. When the interrupt enable bit and the in-  
terrupt request bit are set to “1” and the interrupt disable flag is set  
to “0”, an interrupt is accepted.  
Timer X mode register (address 2B16)  
Timer A mode register (address 1D16)  
When not requiring the interrupt occurrence synchronized with  
these setting, take the following sequence.  
The interrupt request bit can be cleared by program but not be set.  
The interrupt enable bit can be set and cleared by program.  
The reset and BRK instruction interrupt can never be disabled with  
any flag or bit. All interrupts except these are disabled when the  
interrupt disable flag is set.  
Set the corresponding interrupt enable bit to “0” (disabled).  
Set the interrupt edge select bit (active edge switch bit) to “1”.  
Set the corresponding interrupt request bit to “0” after 1 or  
more instructions have been executed.  
When several interrupts occur at the same time, the interrupts are  
received according to priority.  
Set the corresponding interrupt enable bit to “1” (enabled).  
Interrupt operation  
Upon acceptance of an interrupt the following operations are auto-  
matically performed:  
1. The processing being executed is stopped.  
2. The contents of the program counter and processor status reg-  
ister are automatically pushed onto the stack.  
3. The interrupt disable flag is set and the corresponding interrupt  
request bit is cleared.  
4. Concurrently with the push operation, the interrupt destination  
address is read from the vector table into the program counter.  
Table 6 Interrupt vector address and priority  
Vector addresses (Note 1)  
Interrupt source Priority  
Interrupt request generating conditions  
At reset input  
Remarks  
High-order Low-order  
Reset (Note 2)  
1
2
3
Non-maskable  
FFFD16  
FFFB16  
FFF916  
FFFC16  
FFFA16  
FFF816  
Serial I/O1 receive  
Serial I/O1 transmit  
At completion of serial I/O1 data receive  
Valid only when serial I/O1 is selected  
At completion of serial I/O1 transmit shift or  
when transmit buffer is empty  
Valid only when serial I/O1 is  
selected  
INT0  
4
5
6
7
8
At detection of either rising or falling edge of External interrupt  
FFF716  
FFF516  
FFF316  
FFF116  
FFEF16  
FFF616  
FFF416  
FFF216  
FFF016  
FFEE16  
INT0 input  
(active edge selectable)  
INT1 (Note 3)  
Key-on wake-up  
CNTR0  
At detection of either rising or falling edge of External interrupt  
INT1 input  
(active edge selectable)  
At falling of conjunction of input logical level External interrupt (valid at falling)  
for port P0 (at input)  
At detection of either rising or falling edge of External interrupt  
CNTR0 input  
(active edge selectable)  
CNTR1  
At detection of either rising or falling edge of External interrupt  
CNTR1 input  
(active edge selectable)  
Timer X  
9
At timer X underflow  
FFED16  
FFEB16  
FFE916  
FFE716  
FFE516  
FFE316  
FFE116  
FFDF16  
FFDD16  
FFEC16  
FFEA16  
FFE816  
FFE616  
FFE416  
FFE216  
FFE016  
FFDE16  
FFDC16  
Timer Y  
10  
11  
12  
13  
14  
15  
16  
17  
At timer Y underflow  
Timer Z  
At timer Z underflow  
Timer A  
At timer A underflow  
Serial I/O2  
A/D conversion  
Timer 1  
At completion of transmit/receive shift  
At completion of A/D conversion  
At timer 1 underflow  
STP release timer underflow  
Reserved area  
BRK instruction  
Not available  
At BRK instruction execution  
Non-maskable software interrupt  
Note 1: Vector addressed contain internal jump destination addresses.  
2: Reset function in the same way as an interrupt with the highest priority.  
3: It is an interrupt which can use only for 36 pin version.  
Rev.4.00 Jun 21, 2004 page 20 of 82  
REJ03B0011-0400Z  
7540 Group  
Interrupt request bit  
Interrupt enable bit  
Interrupt disable flag I  
BRK instruction  
Reset  
Interrupt request  
Fig. 19 Interrupt control  
b7  
b0  
Interrupt edge selection register  
(INTEDGE : address 003A16, initial value : 0016  
)
INT  
INT  
0 interrupt edge selection bit  
0 : Falling edge active  
1 : Rising edge active  
1
interrupt edge selection bit  
0 : Falling edge active  
1 : Rising edge active  
Not used (returns “0” when read)  
P00  
key-on wakeup enable bit  
0 : Key-on wakeup enabled  
1 : Key-on wakeup disabled  
b7  
b0  
Interrupt request register 1  
(IREQ1 : address 003C16, initial value : 0016  
)
Serial I/O1 receive interrupt request bit  
Serial I/O1 transmit interrupt request bit  
INT  
INT  
0
1
interrupt request bit  
interrupt request bit  
Key-on wake up interrupt request bit  
CNTR  
0
1
interrupt request bit  
interrupt request bit  
CNTR  
0 : No interrupt request issued  
1 : Interrupt request issued  
Timer X interrupt request bit  
b7  
b0  
Interrupt request register 2  
(IREQ2 : address 003D16, initial value : 0016  
)
Timer Y interrupt request bit  
Timer Z interrupt request bit  
Timer A interrupt request bit  
Serial I/O2 interrupt request bit  
A/D conversion interrupt request bit  
Timer 1 interrupt request bit  
Not used (returns “0” when read)  
0 : No interrupt request issued  
1 : Interrupt request issued  
b7  
b0  
Interrupt control register 1  
(ICON1 : address 003E16, initial value : 0016  
)
Serial I/O1 receive interrupt enable bit  
Serial I/O1 transmit interrupt enable bit  
INT  
INT  
0
1
interrupt enable bit  
interrupt enable bit (Do not write “1” to this bit for 32-pin version)  
Key-on wake up interrupt enable bit  
CNTR  
CNTR  
0
1
interrupt enable bit  
interrupt enable bit  
Timer X interrupt enable bit  
0 : Interrupts disabled  
1 : Interrupts enabled  
b7  
b0  
Interrupt control register 2  
(ICON2 : address 003F16, initial value : 0016  
)
Timer Y interrupt enable bit  
Timer Z interrupt enable bit  
Timer A interrupt enable bit  
Serial I/O2 interrupt enable bit  
A/D conversion interrupt enable bit  
Timer 1 interrupt enable bit  
Not used (returns “0” when read)  
(Do not write “1” to this bit)  
0 : Interrupts disabled  
1 : Interrupts enabled  
Fig. 20 Structure of Interrupt-related registers  
Rev.4.00 Jun 21, 2004 page 21 of 82  
REJ03B0011-0400Z  
7540 Group  
Key Input Interrupt (Key-On Wake-Up)  
A key-on wake-up interrupt request is generated by applying “L”  
level to any pin of port P0 that has been set to input mode.  
In other words, it is generated when the AND of input level goes  
from “1” to “0”. An example of using a key input interrupt is shown  
in Figure 21, where an interrupt request is generated by pressing  
one of the keys provided as an active-low key matrix which uses  
ports P00 to P03 as input ports.  
Port PXx  
“L” level output  
PULL register  
bit 3 = “0”  
Port P0  
Direction register = “1”  
7
Key input interrupt request  
*
*
*
*
*
*
*
**  
Port P0  
latch  
7
6
5
4
3
2
1
0
P0  
P0  
P0  
P0  
7
6
5
4
output  
output  
output  
output  
Falling edge  
detection  
PULL register  
bit 3 = “0”  
Port P0  
6
Direction register = “1”  
**  
Port P0  
latch  
Falling edge  
detection  
PULL register  
bit 3 = “0”  
Port P0  
5
Direction register = “1”  
**  
Port P0  
latch  
Falling edge  
detection  
PULL register  
bit 3 = “0”  
Port P0  
4
Direction register = “1”  
**  
Port P0  
latch  
Falling edge  
detection  
PULL register  
bit 2 = “1”  
Port P0  
3
Port P0  
Input read circuit  
Direction register = “0”  
**  
Port P0  
latch  
P0  
P0  
P0  
P0  
3
2
1
0
input  
input  
input  
input  
Falling edge  
detection  
PULL register  
bit 2 = “1”  
Port P0  
2
Direction register = “0”  
**  
Port P0  
latch  
Falling edge  
detection  
PULL register  
bit 1 = “1”  
Port P0  
1
Direction register = “0”  
**  
Port P0  
latch  
Falling edge  
detection  
PULL register  
bit 0 = “1”  
Port P0  
0
Direction register = “0”  
*
**  
Port P0  
latch  
Falling edge  
detection  
Port P00 key-on wakeup  
selection bit  
* P-channel transistor for pull-up  
** CMOS output buffer  
Fig. 21 Connection example when using key input interrupt and port P0 block diagram  
Rev.4.00 Jun 21, 2004 page 22 of 82  
REJ03B0011-0400Z  
7540 Group  
Timer A  
Timers  
Timer A is a 16-bit timer and counts the signal which is the oscil-  
lation frequency divided by 16. When Timer A underflows, the  
timer A interrupt request bit is set to “1”.  
The 7540 Group has 5 timers: timer 1, timer A, timer X, timer Y  
and timer Z.  
The division ratio of every timer and prescaler is 1/(n+1) provided  
that the value of the timer latch or prescaler is n.  
All the timers are down count timers. When a timer reaches “0”, an  
underflow occurs at the next count pulse, and the corresponding  
timer latch is reloaded into the timer. When a timer underflows, the  
interrupt request bit corresponding to each timer is set to “1”.  
Timer A consists of the low-order of Timer A (TAL) and the high-or-  
der of Timer A (TAH).  
Timer A has the timer A latch to retain the reload value. The value  
of timer A latch is set to Timer A at the timing shown below.  
• When Timer A undeflows.  
• When an active edge is input from CNTR1 pin (valid only when  
period measurement mode and pulse width HL continuously mea-  
surement mode).  
Timer 1  
Timer 1 is an 8-bit timer and counts the prescaler output.  
When Timer 1 underflows, the timer 1 interrupt request bit is set to  
“1”.  
When writing to both the low-order of Timer A (TAL) and the high-  
order of Timer A (TAH) is executed, the value is written to both the  
timer A latch and Timer A.  
Prescaler 1 is an 8-bit prescaler and counts the signal which is the  
oscillation frequency divided by 16.  
When reading from the low-order of Timer A (TAL) and the high-or-  
der of Timer A (TAH) is executed, the following values are read out  
according to the operating mode.  
Prescaler 1 and Timer 1 have the prescaler 1 latch and the timer 1  
latch to retain the reload value, respectively. The value of  
prescaler 1 latch is set to Prescaler 1 when Prescaler 1  
underflows.The value of timer 1 latch is set to Timer 1 when Timer  
1 underflows.  
• In timer mode, event counter mode:  
The count value of Timer A is read out.  
• In period measurement mode, pulse width HL continuously mea-  
surement mode:  
When writing to Prescaler 1 (PRE1) is executed, the value is writ-  
ten to both the prescaler 1 latch and Prescaler 1.  
The measured value is read out.  
When writing to Timer 1 (T1) is executed, the value is written to  
both the timer 1 latch and Timer 1.  
Be sure to write to/read out the low-order of Timer A (TAL) and the  
high-order of Timer A (TAH) in the following order;  
Read  
When reading from Prescaler 1 (PRE1) and Timer 1 (T1) is ex-  
ecuted, each count value is read out.  
Read the high-order of Timer A (TAH) first, and the low-order of  
Timer A (TAL) next and be sure to read out both TAH and TAL.  
Write  
Timer 1 always operates in the timer mode.  
Prescaler 1 counts the signal which is the oscillation frequency di-  
vided by 16. Each time the count clock is input, the contents of  
Prescaler 1 is decremented by 1. When the contents of Prescaler  
1 reach “0016”, an underflow occurs at the next count clock, and  
the prescaler 1 latch is reloaded into Prescaler 1 and count contin-  
ues. The division ratio of Prescaler 1 is 1/(n+1) provided that the  
value of Prescaler 1 is n.  
Write to the low-order of Timer A (TAL) first, and the high-order of  
Timer A (TAH) next and be sure to write to both TAL and TAH.  
Timer A can be selected in one of 4 operating modes by setting  
the timer A mode register.  
The contents of Timer 1 is decremented by 1 each time the under-  
flow signal of Prescaler 1 is input. When the contents of Timer 1  
reach “0016”, an underflow occurs at the next count clock, and the  
timer 1 latch is reloaded into Timer 1 and count continues. The di-  
vision ratio of Timer 1 is 1/(m+1) provided that the value of Timer  
1 is m. Accordingly, the division ratio of Prescaler 1 and Timer 1 is  
1/((n+1)(m+1)) provided that the value of Prescaler 1 is n and  
the value of Timer 1 is m.  
(1) Timer mode  
Timer A counts the oscillation frequency divided by 16. Each time  
the count clock is input, the contents of Timer A is decremented by  
1. When the contents of Timer A reach “000016”, an underflow oc-  
curs at the next count clock, and the timer A latch is reloaded into  
Timer A. The division ratio of Timer A is 1/(n+1) provided that the  
value of Timer A is n.  
Timer 1 cannot stop counting by software.  
(2) Period measurement mode  
In the period measurement mode, the pulse period input from the  
P00/CNTR1 pin is measured.  
CNTR1 interrupt request is generated at rising/falling edge of  
CNTR1 pin input singal. Simultaneousuly, the value in the timer A  
latch is reloaded inTimer A and count continues. The active edge  
of CNTR1 pin input signal can be selected from rising or falling by  
the CNTR1 active edge switch bit .The count value when trigger  
input from CNTR1 pin is accepted is retained until Timer A is read  
once.  
Rev.4.00 Jun 21, 2004 page 23 of 82  
REJ03B0011-0400Z  
7540 Group  
(3) Event counter mode  
Timer X  
Timer A counts signals input from the P00/CNTR1 pin.  
Except for this, the operation in event counter mode is the same  
as in timer mode.  
Timer X is an 8-bit timer and counts the prescaler X output.  
When Timer X underflows, the timer X interrupt request bit is set  
to “1”.  
The active edge of CNTR1 pin input signal can be selected from  
rising or falling by the CNTR1 active edge switch bit .  
Prescaler X is an 8-bit prescaler and counts the signal selected by  
the timer X count source selection bit.  
Prescaler X and Timer X have the prescaler X latch and the timer  
X latch to retain the reload value, respectively. The value of  
prescaler X latch is set to Prescaler X when Prescaler X  
underflows.The value of timer X latch is set to Timer X when Timer  
X underflows.  
(4) Pulse width HL continuously measurement mode  
In the pulse width HL continuously measurement mode, the pulse  
width (“H” and “L” levels) input to the P00/CNTR1 pin is measured.  
CNTR1 interrupt request is generated at both rising and falling  
edges of CNTR1 pin input signal. Except for this, the operation in  
pulse width HL continuously measurement mode is the same as in  
period measurement mode.  
When writing to Prescaler X (PREX) is executed, the value is writ-  
ten to both the prescaler X latch and Prescaler X.  
When writing to Timer X (TX) is executed, the value is written to  
both the timer X latch and Timer X.  
The count value when trigger input from the CNTR1 pin is ac-  
cepted is retained until Timer A is read once.  
When reading from Prescaler X (PREX) and Timer X (TX) is ex-  
ecuted, each count value is read out.  
Timer A can stop counting by setting “1” to the timer A count stop  
bit in any mode.  
Timer X can can be selected in one of 4 operating modes by set-  
ting the timer X operating mode bits of the timer X mode register.  
Also, when Timer A underflows, the timer A interrupt request bit is  
set to “1”.  
(1) Timer mode  
Note on Timer A is described below;  
Prescaler X counts the count source selected by the timer X count  
source selection bits. Each time the count clock is input, the con-  
tents of Prescaler X is decremented by 1. When the contents of  
Prescaler X reach “0016”, an underflow occurs at the next count  
clock, and the prescaler X latch is reloaded into Prescaler X and  
count continues. The division ratio of Prescaler X is 1/(n+1) pro-  
vided that the value of Prescaler X is n.  
Note on Timer A  
CNTR1 interrupt active edge selection  
CNTR1 interrupt active edge depends on the CNTR1 active edge  
switch bit.  
When this bit is “0”, the CNTR1 interrupt request bit is set to “1” at  
the falling edge of the CNTR1 pin input signal. When this bit is “1”,  
the CNTR1 interrupt request bit is set to “1” at the rising edge of  
the CNTR1 pin input signal.  
The contents of Timer X is decremented by 1 each time the under-  
flow signal of Prescaler X is input. When the contents of Timer X  
reach “0016”, an underflow occurs at the next count clock, and the  
timer X latch is reloaded into Timer X and count continues. The di-  
vision ratio of Timer X is 1/(m+1) provided that the value of Timer  
X is m. Accordingly, the division ratio of Prescaler X and Timer X is  
1/((n+1)(m+1)) provided that the value of Prescaler X is n and  
the value of Timer X is m.  
However, in the pulse width HL continuously measurement mode,  
CNTR1 interrupt request is generated at both rising and falling  
edges of CNTR1 pin input signal regardless of the setting of  
CNTR1 active edge switch bit.  
b7  
b0  
(2) Pulse output mode  
Timer A mode register  
In the pulse output mode, the waveform whose polarity is inverted  
each time timer X underflows is output from the CNTR0 pin.  
The output level of CNTR0 pin can be selected by the CNTR0 ac-  
tive edge switch bit. When the CNTR0 active edge switch bit is “0”,  
the output of CNTR0 pin is started at “H” level. When this bit is “1”,  
the output is started at “L” level.  
(TAM : address 001D16, initial value: 0016  
)
Not used (return “0” when read)  
Timer A operating mode bits  
b5 b4  
0
0
1
1
0 : Timer mode  
1 : Period measurement mode  
0 : Event counter mode  
1 : Pulse width HL continuously  
measurement mode  
Also, the inverted waveform of pulse output from CNTR0 pin can  
be output from TXOUT pin by setting “1” to the P03/TXOUT output  
valid bit.  
CNTR1 active edge switch bit  
0 : Count at rising edge in event counter mode  
Measure the falling edge period in period  
measurement mode  
When using a timer in this mode, set the port P14 and P03 direc-  
tion registers to output mode.  
Falling edge active for CNTR1 interrupt  
1 : Count at falling edge in event counter mode  
Measure the rising edge period in period  
measurement mode  
(3) Event counter mode  
Rising edge active for CNTR  
Timer A count stop bit  
0 : Count start  
1 interrupt  
The timer A counts signals input from the P14/CNTR0 pin.  
Except for this, the operation in event counter mode is the same  
as in timer mode.  
1 : Count stop  
The active edge of CNTR0 pin input signal can be selected from  
rising or falling by the CNTR0 active edge switch bit .  
Fig. 22 Structure of timer A mode register  
Rev.4.00 Jun 21, 2004 page 24 of 82  
REJ03B0011-0400Z  
7540 Group  
(4) Pulse width measurement mode  
b7  
b0  
In the pulse width measurement mode, the pulse width of the sig-  
nal input to P14/CNTR0 pin is measured.  
Timer X mode register  
(TXM : address 002B16, initial value: 0016  
)
Timer X operating mode bits  
b1 b0  
The operation of Timer X can be controlled by the level of the sig-  
nal input from the CNTR0 pin.  
0
0
1
1
0 : Timer mode  
1 : Pulse output mode  
0 : Event counter mode  
When the CNTR0 active edge switch bit is “0”, the signal selected  
by the timer X count source selection bit is counted while the input  
signal level of CNTR0 pin is “H”. The count is stopped while the  
pin is “L”. Also, when the CNTR0 active edge switch bit is “1”, the  
signal selected by the timer X count source selection bit is  
counted while the input signal level of CNTR0 pin is “L”. The count  
is stopped while the pin is “H”.  
1 : Pulse width measurement mode  
CNTR  
0
active edge switch bit  
0 : Interrupt at falling edge  
Count at rising edge  
(in event counter mode)  
1 : Interrupt at rising edge  
Count at falling edge  
(in event counter mode)  
Timer X count stop bit  
0 : Count start  
1 : Count stop  
Timer X can stop counting by setting “1” to the timer X count stop  
bit in any mode.  
P03/TXOUT output valid bit  
0 : Output invalid (I/O port)  
1 : Output valid (Inverted CNTR0 output)  
Also, when Timer X underflows, the timer X interrupt request bit is  
set to “1”.  
Not used (return “0” when read)  
Note on Timer X is described below;  
Fig. 23 Structure of timer X mode register  
Note on Timer X  
b7  
b0  
CNTR0 interrupt active edge selection  
Timer count source set register  
(TCSS : address 002E16, initial value: 0016  
)
CNTR0 interrupt active edge depends on the CNTR0 active edge  
switch bit.  
Timer X count source selection bits  
b1 b0  
When this bit is “0”, the CNTR0 interrupt request bit is set to “1” at  
the falling edge of CNTR0 pin input signal. When this bit is “1”, the  
CNTR0 interrupt request bit is set to “1” at the rising edge of  
CNTR0 pin input signal.  
0
0
1
1
0 : f(XIN)/16  
1 : f(XIN)/2  
0 : f(XIN) (Note 1)  
1 : Not available  
Timer Y count source selection bits  
b3 b2  
0
0
1
1
0 : f(XIN)/16  
1 : f(XIN)/2  
0 : On-chip oscillator output (Note 2)  
1 : Not available  
Timer Z count source selection bits  
b5 b4  
0
0
1
1
0 : f(XIN)/16  
1 : f(XIN)/2  
0 : Timer Y underflow  
1 : Not available  
Fix this bit to “0”.  
Not used (return “0” when read)  
Notes 1: f(XIN) can be used as timer X count source when using  
a ceramic resonator or on-chip oscillator.  
Do not use it at RC oscillation.  
2: System operates using an on-chip oscillator as a count source  
by setting the on-cihp oscillator to oscillation enabled by bit 3  
of CPUM.  
Fig. 24 Timer count source set register  
Rev.4.00 Jun 21, 2004 page 25 of 82  
REJ03B0011-0400Z  
7540 Group  
Timer Y  
(2) Programmable waveform generation mode  
Timer Y is an 8-bit timer and counts the prescaler Y output.  
When Timer Y underflows, the timer Y interrupt request bit is set to  
“1”.  
In the programmable waveform generation mode, timer counts the  
setting value of timer Y primary and the setting value of timer Y  
secondary alternately, the waveform inverted each time Timer Y  
underflows is output from TYOUT pin.  
Prescaler Y is an 8-bit prescaler and counts the signal selected by  
the timer Y count source selection bit.  
When using this mode, be sure to set “1” to the timer Y write con-  
trol bit to select “write to latch only”. Also, set the port P01 direction  
registers to output mode.  
Prescaler Y has the prescaler Y latch to retain the reload value.  
Timer Y has the timer Y primary latch and timer Y secondary latch  
to retain the reload value.  
The active edge of output waveform is set by the timer Y output  
level latch (b5) of the timer Y, Z waveform output control register  
(PUM). When “0” is set to b5 of PUM, “H” interval by the setting  
value of TYP or “L” interval by the setting value of TYS is output  
alternately. When “1” is set to b5 of PUM, “L” interval by the setting  
value of TYP or “H” interval by the setting value of TYS is output  
alternately.  
The value of prescaler Y latch is set to Prescaler Y when  
Prescaler Y underflows.The value of timer Y primary latch or timer  
Y secondary latch are set to Timer Y when Timer Y underflows.  
As for the value to transfer to Timer Y, either of timer Y primary or  
timer Y secondary is selected depending on the timer Y operating  
mode.  
Also, in this mode, the primary interval and the secondary interval  
of the output waveform can be extended respectively for 0.5 cycle  
of timer count source clock by setting the timer Y primary wave-  
form extension control bit (b2) and the timer Y secondary  
waveform extension control bit (b3) of PUM to “1”. As a result, the  
waveforms of more accurate resolution can be output.  
When b2 and b3 of PUM are used, the frequency and duty of the  
output waveform are as follows;  
When writing to Prescaler Y (PREY), timer Y primary (TYP) or  
timer Y secondary (TYS) is executed, writing to “latch only” or  
“latch and prescaler (timer)” can be selected by the setting value  
of the timer Y write control bit. Be sure to set the timer Y write con-  
trol bit because there are some notes according to the operating  
mode.  
When reading from Prescaler Y (PREY) is executed, the count  
value of Prescaler Y is read out. When reading from timer Y pri-  
mary (TYP) is executed, the count value of Timer Y is read out.  
The count value of Timer Y can be read out by reading from the  
timer Y primary (TYP) even when the value of timer Y primary  
latch or timer Y secondary latch is counted. When reading the  
timer Y secondary (TYS) is executed, the undefined value is read  
out.  
Waveform frequency:  
2TMYCL  
FYOUT=  
2(TYP+1)+2(TYS+1)+(EXPYP+EXPYS)  
Duty:  
2(TYP+1)+EXPYP  
Timer Y can be selected in one of 2 operating modes by setting  
the timer Y operating mode bits of the timer Y, Z mode register.  
DYOUT=  
(2(TYP+1)+EXPYP)+(2(TYS+1)+EXPYS)  
(1) Timer mode  
TMYCL: Timer Y count source (frequency)  
TYP: Timer Y primary (8bit)  
Prescaler Y counts the count source selected by the timer Y count  
source selection bits. Each time the count clock is input, the con-  
tents of Prescaler Y is decremented by 1. When the contents of  
Prescaler Y reach “0016”, an underflow occurs at the next count  
clock, and the prescaler Y latch is reloaded into Prescaler Y. The  
division ratio of Prescaler Y is 1/(n+1) provided that the value of  
Prescaler Y is n.  
TYS: Timer Y secondary (8bit)  
EXPYP: Timer Y primary waveform extension control bit (1bit)  
EXPYS: Timer Y secondary waveform extension control bit (1bit)  
In the programmable waveform generation mode, when values of  
the TYP, TYS, EXPYP and EXPYS are changed, the output wave-  
form is changed at the beginning (timer Y primary waveform  
interval) of waveform period.  
The contents of Timer Y is decremented by 1 each time the under-  
flow signal of Prescaler Y is input. When the contents of Timer Y  
reach “0016”, an underflow occurs at the next count clock, and the  
timer Y primary latch is reloaded into Timer Y and count continues.  
(In the timer mode, the contents of timer Y primary latch is  
counted. Timer Y secondary latch is not used in this mode.)  
The division ratio of Timer Y is 1/(m+1) provided that the value of  
Timer Y is m. Accordingly, the division ratio of Prescaler Y and  
Timer Y is 1/((n+1)(m+1)) provided that the value of Prescaler Y  
is n and the value of Timer Y is m.  
When the count values are changed, set values to the TYS,  
EXPYP and EXPYS first. After then, set the value to TYP. The val-  
ues are set all at once at the beginning of the next waveform  
period when the value is set to TYP. (When writing at timer stop is  
executed, writing to TYP at last is required.)  
Notes on programmable waveform generation mode is described  
below;  
In the timer mode, writing to “latch only” or “latches and Prescaler  
Y and timer Y primary” can be selected by the setting value of the  
timer Y write control bit.  
Rev.4.00 Jun 21, 2004 page 26 of 82  
REJ03B0011-0400Z  
7540 Group  
Notes on programmable generation waveform mode  
• Count set value  
In the programmable waveform generation mode, values of TYS,  
EXPYP, and EXPYS are valid by writing to TYP because the set-  
ting to them is executed all at once by writing to TYP. Even when  
changing TYP is not required, write the same value again.  
• Write timing to TYP  
In the programmable waveform generation mode, when the set-  
ting value is changed while the waveform is output, set by  
software in order not to execute the writing to TYP and the timing  
of timer underflow during the secondary interval simultanesously.  
• Usage of waveform extension function  
The waveform extension function by the timer Y waveform exten-  
sion control bit can be used only when “0016” is set to Prescaler Y.  
When the value other than “0016” is set to Prescaler Y, be sure to  
set “0” to EXPYP and EXPYS.  
• Timer Y write mode  
When using this mode, be sure to set “1” to the timer Y write con-  
trol bit to select “write to latch only”.  
Timer Y can stop counting by setting “1” to the timer Y count stop  
bit in any mode.  
Also, when Timer Y underflows, the timer Y interrupt request bit is  
set to “1”.  
Timer Y reloads the value of latch when counting is stopped by the  
timer Y count stop bit. (When timer is read out while timer is  
stopped, the value of latch is read. The value of timer can be read  
out only while timer is operating.)  
Rev.4.00 Jun 21, 2004 page 27 of 82  
REJ03B0011-0400Z  
7540 Group  
(2) Programmable waveform generation mode  
Timer Z  
In the programmable waveform generation mode, timer counts the  
setting value of timer Z primary and the setting value of timer Z  
secondary alternately, the waveform inverted each time Timer Z  
underflows is output from TZOUT pin.  
Timer Z is an 8-bit timer and counts the prescaler Z output.  
When Timer Z underflows, the timer Z interrupt request bit is set to  
“1”.  
Prescaler Z is an 8-bit prescaler and counts the signal selected by  
the timer Z count source selection bit.  
When using this mode, be sure to set “1” to the timer Z write con-  
trol bit to select “write to latch only”. Also, set the port P02 direction  
registers to output mode.  
Prescaler Z has the prescaler Z latch to retain the reload value.  
Timer Z has the timer Z primary latch and timer Z secondary latch  
to retain the reload value.  
The active edge of output waveform is set by the timer Z output  
level latch (b4) of the timer Y, Z waveform output control register  
(PUM). When “0” is set to b4 of PUM, “H” interval by the setting  
value of TZP or “L” interval by the setting value of TZS is output al-  
ternately. When “1” is set to b4 of PUM, “L” interval by the setting  
value of TZP or “H” interval by the setting value of TZS is output  
alternately.  
The value of prescaler Z latch is set to Prescaler Z when Prescaler  
Z underflows.The value of timer Z primary latch or timer Z second-  
ary latch are set to Timer Z when Timer Z underflows.  
As for the value to transfer to Timer Z, either of timer Z primary or  
timer Z secondary is selected depending on the timer Z operating  
mode.  
Also, in this mode, the primary interval and the secondary interval  
of the output waveform can be extended respectively for 0.5 cycle  
of timer count source clock by setting the timer Z primary wave-  
form extension control bit (b0) and the timer Z secondary  
waveform extension control bit (b1) of PUM to “1”. As a result, the  
waveforms of more accurate resolution can be output.  
When b0 and b1 of PUM are used, the frequency and duty of the  
output waveform are as follows;  
When writing to Prescaler Z (PREZ), timer Z primary (TZP) or  
timer Z secondary (TZS) is executed, writing to “latch only” or  
“latches and Prescaler Z and Timer Z” can be selected by the set-  
ting value of the timer Z write control bit. Be sure to set the write  
control bit because there are some notes according to the operat-  
ing mode.  
When reading from Prescaler Z (PREZ) is executed, the count  
value of Prescaler Z is read out. When reading from timer Z pri-  
mary (TZP) is executed, the count value of Timer Z is read out.  
The count value of Timer Z can be read out by reading from the  
timer Z primary (TZP) even when the value of timer Z primary  
latch or timer Z secondary latch is counted. When reading the  
timer Z secondary (TZS) is executed, the undefined value is read  
out.  
Waveform frequency:  
2TMZCL  
FZOUT=  
2(TZP+1)+2(TZS+1)+(EXPZP+EXPZS)  
Duty:  
2(TZP+1)+EXPZP  
DZOUT=  
Timer Z can be selected in one of 4 operating modes by setting  
the timer Z operating mode bits of the timer Y, Z mode register.  
(2(TZP+1)+EXPZP)+(2(TZS+1)+EXPZS  
TMZCL: Timer Z count source (frequency)  
TZP: Timer Z primary (8bit)  
(1) Timer mode  
Prescaler Z counts the count source selected by the timer Z count  
source selection bits. Each time the count clock is input, the con-  
tents of Prescaler Z is decremented by 1. When the contents of  
Prescaler Z reach “0016”, an underflow occurs at the next count  
clock, and the prescaler Z latch is reloaded into Prescaler Z. The  
division ratio of Prescaler Z is 1/(n+1) provided that the value of  
Prescaler Z is n.  
TZS: Timer Z secondary (8bit)  
EXPZP: Timer Z primary waveform extension control bit (1bit)  
EXPZS: Timer Z secondary waveform extension control bit (1bit)  
In the programmable waveform generation mode, when values of  
the TZP, TZS, EXPZP and EXPZS are changed, the output wave-  
form is changed at the beginning (timer Z primary waveform  
interval) of waveform period.  
The contents of Timer Z is decremented by 1 each time the under-  
flow signal of Prescaler Z is input. When the contents of Timer Z  
reach “0016”, an underflow occurs at the next count clock, and the  
timer Z primary latch is reloaded into Timer Z and count continues.  
(In the timer mode, the contents of timer Z primary latch is  
counted. Timer Z secondary latch is not used in this mode.)  
The division ratio of Timer Z is 1/(m+1) provided that the value of  
Timer Z is m. Accordingly, the division ratio of Prescaler Z and  
Timer Z is 1/((n+1)(m+1)) provided that the value of Prescaler Z  
is n and the value of Timer Z is m.  
When the count values are changed, set values to the TZS,  
EXPZP and EXPZS first. After then, set the value to TZP. The val-  
ues are set all at once at the beginning of the next waveform  
period when the value is set to TZP. (When writing at timer stop is  
executed, writing to TZP at last is required.)  
In the timer mode, writing to “latch only” or “latches and Prescaler  
Z and timer Z primary” can be selected by the setting value of the  
timer Z write control bit.  
Rev.4.00 Jun 21, 2004 page 28 of 82  
REJ03B0011-0400Z  
7540 Group  
Notes on the programmable waveform generation mode are de-  
scribed below;  
The falling or rising can be selected as the edge of the valid trig-  
ger of INT0 pin by the INT0 pin one-shot trigger edge selection bit.  
During the one-shot pulse output interval, the one-shot pulse out-  
put can be stopped forcibly by writing “0” to the timer Z one-shot  
start bit.  
Notes on programmable waveform generation mode  
• Count set value  
In the programmable waveform generation mode, values of TZS,  
EXPZP, and EXPZS are valid by writing to TZP because the set-  
ting to them is executed all at once by writing to TZP. Even when  
changing TZP is not required, write the same value again.  
• Write timing to TZP  
In the programmable one-shot generation mode, when the count  
values are changed, set value to the EXPZP first. After then, set  
the value to TZP. The values are set all at once at the beginning of  
the next one-shot pulse when the value is set to TZP. (When writ-  
ing at timer stop is executed, writing to TZP at last is required.)  
In the programmable waveform generation mode, when the set-  
ting value is changed while the waveform is output, set by  
software in order not to execute the writing to TZP and the timing  
of timer underflow during the secondary interval simultanesously.  
• Usage of waveform extension function  
Notes on the programmable one-shot generation mode are de-  
scribed below;  
The waveform extension function by the timer Z waveform exten-  
sion control bit can be used only when “0016” is set to Prescaler Z.  
When the value other than “0016” is set to Prescaler Z, be sure to  
set “0” to EXPZP and EXPZS. Also, when the timer Y underflow is  
selected as the count source, the waveform extension function  
cannot be used.  
Notes on programmable one-shot generation mode  
• Count set value  
In the programmable one-shot generation mode, the value of  
EXPZP becomes valid by writing to TZP. Even when changing  
TZP is not required, write the same value again.  
• Write timing to TZP  
• Timer Z write mode  
In the programmable one-shot generation mode, when the setting  
value is changed while the waveform is output, set by software in  
order not to execute the writing to TZP and the timing of timer un-  
derflow simultanesously.  
When using this mode, be sure to set “1” to the timer Z write con-  
trol bit to select “write to latch only”.  
(3) Programmable one-shot generation mode  
• Usage of waveform extension function  
In the programmable one-shot generation mode, the one-shot  
pulse by the setting value of timer Z primary can be output from  
TZOUT pin by software or external trigger. When using this mode,  
be sure to set “1” to the timer Z write control bit to select “write to  
latch only”. Also, set the port P02 direction registers to output  
mode. In this mode, TZS is not used.  
The waveform extension function by the timer Z waveform exten-  
sion control bit can be used only when “0016” is set to Prescaler Z.  
When the value other than “0016” is set to Prescaler Z, be sure to  
set “0” to EXPZP. Also, when the timer Y underflow is selected as  
the count source, the waveform extension function cannot be  
used.  
The active edge of output waveform is set by the timer Z output  
level latch (b5) of the timer Y, Z waveform output control register  
(PUM). When “0” is set to b5 of PUM, “H” pulse during the interval  
of the TZP setting value is output. When “1” is set to b5 of PUM,  
“L” pulse during the interval of the TZP setting value is output.  
Also, in this mode, the interval of the one-shot pulse output can be  
extended for 0.5 cycle of timer count source clock by setting the  
timer Z primary waveform extension control bit (b2) of PUM to “1”.  
As a result, the waveforms of more accurate resolution can be  
output.  
• Timer Z write mode  
When using this mode, be sure to set “1” to the timer Z write con-  
trol bit to select “write to latch only”.  
In the programmable one-shot generation mode, the trigger by  
software or the external INT0 pin can be accepted by writing “0” to  
the timer Z count stop bit after the count value is set. (At the time  
when “0” is written to the timer Z count stop bit, Timer Z stops.)  
By writing “1” to the timer Z one-shot start bit, or by inputting the  
valid trigger to the INT0 pin after the trigger to the INT0 pin be-  
comes valid by writing “1” to the INT0 pin one-shot trigger control  
bit, Timer Z starts counting, at the same time, the output of TZOUT  
pin is inverted. When Timer Z underflows, the output of TZOUT pin  
is inverted again and Timer Z stops. When also the trigger of INT0  
pin is accepted, the contents of the one-shot start bit is changed to  
“1” by hardware.  
Rev.4.00 Jun 21, 2004 page 29 of 82  
REJ03B0011-0400Z  
7540 Group  
(4) Programmable wait one-shot generation mode  
Notes on programmable wait one-shot generation mode  
• Count set value  
In the programmable wait one-shot generation mode, the one-shot  
pulse by the setting value of timer Z secondary can be output from  
TZOUT pin by software or external trigger to INT0 pin after the wait  
by the setting value of the timer Z primary. When using this mode,  
be sure to set “1” to the timer Z write control bit to select “write to  
latch only”. Also, set the port P02 direction registers to output  
mode.  
In the programmable wait one-shot generation mode, values of  
TZS, EXPZP and EXPZS are valid by writing to TZP. Even when  
changing TZP is not required, write the same value again.  
• Write timing to TZP  
In the programmable wait one-shot generation mode, when the  
setting value is changed while the waveform is output, set by soft-  
ware in order not to execute the writing to TZP and the timing of  
timer underflow during the secondary interval simultanesously.  
• Usage of waveform extension function  
The active edge of output waveform is set by the timer Z output  
level latch (b5) of the timer Y, Z waveform output control register  
(PUM). When “0” is set to b5 of PUM, after the wait during the in-  
terval of the TZP setting value, “H” pulse during the interval of the  
TZS setting value is output. When “1” is set to b5 of PUM, after the  
wait during the interval of the TZP setting value, “L” pulse during  
the interval of the TZS setting value is output.  
The waveform extension function by the timer Z waveform exten-  
sion control bit can be used only when “0016” is set to Prescaler Z.  
When the value other than “0016” is set to Prescaler Z, be sure to  
set “0” to EXPZP and EXPZS. Also, when the timer Y underflow is  
selected as the count source, the waveform extension function  
cannot be used.  
Also, in this mode, the intervals of the wait and the one-shot pulse  
output can be extended for 0.5 cycle of timer count source clock  
by setting EXPZP and EXPZS of PUM to “1”. As a result, the  
waveforms of more accurate resolution can be output.  
• Timer Z write mode  
When using this mode, be sure to set “1” to the timer Z write con-  
trol bit to select “write to latch only”.  
In the programmable one-shot generation mode, the trigger by  
software or the external INT0 pin can be accepted by writing “0” to  
the timer Z count stop bit after the count value is set. (At the time  
when “0” is written to the timer Z count stop bit, Timer Z stops.)  
By writing “1” to the timer Z one-shot start bit, or by inputting the  
valid trigger to the INT0 pin after the trigger to the INT0 pin be-  
comes valid by writing “1” to the INT0 pin one-shot trigger control  
bit, Timer Z starts counting.  
Timer Z can stop counting by setting “1” to the timer Z count stop  
bit in any mode.  
Also, when Timer Z underflows, the timer Z interrupt request bit is  
set to “1”.  
Timer Z reloads the value of latch when counting is stopped by the  
timer Z count stop bit. (When timer is read out while timer is  
stopped, the value of latch is read. The value of timer can be read  
out only while timer is operating.)  
While Timer Z counts the TZP, the initial value of the TZOUT pin  
output is retained. When Timer Z underflows, the value of TZS is  
reloaded, at the same time, the output of TZOUT pin is inverted.  
When Timer Z underflows, the output of TZOUT pin is inverted  
again and Timer Z stops. When also the trigger of INT0 pin is ac-  
cepted, the contents of the one-shot start bit is changed to “1” by  
hardware.  
The falling or rising can be selected as the edge of the valid trig-  
ger of INT0 pin by the INT0 pin one-shot trigger edge selection bit.  
During the wait interval and the one-shot pulse output interval, the  
one-shot pulse output can be stopped forcibly by writing “0” to the  
timer Z one-shot start bit.  
In the programmable wait one-shot generation mode, when the  
count values are changed, set values to the TZS, EXPZP and  
EXPZS first. After then, set the value to TZP. The values are set all  
at once at the beginning of the next wait interval when the value is  
set to TZP. (When writing at timer stop is executed, writing to TZP  
at last is required.)  
Notes on the programmable wait one-shot generation mode are  
described below;  
Rev.4.00 Jun 21, 2004 page 30 of 82  
REJ03B0011-0400Z  
7540 Group  
b7  
b0  
Timer Y, Z mode register  
(TYZM : address 002016, initial value: 0016  
)
Timer Y operating mode bit  
0 : Timer mode  
1 : Programmable waveform generation mode  
Not used (return “0” when read)  
Timer Y write control bit  
0 : Write to latch and timer simultaneously  
1 : Write to only latch  
Timer Y count stop bit  
0 : Count start  
1 : Count stop  
Timer Z operating mode bits  
b5 b4  
0
0
1
1
0 : Timer mode  
1 : Programmable waveform generation mode  
0 : Programmable one-shot generation mode  
1 : Programmable wait one-shot generation mode  
Timer Z write control bit  
0 : Write to latch and timer simultaneously  
1 : Write to only latch  
Timer Z count stop bit  
0 : Count start  
1 : Count stop  
Fig. 25 Structure of timer Y, Z mode register  
b7  
b0  
Timer Y, Z waveform output control register  
(PUM : address 002416, initial value: 0016  
)
Timer Y primary waveform extension control bit  
0 : Waveform not extended  
1 : Waveform extended  
Timer Y secondary waveform extension control bit  
0 : Waveform not extended  
1 : Waveform extended  
Timer Z primary waveform extension control bit  
0 : Waveform not extended  
1 : Waveform extended  
Timer Z secondary waveform extension control bit  
0 : Waveform not extended  
1 : Waveform extended  
Timer Y output level latch  
0 : “L” output  
1 : “H” output  
Timer Z output level latch  
0 : “L” output  
1 : “H” output  
INT0 pin one-shot trigger control bit  
0 : INT  
1 : INT  
0
0
pin one-shot trigger invalid  
pin one-shot trigger valid  
INT0 pin one-shot trigger active edge selection bit  
0 : Falling edge trigger  
1 : Rising edge trigger  
Fig. 26 Structure of timer YZ waveform output control register  
b7  
b0  
One-shot start register  
(ONS : address 002A16, initial value: 0016  
)
Timer Z one-shot start bit  
0 : One-shot stop  
1 : One-shot start  
Not used (return “0” when read)  
Fig. 27 Structure of one-shot start register  
Rev.4.00 Jun 21, 2004 page 31 of 82  
REJ03B0011-0400Z  
7540 Group  
Data bus  
Timer 1 latch (8)  
Prescaler 1 latch (8)  
Prescaler 1 (8)  
Timer 1 interrupt  
request bit  
Timer 1 (8)  
f(XIN)/16  
Pulse width HL  
continuously  
measurement mode  
Rising edge detected  
Falling edge detected  
Period measurement mode  
CNTR  
edge switch bit  
1 active  
Data bus  
P00/CNTR1  
Timer A (high-order) latch (8)  
Timer A (low-order) latch (8)  
Timer A interrupt  
request bit  
Timer A (low-order) (8)  
Timer A (high-order) (8)  
Timer A count  
stop bit  
f(XIN)/16  
Timer A operation mode bit  
Fig. 28 Block diagram of timer 1 and timer A  
Rev.4.00 Jun 21, 2004 page 32 of 82  
REJ03B0011-0400Z  
7540 Group  
Data bus  
f(XIN)/16  
f(XIN)/2  
Prescaler X latch (8)  
Prescaler X (8)  
Timer X latch (8)  
Timer X (8)  
Pulse width  
measurement  
mode  
f(XIN  
)
Timer mode  
Pulse output  
mode  
Timer X count  
source selection bits  
Timer X  
interrupt  
request bit  
CNTR0 active  
edge switch bit  
“0”  
Event  
counter  
mode  
Timer X count stop bit  
P14/CNTR0  
CNTR  
0
interrupt  
request bit  
“1”  
CNTR0 active  
edge switch bit  
“1”  
“0”  
Q
Toggle flip-flop  
R
T
Q
Port P1  
latch  
4
Writing to timer X latch  
Pulse output mode  
Port P14 direction  
register  
Pulse output mode  
P0  
3/  
TXOUT  
Port P03 latch  
Data bus  
P03/TXOUT output valid  
Port P0  
3
direction  
register  
Prescaler Y latch (8)  
Prescaler Y (8)  
Timer Y primary latch (8)  
Timer Y secondary latch (8)  
Timer Y (8)  
Timer Y count  
source selection bits  
Timer Y  
interrupt  
f(XIN)/16  
f(XIN)/2  
request bit  
Timer Y count  
stop bit  
On-chip oscillator clock RING  
(on-chip oscillator output  
in Fig. 51, 52)  
Timer Y primary waveform  
extension control bit  
Q
Q
T
Toggle flip-flop  
Waveform extension function  
P01/TYOUT  
Port P01 latch  
Timer Y output level latch  
Timer Y secondary  
waveform extension  
control bit  
Port P0  
direction  
register  
1
Programmable waveform  
gengeration mode  
Data bus  
Prescaler Z latch (8)  
Prescaler Z (8)  
Timer Z primary latch (8)  
Timer Z secondary latch (8)  
Timer Z count  
source selection bits  
f(XIN)/16  
f(XIN)/2  
Timer Z  
interrupt  
request bit  
Timer Z (8)  
Programmable one-shot generation mode  
Programmable wait one-shot generation mode  
Timer Z count  
stop bit  
Timer Z one-shot start bit  
INT  
0 pin trigger active edge  
selection bit  
INT0  
P37/INT0  
interrupt  
request bit  
One-shot pulse  
trigger input  
Timer Z primary waveform  
extenstion control bit  
Q
Q
T
Toggle flip flop  
Waveform extension function  
P02/TZOUT  
Timer Z output  
level latch  
Port P02 latch  
Timer Z secondary waveform  
extenstion control bit  
Port P0  
register  
2 direction  
Programmable waveform generation mode  
Programmable one-shot generation mode  
Programmable wait one-shot generation mode  
Fig. 29 Block diagram of timer X, timer Y and timer Z  
Rev.4.00 Jun 21, 2004 page 33 of 82  
REJ03B0011-0400Z  
7540 Group  
Serial I/O  
(1) Clock Synchronous Serial I/O Mode  
Serial I/O1  
Clock synchronous serial I/O1 mode can be selected by setting  
the serial I/O1 mode selection bit of the serial I/O1 control register  
(bit 6) to “1”.  
Serial I/O1 can be used as either clock synchronous or asynchro-  
nous (UART) serial I/O. A dedicated timer is also provided for  
baud rate generation.  
For clock synchronous serial I/O1, the transmitter and the receiver  
must use the same clock. If an internal clock is used, transfer is  
started by a write signal to the TB/RB.  
Data bus  
Serial I/O1 control register  
Address 001A16  
Address 001816  
Receive buffer register  
Receive buffer full flag (RBF)  
Receive shift register  
Receive interrupt request (RI)  
P10/RXD1  
Shift clock  
Clock control circuit  
P12/SCLK1  
Serial I/O1 synchronous  
clock selection bit  
Frequency division ratio 1/(n+1)  
BRG count source selection bit  
1/4  
X
IN  
Baud rate generator  
Address 001C16  
1/4  
Clock control circuit  
P1  
3
/SRDY1  
Falling-edge detector  
F/F  
Shift clock  
Transmit shift register  
Transmit buffer register  
Transmit shift completion flag (TSC)  
Transmit interrupt source selection bit  
P11/TXD1  
Transmit interrupt request (TI)  
Transmit buffer empty flag (TBE)  
Serial I/O1 status register  
Address 001916  
Address 001816  
Data bus  
Fig. 30 Block diagram of clock synchronous serial I/O1  
Transfer shift clock  
(1/2 to 1/2048 of the internal  
clock, or an external clock)  
Serial output TxD  
Serial input RxD  
D
D
0
0
D
D
1
1
D
D
2
2
D
D
3
3
D
D
4
4
D
D
5
5
D
D
6
6
D
D
7
7
Receive enable signal SRDY1  
Write pulse to receive/transmit  
buffer register (address 001816  
)
RBF = 1  
TSC = 1  
TBE = 0  
TBE = 1  
TSC = 0  
Overrun error (OE)  
detection  
Notes 1: As the transmit interrupt (TI), which can be selected, either when the transmit buffer has emptied (TBE=1) or after  
the transmit shift operation has ended (TSC=1), by setting the transmit interrupt source selection bit (TIC) of the  
serial I/O1 control register.  
2: If data is written to the transmit buffer register when TSC=0, the transmit clock is generated continuously and serial  
data is output continuously from the TxD pin.  
3: The receive interrupt (RI) is set when the receive buffer full flag (RBF) becomes “1” .  
Fig. 31 Operation of clock synchronous serial I/O1 function  
Rev.4.00 Jun 21, 2004 page 34 of 82  
REJ03B0011-0400Z  
7540 Group  
The transmit and receive shift registers each have a buffer, but the  
two buffers have the same address in memory. Since the shift reg-  
ister cannot be written to or read from directly, transmit data is  
written to the transmit buffer register, and receive data is read  
from the receive buffer register.  
(2) Asynchronous Serial I/O (UART) Mode  
Clock asynchronous serial I/O mode (UART) can be selected by  
clearing the serial I/O1 mode selection bit of the serial I/O1 control  
register to “0”.  
Eight serial data transfer formats can be selected, and the transfer  
formats used by a transmitter and receiver must be identical.  
The transmit buffer register can also hold the next data to be  
transmitted, and the receive buffer register can hold a character  
while the next character is being received.  
Data bus  
Address 001816  
Serial I/O1 control register Address 001A16  
Receive buffer register  
OE  
Character length selection bit  
Receive buffer full flag (RBF)  
Receive interrupt request (RI)  
P10/RXD1  
ST detector  
7 bits  
8 bits  
Receive shift register  
PE FE SP detector  
1/16  
UART control register  
Address 001B16  
Clock control circuit  
Serial I/O1 synchronous clock selection bit  
P12/SCLK1  
Frequency division ratio 1/(n+1)  
BRG count source selection bit  
1/4  
X
IN  
Baud rate generator  
Address 001C16  
ST/SP/PA generator  
1/16  
Transmit shift completion flag (TSC)  
Transmit interrupt source selection bit  
P11/TXD1  
Transmit shift register  
Transmit interrupt request (TI)  
Character length selection bit  
Transmit buffer empty flag (TBE)  
Transmit buffer register  
Address 001816  
Address 001916  
Serial I/O1 status register  
Data bus  
Fig. 32 Block diagram of UART serial I/O1  
Transmit or receive clock  
Transmit buffer write  
signal  
TBE=0  
TSC=0  
TBE=1  
TBE=0  
TSC=1✕  
SP  
TBE=1  
Serial output TXD  
ST  
D0  
D1  
ST  
D0  
D1  
SP  
Generated at 2nd bit in 2-stop-bit mode  
1 start bit  
7 or 8 data bit  
1 or 0 parity bit  
1 or 2 stop bit (s)  
Receive buffer read  
signal  
RBF=0  
RBF=1  
SP  
RBF=1  
SP  
ST  
Serial input RXD  
D0  
D1  
ST  
D0  
D1  
Notes 1: Error flag detection occurs at the same time that the RBF flag becomes “1” (at 1st stop bit, during reception).  
2: As the transmit interrupt (TI), when either the TBE or TSC flag becomes “1,” can be selected to occur depending on the setting of the transmit  
interrupt source selection bit (TIC) of the serial I/O1 control register.  
3: The receive interrupt (RI) is set when the RBF flag becomes “1.”  
4: After data is written to the transmit buffer when TSC=1, 0.5 to 1.5 cycles of the data shift cycle is necessary until changing to TSC=0.  
Fig. 33 Operation of UART serial I/O1 function  
Rev.4.00 Jun 21, 2004 page 35 of 82  
REJ03B0011-0400Z  
7540 Group  
[Transmit buffer register/receive buffer register (TB/RB)]  
001816  
Notes on serial I/O  
• Serial I/O interrupt  
The transmit buffer register and the receive buffer register are lo-  
cated at the same address. The transmit buffer is write-only and  
the receive buffer is read-only. If a character bit length is 7 bits, the  
MSB of data stored in the receive buffer is “0”.  
When setting the transmit enable bit to “1”, the serial I/O transmit  
interrupt request bit is automatically set to “1”. When not requiring  
the interrupt occurrence synchronized with the transmission en-  
abled, take the following sequence.  
Set the serial I/O transmit interrupt enable bit to “0” (disabled).  
Set the transmit enable bit to “1”.  
[Serial I/O1 status register (SIO1STS)] 001916  
The read-only serial I/O1 status register consists of seven flags  
(bits 0 to 6) which indicate the operating status of the serial I/O1  
function and various errors.  
Set the serial I/O transmit interrupt request bit to “0” after 1 or  
more instructions have been executed.  
Set the serial I/O transmit interrupt enable bit to “1” (enabled).  
Three of the flags (bits 4 to 6) are valid only in UART mode.  
The receive buffer full flag (bit 1) is cleared to “0” when the receive  
buffer register is read.  
• I/O pin function when serial I/O1 is enabled.  
The functions of P12 and P13 are switched with the setting values  
of a serial I/O1 mode selection bit and a serial I/O1 synchronous  
clock selection bit as follows.  
If there is an error, it is detected at the same time that data is  
transferred from the receive shift register to the receive buffer reg-  
ister, and the receive buffer full flag is set. A write to the serial I/O1  
status register clears all the error flags OE, PE, FE, and SE (bit 3  
to bit 6, respectively). Writing “0” to the serial I/O1 enable bit SIOE  
(bit 7 of the serial I/O1 control register) also clears all the status  
flags, including the error flags.  
(1) Serial I/O1 mode selection bit “1” :  
Clock synchronous type serial I/O is selected.  
Setup of a serial I/O1 synchronous clock selection bit  
“0” : P12 pin turns into an output pin of a synchronous clock.  
“1” : P12 pin turns into an input pin of a synchronous clock.  
Setup of a SRDY1 output enable bit (SRDY)  
Bits 0 to 6 of the serial I/O1 status register are initialized to “0” at  
reset, but if the transmit enable bit of the serial I/O1 control regis-  
ter has been set to “1”, the transmit shift completion flag (bit 2)  
and the transmit buffer empty flag (bit 0) become “1”.  
“0” : P13 pin can be used as a normal I/O pin.  
“1” : P13 pin turns into a SRDY output pin.  
[Serial I/O1 control register (SIO1CON)] 001A16  
The serial I/O1 control register consists of eight control bits for the  
serial I/O1 function.  
(2) Serial I/O1 mode selection bit “0” :  
Clock asynchronous (UART) type serial I/O is selected.  
Setup of a serial I/O1 synchronous clock selection bit  
“0”: P12 pin can be used as a normal I/O pin.  
[UART control register (UARTCON)] 001B16  
“1”: P12 pin turns into an input pin of an external clock.  
When clock asynchronous (UART) type serial I/O is selected, it is  
P13 pin. It can be used as a normal I/O pin.  
The UART control register consists of four control bits (bits 0 to 3)  
which are valid when asynchronous serial I/O is selected and set  
the data format of an data transfer and one bit (bit 4) which is al-  
ways valid and sets the output structure of the P11/TXD1 pin.  
[Baud rate generator (BRG)] 001C16  
The baud rate generator determines the baud rate for serial transfer.  
The baud rate generator divides the frequency of the count source  
by 1/(n + 1), where n is the value written to the baud rate generator.  
Rev.4.00 Jun 21, 2004 page 36 of 82  
REJ03B0011-0400Z  
7540 Group  
b7  
b0  
b7  
b0  
Serial I/O1 status register  
(SIO1STS : address 0019 16, initial value: 0016)  
Serial I/O1 control register  
(SIO1CON : address 001A 16, initial value: 0016)  
BRG count source selection bit (CSS)  
0: f(XIN)  
1: f(XIN)/4  
Transmit buffer empty flag (TBE)  
0: Buffer full  
1: Buffer empty  
Serial I/O1 synchronous clock selection bit (SCS)  
0: BRG output divided by 4 when clock synchronous  
serial I/O is selected, BRG output divided by 16  
when UART is selected.  
Receive buffer full flag (RBF)  
0: Buffer empty  
1: Buffer full  
1: External clock input when clock synchronous serial  
I/O is selected, external clock input divided by 16  
when UART is selected.  
Transmit shift completion flag (TSC)  
0: Transmit shift in progress  
1: Transmit shift completed  
SRDY1 output enable bit (SRDY)  
0: P13 pin operates as ordinary I/O pin  
1: P13 pin operates as SRDY1 output pin  
Overrun error flag (OE)  
0: No error  
1: Overrun error  
Transmit interrupt source selection bit (TIC)  
0: Interrupt when transmit buffer has emptied  
1: Interrupt when transmit shift operation is completed  
Parity error flag (PE)  
0: No error  
1: Parity error  
Transmit enable bit (TE)  
0: Transmit disabled  
1: Transmit enabled  
Framing error flag (FE)  
0: No error  
1: Framing error  
Receive enable bit (RE)  
0: Receive disabled  
1: Receive enabled  
Summing error flag (SE)  
0: (OE) U (PE) U (FE)=0  
1: (OE) U (PE) U (FE)=1  
Serial I/O1 mode selection bit (SIOM)  
0: Clock asynchronous (UART) serial I/O  
1: Clock synchronous serial I/O  
Not used (returns “1” when read)  
b7  
b0  
Serial I/O1 enable bit (SIOE)  
0: Serial I/O1 disabled  
(pins P10 to P13 operate as ordinary I/O pins)  
1: Serial I/O1 enabled  
(pins P10 to P13operate as serial I/O pins)  
UART control register  
(UARTCON : address 001B 16, initial value: E016)  
Character length selection bit (CHAS)  
0: 8 bits  
1: 7 bits  
Parity enable bit (PARE)  
0: Parity checking disabled  
1: Parity checking enabled  
Parity selection bit (PARS)  
0: Even parity  
1: Odd parity  
Stop bit length selection bit (STPS)  
0: 1 stop bit  
1: 2 stop bits  
P11/TXD1 P-channel output disable bit (POFF)  
0: CMOS output (in output mode)  
1: N-channel open drain output (in output mode)  
Not used (return “1” when read)  
Fig. 34 Structure of serial I/O1-related registers  
Rev.4.00 Jun 21, 2004 page 37 of 82  
REJ03B0011-0400Z  
7540 Group  
Serial I/O2  
The serial I/O2 function can be used only for clock synchronous  
b7  
b0  
Serial I/O2 control register  
(SIO2CON: address 003016, initila value: 0016)  
serial I/O.  
For clock synchronous serial I/O2 the transmitter and the receiver  
must use the same clock. When the internal clock is used, transfer  
is started by a write signal to the serial I/O2 register.  
Note: Serial I/O2 can be used in the following cases;  
(1) Serial I/O1 is not used,  
Internal synchronous clock selection bits  
000 : f(XIN)/8  
001 : f(XIN)/16  
010 : f(XIN)/32  
011 : f(XIN)/64  
110 : f(XIN)/128  
111 : f(XIN)/256  
(2) Serial I/O1 is used as UART and BRG output divided by 16 is  
selected as the synchronized clock.  
SDATA2 pin selection bit (Note)  
0 : I/O port / SDATA2 input  
1 : SDATA2 output  
Not used  
[Serial I/O2 control register] SIO2CON  
The serial I/O2 control register contains 8 bits which control vari-  
ous serial I/O functions.  
(returns “0” when read)  
Transfer direction selection bit  
0 : LSB first  
1 : MSB first  
SCLK2 pin selection bit  
0 : External clock (SCLK2 is an input)  
1 : Internal clock (SCLK2 is an output)  
• Set “0” to bit 3 to receive.  
• At reception, clear bit 7 to “0” by writing a dummy data to the se-  
rial I/O2 register after completion of shift.  
Transmit / receive shift completion flag  
0 : shift in progress  
1 : shift completed  
Note : When using it as a SDATA input, set the port P13  
direction register to “0”.  
Fig. 35 Structure of serial I/O2 control registers  
Data bus  
1/8  
1/16  
1/32  
1/64  
1/128  
1/256  
X
IN  
S
CLK2 pin  
selection bit “1”  
S
CLK  
Internal synchronous  
clock selection bits  
“0”  
S
CLK2 pin selection bit  
“0”  
P12 latch  
P12/SCLK2  
Serial I/O2  
interrupt request  
Serial I/O counter 2 (3)  
“1”  
S
DATA2 pin selection bit  
“0”  
P13 latch  
P13/SDATA2  
“1”  
DATA2 pin selection bit  
S
Serial I/O shift register 2 (8)  
Fig. 36 Block diagram of serial I/O2  
Rev.4.00 Jun 21, 2004 page 38 of 82  
REJ03B0011-0400Z  
7540 Group  
Serial I/O2 operation  
By writing to the serial I/O2 register (address 003116) the serial I/  
O2 counter is set to “7”.  
After writing, the SDATA2 pin outputs data every time the transfer  
clock shifts from “H” to “L”. And, as the transfer clock shifts from  
“L” to “H”, the SDATA2 pin reads data, and at the same time the  
contents of the serial I/O2 register are shifted by 1 bit.  
When the internal clock is selected as the transfer clock source,  
the following operations execute as the transfer clock counts up to  
8.  
• Serial I/O2 counter is cleared to “0”.  
• Transfer clock stops at an “H” level.  
• Interrupt request bit is set.  
• Shift completion flag is set.  
Also, the SDATA2 pin is in a high impedance state after the data  
transfer is completed (refer to Fig.37).  
When the external clock is selected as the transfer clock source,  
the interrupt request bit is set as the transfer clock counts up to 8,  
but external control of the clock is required since it does not stop.  
Notice that the SDATA2 pin is not in a high impedance state on the  
completion of data transfer.  
Also, after the receive operation is completed, the transmit/receive  
shift completion flag is cleared by reading the serial I/O2 register.  
At transmit, the transmit/receive shift completion flag is cleared  
and the transmit operation is started by writing to serial I/O2 regis-  
ter.  
Synchronous clock  
Transfer clock  
Serial I/O2 register  
write signal  
(Note)  
S
DATA2 at serial I/O2  
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D7  
output transmit  
S
DATA2 at serial I/O2  
input receive  
Serial I/O2 interrupt request bit set  
Transmit/receive shift completion flag set  
Note : When the internal clock is selected as the transfer and the direction register of P1  
3/SDATA2 pin is set to the input mode,  
the SDATA2 pin is in a high impedance state after the data transfer is completed.  
Fig. 37 Serial I/O2 timing (LSB first)  
Rev.4.00 Jun 21, 2004 page 39 of 82  
REJ03B0011-0400Z  
7540 Group  
(2) When VREF voltage is lower than [3.0 V], the accuracy at the  
low temperature may become extremely low compared with  
that at room temperature When the system would be used at  
low temperature, the use at VREF=3.0 V or more is recom-  
mended.  
A/D Converter  
The functional blocks of the A/D converter are described below.  
[A/D conversion register] AD  
The A/D conversion register is a read-only register that stores the  
result of A/D conversion. Do not read out this register during an A/  
D conversion.  
b7  
b0  
A/D control register  
(ADCON : address 003416, initial value: 1016)  
[A/D control register] ADCON  
Analog input pin selection bits  
000 : P20/AN0  
001 : P21/AN1  
010 : P22/AN2  
011 : P23/AN3  
100 : P24/AN4  
101 : P25/AN5  
110 : P26/AN6 (Note)  
111 : P27/AN7 (Note)  
The A/D control register controls the A/D converter. Bit 2 to 0 are  
analog input pin selection bits. Bit 4 is the AD conversion comple-  
tion bit. The value of this bit remains at “0” during A/D conversion,  
and changes to “1” at completion of A/D conversion.  
A/D conversion is started by setting this bit to “0”.  
Not used (returns “0” when read)  
[Comparison voltage generator]  
AD conversion completion bit  
0 : Conversion in progress  
1 : Conversion completed  
The comparison voltage generator divides the voltage between  
AVSS and VREF by 1024, and outputs the divided voltages.  
Not used (returns “0” when read)  
Note: These can be used only for 36 pin version.  
[Channel selector]  
The channel selector selects one of ports P27/AN7 to P20/AN0,  
and inputs the voltage to the comparator.  
Fig. 38 Structure of A/D control register  
[Comparator and control circuit]  
Read 8-bit (Read only address 003516  
b7  
)
The comparator and control circuit compares an analog input volt-  
age with the comparison voltage and stores its result into the A/D  
conversion register. When A/D conversion is completed, the con-  
trol circuit sets the AD conversion completion bit and the AD  
interrupt request bit to “1”. Because the comparator is constructed  
linked to a capacitor, set f(XIN) to 500 kHz or more during A/D con-  
version.  
b0  
(Address 003516  
)
b9 b8 b7 b6 b5 b4 b3 b2  
Read 10-bit (read in order address 003616, 003516  
b7  
)
b0  
b9 b8  
(Address 003616  
)
b7  
b0  
Note on A/D converter  
(Address 003516  
)
b7 b6 b5 b4 b3 b2 b1 b0  
As for AD translation accuracy, on the following operating condi-  
tions, accuracy may become low.  
(1) Since the analog circuit inside a microcomputer becomes sensi-  
tive to noise when VREF voltage is set up lower than Vcc  
voltage, accuracy may become low rather than the case where  
VREF voltage and Vcc voltage are set up to the same value.  
Note: High-order 6-bit of address 003616 returns “0” when read.  
Fig. 39 Structure of A/D conversion register  
Data bus  
b7  
b0  
A/D control register  
(Address 003416  
)
3
A/D interrupt request  
A/D control circuit  
P20/AN0  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
1
2
3
4
5
6
7
A/D conversion register (high-order)  
(Address 003616  
(Address 003516  
)
)
Comparator  
A/D conversion register (low-order)  
10  
Resistor ladder  
V
REF  
VSS  
Fig. 40 Block diagram of A/D converter  
Rev.4.00 Jun 21, 2004 page 40 of 82  
REJ03B0011-0400Z  
7540 Group  
Watchdog Timer  
Operation of watchdog timer H count source selection bit  
A watchdog timer H count source can be selected by bit 7 of the  
watchdog timer control register (address 003916). When this bit is  
“0”, the count source becomes a watchdog timer L underflow sig-  
nal. The detection time is 131.072 ms at f(XIN)=8 MHz.  
When this bit is “1”, the count source becomes f(XIN)/16. In this  
case, the detection time is 512 µs at f(XIN)=8 MHz.  
The watchdog timer gives a means for returning to a reset status  
when the program fails to run on its normal loop due to a runaway.  
The watchdog timer consists of an 8-bit watchdog timer H and an  
8-bit watchdog timer L, being a 16-bit counter.  
Standard operation of watchdog timer  
The watchdog timer stops when the watchdog timer control regis-  
ter (address 003916) is not set after reset. Writing an optional  
value to the watchdog timer control register (address 003916)  
causes the watchdog timer to start to count down. When the  
watchdog timer H underflows, an internal reset occurs. Accord-  
ingly, it is programmed that the watchdog timer control register  
(address 003916) can be set before an underflow occurs.  
When the watchdog timer control register (address 003916) is  
read, the values of the high-order 6-bit of the watchdog timer H,  
STP instruction disable bit and watchdog timer H count source se-  
lection bit are read.  
This bit is cleared to “0” after reset.  
Operation of STP instruction disable bit  
When the watchdog timer is in operation, the STP instruction can  
be disabled by bit 6 of the watchdog timer control register (ad-  
dress 003916).  
When this bit is “0”, the STP instruction is enabled.  
When this bit is “1”, the STP instruction is disabled, and an inter-  
nal reset occurs if the STP instruction is executed.  
Once this bit is set to “1”, it cannot be changed to “0” by program.  
This bit is cleared to “0” after reset.  
Initial value of watchdog timer  
By a reset or writing to the watchdog timer control register (ad-  
dress 003916), the watchdog timer H is set to “FF16” and the  
watchdog timer L is set to “FF16”.  
Data bus  
Write “FF16” to the  
watchdog timer  
control register  
Write "FF16" to the  
watchdog timer  
control register  
“0”  
“1”  
Watchdog timer L (8)  
Watchdog timer H (8)  
1/16  
X
IN  
Watchdog timer H count  
source selection bit  
STP Instruction disable bit  
STP Instruction  
Reset  
circuit  
Internal reset  
RESET  
Fig. 41 Block diagram of watchdog timer  
b7  
b0  
Watchdog timer control register  
(WDTCON: address 003916, initial value: 3F16  
)
Watchdog timer H (read only for high-order 6-bit)  
STP instruction disable bit  
0 : STP instruction enabled  
1 : STP instruction disabled  
Watchdog timer H count source selection bit  
0 : Watchdog timer L underflow  
1 : f(XIN)/16  
Fig. 42 Structure of watchdog timer control register  
Rev.4.00 Jun 21, 2004 page 41 of 82  
REJ03B0011-0400Z  
7540 Group  
Reset Circuit  
Poweron  
(Note)  
The microcomputer is put into a reset status by holding the RE-  
SET pin at the “L” level for 2 µs or more when the power source  
voltage is 2.2 to 5.5 V and XIN is in stable oscillation.  
After that, this reset status is released by returning the RESET pin  
to the “H” level. The program starts from the address having the  
contents of address FFFD16 as high-order address and the con-  
tents of address FFFC16 as low-order address.  
Power source  
voltage  
0 V  
RESET  
VCC  
Reset input  
voltage  
0 V  
0.2 VCC  
In the case of f(φ) 6 MHz, the reset input voltage must be 0.9 V  
or less when the power source voltage passes 4.5 V.  
In the case of f(φ) 4 MHz, the reset input voltage must be 0.8 V  
or less when the power source voltage passes 4.0 V.  
In the case of f(φ) 2 MHz, the reset input voltage must be 0.48 V  
or less when the power source voltage passes 2.4 V.  
In the case of f(φ) 1 MHz, the reset input voltage must be 0.44 V  
or less when the power source voltage passes 2.2 V.  
Note : Reset release voltage Vcc = 2.2 V  
RESET  
VCC  
Power source  
voltage  
detection circuit  
Fig. 43 Example of reset circuit  
Clock from on-chip  
oscillator RING  
φ
RESET  
RESETOUT  
SYNC  
AD  
H
H,ADL  
?
?
?
?
?
FFFC  
FFFD  
Address  
Reset address from the  
vector table  
?
?
?
?
?
ADL  
AD  
Data  
Notes  
1 : An on-chip oscillator applies about RING•2 MHz, φ•250 kHz frequency clock  
at average of Vcc = 5 V.  
8-13 clock cycles  
2 : The mark “?” means that the address is changeable depending on the previous state.  
3 : These are all internal signals except RESET.  
Fig. 44 Timing diagram at reset  
Rev.4.00 Jun 21, 2004 page 42 of 82  
REJ03B0011-0400Z  
7540 Group  
Address  
Register contents  
0016  
000116  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
Port P0 direction register  
Port P1 direction register  
Port P2 direction register  
Port P3 direction register  
X
X
X
0
0
0
0
0
000316  
000516  
000716  
001616  
001716  
001916  
001A16  
001B16  
0016  
0016  
0016  
0016  
Pull-up control register  
Port P1P3 control register  
1
1
0
1
0
1
0
0
0
0
0
0
0
0
Serial I/O1 status register  
0016  
(8) Serial I/O1 control register  
0
0
(9)  
UART control register  
0016  
001D16  
001E16  
001F16  
002016  
002116  
002216  
002316  
002416  
002516  
002616  
002716  
002816  
002916  
002A16  
002B16  
002C16  
002D16  
002E16  
003016  
003116  
003416  
003816  
003916  
003A16  
003B16  
003C16  
(10)  
Timer A mode register  
(11) Timer A (low-order)  
(12)  
FF16  
FF16  
0016  
FF16  
FF16  
FF16  
0016  
FF16  
FF16  
Timer A (high-order)  
(13) Timer Y, Z mode register  
(14)  
(15)  
(16)  
(17)  
(18)  
(19)  
(20)  
(21)  
(22)  
(23)  
(24)  
(25)  
(26)  
Prescaler Y  
Timer Y secondary  
Timer Y primary  
Timer Y, Z waveform output control register  
Prescaler Z  
Timer Z secondary  
Timer Z primary  
Prescaler 1  
FF16  
FF16  
0116  
0016  
0016  
Timer 1  
One-shot start register  
Timer X mode register  
Prescaler X  
FF16  
FF16  
0016  
0016  
Timer X  
(27) Timer count source set register  
(28) Serial I/O2 control register  
(29) Serial I/O2 register  
0016  
1016  
0016  
(30) A/D control register  
(31) MISRG  
0
1
0
0
1
0
1
1
1
0
1
0
1
0
(32) Watchdog timer control register  
0016  
Interrupt edge selection register  
(33)  
(34)  
(35)  
(36)  
(37)  
(38)  
(39)  
(40)  
0
0
CPU mode register  
0016  
0016  
0016  
0016  
Interrupt request register 1  
Interrupt request register 2  
Interrupt control register 1  
Interrupt control register 2  
Processor status register  
003D16  
003E16  
003F16  
X
X
X
X
X
1
X
X
(PS)  
Contents of address FFFD16  
Contents of address FFFC16  
Note X : Undefined  
Program counter  
(PCH  
)
(PCL  
)
Fig. 45 Internal status of microcomputer at reset  
Rev.4.00 Jun 21, 2004 page 43 of 82  
REJ03B0011-0400Z  
7540 Group  
Clock Generating Circuit  
Note:  
Externally connect a  
damping resistor Rd de-  
p e n d i n g o n t h e  
oscillation frequency.  
(A feedback resistor is  
built-in.)  
Use the resonator  
manufacturer’s recom-  
mended value because  
constants such as ca-  
pacitance depend on the  
resonator.  
An oscillation circuit can be formed by connecting a resonator be-  
tween XIN and XOUT, and an RC oscillation circuit can be formed  
by connecting a resistor and a capacitor.  
M37540  
Use the circuit constants in accordance with the resonator  
manufacturer's recommended values.  
X
IN  
XOUT  
Rd  
(1) On-chip oscillator operation  
When the MCU operates by the on-chip oscillator for the main  
clock, connect XIN pin to VSS and leave XOUT pin open.  
The clock frequency of the on-chip oscillator depends on the sup-  
ply voltage and the operation temperature range.  
Be careful that variable frequencies when designing application  
products.  
C
OUT  
C
IN  
Fig. 46 External circuit of ceramic resonator  
Note:  
Connect the external  
circuit of resistor R  
and the capacitor C at  
the shortest distance.  
The frequency is af-  
fected by a capacitor,  
a resistor and a micro-  
computer.  
(2) Ceramic resonator  
When the ceramic resonator is used for the main clock, connect  
the ceramic resonator and the external circuit to pins XIN and  
XOUT at the shortest distance. A feedback resistor is built in be-  
tween pins XIN and XOUT.  
M37540  
X
IN  
XOUT  
R
C
(3) RC oscillation  
So, set the constants  
within the range of the  
frequency limits.  
When the RC oscillation is used for the main clock, connect the  
XIN pin and XOUT pin to the external circuit of resistor R and the  
capacitor C at the shortest distance.  
The frequency is affected by a capacitor, a resistor and a micro-  
computer.  
Fig. 47 External circuit of RC oscillation  
So, set the constants within the range of the frequency limits.  
(4) External clock  
M37540  
When the external signal clock is used for the main clock, connect  
the XIN pin to the clock source and leave XOUT pin open.  
XIN  
XOUT  
Open  
External oscillation  
circuit  
V
CC  
SS  
V
Fig. 48 External clock input circuit  
Note:  
The clock frequency of the  
on-chip oscillator depends  
on the supply voltage and  
the operation temperature  
range.  
M37540  
Be careful that variable fre-  
quencies and obtain the  
sufficient margin.  
X
IN  
XOUT  
Open  
Fig. 49 Processing of XIN and XOUT pins at on-chip oscillator  
operation  
Rev.4.00 Jun 21, 2004 page 44 of 82  
REJ03B0011-0400Z  
7540 Group  
(1) Oscillation control  
Oscillation stop detection circuit (Note)  
The oscillation stop detection circuit is used for reset occurrence  
when a ceramic resonator or an oscillation circuit stops by discon-  
nection. When internal reset occurs, reset because of oscillation  
stop can be detected by setting “1” to the oscillation stop detection  
status bit.  
• Stop mode  
When the STP instruction is executed, the internal clock φ stops at  
an “H” level and the XIN oscillator stops. At this time, timer 1 is set  
to “0116” and prescaler 1 is set to “FF16” when the oscillation sta-  
bilization time set bit after release of the STP instruction is “0”. On  
the other hand, timer 1 and prescaler 1 are not set when the  
above bit is “1”. Accordingly, set the wait time fit for the oscillation  
stabilization time of the oscillator to be used. f(XIN)/16 is forcibly  
connected to the input of prescaler 1. When an external interrupt  
is accepted, oscillation is restarted but the internal clock φ remains  
at “H” until timer 1 underflows. As soon as timer 1 underflows, the  
internal clock φ is supplied. This is because when a ceramic oscil-  
lator is used, some time is required until a start of oscillation. In  
case oscillation is restarted by reset, no wait time is generated. So  
apply an “L” level to the RESET pin while oscillation becomes  
stable.  
Also, when using the oscillation stop detection circuit, an on-chip  
oscillator is required.  
Figure 53 shows the state transition.  
Note: The oscillation stop detection circuit is not included in the  
emulator MCU “M37540RSS”.  
b7  
b0  
MISRG(address 003816, initial value: 0016  
)
Oscillation stabilization time set bit after  
release of the STP instruction  
Also, the STP instruction cannot be used while CPU is operating  
by an on-chip oscillator.  
0: Set “0116” in timer1, and “FF16  
in prescaler 1 automatically  
1: Not set automatically  
• Wait mode  
Ceramic or RC oscillation stop detection  
function active bit  
0: Detection function inactive  
1: Detection function active  
If the WIT instruction is executed, the internal clock φ stops at an  
“H” level, but the oscillator does not stop. The internal clock re-  
starts if a reset occurs or when an interrupt is received. Since the  
oscillator does not stop, normal operation can be started immedi-  
ately after the clock is restarted. To ensure that interrupts will be  
received to release the STP or WIT state, interrupt enable bits  
must be set to “1” before the STP or WIT instruction is executed.  
Reserved bits (return “0” when read)  
(Do not write “1” to these bits)  
Not used (return “0” when read)  
Oscillation stop detection status bit  
0: Oscillation stop not detected  
1: Oscillation stop detected  
Notes on clock generating circuit  
Fig. 50 Structure of MISRG  
For use with the oscillation stabilization set bit after release of the  
STP instruction set to “1”, set values in timer 1 and prescaler 1 af-  
ter fully appreciating the oscillation stabilization time of the  
oscillator to be used.  
• Switch of ceramic and RC oscillations  
After releasing reset the operation starts by starting an on-chip os-  
cillator. Then, a ceramic oscillation or an RC oscillation is selected  
by setting bit 5 of the CPU mode register.  
• Double-speed mode  
When a ceramic oscillation is selected, a double-speed mode can  
be used. Do not use it when an RC oscillation is selected.  
• CPU mode register  
Bits 5, 1 and 0 of CPU mode register are used to select oscillation  
mode and to control operation modes of the microcomputer. In or-  
der to prevent the dead-lock by error-writing (ex. program  
run-away), these bits can be rewritten only once after releasing re-  
set. After rewriting it is disable to write any data to the bit. (The  
emulator MCU “M37540RSS” is excluded.)  
Also, when the read-modify-write instructions (SEB, CLB) are ex-  
ecuted to bits 2 to 4, 6 and 7, bits 5, 1 and 0 are locked.  
• Clock division ratio, XIN oscillation control, on-chip oscillator control  
The state transition shown in Fig. 52 can be performed by setting  
the clock division ratio selection bits (bits 7 and 6), XIN oscillation  
control bit (bit 4), on-chip oscillator oscillation control bit (bit 3) of  
CPU mode register. Be careful of notes on use in Fig. 52.  
Rev.4.00 Jun 21, 2004 page 45 of 82  
REJ03B0011-0400Z  
7540 Group  
XIN  
XOUT  
Rf  
Clock division ratio selection bit  
Middle-, high-, low-speed mode  
Timer 1  
Prescaler 1  
1/2  
1/2  
1/4  
On-chip oscillator mode  
Clock division  
ratio selection bit  
Middle-speed mode  
Timing φ  
(Internal clock)  
High-speed mode  
Double-speed mode  
On-chip oscillator mode  
RING  
1/8  
On-chip oscillator  
Q
S
R
S
R
Q
Q
S
R
RESET  
WIT  
instruction  
STP instruction  
STP instruction  
Reset  
Interrupt disable flag l  
Interrupt request  
Fig. 51 Block diagram of internal clock generating circuit (for ceramic resonator)  
XOUT  
XIN  
Clock division ratio selection bit  
Middle-, high-, low-speed mode  
Timer 1  
Prescaler 1  
1/2  
1/4  
1/2  
On-chip  
oscillator  
mode  
Delay  
Clock division  
ratio selection bit  
Middle-speed mode  
Timing φ  
(Internal clock)  
High-speed mode  
Double-speed mode  
RING  
1/8  
On-chip oscillator  
On-chip oscillator mode  
Q
S
R
S
R
Q
Q
S
R
RESET  
WIT  
instruction  
STP instruction  
STP instruction  
Reset  
Interrupt disable flag l  
Interrupt request  
Fig. 52 Block diagram of internal clock generating circuit (for RC oscillation)  
Rev.4.00 Jun 21, 2004 page 46 of 82  
REJ03B0011-0400Z  
7540 Group  
Stop mode  
Wait mode  
Interrupt  
WIT  
instruction  
Interrupt  
STP  
instruction  
Interrupt  
WIT  
instruction  
State 1  
Operation clock source:  
f(XIN) (Note 1)  
f(XIN) oscillation enabled  
On-chip oscillator stop  
State 2  
Operation clock source:  
f(XIN) (Note 1)  
f(XIN) oscillation enabled  
On-chip oscillator enabled  
State 3  
State 4  
CPUM76102  
Operation clock source:  
On-chip oscillator (Note 3)  
f(XIN) oscillation enabled  
On-chip oscillator enalbed  
Operation clock source:  
On-chip oscillator (Note 3)  
f(XIN) oscillation stop  
CPUM302  
CPUM312  
CPUM412  
CPUM402  
On-chip oscillator enalbed  
CPUM76002  
012  
112  
(Note 2)  
Notes on switch of clock  
(1) In operation clock source = f(XIN), the following can be  
selected for the CPU clock division ratio.  
MISRG112  
MISRG102  
f(XIN)/2 (high-speed mode)  
MISRG112  
MISRG102  
f(XIN)/8 (middle-speed mode)  
f(XIN) (double-speed mode, only at a ceramic oscillation)  
(2) Execute the state transition state 3 to state 2 or  
state 3’ to state 2’ after stabilizing XIN oscillation.  
(3) In operation clock source = on-chip oscillator, the middle-  
speed mode is selected for the CPU clock division ratio.  
(4) When the state transition state 2 state 3 state 4  
is performed, execute the NOP instruction as shown below  
according to the division ratio of CPU clock.  
State 3’  
State 2’  
Operation clock source:  
f(XIN) (Note 1)  
CPUM76102  
Operation clock source:  
On-chip oscillator (Note 3)  
f(XIN) oscillation enabled  
On-chip oscillator enalbed  
On-chip oscillator enabled  
CPUM76002  
012  
112  
(Note 2)  
• CPUM76 10  
• NOP instruction  
• CPUM4 1 (State 3 state 4)  
2 (State 2 state 3)  
Oscillation stop detection circuit valid  
2
Reset released  
Double-speed mode at on-chip oscillator: NOP 3  
High-speed mode at on-chip oscillator: NOP 1  
Middle-speed mode at on-chip oscillator: NOP 0  
Reset state  
Fig. 53 State transition  
Rev.4.00 Jun 21, 2004 page 47 of 82  
REJ03B0011-0400Z  
7540 Group  
NOTES ON PROGRAMMING  
State transition  
Do not stop the clock selected as the operation clock because of  
Processor Status Register  
setting of CM3, 4.  
The contents of the processor status register (PS) after reset are  
undefined except for the interrupt disable flag I which is “1”. After  
reset, initialize flags which affect program execution. In particular,  
it is essential to initialize the T flag and the D flag because of their  
effect on calculations.  
NOTES ON HARDWARE  
Handling of Power Source Pin  
In order to avoid a latch-up occurrence, connect a capacitor suit-  
able for high frequencies as bypass capacitor between power  
source pin (Vcc pin) and GND pin (Vss pin). Besides, connect the  
capacitor to as close as possible. For bypass capacitor which  
should not be located too far from the pins to be connected, a ce-  
ramic capacitor of 0.01 µF to 0.1 µF is recommended.  
Interrupts  
The contents of the interrupt request bit do not change even if the  
BBC or BBS instruction is executed immediately after they are  
changed by program because this instruction is executed for the  
previous contents. For executing the instruction for the changed  
contents, execute one instruction before executing the BBC or  
BBS instruction.  
One Time PROM Version  
The CNVss pin is connected to the internal memory circuit block  
by a low-ohmic resistance, since it has the multiplexed function to  
be a programmable power source pin (VPP pin) as well.  
To improve the noise reduction, connect a track between CNVss  
pin and Vss pin with 1 to 10 kresistance.  
Decimal Calculations  
• For calculations in decimal notation, set the decimal mode flag  
D to “1”, then execute the ADC instruction or SBC instruction. In  
this case, execute SEC instruction, CLC instruction or CLD in-  
struction after executing one instruction before the ADC instruction  
or SBC instruction.  
The mask ROM version track of CNVss pin has no operational in-  
terference even if it is connected via a resistor.  
• In the decimal mode, the values of the N (negative), V (overflow)  
and Z (zero) flags are invalid.  
Ports  
• The values of the port direction registers cannot be read.  
That is, it is impossible to use the LDA instruction, memory opera-  
tion instruction when the T flag is “1”, addressing mode using  
direction register values as qualifiers, and bit test instructions such  
as BBC and BBS.  
It is also impossible to use bit operation instructions such as CLB  
and SEB and read/modify/write instructions of direction registers  
for calculations such as ROR.  
For setting direction registers, use the LDM instruction, STA in-  
struction, etc.  
A/D Conversion  
Do not execute the STP instruction during A/D conversion.  
Instruction Execution Timing  
The instruction execution time can be obtained by multiplying the  
frequency of the internal clock φ by the number of cycles men-  
tioned in the machine-language instruction table.  
The frequency of the internal clock φ is the same as that of the XIN  
in double-speed mode, twice the XIN cycle in high-speed mode  
and 8 times the XIN cycle in middle-speed mode.  
CPU Mode Register  
The oscillation mode selection bit and processor mode bits can be  
rewritten only once after releasing reset. However, after rewriting it  
is disable to write any value to the bit. (Emulator MCU is ex-  
cluded.)  
When a ceramic oscillation is selected, a double-speed mode of  
the clock division ratio selection bits can be used. Do not use it  
when an RC oscillation is selected.  
Rev.4.00 Jun 21, 2004 page 48 of 82  
REJ03B0011-0400Z  
7540 Group  
NOTES ON PERIPHERAL FUNCTIONS  
• Timer Y write mode  
When using this mode, be sure to set “1” to the timer Y write con-  
trol bit to select “write to latch only”.  
Interrupt  
When setting the followings, the interrupt request bit may be set to “1”.  
•When setting external interrupt active edge  
Related register: Interrupt edge selection register (address 003A16)  
Timer X mode register (address 2B16)  
Timer Y can stop counting by setting “1” to the timer Y count stop bit  
in any mode.  
Also, when Timer Y underflows, the timer Y interrupt request bit is  
set to “1”.  
Timer A mode register (address 1D16)  
When not requiring the interrupt occurrence synchronized with  
these setting, take the following sequence.  
Timer Y reloads the value of latch when counting is stopped by the  
timer Y count stop bit. (When timer is read out while timer is  
stopped, the value of latch is read. The value of timer can be read  
out only while timer is operating.)  
Set the corresponding interrupt enable bit to “0” (disabled).  
Set the interrupt edge select bit (active edge switch bit) to “1”.  
Set the corresponding interrupt request bit to “0” after 1 or  
more instructions have been executed.  
Timer Z: Programmable Waveform  
Generation Mode  
Set the corresponding interrupt enable bit to “1” (enabled).  
• Count set value  
Timers  
In the programmable waveform generation mode, values of TZS,  
EXPZP, and EXPZS are valid by writing to TZP because the set-  
ting to them is executed all at once by writing to TZP. Even when  
changing TZP is not required, write the same value again.  
• Write timing to TZP  
• When n (0 to 255) is written to a timer latch, the frequency divi-  
sion ratio is 1/(n+1).  
• When a count source of timer X, timer Y or timer Z is switched,  
stop a count of timer X.  
In the programmable waveform generation mode, when the set-  
ting value is changed while the waveform is output, set by  
software in order not to execute the writing to TZP and the timing  
of timer underflow during the secondary interval simultanesously.  
• Usage of waveform extension function  
Timer A  
CNTR1 interrupt active edge selection  
CNTR1 interrupt active edge depends on the CNTR1 active edge switch bit.  
When this bit is “0”, the CNTR1 interrupt request bit is set to “1” at  
the falling edge of the CNTR1 pin input signal. When this bit is “1”,  
the CNTR1 interrupt request bit is set to “1” at the rising edge of  
the CNTR1 pin input signal.  
However, in the pulse width HL continuously measurement mode,  
CNTR1 interrupt request is generated at both rising and falling  
edges of CNTR1 pin input signal regardless of the setting of  
CNTR1 active edge switch bit.  
The waveform extension function by the timer Z waveform extension  
control bit can be used only when “0016” is set to Prescaler Z. When  
the value other than “0016” is set to Prescaler Z, be sure to set “0” to  
EXPZP and EXPZS. Also, when the timer Y underflow is selected as  
the count source, the waveform extension function cannot be used.  
• Timer Z write mode  
When using this mode, be sure to set “1” to the timer Z write con-  
trol bit to select “write to latch only”.  
Timer X  
CNTR0 interrupt active edge selection  
Timer Z: Programmable One-shot  
Generation Mode  
CNTR0 interrupt active edge depends on the CNTR0 active edge switch bit.  
When this bit is “0”, the CNTR0 interrupt request bit is set to “1” at the falling  
edge of CNTR0 pin input signal. When this bit is “1”, the CNTR0 interrupt re-  
quest bit is set to “1” at the rising edge of CNTR0 pin input signal.  
• Count set value  
In the programmable one-shot generation mode, the value of  
EXPZP becomes valid by writing to TZP. Even when changing  
TZP is not required, write the same value again.  
• Write timing to TZP  
Timer Y: Programmable Generation  
Waveform Mode  
In the programmable one-shot generation mode, when the setting  
value is changed while the waveform is output, set by software in  
order not to execute the writing to TZP and the timing of timer un-  
derflow simultanesously.  
• Count set value  
In the programmable waveform generation mode, values of TYS,  
EXPYP, and EXPYS are valid by writing to TYP because the set-  
ting to them is executed all at once by writing to TYP. Even when  
changing TYP is not required, write the same value again.  
• Write timing to TYP  
• Usage of waveform extension function  
The waveform extension function by the timer Z waveform extension con-  
trol bit can be used only when “0016” is set to Prescaler Z. When the  
value other than “0016” is set to Prescaler Z, be sure to set “0” to EXPZP.  
Also, when the timer Y underflow is selected as the count source, the  
waveform extension function cannot be used.  
In the programmable waveform generation mode, when the set-  
ting value is changed while the waveform is output, set by  
software in order not to execute the writing to TYP and the timing  
of timer underflow during the secondary interval simultanesously.  
• Usage of waveform extension function  
• Timer Z write mode  
When using this mode, be sure to set “1” to the timer Z write con-  
trol bit to select “write to latch only”.  
The waveform extension function by the timer Y waveform exten-  
sion control bit can be used only when “0016” is set to Prescaler Y.  
When the value other than “0016” is set to Prescaler Y, be sure to  
set “0” to EXPYP and EXPYS.  
Rev.4.00 Jun 21, 2004 page 49 of 82  
REJ03B0011-0400Z  
7540 Group  
(2) Serial I/O1 mode selection bit “0” :  
Timer Z: Programmable Wait One-shot  
Generation Mode  
Clock asynchronous (UART) type serial I/O is selected.  
Setup of a serial I/O1 synchronous clock selection bit  
“0”: P12 pin can be used as a normal I/O pin.  
• Count set value  
In the programmable wait one-shot generation mode, values of  
TZS, EXPZP and EXPZS are valid by writing to TZP. Even when  
changing TZP is not required, write the same value again.  
• Write timing to TZP  
“1”: P12 pin turns into an input pin of an external clock.  
When clock asynchronous (UART) type serial I/O is selected, it is  
P13 pin. It can be used as a normal I/O pin.  
In the programmable wait one-shot generation mode, when the  
setting value is changed while the waveform is output, set by soft-  
ware in order not to execute the writing to TZP and the timing of  
timer underflow during the secondary interval simultanesously.  
• Usage of waveform extension function  
A/D Converter  
• The comparator uses internal capacitors whose charge will be  
lost if the clock frequency is too low.  
Make sure that f(XIN) is 500kHz or more during A/D conversion.  
The waveform extension function by the timer Z waveform exten-  
sion control bit can be used only when “0016” is set to Prescaler Z.  
When the value other than “0016” is set to Prescaler Z, be sure to  
set “0” to EXPZP and EXPZS. Also, when the timer Y underflow is  
selected as the count source, the waveform extension function  
cannot be used.  
• As for AD translation accuracy, on the following operating condi-  
tions, accuracy may become low.  
(1) Since the analog circuit inside a microcomputer becomes sensi-  
tive to noise when VREF voltage is set up lower than Vcc  
voltage, accuracy may become low rather than the case where  
VREF voltage and Vcc voltage are set up to the same value.  
(2) When VREF voltage is lower than [3.0 V], the accuracy at the low  
temperature may become extremely low compared with that at  
room temperature When the system would be used at low tem-  
perature, the use at VREF=3.0 V or more is recommended.  
• Timer Z write mode  
When using this mode, be sure to set “1” to the timer Z write con-  
trol bit to select “write to latch only”.  
Timer Z can stop counting by setting “1” to the timer Z count stop  
bit in any mode.  
Notes on clock generating circuit  
Also, when Timer Z underflows, the timer Z interrupt request bit is  
set to “1”.  
For use with the oscillation stabilization set bit after release of the  
STP instruction set to “1”, set values in timer 1 and prescaler 1 after fully  
appreciating the oscillation stabilization time of the oscillator to be used.  
• Switch of ceramic and RC oscillations  
Timer Z reloads the value of latch when counting is stopped by the  
timer Z count stop bit. (When timer is read out while timer is  
stopped, the value of latch is read. The value of timer can be read  
out only while timer is operating.)  
After releasing reset the operation starts by starting an on-chip os-  
cillator. Then, a ceramic oscillation or an RC oscillation is selected  
by setting bit 5 of the CPU mode register.  
Serial I/O  
• Serial I/O interrupt  
• Double-speed mode  
When a ceramic oscillation is selected, a double-speed mode can  
be used. Do not use it when an RC oscillation is selected.  
When setting the transmit enable bit to “1”, the serial I/O transmit  
interrupt request bit is automatically set to “1”. When not requiring  
the interrupt occurrence synchronized with the transmission en-  
abled, take the following sequence.  
• CPU mode register  
Bits 5, 1 and 0 of CPU mode register are used to select oscillation  
mode and to control operation modes of the microcomputer. In or-  
der to prevent the dead-lock by error-writing (ex. program  
run-away), these bits can be rewritten only once after releasing re-  
set. After rewriting it is disable to write any data to the bit. (The  
emulator MCU “M37540RSS” is excluded.)  
Set the serial I/O transmit interrupt enable bit to “0” (disabled).  
Set the transmit enable bit to “1”.  
Set the serial I/O transmit interrupt request bit to “0” after 1 or  
more instructions have been executed.  
Set the serial I/O transmit interrupt enable bit to “1” (enabled).  
Also, when the read-modify-write instructions (SEB, CLB) are ex-  
ecuted to bits 2 to 4, 6 and 7, bits 5, 1 and 0 are locked.  
• I/O pin function when serial I/O1 is enabled.  
The functions of P12 and P13 are switched with the setting values  
of a serial I/O1 mode selection bit and a serial I/O1 synchronous  
clock selection bit as follows.  
• Clock division ratio, XIN oscillation control, on-chip oscillator control  
The state transition shown in Fig. 53 can be performed by setting  
the clock division ratio selection bits (bits 7 and 6), XIN oscillation  
control bit (bit 4), on-chip oscillator oscillation control bit (bit 3) of  
CPU mode register. Be careful of notes on use in Fig. 53.  
(1) Serial I/O1 mode selection bit “1” :  
Clock synchronous type serial I/O is selected.  
Setup of a serial I/O1 synchronous clock selection bit  
“0” : P12 pin turns into an output pin of a synchronous clock.  
“1” : P12 pin turns into an input pin of a synchronous clock.  
Setup of a SRDY1 output enable bit (SRDY)  
• On-chip oscillator operation  
The clock frequency of the on-chip oscillator depends on the sup-  
ply voltage and the operation temperature range.  
Be careful that variable frequencies when designing application  
products.  
“0” : P13 pin can be used as a normal I/O pin.  
“1” : P13 pin turns into a SRDY output pin.  
Rev.4.00 Jun 21, 2004 page 50 of 82  
REJ03B0011-0400Z  
7540 Group  
Note on Power Source Voltage  
ROM PROGRAMMING METHOD  
When the power source voltage value of a microcomputer is less  
than the value which is indicated as the recommended operating  
conditions, the microcomputer does not operate normally and may  
perform unstable operation.  
The built-in PROM of the blank One Time PROM version can be  
read or programmed with a general-purpose PROM programmer  
using a special programming adapter. Set the address of PROM  
programmer in the user ROM area.  
In a system where the power source voltage drops slowly when  
the power source voltage drops or the power supply is turned off,  
reset a microcomputer when the supply voltage is less than the  
recommended operating conditions and design a system not to  
cause errors to the system by this unstable operation.  
Table 7 Special programming adapter  
Package  
32P4B  
Name of Programming Adapter  
PCA7435SPG02  
32P6U-A  
36P2R-A  
PCA7435GPG03  
PCA7435FPG02  
Electric Characteristic Differences Among  
Mask ROM and One TIme PROM Version  
MCUs  
There are differences in electric characteristics, operation margin,  
noise immunity, and noise radiation among mask ROM and One  
Time PROM version MCUs due to the differences in the manufac-  
turing processes.  
The PROM of the blank One Time PROM version is not tested or  
screened in the assembly process and following processes. To en-  
sure proper operation after programming, the procedure shown in  
Figure 54 is recommended to verify programming.  
When manufacturing an application system with One Time PROM  
version and then switching to use of the mask ROM version, per-  
form sufficient evaluations for the commercial samples of the  
mask ROM version.  
Programming with  
PROM programmer  
DATA REQUIRED FOR MASK ORDERS  
The following are necessary when ordering a mask ROM produc-  
tion:  
Screening (Caution)  
(150 °C for 40 hours)  
1.Mask ROM Order Confirmation Form *  
2.Mark Specification Form *  
Verification with PROM  
programmer  
3.Data to be written to ROM, in EPROM form (three identical cop-  
ies) or one floppy disk.  
DATA REQUIRED FOR ROM PROGRAMMING  
ORDERS  
Functional check in  
target device  
The following are necessary when ordering a One Time PROM  
production:  
Caution:  
The screening temperature is far higher  
than the storage temperature. Never  
expose to 150 °C exceeding 100 hours.  
1.ROM Programming Order Confirmation Form *  
2.Mark Specification Form *  
3.Data to be written to ROM, in EPROM form (three identical cop-  
ies) or one floppy disk.  
* For the mask ROM confirmation and the mark specifications,  
refer to the "Renesas Technology Corp." Homepage  
(http://www.renesas.com/en/rom).  
Fig. 54 Programming and testing of One Time PROM version  
Rev.4.00 Jun 21, 2004 page 51 of 82  
REJ03B0011-0400Z  
7540 Group  
ELECTRICAL CHARACTERISTICS  
1.7540Group (General purpose)  
Applied to: M37540M2-XXXFP/SP/GP, M37540M4-XXXFP/SP/GP, M37540E2FP/SP/GP, M37540E8FP/SP/GP  
Absolute Maximum Ratings (General purpose)  
Table 8 Absolute maximum ratings  
Symbol  
Parameter  
Conditions  
Ratings  
Unit  
V
VCC  
Power source voltage  
Input voltage  
–0.3 to 6.5 (Note 1)  
–0.3 to VCC + 0.3  
VI  
V
P00–P07, P10–P14, P20–P27, P30–P37, VREF  
Input voltage RESET, XIN  
Input voltage CNVSS (Note 2)  
Output voltage  
All voltages are  
based on VSS.  
Output transistors  
are cut off.  
VI  
–0.3 to VCC + 0.3  
–0.3 to 13  
V
V
V
VI  
VO  
–0.3 to VCC + 0.3  
P00–P07, P10–P14, P20–P27, P30–P37, XOUT  
Power dissipation  
Pd  
Ta = 25°C  
300 (Note 3)  
–20 to 85  
mW  
°C  
Topr  
Tstg  
Operating temperature  
Storage temperature  
–40 to 125  
°C  
Notes 1: This is the rating value for the Mask ROM version.  
The rating value for the One Time PROM version is –0.3 to 7.0 V.  
2: It is a rating only for the One Time PROM version. Connect to VSS for the mask ROM version.  
3: 200 mW for the 32P6U package product.  
Rev.4.00 Jun 21, 2004 page 52 of 82  
REJ03B0011-0400Z  
7540 Group  
Recommended Operating Conditions (General purpose)  
Table 9 Recommended operating conditions (1) (VCC = 2.2 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.Typ.Max.  
VCC  
Power source voltage (ceramic)  
f(XIN) = 8 MHz (High-, Middle-speed mode)  
f(XIN) = 4 MHz (High-, Middle-speed mode)  
f(XIN) = 2 MHz (High-, Middle-speed mode)  
f(XIN) = 6 MHz (Double-speed mode)  
f(XIN) = 4 MHz (Double-speed mode)  
4.0  
2.4  
2.2  
4.5  
4.0  
2.4  
2.2  
4.0  
2.4  
2.2  
5.0  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
V
V
V
V
V
V
V
V
V
V
V
V
V
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
0
f(XIN) = 2 MHz (Double-speed mode)  
f(XIN) = 1 MHz (Double-speed mode)  
Power source voltage (RC)  
f(XIN) = 4 MHz (High-, Middle-speed mode)  
f(XIN) = 2 MHz (High-, Middle-speed mode)  
f(XIN) = 1 MHz (High-, Middle-speed mode)  
VSS  
VREF  
VIH  
Power source voltage  
Analog reference voltage  
“H” input voltage  
2.0  
VCC  
VCC  
0.8VCC  
P00–P07, P10–P14, P20–P27, P30–P37  
“H” input voltage (TTL input level selected)  
P10, P12, P13, P36, P37 (Note 1)  
“H” input voltage  
VCC  
VCC  
0.3VCC  
0.8  
VIH  
2.0  
V
V
VIH  
0.8VCC  
RESET, XIN  
VIL  
“L” input voltage  
0
0
0
0
V
P00–P07, P10–P14, P20–P27, P30–P37  
“L” input voltage (TTL input level selected)  
P10, P12, P13, P36, P37 (Note 1)  
“L” input voltage  
VIL  
V
0.2VCC  
0.16VCC  
–80  
VIL  
V
RESET, CNVSS  
VIL  
“L” input voltage  
V
XIN  
IOH(peak)  
IOL(peak)  
IOL(peak)  
IOH(avg)  
IOL(avg)  
IOL(avg)  
“H” total peak output current (Note 2)  
P00–P07, P10–P14, P20–P27, P30–P37  
“L” total peak output current (Note 2)  
P00–P07, P10–P14, P20–P27, P37  
“L” total peak output current (Note 2)  
P30–P36  
mA  
mA  
mA  
mA  
mA  
mA  
80  
60  
–40  
“H” total average output current (Note 2)  
P00–P07, P10–P14, P20–P27, P30–P37  
40  
“L” total average output current (Note 2)  
P00–P07, P10–P14, P20–P27, P37  
“L” total average output current (Note 2)  
P30–P36  
30  
Note 1: Vcc = 4.0 to 5.5V  
2: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured  
over 100 ms. The total peak current is the peak value of all the currents.  
Rev.4.00 Jun 21, 2004 page 53 of 82  
REJ03B0011-0400Z  
7540 Group  
Recommended Operating Conditions (General purpose)(continued)  
Table 10 Recommended operating conditions (2) (VCC = 2.2 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
P00–P07, P10–P14, P20–P27, P30–P37  
Unit  
Min.  
Typ.  
Max.  
–10  
10  
30  
–5  
5
“H” peak output current (Note 1)  
“L” peak output current (Note 1)  
“L” peak output current (Note 1)  
mA  
mA  
mA  
mA  
mA  
mA  
MHz  
IOH(peak)  
IOL(peak)  
IOL(peak)  
IOH(avg)  
IOL(avg)  
IOL(avg)  
f(XIN)  
P00–P07, P10–P14, P20–P27, P37  
P30–P36  
“H” average output current (Note 2) P00–P07, P10–P14, P20–P27, P30–P37  
“L” average output current (Note 2)  
“L” average output current (Note 2)  
P00–P07, P10–P14, P20–P27, P37  
P30–P36  
15  
6
Internal clock oscillation frequency (Note 3) VCC = 4.5 to 5.5 V  
at ceramic oscillation or external clock input Double-speed mode  
Internal clock oscillation frequency (Note 3) VCC = 4.0 to 5.5 V  
at ceramic oscillation or external clock input Double-speed mode  
Internal clock oscillation frequency (Note 3) VCC = 2.4 to 5.5 V  
at ceramic oscillation or external clock input Double-speed mode  
Internal clock oscillation frequency (Note 3) VCC = 2.2 to 5.5 V  
at ceramic oscillation or external clock input Double-speed mode  
Internal clock oscillation frequency (Note 3) VCC = 4.0 to 5.5 V  
at ceramic oscillation or external clock input High-, Middle-speed mode  
Internal clock oscillation frequency (Note 3) VCC = 2.4 to 5.5 V  
at ceramic oscillation or external clock input High-, Middle-speed mode  
Internal clock oscillation frequency (Note 3) VCC = 2.2 to 5.5 V  
at ceramic oscillation or external clock input High-, Middle-speed mode  
Internal clock oscillation frequency (Note 3) VCC = 4.0 to 5.5 V  
4
2
1
8
4
2
4
2
1
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
at RC oscillation  
High-, Middle-speed mode  
Internal clock oscillation frequency (Note 3) VCC = 2.4 to 5.5 V  
at RC oscillation  
High-, Middle-speed mode  
Internal clock oscillation frequency (Note 3) VCC = 2.2 to 5.5 V  
at RC oscillation  
High-, Middle-speed mode  
Notes 1: The peak output current is the peak current flowing in each port.  
2: The average output current IOL (avg), IOH (avg) in an average value measured over 100 ms.  
3: When the oscillation frequency has a duty cycle of 50 %.  
Rev.4.00 Jun 21, 2004 page 54 of 82  
REJ03B0011-0400Z  
7540 Group  
Electrical Characteristics (General purpose)  
Table 11 Electrical characteristics (1) (VCC = 2.2 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
IOH = –5 mA  
Unit  
V
Min.Typ.Max.  
VCC–1.5  
VOH  
“H” output voltage  
VCC = 4.0 to 5.5 V  
P00–P07, P10–P14, P20–P27, P30–P37 (Note 1)  
IOH = –1.0 mA  
VCC = 2.2 to 5.5 V  
VCC–1.0  
V
V
V
V
V
V
V
V
VOL  
“L” output voltage  
IOL = 5 mA  
VCC = 4.0 to 5.5 V  
1.5  
0.3  
1.0  
2.0  
0.3  
1.0  
P00–P07, P10–P14, P20–P27, P37  
IOL = 1.5 mA  
VCC = 4.0 to 5.5 V  
IOL = 1.0 mA  
VCC = 2.2 to 5.5 V  
VOL  
“L” output voltage  
P30–P36  
IOL = 15 mA  
VCC = 4.0 to 5.5 V  
IOL = 1.5 mA  
VCC = 4.0 to 5.5 V  
IOL = 10 mA  
VCC = 2.2 to 5.5 V  
VT+–VT–  
Hysteresis  
0.4  
CNTR0, CNTR1, INT0, INT1(Note 2)  
P00–P07 (Note 3)  
VT+–VT–  
VT+–VT–  
IIH  
Hysteresis  
RXD, SCLK1, SCLK2, SDATA2 (Note 2)  
0.5  
0.5  
V
V
Hysteresis  
RESET  
VI = VCC  
(Pin floating. Pull up  
transistors “off”)  
5.0  
5.0  
µA  
“H” input current  
P00–P07, P10–P14, P20–P27, P30–P37  
IIH  
IIH  
IIL  
“H” input current  
RESET  
VI = VCC  
µA  
µA  
µA  
VI = VCC  
4.0  
“H” input current  
XIN  
VI = VSS  
(Pin floating. Pull up  
transistors “off”)  
–5.0  
–5.0  
“L” input current  
P00–P07, P10–P14, P20–P27, P30–P37  
IIL  
IIL  
IIL  
“L” input current  
RESET, CNVSS  
VI = VSS  
µA  
µA  
VI = VSS  
–4.0  
–0.2  
“L” input current  
XIN  
VI = VSS  
–0.5  
mA  
“L” input current  
(Pull up transistors “on”)  
P00–P07, P30–P37  
VRAM  
ROSC  
DOSC  
RAM hold voltage  
When clock stopped  
2.0  
5.5  
V
VCC = 5.0 V, Ta = 25 °C  
VCC = 5.0 V, Ta = 25 °C  
1000  
62.5  
2000  
125  
3000  
187.5  
kHz  
kHz  
On-chip oscillator oscillation frequency  
Oscillation stop detection circuit detection frequency  
Notes 1: P11 is measured when the P11/TXD1 P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: RXD1, SCLK1, SCLK2, SDATA2, INT0, and INT1 have hysteresises only when bits 0 to 2 of the port P1P3 control register are set to “0” (CMOS level).  
3: It is available only when operating key-on wake up.  
Rev.4.00 Jun 21, 2004 page 55 of 82  
REJ03B0011-0400Z  
7540 Group  
Electrical Characteristics (General purpose)(continued)  
Table 12 Electrical characteristics (2) (VCC = 2.2 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
ICC  
Parameter  
Test conditions  
Unit  
mA  
Min.Typ.Max.  
5.0  
8.0  
1.5  
Power source  
current  
One Time PROM  
version  
High-speed mode, f(XIN) = 8 MHz  
Output transistors “off”  
0.5  
6.0  
2.0  
350  
1.6  
mA  
mA  
mA  
µA  
High-speed mode, f(XIN) = 2 MHz, VCC = 2.2 V  
Output transistors “off”  
10.0  
5.0  
Double-speed mode, f(XIN) = 6 MHz  
Output transistors “off”  
Middle-speed mode, f(XIN) = 8 MHz  
Output transistors “off”  
1000  
3.2  
On-chip oscillator operation mode, VCC = 5 V  
Output transistors “off”  
mA  
f(XIN) = 8 MHz (in WIT state),  
functions except timer 1 disabled,  
Output transistors “off”  
0.2  
mA  
f(XIN) = 2 MHz, VCC = 2.2 V (in WIT state),  
functions except timer 1 disabled,  
Output transistors “off”  
150  
0.5  
0.1  
450  
µA  
On-chip oscillator operation mode, VCC = 5V  
Output transistors “off”  
mA  
Increment when A/D conversion is executed  
f(XIN) = 8 MHz, VCC = 5 V  
1.0  
10  
µA  
µA  
All oscillation stopped  
(in STP state)  
Output transistors “off”  
Ta = 25 °C  
Ta = 85 °C  
Mask ROM version  
3.5  
0.4  
4.5  
2.0  
300  
1.6  
6.5  
1.2  
8.0  
5.0  
900  
3.2  
mA  
mA  
mA  
mA  
µA  
High-speed mode, f(XIN) = 8 MHz  
Output transistors “off”  
High-speed mode, f(XIN) = 2 MHz, VCC = 2.2 V  
Output transistors “off”  
Double-speed mode, f(XIN) = 6 MHz  
Output transistors “off”  
Middle-speed mode, f(XIN) = 8 MHz  
Output transistors “off”  
On-chip oscillator operation mode, VCC = 5 V  
Output transistors “off”  
mA  
f(XIN) = 8 MHz (in WIT state),  
functions except timer 1 disabled,  
Output transistors “off”  
0.2  
mA  
f(XIN) = 2 MHz, VCC = 2.2 V (in WIT state),  
functions except timer 1 disabled,  
Output transistors “off”  
150  
0.5  
0.1  
450  
µA  
On-chip oscillator operation mode, VCC = 5V  
Output transistors “off”  
mA  
Increment when A/D conversion is executed  
f(XIN) = 8 MHz, VCC = 5 V  
Ta = 25 °C  
1.0  
10  
µA  
µA  
All oscillation stopped  
(in STP state)  
Output transistors “off”  
Ta = 85 °C  
Rev.4.00 Jun 21, 2004 page 56 of 82  
REJ03B0011-0400Z  
7540 Group  
A/D Converter Characteristics (General purpose)  
Table 13 A/D Converter characteristics  
(VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.Max.  
Resolution  
10  
±3  
Bits  
Linearity error  
VCC = 2.7 to 5.5 V  
Ta = 25 °C  
LSB  
Differential nonlinear error  
Zero transition voltage  
Full scale transition voltage  
Conversion time  
VCC = 2.7 to 5.5 V  
Ta = 25 °C  
±0.9  
LSB  
VOT  
VFST  
tCONV  
VCC = VREF = 5.12 V  
VCC = VREF = 3.072 V  
VCC = VREF = 5.12 V  
VCC = VREF = 3.072 V  
0
5
20  
15  
mV  
mV  
0
3
One Time  
5105  
3060  
5115  
3069  
5125  
3075  
122  
mV  
PROM version  
mV  
tc(XIN)  
kΩ  
RLADDER Ladder resistor  
55  
150  
70  
IVREF  
Reference power source input current  
VREF = 5.0 V  
VREF = 3.0 V  
50  
50  
200  
120  
5.0  
10  
µA  
II(AD)  
A/D port input current  
Resolution  
µA  
Bits  
LSB  
Linearity error  
VCC = 2.7 to 5.5 V  
Ta = 25 °C  
±3  
Differential nonlinear error  
Zero transition voltage  
Full scale transition voltage  
Conversion time  
VCC = 2.7 to 5.5 V  
Ta = 25 °C  
±1.5  
LSB  
VOT  
VFST  
tCONV  
VCC = VREF = 5.12 V  
VCC = VREF = 3.072 V  
VCC = VREF = 5.12 V  
VCC = VREF = 3.072 V  
0
15  
9
35  
21  
mV  
mV  
0
Mask ROM version  
5105  
3060  
5125  
3075  
5150  
3090  
122  
mV  
mV  
tc(XIN)  
kΩ  
RLADDER Ladder resistor  
55  
150  
70  
IVREF  
II(AD)  
Reference power source  
VREF = 5.0 V  
VREF = 3.0 V  
50  
50  
200  
120  
5.0  
µA  
input current  
A/D port input current  
µA  
Rev.4.00 Jun 21, 2004 page 57 of 82  
REJ03B0011-0400Z  
7540 Group  
Timing Requirements (General purpose)  
Table 14 Timing requirements (1) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Min.Typ.Max.  
Symbol  
tW(RESET)  
Parameter  
Unit  
Reset input “L” pulse width  
2
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tC(XIN)  
External clock input cycle time  
External clock input “H” pulse width  
External clock input “L” pulse width  
CNTR0 input cycle time  
125  
50  
tWH(XIN)  
tWL(XIN)  
50  
tC(CNTR0)  
200  
80  
tWH(CNTR0)  
tWL(CNTR0)  
tC(CNTR1)  
CNTR0, INT0, INT1, input “H” pulse width  
CNTR0, INT0, INT1, input “L” pulse width  
CNTR1 input cycle time  
80  
2000  
800  
800  
800  
370  
370  
220  
100  
1000  
400  
400  
200  
200  
tWH(CNTR1)  
tWL(CNTR1)  
tC(SCLK1)  
CNTR1 input “H” pulse width  
CNTR1 input “L” pulse width  
Serial I/O1 clock input cycle time (Note)  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O1 input set up time  
tWH(SCLK1)  
tWL(SCLK1)  
tsu(RxD1–SCLK1)  
th(SCLK1–RxD1)  
tC(SCLK2)  
Serial I/O1 input hold time  
Serial I/O2 clock input cycle time  
Serial I/O2 clock input “H” pulse width  
Serial I/O2 clock input “L” pulse width  
Serial I/O2 input set up time  
tWH(SCLK2)  
tWL(SCLK2)  
tsu(SDATA2–SCLK2)  
th(SCLK2–SDATA2)  
Serial I/O2 input hold time  
Note: In this time, bit 6 of the serial I/O1 control register (address 001A16) is set to “1” (clock synchronous serial I/O1 is selected).  
When bit 6 of the serial I/O1 control register is “0” (clock asynchronous serial I/O1 is selected), the rating values are divided by 4.  
Table 15 Timing requirements (2) (VCC = 2.4 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
tW(RESET)  
Parameter  
Unit  
Min.Typ.Max.  
2
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Reset input “L” pulse width  
tC(XIN)  
External clock input cycle time  
External clock input “H” pulse width  
External clock input “L” pulse width  
CNTR0 input cycle time  
250  
tWH(XIN)  
100  
tWL(XIN)  
100  
tC(CNTR0)  
500  
tWH(CNTR0)  
tWL(CNTR0)  
tC(CNTR1)  
CNTR0, INT0, INT1, input “H” pulse width  
CNTR0, INT0, INT1, input “L” pulse width  
CNTR1 input cycle time  
230  
230  
4000  
1600  
1600  
2000  
950  
tWH(CNTR1)  
tWL(CNTR1)  
tC(SCLK1)  
CNTR1 input “H” pulse width  
CNTR1 input “L” pulse width  
Serial I/O1 clock input cycle time (Note)  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O1 input set up time  
tWH(SCLK1)  
tWL(SCLK1)  
tsu(RxD1–SCLK1)  
th(SCLK1–RxD1)  
tC(SCLK2)  
950  
400  
Serial I/O1 input hold time  
200  
Serial I/O2 clock input cycle time  
Serial I/O2 clock input “H” pulse width  
Serial I/O2 clock input “L” pulse width  
Serial I/O2 input set up time  
2000  
950  
tWH(SCLK2)  
tWL(SCLK2)  
tsu(SDATA2–SCLK2)  
th(SCLK2–SDATA2)  
950  
400  
Serial I/O2 input hold time  
400  
Note: In this time, bit 6 of the serial I/O1 control register (address 001A16) is set to “1” (clock synchronous serial I/O1 is selected).  
When bit 6 of the serial I/O1 control register is “0” (clock asynchronous serial I/O1 is selected), the rating values are divided by 4.  
Rev.4.00 Jun 21, 2004 page 58 of 82  
REJ03B0011-0400Z  
7540 Group  
Table 16 Timing requirements (3) (VCC = 2.2 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
tW(RESET)  
Parameter  
Unit  
Min.Typ.Max.  
Reset input “L” pulse width  
2
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tC(XIN)  
External clock input cycle time  
External clock input “H” pulse width  
External clock input “L” pulse width  
CNTR0 input cycle time  
500  
tWH(XIN)  
200  
tWL(XIN)  
200  
tC(CNTR0)  
1000  
460  
tWH(CNTR0)  
tWL(CNTR0)  
tC(CNTR1)  
CNTR0, INT0, INT1, input “H” pulse width  
CNTR0, INT0, INT1, input “L” pulse width  
CNTR1 input cycle time  
460  
8000  
3200  
3200  
4000  
1900  
1900  
800  
tWH(CNTR1)  
tWL(CNTR1)  
tC(SCLK1)  
CNTR1 input “H” pulse width  
CNTR1 input “L” pulse width  
Serial I/O1 clock input cycle time (Note)  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O1 input set up time  
tWH(SCLK1)  
tWL(SCLK1)  
tsu(RxD1–SCLK1)  
th(SCLK1–RxD1)  
tC(SCLK2)  
Serial I/O1 input hold time  
400  
Serial I/O2 clock input cycle time  
Serial I/O2 clock input “H” pulse width  
Serial I/O2 clock input “L” pulse width  
Serial I/O2 input set up time  
4000  
1900  
1900  
800  
tWH(SCLK2)  
tWL(SCLK2)  
tsu(SDATA2–SCLK2)  
th(SCLK2–SDATA2)  
Serial I/O2 input hold time  
800  
Note: In this time, bit 6 of the serial I/O1 control register (address 001A16) is set to “1” (clock synchronous serial I/O1 is selected).  
When bit 6 of the serial I/O1 control register is “0” (clock asynchronous serial I/O1 is selected), the rating values are divided by 4.  
Rev.4.00 Jun 21, 2004 page 59 of 82  
REJ03B0011-0400Z  
7540 Group  
Switching Characteristics (General purpose)  
Table 17 Switching characteristics (1) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
MinM.Tayxp..  
tC(SCLK1)/2–30  
tC(SCLK1)/2–30  
tWH(SCLK1)  
Serial I/O1 clock output “H” pulse width  
Serial I/O1 clock output “L” pulse width  
Serial I/O1 output delay time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWL(SCLK1)  
td(SCLK1–TxD1)  
tv(SCLK1–TxD1)  
tr(SCLK1)  
140  
Serial I/O1 output valid time  
–30  
Serial I/O1 clock output rising time  
Serial I/O1 clock output falling time  
Serial I/O2 clock output “H” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O2 output delay time  
30  
30  
tf(SCLK1)  
tWH(SCLK2)  
tWL(SCLK2)  
td(SCLK2–SDATA2)  
tv(SCLK2–SDATA2)  
tr(SCLK2)  
tC(SCLK2)/2–30  
tC(SCLK2)/2–30  
140  
Serial I/O2 output valid time  
0
Serial I/O2 clock output rising time  
Serial I/O2 clock output falling time  
CMOS output rising time (Note 1)  
CMOS output falling time (Note 1)  
30  
30  
30  
30  
tf(SCLK2)  
tr(CMOS)  
10  
10  
tf(CMOS)  
Note 1: Pin XOUT is excluded.  
Table 18 Switching characteristics (2) (VCC = 2.4 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
tWH(SCLK1)  
Parameter  
Unit  
MinM.Tayxp..  
tC(SCLK1)/2–50  
tC(SCLK1)/2–50  
Serial I/O1 clock output “H” pulse width  
Serial I/O1 clock output “L” pulse width  
Serial I/O1 output delay time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWL(SCLK1)  
td(SCLK1–TxD1)  
tv(SCLK1–TxD1)  
tr(SCLK1)  
350  
Serial I/O1 output valid time  
–30  
Serial I/O1 clock output rising time  
Serial I/O1 clock output falling time  
Serial I/O2 clock output “H” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O2 output delay time  
50  
50  
tf(SCLK1)  
tWH(SCLK2)  
tWL(SCLK2)  
td(SCLK2–SDATA2)  
tv(SCLK2–SDATA2)  
tr(SCLK2)  
tC(SCLK2)/2–50  
tC(SCLK2)/2–50  
350  
Serial I/O2 output valid time  
0
Serial I/O2 clock output rising time  
Serial I/O2 clock output falling time  
CMOS output rising time (Note 1)  
CMOS output falling time (Note 1)  
50  
50  
50  
50  
tf(SCLK2)  
tr(CMOS)  
20  
20  
tf(CMOS)  
Note 1: Pin XOUT is excluded.  
Rev.4.00 Jun 21, 2004 page 60 of 82  
REJ03B0011-0400Z  
7540 Group  
Table 19 Switching characteristics (3) (VCC = 2.2 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
tWH(SCLK1)  
Parameter  
Unit  
MinM.Tayxp..  
tC(SCLK1)/2–70  
tC(SCLK1)/2–70  
Serial I/O1 clock output “H” pulse width  
Serial I/O1 clock output “L” pulse width  
Serial I/O1 output delay time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWL(SCLK1)  
td(SCLK1–TxD1)  
tv(SCLK1–TxD1)  
tr(SCLK1)  
450  
Serial I/O1 output valid time  
–30  
Serial I/O1 clock output rising time  
Serial I/O1 clock output falling time  
Serial I/O2 clock output “H” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O2 output delay time  
70  
70  
tf(SCLK1)  
tWH(SCLK2)  
tWL(SCLK2)  
td(SCLK2–SDATA2)  
tv(SCLK2–SDATA2)  
tr(SCLK2)  
tC(SCLK2)/2–70  
tC(SCLK2)/2–70  
450  
Serial I/O2 output valid time  
0
Serial I/O2 clock output rising time  
Serial I/O2 clock output falling time  
CMOS output rising time (Note 1)  
CMOS output falling time (Note 1)  
70  
70  
70  
70  
tf(SCLK2)  
tr(CMOS)  
25  
25  
tf(CMOS)  
Note 1: Pin XOUT is excluded.  
Measured  
output pin  
100 pF  
/ / /  
CMOS output  
Switching characteristics measurement circuit diagram (Gen-  
eral purpose)  
Rev.4.00 Jun 21, 2004 page 61 of 82  
REJ03B0011-0400Z  
7540 Group  
t
C
(CNTR  
(CNTR  
0
)
)
t
t
t
WL(CNTR  
0
)
)
)
t
WH(CNTR  
0
)
)
)
0.8VCC  
CNTR  
0
0.2VCC  
tC  
1
WL(CNTR  
1
tWH(CNTR1  
0.8VCC  
0.2VCC  
CNTR  
1
WL(CNTR  
0
tWH(CNTR0  
0.8VCC  
INT  
0, INT  
1
0.2VCC  
tW(RESET)  
0.8VCC  
RESET  
0.2VCC  
tC(XIN)  
tWL(XIN  
)
tWH(XIN)  
0.8VCC  
XIN  
0.2VCC  
t
C
(SCLK1  
)
t
r
t
f
tWL(SCLK1  
)
tWH(SCLK1)  
0.8VCC  
SCLK1  
0.2VCC  
tsu(RxD  
1
-SCLK1  
)
th(SCLK1-RxD1)  
0.8VCC  
0.2VCC  
R
X
D
1
(at receive)  
(at transmit)  
td  
(SCLK1-TxD  
1
)
tv(SCLK1-TxD1)  
T
X
D
1
t
C
(SCLK2  
)
t
r
t
f
tWL(SCLK2  
)
tWH(SCLK2)  
0.8VCC  
S
S
S
CLK2  
0.2VCC  
t
su(SDATA2-SCLK2  
)
th(SCLK2-SDATA2)  
0.8VCC  
0.2VCC  
DATA2 (at receive)  
DATA2 (at transmit)  
td(SCLK2-SDATA2)  
tv(SCLK2-SDATA2)  
Fig. 55 Timing chart (General purpose)  
Rev.4.00 Jun 21, 2004 page 62 of 82  
REJ03B0011-0400Z  
7540 Group  
ELECTRICAL CHARACTERISTICS  
2.7540Group (Extended operating temperature version)  
Applied to: M37540M2T-XXXFP/GP, M37540M4T-XXXFP/GP, M37540E8T-XXXFP/GP  
Absolute Maximum Ratings (Extended operating temperature version)  
Table 20 Absolute maximum ratings  
Symbol  
Parameter  
Conditions  
Ratings  
Unit  
V
VCC  
Power source voltage  
Input voltage  
–0.3 to 6.5 (Note 1)  
–0.3 to VCC + 0.3  
VI  
V
All voltages are  
based on VSS.  
Output transistors  
are cut off.  
P00–P07, P10–P14, P20–P27, P30–P37, VREF  
Input voltage RESET, XIN, CNVSS  
Output voltage  
VI  
–0.3 to VCC + 0.3  
–0.3 to VCC + 0.3  
V
V
VO  
P00–P07, P10–P14, P20–P27, P30–P37, XOUT  
Power dissipation  
Ta = 25°C  
Pd  
300 (Note 2)  
–40 to 85  
mW  
°C  
Topr  
Tstg  
Operating temperature  
Storage temperature  
–65 to 150  
°C  
Notes 1: This is the rating value for the Mask ROM version.  
The rating value for the One Time PROM version is –0.3 to 7.0 V.  
2: 200 mW for the 32P6U package product.  
Rev.4.00 Jun 21, 2004 page 63 of 82  
REJ03B0011-0400Z  
7540 Group  
Recommended Operating Conditions (Extended operating temperature version)  
Table 21 Recommended operating conditions (1) (VCC = 2.4 to 5.5 V, Ta = –40 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
4.0  
2.4  
4.5  
4.0  
2.4  
4.0  
2.4  
Typ.Max.  
5.0  
VCC  
Power source voltage (ceramic)  
f(XIN) = 8 MHz (High-, Middle-speed mode)  
f(XIN) = 4 MHz (High-, Middle-speed mode)  
f(XIN) = 6 MHz (Double-speed mode)  
f(XIN) = 4 MHz (Double-speed mode)  
f(XIN) = 2 MHz (Double-speed mode)  
f(XIN) = 4 MHz (High-, Middle-speed mode)  
f(XIN) = 2 MHz (High-, Middle-speed mode)  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
V
V
V
V
V
V
V
V
V
V
5.0  
5.0  
5.0  
5.0  
Power source voltage (RC)  
5.0  
5.0  
VSS  
VREF  
VIH  
Power source voltage  
Analog reference voltage  
“H” input voltage  
0
2.0  
VCC  
VCC  
0.8VCC  
P00–P07, P10–P14, P20–P27, P30–P37  
“H” input voltage (TTL input level selected)  
P10, P12, P13, P36, P37 (Note 1)  
“H” input voltage  
VIH  
2.0  
VCC  
VCC  
0.3VCC  
0.8  
V
V
VIH  
0.8VCC  
RESET, XIN  
VIL  
“L” input voltage  
0
0
0
0
V
P00–P07, P10–P14, P20–P27, P30–P37  
“L” input voltage (TTL input level selected)  
P10, P12, P13, P36, P37 (Note 1)  
“L” input voltage  
VIL  
V
0.2VCC  
0.16VCC  
–80  
VIL  
V
RESET, CNVSS  
VIL  
“L” input voltage  
V
XIN  
IOH(peak)  
IOL(peak)  
IOL(peak)  
IOH(avg)  
IOL(avg)  
IOL(avg)  
“H” total peak output current (Note 2)  
P00–P07, P10–P14, P20–P27, P30–P37  
“L” total peak output current (Note 2)  
P00–P07, P10–P14, P20–P27, P37  
“L” total peak output current (Note 2)  
P30–P36  
mA  
mA  
mA  
mA  
mA  
mA  
80  
60  
–40  
“H” total average output current (Note 2)  
P00–P07, P10–P14, P20–P27, P30–P37  
40  
“L” total average output current (Note 2)  
P00–P07, P10–P14, P20–P27, P37  
“L” total average output current (Note 2)  
P30–P36  
30  
Note 1: Vcc = 4.0 to 5.5V  
2: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured  
over 100 ms. The total peak current is the peak value of all the currents.  
Rev.4.00 Jun 21, 2004 page 64 of 82  
REJ03B0011-0400Z  
7540 Group  
Recommended Operating Conditions (Extended operating temperature version)(continued)  
Table 22 Recommended operating conditions (2) (VCC = 2.4 to 5.5 V, Ta = –40 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
P00–P07, P10–P14, P20–P27, P30–P37  
Unit  
Min.  
Typ.  
Max.  
–10  
10  
30  
–5  
5
“H” peak output current (Note 1)  
“L” peak output current (Note 1)  
“L” peak output current (Note 1)  
mA  
mA  
mA  
mA  
mA  
mA  
MHz  
IOH(peak)  
IOL(peak)  
IOL(peak)  
IOH(avg)  
IOL(avg)  
IOL(avg)  
f(XIN)  
P00–P07, P10–P14, P20–P27, P37  
P30–P36  
“H” average output current (Note 2) P00–P07, P10–P14, P20–P27, P30–P37  
“L” average output current (Note 2)  
“L” average output current (Note 2)  
P00–P07, P10–P14, P20–P27, P37  
P30–P36  
15  
6
Internal clock oscillation frequency (Note 3) VCC = 4.5 to 5.5 V  
at ceramic oscillation or external clock input Double-speed mode  
Internal clock oscillation frequency (Note 3) VCC = 4.0 to 5.5 V  
at ceramic oscillation or external clock input Double-speed mode  
Internal clock oscillation frequency (Note 3) VCC = 2.4 to 5.5 V  
at ceramic oscillation or external clock input Double-speed mode  
Internal clock oscillation frequency (Note 3) VCC = 4.0 to 5.5 V  
at ceramic oscillation or external clock input High-, Middle-speed mode  
Internal clock oscillation frequency (Note 3) VCC = 2.4 to 5.5 V  
at ceramic oscillation or external clock input High-, Middle-speed mode  
Internal clock oscillation frequency (Note 3) VCC = 4.0 to 5.5 V  
4
2
8
4
4
2
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
at RC oscillation  
Internal clock oscillation frequency (Note 3) VCC = 2.4 to 5.5 V  
at RC oscillation High-, Middle-speed mode  
Notes 1: The peak output current is the peak current flowing in each port.  
High-, Middle-speed mode  
2: The average output current IOL (avg), IOH (avg) in an average value measured over 100 ms.  
3: When the oscillation frequency has a duty cycle of 50 %.  
Rev.4.00 Jun 21, 2004 page 65 of 82  
REJ03B0011-0400Z  
7540 Group  
Electrical Characteristics (Extended operating temperature version)  
Table 23 Electrical characteristics (1) (VCC = 2.4 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
IOH = –5 mA  
Unit  
V
Min.Typ.Max.  
VCC–1.5  
VOH  
“H” output voltage  
VCC = 4.0 to 5.5 V  
P00–P07, P10–P14, P20–P27, P30–P37 (Note 1)  
IOH = –1.0 mA  
VCC = 2.4 to 5.5 V  
VCC–1.0  
V
V
V
V
V
V
V
V
VOL  
IOL = 5 mA  
VCC = 4.0 to 5.5 V  
1.5  
0.3  
1.0  
2.0  
0.3  
1.0  
“L” output voltage  
P00–P07, P10–P14, P20–P27, P37  
IOL = 1.5 mA  
VCC = 4.0 to 5.5 V  
IOL = 1.0 mA  
VCC = 2.4 to 5.5 V  
VOL  
IOL = 15 mA  
VCC = 4.0 to 5.5 V  
“L” output voltage  
P30–P36  
IOL = 1.5 mA  
VCC = 4.0 to 5.5 V  
IOL = 10 mA  
VCC = 2.4 to 5.5 V  
VT+–VT–  
0.4  
Hysteresis  
CNTR0, CNTR1, INT0, INT1(Note 2)  
P00–P07 (Note 3)  
VT+–VT–  
VT+–VT–  
IIH  
0.5  
0.5  
V
V
Hysteresis  
RXD, SCLK1, SCLK2, SDATA2 (Note 2)  
Hysteresis  
RESET  
VI = VCC  
(Pin floating. Pull up  
transistors “off”)  
5.0  
5.0  
µA  
“H” input current  
P00–P07, P10–P14, P20–P27, P30–P37  
IIH  
IIH  
IIL  
VI = VCC  
µA  
µA  
µA  
“H” input current  
RESET  
VI = VCC  
4.0  
“H” input current  
XIN  
VI = VSS  
(Pin floating. Pull up  
transistors “off”)  
–5.0  
–5.0  
“L” input current  
P00–P07, P10–P14, P20–P27, P30–P37  
IIL  
IIL  
IIL  
VI = VSS  
µA  
µA  
“L” input current  
RESET, CNVSS  
VI = VSS  
–4.0  
–0.2  
“L” input current  
XIN  
VI = VSS  
–0.5  
mA  
“L” input current  
(Pull up transistors “on”)  
P00–P07, P30–P37  
VRAM  
ROSC  
DOSC  
When clock stopped  
2.0  
5.5  
V
RAM hold voltage  
VCC = 5.0 V, Ta = 25 °C  
VCC = 5.0 V, Ta = 25 °C  
1000  
62.5  
2000  
125  
3000  
187.5  
kHz  
kHz  
On-chip oscillator oscillation frequency  
Oscillation stop detection circuit detection frequency  
Notes 1: P11 is measured when the P11/TXD1 P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: RXD1, SCLK1, SCLK2, SDATA2, INT0, and INT1 have hysteresises only when bits 0 to 2 of the port P1P3 control register are set to “0” (CMOS level).  
3: It is available only when operating key-on wake up.  
Rev.4.00 Jun 21, 2004 page 66 of 82  
REJ03B0011-0400Z  
7540 Group  
Electrical Characteristics (Extended operating temperature version)(continued)  
Table 24 Electrical characteristics (2) (VCC = 2.4 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
ICC  
Test conditions  
Unit  
mA  
Min.  
Typ.Max.  
5.0  
One Time PROM version  
8.0  
1.5  
High-speed mode, f(XIN) = 8 MHz  
Output transistors “off”  
0.5  
6.0  
2.0  
350  
1.6  
mA  
mA  
mA  
µA  
High-speed mode, f(XIN) = 2 MHz, VCC = 2.4 V  
Output transistors “off”  
10.0  
5.0  
Double-speed mode, f(XIN) = 6 MHz,  
Output transistors “off”  
Middle-speed mode, f(XIN) = 8 MHz,  
Output transistors “off”  
1000  
3.2  
On-chip oscillator operation mode, VCC = 5 V  
Output transistors “off”  
mA  
f(XIN) = 8 MHz (in WIT state),  
functions except timer 1 disabled,  
Output transistors “off”  
0.2  
mA  
f(XIN) = 2 MHz, VCC = 2.4 V (in WIT state),  
functions except timer 1 disabled,  
Output transistors “off”  
150  
0.5  
0.1  
450  
µA  
On-chip oscillator operation mode, VCC = 5V (in WIT state),  
functions except timer 1 disabled, Output transistors “off”  
mA  
Increment when A/D conversion is executed  
f(XIN) = 8 MHz, VCC = 5 V  
1.0  
10  
µA  
µA  
All oscillation stopped  
(in STP state)  
Output transistors “off”  
Ta = 25 °C  
Ta = 85 °C  
3.5  
0.4  
4.5  
2.0  
300  
1.6  
6.5  
1.2  
8.0  
5.0  
900  
3.2  
mA  
mA  
mA  
mA  
µA  
Mask ROM version  
High-speed mode, f(XIN) = 8 MHz  
Output transistors “off”  
High-speed mode, f(XIN) = 2 MHz, VCC = 2.4 V  
Output transistors “off”  
Double-speed mode, f(XIN) = 6 MHz  
Output transistors “off”  
Middle-speed mode, f(XIN) = 8 MHz  
Output transistors “off”  
On-chip oscillator operation mode, VCC = 5 V  
Output transistors “off”  
mA  
f(XIN) = 8 MHz (in WIT state),  
functions except timer 1 disabled,  
Output transistors “off”  
0.2  
mA  
f(XIN) = 2 MHz, VCC = 2.4 V (in WIT state),  
functions except timer 1 disabled,  
Output transistors “off”  
150  
0.5  
0.1  
450  
µA  
On-chip oscillator operation mode, VCC = 5V (in WIT state),  
functions except timer 1 disabled, Output transistors “off”  
mA  
Increment when A/D conversion is executed  
f(XIN) = 8 MHz, VCC = 5 V  
1.0  
10  
µA  
µA  
All oscillation stopped  
(in STP state)  
Output transistors “off”  
Ta = 25 °C  
Ta = 85 °C  
Rev.4.00 Jun 21, 2004 page 67 of 82  
REJ03B0011-0400Z  
7540 Group  
A/D Converter Characteristics (Extended operating temperature version)  
Table 25 A/D Converter characteristics  
(VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.Max.  
Resolution  
10  
±3  
Bits  
Linearity error  
VCC = 2.7 to 5.5 V  
Ta = 25 °C  
LSB  
Differential nonlinear error  
Zero transition voltage  
Full scale transition voltage  
Conversion time  
VCC = 2.7 to 5.5 V  
Ta = 25 °C  
±0.9  
LSB  
VOT  
VFST  
tCONV  
VCC = VREF = 5.12 V  
VCC = VREF = 3.072 V  
VCC = VREF = 5.12 V  
VCC = VREF = 3.072 V  
0
5
20  
15  
mV  
mV  
0
3
One Time  
5105  
3060  
5115  
3069  
5125  
3075  
122  
mV  
PROM version  
mV  
tc(XIN)  
kΩ  
RLADDER Ladder resistor  
55  
150  
70  
IVREF  
Reference power source input current  
VREF = 5.0 V  
VREF = 3.0 V  
50  
50  
200  
120  
5.0  
10  
µA  
II(AD)  
A/D port input current  
Resolution  
µA  
Bits  
LSB  
Linearity error  
VCC = 2.7 to 5.5 V  
Ta = 25 °C  
±3  
Differential nonlinear error  
Zero transition voltage  
Full scale transition voltage  
Conversion time  
VCC = 2.7 to 5.5 V  
Ta = 25 °C  
±1.5  
LSB  
VOT  
VFST  
tCONV  
VCC = VREF = 5.12 V  
VCC = VREF = 3.072 V  
VCC = VREF = 5.12 V  
VCC = VREF = 3.072 V  
0
15  
9
35  
21  
mV  
mV  
0
Mask ROM version  
5105  
3060  
5125  
3075  
5150  
3090  
122  
mV  
mV  
tc(XIN)  
kΩ  
RLADDER Ladder resistor  
55  
150  
70  
IVREF  
II(AD)  
Reference power source  
VREF = 5.0 V  
VREF = 3.0 V  
50  
30  
200  
120  
5.0  
µA  
input current  
A/D port input current  
µA  
Rev.4.00 Jun 21, 2004 page 68 of 82  
REJ03B0011-0400Z  
7540 Group  
Timing Requirements (Extended operating temperature version)  
Table 26 Timing requirements (1) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
tW(RESET)  
Parameter  
Unit  
Min.  
2
Typ.Max.  
Reset input “L” pulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tC(XIN)  
External clock input cycle time  
External clock input “H” pulse width  
External clock input “L” pulse width  
CNTR0 input cycle time  
125  
50  
tWH(XIN)  
tWL(XIN)  
50  
tC(CNTR0)  
200  
80  
tWH(CNTR0)  
tWL(CNTR0)  
tC(CNTR1)  
CNTR0, INT0, INT1, input “H” pulse width  
CNTR0, INT0, INT1, input “L” pulse width  
CNTR1 input cycle time  
80  
2000  
800  
800  
800  
370  
370  
220  
100  
1000  
400  
400  
200  
200  
tWH(CNTR1)  
tWL(CNTR1)  
tC(SCLK1)  
CNTR1 input “H” pulse width  
CNTR1 input “L” pulse width  
Serial I/O1 clock input cycle time (Note)  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O1 input set up time  
tWH(SCLK1)  
tWL(SCLK1)  
tsu(RxD1–SCLK1)  
th(SCLK1–RxD1)  
tC(SCLK2)  
Serial I/O1 input hold time  
Serial I/O2 clock input cycle time  
Serial I/O2 clock input “H” pulse width  
Serial I/O2 clock input “L” pulse width  
Serial I/O2 input set up time  
tWH(SCLK2)  
tWL(SCLK2)  
tsu(SDATA2–SCLK2)  
th(SCLK2–SDATA2)  
Serial I/O2 input hold time  
Note: In this time, bit 6 of the serial I/O1 control register (address 001A16) is set to “1” (clock synchronous serial I/O1 is selected).  
When bit 6 of the serial I/O1 control register is “0” (clock asynchronous serial I/O1 is selected), the rating values are divided by 4.  
Table 27 Timing requirements (2) (VCC = 2.4 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
tW(RESET)  
Parameter  
Unit  
Min.Typ.Max.  
2
Reset input “L” pulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tC(XIN)  
External clock input cycle time  
External clock input “H” pulse width  
External clock input “L” pulse width  
CNTR0 input cycle time  
250  
tWH(XIN)  
100  
tWL(XIN)  
100  
tC(CNTR0)  
500  
tWH(CNTR0)  
tWL(CNTR0)  
tC(CNTR1)  
CNTR0, INT0, INT1, input “H” pulse width  
CNTR0, INT0, INT1, input “L” pulse width  
CNTR1 input cycle time  
230  
230  
4000  
1600  
1600  
2000  
950  
tWH(CNTR1)  
tWL(CNTR1)  
tC(SCLK1)  
CNTR1 input “H” pulse width  
CNTR1 input “L” pulse width  
Serial I/O1 clock input cycle time (Note)  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O1 input set up time  
tWH(SCLK1)  
tWL(SCLK1)  
tsu(RxD1–SCLK1)  
th(SCLK1–RxD1)  
tC(SCLK2)  
950  
400  
Serial I/O1 input hold time  
200  
Serial I/O2 clock input cycle time  
Serial I/O2 clock input “H” pulse width  
Serial I/O2 clock input “L” pulse width  
Serial I/O2 input set up time  
2000  
950  
tWH(SCLK2)  
tWL(SCLK2)  
tsu(SDATA2–SCLK2)  
th(SCLK2–SDATA2)  
950  
400  
Serial I/O2 input hold time  
400  
Note: In this time, bit 6 of the serial I/O1 control register (address 001A16) is set to “1” (clock synchronous serial I/O1 is selected).  
When bit 6 of the serial I/O1 control register is “0” (clock asynchronous serial I/O1 is selected), the rating values are divided by 4.  
Rev.4.00 Jun 21, 2004 page 69 of 82  
REJ03B0011-0400Z  
7540 Group  
Switching Characteristics (Extended operating temperature version)  
Table 28 Switching characteristics (1) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
MinM.Tayxp..  
tC(SCLK1)/2–30  
tC(SCLK1)/2–30  
tWH(SCLK1)  
Serial I/O1 clock output “H” pulse width  
Serial I/O1 clock output “L” pulse width  
Serial I/O1 output delay time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWL(SCLK1)  
td(SCLK1–TxD1)  
tv(SCLK1–TxD1)  
tr(SCLK1)  
140  
Serial I/O1 output valid time  
–30  
Serial I/O1 clock output rising time  
Serial I/O1 clock output falling time  
Serial I/O2 clock output “H” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O2 output delay time  
30  
30  
tf(SCLK1)  
tWH(SCLK2)  
tWL(SCLK2)  
td(SCLK2–SDATA2)  
tv(SCLK2–SDATA2)  
tr(SCLK2)  
tC(SCLK2)/2–30  
tC(SCLK2)/2–30  
140  
Serial I/O2 output valid time  
0
Serial I/O2 clock output rising time  
Serial I/O2 clock output falling time  
CMOS output rising time (Note 1)  
CMOS output falling time (Note 1)  
30  
30  
30  
30  
tf(SCLK2)  
tr(CMOS)  
10  
10  
tf(CMOS)  
Note 1: Pin XOUT is excluded.  
Table 29 Switching characteristics (2) (VCC = 2.4 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
tWH(SCLK1)  
Parameter  
Unit  
MinM.Tayxp..  
tC(SCLK1)/2–50  
tC(SCLK1)/2–50  
Serial I/O1 clock output “H” pulse width  
Serial I/O1 clock output “L” pulse width  
Serial I/O1 output delay time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWL(SCLK1)  
td(SCLK1–TxD1)  
tv(SCLK1–TxD1)  
tr(SCLK1)  
350  
Serial I/O1 output valid time  
–30  
Serial I/O1 clock output rising time  
Serial I/O1 clock output falling time  
Serial I/O2 clock output “H” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O2 output delay time  
50  
50  
tf(SCLK1)  
tWH(SCLK2)  
tWL(SCLK2)  
td(SCLK2–SDATA2)  
tv(SCLK2–SDATA2)  
tr(SCLK2)  
tC(SCLK2)/2–50  
tC(SCLK2)/2–50  
350  
Serial I/O2 output valid time  
0
Serial I/O2 clock output rising time  
Serial I/O2 clock output falling time  
CMOS output rising time (Note 1)  
CMOS output falling time (Note 1)  
50  
50  
50  
50  
tf(SCLK2)  
tr(CMOS)  
20  
20  
tf(CMOS)  
Note 1: Pin XOUT is excluded.  
Measured  
output pin  
100 pF  
/ / /  
CMOS output  
Switching characteristics measurement circuit diagram (Gen-  
eral purpose)  
Rev.4.00 Jun 21, 2004 page 70 of 82  
REJ03B0011-0400Z  
7540 Group  
t
C
(CNTR  
(CNTR  
0
)
)
t
t
t
WL(CNTR  
0
)
)
)
t
WH(CNTR  
0
)
)
)
0.8VCC  
CNTR  
0
0.2VCC  
tC  
1
WL(CNTR  
1
tWH(CNTR1  
0.8VCC  
0.2VCC  
CNTR  
1
WL(CNTR  
0
tWH(CNTR0  
0.8VCC  
INT  
0, INT  
1
0.2VCC  
tW(RESET)  
0.8VCC  
RESET  
0.2VCC  
tC(XIN)  
tWL(XIN  
)
tWH(XIN)  
0.8VCC  
XIN  
0.2VCC  
t
C
(SCLK1  
)
t
r
t
f
tWL(SCLK1  
)
tWH(SCLK1)  
0.8VCC  
SCLK1  
0.2VCC  
tsu(RxD  
1
-SCLK1  
)
th(SCLK1-RxD1)  
0.8VCC  
0.2VCC  
R
X
D
1
(at receive)  
(at transmit)  
td  
(SCLK1-TxD  
1
)
tv(SCLK1-TxD1)  
T
X
D
1
t
C
(SCLK2  
)
t
r
t
f
tWL(SCLK2  
)
tWH(SCLK2)  
0.8VCC  
S
S
S
CLK2  
0.2VCC  
t
su(SDATA2-SCLK2  
)
th(SCLK2-SDATA2)  
0.8VCC  
0.2VCC  
DATA2 (at receive)  
DATA2 (at transmit)  
td(SCLK2-SDATA2)  
tv(SCLK2-SDATA2)  
Fig. 56 Timing chart (Extended operating temperature version)  
Rev.4.00 Jun 21, 2004 page 71 of 82  
REJ03B0011-0400Z  
7540 Group  
ELECTRICAL CHARACTERISTICS  
3.7540Group (Extended operating temperature 125 °C version)  
Applied to: M37540M2V-XXXFP/GP, M37540M4V-XXXFP/GP, M37540E8V-XXXFP/GP  
Absolute Maximum Ratings (Extended operating temperature 125 °C version)  
Table 30 Absolute maximum ratings  
Symbol  
Parameter  
Conditions  
Ratings  
Unit  
V
VCC  
Power source voltage  
Input voltage  
–0.3 to 6.5 (Note 1)  
–0.3 to VCC + 0.3  
VI  
V
All voltages are  
based on VSS.  
Output transistors  
are cut off.  
P00–P07, P10–P14, P20–P27, P30–P37, VREF  
Input voltage RESET, XIN, CNVSS  
Output voltage  
VI  
–0.3 to VCC + 0.3  
–0.3 to VCC + 0.3  
V
V
VO  
P00–P07, P10–P14, P20–P27, P30–P37, XOUT  
Power dissipation  
Ta = 25°C  
Pd  
300 (Note 2)  
–40 to 125 (Note 3)  
–65 to 150  
mW  
°C  
Topr  
Tstg  
Operating temperature  
Storage temperature  
°C  
Notes 1: This is the rating value for the Mask ROM version.  
The rating value for the One Time PROM version is –0.3 to 7.0 V.  
2: 200 mW for the 32P6U package product.  
3: In this version, the operating temperature range and total time are limited as follows;  
55 °C to 85 °C: within total 6000 hours,  
85 °C to 125 °C: within total 1000 hours.  
Rev.4.00 Jun 21, 2004 page 72 of 82  
REJ03B0011-0400Z  
7540 Group  
Recommended Operating Conditions (Extended operating temperature 125 °C version)  
Table 31 Recommended operating conditions (1) (VCC = 2.4 to 5.5 V, Ta = –40 to 125 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
4.0  
2.4  
4.0  
2.4  
4.0  
2.4  
Typ.Max.  
5.0  
VCC  
Power source voltage (ceramic)  
f(XIN) = 8 MHz (High-, Middle-speed mode)  
f(XIN) = 4 MHz (High-, Middle-speed mode)  
f(XIN) = 4 MHz (Double-speed mode)  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
V
V
V
V
V
V
V
V
V
5.0  
5.0  
f(XIN) = 2 MHz (Double-speed mode)  
5.0  
Power source voltage (RC)  
f(XIN) = 4 MHz (High-, Middle-speed mode)  
f(XIN) = 2 MHz (High-, Middle-speed mode)  
5.0  
5.0  
VSS  
VREF  
VIH  
Power source voltage  
Analog reference voltage  
“H” input voltage  
0
2.0  
VCC  
VCC  
0.8VCC  
P00–P07, P10–P14, P20–P27, P30–P37  
“H” input voltage (TTL input level selected)  
P10, P12, P13, P36, P37 (Note 1)  
“H” input voltage  
VIH  
2.0  
VCC  
VCC  
0.3VCC  
0.8  
V
V
VIH  
0.8VCC  
RESET, XIN  
VIL  
“L” input voltage  
0
0
0
0
V
P00–P07, P10–P14, P20–P27, P30–P37  
“L” input voltage (TTL input level selected)  
P10, P12, P13, P36, P37 (Note 1)  
“L” input voltage  
VIL  
V
0.2VCC  
0.16VCC  
–80  
VIL  
V
RESET, CNVSS  
VIL  
“L” input voltage  
V
XIN  
IOH(peak)  
IOL(peak)  
IOL(peak)  
IOH(avg)  
IOL(avg)  
IOL(avg)  
“H” total peak output current (Note 2)  
P00–P07, P10–P14, P20–P27, P30–P37  
“L” total peak output current (Note 2)  
P00–P07, P10–P14, P20–P27, P37  
“L” total peak output current (Note 2)  
P30–P36  
mA  
mA  
mA  
mA  
mA  
mA  
80  
60  
–40  
“H” total average output current (Note 2)  
P00–P07, P10–P14, P20–P27, P30–P37  
40  
“L” total average output current (Note 2)  
P00–P07, P10–P14, P20–P27, P37  
“L” total average output current (Note 2)  
P30–P36  
30  
Note 1: Vcc = 4.0 to 5.5V  
2: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured  
over 100 ms. The total peak current is the peak value of all the currents.  
Rev.4.00 Jun 21, 2004 page 73 of 82  
REJ03B0011-0400Z  
7540 Group  
Recommended Operating Conditions (Extended operating temperature 125 °C version)  
(continued)  
Table 32 Recommended operating conditions (2) (VCC = 2.4 to 5.5 V, Ta = –40 to 125 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
P00–P07, P10–P14, P20–P27, P30–P37  
Unit  
Min.  
Typ.  
Max.  
–10  
10  
30  
–5  
5
“H” peak output current (Note 1)  
“L” peak output current (Note 1)  
“L” peak output current (Note 1)  
mA  
mA  
mA  
mA  
mA  
mA  
MHz  
IOH(peak)  
IOL(peak)  
IOL(peak)  
IOH(avg)  
IOL(avg)  
IOL(avg)  
f(XIN)  
P00–P07, P10–P14, P20–P27, P37  
P30–P36  
“H” average output current (Note 2) P00–P07, P10–P14, P20–P27, P30–P37  
“L” average output current (Note 2)  
“L” average output current (Note 2)  
P00–P07, P10–P14, P20–P27, P37  
P30–P36  
15  
4
Internal clock oscillation frequency (Note 3) VCC = 4.0 to 5.5 V  
at ceramic oscillation or external clock input Double-speed mode  
Internal clock oscillation frequency (Note 3) VCC = 2.4 to 5.5 V  
at ceramic oscillation or external clock input Double-speed mode  
Internal clock oscillation frequency (Note 3) VCC = 4.0 to 5.5 V  
at ceramic oscillation or external clock input High-, Middle-speed mode  
Internal clock oscillation frequency (Note 3) VCC = 2.4 to 5.5 V  
at ceramic oscillation or external clock input High-, Middle-speed mode  
Internal clock oscillation frequency (Note 3) VCC = 4.0 to 5.5 V  
2
8
4
4
2
MHz  
MHz  
MHz  
MHz  
MHz  
at RC oscillation  
Internal clock oscillation frequency (Note 3) VCC = 2.4 to 5.5 V  
at RC oscillation High-, Middle-speed mode  
Notes 1: The peak output current is the peak current flowing in each port.  
High-, Middle-speed mode  
2: The average output current IOL (avg), IOH (avg) in an average value measured over 100 ms.  
3: When the oscillation frequency has a duty cycle of 50 %.  
Rev.4.00 Jun 21, 2004 page 74 of 82  
REJ03B0011-0400Z  
7540 Group  
Electrical Characteristics (Extended operating temperature 125 °C version)  
Table 33 Electrical characteristics (1) (VCC = 2.4 to 5.5 V, VSS = 0 V, Ta = –40 to 125 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
IOH = –5 mA  
Unit  
V
Min.Typ.Max.  
VCC–1.5  
VOH  
“H” output voltage  
VCC = 4.0 to 5.5 V  
P00–P07, P10–P14, P20–P27, P30–P37 (Note 1)  
IOH = –1.0 mA  
VCC = 2.4 to 5.5 V  
VCC–1.0  
V
V
V
V
V
V
V
V
VOL  
IOL = 5 mA  
VCC = 4.0 to 5.5 V  
1.5  
0.3  
1.0  
2.0  
0.3  
1.0  
“L” output voltage  
P00–P07, P10–P14, P20–P27, P37  
IOL = 1.5 mA  
VCC = 4.0 to 5.5 V  
IOL = 1.0 mA  
VCC = 2.4 to 5.5 V  
VOL  
IOL = 15 mA  
VCC = 4.0 to 5.5 V  
“L” output voltage  
P30–P36  
IOL = 1.5 mA  
VCC = 4.0 to 5.5 V  
IOL = 10 mA  
VCC = 2.4 to 5.5 V  
VT+–VT–  
0.4  
Hysteresis  
CNTR0, CNTR1, INT0, INT1(Note 2)  
P00–P07 (Note 3)  
VT+–VT–  
VT+–VT–  
IIH  
0.5  
0.5  
V
V
Hysteresis  
RXD, SCLK1, SCLK2, SDATA2 (Note 2)  
Hysteresis  
RESET  
VI = VCC  
(Pin floating. Pull up  
transistors “off”)  
5.0  
5.0  
µA  
“H” input current  
P00–P07, P10–P14, P20–P27, P30–P37  
IIH  
IIH  
IIL  
VI = VCC  
µA  
µA  
µA  
“H” input current  
RESET  
VI = VCC  
4.0  
“H” input current  
XIN  
VI = VSS  
(Pin floating. Pull up  
transistors “off”)  
–5.0  
–5.0  
“L” input current  
P00–P07, P10–P14, P20–P27, P30–P37  
IIL  
IIL  
IIL  
VI = VSS  
µA  
µA  
“L” input current  
RESET, CNVSS  
VI = VSS  
–4.0  
–0.2  
“L” input current  
XIN  
VI = VSS  
–0.5  
mA  
“L” input current  
(Pull up transistors “on”)  
P00–P07, P30–P37  
VRAM  
ROSC  
DOSC  
When clock stopped  
2.0  
5.5  
V
RAM hold voltage  
VCC = 5.0 V, Ta = 25 °C  
VCC = 5.0 V, Ta = 25 °C  
1000  
62.5  
2000  
125  
3000  
187.5  
kHz  
kHz  
On-chip oscillator oscillation frequency  
Oscillation stop detection circuit detection frequency  
Notes 1: P11 is measured when the P11/TXD1 P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: RXD1, SCLK1, SCLK2, SDATA2, INT0, and INT1 have hysteresises only when bits 0 to 2 of the port P1P3 control register are set to “0” (CMOS level).  
3: It is available only when operating key-on wake up.  
Rev.4.00 Jun 21, 2004 page 75 of 82  
REJ03B0011-0400Z  
7540 Group  
Electrical Characteristics (Extended operating temperature 125°C version)(continued)  
Table 34 Electrical characteristics (2) (VCC = 2.4 to 5.5 V, VSS = 0 V, Ta = –40 to 125 °C, unless otherwise noted)  
Limits  
Symbol  
ICC  
Test conditions  
Unit  
mA  
Min.  
Typ.Max.  
5.0  
One Time PROM version  
8.0  
1.5  
High-speed mode, f(XIN) = 8 MHz  
Output transistors “off”  
0.5  
2.0  
350  
1.6  
mA  
mA  
µA  
High-speed mode, f(XIN) = 2 MHz, VCC = 2.4 V  
Output transistors “off”  
5.0  
Middle-speed mode, f(XIN) = 8 MHz,  
Output transistors “off”  
1000  
3.2  
On-chip oscillator operation mode, VCC = 5 V  
Output transistors “off”  
mA  
f(XIN) = 8 MHz (in WIT state),  
functions except timer 1 disabled,  
Output transistors “off”  
0.2  
mA  
f(XIN) = 2 MHz, VCC = 2.4 V (in WIT state),  
functions except timer 1 disabled,  
Output transistors “off”  
150  
0.5  
0.1  
450  
µA  
On-chip oscillator operation mode, VCC = 5V (in WIT state),  
functions except timer 1 disabled, Output transistors “off”  
mA  
Increment when A/D conversion is executed  
f(XIN) = 8 MHz, VCC = 5 V  
1.0  
50  
µA  
µA  
Ta = 25 °C  
Ta = 125 °C  
All oscillation stopped  
(in STP state)  
Output transistors “off”  
3.5  
0.4  
2.0  
300  
1.6  
6.5  
1.2  
5.0  
900  
3.2  
mA  
mA  
mA  
µA  
Mask ROM version  
High-speed mode, f(XIN) = 8 MHz  
Output transistors “off”  
High-speed mode, f(XIN) = 2 MHz, VCC = 2.4 V  
Output transistors “off”  
Middle-speed mode, f(XIN) = 8 MHz,  
Output transistors “off”  
On-chip oscillator operation mode, VCC = 5 V  
Output transistors “off”  
mA  
f(XIN) = 8 MHz (in WIT state),  
functions except timer 1 disabled,  
Output transistors “off”  
0.2  
mA  
f(XIN) = 2 MHz, VCC = 2.4 V (in WIT state),  
functions except timer 1 disabled,  
Output transistors “off”  
150  
0.5  
0.1  
450  
µA  
On-chip oscillator operation mode, VCC = 5V (in WIT state),  
functions except timer 1 disabled, Output transistors “off”  
mA  
Increment when A/D conversion is executed  
f(XIN) = 8 MHz, VCC = 5 V  
1.0  
50  
µA  
µA  
All oscillation stopped  
(in STP state)  
Output transistors “off”  
Ta = 25 °C  
Ta = 125 °C  
Rev.4.00 Jun 21, 2004 page 76 of 82  
REJ03B0011-0400Z  
7540 Group  
A/D Converter Characteristics (Extended operating temperature 125 °C version)  
Table 35 A/D Converter characteristics  
(VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = –40 to 125 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.Max.  
Resolution  
10  
±3  
Bits  
Linearity error  
VCC = 2.7 to 5.5 V  
Ta = 25 °C  
LSB  
Differential nonlinear error  
Zero transition voltage  
Full scale transition voltage  
Conversion time  
VCC = 2.7 to 5.5 V  
Ta = 25 °C  
±0.9  
LSB  
VOT  
VFST  
tCONV  
VCC = VREF = 5.12 V  
VCC = VREF = 3.072 V  
VCC = VREF = 5.12 V  
VCC = VREF = 3.072 V  
0
5
20  
15  
mV  
mV  
0
3
One Time  
5105  
3060  
5115  
3069  
5125  
3075  
122  
mV  
PROM version  
mV  
tc(XIN)  
kΩ  
RLADDER Ladder resistor  
55  
150  
70  
IVREF  
Reference power source input current  
VREF = 5.0 V  
VREF = 3.0 V  
50  
30  
200  
120  
7.0  
10  
µA  
II(AD)  
A/D port input current  
Resolution  
µA  
Bits  
LSB  
Linearity error  
VCC = 2.7 to 5.5 V  
Ta = 25 °C  
±3  
Differential nonlinear error  
Zero transition voltage  
Full scale transition voltage  
Conversion time  
VCC = 2.7 to 5.5 V  
Ta = 25 °C  
±1.5  
LSB  
VOT  
VFST  
tCONV  
VCC = VREF = 5.12 V  
VCC = VREF = 3.072 V  
VCC = VREF = 5.12 V  
VCC = VREF = 3.072 V  
0
15  
9
35  
21  
mV  
mV  
0
Mask ROM version  
5105  
3060  
5125  
3075  
5150  
3090  
122  
mV  
mV  
tc(XIN)  
kΩ  
RLADDER Ladder resistor  
55  
150  
70  
IVREF  
II(AD)  
Reference power source  
VREF = 5.0 V  
VREF = 3.0 V  
50  
30  
200  
120  
7.0  
µA  
input current  
A/D port input current  
µA  
Rev.4.00 Jun 21, 2004 page 77 of 82  
REJ03B0011-0400Z  
7540 Group  
Timing Requirements (Extended operating temperature 125 °C version)  
Table 36 Timing requirements (1) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 125 °C, unless otherwise noted)  
Limits  
Symbol  
tW(RESET)  
Parameter  
Unit  
Min.  
2
Typ.Max.  
Reset input “L” pulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tC(XIN)  
External clock input cycle time  
External clock input “H” pulse width  
External clock input “L” pulse width  
CNTR0 input cycle time  
125  
50  
tWH(XIN)  
tWL(XIN)  
50  
tC(CNTR0)  
200  
80  
tWH(CNTR0)  
tWL(CNTR0)  
tC(CNTR1)  
CNTR0, INT0, INT1, input “H” pulse width  
CNTR0, INT0, INT1, input “L” pulse width  
CNTR1 input cycle time  
80  
2000  
800  
800  
800  
370  
370  
220  
100  
1000  
400  
400  
200  
200  
tWH(CNTR1)  
tWL(CNTR1)  
tC(SCLK1)  
CNTR1 input “H” pulse width  
CNTR1 input “L” pulse width  
Serial I/O1 clock input cycle time (Note)  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O1 input set up time  
tWH(SCLK1)  
tWL(SCLK1)  
tsu(RxD1–SCLK1)  
th(SCLK1–RxD1)  
tC(SCLK2)  
Serial I/O1 input hold time  
Serial I/O2 clock input cycle time  
Serial I/O2 clock input “H” pulse width  
Serial I/O2 clock input “L” pulse width  
Serial I/O2 input set up time  
tWH(SCLK2)  
tWL(SCLK2)  
tsu(SDATA2–SCLK2)  
th(SCLK2–SDATA2)  
Serial I/O2 input hold time  
Note: In this time, bit 6 of the serial I/O1 control register (address 001A16) is set to “1” (clock synchronous serial I/O1 is selected).  
When bit 6 of the serial I/O1 control register is “0” (clock asynchronous serial I/O1 is selected), the rating values are divided by 4.  
Table 37 Timing requirements (2) (VCC = 2.4 to 5.5 V, VSS = 0 V, Ta = –40 to 125 °C, unless otherwise noted)  
Limits  
Symbol  
tW(RESET)  
Parameter  
Unit  
Min.Typ.Max.  
2
Reset input “L” pulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tC(XIN)  
External clock input cycle time  
External clock input “H” pulse width  
External clock input “L” pulse width  
CNTR0 input cycle time  
250  
tWH(XIN)  
100  
tWL(XIN)  
100  
tC(CNTR0)  
500  
tWH(CNTR0)  
tWL(CNTR0)  
tC(CNTR1)  
CNTR0, INT0, INT1, input “H” pulse width  
CNTR0, INT0, INT1, input “L” pulse width  
CNTR1 input cycle time  
230  
230  
4000  
1600  
1600  
2000  
950  
tWH(CNTR1)  
tWL(CNTR1)  
tC(SCLK1)  
CNTR1 input “H” pulse width  
CNTR1 input “L” pulse width  
Serial I/O1 clock input cycle time (Note)  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O1 input set up time  
tWH(SCLK1)  
tWL(SCLK1)  
tsu(RxD1–SCLK1)  
th(SCLK1–RxD1)  
tC(SCLK2)  
950  
400  
Serial I/O1 input hold time  
200  
Serial I/O2 clock input cycle time  
Serial I/O2 clock input “H” pulse width  
Serial I/O2 clock input “L” pulse width  
Serial I/O2 input set up time  
2000  
950  
tWH(SCLK2)  
tWL(SCLK2)  
tsu(SDATA2–SCLK2)  
th(SCLK2–SDATA2)  
950  
400  
Serial I/O2 input hold time  
400  
Note: In this time, bit 6 of the serial I/O1 control register (address 001A16) is set to “1” (clock synchronous serial I/O1 is selected).  
When bit 6 of the serial I/O1 control register is “0” (clock asynchronous serial I/O1 is selected), the rating values are divided by 4.  
Rev.4.00 Jun 21, 2004 page 78 of 82  
REJ03B0011-0400Z  
7540 Group  
Switching Characteristics (Extended operating temperature 125 °C version)  
Table 38 Switching characteristics (1) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 125 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
MinM.Tayxp..  
tC(SCLK1)/2–30  
tC(SCLK1)/2–30  
tWH(SCLK1)  
Serial I/O1 clock output “H” pulse width  
Serial I/O1 clock output “L” pulse width  
Serial I/O1 output delay time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWL(SCLK1)  
td(SCLK1–TxD1)  
tv(SCLK1–TxD1)  
tr(SCLK1)  
140  
Serial I/O1 output valid time  
–30  
Serial I/O1 clock output rising time  
Serial I/O1 clock output falling time  
Serial I/O2 clock output “H” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O2 output delay time  
30  
30  
tf(SCLK1)  
tWH(SCLK2)  
tWL(SCLK2)  
td(SCLK2–SDATA2)  
tv(SCLK2–SDATA2)  
tr(SCLK2)  
tC(SCLK2)/2–30  
tC(SCLK2)/2–30  
140  
Serial I/O2 output valid time  
0
Serial I/O2 clock output rising time  
Serial I/O2 clock output falling time  
CMOS output rising time (Note 1)  
CMOS output falling time (Note 1)  
30  
30  
30  
30  
tf(SCLK2)  
tr(CMOS)  
10  
10  
tf(CMOS)  
Note 1: Pin XOUT is excluded.  
Table 39 Switching characteristics (2) (VCC = 2.4 to 5.5 V, VSS = 0 V, Ta = –40 to 125 °C, unless otherwise noted)  
Limits  
Symbol  
tWH(SCLK1)  
Parameter  
Unit  
MinM.Tayxp..  
tC(SCLK1)/2–50  
tC(SCLK1)/2–50  
Serial I/O1 clock output “H” pulse width  
Serial I/O1 clock output “L” pulse width  
Serial I/O1 output delay time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWL(SCLK1)  
td(SCLK1–TxD1)  
tv(SCLK1–TxD1)  
tr(SCLK1)  
350  
Serial I/O1 output valid time  
–30  
Serial I/O1 clock output rising time  
Serial I/O1 clock output falling time  
Serial I/O2 clock output “H” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O2 output delay time  
50  
50  
tf(SCLK1)  
tWH(SCLK2)  
tWL(SCLK2)  
td(SCLK2–SDATA2)  
tv(SCLK2–SDATA2)  
tr(SCLK2)  
tC(SCLK2)/2–50  
tC(SCLK2)/2–50  
350  
Serial I/O2 output valid time  
0
Serial I/O2 clock output rising time  
Serial I/O2 clock output falling time  
CMOS output rising time (Note 1)  
CMOS output falling time (Note 1)  
50  
50  
50  
50  
tf(SCLK2)  
tr(CMOS)  
20  
20  
tf(CMOS)  
Note 1: Pin XOUT is excluded.  
Measured  
output pin  
100 pF  
/ / /  
CMOS output  
Switching characteristics measurement circuit diagram (Gen-  
eral purpose)  
Rev.4.00 Jun 21, 2004 page 79 of 82  
REJ03B0011-0400Z  
7540 Group  
t
C
(CNTR  
(CNTR  
0
)
)
t
t
t
WL(CNTR  
0
)
)
)
t
WH(CNTR  
0
)
)
)
0.8VCC  
CNTR  
0
0.2VCC  
tC  
1
WL(CNTR  
1
tWH(CNTR1  
0.8VCC  
0.2VCC  
CNTR  
1
WL(CNTR  
0
tWH(CNTR0  
0.8VCC  
INT  
0, INT  
1
0.2VCC  
tW(RESET)  
0.8VCC  
RESET  
0.2VCC  
tC(XIN)  
tWL(XIN  
)
tWH(XIN)  
0.8VCC  
XIN  
0.2VCC  
t
C
(SCLK1  
)
t
r
t
f
tWL(SCLK1  
)
tWH(SCLK1)  
0.8VCC  
SCLK1  
0.2VCC  
tsu(RxD  
1
-SCLK1  
)
th(SCLK1-RxD1)  
0.8VCC  
0.2VCC  
R
X
D
1
(at receive)  
(at transmit)  
td  
(SCLK1-TxD  
1
)
tv(SCLK1-TxD1)  
T
X
D
1
t
C
(SCLK2  
)
t
r
t
f
tWL(SCLK2  
)
tWH(SCLK2)  
0.8VCC  
S
S
S
CLK2  
0.2VCC  
t
su(SDATA2-SCLK2  
)
th(SCLK2-SDATA2)  
0.8VCC  
0.2VCC  
DATA2 (at receive)  
DATA2 (at transmit)  
td(SCLK2-SDATA2)  
tv(SCLK2-SDATA2)  
Fig. 57 Timing chart (Extended operating temperature 125 °C version)  
Rev.4.00 Jun 21, 2004 page 80 of 82  
REJ03B0011-0400Z  
7540 Group  
PACKAGE OUTLINE  
Recommended  
32P6U-A  
Plastic 32pin 77mm body LQFP  
EIAJ Package Code  
LQFP32-P-0707-0.80  
JEDEC Code  
Weight(g)  
Lead Material  
Cu Alloy  
MD  
HD  
D
32  
25  
I2  
1
24  
Recommended Mount Pad  
Dimension in Millimeters  
Symbol  
Min  
0
Nom  
Max  
1.7  
0.2  
0.45  
0.175  
7.1  
7.1  
9.2  
9.2  
0.7  
0.75  
A
A
A
b
c
D
E
e
H
H
1
2
0.1  
1.4  
0.37  
0.125  
7.0  
7.0  
0.8  
9.0  
9.0  
0.5  
1.0  
0.6  
0.25  
0.5  
7.4  
7.4  
0.32  
0.105  
6.9  
6.9  
8.8  
8.8  
0.3  
0.45  
0°  
8
17  
9
16  
A
D
E
L
L
1
L1  
e
F
Lp  
A3  
x
0.2  
0.1  
10°  
y
L
b
Lp  
b2  
1.0  
x
M
I
2
y
Detail F  
M
M
D
E
Recommended  
36P2R-A  
Plastic 36pin 450mil SSOP  
EIAJ Package Code  
SSOP36-P-450-0.80  
JEDEC Code  
Weight(g)  
0.53  
Lead Material  
Alloy 42  
e
b2  
36  
19  
Recommended Mount Pad  
Dimension in Millimeters  
F
Symbol  
Min  
0.05  
0.35  
0.13  
14.8  
8.2  
11.63  
0.3  
0°  
1.27  
Nom  
Max  
2.4  
A
A
A
b
c
D
E
e
H
L
1
18  
1
2
A
2.0  
0.4  
0.15  
15.0  
8.4  
0.8  
11.93  
0.5  
1.765  
0.7  
D
G
0.5  
0.2  
15.2  
8.6  
12.23  
0.7  
A2  
A1  
e
E
b
y
L1  
z
Z
1
0.85  
0.15  
10°  
y
c
z
b2  
0.5  
11.43  
Z
1
Detail G  
Detail F  
e1  
I
2
Rev.4.00 Jun 21, 2004 page 81 of 82  
REJ03B0011-0400Z  
7540 Group  
Recommended  
32P4B  
Plastic 32pin 400mil SDIP  
EIAJ Package Code  
JEDEC Code  
Weight(g)  
2.2  
Lead Material  
Alloy 42/Cu Alloy  
SDIP32-P-400-1.78  
32  
17  
1
16  
D
Dimension in Millimeters  
Symbol  
A
Min  
0.51  
Nom  
Max  
5.08  
A
A
1
2
3.8  
b
0.35  
0.9  
0.63  
0.22  
27.8  
8.75  
3.0  
0°  
0.45  
1.0  
0.73  
0.27  
28.0  
8.9  
1.778  
10.16  
0.55  
1.3  
1.03  
0.34  
28.2  
9.05  
15°  
b1  
b2  
c
D
E
e
e
b1  
b
b2  
SEATING PLANE  
e1  
L
Rev.4.00 Jun 21, 2004 page 82 of 82  
REJ03B0011-0400Z  
Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
Keep safety first in your circuit designs!  
1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble  
may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.  
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary  
circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's  
application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.  
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data,  
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.  
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of  
publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is  
therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product  
information before purchasing a product listed herein.  
The information described here may contain technical inaccuracies or typographical errors.  
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.  
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor  
home page (http://www.renesas.com).  
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to  
evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes  
no responsibility for any damage, liability or other loss resulting from the information contained herein.  
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life  
is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a  
product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater  
use.  
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.  
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and  
cannot be imported into a country other than the approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.  
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.  
RENESAS SALES OFFICES  
http://www.renesas.com  
Renesas Technology America, Inc.  
450 Holger Way, San Jose, CA 95134-1368, U.S.A  
Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501  
Renesas Technology Europe Limited.  
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom  
Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900  
Renesas Technology Europe GmbH  
Dornacher Str. 3, D-85622 Feldkirchen, Germany  
Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11  
Renesas Technology Hong Kong Ltd.  
7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong  
Tel: <852> 2265-6688, Fax: <852> 2375-6836  
Renesas Technology Taiwan Co., Ltd.  
FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan  
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999  
Renesas Technology (Shanghai) Co., Ltd.  
26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China  
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952  
Renesas Technology Singapore Pte. Ltd.  
1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632  
Tel: <65> 6213-0200, Fax: <65> 6278-8001  
©1999, 2004. Renesas Technology Corp., All rights reserved. Printed in Japan.  
Colophon .1.0  
REVISION DESCRIPTION LIST  
7540 Group DATA SHEET  
Rev.  
Rev.  
date  
Revision Description  
No.  
1.0 First Edition  
991122  
010108  
2.0 Page 1:  
FEATURES  
• The minimum instruction execution time revised;  
0.34 µs (at 6 MHz oscillation frequency, double-speed mode for the shortest instruction)  
• Power source voltage added;  
XIN oscillation frequency at ceramic oscillation , in high-speed mode  
At 6 MHz.......................................4.5 to 5.5 V  
• Power dissipation revised;  
Mask ROM version........................22.5 mW (standard)  
One Time PROM version..............30 mW (standard)  
PIN CONFIGURATION  
Fig. 1 revised; Package type 32P6U-A, Product name “M37540M4T-XXXGP” added  
Page 2: Fig. 2 revised; Product name “M37540M4T-XXXFP” added  
Page 3: Fig. 4 M37540RSS pin configuration (42S1M) added  
Page 4: Fig. 5 Functional block diagram revised; Package type 32P6U  
Page 7: PIN DESCRIPTION revised; Notes 1 to 3 added  
Page 8: Package type revised;  
32P6U-A.....0.8 mm-pitch plastic molded LQFP  
36P2R-A.....0.8 mm-pitch plastic molded SSOP  
Table 2 revised; Package type 32P6U-A  
Pages 9 to 11: Structure of CPU added  
Page 12: Fig. 11 Initial value added, Fig. 12 Description revised  
Page 16: Table 5 Non-port function of port P0 revised, Notes 2 and 3 added  
Page 17: Fig. 17 Port P0 revised  
Page 18: Fig. 18 Note added  
Page 20: Fig. 20 Initial values added, Interrupt enable bit of ICON1; Note added  
Page 21: Fig. 21 Port P00 key-on wakeup selection bit added  
(1/5)  
REVISION DESCRIPTION LIST  
7540 Group DATA SHEET  
Rev.  
Rev.  
date  
Revision Description  
No.  
2.0 (continued)  
010108  
Pages 22 to 30: Description of timers revised all  
Page 31: Fig. 25 to Fig. 27 Initial values added  
Page 33: Fig. 29 Reference of Figure revised Fig. 50, 51  
Page 36: Description of SIO1STS revised; “All bits” “Bits 0 to 6”  
Description of UARTCON revised; “P12/SCLK1” pin eliminated  
Page 37: Fig. 34 Initial value added  
Page 38: Fig. 35 Initial value added  
Page 39: Fig. 37 Note revised  
Page 40: Fig. 38 Initial value added  
Page 41: Fig. 42 Initial value added  
Page 42: Description in the case of 6 MHz added  
Page 43: Fig. 45 Contents of (7), (8) revised  
Page 45: Fig. 49 Functions of b1 and b7 revised, Initial value added  
Page 46: Fig. 50 A resistor of XOUT pin eliminated  
Page 47: Description of oscillation stop detection circuit added, Fig. 52 revised  
Page 48: Notes on Ports revised  
Pages 50 to 68: Electrical characteristics revised all  
Page 69: Package type revised; 32P6U-A  
3.0 All pages: The following is eliminated;  
020610  
“PRELIMINARY Notice: This is not a final specification. Some parametric limits are subject to change.”  
Page 1: • Memory size ROM/RAM size revised,  
• Operating temperature range 125 °C version added, and Note revised  
Page 2: Fig. 1 and Fig. 2 Product name revised  
Page 3: Fig. 3 Product name revised  
Page 7: Table 1 XIN, XOUT Functional description added, Note 1 125 °C version added  
Page 8: Memory size ROM/RAM size, Package description, and Fig. 8 revised  
Page 9: Table 2 revised  
Page 14: Fig. 13 ROM/RAM area added  
(2/5)  
REVISION DESCRIPTION LIST  
7540 Group DATA SHEET  
Rev.  
Rev.  
date  
Revision Description  
No.  
3.0 (continued)  
020610  
Page 19: Fig. 18 (9) Port P14 revised  
Page 20: Note revised  
Page 23: Timer 1 “Prescaler 1 counts the signal which is the oscillation frequency divided by 16.”  
(1) Timer mode “Timer A counts the oscillation frequency divided by 16.”  
Page 24: Timer X “Timer X can can be selected in one of 4 operating modes by setting the  
timer X operating mode bits of the timer X mode register.”  
(1) Timer mode  
“Prescaler X counts the count source selected by the timer X count source selection bits.”  
Page 26: Timer Y “Timer Y can can be selected in one of 4 operating modes by setting the  
timer Y operating mode bits of the timer Y mode register.”  
(1) Timer mode  
“Prescaler Y counts the count source selected by the timer Y count source selection bits.”  
Page 27: Note on reading timer added.  
Page 28: Timer Z “Timer Z can can be selected in one of 4 operating modes by setting the  
timer Z operating mode bits of the timer Z mode register.”  
(1) Timer mode  
“Prescaler Z counts the count source selected by the timer Z count source selection bits.”  
Page 30: Note on reading timer added.  
Page 36: Note on Serial I/O added.  
Page 44: Clock generating circuit The following description added.  
(1) On-chip oscillator operation, (2) Ceramic resonator, (3) RC oscillation, and (4) External clock  
Fig. 46 Resistor and Note added, Fig. 47 Note added, and Fig. 49 added.  
Page 45: Oscillation stop detection circuit Note added.  
Page 46: Fig. 51 and Fig. 52 revised.  
Page 47: Fig. 53 Note 4 added.  
Pages 48 to 50: Notes revised  
Page 51: DATA REQUIRED FOR MASK ORDERS revised  
DATA REQUIRED FOR ROM PROGRAMMING ORDERS added  
(3/5)  
REVISION DESCRIPTION LIST  
7540 Group DATA SHEET  
Rev.  
Rev.  
date  
Revision Description  
No.  
3.0 (continued)  
020610  
Page 52: Product name added, Table 8 Note revised.  
Page 57: Table 13 Ladder resistor value revised, Layout revised.  
Page 63: Product name added, Table 20 Note revised.  
Page 67: Table 24 Characteristics for One Time PROM version added.  
Mask ROM version; “VCC = 5 V” eliminated from the following Test condition.  
f(XIN) = 6 MHz  
f(XIN) = 8MHz, middle-speed mode  
Page 68: Table 25 Ladder resistor value revised, Layout revised.  
Page 72 to 80: Extended operating temperature 125 °C version added.  
3.1 Page 57: Table 13, Page 68: Table 25 and Page 77: Table 35  
Error of the ladder resistor in A/D converter characteristics corrected.  
As usual, (Rev.2.0 or before), the value is not changed from Typical 55 k.  
020701  
(4/5)  
7540 Group Data Sheet  
REVISION HISTORY  
Rev.  
Date  
Description  
Page  
Summary  
3.20 May. 28, 2003  
16  
[Pull-up control register] PULL; Note added.  
Fig.15; Note 2 eliminated.  
18  
33  
Fig.17; (2) Ports P01,P02 revised.  
Fig.29; Port P03 direction register block, Port P01 direction register block and  
Port P02 direction register block revised.  
(3) RC oscillation revised.  
44  
4.00 Jun. 21, 2004  
All pages Words standardized: On-chip oscillator, A/D converter  
8
Fig. 8: “Under development” eliminated.  
Table 2: “Under development” eliminated.  
CPU: Description revised.  
9
10  
16  
18  
33  
40  
44  
50  
[Pull-up control register] PULL: Note added, Fig. 15: Note eliminated.  
Fig.17 (2) Ports P01, P02 revised.  
Fig. 29 P03/TXOUT, P01/TYOUT, P02/TZOUT revised.  
Note on A/D converter added.  
Fig. 49 revised.  
Note on A/D converter added.  
Notes on clock generating circuit added.  
Note on Power Source Voltage, and Electrical Characteristic Difference Among  
Mask ROM and One Time PROM Version MCUs added.  
32P6U-A revised.  
51  
81  
(5/5)  

相关型号:

75401-001

PCB Terminal,
AMPHENOL

75401-001LF

PCB Terminal, LEAD FREE
AMPHENOL

75401-002

PCB Terminal,
AMPHENOL

75401-002LF

PCB Terminal, LEAD FREE
AMPHENOL

75401-003

PCB Terminal,
AMPHENOL

75401-004LF

PCB Terminal, LEAD FREE
AMPHENOL

75401-006

PCB Terminal
AMPHENOL

75401-007

PCB Terminal,
AMPHENOL

75401-007LF

PCB Terminal, LEAD FREE
AMPHENOL

75401-008

PCB Terminal
AMPHENOL

75401-008LF

PCB Terminal, LEAD FREE
AMPHENOL

75401-009LF

PCB Terminal, LEAD FREE
AMPHENOL