EL2126CSZ-T13 [RENESAS]

OP-AMP, 2000uV OFFSET-MAX, 80MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, SOIC-8;
EL2126CSZ-T13
型号: EL2126CSZ-T13
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

OP-AMP, 2000uV OFFSET-MAX, 80MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, SOIC-8

放大器 光电二极管
文件: 总19页 (文件大小:838K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
EL2126  
FN7046  
Rev 4.00  
May 2, 2007  
Ultra-Low Noise, Low Power, Wideband Amplifier  
The EL2126 is an ultra-low noise, wideband amplifier that  
runs on half the supply current of competitive parts. It is  
intended for use in systems such as ultrasound imaging  
where a very small signal needs to be amplified by a large  
amount without adding significant noise. Its low power  
dissipation enables it to be packaged in the tiny SOT-23  
package, which further helps systems where many input  
channels create both space and power dissipation problems.  
Features  
• Voltage noise of only 1.3nV/Hz  
• Current noise of only 1.2pA/Hz  
• 200µV offset voltage  
• 100MHz -3dB BW for A = 10  
V
• Very low supply current - 4.7mA  
• SOT-23 package  
The EL2126 is stable for gains of 10 and greater and uses  
traditional voltage feedback. This allows the use of reactive  
elements in the feedback loop, a common requirement for  
many filter topologies. It operates from ±2.5V to ±15V  
supplies and is available in the 5 Ld SOT-23 and 8 Ld SO  
packages.  
• ±2.5V to ±15V operation  
• Pb-free plus anneal available (RoHS compliant)  
Applications  
• Ultrasound input amplifiers  
• Wideband instrumentation  
• Communication equipment  
• AGC and PLL active filters  
• Wideband sensors  
The EL2126 is fabricated in Elantec’s proprietary  
complementary bipolar process, and is specified for  
operation over the full -40°C to +85°C temperature range.  
Pinouts  
EL2126  
(5 LD SOT-23)  
TOP VIEW  
OUT  
VS-  
IN+  
1
2
3
5
4
VS+  
IN-  
+
-
EL2126  
(8 LD SOIC)  
TOP VIEW  
NC  
IN-  
1
2
3
4
8
7
6
5
NC  
VS+  
OUT  
NC  
-
+
IN+  
VS-  
FN7046 Rev 4.00  
May 2, 2007  
Page 1 of 19  
EL2126  
Ordering Information  
PART  
NUMBER  
PART  
MARKING  
TEMP RANGE  
(°C)  
TAPE AND REEL  
PACKAGE  
5 Ld SOT-23  
PKG. DWG. #  
MDP0038  
EL2126CW-T7  
EL2126CW-T7A  
EL2126CS  
G
G
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
7” (3k pcs)  
7” (250 pcs)  
5 Ld SOT-23  
MDP0038  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
2126CS  
2126CS  
2126CS  
2126CSZ  
-
7”  
13”  
-
8 Ld SOIC (150 mil)  
8 Ld SOIC (150 mil)  
8 Ld SOIC (150 mil)  
EL2126CS-T7  
EL2126CS-T13  
EL2126CSZ ( Note)  
8 Ld SOIC (150 mil)  
(Pb-free)  
EL2126CSZ-T7 ( Note)  
EL2126CSZ-T13 ( Note)  
EL2126CWZ-T7 (Note)  
EL2126CWZ-T7A (Note)  
2126CSZ  
2126CSZ  
BAAH  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
7”  
13”  
7”  
8 Ld SOIC (150 mil)  
(Pb-free)  
MDP0027  
MDP0027  
P5.064  
8 Ld SOIC (150 mil)  
(Pb-free)  
5 Ld SOT-23 (SC74)  
(1.65mm) (Green)  
BAAH  
7”  
5 Ld SOT-23 (SC74)  
(1.65mm) (Green)  
P5.064  
NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination  
finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at  
Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
FN7046 Rev 4.00  
May 2, 2007  
Page 2 of 19  
EL2126  
Absolute Maximum Ratings  
Thermal Information  
V + to V -) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33V  
Continuous Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . 40mA  
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-60°C to +150°C  
Maximum Die Junction Temperature . . . . . . . . . . . . . . . . . . . +150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
S
S
Any Input . . . . . . . . . . . . . . . . . . . . . . . . . . . V + -0.3V to V - +0.3V  
S
S
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, T = +25°C, R = 180, R = 20, R = 500Unless Otherwise Specified.  
S
S
A
F
G
L
Parameter  
Description  
Conditions  
Min  
Typ  
0.2  
17  
Max  
Unit  
DC PERFORMANCE  
V
Input Offset Voltage (SO8)  
2
3
mV  
mV  
OS  
Input Offset Voltage (SOT23-5)  
T
Offset Voltage Temperature  
Coefficient  
µV/°C  
CVOS  
I
I
Input Bias Current  
-10  
-7  
µA  
µA  
B
Input Bias Current Offset  
0.06  
0.013  
0.6  
OS  
T
Input Bias Current Temperature  
Coefficient  
µA/°C  
CIB  
C
Input Capacitance  
Open Loop Gain  
2.2  
87  
pF  
dB  
dB  
IN  
A
V
= -2.5V to +2.5V  
O
80  
80  
VOL  
PSRR  
Power Supply Rejection Ratio  
(Note 1)  
100  
CMRR  
CMIR  
Common Mode Rejection Ratio  
Common Mode Input Range  
Positive Output Voltage Swing  
Negative Output Voltage Swing  
Positive Output Voltage Swing  
Negative Output Voltage Swing  
at CMIR  
75  
-4.6  
3.8  
106  
dB  
V
3.8  
-3.9  
-3.2  
V
V
V
V
No load, R = 1k  
3.8  
-4  
V
OUTH  
OUTL  
OUTH2  
OUTL2  
OUT  
F
No load, R = 1k  
V
F
R
R
= 100  
= 100  
3.2  
80  
3.45  
-3.5  
100  
V
L
L
V
I
Output Short Circuit Current  
(Note 2)  
mA  
I
Supply Current  
4.7  
5.5  
mA  
SY  
AC PERFORMANCE - R = 20, C = 3pF  
G
L
BW  
-3dB Bandwidth, R = 500  
100  
17  
MHz  
MHz  
MHz  
dB  
L
BW ±0.1dB  
BW ±1dB  
Peaking  
SR  
±0.1dB Bandwidth, R = 500  
L
±1dB Bandwidth, R = 500  
80  
L
Peaking, R = 500  
0.6  
110  
2.8  
-7  
L
Slew Rate  
V
= 2V , measured at 20% to 80%  
P-P  
80  
V/µs  
%
OUT  
OS  
Overshoot, 4V  
Wave  
Output Square  
Positive  
P-P  
Negative  
%
t
Settling Time to 0.1% of ±1V Pulse  
51  
ns  
S
FN7046 Rev 4.00  
May 2, 2007  
Page 3 of 19  
EL2126  
Electrical Specifications V + = +5V, V - = -5V, T = +25°C, R = 180, R = 20, R = 500Unless Otherwise Specified.  
S
S
A
F
G
L
Parameter  
Description  
Conditions  
Min  
Typ  
1.3  
1.2  
-70  
-70  
Max  
Unit  
nV/Hz  
pA/Hz  
dBc  
V
Voltage Noise Spectral Density  
Current Noise Spectral Density  
N
I
N
HD2  
2nd Harmonic Distortion (Note 3)  
3rd Harmonic Distortion (Note 3)  
HD3  
dBc  
NOTES:  
1. Measured by moving the supplies from ±4V to ±6V  
2. Pulse test only and using a 10load  
3. Frequency = 1MHz, V  
= 2V , into 500and 5pF load  
P-P  
OUT  
Electrical Specifications V + = +15V, V - = -15V, T = 25°C, R = 180, R = 20, R = 500unless otherwise specified.  
S
S
A
F
G
L
Parameter  
Description  
Conditions  
Min  
Typ  
0.5  
4.5  
Max  
Unit  
DC PERFORMANCE  
V
Input Offset Voltage (SO8)  
3
3
mV  
mV  
OS  
Input Offset Voltage (SOT23-5)  
T
Offset Voltage Temperature  
Coefficient  
µV/°C  
CVOS  
I
I
Input Bias Current  
-10  
-7  
µA  
µA  
B
Input Bias Current Offset  
0.12  
0.016  
0.7  
OS  
T
Input Bias Current Temperature  
Coefficient  
µA/°C  
CIB  
C
Input Capacitance  
Open Loop Gain  
2.2  
90  
80  
pF  
dB  
dB  
IN  
A
80  
65  
VOL  
PSRR  
Power Supply Rejection Ratio  
(Note 4)  
CMRR  
CMIR  
Common Mode Rejection Ratio  
Common Mode Input Range  
Positive Output Voltage Swing  
Negative Output Voltage Swing  
Positive Output Voltage Swing  
Negative Output Voltage Swing  
at CMIR  
70  
85  
dB  
V
-14.6  
13.6  
13.8  
-13.7  
-9.5  
V
V
V
V
No load, R = 1k  
13.7  
-13.8  
11.2  
-10.3  
220  
V
OUTH  
OUTL  
OUTH2  
OUTL2  
OUT  
F
No load, R = 1k  
V
F
R
= 100, R = 1k  
10.2  
140  
V
L
L
F
R
= 100, R = 1k  
V
F
I
Output Short Circuit Current  
(Note 5)  
mA  
I
Supply Current  
5
6
mA  
SY  
AC PERFORMANCE - R = 20, C = 3pF  
G
L
BW  
-3dB Bandwidth, R = 500  
135  
26  
MHz  
MHz  
MHz  
dB  
L
BW ±0.1dB  
BW ±1dB  
Peaking  
SR  
±0.1dB Bandwidth, R = 500  
L
±1dB Bandwidth, R = 500  
60  
L
Peaking, R = 500  
2.1  
150  
L
Slew Rate (±2.5V Square Wave,  
Measured 25%-75%)  
130  
V/µS  
OS  
Overshoot, 4V  
Wave  
Output Square  
Positive  
1.6  
-4.4  
48  
%
%
ns  
P-P  
Negative  
T
Settling Time to 0.1% of ±1V Pulse  
S
FN7046 Rev 4.00  
May 2, 2007  
Page 4 of 19  
 
EL2126  
Electrical Specifications V + = +15V, V - = -15V, T = 25°C, R = 180, R = 20, R = 500unless otherwise specified. (Continued)  
S
S
A
F
G
L
Parameter  
Description  
Conditions  
Min  
Typ  
1.4  
1.1  
-72  
-73  
Max  
Unit  
nV/Hz  
pA/Hz  
dBc  
V
Voltage Noise Spectral Density  
Current Noise Spectral Density  
N
I
N
HD2  
2nd Harmonic Distortion (Note 6)  
3rd Harmonic Distortion (Note 6)  
HD3  
dBc  
NOTES:  
4. Measured by moving the supplies from ±13.5V to ±16.5V  
5. Pulse test only and using a 10load  
6. Frequency = 1MHz, V  
= 2V , into 500and 5pF load  
P-P  
OUT  
Typical Performance Curves  
10  
10  
V
= ±5V  
= 10  
= 5pF  
= 500  
V
= ±15V  
= 10  
= 5pF  
= 500  
S
S
R
= 1k  
F
A
C
R
A
C
R
V
L
L
V
L
L
R
= 1k  
F
6
2
6
2
R
R
= 500  
= 180  
R
= 500  
F
F
F
-2  
-2  
R
= 180  
F
R
= 100  
F
-6  
-6  
R
= 100  
F
-10  
-10  
1M  
10M  
FREQUENCY (Hz)  
100M  
1M  
10M  
FREQUENCY (Hz)  
100M  
FIGURE 1. NON-INVERTING FREQUENCY RESPONSE FOR  
VARIOUS RF  
FIGURE 2. NON-INVERTING FREQUENCY RESPONSE FOR  
VARIOUS RF  
8
8
V
= ±5V  
= -10  
= 5pF  
= 500  
R = 1k  
F
V
= ±15V  
= -10  
= 5pF  
= 500  
S
S
R
= 500  
R = 1k  
F
F
A
C
R
A
C
R
V
L
L
V
L
L
R
= 500  
4
0
4
0
F
R
= 350  
F
R
= 350  
F
R = 200  
F
R
= 200  
F
-4  
-4  
R
F
= 100  
R
= 100  
F
-8  
-8  
-12  
1M  
-12  
1M  
10M  
FREQUENCY (Hz)  
100M  
10M  
FREQUENCY (Hz)  
100M  
FIGURE 3. INVERTING FREQUENCY RESPONSE FOR  
VARIOUS RF  
FIGURE 4. INVERTING FREQUENCY RESPONSE FOR  
VARIOUS RF  
FN7046 Rev 4.00  
May 2, 2007  
Page 5 of 19  
 
EL2126  
Typical Performance Curves (Continued)  
10  
10  
6
V
= ±5V  
= 20  
= 500  
= 5pF  
V
= ±15V  
= 20  
= 500  
= 5pF  
S
S
R
R
C
R
R
C
G
L
L
G
L
L
6
2
A
= 10  
V
2
A
= 10  
V
A
= 20  
A
= 20  
V
V
-2  
-2  
-6  
-10  
A
= 50  
V
A
= 50  
V
-6  
-10  
1M  
10M  
FREQUENCY (Hz)  
100M  
1M  
10M  
FREQUENCY (Hz)  
100M  
FIGURE 5. NON-INVERTING FREQUENCY RESPONSE FOR  
VARIOUS GAIN  
FIGURE 6. NON-INVERTING FREQUENCY RESPONSE FOR  
VARIOUS GAIN  
8
8
V
C
R
= ±5V  
= 5pF  
= 35  
S
L
G
V
C
R
= ±15V  
= 5pF  
= 20  
S
L
G
4
0
4
0
A
= -10  
V
A
= -10  
V
-4  
-4  
A
= -50  
10M  
V
A
= -50  
V
A
= -20  
A
= -20  
V
V
-8  
-8  
-12  
1M  
-12  
1M  
100M  
10M  
FREQUENCY (Hz)  
100M  
FREQUENCY (Hz)  
FIGURE 7. INVERTING FREQUENCY RESPONSE FOR  
VARIOUS GAIN  
FIGURE 8. INVERTING FREQUENCY RESPONSE FOR  
VARIOUS RF  
10  
8
V
= ±15V  
= 5pF  
= 500  
= 180  
= 10  
S
V
= ±5V  
= 5pF  
= 500  
= 180  
= 10  
S
C
R
R
A
L
L
F
V
C
R
R
A
L
L
F
V
V
= 30mV  
PP  
6
2
O
4
0
V
= 500mV  
O
PP  
V
= 30mV  
PP  
O
V
= 500mV  
PP  
O
V
= 1V  
PP  
O
-2  
-4  
V
= 10V  
O
PP  
V
= 5V  
PP  
O
V
O
= 5V  
-6  
PP  
V
= 2.5V  
PP  
-8  
O
V
= 2.5V  
PP  
O
V
= 1V  
PP  
O
-10  
-12  
1M  
1M  
10M  
FREQUENCY (Hz)  
100M  
10M  
FREQUENCY (Hz)  
100M  
FIGURE 10. NON-INVERTING FREQUENCY RESPONSE FOR  
VARIOUS OUTPUT SIGNAL LEVELS  
FIGURE 9. NON-INVERTING FREQUENCY RESPONSE FOR  
VARIOUS OUTPUT SIGNAL LEVELS  
FN7046 Rev 4.00  
May 2, 2007  
Page 6 of 19  
EL2126  
Typical Performance Curves (Continued)  
8
8
4
V
= ±5V  
= 5pF  
= 500  
= 350  
= 10  
V
= ±15V  
= 5pF  
= 500  
= 200  
= 10  
S
S
V
= 500mV  
PP  
V = 500mV  
O
C
R
R
A
C
R
R
A
O
PP  
V = 30mV  
O
L
L
F
V
L
L
F
V
4
0
V
= 30mV  
O
PP  
PP  
V
= 1V  
O
PP  
V
= 1V  
PP  
O
0
V
= 3.4V  
V = 3.4V  
O PP  
O
PP  
-4  
-4  
-8  
-12  
V
= 2.5V  
V
= 2.5V
O
PP  
O
PP
-8  
-12  
1M  
10M  
FREQUENCY (Hz)  
100M  
1M  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 11. INVERTING FREQUENCY RESPONSE FOR  
VARIOUS OUTPUT SIGNAL LEVELS  
FIGURE 12. INVERTING FREQUENCY RESPONSE FOR  
VARIOUS OUTPUT SIGNAL LEVELS  
10  
10  
V
= ±15V  
= 180  
= 10  
V
= ±5V  
= 150  
= 10  
S
S
R
A
R
R
A
R
F
V
L
F
V
L
C
= 28pF  
C = 11pF  
L
L
6
2
6
2
C
= 28pF  
L
= 500  
= 500  
C
= 16pF  
L
C
= 11pF  
C = 16pF  
L
L
C
= 5pF  
C
L
= 5pF  
= 1pF  
L
-2  
-2  
C
= 1.2pF  
L
C
L
-6  
-6  
-10  
-10  
1M  
10M  
FREQUENCY (Hz)  
100M  
1M  
10M  
FREQUENCY (Hz)  
100M  
FIGURE 14. NON-INVERTING FREQUENCY RESPONSE FOR  
VARIOUS CL  
FIGURE 13. NON-INVERTING FREQUENCY RESPONSE FOR  
VARIOUS CL  
8
8
V
= ±5V  
= 350  
= 500  
= -10  
C
= 28pF  
V
S
= ±15V  
= 200  
= 500  
= -10  
S
L
C
= 28pF  
L
R
R
A
R
R
A
F
L
V
F
L
V
4
0
4
0
C
= 16pF  
= 11pF  
L
C
= 16pF  
L
C
L
C = 11pF  
L
-4  
-4  
C
= 5pF  
L
C
= 5pF  
L
C
= 1.2pF  
L
C
= 1.2pF  
L
-8  
-8  
-12  
-12  
1M  
10M  
FREQUENCY (Hz)  
100M  
1M  
10M  
FREQUENCY (Hz)  
100M  
FIGURE 15. INVERTING FREQUENCY RESPONSE FOR  
VARIOUS CL  
FIGURE 16. INVERTING FREQUENCY RESPONSE FOR  
VARIOUS CL  
FN7046 Rev 4.00  
May 2, 2007  
Page 7 of 19  
EL2126  
Typical Performance Curves (Continued)  
100  
80  
60  
40  
20  
0
250  
GAIN  
150  
PHASE  
50  
0.6/DIV  
-50  
-150  
-250  
V
=±5V  
S
0
10k  
100k  
1M  
10M  
100M  
1G  
0
1.5/DIV  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (V)  
FIGURE 17. OPEN LOOP GAIN AND OPEN LOOP PHASE  
FIGURE 18. SUPPLY CURRENT vs SUPPLY VOLTAGE  
3.0  
160  
V
= ±5V  
= 20  
= 500  
= 5pF  
V
= ±5V  
= 20  
= 500  
= 5pF  
S
S
140  
120  
100  
80  
A = -10  
V
R
R
C
R
R
C
G
L
L
G
L
L
2.5  
2.0  
1.5  
1.0  
0.5  
0
A
= 10  
V
A
= 10  
V
A
= -20  
V
60  
40  
A
= -20  
= 50  
V
A
= -10  
8
V
A
= -50  
V
20  
A
V
0
0
2
4
6
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
SUPPLY VOLTAGE (V)  
±V (V)  
S
FIGURE 20. PEAKING vs Vs  
FIGURE 19. BANDWIDTH vs Vs  
R
R
= 180  
= 20  
V
V
= ±5V  
F
G
S
O
= 2V  
PP  
0.5V/DIV  
20mV/DIV  
R
R
= 180  
= 20  
F
G
V
V
= ±5V  
= 100mV  
S
O
PP  
10ns/DIV  
10ns/DIV  
FIGURE 22. SMALL SIGNAL STEP RESPONSE  
FIGURE 21. LARGE SIGNAL STEP RESPONSE  
FN7046 Rev 4.00  
May 2, 2007  
Page 8 of 19  
EL2126  
Typical Performance Curves (Continued)  
-40  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
V
V
R
A
R
= ±5V  
V
V
= ±5V  
S
O
F
V
L
S
O
= 2V  
= 2V  
P-P  
P-P  
-50  
-60  
= 180  
= 10  
R
A
R
= 180  
= 10  
= 500  
F
V
L
2nd HD  
2nd HD  
3rd HD  
= 500  
-70  
-80  
3rd HD  
-90  
-100  
0
1
2
3
4
5
6
7
8
0
5
10  
15  
20  
25  
V
(V  
)
V
(V )  
OUT P-P  
OUT P-P  
FIGURE 23. 1MHz HARMONIC DISTORTION vs OUTPUT  
SWING  
FIGURE 24. 1MHz HARMONIC DISTORTION vs OUTPUT  
SWING  
-20  
10  
V
V
= ±5V  
= 2V  
S
O
-30  
-40  
-50  
-60  
-70  
-80  
-90  
P-P  
I
, V = ±5V  
S
N
V
, V = ±15V  
S
N
V
, V = ±5V  
S
N
I
, V = ±15V  
S
N
1
1k  
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 25. TOTAL HARMONIC DISTORTION vs FREQUENCY  
FIGURE 26. NOISE vs FREQUENCY  
16  
12  
8
70  
60  
50  
40  
30  
20  
10  
0
V
R
= ±5V  
= 500  
S
L
A
= 10  
V
4
A
= -10  
V
0
-4  
1M  
10M  
FREQUENCY (Hz)  
100M  
400M  
0.1  
1.0  
10.0  
ACCURACY (%)  
FIGURE 28. GROUP DELAY vs FREQUENCY  
FIGURE 27. SETTLING TIME vs ACCURACY  
FN7046 Rev 4.00  
May 2, 2007  
Page 9 of 19  
EL2126  
Typical Performance Curves (Continued)  
-10  
-30  
110  
90  
70  
50  
30  
10  
V
=±5V  
S
PSRR-  
-50  
-70  
PSRR+  
-90  
-110  
10  
100  
1k  
10k 100k 1M  
FREQUENCY (Hz)  
10M 100M  
10k  
100k  
1M  
10M  
200M  
FREQUENCY (Hz)  
FIGURE 29. CMRR vs FREQUENCY  
FIGURE 30. PSRR vs FREQUENCY  
120  
100  
80  
60  
40  
20  
0
3.5  
3
100  
10  
V
= ±5V  
V
= ±5V  
S
S
2.5  
2
BANDWIDTH  
1.5  
1
1
PEAKING  
0.5  
0
0.1  
0.01  
-0.5  
10k  
100k  
1M  
10M  
100M  
-40  
0
40  
80  
120  
160  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
FIGURE 31. CLOSED LOOP OUTPUT IMPEDANCE vs  
FREQUENCY  
FIGURE 32. BANDWIDTH AND PEAKING vs TEMPERATURE  
5.2  
220  
15V  
-
SR  
200  
180  
160  
140  
120  
100  
80  
V
=±15V  
S
5.1  
5
15V  
+
SR  
V
=±5V  
5V  
-
S
SR  
4.9  
4.8  
5V  
+
SR  
60  
-1  
-50  
0
50  
100  
150  
1
3
5
7
9
11  
13  
15  
DIE TEMPERATURE (°C)  
V
SWING (V  
)
PP  
OUT  
FIGURE 34. SUPPLY CURRENT vs TEMPERATURE  
FIGURE 33. SLEW RATE vs SWING  
FN7046 Rev 4.00  
May 2, 2007  
Page 10 of 19  
EL2126  
Typical Performance Curves (Continued)  
1
120  
110  
100  
90  
V
= ±5V  
S
0
-1  
-2  
V
= ±5V  
S
V
= ±15V  
S
80  
-50  
-50  
0
50  
100  
150  
0
50  
100  
150  
DIE TEMPERATURE (°C)  
DIE TEMPERATURE (°C)  
FIGURE 35. OFFSET VOLTAGE vs TEMPERATURE  
FIGURE 36. CMRR vs TEMPERATURE  
110  
106  
4.05  
4
3.95  
3.9  
V
= ±5V  
S
102  
98  
94  
90  
86  
82  
V
= ±5V  
S
V
= ±15V  
S
3.85  
3.8  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
DIE TEMPERATURE (°C)  
DIE TEMPERATURE (°C)  
FIGURE 37. PSRR vs TEMPERATURE  
FIGURE 38. POSITIVE OUTPUT SWING vs TEMPERATURE  
13.85  
-3.9  
-3.95  
-4  
13.8  
13.75  
13.7  
V
= ±15V  
S
V
= ±5V  
-4.05  
-4.1  
S
-4.15  
-4.2  
13.65  
13.6  
-4.25  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
DIE TEMPERATURE (°C)  
DIE TEMPERATURE (°C)  
FIGURE 39. POSITIVE OUTPUT SWING vs TEMPERATURE  
FIGURE 40. NEGATIVE OUTPUT SWING vs TEMPERATURE  
FN7046 Rev 4.00  
May 2, 2007  
Page 11 of 19  
EL2126  
Typical Performance Curves (Continued)  
-13.76  
102  
100  
98  
V
= ±5V  
S
-13.78  
96  
V
= ±15V  
S
94  
-13.8  
92  
90  
-13.82  
88  
-50  
-50  
0
50  
100  
150  
0
50  
100  
150  
DIE TEMPERATURE (°C)  
DIE TEMPERATURE (°C)  
FIGURE 41. NEGATIVE OUTPUT SWING vs TEMPERATURE  
FIGURE 42. SLEW RATE vs TEMPERATURE  
155  
150  
3.52  
3.5  
V
= ±5V  
S
V
= ±15V  
S
145  
140  
135  
3.48  
3.46  
3.44  
V
= 2V  
PP  
O
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
DIE TEMPERATURE (°C)  
DIE TEMPERATURE (°C)  
FIGURE 43. SLEW RATE vs TEMPERATURE  
FIGURE 44. POSITIVE LOADED OUTPUT SWING vs  
TEMPERATURE  
11.8  
11.6  
-3.35  
-3.4  
V
= ±15V  
S
11.4  
11.2  
11  
-3.45  
-3.5  
V
= ±5V  
S
3.55  
10.8  
10.6  
-3.6  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
DIE TEMPERATURE (°C)  
DIE TEMPERATURE (°C)  
FIGURE 45. POSITIVE LOADED OUTPUT SWING vs  
TEMPERATURE  
FIGURE 46. NEGATIVE LOADED OUTPUT SWING vs  
TEMPERATURE  
FN7046 Rev 4.00  
May 2, 2007  
Page 12 of 19  
EL2126  
Typical Performance Curves (Continued)  
-9.4  
-9.6  
-9.8  
V =±15V  
S
-10  
-10.2  
-10.4  
-10.6  
-50  
0
50  
Die Temperature (°C)  
100  
150  
FIGURE 47. NEGATIVE LOADED OUTPUT SWING vs TEMPERATURE  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.2  
1
1.8  
1.6  
1.4  
1.2  
1
781mW  
488mW  
1.136W  
543mW  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT Temperature (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 48. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 49. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FN7046 Rev 4.00  
May 2, 2007  
Page 13 of 19  
EL2126  
Pin Descriptions  
EL2126CW  
EL2126CS  
(5 Ld SOT-23)  
( 8 Ld SOIC)  
PIN NAME  
PIN FUNCTION  
EQUIVALENT CIRCUIT  
1
6
VOUT  
Output  
V
+
S
V
OUT  
Circuit 1  
2
3
4
3
VS-  
Supply  
Input  
VINA+  
V
+
S
V
+
V -  
IN  
IN  
V
-
S
Circuit 2  
4
5
2
7
VINA-  
VS+  
Input  
Reference Circuit 2  
Supply  
FN7046 Rev 4.00  
May 2, 2007  
Page 14 of 19  
EL2126  
Noise Calculations  
Applications Information  
The primary application for the EL2126 is to amplify very small  
signals. To maintain the proper signal-to-noise ratio, it is  
essential to minimize noise contribution from the amplifier.  
Figure 51 shows all the noise sources for all the components  
around the amplifier.  
Product Description  
The EL2126 is an ultra-low noise, wideband monolithic  
operational amplifier built on Elantec's proprietary high speed  
complementary bipolar process. It features 1.3nV/Hz input  
voltage noise, 200µV typical offset voltage, and 73dB THD. It is  
intended for use in systems such as ultrasound imaging where  
very small signals are needed to be amplified. The EL2126  
R
3
V
V
V
N
IN  
R3  
+
-
I
+
V
ON  
N
also has excellent DC specifications: 200µV V , 22µA IB,  
OS  
0.4µA I , and 106dB CMRR. These specifications allow the  
OS  
EL2126 to be used in DC-sensitive applications such as  
V
R1  
R
1
difference amplifiers.  
I
-
V
R2  
N
Gain-Bandwidth Product  
R
2
The EL2126 has a gain-bandwidth product of 650MHz at ±5V.  
For gains less than 20, higher-order poles in the amplifier's  
transfer function contribute to even higher closed-loop  
bandwidths. For example, the EL2126 has a -3dB bandwidth of  
100MHz at a gain of 10 and decreases to 33MHz at gain of 20.  
It is important to note that the extra bandwidth at lower gain  
does not come at the expenses of stability. Even though the  
EL2126 is designed for gain 10. With external compensation,  
the device can also operate at lower gain settings. The RC  
network shown in Figure 50 reduces the feedback gain at high  
frequency and thus maintains the amplifier stability. R values  
must be less than RF divided by 9 and 1 divided by 2RC  
must be less than 200MHz.  
FIGURE 51.  
V
is the amplifier input voltage noise  
N
I + is the amplifier positive input current noise  
N
I - is the amplifier negative input current noise  
N
V
is the thermal noise associated with each resistor:  
RX  
(EQ. 1)  
V
=
4kTRx  
RX  
where:  
k is Boltzmann's constant = 1.380658 x 10  
-23  
R
F
R
T is temperature in degrees Kelvin (273 + °C)  
-
V
OUT  
C
+
The total noise due to the amplifier seen at the output of the  
amplifier can be calculated by using the Equation 2.  
V
IN  
As the equation shows, to keep noise at a minimum, small  
resistor values should be used. At higher amplifier gain  
FIGURE 50.  
configuration where R is reduced, the noise due to IN-, R ,  
2
2
and R decreases and the noise caused by IN+, VN, and R  
Choice of Feedback Resistor, RF  
1
3
starts to dominate. Because noise is summed in a root-mean-  
squares method, noise sources smaller than 25% of the  
largest noise source can be ignored. This can greatly simplify  
the formula and make noise calculation much easier to  
calculate.  
The feedback resistor forms a pole with the input capacitance.  
As this pole becomes larger, phase margin is reduced. This  
increases ringing in the time domain and peaking in the  
frequency domain. Therefore, RF has some maximum value  
which should not be exceeded for optimum performance. If a  
large value of RF must be used, a small capacitor in the few pF  
range in parallel with RF can help to reduce this ringing and  
peaking at the expense of reducing the bandwidth. Frequency  
response curves for various RF values are shown in the typical  
performance curves section of this data sheet.  
2
2
2
2
R
R
R
R
   
2
2
2
2
2
1
1
1
1
------  
------  
------  
------  
V
=
BW VN 1 +  
+ IN- R + IN+ R 1 +  
+ 4 K T R + 4 K T R  
+ 4 K T R 1 +  
   
ON  
1
3
1
2
3
R
2
R
2
R
2
R
2
   
(EQ. 2)  
FN7046 Rev 4.00  
May 2, 2007  
Page 15 of 19  
 
 
 
EL2126  
Output Drive Capability  
Supply Voltage Range and Single Supply Operation  
The EL2126 is designed to drive low impedance load. It can  
The EL2126 has been designed to operate with supply voltage  
range of ±2.5V to ±15V. With a single supply, the EL2126 will  
operate from +5V to +30V. Pins 4 and 7 are the power supply  
pins. The positive power supply is connected to pin 7. When  
used in single supply mode, pin 4 is connected to ground.  
When used in dual supply mode, the negative power supply is  
connected to pin 4.  
easily drive 6V  
signal into a 100load. This high output  
P-P  
drive capability makes the EL2126 an ideal choice for RF, IF,  
and video applications. Furthermore, the EL2126 is  
current-limited at the output, allowing it to withstand  
momentary short to ground. However, the power dissipation  
with output-shorted cannot exceed the power dissipation  
capability of the package.  
As the power supply voltage decreases from +30V to +5V, it  
becomes necessary to pay special attention to the input  
voltage range. The EL2126 has an input voltage range of 0.4V  
from the negative supply to 1.2V from the positive supply. So,  
for example, on a single +5V supply, the EL2126 has an input  
voltage range which spans from 0.4V to 3.8V. The output range  
of the EL2126 is also quite large, on a +5V supply, it swings  
from 0.4V to 3.8V.  
Driving Cables and Capacitive Loads  
Although the EL2126 is designed to drive low impedance load,  
capacitive loads will decreases the amplifier's phase margin.  
As shown in the performance curves, capacitive load can result  
in peaking, overshoot and possible oscillation. For optimum AC  
performance, capacitive loads should be reduced as much as  
possible or isolated with a series resistor between 5to 20.  
When driving coaxial cables, double termination is always  
recommended for reflection-free performance. When properly  
terminated, the capacitance of the coaxial cable will not add to  
the capacitive load seen by the amplifier.  
Power Supply Bypassing And Printed Circuit Board  
Layout  
As with any high frequency devices, good printed circuit board  
layout is essential for optimum performance. Ground plane  
construction is highly recommended. Lead lengths should be  
kept as short as possible. The power supply pins must be  
closely bypassed to reduce the risk of oscillation. The  
combination of a 4.7µF tantalum capacitor in parallel with  
0.1µF ceramic capacitor has been proven to work well when  
placed at each supply pin. For single supply operation, where  
pin 4 (V -) is connected to the ground plane, a single 4.7µF  
S
tantalum capacitor in parallel with a 0.1µF ceramic capacitor  
across pins 7 (V +) and pin 4 (V -) will suffice.  
S
S
For good AC performance, parasitic capacitance should be  
kept to a minimum. Ground plane construction again should be  
used. Small chip resistors are recommended to minimize  
series inductance. Use of sockets should be avoided since  
they add parasitic inductance and capacitance which will result  
in additional peaking and overshoot.  
FN7046 Rev 4.00  
May 2, 2007  
Page 16 of 19  
EL2126  
Small Outline Package Family (SO)  
A
D
h X 45°  
(N/2)+1  
N
A
PIN #1  
I.D. MARK  
E1  
E
c
SEE DETAIL “X”  
1
(N/2)  
B
L1  
0.010 M  
C A B  
e
H
C
A2  
A1  
GAUGE  
PLANE  
SEATING  
PLANE  
0.010  
L
4° ±4°  
0.004 C  
b
0.010 M  
C
A
B
DETAIL X  
MDP0027  
SMALL OUTLINE PACKAGE FAMILY (SO)  
INCHES  
SO16  
(0.150”)  
SO16 (0.300”)  
(SOL-16)  
SO20  
SO24  
(SOL-24)  
SO28  
(SOL-28)  
SYMBOL  
SO-8  
0.068  
0.006  
0.057  
0.017  
0.009  
0.193  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
8
SO-14  
0.068  
0.006  
0.057  
0.017  
0.009  
0.341  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
14  
(SOL-20)  
0.104  
0.007  
0.092  
0.017  
0.011  
0.504  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
20  
TOLERANCE  
MAX  
NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.057  
0.017  
0.009  
0.390  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.406  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.606  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
24  
0.104  
0.007  
0.092  
0.017  
0.011  
0.704  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
28  
-
0.003  
0.002  
0.003  
0.001  
0.004  
0.008  
0.004  
Basic  
-
-
-
c
-
D
1, 3  
E
-
E1  
e
2, 3  
-
L
0.009  
Basic  
-
L1  
h
-
Reference  
Reference  
-
N
-
Rev. M 2/07  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not included.  
2. Plastic interlead protrusions of 0.010” maximum per side are not included.  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994  
FN7046 Rev 4.00  
May 2, 2007  
Page 17 of 19  
EL2126  
Small Outline Transistor Plastic Packages (SOT23-5)  
D
P5.064  
VIEW C  
5 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE  
INCHES MILLIMETERS  
MIN  
e1  
SYMBOL  
MAX  
0.057  
0.0059  
0.051  
0.020  
0.018  
0.009  
0.008  
0.118  
0.118  
0.067  
MIN  
0.90  
0.00  
0.90  
0.30  
0.30  
0.08  
0.08  
2.80  
2.60  
1.50  
MAX  
1.45  
0.15  
1.30  
0.50  
0.45  
0.22  
0.20  
3.00  
3.00  
1.70  
NOTES  
5
1
4
A
A1  
A2  
b
0.036  
0.000  
0.036  
0.012  
0.012  
0.003  
0.003  
0.111  
0.103  
0.060  
-
-
-
-
E
C
L
C
E1  
L
2
3
b
b1  
c
e
6
6
3
-
C
L
c1  
D
0.20 (0.008) M  
C
C
C
L
E
E1  
e
3
-
SEATING  
PLANE  
0.0374 Ref  
0.0748 Ref  
0.014 0.022  
0.95 Ref  
1.90 Ref  
0.35 0.55  
A2  
A1  
A
e1  
L
-
-C-  
4
L1  
L2  
N
0.024 Ref.  
0.010 Ref.  
5
0.60 Ref.  
0.25 Ref.  
5
0.10 (0.004) C  
5
b
WITH  
R
0.004  
-
0.10  
-
PLATING  
b1  
R1  
0.004  
0.010  
0.10  
0.25  
o
o
o
o
0
8
0
8
-
c
c1  
Rev. 2 9/03  
NOTES:  
BASE METAL  
1. Dimensioning and tolerance per ASME Y14.5M-1994.  
2. Package conforms to EIAJ SC-74 and JEDEC MO178AA.  
4X 1  
3. Dimensions D and E1 are exclusive of mold flash, protrusions,  
or gate burrs.  
R1  
4. Footlength L measured at reference to gauge plane.  
5. “N” is the number of terminal positions.  
R
6. These Dimensions apply to the flat section of the lead between  
0.08mm and 0.15mm from the lead tip.  
GAUGE PLANE  
SEATING  
PLANE  
7. Controlling dimension: MILLIMETER. Converted inch dimen-  
sions are for reference only.  
L
C
L2  
L1  
4X 1  
VIEW C  
FN7046 Rev 4.00  
May 2, 2007  
Page 18 of 19  
EL2126  
SOT-23 Package Family  
MDP0038  
SOT-23 PACKAGE FAMILY  
e1  
D
A
MILLIMETERS  
SOT23-5  
6
4
N
SYMBOL  
SOT23-6  
1.45  
0.10  
1.14  
0.40  
0.14  
2.90  
2.80  
1.60  
0.95  
1.90  
0.45  
0.60  
6
TOLERANCE  
MAX  
A
A1  
A2  
b
1.45  
0.10  
1.14  
0.40  
0.14  
2.90  
2.80  
1.60  
0.95  
1.90  
0.45  
0.60  
5
±0.05  
E1  
E
±0.15  
2
3
±0.05  
0.15  
2X  
C
D
c
±0.06  
1
2
3
0.20  
2X  
C
D
Basic  
5
e
E
Basic  
E1  
e
Basic  
0.20  
C
A-B  
D
M
B
b
NX  
Basic  
e1  
L
Basic  
±0.10  
L1  
N
Reference  
Reference  
Rev. F 2/07  
0.15  
2X  
C
A-B  
1
3
D
NOTES:  
C
1. Plastic or metal protrusions of 0.25mm maximum per side are not  
included.  
A2  
SEATING  
PLANE  
2. Plastic interlead protrusions of 0.25mm maximum per side are not  
included.  
A1  
0.10  
NX  
C
3. This dimension is measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
5. Index area - Pin #1 I.D. will be located within the indicated zone  
(SOT23-6 only).  
6. SOT23-5 version has no center lead (shown as a dashed line).  
(L1)  
H
A
GAUGE  
PLANE  
0.25  
c
+3°  
-0°  
L
0°  
© Copyright Intersil Americas LLC 2002-2007. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7046 Rev 4.00  
May 2, 2007  
Page 19 of 19  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY