EL8172FSZ [RENESAS]

Micropower, Single Supply, Rail-to-Rail Input-Output Instrumentation Amplifiers; SOIC8; Temp Range: -40° to 125°C;
EL8172FSZ
型号: EL8172FSZ
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Micropower, Single Supply, Rail-to-Rail Input-Output Instrumentation Amplifiers; SOIC8; Temp Range: -40° to 125°C

放大器 光电二极管
文件: 总14页 (文件大小:998K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
EL8171, EL8172  
Micropower, Single Supply, Rail-to-Rail Input-Output Instrumentation Amplifiers  
FN6293  
Rev 6.00  
October 9, 2015  
The EL8171 and EL8172 are micropower instrumentation  
amplifiers optimized for single supply operation over the  
Features  
• 95µA maximum supply current  
+2.4V to +5.5V range. Inputs and outputs can operate  
rail-to-rail. As with all instrumentation amplifiers, a pair of  
inputs provide very high common-mode rejection and are  
completely independent from a pair of feedback terminals.  
The feedback terminals allow zero input to be translated to  
any output offset, including ground. A feedback divider  
controls the overall gain of the amplifier.  
• Maximum input offset voltage  
- 300µV (EL8172)  
- 1500µV (EL8171)  
• 50pA maximum input bias current  
• 450kHz -3dB bandwidth (G = 10)  
• 170kHz -3dB bandwidth (G = 100)  
The EL8172 is compensated for a gain of 100 or more, and  
the EL8171 is compensated for a gain of 10 or more. The  
EL8171 and EL8172 have PMOS input devices that provide  
sub-nA input bias currents.  
• Single supply operation  
- Input voltage range is rail-to-rail  
- Output swings rail-to-rail  
- Ground sensing  
The amplifiers can be operated from one lithium cell or two  
Ni-Cd batteries. The EL8171 and EL8172 input range goes  
from below ground to slightly above positive rail. The output  
stage swings completely to ground (ground sensing) or  
positive supply - no pull-up or pull-down resistors are  
needed.  
• Pb-free (RoHS compliant)  
Applications  
• Battery- or solar-powered systems  
• Strain gauges  
Pinout  
• Current monitors  
EL8171, EL8172  
(8 LD SOIC)  
TOP VIEW  
• Thermocouple amplifiers  
Ordering Information  
+
DNC  
IN-  
1
2
3
4
8
7
6
5
FB+  
V+  
-
PART  
-
NUMBER  
(Note)  
PART  
MARKING  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
+
IN+  
V-  
VOUT  
FB-  
EL8171FSZ*(No 8171FSZ  
longer available,  
recommended  
8 Ld SOIC  
MDP0027  
replacement:  
EL8170FSZ-T7)  
EL8172FSZ*  
8172FSZ  
8 Ld SOIC  
MDP0027  
*Add “-T7” suffix for tape and reel. Please refer to TB347 for details  
on reel specifications.  
NOTE: These Intersil Pb-free plastic packaged products employ  
special Pb-free material sets, molding compounds/die attach  
materials, and 100% matte tin plate plus anneal (e3 termination  
finish, which is RoHS compliant and compatible with both SnPb and  
Pb-free soldering operations). Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed  
the Pb-free requirements of IPC/JEDEC J STD-020.  
FN6293 Rev 6.00  
October 9, 2015  
Page 1 of 14  
EL8171, EL8172  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5V  
+
Thermal Resistance  
(°C/W)  
122  
JA  
Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA  
Differential Input Voltage (EL8172) . . . . . . . . . . . . . . . . . . . . . . 0.5V  
Differential Input Voltage (EL8171) . . . . . . . . . . . . . . . . . . . . . . 1.0V  
ESD Rating  
8 Ld SOIC Package . . . . . . . . . . . . . . . . . . . . . . . .  
Output Short-Circuit Duration . . . . . . . . . . . . . . . . . . . . . . .Indefinite  
Ambient Operating Temperature . . . . . . . . . . . . . . .-40°C to +125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile. . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3kV  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications  
V = +5V, V- = GND, VCM = 1/2V , R = Open, T = +25°C, unless otherwise specified. Boldface limits apply  
+ + L A  
over the operating temperature range, -40°C to +125°C.  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 1)  
TYP  
(Note 1) UNIT  
DC SPECIFICATIONS  
V
Input Offset Voltage  
EL8171  
EL8172  
-1.5  
-2  
±0.47  
±0.07  
1.5  
2
mV  
mV  
OS  
-0.3  
0.3  
-0.7  
0.7  
TCV  
Input Offset Voltage Temperature  
Coefficient  
EL8171  
EL8172  
1.5  
0.14  
±4  
µV/°C  
µV/°C  
OS  
I
I
Input Offset Current, ± IN, ± FB  
Input Bias Current  
-25  
-500  
25  
500  
pA  
pA  
OS  
B
-50  
-4  
±10  
50  
4
pA  
nA  
V
Input Voltage Range  
Guaranteed by CMRR test  
0
75  
5
V
IN  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
V
= 0V to +5V  
100  
90  
dB  
dB  
dB  
%
CM  
EL8171, V = 2.4V to 5V  
75  
+
EL8172, V = 2.4V to 5V  
75  
100  
+
E
V
Gain Error  
EL8171, R = 100kto 2.5V  
-0.7  
±0.15  
±0.2  
0.7  
G
L
EL8172, R = 100kto 2.5V  
-1  
-1.5  
+1  
1.5  
%
%
L
Maximum Voltage Swing  
Output low, 100kto 2.5V  
Output low, 1kto 2.5V  
Output high, 100kto 2.5V  
Output high, 1kto GND  
4
10  
10  
mV  
mV  
OUT  
0.13  
4.996  
4.87  
65  
0.2  
0.25  
V
V
4.985  
4.980  
V
V
4.860  
4.750  
V
V
I
Supply Current  
45  
95  
µA  
S
38  
110  
V
Supply Operating Range  
V+ to V-  
2.4  
5.5  
V
SUPPLY  
I
Output Source Current into 10to V /2  
V
= 5V  
23  
19  
32  
8
mA  
O+  
+
+
V
= 2.4V  
6
mA  
+
4.5  
FN6293 Rev 6.00  
October 9, 2015  
Page 2 of 14  
EL8171, EL8172  
Electrical Specifications  
V = +5V, V- = GND, VCM = 1/2V , R = Open, T = +25°C, unless otherwise specified. Boldface limits apply  
+ + L A  
over the operating temperature range, -40°C to +125°C. (Continued)  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
Output Sink Current into 10to V /2  
CONDITIONS  
(Note 1)  
TYP  
(Note 1) UNIT  
I
V
V
= 5V  
19  
15  
26  
mA  
O-  
+
+
+
= 2.4V  
5
7
mA  
4
AC SPECIFICATIONS  
-3dB BW -3dB Bandwidth  
EL8171  
EL8172  
Gain = 10V/V  
Gain = 20  
450  
210  
66  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
Gain = 50  
Gain = 100  
Gain = 100  
Gain = 200  
Gain = 500  
Gain = 1000  
f = 0.1Hz to 10Hz  
33  
170  
70  
25  
12  
e
Input Noise Voltage  
EL8171  
EL8172  
EL8171  
EL8172  
14  
µV  
µV  
N
P-P  
P-P  
10  
Input Noise Voltage Density  
Input Noise Current Density  
f = 1kHz  
220  
80  
nV/Hz  
nV/Hz  
pA/Hz  
pA/Hz  
dB  
o
i
EL8171, f = 1kHz  
0.9  
0.2  
85  
N
o
EL8172, f = 1kHz  
o
CMRR @ 60Hz Input Common Mode Rejection Ratio  
EL8171  
EL8172  
EL8171  
EL8172  
V
R
= 1V  
,
PP  
CM  
= 10kto V  
L
CM  
100  
90  
dB  
PSRR+ @  
120Hz  
Power Supply Rejection Ratio (V )  
V , V = ±2.5V,  
dB  
+
+
-
V
= 1V ,  
SOURCE  
= 10kto V  
PP  
92  
dB  
R
L
CM  
PSRR- @  
120Hz  
Power Supply Rejection Ratio (V )  
EL8171  
EL8172  
V , V = ±2.5V,  
97  
92  
dB  
dB  
-
+
-
V
= 1V ,  
SOURCE  
= 10kto V  
PP  
R
L
CM  
TRANSIENT RESPONSE  
SR  
Slew Rate  
R
= 1kto GND  
0.4  
0.55  
0.7  
V/µs  
L
0.35  
0.7  
NOTES:  
1. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested.  
FN6293 Rev 6.00  
October 9, 2015  
Page 3 of 14  
EL8171, EL8172  
Typical Performance Curves V = 5V, V = 0V,V = 2.5V, R = Open, unless otherwise specified.  
+
-
CM  
L
70  
60  
50  
40  
30  
20  
10  
90  
80  
70  
60  
50  
40  
30  
COMMON-MODE INPUT = 1/2V+  
COMMON-MODE INPUT = 1/2V+  
GAIN = 10,000  
GAIN = 5,000  
GAIN = 1000  
GAIN = 500  
GAIN = 200  
GAIN = 100  
GAIN = 50  
GAIN = 2,000  
GAIN = 1,000  
GAIN = 500  
GAIN = 20  
GAIN = 10  
GAIN = 200  
GAIN = 100  
1
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 1. EL8171 FREQUENCY RESPONSE vs CLOSED  
LOOP GAIN  
FIGURE 2. EL8172 FREQUENCY RESPONSE vs CLOSED  
LOOP GAIN  
25  
20  
45  
40  
V
= 5V  
+
35  
30  
25  
20  
15  
10  
5
V
= 5V  
+
V
= 2.4V  
15  
10  
+
V
= 2.4V  
+
A
R
C
= 100  
= 10k  
= 10pF  
A
R
C
= 10  
= 10k  
= 10pF  
V
L
L
F
F
G
V
L
L
F
F
G
5
0
R /R = 100  
R
R
R /R = 10  
R
R
G
G
= 10k  
= 1k  
= 100  
= 100  
0
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 3. EL8171 FREQUENCY RESPONSE vs SUPPLY  
VOLTAGE  
FIGURE 4. EL8172 FREQUENCY RESPONSE vs SUPPLY  
VOLTAGE  
50  
25  
820pF  
470pF  
2200pF  
1200pF  
45  
40  
35  
30  
25  
20  
220pF  
15  
100pF  
820pF  
56pF  
A
= 10  
A
= 10  
V
V
R = 10k  
R = 10k  
C
R /R = 10  
R
R
10  
5
= 10pF  
C
L
= 10pF  
L
R /R = 10  
F
F
G
G
F
F
G
G
R
R
= 10k  
= 10k  
= 100  
= 100  
10  
10  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 5. EL8171 FREQUENCY RESPONSE vs C  
FIGURE 6. EL8172 FREQUENCY RESPONSE vs C  
LOAD  
LOAD  
FN6293 Rev 6.00  
October 9, 2015  
Page 4 of 14  
EL8171, EL8172  
Typical Performance Curves V = 5V, V = 0V,V = 2.5V, R = Open, unless otherwise specified. (Continued)  
+
-
CM  
L
120  
100  
80  
60  
40  
20  
0
90  
80  
70  
60  
50  
40  
30  
A
= 10  
A = 100  
V
V
20  
10  
0
-10  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 8. EL8172 CMRR vs FREQUENCY  
FIGURE 7. EL8171 CMRR vs FREQUENCY  
120  
120  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
PSRR+  
PSRR+  
PSRR-  
PSRR-  
A
= 10  
100  
V
A
= 10  
100  
V
10  
1k  
10k  
100k  
1M  
10  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 9. EL8171 PSRR vs FREQUENCY  
FIGURE 10. EL8172 PSRR vs FREQUENCY  
1400  
1200  
1000  
800  
600  
400  
200  
0
700  
600  
500  
400  
300  
200  
100  
0
A
= 10  
100  
V
A
= 100  
V
1
10  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 11. EL8171 VOLTAGE NOISE SPECTRAL DENSITY  
FIGURE 12. EL8172 VOLTAGE NOISE SPECTRAL DENSITY  
FN6293 Rev 6.00  
October 9, 2015  
Page 5 of 14  
EL8171, EL8172  
Typical Performance Curves V = 5V, V = 0V,V = 2.5V, R = Open, unless otherwise specified. (Continued)  
+
-
CM  
L
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
6
5
4
3
2
1
0
A
= 100  
V
A
= 10  
V
1
10  
100  
1k  
10k  
100k  
10k  
1
10  
100  
1k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 13. EL8171 CURRENT NOISE SPECTRAL DENSITY  
FIGURE 14. EL8172 CURRENT NOISE SPECTRAL DENSITY  
TIME (1s/DIV)  
TIME (1s/DIV)  
FIGURE 15. EL8171 0.1Hz TO 10Hz INPUT VOLTAGE NOISE  
(GAIN = 10)  
FIGURE 16. EL8172 0.1Hz TO 10Hz INPUT VOLTAGE NOISE  
(GAIN = 100)  
80  
90  
N = 1500  
85  
N = 1000  
75  
MAX  
80  
MAX  
70  
75  
65  
60  
55  
50  
45  
40  
MEDIAN  
70  
MEDIAN  
65  
60  
MIN  
MIN  
55  
50  
45  
40  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 17. EL8171 SUPPLY CURRENT vs TEMPERATURE,  
V , V = ±2.5V, V = 0V  
FIGURE 18. EL8172 SUPPLY CURRENT vs TEMPERATURE,  
V , V = ±2.5V, V = 0V  
+
-
IN  
+
-
IN  
FN6293 Rev 6.00  
October 9, 2015  
Page 6 of 14  
EL8171, EL8172  
Typical Performance Curves V = 5V, V = 0V,V = 2.5V, R = Open, unless otherwise specified. (Continued)  
+
-
CM  
L
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.7  
N = 1000  
N = 1500  
0.5  
MAX  
MAX  
0.3  
0.1  
MEDIAN  
MEDIAN  
-0.1  
-0.3  
-0.5  
-0.7  
-0.5  
-1.0  
-1.5  
-2.0  
MIN  
40  
MIN  
80  
-40  
-20  
0
20  
40  
60  
100 120  
-40  
-20  
0
20  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 19. EL8171 V  
vs TEMPERATURE, V , V = ±2.5V,  
FIGURE 20. EL8172 V  
vs TEMPERATURE, V , V = ±2.5V,  
OS  
+
-
OS  
+
-
V
= 0V  
V
= 0V  
IN  
IN  
0.9  
0.7  
2.5  
2.0  
1.5  
1.0  
0.5  
0
N = 1000  
N = 1500  
MAX  
0.5  
MAX  
0.3  
MEDIAN  
0.1  
MEDIAN  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-0.1  
-0.3  
-0.5  
-0.7  
MIN  
60  
MIN  
40  
-40  
-20  
0
20  
40  
80  
100 120  
-40  
-20  
0
20  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 21. EL8171 V  
vs TEMPERATURE, V , V = ±1.2V,  
FIGURE 22. EL8172 V  
vs TEMPERATURE, V , V = ±1.2V,  
OS  
+
-
OS  
+
-
V
= 0V  
V
= 0V  
IN  
IN  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
N = 1500  
N = 1000  
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
40  
TEMPERATURE (°C)  
MIN  
40  
TEMPERATURE (°C)  
80  
80  
-40  
-20  
0
20  
60  
80  
100  
120  
-40  
-20  
0
20  
60  
80  
100  
120  
FIGURE 24. EL8172 CMRR vs TEMPERATURE,  
= +2.5V TO -2.5V, V , V = ±2.5V  
FIGURE 23. EL8171 CMRR vs TEMPERATURE,  
= +2.5V TO -2.5V, V , V = ±2.5V  
V
V
CM  
+
-
CM  
+
-
FN6293 Rev 6.00  
October 9, 2015  
Page 7 of 14  
EL8171, EL8172  
Typical Performance Curves V = 5V, V = 0V,V = 2.5V, R = Open, unless otherwise specified. (Continued)  
+
-
CM  
L
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
N = 1500  
N = 1000  
MAX  
MAX  
MEDIAN  
MIN  
MEDIAN  
MIN  
80  
80  
70  
70  
60  
60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 25. EL8171 PSRR vs TEMPERATURE,  
V , V = ±1.2V TO ±2.5V  
FIGURE 26. EL8172 PSRR vs TEMPERATURE,  
V , V = ±1.2V TO ±2.5V  
+
-
+
-
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
0.3  
0.1  
-0.1  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
N = 1000  
N = 1500  
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
MIN  
-0.1  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 27. EL8171% GAIN ERROR vs TEMPERATURE,  
= 100k  
FIGURE 28. EL8172% GAIN ERROR vs TEMPERATURE,  
= 100k  
R
R
L
L
4.91  
4.90  
4.89  
4.88  
4.87  
4.86  
4.85  
4.84  
4.83  
4.91  
4.90  
4.89  
4.88  
4.87  
4.86  
4.85  
4.84  
4.83  
N = 1000  
N = 1500  
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
MIN  
80  
-40  
-20  
0
20  
40  
60  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 29. EL8171 V  
HIGH vs TEMPERATURE,  
FIGURE 30. EL8172 V  
HIGH vs TEMPERATURE,  
OUT  
= 1k, V , V = ±2.5V  
OUT  
R = 1k, V , V = ±2.5V  
L
R
L
+
-
+
-
FN6293 Rev 6.00  
October 9, 2015  
Page 8 of 14  
EL8171, EL8172  
Typical Performance Curves V = 5V, V = 0V,V = 2.5V, R = Open, unless otherwise specified. (Continued)  
+
-
CM  
L
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
200  
180  
160  
140  
120  
100  
80  
N = 1000  
N = 1000  
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
100 120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
120  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 32. EL8172 V  
LOW vs TEMPERATURE,  
FIGURE 31. EL8171 V  
LOW vs TEMPERATURE,  
OUT  
= 1k, V , V = ±2.5V  
OUT  
= 1k, V , V = ±2.5V  
R
R
L
+
-
L
+
-
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.60  
0.58  
0.56  
0.54  
0.52  
0.50  
0.48  
0.46  
0.44  
0.42  
0.40  
MAX  
N = 1500  
MAX  
N = 1000  
MEDIAN  
MEDIAN  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 33. EL8171 +SLEW RATE vs TEMPERATURE,  
INPUT = ±0.015V @ GAIN + 100  
FIGURE 34. EL8172 +SLEW RATE vs TEMPERATURE,  
INPUT = ±0.015V @ GAIN + 100  
0.65  
0.70  
N = 1000  
MAX  
N = 1500  
MAX  
0.65  
0.60  
0.60  
MEDIAN  
0.55  
0.55  
0.50  
0.45  
0.40  
MEDIAN  
0.50  
0.45  
MIN  
0.40  
MIN  
0.35  
0.30  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 36. EL8172 -SLEW RATE vs TEMPERATURE,  
INPUT = ±0.015V @ GAIN + 100  
FIGURE 35. EL8171 -SLEW RATE vs TEMPERATURE,  
INPUT = ±0.015V @ GAIN + 100  
FN6293 Rev 6.00  
October 9, 2015  
Page 9 of 14  
EL8171, EL8172  
Pin Descriptions  
EL8171/EL8172  
PIN NAME  
EQUIVALENT CIRCUIT  
PIN FUNCTION  
1
2
3
DNC  
IN-  
Do Not Connect; Internal connection - Must be left floating.  
Circuit 1A, Circuit 1B  
Circuit 1A, Circuit 1B  
High impedance input terminals. EL8172 input circuit is shown in Circuit 1A, and  
the EL8171 input circuit is shown in Circuit 1B. EL8171: to avoid offset drift, it is  
recommended that the terminals are not overdriven beyond 1V and the input  
current must never exceed 5mA.  
IN+  
4
5
8
V-  
Circuit 3  
Negative supply terminal.  
FB-  
FB+  
Circuit 1A, Circuit 1B  
Circuit 1A, Circuit 1B  
High impedance feedback terminals. EL8172 input circuit is shown in Circuit 1A,  
and the EL8171 input circuit is shown in Circuit 1B. EL8171: to avoid offset drift, it  
is recommended that the terminals are not overdriven beyond 1V and the input  
current must never exceed 5mA.  
7
6
V+  
Circuit 3  
Circuit 2  
Positive supply terminal.  
Output Voltage.  
VOUT  
V+  
V+  
V-  
V+  
V+  
CAPACITIVELY  
COUPLED  
ESD CLAMP  
IN+  
FB+  
IN+  
FB+  
IN-  
FB-  
IN-  
FB-  
OUT  
V-  
V-  
V-  
CIRCUIT 1A  
CIRCUIT 2  
CIRCUIT 3  
CIRCUIT 1B  
voltages at lower gain applications. It is recommended however,  
that the input terminals of the EL8171 are not overdriven beyond  
1V to avoid offset drift. An external series resistor may be used as  
an external protection to limit excessive external voltage and  
current from damaging the inputs.  
Description of Operation and Application  
Information  
Product Description  
The EL8171 and EL8172 are micropower instrumentation  
amplifiers (in-amps) which deliver rail-to-rail input amplification  
Input Stage and Input Voltage Range  
and rail-to-rail output swing on a single 2.4V to 5.5V supply. The  
EL8171 and EL8172 also deliver excellent DC and AC  
specifications while consuming only 65µA typical supply current.  
Because EL8171 and EL8172 provide an independent pair of  
feedback terminals to set the gain and to adjust the output level,  
these in-amps achieve high common-mode rejection ratio  
regardless of the tolerance of the gain setting resistors. The  
EL8171 is internally compensated for a minimum closed loop gain  
of 10 or greater, well suited for moderate to high gains. For higher  
gains, the EL8172 is internally compensated for a minimum gain  
of 100.  
The input terminals (IN+ and IN-) of the EL8171 and EL8172  
are single differential pair P-MOSFET devices aided by an  
Input Range Enhancement Circuit (IREC) to increase the  
headroom of operation of the common-mode input voltage.  
The feedback terminals (FB+ and FB-) also have a similar  
topology. As a result, the input common-mode voltage range of  
both the EL8171 and EL8172 is rail-to-rail. These in-amps are  
able to handle input voltages that are at or slightly beyond the  
supply and ground making these in-amps well suited for single  
5V or 3.3V low voltage supply systems. There is no need to  
move the common-mode input of the in-amps to achieve  
symmetrical input voltage.  
Input Protection  
All input and feedback terminals of the EL8171 and EL8172 have  
internal ESD protection diodes to both positive and negative  
supply rails, limiting the input voltage to within one diode drop  
beyond the supply rails. The inverting inputs and FB- inputs have  
ESD diodes to the V-rail, and the non-inverting inputs and FB+  
terminals have ESD diodes to the V+ rail. The EL8172 has  
additional back-to-back diodes across the input terminals and  
also across the feedback terminals. If overdriving the inputs is  
necessary, the external input current must never exceed 5mA. On  
the other hand, the EL8171 has no clamps to limit the differential  
voltage on the input terminals allowing higher differential input  
Output Stage and Output Voltage Range  
A pair of complementary MOSFET devices drive the output  
V
to within a few mV of the supply rails. At a 100kload,  
OUT  
the PMOS sources current and pulls the output up to 4mV  
below the positive supply, while the NMOS sinks current and  
pulls the output down to 4mV above the negative supply, or  
ground in the case of a single supply operation. The current  
sinking and sourcing capability of the EL8171 and EL8172 are  
internally limited to less than 35mA.  
FN6293 Rev 6.00  
October 9, 2015  
Page 10 of 14  
EL8171, EL8172  
Gain Setting  
2.4V TO 5.5V  
V
, the potential difference across IN+ and IN-, is replicated  
IN  
7
1
(less the input offset voltage) across FB+ and FB-. The  
obsession of the EL8171 and EL8172 in-amp is to maintain the  
differential voltage across FB+ and FB- equal to IN+ and IN-;  
(FB+ - FB-) = (IN+ - IN-). Consequently, the transfer function  
can be derived. The gain of the EL8171 and EL8172 is set by  
VIN/2  
VIN/2  
V+  
3
2
8
5
IN+  
IN-  
+
-
6
VOUT  
EL8171/2  
FB+  
FB-  
+
-
VCM  
V-  
4
two external resistors, the feedback resistor R , and the gain  
2.4V TO 5.5V  
F
resistor R .  
G
R1  
2.4V TO 5.5V  
REF  
R2  
RG  
RF  
7
1
VIN/2  
VIN/2  
V+  
3
2
8
5
IN+  
IN-  
+
-
FIGURE 38. CIRCUIT 2 - GAIN SETTING AND REFERENCE  
CONNECTION  
6
VOUT  
EL8171/2  
FB+  
FB-  
+
-
VCM  
R
R
F
R
G
F
V-  
4
(EQ. 2)  
--------  
--------  
V
=
1 +  
V + 1 +  
V  
REF  
OUT  
IN  
R
G
susceptibility to external noise is reduced, however the VREF  
source must be capable of sourcing or sinking the feedback  
RG  
RF  
current from V  
OUT  
through R and R .  
F
G
2.4V TO 5.5V  
FIGURE 37. CIRCUIT 1 - GAIN IS BY EXTERNAL RESISTORS  
R
AND R  
F
G
7
1
VIN/2  
R
V+  
3
IN+  
IN-  
F
(EQ. 1)  
--------  
V
=
1 +  
V
+
OUT  
IN  
R
G
2
8
5
-
VIN/2  
6
VOUT  
EL8171/2  
FB+  
FB-  
In Figure 37, the FB+ pin and one end of resistor RG are  
connected to GND. With this configuration, Equation 1 is only  
true for a positive swing in V ; negative input swings will be  
+
-
VCM  
V-  
4
IN  
ignored and the output will be at ground.  
Reference Connection  
RG  
RF  
Unlike a three-op amp instrumentation amplifier, a finite series  
resistance seen at the REF terminal does not degrade the  
EL8171 and EL8172's high CMRR performance, eliminating  
the need for an additional external buffer amplifier. Circuit 2  
(Figure 38) uses the FB+ pin to provide a high impedance REF  
terminal.  
VREF  
FIGURE 39. CIRCUIT 3 - REFERENCE CONNECTION WITH AN  
AVAILABLE VREF  
R
F
(EQ. 3)  
--------  
V
=
1 +  
V + V  
REF  
OUT  
IN  
R
G
The FB+ pin is used as a REF terminal to center or to adjust  
the output. Because the FB+ pin is a high impedance input, an  
economical resistor divider can be used to set the voltage at  
the REF terminal without degrading or affecting the CMRR  
performance. Any voltage applied to the REF terminal will shift  
External Resistor Mismatches  
Because of the independent pair of feedback terminals provided  
by the EL8171 and EL8172, the CMRR is not degraded by any  
resistor mismatches. Hence, unlike a three op amp and especially  
a two op amp in-amp, the EL8171 and EL8172 reduce the cost of  
external components by allowing the use of 1% or more tolerance  
resistors without sacrificing CMRR performance. The EL8171 and  
EL8172 CMRR will be maintained regardless of the tolerance of  
the resistors used.  
V
by V  
times the closed loop gain, which is set by  
OUT  
REF  
resistors R and R . See Circuit 2 (Figure 38). Note that any  
F
G
noise or unwanted signals on the reference supply will be  
amplified at the output according to Equation 2.  
The FB+ pin can also be connected to the other end of resistor,  
Gain Error and Accuracy  
R . See Circuit 3 (Figure 39). Keeping the basic concept that the  
G
EL8171 and EL8172 in-amps maintain constant differential  
voltage across the input terminals and feedback terminals (IN+ -  
IN- = FB+ - FB-), the transfer function of Circuit 3 can be derived.  
Note that the VREF gain term is eliminated and  
The EL8172 has a Gain Error (EG) of 0.2% typical. The EL8171  
has an EG of 0.15% typical. The gain error indicated in the  
“Electrical Specifications” table on page 2 is the inherent gain  
error of the EL8171 and EL8172 and does not include the gain  
FN6293 Rev 6.00  
October 9, 2015  
Page 11 of 14  
EL8171, EL8172  
error contributed by the resistors. There is an additional gain  
error due to the tolerance of the resistors used. The resulting  
non-ideal transfer function effectively becomes:  
where:  
• P  
is the sum of the maximum power dissipation  
DMAXTOTAL  
of each amplifier in the package (PD  
)
MAX  
R
F
• PD  
MAX  
Equation 7:  
for each amplifier can be calculated as shown in  
--------  
V
=
1 +  
 1 E  
+ E  
+ E   V  
RF G IN  
(EQ. 4)  
OUT  
RG  
R
G
V
OUTMAX  
R
L
----------------------------  
PD  
= 2*V I  
+ V - V    
OUTMAX  
Where:  
MAX  
S
SMAX  
S
(EQ. 7)  
E
E
E
= Tolerance of R  
= Tolerance of R  
RG  
RF  
G
G
where:  
• T  
F
= Maximum ambient temperature  
= Gain Error of the EL8171 or EL8172  
MAX  
= Thermal resistance of the package  
The term [1-(E  
RG  
+E +E )] is the deviation from the  
G
JA  
• PD  
RF  
theoretical gain. Thus, (E  
+E +E ) is the total gain error.  
RG  
RF  
G
= Maximum power dissipation of 1 amplifier  
MAX  
For example, if 1% resistors are used for the EL8171, the total  
• V = Supply voltage (Magnitude of V and V )  
gain error would be:  
S
+
-
= E  
+ E  
+ E typical  
• I  
= Maximum supply current of 1 amplifier  
MAX  
RG  
RF  
G
(EQ. 5)  
= 0.01 + 0.01 + 0.003  
= 2.3%  
• V = Maximum output voltage swing of the  
OUTMAX  
application  
• R = Load resistance  
L
Power Dissipation  
It is possible to exceed the +150°C maximum junction  
temperatures under certain load and power-supply conditions.  
It is therefore important to calculate the maximum junction  
temperature (T  
) for all applications to determine if power  
JMAX  
supply voltages, load conditions, or package type need to be  
modified to remain in the safe operating area. These  
parameters are related in Equation 6:  
T
= T  
+  xPD  
MAXTOTAL  
(EQ. 6)  
JMAX  
MAX  
JA  
FN6293 Rev 6.00  
October 9, 2015  
Page 12 of 14  
EL8171, EL8172  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make  
sure that you have the latest revision.  
DATE  
REVISION  
CHANGE  
October 9, 2015  
FN6293.6  
- Updated Ordering Information Table on page 1.  
- Added Revision History.  
- Added About Intersil Verbiage.  
About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com.  
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support.  
© Copyright Intersil Americas LLC 2005-2007. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6293 Rev 6.00  
October 9, 2015  
Page 13 of 14  
EL8171, EL8172  
Small Outline Package Family (SO)  
A
D
h X 45°  
(N/2)+1  
N
A
PIN #1  
I.D. MARK  
E1  
E
c
SEE DETAIL “X”  
1
(N/2)  
B
L1  
0.010 M  
C A B  
e
H
C
A2  
A1  
GAUGE  
PLANE  
SEATING  
PLANE  
0.010  
L
4° ±4°  
0.004 C  
b
0.010 M  
C
A
B
DETAIL X  
MDP0027  
SMALL OUTLINE PACKAGE FAMILY (SO)  
INCHES  
SO16  
(0.150”)  
SO16 (0.300”)  
(SOL-16)  
SO20  
SO24  
(SOL-24)  
SO28  
(SOL-28)  
SYMBOL  
SO-8  
0.068  
0.006  
0.057  
0.017  
0.009  
0.193  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
8
SO-14  
0.068  
0.006  
0.057  
0.017  
0.009  
0.341  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
14  
(SOL-20)  
0.104  
0.007  
0.092  
0.017  
0.011  
0.504  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
20  
TOLERANCE  
MAX  
NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.057  
0.017  
0.009  
0.390  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.406  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.606  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
24  
0.104  
0.007  
0.092  
0.017  
0.011  
0.704  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
28  
-
0.003  
0.002  
0.003  
0.001  
0.004  
0.008  
0.004  
Basic  
-
-
-
c
-
D
1, 3  
E
-
E1  
e
2, 3  
-
L
0.009  
Basic  
-
L1  
h
-
Reference  
Reference  
-
N
-
Rev. M 2/07  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not included.  
2. Plastic interlead protrusions of 0.010” maximum per side are not included.  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994  
FN6293 Rev 6.00  
October 9, 2015  
Page 14 of 14  

相关型号:

EL8172FSZ-T7

Micropower, Single Supply, Rail-to-Rail Input-Output Instrumentation Amplifiers; SOIC8; Temp Range: -40° to 125°C
RENESAS

EL8172FSZ-T7A

Micropower, Single Supply, Rail-to-Rail Input-Output Instrumentation Amplifiers
RENESAS

EL8172IS

Micropower, Single Supply, Rail-to-Rail Input-Output Instrumentation Amplifiers
INTERSIL

EL8172IS

INSTRUMENTATION AMPLIFIER, 300uV OFFSET-MAX, 172MHz BAND WIDTH, PDSO8, PLASTIC, MS-012, SOP-8
RENESAS

EL8172IS-T13

Micropower, Single Supply, Rail-to-Rail Input-Output Instrumentation Amplifiers
INTERSIL

EL8172IS-T7

Micropower, Single Supply, Rail-to-Rail Input-Output Instrumentation Amplifiers
INTERSIL

EL8172IS-T7

INSTRUMENTATION AMPLIFIER, 300uV OFFSET-MAX, 172MHz BAND WIDTH, PDSO8, PLASTIC, MS-012, SOP-8
RENESAS

EL8172ISZ

Micropower, Single Supply, Rail-to-Rail Input-Output Instrumentation Amplifiers
INTERSIL

EL8172ISZ

INSTRUMENTATION AMPLIFIER, 300uV OFFSET-MAX, 172MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, PLASTIC, MS-012, SOP-8
RENESAS

EL8172ISZ-T13

Micropower, Single Supply, Rail-to-Rail Input-Output Instrumentation Amplifiers
INTERSIL

EL8172ISZ-T13

INSTRUMENTATION AMPLIFIER, 300uV OFFSET-MAX, 172MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, PLASTIC, MS-012, SOP-8
RENESAS

EL8172ISZ-T7

Micropower, Single Supply, Rail-to-Rail Input-Output Instrumentation Amplifiers
INTERSIL