EL5174ISZ-T [RENESAS]

LINE DRIVER;
EL5174ISZ-T
型号: EL5174ISZ-T
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

LINE DRIVER

驱动 接口集成电路
文件: 总14页 (文件大小:492K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
550MHz Differential Twisted-Pair Drivers  
EL5174, EL5374  
Features  
The EL5174 and EL5374 are single and triple high bandwidth  
amplifiers with an output in differential form. They are  
primarily targeted for applications such as driving twisted-pair  
lines in component video applications. The inputs can be in  
either single-ended or differential form but the outputs are  
always in differential form.  
• Fully differential inputs, outputs, and feedback  
• Differential input range ±2.3V  
• 550MHz 3dB bandwidth  
• 1100V/µs slew rate  
• Low distortion at 5MHz  
On the EL5174 and EL5374, two feedback inputs provide the  
user with the ability to set the gain of each device (stable at  
minimum gain of one). For a fixed gain of two, please see the  
EL5173, EL5373 data sheet (FN7312).  
• Single 5V or dual ±5V supplies  
• 60mA maximum output current  
• Low power - 12.5mA per channel  
• Pb-free (RoHS compliant)  
The output common mode level for each channel is set by the  
associated REF pin, which has a -3dB bandwidth of over  
110MHz. Generally, these pins are grounded but can be tied to  
any voltage reference.  
Applications  
• Twisted-pair driver  
All outputs are short circuit protected to withstand temporary  
overload condition.  
• Differential line driver  
• VGA over twisted-pair  
The EL5174 is available in a 8 Ld SOIC package and the EL5374 is  
available in a 28 Ld QSOP package. All are specified for operation  
over the full -40°C to +85°C temperature range.  
• ADSL/HDSL driver  
• Single-ended to differential amplification  
• Transmission of analog signals in a noisy environment  
Pinouts  
EL5174  
(8 LD SOIC)  
TOP VIEW  
EL5374  
(28 LD QSOP)  
TOP VIEW  
FBP  
IN+  
1
2
3
4
8
7
6
5
OUT+  
VS-  
NC  
INP1  
INN1  
1
2
3
28 OUT1  
27 FBP1  
26 FBN1  
25 OUT1B  
24 VSP  
+
-
+
-
REF  
FBN  
VS+  
OUT-  
REF1 4  
NC  
INP2  
INN2  
REF2  
NC  
5
6
7
8
9
23 VSN  
22 OUT2  
21 FBP2  
20 FBN2  
19 OUT2B  
18 OUT3  
17 FBP3  
16 FBN3  
15 OUT3B  
+
-
INP3 10  
INN3 11  
REF3 12  
NC 13  
+
-
EN 14  
August 28, 2012  
FN7313.8  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2003-2005, 2007, 2010, 2012. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
EL5174, EL5374  
Pin Descriptions  
EL5174  
EL5374  
PIN NAME  
PIN FUNCTION  
Feedback from non-inverting output  
Non-inverting input  
1
2
3
4
5
6
7
8
FBP  
IN+  
REF  
Inverting inputs, note that on EL5174, this pin is also the REF pin  
Feedback from inverting output  
Inverting output  
FBN  
OUT-  
VS+  
Positive supply  
VS-  
Negative supply  
OUT+  
Non-inverting output  
17, 21, 27  
2, 6, 10  
3, 7, 11  
16, 20, 26  
15, 19, 25  
24  
FBP3, FBP2, FBP1  
INP1, INP2, INP3  
INN1, INN2, INN3  
FBN3, FBN2, FBN1  
OUT3B, OUT2B, OUT1B  
VSP  
Feedback from non-inverting outputs  
Non-inverting inputs  
Inverting inputs, note that on EL5174, this pin is also the REF pin  
Feedback from inverting outputs  
Inverting outputs  
Positive supply  
23  
VSN  
Negative supply  
18, 22, 28  
1, 5, 9, 13  
4, 8, 12  
14  
OUT3, OUT2, OUT1  
NC  
Non-inverting outputs  
No connect; grounded for best crosstalk performance  
Reference inputs, sets common-mode output voltage  
ENABLE  
REF1, REF2, REF3  
EN  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
PART  
MARKING  
TEMP. RANGE  
(°C)  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
EL5174ISZ  
5174ISZ  
EL5374IUZ  
-40 to +85  
-40 to +85  
8 Ld SOIC  
28 Ld QSOP  
M8.15E  
M28.15  
EL5374IUZ  
NOTE:  
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for EL5174, EL5374. For more information on MSL please see tech brief  
TB363.  
FN7313.8  
August 28, 2012  
2
EL5174, EL5374  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage (V + to V -) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12V  
Supply Voltage Rate-of-rise (dV/dT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1V/µs  
Thermal Resistance (Typical, Note 4)  
θ
(°C/W)  
S
S
JA  
120.40  
77.61  
8 Ld SOIC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
28 Ld QSOP Package. . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Input Voltage (IN+, IN- to V +, V -) . . . . . . . . . . . . . V - - 0.3V to V + + 0.3V  
S
S
S
S
Differential Input Voltage (IN+ to IN-). . . . . . . . . . . . . . . . . . . . . . . . . . ±4.8V  
Maximum Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±60mA  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . .+135°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Power Dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTE:  
4. θ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are  
at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, T = +25°C, V = 0V, R = 1kΩ, R = 0, R = OPEN, C = 2.7pF, unless otherwise  
S
S
A
IN  
LD  
F
G
LD  
specified.  
MIN  
MAX  
PARAMETER  
AC PERFORMANCE  
DESCRIPTION  
CONDITIONS  
(Note 5)  
TYP  
(Note 5)  
UNIT  
BW  
-3dB Bandwidth  
A = 1, C = 2.7pF  
LD  
550  
130  
20  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
V
A = 2, R = 500, C = 2.7pF  
LD  
V
F
A = 10, R = 500, C = 2.7pF  
LD  
V
F
BW  
SR  
±0.1dB Bandwidth  
Slew Rate (EL5174)  
Slew Rate (EL5374)  
A = 1, C = 2.7pF  
120  
1100  
850  
10  
V
LD  
V
V
V
= 3V , 20% to 80%  
800  
600  
OUT  
OUT  
OUT  
P-P  
= 3V , 20% to 80%  
P-P  
t
t
Settling Time to 0.1%  
= 2V  
P-P  
STL  
Output Overdrive Recovery Time  
Gain Bandwidth Product  
20  
ns  
OVR  
GBWP  
200  
110  
134  
70  
MHz  
MHz  
V/µs  
V/µs  
nV/Hz  
pA/Hz  
dBc  
V
V
V
V
BW (-3dB)  
SR+  
V
V
V
-3dB Bandwidth  
Slew Rate - Rise  
Slew Rate - Fall  
A = 1, C = 2.7pF  
REF  
REF  
REF  
N
REF  
REF  
REF  
V
LD  
V
= 2V , 20% to 80%  
OUT  
OUT  
P-P  
SR-  
V
= 2V , 20% to 80%  
P-P  
Input Voltage Noise  
at 10kHz  
at 10kHz  
21  
I
Input Current Noise  
2.7  
N
HD2  
Second Harmonic Distortion  
V
V
V
V
= 2V , 5MHz  
P-P  
-95  
OUT  
OUT  
OUT  
OUT  
= 2V , 20MHz  
P-P  
-94  
dBc  
HD3  
Third Harmonic Distortion  
= 2V , 5MHz  
P-P  
-88  
dBc  
= 2V , 20MHz  
P-P  
-87  
dBc  
dG  
Differential Gain at 3.58MHz  
Differential Phase at 3.58MHz  
R
R
= 300Ω, A = 2  
0.06  
0.13  
90  
%
LD  
LD  
V
dθ  
= 300Ω, A = 2  
°
V
e
Channel Separation - for EL5374 only  
INPUT CHARACTERISTICS  
Input Referred Offset Voltage  
at f = 1MHz  
dB  
S
V
(EL5174)  
(EL5374)  
±1.4  
±2.2  
-14  
±25  
±25  
-7  
mV  
mV  
µA  
µA  
kΩ  
OS  
I
I
Input Bias Current (V +, V -)  
-30  
0.5  
IN  
IN  
IN  
Input Bias Current (V  
)
2.3  
4
REF  
REF  
R
Differential Input Resistance  
150  
IN  
FN7313.8  
August 28, 2012  
3
EL5174, EL5374  
Electrical Specifications V + = +5V, V - = -5V, T = +25°C, V = 0V, R = 1kΩ, R = 0, R = OPEN, C = 2.7pF, unless otherwise  
S
S
A
IN  
LD  
F
G
LD  
specified. (Continued)  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 5)  
TYP  
1
(Note 5)  
UNIT  
pF  
V
C
Differential Input Capacitance  
Differential Mode Input Range  
IN  
DMIR  
CMIR+  
CMIR-  
±2.1  
3.4  
±2.3  
3.4  
±2.5  
Common Mode Positive Input Range at V +, V  
IN  
-
V
IN  
Common Mode Negative Input Range at V +, V  
IN  
-
-4.3  
3.7  
V
IN  
V
V
V
+
-
Positive Reference Input Voltage Range (EL5374)  
Negative Reference Input Voltage Range (EL5374)  
Output Offset Relative to V (EL5374)  
V
V
+ = V - = 0V  
IN  
V
REFIN  
REFIN  
REFOS  
IN  
+ = V - = 0V  
IN  
-3.3  
±50  
78  
-3  
V
IN  
±100  
mV  
dB  
V
REF  
CMRR  
Gain  
Input Common Mode Rejection Ratio (EL5374)  
Gain Accuracy  
V
V
V
= ±2.5V  
65  
IN  
IN  
IN  
= 1V (EL5174)  
= 1V (EL5374)  
0.980  
0.978  
0.995  
0.993  
1.010  
1.008  
V
OUTPUT CHARACTERISTICS  
V
Output Voltage Swing  
R
R
R
= 500Ω to GND (EL5174)  
= 500Ω to GND (EL5374)  
±3.4  
±3.8  
±60  
130  
V
V
OUT  
L
L
L
±3.6  
±50  
I
(Max)  
Maximum Output Current  
Output Impedance  
= 10Ω, V + = ±3.2V  
IN  
±100  
mA  
mΩ  
OUT  
R
OUT  
SUPPLY  
V
Supply Operating Range  
V + to V -  
4.75  
10  
11  
14  
10  
V
SUPPLY  
S
S
I
I
I
Power Supply Current - Per Channel  
Positive Power Supply Current - Disabled (EL5374)  
Negative Power Supply Current - Disabled (EL5374)  
Power Supply Rejection Ratio  
12.5  
1.7  
mA  
µA  
µA  
dB  
S(ON)  
+
-
EN pin tied to 4.8V  
S(OFF)  
-200  
60  
-120  
75  
S(OFF)  
PSRR  
ENABLE (EL5374 ONLY)  
V from ±4.5V to ±5.5V  
S
t
t
Enable Time  
130  
1.2  
ns  
µs  
V
EN  
DS  
Disable Time  
V
V
EN Pin Voltage for Power-Up  
EN Pin Voltage for Shut-Down  
EN Pin Input Current High  
EN Pin Input Current Low  
V + -1.5  
S
IH  
V + -0.5  
S
V
IL  
I
I
At V = 5V  
EN  
123  
-8  
150  
µA  
µA  
IH-EN  
IL-EN  
At V = 0V  
EN  
-10  
NOTE:  
5. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested.  
FN7313.8  
August 28, 2012  
4
Connection Diagrams  
R
F1  
C
L1  
5pF  
-5V  
0Ω  
OUT  
FBP  
INP  
1
2
3
OUT 8  
VSN 7  
IN+  
R
LD  
1kΩ  
R
G
REF  
REF  
VSP 6  
R
R
S1  
50Ω  
S1  
50Ω  
OUTB  
4 FBN  
OUTB 5  
C
R
L2  
5pF  
F2  
+5V  
0Ω  
FIGURE 1. EL5174  
+5V  
R
1
2
NC  
OUT1 28  
FBP1 27  
FBN1 26  
OUT1B 25  
VSP 24  
R
F
INP1  
INN1  
REF1  
INP1  
INN1  
REF1  
NC  
0Ω  
R
LD1  
1kΩ  
G
R
F
3
0Ω  
4
5
INP2  
INN2  
REF2  
6
INP2  
INN2  
REF2  
NC  
VSN 23  
7
OUT2 22  
R
F
R
LD2  
1kΩ  
FBP2  
FBN2  
OUT2B  
OUT3  
FBP3  
8
21  
20  
19  
18  
17  
16  
0Ω  
R
G
R
F
9
INP3  
INN3  
REF3  
0Ω  
INP3  
INN3  
REF3  
NC  
10  
11  
12  
13  
R
F
0Ω  
R
G
R
LD3  
1kΩ  
R
R
R
R
R
R
R
50Ω  
R
R
R
F
SP1  
50Ω  
SN1  
50Ω  
SR1  
50Ω  
SP2  
50Ω  
SN2  
50Ω  
SR2  
50Ω  
SP3  
SN3  
50Ω  
SR3  
50Ω  
FBN3  
0Ω  
14 EN  
OUT3B 15  
C
C
C
C
C
C
L1  
5pF  
L1B  
5pF  
L2  
5pF  
L2B  
5pF  
L3  
5pF  
L3B  
5pF  
-5V  
ENABLE  
FIGURE 2. EL5374  
EL5174, EL5374  
Typical Performance Curves  
A
= 1, R = 1kΩ, C = 2.7pF  
LD LD  
R
= 1kΩ, C = 2.7pF  
LD  
V
LD  
4
3
4
3
2
2
V
= 200mV  
OP-P  
1
1
A
= 1  
V
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-2  
-3  
-4  
-5  
-6  
A
= 2  
V
V
= 1V  
OP-P  
A
= 5  
V
A
= 10  
V
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 3. FREQUENCY RESPONSE  
FIGURE 4. FREQUENCY RESPONSE FOR VARIOUS GAIN  
A
= 1, C = 2.7pF  
LD  
A
= 1, R = 1kΩ  
V
V
LD  
10  
4
3
C
= 50pF  
LD  
8
6
C
= 23pF  
LD  
2
C
= 34pF  
LD  
R
= 1kΩ  
LD  
4
1
2
0
0
-1  
-2  
-3  
-4  
-5  
-6  
R
= 500Ω  
C
= 9pF  
LD  
LD  
-2  
-4  
-6  
-8  
-10  
C
= 2.7pF  
LD  
R
= 200Ω  
LD  
1M  
10M  
100M  
1G  
1M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 5. FREQUENCY RESPONSE vs C  
FIGURE 6. FREQUENCY RESPONSE vs R  
LD  
LD  
A
= 2, C = 2.7pF, R = 750Ω  
LD  
A
= 2, R = 1kΩ, C = 2.7pF  
LD LD  
V
F
V
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
R
= 1kΩ  
F
R
= 1kΩ  
LD  
R
= 500Ω  
R
= 500Ω  
F
LD  
R
= 200Ω  
F
R
= 200Ω  
LD  
1M  
10M  
FREQUENCY (Hz)  
100M  
400M  
1M  
10M  
FREQUENCY (Hz)  
100M  
400M  
FIGURE 7. FREQUENCY RESPONSE  
FIGURE 8. FREQUENCY RESPONSE vs R  
LD  
FN7313.8  
August 28, 2012  
6
EL5174, EL5374  
Typical Performance Curves (Continued)  
5
4
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
3
2
1
PSRR-  
0
-1  
-2  
-3  
-4  
-5  
PSRR+  
10M  
100k  
1M  
10M  
100M  
1M  
FREQUENCY (Hz)  
10k  
100k  
100M  
FREQUENCY (Hz)  
FIGURE 9. FREQUENCY RESPONSE - V  
FIGURE 10. PSRR vs FREQUENCY  
REF  
1k  
100  
80  
60  
40  
20  
0
100  
10  
1
E
N
I
N
-20  
10k  
FREQUENCY (Hz)  
10  
100  
1k  
100k  
1M  
10M  
1M  
10M  
1k  
10k  
100k  
100M  
1G  
FREQUENCY (Hz)  
FIGURE 12. VOLTAGE AND CURRENT NOISE vs FREQUENCY  
FIGURE 11. CMRR vs FREQUENCY  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
100  
10  
CH1 <=> CH2, CH2 <=> CH3  
1.0  
0.1  
CH1 <=> CH3  
10M  
100k  
1M  
100M  
1G  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 13. CHANNEL ISOLATION (EL5374 ONLY)  
FIGURE 14. OUTPUT IMPEDANCE vs FREQUENCY  
FN7313.8  
August 28, 2012  
7
EL5174, EL5374  
Typical Performance Curves (Continued)  
V
= ±5V, A = 2, R = 1kΩ  
LD  
V
= ±5V, A = 1, R = 1kΩ  
LD  
S
V
S
V
-40  
-50  
-40  
-50  
-60  
-70  
-80  
-90  
HD3 (f = 5MHz)  
-60  
HD3 (f = 20MHz)  
HD3 (f = 20MHz)  
-70  
-80  
-90  
HD2 (f = 5MHz)  
HD2 (f = 20MHz)  
4.5  
5.0  
HD2 (f = 5MHz)  
-100  
-100  
1
2
3
4
5
6
7
8
9
10  
1.0  
1.5  
2.0  
2.5  
V
3.0  
3.5  
(V)  
4.0  
V
(V)  
OP-P, DM  
OP-P, DM  
FIGURE 15. HARMONIC DISTORTION vs DIFFERENTIAL OUTPUT  
VOLTAGE  
FIGURE 16. HARMONIC DISTORTION vs DIFFERENTIAL OUTPUT  
VOLTAGE  
V
= ±5V, A = 1, V  
= 1V  
OP-P, DM  
S
V
V
= ±5V, A = 2, V  
V
= 2V  
S
OP-P, DM  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
HD3 (f = 20MHz)  
HD3 (f = 5MHz)  
HD2 (f =  
20MHz)  
HD2 (f = 5MHz)  
200 300 400 500 600 700 800 900 1000  
(Ω)  
100 200 300 400 500 600 700 800 900 1000  
(Ω)  
R
R
LD  
LD  
FIGURE 17. HARMONIC DISTORTION vs R  
FIGURE 18. HARMONIC DISTORTION vs R  
LD  
LD  
V
V
= ±5V, R = 1kΩ, V  
= 1V for A = 1,  
OP-P, DM V  
S
LD  
= 2V for A = 2  
OP-P, DM  
V
-40  
-50  
HD3 (A = 2)  
V
-60  
-70  
50mV/DIV  
-80  
-90  
-100  
0
10  
20  
30  
40  
50  
60  
10ns/DIV  
FREQUENCY (MHz)  
FIGURE 19. HARMONIC DISTORTION vs FREQUENCY  
FIGURE 20. SMALL SIGNAL TRANSIENT RESPONSE  
FN7313.8  
August 28, 2012  
8
EL5174, EL5374  
Typical Performance Curves (Continued)  
M = 400ns, CH1 = 500mV/DIV, CH2 = 5V/DIV  
CH1  
CH2  
0.5V/DIV  
10ns/DIV  
400ns/DIV  
FIGURE 22. ENABLED RESPONSE  
FIGURE 21. LARGE SIGNAL TRANSIENT RESPONSE  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
M = 400ns, CH1 = 200mV/DIV, CH2 = 5V/DIV  
1.2  
1.010W  
1.0  
0.8  
0.6  
0.4  
0.2  
0
QSOP28  
= +99°C/W  
θ
JA  
625mW  
CH1  
SO8  
= +160°C/W  
θ
CH2  
JA  
0
25  
50  
75 85 100  
125  
150  
400ns/DIV  
AMBIENT TEMPERATURE (°C)  
FIGURE 23. DISABLED RESPONSE  
FIGURE 24. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.266W  
QSOP28  
θ
= +79°C/W  
JA  
909mW  
SO8  
= +110°C/W  
θ
JA  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
FIGURE 25. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE  
FN7313.8  
August 28, 2012  
9
EL5174, EL5374  
Simplified Schematic  
V +  
S
R
R
3
4
R
R
2
1
R
R
7
8
IN+  
IN-  
FBP  
FBN  
V
B1  
B2  
OUT+  
R
R
CD  
CD  
REF  
10  
R
R
9
V
OUT-  
C
C
C
C
R
R
6
5
V -  
S
differential mode signal. For the true balance differential  
outputs, the REF pin must be tied to the same bias level as the  
Description of Operation and  
Application Information  
Product Description  
The EL5174 and EL5374 are wide bandwidth, low power and  
single/differential ended to differential output amplifiers. The  
EL5174 is a single channel differential amplifier. Since the I -  
pin and REF pin are tied together internally, the EL5174 can be  
used as a single-ended to differential converter. The EL5374 is  
a triple channel differential amplifier. The EL5374 has a  
I + pin. For a ±5V supply, just tie the REF pin to GND if the I +  
N
N
pin is biased at 0V with a 50Ω or 75Ω termination resistor. For  
a single supply application, if the I + is biased to half of the  
N
rail, the REF pin should be biased to half of the rail also.  
The gain setting for EL5174 is expressed in Equation 1:  
N
R
+ R  
F1  
F2  
----------------------------  
V
= V + × 1 +  
ODM  
IN  
R
G
(EQ. 1)  
2R  
separate I - pin and REF pin for each channel. It can be used  
F
N
----------  
V
V
= V + = 1 +  
ODM  
OCM  
IN  
R
G
as single/differential ended to differential converter. The  
EL5174 and EL5374 are internally compensated for closed  
loop gain of +1 of greater. Connected in a gain of 1 and driving  
a 1kΩ differential load, the EL5174 and EL5374 have a -3dB  
bandwidth of 550MHz. Driving a 200Ω differential load at gain  
of 2, the bandwidth is about 130MHz. The EL5374 is available  
with a power-down feature to reduce the power while the  
amplifier is disabled.  
= V  
= 0V  
REF  
Where:  
V
= 0V  
REF  
= R = R  
F
R
F1  
F2  
The EL5374 has a separate I - pin and REF pin. It can be used  
N
Input, Output and Supply Voltage Range  
as a single/differential ended to differential converter. The  
voltage applied at REF pin can set the output common mode  
voltage and the gain is one.  
The EL5174 and EL5374 have been designed to operate with a  
single supply voltage of 5V to 10V or split supplies with its total  
voltage from 5V to 10V. The amplifiers have an input common  
mode voltage range from -4.3V to 3.4V for ±5V supply. The  
differential mode input range (DMIR) between the two inputs  
is from -2.3V to +2.3V. The input voltage range at the REF pin is  
from -3.3V to 3.7V. If the input common mode or differential  
mode signal is outside the above-specified ranges, it will cause  
the output signal to become distorted.  
The gain setting for EL5374 is expressed in Equation 2:  
R
+ R  
F1  
F2  
----------------------------  
V
= (V + – V -) × 1 +  
ODM  
IN  
IN  
R
G
(EQ. 2)  
2R  
F
----------  
V
V
= (V + – V -) × 1 +  
ODM  
OCM  
IN  
IN  
R
G
The output of the EL5174 and EL5374 can swing from -3.8V to  
+3.8V at 1kΩ differential load at ±5V supply. As the load  
resistance becomes lower, the output swing is reduced.  
= V  
REF  
Where:  
= R = R  
F
R
F1  
F2  
Differential and Common Mode Gain  
Settings  
For EL5174, since the I - pin and REF pin are bound together  
N
as the REF pin in an 8 Ld package, the signal at the REF pin is  
part of the common mode signal and also part of the  
FN7313.8  
August 28, 2012  
10  
EL5174, EL5374  
resistor. Again, a small series resistor at the output can help to  
reduce peaking.  
R
F1  
Disable/Power-Down (for EL5374 only)  
FBP  
The EL5374 can be disabled and its outputs placed in a high  
impedance state. The turn-off time is about 1.2µs and the  
turn-on time is about 130ns. When disabled, the amplifier's  
V
+
V
V
+
-
IN  
O
O
I +  
N
R
G
V
-
IN  
I -  
N
supply current is reduced to 1.7µA for I + and 120µA for I -  
S
S
V
REF  
FBN  
REF  
typically, thereby effectively eliminating the power  
consumption. The amplifier's power-down can be controlled by  
standard CMOS signal levels at the EN pin. The applied logic  
R
F2  
signal is relative to the V + pin. Letting the EN pin float or  
S
FIGURE 26.  
applying a signal that is less than 1.5V below V + will enable  
S
the amplifier. The amplifier will be disabled when the signal at  
Choice of Feedback Resistor and Gain  
Bandwidth Product  
For applications that require a gain of +1, no feedback resistor  
is required. Just short the OUT+ pin to FBP pin and OUT- pin to  
FBN pin. For gains greater than +1, the feedback resistor  
forms a pole with the parasitic capacitance at the inverting  
input. As this pole becomes smaller, the amplifier's phase  
margin is reduced. This causes ringing in the time domain and  
the EN pin is above V + - 0.5V.  
S
Output Drive Capability  
The EL5174 and EL5374 have internal short circuit protection. Its  
typical short circuit current is ±60mA. If the output is shorted  
indefinitely, the power dissipation could easily increase such that  
the part will be destroyed. Maximum reliability is maintained if  
the output current never exceeds ±60mA. This limit is set by the  
design of the internal metal interconnections.  
peaking in the frequency domain. Therefore, R has some  
F
maximum value that should not be exceeded for optimum  
performance. If a large value of R must be used, a small  
capacitor in the few Pico farad range in parallel with R can  
F
Power Dissipation  
F
With the high output drive capability of the EL5174 and EL5374,  
it is possible to exceed the +135°C absolute maximum junction  
temperature under certain load current conditions. Therefore, it  
is important to calculate the maximum junction temperature for  
the application to determine if the load conditions or package  
types need to be modified for the amplifier to remain in the safe  
operating area.  
help to reduce the ringing and peaking at the expense of  
reducing the bandwidth.  
The bandwidth of the EL5174 and EL5374 depends on the load  
and the feedback network. R and R appear in parallel with  
F
G
the load for gains other than +1. As this combination gets  
smaller, the bandwidth falls off. Consequently, R also has a  
F
minimum value that should not be exceeded for optimum  
The maximum power dissipation allowed in a package is  
determined according to Equation 4:  
bandwidth performance. For gain of +1, R = 0 is optimum. For  
F
the gains other than +1, optimum response is obtained with R  
between 500Ω to 1kΩ.  
F
T
– T  
AMAX  
JMAX  
(EQ. 4)  
--------------------------------------------  
PD  
=
MAX  
Θ
JA  
The EL5174 and EL5374 have a gain bandwidth product of  
Where:  
200MHz for R = 1kΩ. For gains 5, its bandwidth can be  
LD  
predicted by Equation 3:  
T
= Maximum junction temperature  
= Maximum ambient temperature  
JMAX  
(EQ. 3)  
Gain × BW = 200MHz  
T
AMAX  
Driving Capacitive Loads and Cables  
θ
= Thermal resistance of the package  
JA  
The EL5174 and EL5374 can drive a 23pF differential  
The maximum power dissipation actually produced by an IC is  
the total quiescent supply current times the total power supply  
voltage, plus the power in the IC due to the load, or as  
expressed in Equation 5:  
capacitor in parallel with 1kΩ differential load with less than  
5dB of peaking at gain of +1. If less peaking is desired in  
applications, a small series resistor (usually between 5Ω to  
50Ω) can be placed in series with each output to eliminate  
most peaking. However, this will reduce the gain slightly. If the  
ΔV  
O
(EQ. 5)  
-----------  
LD  
PD = i × V  
× I  
+ (V  
ΔV ) ×  
STOT  
SMAX  
STOT  
O
R
gain setting is greater than 1, the gain resistor R can then be  
G
chosen to make up for any gain loss, which may be created by  
the additional series resistor at the output.  
Where:  
V
= Total supply voltage = V + - V -  
S S  
STOT  
When used as a cable driver, double termination is always  
recommended for reflection-free performance. For those  
applications, a back-termination series resistor at the  
amplifier's output will isolate the amplifier from the cable and  
allow extensive capacitive drive. However, other applications  
may have high capacitive loads without a back-termination  
I
= Maximum quiescent supply current per channel  
SMAX  
ΔV = Maximum differential output voltage of the  
application  
O
R
= Differential load resistance  
LD  
FN7313.8  
August 28, 2012  
11  
EL5174, EL5374  
I
= Load current  
For good AC performance, parasitic capacitance should be  
LOAD  
i = Number of channels  
By setting the two PD  
kept to a minimum. Use of wire-wound resistors should be  
avoided because of their additional series inductance. Use of  
sockets should also be avoided if possible. Sockets add  
parasitic inductance and capacitance that can result in  
compromised performance. Minimizing parasitic capacitance  
at the amplifier's inverting input pin is very important. The  
feedback resistor should be placed very close to the inverting  
input pin. Strip line design techniques are recommended for  
the signal traces.  
equations equal to each other, we  
MAX  
can solve the output current and R to avoid the device  
overheat.  
LD  
Power Supply Bypassing and Printed Circuit  
Board Layout  
As with any high frequency device, a good printed circuit board  
layout is necessary for optimum performance. Lead lengths  
should be as short as possible. The power supply pin must be well  
bypassed to reduce the risk of oscillation. For normal single  
Typical Applications  
As the signal is transmitted through a cable, the high frequency  
signal will be attenuated. One way to compensate this loss is to  
boost the high frequency gain at the receiver side.  
supply operation, where the V - pin is connected to the ground  
S
plane, a single 4.7µF tantalum capacitor in parallel with a 0.1µF  
ceramic capacitor from V + to GND will suffice. This same  
S
capacitor combination should be placed at each supply pin to  
ground if split supplies are to be used. In this case, the V - pin  
S
becomes the negative supply rail.  
R
F
FBP  
IN+  
IN-  
50  
50  
TWISTED PAIR  
IN+  
R
R
G
T
EL5174/  
EL5374  
EL5175/  
EL5375  
V
O
REF  
IN-  
Z
= 100Ω  
O
FBN  
REF  
R
F
R
FR  
R
GR  
FIGURE 27. TWISTED PAIR CABLE RECEIVER  
R
F
GAIN  
(dB)  
FBP  
I +  
V
V
+
-
O
N
R
T
R
R
G
GC  
75  
I -  
N
C
REF  
FBN  
L
O
f
f
H
FREQUENCY  
R
L
F
2R  
1
F
------------------------  
f
f
----------  
DC Gain = 1 +  
L
2πR  
C
C
R
G
G
1
2R  
----------------------------  
F
H
2πR  
C
C
--------------------------  
G
(HF)Gain = 1 +  
GC  
||  
R
R
GC  
FIGURE 28. TRANSMIT EQUALIZER  
FN7313.8  
August 28, 2012  
12  
EL5174, EL5374  
Package Outline Drawing  
M8.15E  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 0, 08/09  
4
4.90 ± 0.10  
A
DETAIL "A"  
0.22 ± 0.03  
B
6.0 ± 0.20  
3.90 ± 0.10  
4
PIN NO.1  
ID MARK  
5
(0.35) x 45°  
4° ± 4°  
0.43 ± 0.076  
1.27  
0.25 M C A B  
SIDE VIEW “B”  
TOP VIEW  
1.75 MAX  
1.45 ± 0.1  
0.25  
GAUGE PLANE  
C
SEATING PLANE  
0.175 ± 0.075  
SIDE VIEW “A  
0.10 C  
0.63 ±0.23  
DETAIL "A"  
(0.60)  
(1.27)  
NOTES:  
(1.50)  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
(5.40)  
4. Dimension does not include interlead flash or protrusions.  
Interlead flash or protrusions shall not exceed 0.25mm per side.  
The pin #1 identifier may be either a mold or mark feature.  
Reference to JEDEC MS-012.  
5.  
6.  
TYPICAL RECOMMENDED LAND PATTERN  
FN7313.8  
August 28, 2012  
13  
EL5174, EL5374  
Shrink Small Outline Plastic Packages (SSOP)  
Quarter Size Outline Plastic Packages (QSOP)  
N
M28.15  
28 LEAD SHRINK SMALL OUTLINE PLASTIC PACKAGE  
(0.150” WIDE BODY)  
INDEX  
AREA  
0.25(0.010)  
M
B M  
H
E
GAUGE  
PLANE  
INCHES  
MIN  
MILLIMETERS  
-B-  
SYMBOL  
MAX  
0.069  
0.010  
0.061  
0.012  
0.010  
0.394  
0.157  
MIN  
1.35  
0.10  
-
MAX  
1.75  
0.25  
1.54  
0.30  
0.25  
10.00  
3.98  
NOTES  
A
A1  
A2  
B
0.053  
0.004  
-
-
1
2
3
-
L
0.25  
0.010  
SEATING PLANE  
A
-
-A-  
0.008  
0.007  
0.386  
0.150  
0.20  
0.18  
9.81  
3.81  
9
D
h x 45°  
C
-
-C-  
D
E
3
α
4
A2  
e
A1  
C
e
0.025 BSC  
0.635 BSC  
-
B
0.10(0.004)  
H
0.228  
0.0099  
0.016  
0.244  
0.0196  
0.050  
5.80  
0.26  
0.41  
6.19  
0.49  
1.27  
-
0.17(0.007) M  
C
A M B S  
h
5
L
6
NOTES:  
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication Number 95.  
N
α
28  
28  
7
0°  
8°  
0°  
8°  
-
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
Rev. 1 6/04  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm  
(0.006 inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.25mm (0.010 inch) per  
side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. Dimension “B” does not include dambar protrusion. Allowable dambar  
protrusion shall be 0.10mm (0.004 inch) total in excess of “B” dimen-  
sion at maximum material condition.  
10. Controlling dimension: INCHES. Converted millimeter dimensions  
are not necessarily exact.  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7313.8  
August 28, 2012  
14  

相关型号:

EL5174ISZ-T13

550MHz Differential Twisted-Pair Drivers
INTERSIL

EL5174ISZ-T7

550MHz Differential Twisted-Pair Drivers
INTERSIL

EL5174IY-T13

LINE DRIVER, PDSO8, MO-187, MSOP-8
RENESAS

EL5175

550MHz Differential Line Receivers
INTERSIL

EL5175IS

550MHz Differential Line Receivers
INTERSIL

EL5175IS-T13

550MHz Differential Line Receivers
INTERSIL

EL5175IS-T7

550MHz Differential Line Receivers
INTERSIL

EL5175ISZ

550MHz Differential Line Receivers
INTERSIL

EL5175ISZ-T13

550MHz Differential Line Receivers
INTERSIL

EL5175ISZ-T7

550MHz Differential Line Receivers
INTERSIL

EL5175IY

550MHz Differential Line Receivers
INTERSIL

EL5175IY-T13

550MHz Differential Line Receivers
INTERSIL