EL5421TIYZ [RENESAS]

12MHz Rail-to-Rail Input-Output Buffer; MSOP10; Temp Range: -40° to 85°C;
EL5421TIYZ
型号: EL5421TIYZ
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

12MHz Rail-to-Rail Input-Output Buffer; MSOP10; Temp Range: -40° to 85°C

放大器 光电二极管
文件: 总13页 (文件大小:673K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
EL5421T  
12MHz Rail-to-Rail Input-Output Buffer  
FN6922  
Rev 0.00  
September 25, 2009  
The EL5421T is a high voltage rail-to-rail input-output buffer  
with low power consumption. The EL5421T contains four  
buffers. Each buffer exhibits beyond the rail input capability,  
rail-to-rail output capability and is unity gain stable.  
Features  
• 12MHz -3dB bandwidth  
• 4 Unity Gain Buffers  
The maximum operating voltage range is from 4.5V to 19V. It  
can be configured for single or dual supply operation, and  
typically consumes only 500µA per buffer. The EL5421T has  
an output short circuit capability of ±200mA and a  
• 4.5V to 19V Maximum Supply Voltage Range  
• 12V/µs Slew Rate  
• 500µA Supply Current (per buffer)  
• ±70mA Continuous Output Current  
• ±200mA Output Short Circuit Current  
• Unity-gain Stable  
continuous output current capability of ±70mA.  
The EL5421T features a slew rate of 12V/µs. Also, the  
device provides common mode input capability beyond the  
supply rails, rail-to-rail output capability, and a bandwidth of  
12MHz (-3dB). This enables the buffers to offer maximum  
dynamic range at any supply voltage. These features make  
the EL5421T an ideal buffer solution for use in TFT-LCD  
• Beyond the Rails Input Capability  
• Rail-to-rail Output Swing  
• Built-in Thermal Protection  
panels as a V  
or static gamma buffer, and in high speed  
COM  
filtering and signal conditioning applications. Other  
applications include battery power and portable devices,  
especially where low power consumption is important.  
• -40°C to +85°C Ambient Temperature Range  
• Pb-free (RoHS compliant)  
The EL5421T is available in a space saving 10 Ld MSOP  
package and operates over an ambient temperature range  
of -40°C to +85°C.  
Applications  
• TFT-LCD Panels  
• V  
COM  
Buffers  
Ordering Information  
• Electronics Notebooks  
• Electronics Games  
PART  
NUMBER  
(Note)  
PART  
MARKING  
PACKAGE  
(Pb-Free)  
PKG.  
DWG. #  
• Personal Communication Devices  
• Personal Digital Assistants (PDA)  
• Portable Instrumentation  
• Wireless LANs  
EL5421TIYZ*  
BBBLA  
10 Ld MSOP  
M10.118A  
*Add “-T7” or “-T13” suffix for tape and reel. Please refer to TB347  
for details on reel specifications.  
NOTE: These Intersil Pb-free plastic packaged products employ  
special Pb-free material sets, molding compounds/die attach  
materials, and 100% matte tin plate plus anneal (e3 termination  
finish, which is RoHS compliant and compatible with both SnPb and  
Pb-free soldering operations). Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed  
the Pb-free requirements of IPC/JEDEC J STD-020.  
• Office Automation  
• Active Filters  
• ADC/DAC Buffers  
Pinout  
EL5421T  
(10 LD MSOP)  
TOP VIEW  
VOUTA  
VINA  
1
2
3
4
5
10 VOUTD  
9
8
7
6
VIND  
VS-  
VS+  
VINB  
VINC  
VOUTC  
VOUTB  
FN6922 Rev 0.00  
Page 1 of 13  
September 25, 2009  
EL5421T  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage between V + and V -. . . . . . . . . . . . . . . . . . +19.8V  
Thermal Resistance Junction-to-Ambient (Typical)  
10 Ld MSOP (Note 1). . . . . . . . . . . . . . . . . . . . . . . .  
JA  
(°C/W)  
160  
S
S
Input Voltage Range (V ) . . . . . . . . . . . .(V -)-0.5V to (V +)+0.5V  
INx  
S
S
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . ±70mA  
ESD Rating  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3000V  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . +150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . .See Figure 27 and 28  
Pb-free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
NOTE:  
1. is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
Electrical Specifications V + = +5V, V - = -5V, R = 10kto 0V, T = +25°C unless otherwise specified.  
S
S
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP  
MAX  
13  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
V
= 0V  
= 0V  
3
4
2
1
2
mV  
µV/°C  
nA  
OS  
CM  
CM  
TCV  
Average Offset Voltage Drift (Note 2)  
Input Bias Current  
OS  
I
50  
B
R
Input Impedance  
G  
IN  
IN  
C
Input Capacitance  
pF  
A
Voltage Gain  
-4.5V V  
OUTx  
4.5V  
0.992  
4.85  
1.008  
-4.85  
V/V  
V
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short Circuit Current  
I = -5mA  
-4.94  
4.94  
V
V
OL  
L
I = +5mA  
OH  
L
I
V
= 0V, Source: V  
short to V -,  
±200  
mA  
SC  
CM  
Sink: V  
OUTx  
short to V +  
S
OUTx  
S
I
Output Current  
±70  
mA  
OUT  
POWER SUPPLY PERFORMANCE  
(V +) - (V -)  
Supply Voltage Range  
4.5  
60  
19  
V
S
S
I
Supply Current (Per Buffer)  
Power Supply Rejection Ratio  
V
= 0V, No load  
500  
75  
750  
µA  
dB  
S
CM  
PSRR  
Supply is moved from ±2.25V to ±9.5V  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 3)  
-4.0V V  
OUTx  
4.0V, 20% to 80%  
= 2V step,  
12  
V/µs  
ns  
t
Settling to +0.1% (Note 4)  
A
= +1, V  
500  
S
V
OUTx  
R = 10k, C = 8pF  
L
L
BW  
CS  
-3dB Bandwidth  
R = 10k, C = 8pF  
12  
75  
MHz  
dB  
L
L
Channel Separation  
f = 5MHz  
Electrical Specifications V + = +5V, V - = 0V, R = 10kto 2.5V, T = +25°C unless otherwise specified.  
S
S
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP  
MAX  
13  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
V
= 2.5V  
= 2.5V  
3
4
2
mV  
µV/°C  
nA  
OS  
CM  
CM  
TCV  
Average Offset Voltage Drift (Note 2)  
Input Bias Current  
OS  
I
50  
B
FN6922 Rev 0.00  
Page 2 of 13  
September 25, 2009  
EL5421T  
Electrical Specifications V + = +5V, V - = 0V, R = 10kto 2.5V, T = +25°C unless otherwise specified. (Continued)  
S
S
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
0.992  
4.85  
TYP  
1
MAX  
UNIT  
GW  
pF  
R
Input Impedance  
IN  
C
Input Capacitance  
Voltage Gain  
2
IN  
A
0.5 V  
4.5V  
OUTx  
1.008  
150  
V/V  
V
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short Circuit Current  
I = -2.5mA  
30  
mV  
V
OL  
L
I = +2.5mA  
4.97  
±125  
OH  
L
I
V
= 0V, Source: V  
short to V -,  
mA  
SC  
CM  
Sink: V  
OUTx  
short to V +  
S
OUTx  
S
I
Output Current  
±70  
mA  
OUT  
POWER SUPPLY PERFORMANCE  
(V +) - (V -)  
Supply Voltage Range  
4.5  
60  
19  
V
S
S
I
Supply Current (Per Buffer)  
Power Supply Rejection Ratio  
V
= 2.5V, No load  
500  
75  
750  
µA  
dB  
S
CM  
PSRR  
Supply is moved from 4.5V to 19V  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 3)  
1V V  
4V, 20% to 80%  
12  
V/µs  
ns  
OUTx  
t
Settling to +0.1% (Note 4)  
A
= +1, V  
= 2V step,  
500  
S
V
OUTx  
R = 10k, C = 8pF  
L
L
BW  
CS  
-3dB Bandwidth  
R = 10k, C = 8pF  
12  
75  
MHz  
dB  
L
L
Channel Separation  
f = 5MHz  
Electrical Specifications V + = +18V, V - = 0V, R = 10kto 9V, T = +25°C unless otherwise specified.  
S
S
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP  
MAX  
15  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
= 9V  
= 9V  
4
5
2
1
2
mV  
µV/°C  
nA  
OS  
CM  
CM  
TCV  
Average Offset Voltage Drift (Note 2)  
Input Bias Current  
OS  
I
V
50  
B
R
C
Input Impedance  
G  
IN  
IN  
Input Capacitance  
pF  
A
Voltage Gain  
0.5 V  
17.5V  
OUTx  
0.992  
17.85  
1.008  
150  
V/V  
V
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short Circuit Current  
I = -9mA  
100  
17.90  
±200  
mV  
V
OL  
L
I = +9mA  
OH  
L
I
V
= 9V, Source: V  
short to V -,  
mA  
SC  
CM  
Sink: V  
OUTx  
short to V +  
S
OUTx  
S
I
Output Current  
±70  
mA  
OUT  
POWER SUPPLY PERFORMANCE  
(V +) - (V -)  
Supply Voltage Range  
4.5  
60  
19  
V
S
S
I
Supply Current (Per Buffer)  
Power Supply Rejection Ratio  
V
= 9V, No load  
550  
75  
750  
µA  
dB  
S
CM  
PSRR  
Supply is moved from 4.5V to 19V  
DYNAMIC PERFORMANCE  
SR  
Slew Rate (Note 3)  
1V V  
14V, 20% to 80%  
12  
V/µs  
OUTx  
FN6922 Rev 0.00  
Page 3 of 13  
September 25, 2009  
EL5421T  
Electrical Specifications V + = +18V, V - = 0V, R = 10kto 9V, T = +25°C unless otherwise specified.  
S
S
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP  
MAX  
UNIT  
t
Settling to +0.1% (Note 4)  
A
= +1, V = 2V step,  
OUTx  
500  
ns  
S
V
R = 10k, C = 8pF  
L
L
BW  
-3dB Bandwidth  
R = 10k, C = 8pF  
12  
75  
MHz  
dB  
L
L
CS  
Channel Separation  
f = 5MHz  
NOTES:  
2. Measured over -40°C to +85°C ambient operating temperature range. See the typical TCV  
“Typical Performance Curves” on page 5  
production distribution shown in the  
OS  
3. Typical slew rate is an average of the slew rates measured on the rising (20% to 80%) and the falling (80% to 20%) edges of the output signal.  
4. Settling time measured as the time from when the output level crosses the final value on rising/falling edge to when the output level settles within  
a ±0.1% error band. The range of the error band is determined by: Final Value(V)±[Full Scale(V)*0.1%]  
FN6922 Rev 0.00  
Page 4 of 13  
September 25, 2009  
EL5421T  
Typical Performance Curves  
28  
24  
20  
16  
12  
8
2200  
VS = ±5V  
TA = +25°C  
TYPICAL  
PRODUCTION  
DISTRIBUTION  
TYPICAL  
PRODUCTION  
DISTRIBUTION  
V
= ±5V  
2000  
S
-40°C TO +85°C  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
4
0
1
3
5
7
9
11  
13  
15  
-8 -7 -6 -5 -4 -3 -2 -1  
0 1 2 3 4 5 6 7 8  
INPUT OFFSET VOLTAGE DRIFT (|µV|/°C)  
INPUT OFFSET VOLTAGE (mV)  
FIGURE 2. INPUT OFFSET VOLTAGE DRIFT  
FIGURE 1. INPUT OFFSET VOLTAGE DISTRIBUTION  
2
1
10  
V
= ±5V  
S
V
= ±5V  
S
5
0
0
-1  
-2  
-5  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 3. INPUT OFFSET VOLTAGE vs TEMPERATURE  
FIGURE 4. INPUT BIAS CURRENT vs TEMPERATURE  
-4.91  
4.95  
V
OUT  
= ±5V  
S
V
= ±5V  
= 5mA  
S
I
= -5mA  
I
OUT  
-4.92  
-4.93  
-4.94  
-4.95  
-4.96  
4.93  
4.91  
4.89  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 6. OUTPUT LOW VOLTAGE vs TEMPERATURE  
FIGURE 5. OUTPUT HIGH VOLTGE vs TEMPERATURE  
FN6922 Rev 0.00  
Page 5 of 13  
September 25, 2009  
EL5421T  
Typical Performance Curves (Continued)  
1.0018  
14  
13  
12  
11  
VS = ±5V  
RL = 10k  
VS = ±5V  
RL = 10k  
1.0016  
1.0014  
1.0012  
1.0010  
1.0008  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 8. SLEW RATE vs TEMPERATURE  
FIGURE 7. VOLTAGE GAIN vs TEMPERATURE  
550  
525  
500  
475  
450  
650  
600  
550  
500  
450  
400  
350  
T
= +25°C  
A
V
= ±5V  
S
NO LOAD  
INPUTS AT GND  
2
4
6
8
10  
-50  
0
50  
TEMPERATURE (°C)  
100  
150  
SUPPLY VOLTAGE (±V)  
FIGURE 10. SUPPLY CURRENT PER CHANNEL vs SUPPLY  
VOLTAGE  
FIGURE 9. SUPPLY CURRENT PER CHANNEL vs  
TEMPERATURE  
20  
5
T
A
R
C
= +25°C  
= 1  
= 10k  
= 8pF  
A
V
L
L
10k  
16  
12  
8
0
1k  
560  
-5  
150  
V
V
C
= ±5V  
= 1  
= 8pF  
S
-10  
-15  
A
L
4
100k  
1M  
10M  
100M  
2
4
6
8
10  
SUPPLY VOLTAGE (±V)  
FREQUENCY (Hz)  
FIGURE 11. SLEW RATE vs SUPPLY VOLTAGE  
FIGURE 12. FREQUENCY RESPONSE FOR VARIOUS R  
L
FN6922 Rev 0.00  
September 25, 2009  
Page 6 of 13  
EL5421T  
Typical Performance Curves (Continued)  
20  
200  
160  
120  
80  
V
= ±5V  
= 1  
= OPEN  
100pF  
S
A
V
10  
R
V
L
= +13dBm  
OUTx  
0
-10  
-20  
-30  
50pF  
8pF  
1000pF  
1M  
V
= ±5V  
= 1  
= 10k  
S
40  
A
V
R
L
0
100k  
10M  
100M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
FREQUENCY (Hz)  
FIGURE 14. OUTPUT IMPEDANCE vs FREQUENCY  
FIGURE 13. FREQUENCY RESPONSE FOR VARIOUS C  
L
0
12  
10  
8
V
A
= ±5V  
= +25°C  
S
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
T
6
V
= ±5V  
= +25°C  
= 1  
= 10k  
= 8pF  
S
T
A
4
2
0
A
V
PSRR+  
PSRR-  
R
C
L
L
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 15. MAXIMUM OUTPUT SWING vs FREQUENCY  
FIGURE 16. PSRR vs FREQUENCY  
1000  
0.050  
0.045  
0.040  
0.035  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
V
= ±5V  
T
A
= +25°C  
S
R
= 10k  
= 1  
L
A
V
V
= 1.4V  
IN  
RMS  
100  
10  
1
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
FREQUENCY (Hz)  
FIGURE 18. TOTAL HARMONIC DISTORTION + NOISE vs  
FREQUENCY  
FIGURE 17. INPUT VOLTAGE NOISE SPECTRAL DENSITY vs  
FREQUENCY  
FN6922 Rev 0.00  
Page 7 of 13  
September 25, 2009  
EL5421T  
Typical Performance Curves (Continued)  
-60  
100  
80  
60  
40  
20  
0
MEASURED CH A TO D, OR B TO C  
OTHER COMBINATIONS YIELD  
IMPROVED REJECTION  
-70  
V
= ±5V  
= 1  
S
-80  
-90  
A
V
V
= 0dBm  
INx  
V
= ±5V  
= +25°C  
= 1  
S
T
A
A
V
R
= 10k  
L
V
= ±50mV  
INx  
-100  
10  
100  
LOAD CAPACITANCE (pF)  
1000  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FIGURE 20. SMALL SIGNAL OVERSHOOT vs LOAD  
CAPACITANCE  
FIGURE 19. CHANNEL SEPARATION vs FREQUENCY  
RESPONSE  
V
T
A
= ±5V  
= +25°C  
= 1  
V
S
A
5
V
T
= ±5V  
= +25°C  
= 1  
= 10k  
= 8pF  
S
A
4
3
R = 10k  
C
L
L
A
=8pF  
V
R
C
0.1%  
0.1%  
L
L
2
1
0
-1  
-2  
-3  
-4  
-5  
6V STEP  
1µs/DIV  
100  
200  
300  
400  
500  
600  
700  
SETTLING TIME (ns)  
FIGURE 22. LARGE SIGNAL TRANSIENT RESPONSE  
FIGURE 21. STEP SIZE vs SETTLING TIME  
V
= ±5V  
= +25°C  
= 1  
S
T
A
A
V
R = 10k  
L
L
C
=8pF  
200ns/DIV  
100mV STEP  
FIGURE 23. SMALL SIGNAL TRANSIENT RESPONSE  
FN6922 Rev 0.00  
Page 8 of 13  
September 25, 2009  
EL5421T  
Typical Performance Curves (Continued)  
EL5421T  
(10LD MSOP shown)  
1
2
10  
VOUTA  
VOUTD  
VOUTA  
VOUTD  
VIND+  
RLA  
RLD  
CLA  
CLD  
9
VINA  
Vs+  
VIND  
Vs-  
VINA+  
49.9  
49.9  
8
3
4
VS+  
VS-  
+
+
4.7µF  
4.7µF  
0.1µF  
0.1µF  
7
6
VINB+  
VINB  
VINC  
VINC+  
49.9  
49.9  
5
VOUTB  
VOUTC  
VOUTB  
VOUTC  
RLB  
RLC  
CLB  
CLC  
FIGURE 24. BASIC TEST CIRCUIT  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
FUNCTION  
EQUIVALENT CIRCUIT  
1
2
VOUTA  
VINA  
Buffer A Output  
Buffer A Input  
(Reference Circuit 1)  
(Reference Circuit 2)  
3
VS+  
Positive Power Supply  
Buffer B Input  
4
VINB  
(Reference Circuit 2)  
(Reference Circuit 1)  
(Reference Circuit 1)  
(Reference Circuit 2)  
5
VOUTB  
VOUTC  
VINC  
Buffer B Output  
Buffer C Output  
Buffer C Input  
6
7
8
VS-  
Negative Power Supply  
Buffer D Input  
9
VIND  
(Reference Circuit 1)  
(Reference Circuit 2)  
10  
VOUTD  
Buffer D Output  
V
S+  
V
V
S+  
V
OUTx  
V
INx  
S-  
GND  
V
S-  
CIRCUIT 1  
CIRCUIT 2  
FN6922 Rev 0.00  
Page 9 of 13  
September 25, 2009  
EL5421T  
Applications Information  
V
= ±2.5V, T = +25°C, V  
= 6V  
R = 10kto GND  
L
S
A
INx  
P-P,  
Product Description  
The EL5421T is a high voltage rail-to-rail input-output buffer  
with low power consumption. The EL5421T contains four  
buffers. Each buffer exhibits beyond the rail input capability,  
rail-to-rail output capability and is unity gain stable.  
OUTPUT  
The EL5421T features a slew rate of 12V/µs. Also, the  
device provides common mode input capability beyond the  
supply rails, rail-to-rail output capability, and a bandwidth of  
12MHz (-3dB). This enables the buffers to offer maximum  
dynamic range at any supply voltage.  
INPUT  
100µs/DIV  
Operating Voltage, Input and Output Capability  
FIGURE 25. OPERATION WITH BEYOND-THE-RAILS INPUT  
The EL5421T can operate on a single supply or dual supply  
configuration. The EL5421T operating voltage ranges from a  
minimum of 4.5V to a maximum of 19V. This range allows for  
a standard 5V (or ±2.5V) supply voltage to dip to -10%, or a  
standard 18V (or ±9V) to rise by +5.5% without affecting  
performance or reliability.  
V
= ±5V, T = +25°C, V  
= 10V R = 10kto GND  
P-P, L  
S
A
INx  
The input common-mode voltage range of the EL5421T  
extends 500mV beyond the supply rails. Also, the EL5421T  
is immune to phase reversal. However, if the common mode  
input voltage exceeds the supply voltage by more than 0.5V,  
electrostatic protection diodes in the input stage of the  
device begin to conduct. Even though phase reversal will not  
occur, to maintain optimal reliability it is suggested to avoid  
input overvoltage conditions. Figure 25 shows the input  
voltage driven 500mV beyond the supply rails and the device  
output swinging between the supply rails.  
100µs/DIV  
FIGURE 26. OPERATION WITH RAIL-TO-RAIL INPUT AND  
Output Current  
The EL5421T is capable of output short circuit currents of  
200mA (source and sink), and the device has built-in  
protection circuitry which limits the short circuit current to  
±200mA (typical).  
The EL5421T output typically swings to within 50mV of  
positive and negative supply rails with load currents of  
±5mA. Decreasing load currents will extend the output  
voltage range even closer to the supply rails. Figure 26  
shows the input and output waveforms for the device in a  
unity-gain configuration. Operation is from ±5V supply with a  
To maintain maximum reliability the continuous output  
current should never exceed ±70mA. This ±70mA limit is  
determined by the characteristics of the internal metal  
interconnects. Also, see “Power Dissipation” on page 11 for  
detailed information on ensuring proper device operation  
and reliability for temperature and load conditions.  
10kload connected to GND. The input is a 10V  
P-P  
sinusoid and the output voltage is approximately 9.9V  
.
P-P  
Refer to the “Electrical Specifications” Table beginning on  
page 2 for specific device parameters. Parameter variations  
with operating voltage, loading and/or temperature are  
shown in the “Typical Performance Curves” on page 5.  
Unused Buffers  
It is recommended that any unused buffers have their inputs  
tied to the ground plane.  
Driving Capacitive Loads  
As load capacitance increases, the -3dB bandwidth will  
decrease and peaking can occur. Depending on the  
application, it may be necessary to reduce peaking and to  
improve device stability. To improve device stability a  
snubber circuit or a series resistor may be added to the  
output of the EL5421T.  
A snubber is a shunt load consisting of a resistor in series  
with a capacitor. An optimized snubber can improve the  
FN6922 Rev 0.00  
Page 10 of 13  
September 25, 2009  
EL5421T  
phase margin and the stability of the EL5421T. The advantage  
of a snubber circuit is that it does not draw any DC load current  
or reduce the gain.  
Where:  
• i = 1 to 4  
(1, 2, 3, 4 corresponds to Channel A, B, C, D respectively)  
• V = Total supply voltage (V + - V -)  
Another method to reduce peaking is to add a series output  
resistor (typically between 1to 10). Depending on the  
capacitive loading, a small value resistor may be the most  
appropriate choice to minimize any reduction in gain.  
S
S
S
• V + = Positive supply voltage  
S
• V - = Negative supply voltage  
S
Power Dissipation  
• I  
= Maximum supply current per buffer  
= EL5421T quiescent current ÷ 4)  
SMAX  
With the high-output drive capability of the EL5421T buffers, it  
is possible to exceed the +150°C absolute maximum junction  
temperature under certain load current conditions. It is  
important to calculate the maximum power dissipation of the  
EL5421T in the application. Proper load conditions will ensure  
that the EL5421T junction temperature stays within a safe  
operating region.  
(I  
SMAX  
• V  
= Output voltage  
= Load current  
OUT  
• I  
LOAD  
Device overheating can be avoided by calculating the minimum  
resistive load condition, R , resulting in the highest power  
LOAD  
dissipation. To find R  
to each other and solve for V  
package power dissipation curves, Figures 27 and 28, for further  
information.  
set the two P  
equations equal  
LOAD  
DMAX  
. Reference the  
The maximum power dissipation allowed in a package is  
determined according to Equation 1:  
/I  
OUT LOAD  
T
T  
AMAX  
JMAX  
(EQ. 1)  
--------------------------------------------  
P
=
DMAX  
JA  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
8
where:  
• T  
7
625mW  
MSOP10  
6
= Maximum junction temperature  
= Maximum ambient temperature  
= +200°C/W  
JMAX  
AMAX  
JA  
5
4
3
2
1
0
• T  
= Thermal resistance of the package  
JA  
• P  
DMAX  
= Maximum power dissipation allowed  
The total power dissipation produced by an IC is the total  
quiescent supply current times the total power supply voltage,  
plus the power dissipation in the IC due to the loads, or:  
85  
0
25  
50  
75  
100  
125  
150  
AMBIENT TEMPERATURE (°C)  
FIGURE 27. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
(EQ. 2)  
P
= iV I  
+ V + V  
i  I  
i  
LOAD  
DMAX  
S
SMAX  
S
OUT  
JEDEC JESD51-7 HIGH EFFECTIVE  
THERMAL CONDUCTIVITY TEST BOARD  
when sourcing, and:  
1.0  
0.9  
(EQ. 3)  
781mW  
P
= iV I  
+ V  
i V -  I  
i  
LOAD  
DMAX  
S
SMAX  
OUT  
S
0.8  
MSOP10  
JA  
= +160°C/W  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
when sinking.  
85  
0
25  
50  
75  
100  
125  
150  
AMBIENT TEMPERATURE (°C)  
FIGURE 28. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FN6922 Rev 0.00  
Page 11 of 13  
September 25, 2009  
EL5421T  
performance. Ground plane construction is highly  
recommended, trace lengths should be as short as possible  
and the power supply pins must be well bypassed to reduce  
any risk of oscillation.  
Thermal Shutdown  
The EL5421T has a built-in thermal protection which  
ensures safe operation and prevents internal damage to the  
device due to overheating. When the die temperature  
reaches +165°C (typical) the device automatically shuts OFF  
the outputs by putting them in a high impedance state. When  
the die cools by +15°C (typical) the device automatically  
turns ON the outputs by putting them in a low impedance or  
(normal) operating state.  
For normal single supply operation (the V - pin is connected  
S
to ground) a 4.7µF capacitor should be placed from V + to  
S
ground, then a parallel 0.1µF capacitor should be connected  
as close to the device as possible. One 4.7µF capacitor may  
be used for multiple devices. For dual supply operation the  
same capacitor combination should be placed at each  
supply pin to ground.  
Power Supply Bypassing and Printed Circuit  
Board Layout  
The EL5421T can provide gain at high frequency, so good  
printed circuit board layout is necessary for optimum  
Revision History  
DATE  
REVISION  
CHANGE  
9/10/09  
FN6922.0  
Issued File Number FN6922. Initial release of Datasheet with file number FN6922 making this  
a Rev 0.  
© Copyright Intersil Americas LLC 2009 All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6922 Rev 0.00  
Page 12 of 13  
September 25, 2009  
EL5421T  
Package Outline Drawing  
M10.118A (JEDEC MO-187-BA)  
10 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE (MSOP)  
Rev 0, 9/09  
A
3.0 ± 0.1  
DETAIL "X"  
0.25 CAB  
10  
1.10 Max  
0.18 ± 0.05  
SIDE VIEW 2  
B
PIN# 1 ID  
1
2
0.95 BSC  
0.5 BSC  
TOP VIEW  
Gauge  
Plane  
0.86 ± 0.09  
0.25  
H
C
3°±3°  
SEATING PLANE  
0.55 ± 0.15  
DETAIL "X"  
0.10 ± 0.05  
0.10 C  
0.23 +0.07/ -0.08  
0.08 CAB  
SIDE VIEW 1  
5.80  
4.40  
3.00  
NOTES:  
1. Dimensions are in millimeters.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3. Plastic or metal protrusions of 0.15mm max per side are not  
included.  
0.50  
4. Plastic interlead protrusions of 0.25mm max per side are not  
included.  
0.30  
1.40  
5. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
6. This replaces existing drawing # MDP0043 MSOP10L.  
TYPICAL RECOMMENDED LAND PATTERN  
FN6922 Rev 0.00  
September 25, 2009  
Page 13 of 13  

相关型号:

EL5421TIYZ-T13

12MHz Rail-to-Rail Input-Output Buffer; MSOP10; Temp Range: -40° to 85°C
RENESAS

EL5421TIYZ-T7

12MHz Rail-to-Rail Input-Output Buffer; MSOP10; Temp Range: -40° to 85°C
RENESAS

EL5421_07

Quad 12MHz Rail-to-Rail Input-Output Buffer
INTERSIL

EL5423

12MHz 4, 8, 10 & 12 Channel Rail-to-Rail Input-Output Buffers
INTERSIL

EL5423CL

Product Brief 12MHz 4-, 8-, 10- & 12-Channel Rail-to-Rail Input-Output Buffers
ELANTEC

EL5423CL

12MHz 4, 8, 10 & 12 Channel Rail-to-Rail Input-Output Buffers
INTERSIL

EL5423CL-T13

12MHz 4, 8, 10 & 12 Channel Rail-to-Rail Input-Output Buffers
INTERSIL

EL5423CL-T7

12MHz 4, 8, 10 & 12 Channel Rail-to-Rail Input-Output Buffers
INTERSIL

EL5423CLZ

12MHz 4, 8, 10 & 12 Channel Rail-to-Rail Input-Output Buffers
INTERSIL

EL5423CLZ-T13

12MHz 4, 8, 10 & 12 Channel Rail-to-Rail Input-Output Buffers
INTERSIL

EL5423CLZ-T7

12MHz 4, 8, 10 & 12 Channel Rail-to-Rail Input-Output Buffers
INTERSIL

EL5423CR

12MHz 4, 8, 10 & 12 Channel Rail-to-Rail Input-Output Buffers
INTERSIL