EL5164IW-T7A [RENESAS]

1 CHANNEL, VIDEO AMPLIFIER, PDSO6, SOT-23, 6 PIN;
EL5164IW-T7A
型号: EL5164IW-T7A
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

1 CHANNEL, VIDEO AMPLIFIER, PDSO6, SOT-23, 6 PIN

放大器 光电二极管 商用集成电路
文件: 总16页 (文件大小:438K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL5164, EL5165, EL5364  
®
Data Sheet  
October 29, 2007  
FN7389.8  
600MHz Current Feedback Amplifiers with  
Enable  
Features  
• 600MHz -3dB bandwidth  
• 4700V/µs slew rate  
• 5mA supply current  
The EL5164, EL5165, and EL5364 are current feedback  
amplifiers with a very high bandwidth of 600MHz. This  
makes these amplifiers ideal for today’s high speed video  
and monitor applications.  
• Single and dual supply operation, from 5V to 12V supply  
span  
With a supply current of just 5mA and the ability to run from  
a single supply voltage from 5V to 12V, the amplifiers are  
also ideal for hand held, portable or battery-powered  
equipment.  
• Fast enable/disable (EL5164 and EL5364 only)  
• Available in SOT-23 packages  
• Dual (EL5264 and EL5265) and triple (EL5362 and  
EL5363) also available  
The EL5164 also incorporates an enable and disable  
function to reduce the supply current to 100µA typical per  
amplifier. Allowing the CE pin to float or applying a low logic  
level will enable the amplifier.  
• High speed, 1GHz product available (EL5166 and  
EL5167)  
• 300MHz product available (EL5162 family)  
• Pb-Free available (RoHS compliant)  
The EL5165 is offered in the 5 Ld SOT-23 and 5 Ld SC-70  
packages, EL5164 is available in the 6 Ld SOT-23 and the  
industry-standard 8 Ld SOIC packages, and the EL5364 in a  
16 Ld SOIC and 16 Ld QSOP packages. All operate over the  
industrial temperature range of -40°C to +85°C.  
Applications  
• Video amplifiers  
• Cable drivers  
Pinouts  
EL5164  
(8 LD SOIC)  
TOP VIEW  
EL5164  
(6 LD SOT-23)  
TOP VIEW  
• RGB amplifiers  
Test equipment  
• Instrumentation  
• Current to voltage converters  
NC  
IN-  
1
2
3
4
8
7
6
5
CE  
OUT  
VS-  
IN+  
1
2
3
6
5
4
VS+  
CE  
VS+  
OUT  
NC  
-
+
+
-
IN+  
VS-  
IN-  
EL5165  
EL5364  
(5 LD SOT-23, SC-70)  
(16 LD SOIC, QSOP)  
TOP VIEW  
TOP VIEW  
OUT  
VS-  
IN+  
1
2
3
5
4
VS+  
IN-  
INA+  
CEA  
VS-  
1
2
3
4
5
6
7
8
16 INA-  
15 OUTA  
14 VS+  
-
+
+
-
+
-
CEB  
INB+  
NC  
13 OUTB  
12 INB-  
11 NC  
+
-
CEC  
INC+  
10 OUTC  
9
INC-  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2004, 2005, 2007. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
EL5164, EL5165, EL5364  
Ordering Information  
PKG.  
PART NUMBER  
EL5164IS  
PART MARKING  
PACKAGE  
DWG. #  
5164IS  
5164IS  
5164IS  
5164ISZ  
5164ISZ  
5164ISZ  
i
8 Ld SOIC (150 mil)  
MDP0027  
EL5164IS-T7*  
8 Ld SOIC (150 mil)  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0038  
MDP0038  
MDP0038  
MDP0038  
P5.049  
EL5164IS-T13*  
8 Ld SOIC (150 mil)  
EL5164ISZ (Note)  
EL5164ISZ-T7* (Note)  
EL5164ISZ-T13* (Note)  
EL5164IW-T7*  
8 Ld SOIC (150 mil) (Pb-free)  
8 Ld SOIC (150 mil) (Pb-free)  
8 Ld SOIC (150 mil) (Pb-free)  
6 Ld SOT-23  
EL5164IW-T7A*  
i
6 Ld SOT-23  
EL5164IWZ-T7* (Note)  
EL5164IWZ-T7A* (Note)  
EL5165IC-T7*  
BAMA  
BAMA  
F
6 Ld SOT-23 (Pb-free)  
6 Ld SOT-23 (Pb-free)  
5 Ld SC-70 (1.25mm)  
EL5165IC-T7A*  
F
5 Ld SC-70 (1.25mm)  
P5.049  
EL5165IW-T7*  
b
5 Ld SOT-23  
MDP0038  
MDP0038  
MDP0038  
MDP0038  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0040  
MDP0040  
MDP0040  
MDP0040  
MDP0040  
MDP0040  
MDP0040  
MDP0040  
MDP0040  
EL5165IW-T7A*  
b
5 Ld SOT-23  
EL5165IWZ-T7* (Note)  
EL5165IWZ-T7A* (Note)  
EL5364IS  
BANA  
5 Ld SOT-23 (Pb-free)  
5 Ld SOT-23 (Pb-free)  
16 Ld SOIC (150 mil)  
BANA  
EL5364IS  
EL5364IS  
EL5364IS  
EL5364ISZ  
EL5364ISZ  
EL5364ISZ  
5364IU  
5364IU  
5364IU  
5364IUZ  
5364IUZ  
5364IUZ  
5364IUZ  
5364IUZ  
5364IUZ  
EL5364IS-T7*  
16 Ld SOIC (150 mil)  
EL5364IS-T13*  
16 Ld SOIC (150 mil)  
EL5364ISZ (Note)  
EL5364ISZ-T7* (Note)  
EL5364ISZ-T13* (Note)  
EL5364IU  
16 Ld SOIC (150 mil) (Pb-free)  
16 Ld SOIC (150 mil) (Pb-free)  
16 Ld SOIC (150 mil) (Pb-free)  
16 Ld QSOP (150 mil)  
16 Ld QSOP (150 mil)  
16 Ld QSOP (150 mil)  
16 Ld QSOP (150 mil) (Pb-free)  
16 Ld QSOP (150 mil) (Pb-free)  
16 Ld QSOP (150 mil) (Pb-free)  
16 Ld QSOP (150 mil) (Pb-free)  
16 Ld QSOP (150 mil) (Pb-free)  
16 Ld QSOP (150 mil) (Pb-free)  
EL5364IU-T7*  
EL5364IU-T13*  
EL5364IUZ (Note)  
EL5364IUZ-T7* (Note)  
EL5364IUZ-T13* ( Note)  
EL5364IUZA (Note)  
EL5364IUZA-T7* (Note)  
EL5364IUZA-T13* (Note)  
*Please refer to TB347 for details on reel specifications.  
NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and 100%  
matte tin plate PLUS ANNEAL - e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations.  
Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J  
STD-020.  
FN7389.8  
October 29, 2007  
2
EL5164, EL5165, EL5364  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage between V + and V -. . . . . . . . . . . . . . . . . . . 13.2V  
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 50mA  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . +125°C  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
S
S
Pin Voltages. . . . . . . . . . . . . . . . . . . . . . . . . V - -0.5V to V + +0.5V  
S
S
Supply Slewrate between V + and V -. . . . . . . . . . . . . 1V/µs (Max)  
S
S
V
(V + - V -) (When Disabled) . . . . . . . . . . . . . .±2V (Max)  
IN-DIFF IN IN  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, R = 750Ω for A = 1, R = 375Ω for A = 2, R = 150Ω, V  
= V + - 1V,  
S
S
S
F
V
F
V
L
ENABLE  
T
= +25°C unless otherwise specified.  
A
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 2)  
TYP  
(Note 2)  
UNIT  
AC PERFORMANCE  
BW  
-3dB Bandwidth  
A
= +1, R = 500Ω, R = 510Ω  
600  
450  
50  
MHz  
MHz  
MHz  
V/µs  
V
L
F
A
= +2, R = 150Ω, R = 412Ω  
L F  
V
BW1  
SR  
0.1dB Bandwidth  
A = +2, R = 150Ω, R = 412Ω  
V L F  
Slew Rate  
V
= -3V to +3V, A = +2,  
V
= 100Ω (EL5164, EL5165)  
3500  
3000  
4700  
7000  
6000  
OUT  
R
L
V
= -3V to +3V, A = +2,  
V
= 100Ω (EL5364)  
4200  
15  
V/µs  
ns  
OUT  
R
L
t
0.1% Settling Time  
V
= -2.5V to +2.5V, A = +2,  
OUT V  
S
R
= R = 1kΩ  
F
G
e
Input Voltage Noise  
f = 1MHz  
2.1  
13  
nV/Hz  
pA/Hz  
pA/Hz  
dBc  
N
i -  
IN- Input Current Noise  
IN+ Input Current Noise  
f = 1MHz  
N
i +  
N
f = 1MHz  
13  
HD2  
HD3  
dG  
5MHz, 2.5V  
5MHz, 2.5V  
-81  
-74  
0.01  
0.01  
P-P  
P-P  
dBc  
Differential Gain Error (Note 1)  
Differential Phase Error (Note 1)  
A
= +2  
= +2  
%
V
dP  
A
°
V
DC PERFORMANCE  
V
Offset Voltage  
-5  
1.5  
6
+5  
mV  
OS  
T V  
Input Offset Voltage Temperature  
Coefficient  
Measured from T  
to T  
MAX  
µV/°C  
C
OS  
MIN  
R
Transimpedance  
1.1  
3
MΩ  
OL  
INPUT CHARACTERISTICS  
CMIR  
Common Mode Input Range  
Guaranteed by CMRR test  
= ±3V  
±3  
50  
±3.3  
62  
0.1  
2
V
dB  
CMRR  
-ICMR  
Common Mode Rejection Ratio  
- Input Current Common Mode Rejection  
+ Input Current  
V
75  
+1  
IN  
-1  
µA/V  
µA  
+I  
-10  
-10  
300  
+10  
+10  
1200  
IN  
-I  
- Input Current  
2
µA  
IN  
R
Input Resistance  
+ Input  
650  
1
kΩ  
pF  
IN  
IN  
C
Input Capacitance  
FN7389.8  
October 29, 2007  
3
EL5164, EL5165, EL5364  
Electrical Specifications V + = +5V, V - = -5V, R = 750Ω for A = 1, R = 375Ω for A = 2, R = 150Ω, V  
= V + - 1V,  
S
S
S
F
V
F
V
L
ENABLE  
T
= +25°C unless otherwise specified. (Continued)  
A
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 2)  
TYP  
(Note 2)  
UNIT  
OUTPUT CHARACTERISTICS  
V
Output Voltage Swing  
R = 150Ω to GND  
±3.6  
±3.9  
100  
±3.8  
±4.1  
140  
±4.0  
±4.2  
190  
V
V
O
L
R = 1kΩ to GND  
L
I
Output Current  
R = 10Ω to GND  
mA  
OUT  
L
SUPPLY  
I
I
I
Supply Current - Enabled  
No load, V = 0V  
IN  
3.2  
0
3.5  
4.2  
+25  
0
mA  
µA  
SON  
Supply Current - Disabled, per Amplifier  
Supply Current - Disabled, per Amplifier  
Power Supply Rejection Ratio  
SOFF+  
SOFF-  
No load, V = 0V  
IN  
-25  
65  
-1  
-14  
79  
µA  
PSRR  
-IPSR  
DC, V = ±4.75V to ±5.25V  
dB  
S
- Input Current Power Supply Rejection  
DC, V = ±4.75V to ±5.25V  
0.1  
+1  
µA/V  
S
ENABLE (EL5164 ONLY)  
t
t
I
I
Enable Time  
200  
800  
10  
ns  
ns  
µA  
µA  
V
EN  
Disable Time  
DIS  
CE Pin Input High Current  
CE Pin Input Low Current  
CE Input High Voltage for Power-down  
CE Input Low Voltage for Power-down  
CE = V +  
1
+25  
+1  
IHCE  
ILCE  
S
CE = (V +) -5V  
-1  
0
S
V
V
V + - 1  
S
IHCE  
ILCE  
V + - 3  
V
S
NOTE:  
1. Standard NTSC test, AC signal amplitude = 286mV , f = 3.58MHz  
P-P  
2. Parts are 100% tested at +25°C. Over-temperature limits established by characterization and are not production tested.  
FN7389.8  
October 29, 2007  
4
EL5164, EL5165, EL5364  
Typical Performance Curves  
5
5
R
= 1.2k, C = 5pF  
L
F
V
, V = ±5V  
= +2  
V
C
, V = ±5V  
= 2.5pF  
= +5  
CC EE  
CC EE  
L
4
3
4
3
R
= 1.2k, C = 3.5pF  
L
A
F
V
A
V
R
= 1.2k, C = 2.5pF  
L
F
R
= 220, R = 55  
G
F
2
2
R
= 1.2k, C = 0.8pF  
L
F
R
= 160, R = 41  
G
F
1
1
0
0
R
= 1.5k, C = 0.8pF  
L
F
R
R
R
R
R
= 300, R = 75  
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
F
G
R
= 1.8k, C = 0.8pF  
L
F
= 360, R = 87  
F
F
F
F
G
R
= 2.2k, C = 0.8pF  
F
L
= 397, R = 97  
G
= 412, R = 100  
G
= 560, R = 135  
G
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FIGURE 2. FREQUENCY RESPONSE FOR VARIOUS R  
FIGURE 1. FREQUENCY RESPONSE FOR VARIOUS  
AND C  
F
R
F
L
6
6
5
V
, V = ±5V  
= 2.5pF  
= +1  
5
4
V
V
= +5V  
= -5V  
= 5pF  
= +2  
CC EE  
L
CC  
EE  
L
C
A
4
R
= 412Ω  
C
A
V
F
3
R
= 510Ω  
3
V
F
R
= 562Ω  
R
= 150Ω  
F
L
2
2
R
= 681Ω  
1
1
F
0
0
R
= 681Ω  
= 866Ω  
= 1.2kΩ  
= 1.5kΩ  
F
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
R
= 750Ω  
= 909Ω  
= 1201Ω  
F
R
F
F
F
R
F
R
R
R
F
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FREQUENCY (Hz)  
FIGURE 4. FREQUENCY RESPONSE FOR VARIOUS R  
FIGURE 3. FREQUENCY RESPONSE FOR VARIOUS R  
F
F
5
R
R
R
= 150Ω  
= 422Ω  
= 422Ω  
4
3
L
F
G
2V/DIV  
INPUT  
2
1
0
-1  
-2  
-3  
-4  
-5  
V
, V  
6V  
5V  
CC EE=  
1V/DIV  
OUTPUT  
4V  
V
, V = ±5 V  
= +2  
= 150Ω  
CC EE  
A
3V  
V
R
L
2.5V  
100k  
1M  
10M  
100M  
1G  
ns  
FREQUENCY (Hz)  
FIGURE 5. FREQUENCY RESPONSE FOR VARIOUS POWER  
SUPPLY VOLTAGES  
FIGURE 6. RISE TIME (ns)  
FN7389.8  
October 29, 2007  
5
EL5164, EL5165, EL5364  
Typical Performance Curves (Continued)  
0
0
-10  
-20  
V
V
= +5V  
= -5V  
= +1  
CC  
EE  
V
V
= +5 V  
= -5 V  
= +1  
CC  
EE  
-10  
A
V
A
V
V
-20  
-30  
-40  
-50  
-60  
-70  
-80  
= 2V  
= 100Ω  
OUT  
P-P  
R
L
-30  
-40  
-50  
THD  
V
EE  
-60  
V
CC  
SECOND HARMONIC  
THIRD HARMONIC  
-70  
-80  
-90  
10k  
100k  
10M  
FREQUENCY (Hz)  
1G  
1M  
100M  
0
10  
20  
30  
40  
50  
60  
FREQUENCY (MHz)  
FIGURE 8. DISTORTION vs FREQUENCY (A = +1)  
FIGURE 7. PSRR  
V
0
-10  
-20  
-30  
-40  
-50  
V
V
= +5V  
= -5V  
= +2  
CC  
EE  
V
V
= +5V  
= -5V  
= +2  
= 2V  
= 100Ω  
CC  
EE  
10  
1
A
V
A
V
OUT  
R
V
,
P-P  
L
THD  
0.1  
-60  
-70  
0.01  
-80  
THIRD HARMONIC  
SECOND HARMONIC  
10 20 30  
FREQUENCY (MHz)  
-90  
-100  
10k  
100k  
1M  
100M  
10M  
0
40  
50  
60  
FREQUENCY (Hz)  
FIGURE 9. DISTORTION vs FREQUENCY (A = +2)  
V
FIGURE 10. OUTPUT IMPEDANCE  
1M  
V
, V = ±5V  
CC EE  
100k  
10  
1
V
, V =  
±6V  
CC EE  
10k  
1k  
±5V  
±4V  
±3V  
±2.5V  
100  
10  
0
100  
1k  
10k  
1M  
10k  
100k  
10M  
FREQUENCY (Hz)  
1G  
100k  
1M  
100M  
FREQUENCY (Hz)  
FIGURE 11. R  
FOR VARIOUS V , V  
CC EE  
FIGURE 12. VOLTAGE NOISE  
OL  
FN7389.8  
October 29, 2007  
6
EL5164, EL5165, EL5364  
Typical Performance Curves (Continued)  
V
= +5V, V = -5V  
EE  
CC  
= +2  
V
V
= +5V  
= -5V  
CC  
EE  
A
V
R
= 150Ω  
L
100  
10  
1
CH1  
CH2  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FIGURE 14. TURN-ON DELAY, V = 100mV  
IN  
FIGURE 13. CURRENT NOISE  
P-P  
0.003  
PHASE  
GAIN  
0.002  
0.001  
0
0.002  
0.001  
0.000  
-0.001  
-0.002  
-0.003  
-0.004  
-0.005  
-0.001  
-0.002  
-0.003  
CH1  
CH2  
V
V
= +5V  
= -5V  
= +2  
= 150Ω  
CC  
EE  
V
= +5V, V = -5V  
EE  
CC  
A
A
= +2  
V
V
R
TEST FREQUENCY, 3.58MHz  
L
1V  
0
-1V  
DC INPUT  
FIGURE 15. TURN-OFF DELAY, V = 100mV  
IN  
FIGURE 16. DIFFERENTIAL GAIN/PHASE vs DC INPUT  
VOLTAGE AT 3.58MHz  
P-P  
-30  
-30  
V
V
R
R
R
= +5V  
= -5V  
= 100Ω  
= 422Ω  
= 422Ω  
V
V
R
R
R
C
= +5V  
= -5V  
= 100Ω  
= 860Ω  
= 860Ω  
= 5pF  
CC  
EE  
L
F
G
CC  
EE  
L
F
G
L
-40  
-50  
-40  
-50  
C
-60  
-60  
C TO B  
-70  
-70  
-80  
-80  
B
-90  
-90  
A
A TO C  
A TO B  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
10k  
100k  
1M  
10M  
100M  
1G  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 18. CHANNEL CROSSTALK BETWEEN CHANNELS  
FIGURE 17. FREQUENCY RESPONSE FOR VARIOUS  
CHANNELS  
FN7389.8  
October 29, 2007  
7
EL5164, EL5165, EL5364  
Typical Performance Curves (Continued)  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.250W  
SO16 (0.150”)  
θ
= +80°C/W  
JA  
QSOP16  
893mW  
909mW  
435mW  
θ
= +112°C/W  
JA  
SO8  
= +110°C/W  
θ
JA  
SOT23-5/6  
= +230°C/W  
θ
JA  
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 20. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 19. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
CONDUCTIVITY TEST BOARD  
1.0  
1.2  
0.9  
0.8  
0.7  
0.6  
1.0  
909mW  
0.8  
SO8  
625mW  
391mW  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
θ
= +160°C/W  
JA  
633mW  
0.4  
0.2  
0
SOT23-5/6  
= +256°C/W  
θ
JA  
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 21. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 22. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FN7389.8  
October 29, 2007  
8
EL5164, EL5165, EL5364  
Pin Descriptions  
EL5164  
EL5164  
EL5165  
(8 LD SOIC) (6 LD SOT-23) (5 LD SOT-23) PIN NAME  
FUNCTION  
Not connected  
EQUIVALENT CIRCUIT  
1, 5  
2
NC  
IN-  
V +  
4
4
Inverting input  
S
IN+  
IN-  
V -  
S
CIRCUIT 1  
3
4
6
3
2
1
3
2
1
IN+  
VS-  
Non-inverting input  
Negative supply  
Output  
(See circuit 1)  
V +  
S
OUT  
OUT  
V -  
S
CIRCUIT 2  
7
8
6
5
5
VS+  
CE  
Positive supply  
Chip enable, allowing the pin  
to float or applying a low  
logic level will enable the  
amplifier.  
V +  
S
CE  
V -  
S
CIRCUIT 3  
5 Ld SOT-23, 16 Ld QSOP, and 8 Ld SOIC or 16 Ld SOIC  
outlines.  
Applications Information  
Product Description  
Power Supply Bypassing and Printed Circuit  
Board Layout  
The EL5164, EL5165, and EL5364 are current-feedback  
operational amplifiers that offers a wide -3dB bandwidth of  
600MHz and a low supply current of 5mA per amplifier. The  
EL5164, EL5165, and EL5364 work with supply voltages  
ranging from a single 5V to 10V and they are also capable of  
swinging to within 1V of either supply on the output. Because  
of their current-feedback topology, the EL5164, EL5165, and  
EL5364 do not have the normal gain-bandwidth product  
associated with voltage-feedback operational amplifiers.  
Instead, its -3dB bandwidth to remain relatively constant as  
closed-loop gain is increased. This combination of high  
bandwidth and low power, together with aggressive pricing  
make the EL5164, EL5165, and EL5364 ideal choices for  
many low-power/high-bandwidth applications such as  
portable, handheld, or battery-powered equipment.  
As with any high frequency device, good printed circuit  
board layout is necessary for optimum performance. Low  
impedance ground plane construction is essential. Surface  
mount components are recommended, but if leaded  
components are used, lead lengths should be as short as  
possible. The power supply pins must be well bypassed to  
reduce the risk of oscillation. The combination of a 4.7µF  
tantalum capacitor in parallel with a 0.01µF capacitor has  
been shown to work well when placed at each supply pin.  
For good AC performance, parasitic capacitance should be  
kept to a minimum, especially at the inverting input. (See the  
“Capacitance at the Inverting Input” on page 10). Even when  
ground plane construction is used, it should be removed  
from the area near the inverting input to minimize any stray  
capacitance at that node. Carbon or Metal-Film resistors are  
acceptable with the Metal-Film resistors giving slightly less  
peaking and bandwidth because of additional series  
For varying bandwidth needs, consider the EL5166 and  
EL5167 with 1GHz on a 8.5mA supply current or the EL5162  
and EL5163 with 300MHz on a 1.5mA supply current.  
Versions include single, dual, and triple amp packages with  
FN7389.8  
October 29, 2007  
9
EL5164, EL5165, EL5364  
inductance. Use of sockets, particularly for the SO package,  
Feedback Resistor Values  
should be avoided if possible. Sockets add parasitic  
inductance and capacitance which will result in additional  
peaking and overshoot.  
The EL5164, EL5165, and EL5364 have been designed and  
specified at a gain of +2 with R approximately 412Ω. This  
F
value of feedback resistor gives 300MHz of -3dB bandwidth  
at A = 2 with 2dB of peaking. With A = -2, an R of 300Ω  
gives 275MHz of bandwidth with 1dB of peaking. Since the  
V
V
F
Disable/Power-Down  
The EL5164 amplifier can be disabled placing its output in a  
high impedance state. When disabled, the amplifier supply  
current is reduced to <150µA. The EL5164 is disabled when  
its CE pin is pulled up to within 1V of the positive supply.  
Similarly, the amplifier is enabled by floating or pulling its CE  
pin to at least 3V below the positive supply. For ±5V supply,  
this means that an EL5164 amplifier will be enabled when  
CE is 2V or less, and disabled when CE is above 4V.  
Although the logic levels are not standard TTL, this choice of  
logic voltages allows the EL5164 to be enabled by tying CE  
to ground, even in 5V single supply applications. The CE pin  
can be driven from CMOS outputs.  
EL5164, EL5165, and EL5364 are current-feedback  
amplifiers, it is also possible to change the value of R to get  
F
more bandwidth. As seen in the curve of Frequency  
Response for Various R and R , bandwidth and peaking  
F
G
can be easily modified by varying the value of the feedback  
resistor.  
Because the EL5164, EL5165, and EL5364 are  
current-feedback amplifiers, their gain-bandwidth product is  
not a constant for different closed-loop gains. This feature  
actually allows the EL5164, EL5165, and EL5364 to  
maintain about the same -3dB bandwidth. As gain is  
increased, bandwidth decreases slightly while stability  
increases. Since the loop stability is improving with higher  
closed-loop gains, it becomes possible to reduce the value  
When the amplifier is disabled, if the positive input is driven  
beyond ±2V with respect to the negative input, the device  
can become active and output the signal. An input diode  
of R below the specified 160Ω and still retain stability,  
F
clamp network D and D , as shown in Figure 23, can be  
1
2
resulting in only a slight loss of bandwidth with increased  
closed-loop gain.  
used to keep the device disabled while a large input signal is  
present.  
Supply Voltage Range and Single-Supply  
Operation  
R
R
F
G
+5V  
The EL5164, EL5165, and EL5364 have been designed to  
operate with supply voltages having a span of greater than  
5V and less than 10V. In practical terms, this means that  
they will operate on dual supplies ranging from ±2.5V to ±5V.  
With single-supply, the EL5164, EL5165, and EL5364 will  
operate from 5V to 10V.  
-
D
D
2
V
1
OUT  
CE  
+5V  
V
+
IN  
-5V  
As supply voltages continue to decrease, it becomes  
necessary to provide input and output voltage ranges that  
can get as close as possible to the supply voltages. The  
EL5164, EL5165, and EL5364 have an input range which  
extends to within 2V of either supply. So, for example, on  
±5V supplies, the EL5164, EL5165, and EL5364 have an  
input range which spans ±3V. The output range of the  
EL5164, EL5165, and EL5364 is also quite large, extending  
to within 1V of the supply rail. On a ±5V supply, the output is  
therefore capable of swinging from -4V to +4V. Single-supply  
output range is larger because of the increased negative  
swing due to the external pull-down resistor to ground.  
FIGURE 23. DISABLED AMPLIFIER  
Capacitance at the Inverting Input  
Any manufacturer’s high-speed voltage- or current-feedback  
amplifier can be affected by stray capacitance at the  
inverting input. For inverting gains, this parasitic capacitance  
has little effect because the inverting input is a virtual  
ground, but for non-inverting gains, this capacitance (in  
conjunction with the feedback and gain resistors) creates a  
pole in the feedback path of the amplifier. This pole, if low  
enough in frequency, has the same destabilizing effect as a  
zero in the forward open-loop response. The use of large-  
value feedback and gain resistors exacerbates the problem  
by further lowering the pole frequency (increasing the  
possibility of oscillation.)  
Video Performance  
For good video performance, an amplifier is required to  
maintain the same output impedance and the same frequency  
response as DC levels are changed at the output. This is  
especially difficult when driving a standard video load of 150Ω,  
because of the change in output current with DC level.  
Previously, good differential gain could only be achieved by  
running high idle currents through the output transistors (to  
reduce variations in output impedance.) These currents were  
typically comparable to the entire 5.5mA supply current of  
The EL5164, EL5165, and EL5364 have been optimized  
with a 510Ω feedback resistor. With the high bandwidth of  
these amplifiers, these resistor values might cause stability  
problems when combined with parasitic capacitance, thus  
ground plane is not recommended around the inverting input  
pin of the amplifier.  
FN7389.8  
October 29, 2007  
10  
 
EL5164, EL5165, EL5364  
each EL5164, EL5165, and EL5364 amplifiers. Special  
where:  
• T  
circuitry has been incorporated in the EL5164, EL5165, and  
EL5364 to reduce the variation of output impedance with  
current output. This results in dG and dP specifications of  
0.01% and 0.01°, while driving 150Ω at a gain of 2.  
= Maximum ambient temperature  
MAX  
θ = Thermal resistance of the package  
JA  
• n = Number of amplifiers in the package  
Video performance has also been measured with a 500Ω load  
at a gain of +1. Under these conditions, the EL5164, EL5165,  
and EL5364 have dG and dP specifications of 0.01% and  
0.01°, respectively.  
• PD  
= Maximum power dissipation of each amplifier in  
the package  
MAX  
PD  
for each amplifier can be calculated in Equation 2:  
MAX  
V
OUTMAX  
R
L
----------------------------  
PD  
= (2 × V × I  
) + (V V ) ×  
OUTMAX  
Output Drive Capability  
MAX  
S
SMAX  
S
In spite of their low 5.5mA of supply current, the EL5164,  
EL5165, and EL5364 are capable of providing a minimum of  
±75mA of output current. With a minimum of ±75mA of output  
drive, the EL5164, EL5165, and EL5364 are capable of  
driving 50Ω loads to both rails, making it an excellent choice  
for driving isolation transformers in telecommunications  
applications.  
(EQ. 2)  
where:  
• V = Supply voltage  
S
• I  
= Maximum supply current of 1A  
SMAX  
• V  
= Maximum output voltage (required)  
OUTMAX  
• R = Load resistance  
L
Driving Cables and Capacitive Loads  
When used as a cable driver, double termination is always  
recommended for reflection-free performance. For those  
applications, the back-termination series resistor will  
decouple the EL5164, EL5165, and EL5364 from the cable  
and allow extensive capacitive drive. However, other  
applications may have high capacitive loads without a  
back-termination resistor. In these applications, a small  
series resistor (usually between 5Ω and 50Ω) can be placed  
in series with the output to eliminate most peaking. The gain  
Typical Application Circuits  
0.1µF  
+5V  
IN+  
V +  
S
OUT  
IN-  
V -  
S
0.1µF  
0.1µF  
-5V  
375Ω  
5Ω  
5Ω  
resistor (R ) can then be chosen to make up for any gain  
G
loss which may be created by this additional resistor at the  
output. In many cases it is also possible to simply increase  
V
OUT  
+5V  
the value of the feedback resistor (R ) to reduce the  
F
IN+  
IN-  
V +  
peaking.  
S
OUT  
Current Limiting  
V -  
S
0.1µF  
The EL5164, EL5165, and EL5364 have no internal  
current-limiting circuitry. If the output is shorted, it is possible  
to exceed the Absolute Maximum Rating for output current  
or power dissipation, potentially resulting in the destruction  
of the device.  
-5V  
375Ω  
375Ω  
V
IN  
FIGURE 24. INVERTING 200mA OUTPUT CURRENT  
DISTRIBUTION AMPLIFIER  
Power Dissipation  
With the high output drive capability of the EL5164, EL5165,  
and EL5364, it is possible to exceed the +125°C Absolute  
Maximum junction temperature under certain very high load  
current conditions. Generally speaking when R falls below  
L
about 25Ω, it is important to calculate the maximum junction  
temperature (T  
) for the application to determine if  
JMAX  
power supply voltages, load conditions, or package type  
need to be modified for the EL5164, EL5165, and EL5364 to  
remain in the safe operating area. These parameters are  
calculated in Equation 1:  
(EQ. 1)  
T
= T  
+ (θ × n × PD  
)
MAX  
JMAX  
MAX  
JA  
FN7389.8  
October 29, 2007  
11  
 
 
EL5164, EL5165, EL5364  
375Ω  
375Ω  
0.1µF  
+5V  
IN+  
V +  
S
OUT  
IN-  
V -  
S
0.1µF  
375Ω  
375Ω  
-5V  
0.1µF  
+5V  
IN+  
V +  
S
V
IN  
OUT  
V
OUT  
IN-  
V -  
S
0.1µF  
-5V  
FIGURE 25. FAST-SETTLING PRECISION AMPLIFIER  
0.1µF  
0.1µF  
+5V  
IN+  
+5V  
IN+  
V +  
V +  
S
S
OUT  
OUT  
IN-  
IN-  
V -  
V -  
S
S
0.1µF  
0.1µF  
0.1µF  
-5V  
-5V  
0.1µF  
375Ω  
162Ω  
162Ω  
375Ω  
375Ω  
V
V
+
OUT  
1kΩ  
1kΩ  
0.1µF  
+5V  
IN+  
240Ω  
0.1µF  
+5V  
IN+  
V +  
S
OUT  
V +  
S
-
OUT  
IN-  
OUT  
V
OUT  
V -  
S
IN-  
0.1µF  
V -  
S
-5V  
0.1µF  
-5V  
375Ω  
375Ω  
V
IN  
375Ω  
375Ω  
TRANSMITTER  
RECEIVER  
FIGURE 26. DIFFERENTIAL LINE DRIVER/RECEIVER  
FN7389.8  
October 29, 2007  
12  
EL5164, EL5165, EL5364  
Small Outline Package Family (SO)  
A
D
h X 45°  
(N/2)+1  
N
A
PIN #1  
I.D. MARK  
E1  
E
c
SEE DETAIL “X”  
1
(N/2)  
B
L1  
0.010 M  
C A B  
e
H
C
A2  
A1  
GAUGE  
PLANE  
SEATING  
PLANE  
0.010  
L
4° ±4°  
0.004 C  
b
0.010 M  
C
A
B
DETAIL X  
MDP0027  
SMALL OUTLINE PACKAGE FAMILY (SO)  
INCHES  
SO16  
(0.150”)  
SO16 (0.300”)  
(SOL-16)  
SO20  
SO24  
(SOL-24)  
SO28  
(SOL-28)  
SYMBOL  
SO-8  
0.068  
0.006  
0.057  
0.017  
0.009  
0.193  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
8
SO-14  
0.068  
0.006  
0.057  
0.017  
0.009  
0.341  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
14  
(SOL-20)  
0.104  
0.007  
0.092  
0.017  
0.011  
0.504  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
20  
TOLERANCE  
MAX  
NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.057  
0.017  
0.009  
0.390  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.406  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.606  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
24  
0.104  
0.007  
0.092  
0.017  
0.011  
0.704  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
28  
-
±0.003  
±0.002  
±0.003  
±0.001  
±0.004  
±0.008  
±0.004  
Basic  
-
-
-
c
-
D
1, 3  
E
-
E1  
e
2, 3  
-
L
±0.009  
Basic  
-
L1  
h
-
Reference  
Reference  
-
N
-
Rev. M 2/07  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not included.  
2. Plastic interlead protrusions of 0.010” maximum per side are not included.  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994  
FN7389.8  
October 29, 2007  
13  
EL5164, EL5165, EL5364  
SOT-23 Package Family  
MDP0038  
e1  
D
SOT-23 PACKAGE FAMILY  
A
MILLIMETERS  
SOT23-5  
6
4
N
SYMBOL  
SOT23-6  
1.45  
0.10  
1.14  
0.40  
0.14  
2.90  
2.80  
1.60  
0.95  
1.90  
0.45  
0.60  
6
TOLERANCE  
MAX  
A
A1  
A2  
b
1.45  
0.10  
1.14  
0.40  
0.14  
2.90  
2.80  
1.60  
0.95  
1.90  
0.45  
0.60  
5
±0.05  
E1  
E
±0.15  
2
3
±0.05  
0.15  
2X  
C
D
c
±0.06  
1
2
3
0.20  
2X  
C
D
Basic  
5
e
E
Basic  
E1  
e
Basic  
0.20  
C
A-B  
D
M
B
b
NX  
Basic  
e1  
L
Basic  
±0.10  
L1  
N
Reference  
Reference  
Rev. F 2/07  
0.15  
2X  
C
A-B  
1
3
D
NOTES:  
C
1. Plastic or metal protrusions of 0.25mm maximum per side are not  
included.  
A2  
SEATING  
PLANE  
2. Plastic interlead protrusions of 0.25mm maximum per side are not  
included.  
A1  
0.10  
NX  
C
3. This dimension is measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
5. Index area - Pin #1 I.D. will be located within the indicated zone  
(SOT23-6 only).  
6. SOT23-5 version has no center lead (shown as a dashed line).  
(L1)  
H
A
GAUGE  
PLANE  
0.25  
c
+3°  
-0°  
L
0°  
FN7389.8  
October 29, 2007  
14  
EL5164, EL5165, EL5364  
Small Outline Transistor Plastic Packages (SC70-5)  
D
P5.049  
VIEW C  
5 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE  
e1  
INCHES  
MIN  
MILLIMETERS  
SYMBOL  
MAX  
0.043  
0.004  
0.039  
0.012  
0.010  
0.009  
0.009  
0.085  
0.094  
0.053  
MIN  
0.80  
0.00  
0.80  
0.15  
0.15  
0.08  
0.08  
1.85  
1.80  
1.15  
MAX  
1.10  
0.10  
1.00  
0.30  
0.25  
0.22  
0.20  
2.15  
2.40  
1.35  
NOTES  
5
1
4
A
A1  
A2  
b
0.031  
0.000  
0.031  
0.006  
0.006  
0.003  
0.003  
0.073  
0.071  
0.045  
-
-
-
-
E
C
L
C
E1  
L
2
3
b
b1  
c
e
6
6
3
-
C
L
c1  
D
0.20 (0.008) M  
C
C
C
L
E
E1  
e
3
-
SEATING  
PLANE  
0.0256 Ref  
0.0512 Ref  
0.010 0.018  
0.65 Ref  
1.30 Ref  
0.26 0.46  
A2  
A1  
A
e1  
L
-
-C-  
4
-
L1  
L2  
0.017 Ref.  
0.420 Ref.  
0.15 BSC  
0.10 (0.004)  
C
0.006 BSC  
o
o
o
o
0
8
0
8
-
α
N
b
WITH  
5
5
5
PLATING  
b1  
R
0.004  
0.004  
-
0.10  
0.15  
-
R1  
0.010  
0.25  
c
c1  
Rev. 2 9/03  
NOTES:  
BASE METAL  
1. Dimensioning and tolerances per ASME Y14.5M-1994.  
2. Package conforms to EIAJ SC70 and JEDEC MO-203AA.  
4X θ1  
3. Dimensions D and E1 are exclusive of mold flash, protrusions,  
or gate burrs.  
R1  
4. Footlength L measured at reference to gauge plane.  
5. “N” is the number of terminal positions.  
R
6. These Dimensions apply to the flat section of the lead between  
0.08mm and 0.15mm from the lead tip.  
GAUGE PLANE  
SEATING  
PLANE  
7. Controlling dimension: MILLIMETER. Converted inch dimen-  
sions are for reference only.  
L
C
α
L2  
L1  
4X θ1  
VIEW C  
FN7389.8  
October 29, 2007  
15  
EL5164, EL5165, EL5364  
Quarter Size Outline Plastic Packages Family (QSOP)  
A
MDP0040  
QUARTER SIZE OUTLINE PLASTIC PACKAGES FAMILY  
D
(N/2)+1  
N
INCHES  
SYMBOL QSOP16 QSOP24 QSOP28 TOLERANCE NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.056  
0.010  
0.008  
0.193  
0.236  
0.154  
0.025  
0.025  
0.041  
16  
0.068  
0.006  
0.056  
0.010  
0.008  
0.341  
0.236  
0.154  
0.025  
0.025  
0.041  
24  
0.068  
0.006  
0.056  
0.010  
0.008  
0.390  
0.236  
0.154  
0.025  
0.025  
0.041  
28  
Max.  
±0.002  
±0.004  
±0.002  
±0.001  
±0.004  
±0.008  
±0.004  
Basic  
-
PIN #1  
I.D. MARK  
E
E1  
-
-
-
1
(N/2)  
c
-
B
D
1, 3  
0.010 C A B  
E
-
e
E1  
e
2, 3  
H
-
C
SEATING  
L
±0.009  
Basic  
-
PLANE  
L1  
N
-
0.007 C A B  
b
0.004 C  
Reference  
-
Rev. F 2/07  
L1  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not  
included.  
A
2. Plastic interlead protrusions of 0.010” maximum per side are not  
included.  
c
SEE DETAIL "X"  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
0.010  
A2  
GAUGE  
PLANE  
L
A1  
4°±4°  
DETAIL X  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7389.8  
October 29, 2007  
16  

相关型号:

EL5164IWZ

IC,OP-AMP,SINGLE,BIPOLAR,TSOP,6PIN,PLASTIC
RENESAS

EL5164IWZ-T7

600MHz Current Feedback Amplifiers with Enable
INTERSIL

EL5164IWZ-T7A

600MHz Current Feedback Amplifiers with Enable
INTERSIL

EL5164_05

600MHz Current Feedback Amplifiers with Enable
INTERSIL

EL5164_07

600MHz Current Feedback Amplifiers with Enable
INTERSIL

EL5165

600MHz Current Feedback Amplifiers with Enable
INTERSIL

EL5165IC-T7

600MHz Current Feedback Amplifiers with Enable
INTERSIL

EL5165IC-T7A

600MHz Current Feedback Amplifiers with Enable
INTERSIL

EL5165IW-T13

1 CHANNEL, VIDEO AMPLIFIER, PDSO5, SOT-23, 5 PIN
RENESAS

EL5165IW-T7

600MHz Current Feedback Amplifiers with Enable
INTERSIL

EL5165IW-T7A

600MHz Current Feedback Amplifiers with Enable
INTERSIL

EL5165IWZ

IC,OP-AMP,SINGLE,BIPOLAR,TSOP,5PIN,PLASTIC
RENESAS