EL5178IYZ [RENESAS]

700MHz Differential Twisted-Pair Drivers; MSOP8, SOIC8; Temp Range: -40° to 85°C;
EL5178IYZ
型号: EL5178IYZ
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

700MHz Differential Twisted-Pair Drivers; MSOP8, SOIC8; Temp Range: -40° to 85°C

驱动 光电二极管 接口集成电路 驱动器
文件: 总18页 (文件大小:1174K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
EL5178, EL5378  
700MHz Differential Twisted-Pair Drivers  
FN7491  
Rev 7.00  
February 4, 2016  
The EL5178 and EL5378 are single and triple high bandwidth  
amplifiers with an output in differential form. They are  
primarily targeted for applications such as driving twisted-pair  
lines in component video applications. The inputs can be in  
either single-ended or differential form but the outputs are  
always in differential form.  
Features  
• Fully differential inputs, outputs, and feedback  
• Differential input range ±2.3V  
• 700MHz 3dB bandwidth  
• 1000V/µs slew rate  
On the EL5178 and EL5378, two feedback inputs provide the  
user with the ability to set the gain of each device (stable at  
minimum gain of 2).  
• Low distortion at 5MHz and 20MHz  
• Single 5V or dual ±5V supplies  
• 60mA maximum output current  
• Low power - 12.5mA per channel  
• Pb-free (RoHS compliant)  
The output common mode level for each channel is set by the  
associated REF pin, which has a -3dB bandwidth of over  
110MHz. Generally, these pins are grounded but can be tied to  
any voltage reference.  
All outputs are short-circuit protected to withstand temporary  
overload condition.  
Applications  
• Twisted-pair driver  
The EL5178 is available in 8 Ld MSOP and SOIC packages and  
EL5378 is available in a 28 Ld QSOP package. All are specified  
for operation over the full -40°C to +85°C temperature range.  
• Differential line driver  
• VGA over twisted-pair  
• ADSL/HDSL driver  
• Single-ended to differential amplification  
• Transmission of analog signals in a noisy environment  
Pin Configurations  
EL5178  
(8 LD MSOP, SOIC)  
TOP VIEW  
EL5378  
(28 LD QSOP)  
TOP VIEW  
FBP  
IN+  
1
2
3
4
8
7
6
5
OUT+  
VS-  
NC  
INP1  
INN1  
1
2
3
28 OUT1  
27 FBP1  
26 FBN1  
25 OUT1B  
24 VSP  
+
-
+
-
REF  
FBN  
VS+  
OUT-  
REF1 4  
NC  
INP2  
INN2  
REF2  
NC  
5
6
7
8
9
23 VSN  
22 OUT2  
21 FBP2  
20 FBN2  
19 OUT2B  
18 OUT3  
17 FBP3  
16 FBN3  
15 OUT3B  
+
-
INP3 10  
INN3 11  
REF3 12  
NC 13  
+
-
EN 14  
FN7491 Rev 7.00  
February 4, 2016  
Page 1 of 18  
EL5178, EL5378  
Pin Descriptions  
EL5178  
(NO LONGER  
AVAILABLE)  
EL5378  
17, 21, 27  
2, 6, 10  
3, 7, 11  
16, 20, 26  
15, 19, 25  
24  
PIN NAME  
PIN FUNCTION  
Feedback from non-inverting outputs  
FBP3, FBP2, FBP1  
INP1, INP2, INP3  
Non-inverting inputs  
INN1, INN2, INN3  
Inverting inputs, note that on EL5178, this pin is also the REF pin  
Feedback from inverting outputs  
Inverting outputs  
FBN3, FBN2, FBN1  
OUT3B, OUT2B, OUT1B  
VSP  
Positive supply  
23  
VSN  
Negative supply  
18, 22, 28  
1, 5, 9, 13  
4, 8, 12  
14  
OUT3, OUT2, OUT1  
Non-inverting outputs  
NC  
No connect; grounded for best crosstalk performance  
Reference inputs, sets common-mode output voltage  
ENABLE  
REF1, REF2, REF3  
EN  
FBP  
IN+  
1
2
3
4
5
6
7
8
Feedback from non-inverting output  
Non-inverting input  
REF  
FBN  
OUT-  
VS+  
VS-  
Inverting input, note that on EL5178, this pin is also the REF pin  
Feedback from inverting output  
Inverting output  
Positive supply  
Negative supply  
OUT+  
Non-inverting output  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
PART  
MARKING  
TEMP RANGE  
(°C)  
PACKAGE  
(RoHS Compliant)  
PKG.  
DWG. #  
EL5178ISZ (No longer available,  
recommended replacement:  
EL5174ISZ)  
5178ISZ  
-40 to +85  
-40 to +85  
-40 to +85  
8 Ld SOIC (150 mil)  
8 Ld MSOP (3.0mm)  
28 Ld QSOP (150 mil)  
M8.15E  
EL5178IYZ (No longer available,  
recommended replacement:  
EL5174ISZ)  
BBHAA  
M8.118A  
M28.15  
EL5378IUZ  
EL5378IUZ  
NOTES:  
1. Add “-T13” suffix for 2.5k unit or “-T7” suffix for 1k unit Tape and Reel options. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for EL5178, EL5378. For more information on MSL please see tech brief  
TB363.  
FN7491 Rev 7.00  
February 4, 2016  
Page 2 of 18  
 
 
 
 
 
EL5178, EL5378  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage (V + to V -) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12V  
Supply Voltage Rate-of-Rise (dV/dT) . . . . . . . . . . . . . . . . . . . . . . . . . . 1V/µs  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . .+135°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Power Dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493  
S
S
Input Voltage (IN+, IN- to V +, V -) . . . . . . . . . . . . . V - - 0.3V to V + + 0.3V  
S
S
S
S
Differential Input Voltage (IN+ to IN-). . . . . . . . . . . . . . . . . . . . . . . . . . ±4.8V  
Maximum Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±60mA  
Input Current (all inputs and references). . . . . . . . . . . . . . . . . . . . . . . . 4mA  
ESD Rating  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3kV  
Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300V  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
Electrical Specifications V + = +5V, V - = -5V, T = +25°C, V = 0V, R = 1kΩ, C = 2.7pF, [R = 604Ω, R = 402Ω (EL5178)],  
S
S
A
IN  
LD  
LD  
F
G
[R = 402Ω, R = 274Ω (EL5378)], unless otherwise specified.  
F
G
MIN  
MAX  
PARAMETER  
DESCRIPTION  
TEST CONDITIONS  
(Note 4)  
TYP  
(Note 4)  
UNIT  
AC PERFORMANCE  
BW  
-3dB Bandwidth  
A = 2, C = 2.7pF  
LD  
700  
80  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
V
A = 5, C = 2.7pF  
LD  
V
A = 2, C = 2.7pF, R = 200Ω  
LD LD  
320  
45  
V
BW  
SR  
±0.1dB Bandwidth  
A = 2, C = 2.7pF  
V
LD  
Slew Rate, Differential (EL5178)  
Slew Rate, Differential (EL5378)  
Settling Time to 0.1%  
V
V
V
= 3V , 20% to 80%  
650  
650  
850  
1000  
35  
OUT  
OUT  
OUT  
P-P  
= 3V , 20% to 80%  
P-P  
t
t
= 2V  
P-P  
STL  
Output Overdrive Recovery Time  
Gain Bandwidth Product  
AV = 2  
20  
ns  
OVR  
GBWP  
350  
110  
134  
70  
MHz  
MHz  
V/µs  
V/µs  
nV/Hz  
pA/Hz  
dBc  
V
V
V
V
BW (-3dB)  
SR+  
V
V
V
-3dB Bandwidth (EL5378)  
Slew Rate - Rise (EL5378)  
Slew Rate - Fall (EL5378)  
C
= 2.7pF  
LD  
REF  
REF  
REF  
N
REF  
REF  
REF  
V
= 2V , 20% to 80%  
P-P  
OUT  
OUT  
SR-  
V
= 2V , 20% to 80%  
P-P  
Input Voltage Noise  
At 10kHz  
At 10kHz  
18  
I
Input Current Noise  
1.5  
-83  
-72  
-88  
-70  
0.06  
0.13  
90  
N
HD2  
Second Harmonic Distortion  
V
V
V
V
= 2V , 5MHz  
P-P  
OUT  
OUT  
OUT  
OUT  
= 2V , 20MHz  
P-P  
dBc  
HD3  
Third Harmonic Distortion  
= 2V , 5MHz  
P-P  
dBc  
= 2V , 20MHz  
P-P  
dBc  
dG  
Differential Gain at 3.58MHz  
Differential Phase at 3.58MHz  
Channel Separation (EL5378)  
R
R
= 300Ω, AV = 2  
= 300Ω, AV = 2  
%
LD  
LD  
d  
°
e
At F = 1MHz  
dB  
S
INPUT CHARACTERISTICS  
Input Referred Offset Voltage  
V
±1.9  
-14  
2.3  
150  
1
±30  
-7  
mV  
µA  
µA  
kΩ  
pF  
V
OS  
I
Input Bias Current (V +, V -)  
-20  
IN  
REF  
IN  
IN  
I
Input Bias Current (V  
) (EL5378)  
V
= ±3.0V  
REF  
0.05  
4
REF  
R
Differential Input Resistance  
IN  
C
Differential Input Capacitance  
Differential Mode Input Range (EL5378)  
IN  
DMIR  
±2.3  
FN7491 Rev 7.00  
February 4, 2016  
Page 3 of 18  
EL5178, EL5378  
Electrical Specifications V + = +5V, V - = -5V, T = +25°C, V = 0V, R = 1kΩ, C = 2.7pF, [R = 604Ω, R = 402Ω (EL5178)],  
S
S
A
IN  
LD  
LD  
F
G
[R = 402Ω, R = 274Ω (EL5378)], unless otherwise specified. (Continued)  
F
G
MIN  
MAX  
PARAMETER  
DESCRIPTION  
TEST CONDITIONS  
(Note 4)  
TYP  
(Note 4)  
UNIT  
V
CMIR+  
Common-Mode Positive Input Range at  
3.1  
3.4  
-4.4  
3.7  
V
+, V - (EL5378)  
IN IN  
CMIR-  
Common-Mode Negative Input Range at  
-4.1  
V
V
V
V
+, V - (EL5378)  
IN IN  
V
V
V
+
-
Positive Reference Input Voltage Range  
(EL5378)  
V
V
+ = V - = 0V  
IN  
3.2  
REFIN  
REFIN  
REFOS  
IN  
Negative Reference Input Voltage Range  
(EL5378)  
+ = V - = 0V  
IN  
-3.3  
-3.2  
IN  
Output Offset Relative to V  
(EL5378)  
±50  
78  
±100  
mV  
dB  
REF  
Input Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
CMRR  
V
= ±2.5V  
65  
IN  
V
Output Voltage Swing  
Maximum Output Current  
Output Impedance  
R = 1kΩ  
±3.4  
±50  
±3.7  
±60  
130  
V
OUT  
L
I
(Max)  
R = 10Ω, V + = ±3.2V  
IN  
±100  
mA  
mΩ  
OUT  
L
R
OUT  
SUPPLY  
V
Supply Operating Range  
V + to V -  
4.75  
10  
11  
14  
10  
V
SUPPLY  
S
S
I
I
Power Supply Current - Per Channel  
12.5  
1.7  
mA  
µA  
S(ON)  
+
-
Positive Power Supply Current - Disabled  
(EL5378)  
EN pin tied to 4.8V  
S(OFF)  
I
Negative Power Supply Current - Disabled  
(EL5378)  
-200  
60  
-120  
75  
µA  
dB  
S(OFF)  
PSRR  
Power Supply Rejection Ratio  
V from ±4.5V to ±5.5V  
S
ENABLE (EL5378 ONLY)  
t
t
Enable Time  
130  
1.2  
ns  
µs  
V
EN  
DS  
Disable Time  
V
V
EN Pin Voltage for Power-Up  
EN Pin Voltage for Shutdown  
EN Pin Input Current High  
EN Pin Input Current Low  
V + - 1.5  
S
IH  
V + - 0.5  
S
V
IL  
I
I
At V = 5V  
EN  
123  
-8  
200  
µA  
µA  
IH-EN  
IL-EN  
At V = 0V  
EN  
-20  
NOTE:  
4. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested.  
FN7491 Rev 7.00  
February 4, 2016  
Page 4 of 18  
EL5178, EL5378  
Typical Performance Curves  
20  
15  
10  
5
V
= ±5V  
= 1kΩ  
S
LD  
R
= 2kΩ  
F
V
R
C
= ±5V  
R
C
R
S
= 1k  
= 0pF  
= 0pF  
LD  
LD  
= 422Ω  
LD  
= 2  
F
R
= 1kΩ  
F
A
V
A
= 2  
V
0
R
= 422Ω  
F
-5  
A
= 5  
V
-10  
-15  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 1. EL5178 FREQUENCY RESPONSE FOR VARIOUS R  
FIGURE 2. EL5178 FREQUENCY RESPONSE FOR VARIOUS GAIN  
F
V
R
C
= ±5V  
= 422Ω  
S
F
V
R
R
= ±5V  
S
C
= 22pF  
LD  
= 200Ω  
LD  
= 0pF  
= 2  
LD  
= 422Ω  
= 2  
F
A
V
A
V
C
LD = 12pF  
R
= 1kΩ  
LD  
C
= 5.6pF  
LD  
R
= 200Ω  
LD  
C
= 0pF  
LD  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FREQUENCY (Hz)  
FIGURE 3. EL5178 FREQUENCY RESPONSE FOR VARIOUS C  
FIGURE 4. EL5178 FREQUENCY RESPONSE FOR VARIOUS R  
LD  
LD  
V
= ±5V  
= 1kΩ  
V
= ±5V  
S
LD  
S
F
V
= 200mV  
OPP  
R
C
A
R
R
C
= 422Ω  
= 200Ω  
R = 422Ω  
f
= 0pF  
LD  
= 2  
LD  
LD  
V
= 1V  
OPP  
= 5.6pF  
= 2  
V
R = 210Ω  
f
A
V
V
= 2V  
OPP  
R = 154Ω  
f
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FIGURE 5. EL5178 FREQUENCY RESPONSE FOR VARIOUS V  
FIGURE 6. EL5378 FREQUENCY RESPONSE FOR VARIOUS R  
OPP  
F
FN7491 Rev 7.00  
February 4, 2016  
Page 5 of 18  
EL5178, EL5378  
Typical Performance Curves (Continued)  
20  
V
= ±5V  
S
V
R
R
= ±5V  
= 422Ω  
S
F
C
= 12pF  
R
C
R
= 1kΩ  
LD  
LD  
LD  
15  
10  
5
= 0pF  
= 200Ω  
= 2  
LD  
= 422Ω  
C
= 5.6pF  
F
LD  
A
V
A
= 2  
V
0
C
= 0pF  
LD  
-5  
A
= 5  
V
-10  
-15  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 7. EL5378 FREQUENCY RESPONSE FOR VARIOUS GAIN  
FIGURE 8. EL5378 FREQUENCY RESPONSE FOR VARIOUS C  
LD  
V
= ±5V  
= 0pF  
= 422Ω  
= 2  
S
LD  
F
R
= 1kΩ  
C
R
A
LD  
E
N
V
R
= 200Ω  
LD  
I
N
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
10  
100  
1k  
10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
FIGURE 9. EL5378 FREQUENCY RESPONSE FOR VARIOUS R  
FIGURE 10. VOLTAGE AND CURRENT NOISE vs FREQUENCY  
LD  
V
= ±5V  
V
= ±5V  
S
S
PSRR+  
PSRR-  
10M  
10k  
100k  
1M  
100M  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 11. CMRR vs FREQUENCY  
FIGURE 12. DIFFERENTIAL PSRR vs FREQUENCY  
FN7491 Rev 7.00  
February 4, 2016  
Page 6 of 18  
EL5178, EL5378  
Typical Performance Curves (Continued)  
100  
10  
1
0.1  
10k  
10k  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 14. OUTPUT IMPEDANCE [DISABLED]  
FIGURE 13. OUTPUT IMPEDANCE vs FREQUENCY  
V
= ±5V  
= 422Ω  
= +2  
V
= ±5V  
S
F
S
R
A
R
R
A
= 200Ω  
LD  
= 422Ω  
= 2  
V
F
CH1 CH2  
V
td  
FALL  
CH1 CH3  
td  
RISE  
(V)  
100k  
1M  
10M  
100M  
1G  
V
IN(P-P)  
FREQUENCY (Hz)  
FIGURE 16. INPUT-TO-OUTPUT DELAY  
FIGURE 15. CHANNEL SEPARATION vs FREQUENCY  
V
R
R
= ±5V  
S
V
= ±5V  
S
= 1kΩ  
LD  
R
C
R
= 1kΩ  
= 0pF  
LD  
LD  
F = 40MHz  
F = 20MHz  
= 422Ω  
= 2  
F
A
V
= 422Ω  
F
6V  
OPP-DM)  
4V  
OPP-DM  
F = 10MHz  
F = 2.2MHz  
2V  
OPP-DM  
F = 5MHz  
V
(V)  
FREQUENCY (Hz)  
OPP-DM  
FIGURE 17. TOTAL HARMONIC DISTORTION vs DIFFERENTIAL  
OUTPUT SWING  
FIGURE 18. TOTAL HARMONIC DISTORTION vs FREQUENCY  
FN7491 Rev 7.00  
February 4, 2016  
Page 7 of 18  
EL5178, EL5378  
Typical Performance Curves (Continued)  
V
V
IN  
IN  
200mV/DIV  
1V/DIV  
V
V
OUT  
OUT  
5ns/DIV  
10ns/DIV  
FIGURE 19. SMALL SIGNAL TRANSIENT RESPONSE  
FIGURE 20. LARGE SIGNAL TRANSIENT RESPONSE  
V
OUT  
V
OUT  
2V/DIV  
4V/DIV  
2V/DIV  
4V/DIV  
EN  
EN  
400ns/DIV  
100ns/DIV  
FIGURE 22. EL5378 DISABLED RESPONSE  
FIGURE 21. EL5378 ENABLED RESPONSE  
V
R
= ±5V  
= 50Ω  
V
R
= ±5V  
= 50Ω  
S
L
S
L
f1  
f2  
2f2-f1  
2f1-f2  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 23. IP3 vs FREQUENCY  
FIGURE 24. THIRD ORDER INTERCEPT POINT  
FN7491 Rev 7.00  
February 4, 2016  
Page 8 of 18  
EL5178, EL5378  
Typical Performance Curves (Continued)  
+V  
OUT  
+I  
S
-V  
OUT  
-I  
S
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 26. ± SUPPLY CURRENT vs TEMPERATURE  
FIGURE 25. OUTPUT SWING vs TEMPERATURE  
V
= ±5.5V  
S
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 28. INPUT BIAS CURRENT vs TEMPERATURE  
FIGURE 27. OFFSET VOLTAGE vs TEMPERATURE  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.4  
V
= 3V  
P-P  
OUT  
1.2 1.263W  
QSOP28  
= +99°C/W  
1.0  
JA  
781mW  
607mW  
0.8  
0.6  
0.4  
0.2  
0
SO8  
= +160°C/W  
JA  
MSOP8  
= +206°C/W  
JA  
0
25  
50  
75 85 100  
125  
150  
TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 29. SLEW RATE vs TEMPERATURE  
FIGURE 30. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FN7491 Rev 7.00  
February 4, 2016  
Page 9 of 18  
EL5178, EL5378  
Typical Performance Curves (Continued)  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.583W  
QSOP28  
1.136W  
= +79°C/W  
JA  
1.087W  
SO8  
= +110°C/W  
JA  
MSOP8  
= +115°C/W  
JA  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
FIGURE 31. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE  
FN7491 Rev 7.00  
February 4, 2016  
Page 10 of 18  
Connection Diagrams  
R
F1  
C
L1  
5pF  
422Ω  
-5V  
1
2
3
4
FBP  
INP  
OUT  
VSN  
VSP  
8
7
6
5
OUT  
IN+  
R
845Ω  
R
LD  
1kΩ  
G
REF  
REF  
FBN  
R
R
S2  
50Ω  
S2  
50Ω  
OUTB  
OUTB  
C
L2  
5pF  
+5V  
R
F2  
422Ω  
FIGURE 32. EL5178  
+5V  
1
2
3
4
5
6
7
8
9
NC  
OUT1 28  
FBP1 27  
FBN1 26  
R
422Ω  
F
INP1  
INN1  
REF1  
INP1  
INN1  
R
R
G
845Ω  
R
LD1  
1kΩ  
422Ω  
F
REF1 OUT1B 25  
NC  
VSP 24  
VSN 23  
INP2  
INN2  
REF2  
INP2  
INN2  
REF2  
NC  
OUT2 22  
FBP2 21  
FBN2 20  
R
422Ω  
422Ω  
F
R
LD2  
1kΩ  
R
G
845Ω  
R
F
INP3  
INN3  
REF3  
10 INP3 OUT2B 19  
11 INN3  
12 REF3  
13 NC  
OUT3 18  
FBP3 17  
R
422Ω  
422Ω  
F
R
R
R
R
R
R
R
R
R
R
G
845Ω  
R
SP1  
50Ω  
SN1  
50Ω  
SR1  
50Ω  
SP2  
50Ω  
SN2  
50Ω  
SR2  
50Ω  
SP3  
50Ω  
SN3  
50Ω  
SR3  
50Ω  
R
LD3  
1kΩ  
FBN3 16  
OUT3B 15  
F
14 EN  
C
C
C
C
C
C
L1  
5pF  
L1B  
5pF  
L2  
5pF  
L2B  
5pF  
L3  
5pF  
L3B  
-5V  
ENABLE  
5pF  
FIGURE 33. EL5378  
EL5178, EL5378  
Simplified Schematic  
V +  
S
R
R
3
4
R
R
2
1
R
R
7
8
IN+  
IN-  
FBP  
FBN  
V
V
B1  
OUT+  
R
R
CD  
CD  
REF  
10  
R
R
9
OUT-  
B2  
C
C
C
C
R
R
6
5
V -  
S
FIGURE 34. SIMPLIFIED SCHEMATIC  
the common mode signal and also part of the differential mode  
signal. For the true balance differential outputs, the REF pin must be  
Description of Operation and  
Application Information  
tied to the same bias level as the I + pin. For a ±5V supply, just tie  
N
the REF pin to GND if the I + pin is biased at 0V with a 50Ω or 75Ω  
N
Product Description  
termination resistor. For a single supply application, if the I + is  
N
biased to half of the rail, the REF pin should also be biased to half of  
the rail.  
The EL5178 and EL5378 are wide bandwidth, low power and  
single/differential ended to differential output amplifiers. The  
EL5178 is a single channel differential amplifier. Since the I - pin  
and REF pin are tied together internally, the EL5178 can be used  
as a single ended to differential converter. The EL5378 is a triple  
N
The gain setting for EL5178 is expressed in Equation 1:  
R
+ R  
F1  
F2  
---------------------------  
V
V
= V + 1 +  
ODM  
OCM  
IN  
R
G
channel differential amplifier. The EL5378 has a separate I - pin  
N
and REF pin for each channel. It can be used as  
= V  
= 0V  
REF  
single/differential ended to differential converter. The EL5178  
and EL5378 are internally compensated for closed loop gain of 2  
or greater. Connected in gain of 2 and driving a 1kΩ differential  
load, the EL5178 and EL5378 have a -3dB bandwidth of  
700MHz. Driving a 200Ω differential load at gain of 2, the  
bandwidth is about 320MHz. The EL5378 is available with a  
power-down feature to reduce the power while the amplifier is  
disabled.  
2R  
F
----------  
(EQ. 1)  
V
= V + 1 +  
ODM  
IN  
R
G
Where:  
V
= 0V  
REF  
R
= R = R  
F2  
F1  
F
Input, Output and Supply Voltage Range  
EL5378 has a separate I - pin and REF pin. It can be used as a  
N
The EL5178 and EL5378 have been designed to operate with a  
single supply voltage of 5V to 10V or split supplies with its total  
voltage from 5V to 10V. The amplifiers have an input common  
mode voltage range from -4.3V to 3.4V for ±5V supply. The  
differential mode input range (DMIR) between the two inputs is  
from -2.3V to +2.3V. The input voltage range at the REF pin is  
from -3.3V to 3.7V. If the input common mode or differential  
mode signal is outside the above-specified ranges, it will cause  
the output signal to become distorted.  
single/differential ended to differential converter. The voltage  
applied at REF pin can set the output common mode voltage and  
the gain is one.  
The gain setting for EL5378 is expressed in Equation 2:  
R
+ R  
F1  
F2  
---------------------------  
V
= V + V -  1 +  
ODM  
IN  
IN  
R
G
2R  
F
----------  
(EQ. 2)  
V
V
= V + V -  1 +  
ODM  
OCM  
IN  
IN  
R
G
The output of the EL5178 and EL5378 can swing from -3.8V to  
+3.8V at 1kΩ differential load at ±5V supply. As the load  
resistance becomes lower, the output swing is reduced.  
= V  
REF  
Where:  
= R = R  
F
R
Differential and Common-Mode Gain  
Settings  
F1  
F2  
For EL5178, since the I - pin and REF pin are bonded together as  
N
the REF pin in an 8 Ld package, the signal at the REF pin is part of  
FN7491 Rev 7.00  
February 4, 2016  
Page 12 of 18  
 
 
 
 
EL5178, EL5378  
Disable/Power-Down (for EL5378 only)  
R
F1  
The EL5378 can be disabled and its outputs placed in a high  
impedance state. The turn-off time is about 1.2µs and the  
turn-on time is about 130ns. When disabled, the amplifier's  
supply current is reduced to 1.7µA for I + and 120µA for I -  
typically, thereby effectively eliminating the power consumption.  
The amplifier's power-down can be controlled by standard CMOS  
signal levels at the EN pin. The applied logic signal is relative to  
FBP  
I +  
V
+
V
V
+
-
IN  
O
O
N
S
S
R
G
V
-
IN  
I -  
N
V
REF  
FBN  
REF  
the V + pin. Letting the EN pin float or applying a signal that is  
S
less than 1.5V below V + will enable the amplifier. The amplifier  
S
R
F2  
will be disabled when the signal at the EN pin is above V + - 0.5V.  
S
Output Drive Capability  
FIGURE 35.  
The EL5178 and EL5378 have internal short-circuit protection. Its  
typical short-circuit current is ±60mA. If the output is shorted  
indefinitely, the power dissipation could easily increase such that  
the part will be destroyed. Maximum reliability is maintained if  
the output current never exceeds ±60mA. This limit is set by the  
design of the internal metal interconnections.  
Choice of Feedback Resistor and Gain  
Bandwidth Product  
The feedback resistor forms a pole with the parasitic capacitance  
at the inverting input. As this pole becomes smaller, the  
amplifier's phase margin is reduced. This causes ringing in the  
time domain and peaking in the frequency domain. Therefore, R  
has some maximum value that should not be exceeded for  
F
Power Dissipation  
optimum performance. If a large value of R must be used, a  
F
With the high output drive capability of the EL5178 and EL5378, it  
is possible to exceed the +135°C absolute maximum junction  
temperature under certain load current conditions. Therefore, it is  
important to calculate the maximum junction temperature for the  
application to determine if the load conditions or package types  
need to be modified for the amplifier to remain in the safe  
operating area.  
small capacitor in the few Pico farad range in parallel with R  
can help to reduce the ringing and peaking at the expense of  
reducing the bandwidth.  
F
The bandwidth of the EL5178 and EL5378 depends on the load  
and the feedback network. R and R appear in parallel with the  
F
G
load. As this combination gets smaller, the bandwidth falls off.  
Consequently, R also has a minimum value that should not be  
exceeded for optimum bandwidth performance. For the gains  
F
The maximum power dissipation allowed in a package is  
determined according to Equation 4:  
other than 1, optimum response is obtained with R between  
F
T
T  
AMAX  
JMAX  
(EQ. 4)  
--------------------------------------------  
500Ω to 1kΩ.  
PD  
=
MAX  
JA  
The EL5178 and EL5378 have a gain bandwidth product of  
Where:  
350MHz for R = 1kΩ. For gains 5, its bandwidth can be  
LD  
predicted by Equation 3:  
T
= Maximum junction temperature  
= Maximum ambient temperature  
JMAX  
(EQ. 3)  
Gain BW = 300MHz  
T
AMAX  
Driving Capacitive Loads and Cables  
= Thermal resistance of the package  
JA  
The EL5178 and EL5378 can drive a 23pF differential capacitor  
in parallel with 200Ω differential load with less than 5dB of  
peaking at gain of 2. If less peaking is desired in applications, a  
small series resistor (usually between 5Ω to 50Ω) can be placed  
in series with each output to eliminate most peaking. However,  
this will reduce the gain slightly. If the gain setting is greater than  
The maximum power dissipation actually produced by an IC is  
the total quiescent supply current times the total power supply  
voltage, plus the power in the IC due to the load, or as expressed  
in Equation 5:  
V  
O
(EQ. 5)  
-----------  
LD  
PD = i V  
I  
+ V  
V    
STOT  
SMAX  
STOT  
O
R
2, the gain resistor R can then be chosen to make up for any  
G
gain loss, which may be created by the additional series resistor  
at the output.  
Where:  
V
= Total supply voltage = V + - V -  
S S  
STOT  
When used as a cable driver, double termination is always  
recommended for reflection-free performance. For those  
applications, a back-termination series resistor at the amplifier's  
output will isolate the amplifier from the cable and allow  
extensive capacitive drive. However, other applications may have  
high capacitive loads without a back-termination resistor. Again,  
a small series resistor at the output can help to reduce peaking.  
I
= Maximum quiescent supply current per channel  
SMAX  
V = Maximum differential output voltage of the application  
O
R
= Differential load resistance  
LD  
I
= Load current  
LOAD  
i = Number of channels by setting the two PD  
MAX  
equations  
equal to each other, we can solve the output current and R  
to avoid the device overheat.  
LD  
FN7491 Rev 7.00  
February 4, 2016  
Page 13 of 18  
 
 
 
 
EL5178, EL5378  
For good AC performance, parasitic capacitance should be kept  
to a minimum. Use of wire-wound resistors should be avoided  
because of their additional series inductance. Use of sockets  
should also be avoided if possible. Sockets add parasitic  
inductance and capacitance that can result in compromised  
performance. Minimizing parasitic capacitance at the amplifier's  
inverting input pin is very important. The feedback resistor  
should be placed very close to the inverting input pin. Strip line  
design techniques are recommended for the signal traces.  
Power Supply Bypassing and Printed Circuit  
Board Layout  
As with any high frequency device, a good printed circuit board  
layout is necessary for optimum performance. Lead lengths  
should be as short as possible. The power supply pin must be  
well bypassed to reduce the risk of oscillation. For normal single  
supply operation, where the VS- pin is connected to the ground  
plane, a single 4.7µF tantalum capacitor in parallel with a 0.1µF  
ceramic capacitor from VS+ to GND will suffice. This same  
capacitor combination should be placed at each supply pin to  
ground if split supplies are to be used. In this case, the VS- pin  
becomes the negative supply rail.  
As the signal is transmitted through a cable, the high frequency  
signal will be attenuated. One way to compensate this loss is to  
boost the high frequency gain at the receiver side.  
Typical Applications  
R
F
FBP  
IN+  
IN-  
50  
50  
TWISTED PAIR  
IN+  
R
R
G
T
EL5178/  
EL5378  
EL5175/  
EL5375  
V
O
REF  
IN-  
Z
= 100Ω  
O
FBN  
REF  
R
F
R
FR  
R
GR  
FIGURE 36. TWISTED PAIR CABLE RECEIVER  
R
F
GAIN  
(dB)  
FBP  
I +  
V
V
+
-
O
N
R
T
R
R
G
GC  
75  
I -  
N
C
REF  
FBN  
L
O
FREQUENCY  
R
f
f
H
F
L
2R  
1
F
------------------------  
f
f
----------  
DC Gain = 1 +  
L
2R  
C
C
R
G
G
1
2R  
----------------------------  
F
H
2R  
C
C
--------------------------  
  
HFGain = 1 +  
GC  
R
R
GC  
G
FIGURE 37. TRANSMIT EQUALIZER  
FN7491 Rev 7.00  
February 4, 2016  
Page 14 of 18  
EL5178, EL5378  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that  
you have the latest revision.  
DATE  
REVISION  
FN7491.7  
CHANGE  
February 4, 2016  
Added "No longer available" across the 5178 pinout on page 1.  
Updated “Ordering Information” on page 2 by adding Temp Range column and updating tape and reel note to  
show options.  
Added "No longer available" under the "EL5178" header of “Pin Descriptions” on page 2.  
Changed "gain of 1" to "gain of 2"1st paragraph under “Product Description” on page 12.  
Changed "bounded" to "bonded".in 1st sentence under “Differential and Common-Mode Gain Settings” on  
page 12.  
Deleted from 1st and 2nd paragraph in “Choice of Feedback Resistor and Gain Bandwidth Product” on page 13  
"For gains greater than 1," and "for gains other than 1"  
August 19, 2015  
FN7491.6  
Updated Ordering Information table on page 2.  
Added Revision History and About Intersil sections.  
About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com.  
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support  
FN7491 Rev 7.00  
February 4, 2016  
Page 15 of 18  
EL5178, EL5378  
Package Outline Drawing  
M8.15E  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 0, 08/09  
4
4.90 ± 0.10  
A
DETAIL "A"  
0.22 ± 0.03  
B
6.0 ± 0.20  
3.90 ± 0.10  
4
PIN NO.1  
ID MARK  
5
(0.35) x 45°  
4° ± 4°  
0.43 ± 0.076  
1.27  
0.25 M C A B  
SIDE VIEW “B”  
TOP VIEW  
1.75 MAX  
1.45 ± 0.1  
0.25  
GAUGE PLANE  
C
SEATING PLANE  
0.175 ± 0.075  
SIDE VIEW “A  
0.10 C  
0.63 ±0.23  
DETAIL "A"  
(0.60)  
(1.27)  
NOTES:  
(1.50)  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
(5.40)  
4. Dimension does not include interlead flash or protrusions.  
Interlead flash or protrusions shall not exceed 0.25mm per side.  
The pin #1 identifier may be either a mold or mark feature.  
Reference to JEDEC MS-012.  
5.  
6.  
TYPICAL RECOMMENDED LAND PATTERN  
FN7491 Rev 7.00  
February 4, 2016  
Page 16 of 18  
EL5178, EL5378  
Package Outline Drawing  
M8.118A  
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE (MSOP)  
Rev 0, 9/09  
A
3.0±0.1  
8
0.25 CAB  
4.9±0.15  
DETAIL "X"  
0.18 ± 0.05  
3.0±0.1  
1.10 Max  
PIN# 1 ID  
B
SIDE VIEW 2  
1
2
0.65 BSC  
TOP VIEW  
0.95 BSC  
0.86±0.09  
GAUGE  
PLANE  
H
C
0.25  
SEATING PLANE  
0.10 ± 0.05  
0.33 +0.07/ -0.08  
0.08 C AB  
3°±3°  
0.10 C  
0.55 ± 0.15  
DETAIL "X"  
SIDE VIEW 1  
5.80  
NOTES:  
1. Dimensions are in millimeters.  
4.40  
3.00  
2. Dimensioning and tolerancing conform to JEDEC MO-187-AA  
and AMSE Y14.5m-1994.  
3.  
Plastic or metal protrusions of 0.15mm max per side are not  
included.  
0.65  
0.40  
4. Plastic interlead protrusions of 0.25mm max per side are not  
included.  
1.40  
TYPICAL RECOMMENDED LAND PATTERN  
5. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
6. This replaces existing drawing # MDP0043 MSOP 8L.  
FN7491 Rev 7.00  
February 4, 2016  
Page 17 of 18  
EL5178, EL5378  
Shrink Small Outline Plastic Packages (SSOP)  
Quarter Size Outline Plastic Packages (QSOP)  
M28.15  
N
INDEX  
AREA  
28 LEAD SHRINK SMALL OUTLINE PLASTIC PACKAGE  
(0.150” WIDEBODY)  
0.25(0.010)  
M
B M  
H
E
GAUGE  
PLANE  
INCHES  
MIN  
MILLIMETERS  
-B-  
SYMBOL  
MAX  
0.069  
0.010  
0.061  
0.012  
0.010  
0.394  
0.157  
MIN  
1.35  
0.10  
-
MAX  
1.75  
0.25  
1.54  
0.30  
0.25  
10.00  
3.98  
NOTES  
A
A1  
A2  
B
0.053  
0.004  
-
-
1
2
3
-
L
0.25  
0.010  
SEATING PLANE  
A
-
-A-  
0.008  
0.007  
0.386  
0.150  
0.20  
0.18  
9.81  
3.81  
9
D
h x 45°  
C
-
-C-  
D
3
E
4
A2  
e
A1  
C
e
0.025 BSC  
0.635 BSC  
-
B
0.10(0.004)  
0.228  
0.0099  
0.016  
0.244  
0.0196  
0.050  
5.80  
0.26  
0.41  
6.19  
0.49  
1.27  
-
H
0.17(0.007) M  
C
A M B S  
5
h
NOTES:  
L
6
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2  
of Publication Number 95.  
N
28  
28  
7
0°  
8°  
0°  
8°  
-
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
Rev. 1 6/04  
3. Dimension “D” does not include mold flash, protrusions or gate  
burrs. Mold flash, protrusion and gate burrs shall not exceed  
0.15mm (0.006 inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.25mm (0.010 inch)  
per side.  
5. The chamfer on the body is optional. If it is not present, a visual in-  
dex feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. Dimension “B” does not include dambar protrusion. Allowable dam-  
bar protrusion shall be 0.10mm (0.004 inch) total in excess of “B”  
dimension at maximum material condition.  
10. Controlling dimension: INCHES. Converted millimeter dimensions  
are not necessarily exact.  
© Copyright Intersil Americas LLC 2004-2016. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7491 Rev 7.00  
February 4, 2016  
Page 18 of 18  

相关型号:

EL5178IYZ-T

LINE DRIVER
RENESAS

EL5178IYZ-T13

700MHz Differential Twisted-Pair Drivers
INTERSIL

EL5178IYZ-T13

700MHz Differential Twisted-Pair Drivers; MSOP8, SOIC8; Temp Range: -40° to 85°C
RENESAS

EL5178IYZ-T7

700MHz Differential Twisted-Pair Drivers
INTERSIL

EL5178IYZ-T7

700MHz Differential Twisted-Pair Drivers; MSOP8, SOIC8; Temp Range: -40° to 85°C
RENESAS

EL5178_07

700MHz Differential Twisted-Pair Drivers
INTERSIL
ETC

EL518-12-1

Logic IC
ETC

EL518-12-10

Logic IC
ETC

EL518-12-2

Logic IC
ETC

EL518-12-3

Logic IC
ETC

EL518-12-4

Logic IC
ETC