EL5424CL-T13 [RENESAS]

13 BUFFER AMPLIFIER, PQCC32, 0.90 MM HEIGHT, EXPOSED PAD, PLASTIC, MO-220, LPP-32;
EL5424CL-T13
型号: EL5424CL-T13
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

13 BUFFER AMPLIFIER, PQCC32, 0.90 MM HEIGHT, EXPOSED PAD, PLASTIC, MO-220, LPP-32

放大器
文件: 总12页 (文件大小:632K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL5224, EL5324, EL5424  
®
Data Sheet  
November 7, 2002  
FN7004  
12MHz Rail-to-Rail Buffers + 100mA V  
Amplifier  
Features  
COM  
• 8, 10, and 12 channel versions  
• 12MHz -3dB buffer bandwidth  
The EL5224, EL5324, and EL5424  
feature 8, 10, and 12 low power  
• 150mA V  
buffer  
• Supply voltage from 4.5V to 18V  
buffers, respectively, and one high  
power output amplifier. They are designed primarily for  
buffering column driver reference voltages in TFT-LCD  
COM  
• Low supply current - 6mA total (8-channel version)  
• Rail-to-rail input/output swing (buffers only)  
• LPP package - just 0.9mm high  
applications as well as generation of the V  
supply. Each  
COM  
low power buffer features a -3dB bandwidth of 12MHz and  
features rail-to-rail input/output capability. The high power  
buffer can drive 100mA and swings to within 2V of each rail.  
Applications  
The 8-channel EL5224 is available in 24-pin LPP and 24-pin  
HTSSOP packages, the 10-channel EL5324 is available in  
32-pin LPP and 28-pin HTSSOP packages, and the 12-  
channel EL5434 is available in the 32-pin LPP package.  
They are specified for operation over the full -40°C to +85°C  
temperature range.  
• TFT-LCD column driver buffering and V  
• Electronics notebooks  
• Computer monitors  
supply  
COM  
• Electronics games  
Ordering Information  
Touch-screen displays  
• Portable instrumentation  
TAPE &  
REEL  
PART NUMBER  
EL5224CL-T7  
EL5224CL-T13  
EL5224CRE  
PACKAGE  
24-Pin LPP  
PKG. NO.  
MDP0046  
MDP0046  
MDP0048  
MDP0048  
MDP0046  
MDP0046  
MDP0048  
MDP0048  
MDP0046  
MDP0046  
7”  
24-Pin LPP  
13”  
-
24-Pin HTSSOP  
EL5224CRE-T13 24-Pin HTSSOP  
13”  
7”  
EL5324CL-T7  
EL5324CL-T13  
EL5324CRE  
32-Pin LPP  
32-Pin LPP  
13”  
-
28-Pin HTSSOP  
EL5324CRE-T13 28-Pin HTSSOP  
13”  
7”  
EL5424CL-T7  
EL5424CL-T13  
32-Pin LPP  
32-Pin LPP  
13”  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2003. All Rights Reserved. Elantec is a registered trademark of Elantec Semiconductor, Inc.  
All other trademarks mentioned are the property of their respective owners.  
EL5224, EL5324, EL5424  
Pinouts  
EL5224  
(24-PIN HTSSOP)  
TOP VIEW  
EL5324  
(28-PIN HTSSOP)  
TOP VIEW  
VIN1  
VIN2  
VIN3  
VIN4  
VS+  
1
2
3
4
5
6
7
8
9
24 VOUT1  
VIN1  
VIN2  
VIN3  
VIN4  
VIN5  
VS+  
1
2
3
4
5
6
7
8
9
28 VOUT1  
23 VOUT2  
22 VOUT3  
21 VOUT4  
20 VS-  
27 VOUT2  
26 VOUT3  
25 VOUT4  
24 VOUT5  
23 VS-  
VIN5  
VIN6  
VIN7  
VIN8  
19 VOUT5  
18 VOUT6  
17 VOUT7  
16 VOUT8  
15 VSA-  
Thermal  
Pad  
VIN6  
VIN7  
VIN8  
22 VOUT6  
21 VOUT7  
20 VOUT8  
19 VOUT9  
18 VOUT1  
17 VSA-  
Thermal  
Pad  
VSA+ 10  
VINA+ 11  
NC 12  
VIN9 10  
VIN10 11  
VSA+ 12  
VINA+ 13  
NC 14  
14 VINA-  
13 VOUTA  
16 VINA-  
15 VOUTA  
EL5324 & EL5424  
(32-PIN LPP)  
TOP VIEW  
EL5224  
(24-PIN LPP)  
TOP VIEW  
VIN3  
VIN4  
VIN5  
VS+  
1
2
3
4
5
6
7
8
9
25 VOUT3  
24 VOUT4  
23 VOUT5  
22 VS-  
VIN3  
1
2
3
4
5
6
7
19 VOUT3  
VIN4  
VS+  
18 VOUT4  
17 VS-  
VIN5  
VIN6  
VIN7  
VIN8  
Thermal Pad  
16 VOUT5  
15 VOUT6  
14 VOUT7  
13 VOUT8  
VIN6  
VIN7  
VIN8  
VIN9  
VIN10  
Thermal Pad  
21 VOUT6  
20 VOUT7  
19 VOUT8  
18 VOUT9  
17 VOUT10  
*Not available in EL5324  
2
EL5224, EL5324, EL5424  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage between V + and V -. . . . . . . . . . . . . . . . . . . .+18V  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
Maximum Die Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . +125°C  
Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
S
S
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . V - -0.5V, V +0.5V  
S
S
Maximum Continuous Output Current (V  
Maximum Continuous Output Current (V  
) . . . . . . . . . . 30mA  
OUT0-9  
) . . . . . . . . . . . 150mA  
OUTA  
ESD Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2kV  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
J
C
A
Electrical Specifications V + = +15V, V - = 0, R = 10k, R = R = 20k, C = 10pF to 0V, Gain of V  
= -1, and T = 25°C unless  
A
S
S
L
F
G
L
COM  
otherwise specified.  
DESCRIPTION  
INPUT CHARACTERISTICS (REFERENCE BUFFERS)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
14  
UNIT  
V
Input Offset Voltage  
Average Offset Voltage Drift  
Input Bias Current  
Input Impedance  
V
= 0V  
2
5
mV  
µV/°C  
nA  
OS  
CM  
(Note 1)  
= 0V  
TCV  
OS  
I
V
2
50  
B
CM  
R
C
1
GΩ  
IN  
IN  
V
Input Capacitance  
Voltage Gain  
1.35  
pF  
A
1V V  
14V  
0.992  
1.008  
4
V/V  
OUT  
INPUT CHARACTERISTICS (V  
BUFFER)  
COM  
V
Input Offset Voltage  
Average Offset Voltage Drift  
Input Bias Current  
Input Impedance  
V
= 7.5V  
1
3
mV  
µV/°C  
nA  
OS  
CM  
TCV  
(Note 1)  
OS  
I
V
V
= 7.5V  
2
100  
B
CM  
R
1
GΩ  
pF  
IN  
IN  
C
Input Capacitance  
Load Regulation  
1.35  
V
= 6V, -100mA < I < 100mA  
-20  
+20  
150  
mV  
REG  
COM  
L
OUTPUT CHARACTERISTICS (REFERENCE BUFFERS)  
V
V
Output Swing Low  
Output Swing High  
Short Circuit Current  
I = 7.5mA  
50  
mV  
V
OL  
L
I = 7.5mA  
L
14.85  
120  
14.95  
140  
OH  
I
mA  
SC  
OUTPUT CHARACTERISTICS (V  
BUFFER)  
COM  
V
V
Output Swing Low  
50to 7.5V  
50to 7.5V  
1
1.5  
V
V
OL  
Output Swing High  
Short Circuit Current  
13.5  
14  
OH  
I
160  
mA  
SC  
POWER SUPPLY PERFORMANCE  
PSRR  
Power Supply Rejection Ratio  
Reference buffer V from 4.5V to 15.5V  
55  
60  
5
80  
100  
6.8  
7.8  
8.8  
dB  
dB  
S
V
buffer, V from 4.5V to 15.5V  
S
COM  
I
Total Supply Current  
EL5224 (no load)  
EL5324 (no load)  
EL5424 (no load)  
8
mA  
mA  
mA  
S
6
9.5  
11  
7
DYNAMIC PERFORMANCE (BUFFER AMPLIFIERS)  
SR  
Slew Rate (Note 2)  
-4V V  
4V, 20% to 80%  
7
15  
V/µs  
OUT  
3
EL5224, EL5324, EL5424  
Electrical Specifications V + = +15V, V - = 0, R = 10k, R = R = 20k, C = 10pF to 0V, Gain of V  
= -1, and T = 25°C unless  
A
S
S
L
F
G
L
COM  
otherwise specified. (Continued)  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(A = +1), V = 2V step  
MIN  
TYP  
250  
12  
MAX  
UNIT  
ns  
t
Settling to +0.1% (A = +1)  
V
S
V
O
BW  
-3dB Bandwidth  
R
R
R
= 10k, C = 10pF  
MHz  
MHz  
°
L
L
L
L
GBWP  
PM  
Gain-Bandwidth Product  
Phase Margin  
= 10k, C = 10pF  
8
L
= 10k, C = 10pF  
50  
L
CS  
Channel Separation  
f = 5MHz  
75  
dB  
NOTES:  
1. Measured over operating temperature range  
2. Slew rate is measured on rising and falling edges  
Pin Descriptions  
24-PIN HTSSOP  
24-PIN LPP  
32-PIN LPP  
28-PIN HTSSOP  
PIN NAME  
VIN1  
PIN FUNCTION  
1
2
23  
24  
1
31  
1
Input  
Input  
Input  
Input  
Power  
Input  
Input  
Input  
Input  
Power  
32  
2
VIN2  
3
1
3
VIN3  
4
2
2
4
VIN4  
5
3
4
6
VS+  
6
4
3
5
VIN5  
7
5
5
7
VIN6  
8
6
6
8
VIN7  
9
7
7
9
VIN8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
8
11  
12  
13  
14  
15  
16  
17  
20  
21  
22  
24  
23  
25  
26  
27  
28  
10  
11  
VSA+  
VINA+  
NC  
9
12  
Positive input of V  
Not connected  
COM  
22  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
29  
13  
VOUTA  
VINA-  
VSA-  
Output of V  
COM  
14  
Negative input of V  
Power  
COM  
15  
19  
VOUT8  
VOUT7  
VOUT6  
VOUT5  
VS-  
Output  
Output  
Output  
Output  
Power  
20  
21  
23  
22  
24  
VOUT4  
VOUT3  
VOUT2  
VOUT1  
VIN9  
Output  
Output  
Output  
Output  
Input  
25  
26  
27  
8
9
VIN10  
VIN11  
VOUT11  
VOUT10  
Input  
10 (Note 1)  
16 (Note 1)  
17  
Input  
Output  
Output  
18  
4
EL5224, EL5324, EL5424  
Pin Descriptions (Continued)  
24-PIN HTSSOP  
24-PIN LPP  
32-PIN LPP  
28-PIN HTSSOP  
PIN NAME  
PIN FUNCTION  
18  
19  
VOUT9  
VOUT0  
VIN0  
Output  
Output  
Input  
28 (Note1)  
30 (Note 1)  
NOTE:  
1. Not available in EL5324L  
5
EL5224, EL5324, EL5424  
Typical Performance Curves  
Frequency Response for Various R (Buffer)  
Frequency Response for Various C (Buffer)  
L
L
20  
10  
20  
10  
V
=±7.5V  
V =±7.5V  
S
L
S
1000pF  
C =10pF  
R =10kΩ  
L
10kΩ  
100pF  
1kΩ  
0
0
12pF  
47pF  
-10  
-20  
-30  
-10  
-20  
-30  
150Ω  
562Ω  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
100M  
1k  
Frequency (Hz)  
Frequency (Hz)  
PSRR vs Frequency (Buffer)  
PSRR+  
Output Impedance vs Frequency (Buffer)  
100  
80  
60  
40  
20  
0
600  
480  
360  
240  
120  
0
V
=±7.5V  
V
T
=±7.5V  
=25°C  
S
S
A
PSRR-  
1k  
10k  
100k  
1M  
10M  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
Input Noise Special Density vs Frequency (Buffer)  
Overshoot vs Load Capacitance (Buffer)  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
=±7.5V  
S
100  
10  
1
R =10kΩ  
V
L
IN  
=100mV  
10k  
100k  
1M  
10M  
100M  
10  
100  
Frequency (Hz)  
Capacitance (pF)  
Settling Time vs Step Size (Buffer)  
Total Harmonic Distortion + Noise vs Frequency  
(Buffer)  
10  
8
0.018  
0.016  
0.014  
0.012  
0.01  
V
=±7.5V  
V =±5V  
S
S
R =10kΩ  
C =12pF  
R =10kΩ  
L
L
L
V =2V  
IN P-P  
6
4
2
0
-2  
-4  
-6  
-8  
-10  
0.008  
0.006  
200 250 300 350 400 450 500 550 600 650  
1k  
10k  
100k  
Settling Time (ns)  
Frequency (Hz)  
6
EL5224, EL5324, EL5424  
Typical Performance Curves (Continued)  
Output Swing vs Frequency (Buffer)  
Frequency Response (V  
)
COM  
12  
10  
8
4
2
A =5  
V
A =1  
V
0
6
-2  
-4  
-6  
4
2
V
=±5V  
V =±7.5V  
S
L
S
R =10kΩ  
C =1µF  
L
0
10k  
100k  
1M  
10M  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
Frequency (Hz)  
Transient Load Regulation - Sourcing (Buffer)  
Transient Load Regulation - Sinking (Buffer)  
0mA  
5mA  
5mA/div  
5mA  
0mA  
5mA/div  
R
=0Ω  
S
R
=10Ω  
S
C =200pF  
L
C =1nF  
L
0V  
500mV/div  
0V  
500mV/div  
R
=10Ω  
S
C =4.7nF  
L
R
=0Ω  
R =10Ω  
S
L
S
R
=10Ω  
C =200pF  
C =4.7nF  
S
L
M=1µs/div  
M=1µs/div  
C =1nF  
L
V
V
=±7.5V  
V
V
=±7.5V  
S
S
=0V  
=0V  
IN  
IN  
Transient Load Regulation - Sourcing (V  
COM  
)
Transient Load Regulation - Sinking (V  
)
COM  
0mA  
100mA/div  
100mA  
0mA  
-100mA  
100mA/div  
20mV/div  
0V  
0V  
20mV/div  
C =1µF  
L
C =1µF  
L
M=4µs/div  
M=4µs/div  
V
V
=±7.5V  
V
V
=±7.5V  
S
S
=0V  
=0V  
IN  
IN  
Small Signal Transient Response (Buffer)  
Large Signal Transient Response (Buffer)  
V
=±7.5V  
V =±7.5V  
S
S
R =10kΩ  
C =12pF  
L
L
50mV/div  
1V/div  
200ns/div  
1µs/div  
7
EL5224, EL5324, EL5424  
Typical Performance Curves (Continued)  
Package Power Dissipation vs Ambient Temperature  
JEDEC JESD51-7 High Effective Thermal Conductivity (4-layer) Test  
Board, LPP exposed diepad soldered to PCB per JESD51-5  
Package Power Dissipation vs Ambient Temperature  
JEDEC JESD51-3 and SEMI G42-88 (Single Layer) Test Board  
3
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2.857W  
758mW  
714mW  
2.5 2.703W  
LPP32  
=35°C/W  
LPP32  
2
θ
JA  
θ
=132°C/W  
JA  
LPP24  
=140°C/W  
1.5  
LPP24  
=37°C/W  
θ
JA  
θ
JA  
1
0.5  
0
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
Package Power Dissipation vs Ambient Temperature  
JEDEC JESD51-7 High Effective Thermal Conductivity Test Board  
HTSSOP Exposed Diepad Soldered to PCB per JESD51-5  
Package Power Dissipation vs Ambient Temperature  
JEDEC JESD51-3 Low Effective Thermal Conductivity Test Board  
3.5  
3
1
3.333W  
909mW  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3.030W  
833mW  
2.5  
2
HTSSOP28  
HTSSOP28  
θ
=110°C/W  
JA  
θ
=30°C/W  
JA  
HTSSOP24  
1.5  
1
HTSSOP24  
=120°C/W  
θ
=33°C/W  
JA  
θ
JA  
0.5  
0
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
GND. The input is a 10V  
P-P  
sinusoid. The output voltage is  
Applications Information  
approximately 9.985V  
.
P-P  
Product Description  
The EL5224, EL5324, and EL5424 unity gain buffers and  
100mA V amplifier are fabricated using a high voltage  
CMOS process. The buffers exhibit rail-to-rail input and  
output capability and has low power consumption (600µA  
per buffer). When driving a load of 10kand 12pF, the  
buffers have a -3dB bandwidth of 12MHz and exhibits  
COM  
5V  
10µs  
V
T
V
=±5V  
=25°C  
S
A
=10V  
IN  
P-P  
18V/µs slew rate. The V  
amplifier exhibits rail-to-rail  
COM  
input. The output can be driving to within 2V of each supply  
rail. With a 1µF capacitance load, the GBWP is about 1MHz.  
5V  
The EL5224, EL5324, and EL5424 are specified with a  
single nominal supply voltage from 5V to 16.5V or a split  
supply with its total range from 5V to 16.5V. Correct  
operation is guaranteed for a supply range of 4.5V to 16.5V.  
FIGURE 1. OPERATIONWITH RAIL-TO-RAIL INPUT  
AND OUTPUT  
SHORT-CIRCUIT CURRENT LIMIT  
The Use of the Buffers  
The buffers will limit the short circuit current to ±120mA if the  
output is directly shorted to the positive or the negative  
supply. If an output is shorted indefinitely, the power  
dissipation could easily increase such that the device may be  
damaged. Maximum reliability is maintained if the output  
continuous current never exceeds ±30mA. This limit is set by  
the design of the internal metal interconnects.  
The output swings of the buffers typically extend to within  
100mV of positive and negative supply rails with load  
currents of 5mA. Decreasing load currents will extend the  
output voltage range even closer to the supply rails. Figure 1  
shows the input and output waveforms for the device.  
Operation is from ±5V supply with a 10kload connected to  
8
EL5224, EL5324, EL5424  
OUTPUT PHASE REVERSAL  
designed to be dominated by the load capacitance, thus for  
very short duration pulses (< 1µs) the output capacitor  
supplies the current. For longer pulses the V amplifier  
The buffers are immune to phase reversal as long as the  
COM  
input voltage is limited from V - -0.5V to V + +0.5V. Figure 2  
S
S
supplies the current. By virtue of its high transconductance  
which progressively increases as more current is drawn, it  
can maintain regulation within 5mV as currents up to 100mA  
are drawn, while consuming only 2mA of quiescent current.  
shows a photo of the output of the device with the input  
voltage driven beyond the supply rails. Although the device's  
output will not change phase, the input's overvoltage should  
be avoided. If an input voltage exceeds supply voltage by  
more than 0.6V, electrostatic protection diodes placed in the  
input stage of the device begin to conduct and overvoltage  
damage could occur.  
V
BOOST  
R
R
1
2
IPCOM  
INCOM  
V
V
COM  
DDCOM  
+
1V  
10µs  
V
COM  
-
V
SSCOM  
1µF  
ceramic  
low ESR  
FIGURE 3. V  
USED AS A VOLTAGE BUFFER  
COM  
Alternatively, the back plate potential can be generated by a  
DAC and the V amplifier used to buffer the DAC voltage,  
V
T
V
=±2.5V  
=25°C  
=6V  
S
A
IN  
1V  
COM  
P-P  
with gain if necessary. This is shown in Figure 4. In this case,  
the effective transconductance of the feedback is reduced,  
thus the amplifier will be more stable, but regulation will be  
degraded by the feedback factor.  
FIGURE 2. OPERATION WITH BEYOND-THE-  
RAILS INPUT  
UNUSED BUFFERS  
It is recommended that any unused buffers have their inputs  
tied to the ground plane.  
V
BOOST  
DRIVING CAPACITIVE LOADS  
From  
DAC  
+
-
V
COM  
The buffers can drive a wide range of capacitive loads. As  
load capacitance increases, however, the -3dB bandwidth of  
the device will decrease and the peaking increase. The  
buffers drive 10pF loads in parallel with 10kwith just 1.5dB  
of peaking, and 100pF with 6.4dB of peaking. If less peaking  
is desired in these applications, a small series resistor  
(usually between 5and 50) can be placed in series with  
the output. However, this will obviously reduce the gain  
slightly. Another method of reducing peaking is to add a  
snubber circuit at the output. A snubber is a shunt load  
consisting of a resistor in series with a capacitor. Values of  
150and 10nF are typical. The advantage of a snubber is  
that it does not draw any DC load current or reduce the gain.  
R
R
1µF  
1
ceramic  
low ESR  
2
FIGURE 4. V  
USED AS A BUFFER WITH GAIN  
COM  
CHOICE OF OUTPUT CAPACITOR  
A 1µF ceramic capacitor with low ESR is recommended for  
this amplifier. (For example, GRM42_ 6X7R105K16). This  
capacitor determines the stability of the amplifier. Reducing  
it will make the amplifier less stable, and should be avoided.  
With a 1µF capacitor, the unity gain bandwidth of the  
amplifier is close to 1MHz when reasonable currents are  
being drawn. (For lower load currents, the gain and hence  
bandwidth progressively decreases.) This means the active  
trans-conductance is:  
The Use of V  
Amplifier  
COM  
amplifier is designed to control the voltage on the  
The V  
COM  
back plate of an LCD display. This plate is capacitively  
coupled to the pixel drive voltage which alternately cycles  
positive and negative at the line rate for the display. Thus the  
amplifier must be capable of sourcing and sinking capacitive  
pulses of current, which can occasionally be quite large (a  
few 100mA for typical applications).  
2π × 1µF × 1MHz = 6.28S  
This high transconductance indicates why it is important to  
have a low ESR capacitor.  
A simple use of the V  
amplifier is as a voltage follower,  
COM  
If:  
as illustrated in Figure 3. Here, a voltage, corresponding to  
the mid-DAC potential, is generated by a resistive divider  
and buffered by the amplifier. The amplifier's stability is  
ESR × 6.28 > 1  
9
EL5224, EL5324, EL5424  
then the capacitor will not force the gain to roll off below  
The maximum power dissipation actually produced by an IC  
is the total quiescent supply current times the total power  
supply voltage, plus the power in the IC due to the loads, or:  
unity, and subsequent poles can affect stability. The  
recommended capacitor has an ESR of 10m, but to this  
must be added the resistance of the board trace between the  
capacitor and the sense connection - therefore this should  
be kept short, as illustrated in Figure 1, by the diagonal line  
to the capacitor. Also ground resistance between the  
P
= Σi × [V × I  
+ (V + - V  
i) × I  
i] +  
LOAD  
DMAX  
S
SMAX  
S
OUT  
[V  
× I  
+ (V + - V  
) × I  
]
LA  
SA  
SAA  
SA  
OUTA  
capacitor and the base of R must be kept to a minimum.  
when sourcing, and:  
2
These constraints should be considered when laying out the  
PCB.  
P
= Σi × [V × I  
+ (V  
i - V -) × I  
i] +  
LOAD  
DMAX  
S
SMAX  
OUT  
S
[V  
× I  
+ (V + - V  
) × I  
]
SA  
SAA  
SA  
OUTA  
LA  
If the capacitor is increased above 1µF, stability is generally  
improved and short pulses of current will cause a smaller  
when sinking.  
where:  
“perturbation” on the V  
voltage. The speed of response  
COM  
of the amplifier is however degraded as its bandwidth is  
decreased. At capacitor values around 10µF, a subtle  
interaction with internal DC gain boost circuitry will decrease  
the phase margin and may give rise to some overshoot in the  
response. The amplifier will remain stable though.  
• i = 1 to total number of buffers  
• V = Total supply voltage of buffer  
S
• V = Total supply voltage of V  
SA COM  
RESPONSE TO HIGH CURRENT SPIKES  
• I  
= Maximum quiescent current per channel  
SMAX  
The V  
COM  
amplifier's output current is limited to 150mA.  
• I = Maximum quiescent current of V  
SA COM  
This limit level, which is roughly the same for sourcing and  
sinking, is included to maintain reliable operation of the part.  
It does not necessarily prevent a large temperature rise if the  
current is maintained. (In this case the whole chip may be  
shut down by the thermal trip to protect functionality.) If the  
display occasionally demands current pulses higher than this  
limit, the reservoir capacitor will provide the excess and the  
amplifier will top the reservoir capacitor back up once the  
pulse has stopped. This will happen on the µs time scale in  
practical systems and for pulses 2 or 3 times the current  
• V  
• V  
• I  
i = Maximum output voltage of the application  
OUT  
= Maximum output voltage of V  
OUTA  
COM  
i = Load current of buffer  
LOAD  
• I = Load current of V  
LA COM  
If we set the two P  
can solve for the R  
package power dissipation curves provide a convenient way  
to see if the device will overheat. The maximum safe power  
dissipation can be found graphically, based on the package  
type and the ambient temperature. By using the previous  
equations equal to each other, we  
's to avoid device overheat. The  
DMAX  
LOAD  
limit, the V  
voltage will have settled again before the  
COM  
next line is processed.  
Power Dissipation  
equation, it is a simple matter to see if P  
device's power derating curves.  
exceeds the  
DMAX  
With the high-output drive capability of the EL5224, EL5324,  
and EL5424 buffer, it is possible to exceed the 125°C  
“absolute-maximum junction temperature” under certain load  
current conditions. Therefore, it is important to calculate the  
maximum junction temperature for the application to  
determine if load conditions need to be modified for the  
buffer to remain in the safe operating area.  
Power Supply Bypassing and Printed Circuit  
Board Layout  
As with any high frequency device, good printed circuit board  
layout is necessary for optimum performance. Ground plane  
construction is highly recommended, lead lengths should be  
as short as possible, and the power supply pins must be well  
bypassed to reduce the risk of oscillation. For normal single  
The maximum power dissipation allowed in a package is  
determined according to:  
supply operation, where the V - and V - pins are  
S
SA  
connected to ground, two 0.1µF ceramic capacitors should  
T
- T  
AMAX  
JMAX  
P
= --------------------------------------------  
be placed from V + and V + pins to ground. A 4.7µF  
DMAX  
S
SA  
Θ
JA  
tantalum capacitor should then be connected from V + and  
S
V
+ pins to ground. One 4.7µF capacitor may be used for  
SA  
where:  
• T  
multiple devices. This same capacitor combination should be  
placed at each supply pin to ground if split supplies are to be  
used. Internally, V + and V + are shorted together and V -  
and V - are shorted together. To avoid high current density,  
the V + pin and V + pin must be shorted in the PCB  
SA  
= Maximum junction temperature  
= Maximum ambient temperature  
JMAX  
S
SA  
S
• T  
AMAX  
SA  
θ = Thermal resistance of the package  
JA  
S
layout. Also, the V - pin and V - pin must be shorted in the  
• P  
DMAX  
= Maximum power dissipation in the package  
S
SA  
PCB layout.  
10  
EL5224, EL5324, EL5424  
Important Note: The metal plane used for heat sinking of  
the device is electrically connected to the negative  
supply potential (V - and V -). If V - and V - are tied  
to ground, the thermal pad can be connected to ground.  
Otherwise, the thermal pad must be isolated from any  
other power planes.  
S
SA SA  
S
Package Outline Drawing (HTSSOP)  
Package Outline Drawing (LPP)  
NOTE: The package drawings shown here may not be the latest versions. For the latest revisions, please refer to the Intersil  
website at: http://www.intersil.com/design/packages/elantec  
11  
EL5224, EL5324, EL5424EL5224, EL5324, EL5424  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
12  

相关型号:

EL5424IL

12MHz Rail-to-Rail Buffers + 100mA VCOM Amplifier
INTERSIL

EL5424IL-T13

12MHz Rail-to-Rail Buffers + 100mA VCOM Amplifier
INTERSIL

EL5424IL-T7

12MHz Rail-to-Rail Buffers + 100mA VCOM Amplifier
INTERSIL

EL5424ILZ

12MHz Rail-to-Rail Buffers + 100mA VCOM Amplifier
INTERSIL

EL5424ILZ-T13

12MHz Rail-to-Rail Buffers + 100mA VCOM Amplifier
INTERSIL

EL5424ILZ-T7

12MHz Rail-to-Rail Buffers + 100mA VCOM Amplifier
INTERSIL

EL5427

2.5MHz 4, 8, 10 & 12 Channel Rail-to-Rail Buffers
INTERSIL

EL5427CL

Product Brief 2.5MHz 4-, 8-, 10- & 12-Channel Rail-to-Rail Buffers
ELANTEC

EL5427CL

2.5MHz 4, 8, 10 & 12 Channel Rail-to-Rail Buffers
INTERSIL

EL5427CL-T13

2.5MHz 4, 8, 10 & 12 Channel Rail-to-Rail Buffers
INTERSIL

EL5427CL-T7

2.5MHz 4, 8, 10 & 12 Channel Rail-to-Rail Buffers
INTERSIL

EL5427CLZ

2.5MHz 4, 8, 10 & 12 Channel Rail-to-Rail Buffers
INTERSIL