F1240NBGI [RENESAS]

Dual Channel IF Digital Variable Gain Amplifier 10MHz to 500MHz;
F1240NBGI
型号: F1240NBGI
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Dual Channel IF Digital Variable Gain Amplifier 10MHz to 500MHz

电信 电信集成电路
文件: 总35页 (文件大小:15956K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Channel IF Digital Variable Gain Amplifier  
10MHz to 500MHz  
F1240  
Datasheet  
Description  
Features  
The F1240 is a dual channel IF variable gain amplifier for diversity  
basestation receivers. Each channel has 31.5dB of total  
attenuation and a 0.5dB attenuation step. The device offers  
significantly better noise and distortion performance than currently  
available devices. It is packaged in a compact 5mm x 5mm QFN  
with 200Ω differential input and output impedances for ease of  
integration into the receiver lineup.  
.
.
.
.
.
.
.
Ideal for systems with high SNR requirements  
20dB typical Maximum Gain  
31.5dB gain control range  
6 bit control via serial or parallel control  
0.5dB Gain Steps  
Excellent Noise Figure : 4.0dB  
NF degrades just 1.3dB @ 10dB below Max Gain  
Competitive Advantage  
. 200Ω Differential Matched Input  
. 200Ω Differential Matched Output  
The F1240 IF VGA improves system signal-to-noise (SNR),  
especially at lower gain settings. With IDT’s proprietary FlatNoiseTM  
technology both OIP3 and noise figure are kept virtually flat while  
gain is backed off, enhancing SNR significantly under high level  
interferer conditions, and greatly benefiting 2G/3G/4G Multi-Carrier  
IF sampling receivers.  
.
.
.
.
.
.
.
.
No termination resistors required  
10MHz – 500MHz frequency range  
Ultra-Linear: OIP3 +47dBm typical  
Excellent 2nd Harmonic Rejection  
External current setting resistors  
Very fast settling < 15ns  
The fast settling time, less than 15ns, gain step of 0.5dB coupled  
with the excellent differential linearity allow for signal to noise ratio  
(SNR) to be maximized further by targeting the minimum necessary  
gain in small, accurate increments.  
Individual Power Down Modes  
Extremely Low Power: 80mA / Chan  
The matched output does not require a terminating resistor, thus  
the gain and distortion performance are preserved when driving  
bandpass anti-alias filters.  
.
5 × 5 32-QFN package  
Block Diagram  
Figure 1. Block Diagram  
See the Applications Information section for more details and  
benefits of the F1240 in IF sampling receivers.  
Typical Applications  
IN_A+  
IN_A-  
OUT_A+  
OUT_A-  
.
.
.
.
.
Base Station 2G, 3G, 4G, TDD radio cards  
Repeaters and E911 systems  
Digital Pre-Distortion  
Parallel [12]  
CLK  
VCC  
FlatNoiseTM  
STBY_A  
Point to Point Infrastructure  
Public Safety Infrastructure  
Logic  
Decoder  
Bias  
Control  
DATA  
CSb  
STBY_B  
ISET [2]  
VMODE  
OUT_B+  
OUT_B-  
IN_B+  
IN_B-  
1
September 11, 2018  
Pin Assignments  
Figure 2. Pin Assignments for 5 x 5 x 0.75 mm QFN Package – Top View  
GA3 / DATA  
1
OUT_A+  
24  
23  
22  
21  
20  
19  
18  
17  
EPAD  
GA4 / CLK  
GA5  
2
3
4
5
6
7
8
OUT_A-  
STBY_A  
GND  
VMODE  
NC  
GND  
GB5  
STBY_B  
OUT_B-  
OUT_B+  
GB4  
GB3  
2
September 11, 2018  
Pin Descriptions  
Table 1.  
Pin Descriptions  
Number  
Name  
Description  
1
2
3
GA3 / DATA 4dB Attenuation control bit for Channel A (Parallel Mode) or DATA (Serial Mode).  
GA4 / CLK 8dB Attenuation control bit for Channel A (Parallel Mode) or CLK (Serial Mode).  
GA5  
16dB Attenuation control bit for Channel A.  
For the parallel mode set for logic HIGH or float (internal pullup resistor)  
Set for logic Low for the serial mode.  
4
VMODE  
5, 13, 20,  
21, 28  
GND  
Internally grounded. This pin must be grounded with a via as close to the pin as possible.  
6
GB5  
GB4  
16dB Attenuation control bit for Channel B.  
7
8dB Attenuation control bit for Channel B.  
8
GB3  
4dB Attenuation control bit for Channel B.  
9
GB2  
2dB Attenuation control bit for Channel B.  
10  
11  
12  
14  
15  
16  
GB1  
1dB Attenuation control bit for Channel B.  
IN_B+  
IN_B-  
VCC  
Channel B Differential Input +. Pin is AC coupled.  
Channel B Differential Input -. Pin is AC coupled.  
Power supply input. Bypass to ground with capacitors as close as possible to pin.  
Channel B ICC set: Use the recommended value from the BOM section.  
0.5dB Attenuation control bit for Channel B.  
ISET_B  
GB0  
Channel B Differential Output+. Pull up to VCC through an inductor. An external series capacitor is  
required.  
17  
18  
OUT_B+  
OUT_B-  
Channel B Differential Output-. Pull up to VCC through an inductor. An external series capacitor is  
required.  
19  
22  
STBY_B  
STBY_A  
Pull low to Power Down Channel B. Float or Pull HIGH to enable Channel B.  
Pull low to Power Down Channel A. Float or Pull HIGH to enable Channel A.  
Channel A Differential Output -. Pull up to VCC through an inductor. An external series capacitor is  
required.  
23  
24  
OUT_A-  
OUT_A+  
Channel A Differential Output +. Pull up to VCC through an inductor. An external series capacitor is  
required.  
25  
26  
27  
29  
30  
31  
32  
GA0  
ISET_A  
VCC  
0.5dB Attenuation control bit for Channel A.  
Channel A ICC set: Use the recommended value from the BOM section.  
Connect this pin to the 5V DC Power Bus. Bypass capacitor is required.  
Channel A Differential Input -. Pin is AC coupled.  
IN_A-  
IN_A+  
GA1  
Channel B Differential Input +. Pin is AC coupled.  
1dB Attenuation control bit for Channel A.  
GA2 / CSb 2dB Attenuation control bit for Channel A (Parallel Mode) or Chip Select, CSb (Serial Mode).  
Exposed paddle. Internally connected to ground. Solder this exposed paddle to a printed circuit board  
– EPAD  
(PCB) pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground  
planes. These multiple ground vias are also required to achieve the specified RF performance.  
3
September 11, 2018  
Absolute Maximum Ratings  
The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device.  
Functional operation of the F1240 at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect  
device reliability.  
Table 2.  
Absolute Maximum Ratings  
Parameter  
Symbol  
Minimum  
Maximum  
Units  
Power Supply  
VCC  
VLOGIC  
VRFIN  
VRFOUT  
PMAX  
-0.3  
-0.3  
+5.5  
VCC + 0.25  
+2.2  
V
V
GA[5-0], GB[5-0], DATA, CSb, CLK, VMODE, STBY_A, STBY_B  
IN_A+, IN_A-, IN_B+, IN_B-  
-0.3  
V
OUT_A+, OUT_A-, OUT_B+, OUT_B-  
Maximum RF Input Power (IN_A+, IN_A-, IN_B+, IN_B-) at maximum gain  
Continuous Power Dissipation  
+2.56  
VCC + 0.25  
+15  
V
dBm  
W
PDISS  
TJMAX  
TSTOR  
TLEAD  
1.5  
Junction Temperature  
+150  
°C  
°C  
°C  
Storage Temperature Range  
-65  
+150  
Lead Temperature (soldering, 10s)  
+260  
Electrostatic Discharge – HBM  
(JEDEC/ESDA JS-001-2012)  
500  
(Class 1B)  
VESDHBM  
VESDCDM  
V
V
Electrostatic Discharge – CDM  
(JEDEC 22-C101F)  
1000  
(Class C3)  
4
September 11, 2018  
Recommended Operating Conditions  
Table 3.  
Recommended Operating Conditions  
Parameter  
Symbol  
Condition  
Minimum  
Typical  
Maximum  
Units  
Power supply voltage  
VCC  
+4.75  
-40  
+5.25  
+100  
V
Operating Temperature Range  
TEPAD  
Exposed paddle  
°C  
Low Distortion Range  
Maximum Gain Setting  
OIP3 > 40 dBm,  
50  
10  
400  
560  
POUT = +3dBm/Tone  
RF Frequency Range  
fRF  
MHz  
Operating Range  
Gain > 17dB  
L1=L2=L3=L4=1500nH  
ZIN_A  
ZIN_B  
,
Input Port Impedance  
Output Port Impedance  
Differential  
Differential  
200  
200  
ZOUT_A  
ZOUT_B  
,
5
September 11, 2018  
Electrical Characteristics  
See the F1240 Typical Application Circuit. Specifications apply when operated at VCC = +5.0V, fRF = 200MHz, TEPAD = +25°C, Parallel Mode  
(VMODE is logic HIGH), STBY_A=STBY_B=is logic HIGH, ZS = ZL = 200differential, maximum gain setting, tone spacing = 0.8MHz,  
POUT = +3dBm/tone, Evaluation Board (EVKit) traces and connectors are de-embedded, unless otherwise stated.  
Table 4.  
Electrical Characteristics  
Parameter  
Symbol  
Condition  
Minimum  
Typical  
Maximum  
Units  
Logic Input High Threshold  
Logic Input Low Threshold  
VIH  
VIL  
2.0 [a]  
0.0  
V
V
0.8  
+2  
+1  
GA[5-0], GB[5-0]  
-2  
Logic Current  
IIH, IIL  
ICC  
µA  
VMODE, STBY_A, STBY_B  
-10  
STBY_A=STBY_B set for  
logic HIGH  
160  
2.3  
176  
5
DC Current  
mA  
STBY_A=STBY_B set for  
logic LOW  
ISTBY  
LSB  
Minimum Gain Step  
Attenuation Range  
0.5  
dB  
dB  
31.5  
Gain Setting = 20dB, or  
Attenuator Setting = 0dB  
Maximum Gain  
GMAX  
20  
dB  
18  
Gain Setting = -11.5dB, or  
Attenuator Setting = 31.5dB  
Minimum Gain  
Return Loss  
GMIN  
RL  
-11.5  
dB  
dB  
-9  
15  
7
fRF=200MHz  
fRF=350MHz  
fRF=450MHz  
fRF=200MHz  
fRF=350MHz  
fRF=450MHz  
Relative Phase Between the  
Minimum and Maximum Attenuation  
Φ∆  
14  
20  
3
deg  
Relative Phase over any 8 dB  
Attenuation Range  
Φ8  
5
deg  
dB  
8
Step Error  
DNL  
0.08  
Over 50MHz to 300MHz and  
temperature  
±(0.3+5%ATT) Typical  
±(0.5+5%ATT) Typical  
Absolute Attenuation Error  
(Attenuation = 20 – Gain State)  
INL  
dB  
Over 300MHz to 500MHz and  
temperature  
Frequency with a 1 dB gain  
reduction compared to gain at  
100MHz at the maximum gain  
setting  
1dB Gain Rolloff  
Channel Isolation  
BW  
350  
MHz  
dBc  
OUT_B referenced to OUT_A  
with power applied at IN_A at  
maximum gain setting  
ISOL  
60  
69  
[a] Specifications in the minimum/maximum columns that are shown in bold italics are guaranteed by test. Specifications in  
these columns that are not shown in bold italics are guaranteed by design characterization.  
6
September 11, 2018  
Electrical Characteristics  
See the F1240 Typical Application Circuit. Specifications apply when operated at VCC = +5.0V, fRF = 200MHz, TEPAD = +25°C, Parallel Mode  
(VMODE is logic HIGH), STBY_A=STBY_B=is logic HIGH, ZS = ZL = 200differential, maximum gain setting, tone spacing = 0.8MHz,  
POUT = +3dBm/tone, Evaluation Board (EVKit) traces and connectors are de-embedded, unless otherwise stated.  
Table 5.  
Electrical Characteristics  
Parameter  
Symbol  
Condition  
Minimum  
Typical  
Maximum  
Units  
Gain Setting = 20.0dB, or  
Attenuator Setting = 0dB  
OIP320A  
42  
46.5  
Gain Setting = 20.0dB, or  
Attenuator Setting = 0dB  
Tone Spacing= 20MHz  
OIP320B  
OIP310  
45  
44.5  
41  
Gain Setting = 10dB, or  
Attenuator Setting = 10dB  
42  
Output Third Order Intercept Point  
dBm  
Gain Setting = 20dB, or  
Attenuator Setting = 0dB  
fRF = 350MHz  
OIP320C  
Gain Setting = 20dB, or  
Attenuator Setting = 0dB  
fRF = 450MHz  
OIP320D  
OIP2  
H2  
41  
76  
Gain Setting = 10dB, or  
Attenuator Setting = 10dB  
f1 = 190MHz, f2 = 210MHz,  
fM = f2 - f1  
Output Second Order Intercept  
Point  
dBm  
Gain Setting = 10dB, or  
Attenuator Setting = 10dB  
Output Power = + 3dBm  
Second Harmonic  
-90  
dBc  
Maximum spurious level on any RF  
port  
SPURMAX No RF Power applied  
Gain Setting = 20dB, or  
-135  
4.5  
dBm  
4.0  
5.3  
Attenuator Setting = 0dB  
Noise Figure  
NF  
dB  
Gain Setting = 10.0dB, or  
5.8  
Attenuator Setting = 10.0dB  
Gain Setting = 20dB, or  
OP1dB  
Output 1dB Compression  
19.7  
dBm  
16  
Attenuator Setting = 0dB  
[a] Specifications in the minimum/maximum columns that are shown in bold italics are guaranteed by test. Specifications in  
these columns that are not shown in bold italics are guaranteed by design characterization.  
7
September 11, 2018  
Electrical Characteristics  
See the F1240 Typical Application Circuit. Specifications apply when operated at VCC = +5.0V, fRF = 200MHz, TEPAD = +25°C, Parallel Mode  
(VMODE is logic HIGH), STBY_A=STBY_B=is logic HIGH, ZS = ZL = 200differential, maximum gain setting, tone spacing = 0.8MHz,  
POUT = +3dBm/tone, Evaluation Board (EVKit) traces and connectors are de-embedded, unless otherwise stated.  
Table 6.  
Electrical Characteristics  
Parameter  
Symbol  
Condition  
Minimum  
Typical  
Maximum  
Units  
50% control signal to 30dBc of  
initial output power. STBY is  
switched from logic HIGH to  
Logic LOW.  
tOFF  
100  
Amplifier Switching Time [b]  
ns  
50% control signal to 0.5dBc  
of final output power. STBY is  
switched from logic LOW to  
Logic HIGH.  
tON  
200  
Any two Adjacent 1dB Steps  
and settled to within +/-0.1dB  
of the final power level  
Settling Time [b]  
Maximum Glitch  
t1dB  
12  
ns  
Only 1 transition has a glitch  
greater than 0.4dB (8.5dB to  
8.0dB)  
0.4  
1.5  
dB  
CSb must be pulled low this  
minimum interval BEFORE the next  
rising clock edge  
Clock to CSb Setup  
Clock Pulse Width  
tEN  
tW  
ns  
ns  
8
Minimum clock interval from rising  
to falling edge  
20  
[a] Specifications in the minimum/maximum columns that are shown in bold italics are guaranteed by test. Specifications in  
these columns that are not shown in bold italics are guaranteed by design characterization.  
[b] Speeds are measured after SPI programming is completed (data latched with CSb = HIGH).  
8
September 11, 2018  
 
Thermal Characteristics  
Table 7.  
Package Thermal Characteristics  
Parameter  
Symbol  
Value  
Units  
Junction to Ambient Thermal Resistance.  
θJA  
40  
°C/W  
Junction to Case Thermal Resistance.  
(Case is defined as the exposed paddle)  
θJC-BOT  
3
°C/W  
Moisture Sensitivity Rating (Per J-STD-020)  
MSL 1  
Typical Operating Conditions (TOC)  
Unless otherwise noted, for the TOC graphs on the following pages, the following conditions apply:  
.
.
.
.
.
.
.
.
.
.
.
Vcc = 5.0V  
ZL = ZS = 100Ω Single Ended or 200Ω Differential  
f
RF = 200MHz  
EPAD = +25°C  
T
STBY = HIGH  
Pout = 3dBm/Tone  
0.8MHz or 20MHzTone Spacing  
Gain setting = Maximum Gain  
All temperatures are referenced to the exposed paddle  
Linear parameters have the Evaluation Kit traces and connector losses de-embedded.  
Non-linear parameters (IP3, P1dB, NF, switching) are measured using the single ended evaluation board with scalar correction.  
9
September 11, 2018  
Typical Performance Characteristics  
Figure 3. Gain versus Frequency [All States]  
Figure 4. Gain versus Gain Setting  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
50.0 MHz  
100.0 MHz  
150.0 MHz  
200.0 MHz  
250.0 MHz  
300.0 MHz  
350.0 MHz  
400.0 MHz  
450.0 MHz  
500.0 MHz  
0
0
-5  
-5  
-10  
-15  
-10  
-15  
106  
107  
108  
109  
-12 -10 -8 -6 -4 -2  
0
2
4
6
8
10 12 14 16 18 20  
Frequency (Hz)  
Gain Setting (dB)  
Figure 5. Input Return Loss versus Frequency  
[All States]  
Figure 6. Input Return Loss versus Gain  
Setting  
0
0
50.0 MHz  
100.0 MHz  
150.0 MHz  
200.0 MHz  
-5  
-5  
250.0 MHz  
300.0 MHz  
350.0 MHz  
400.0 MHz  
450.0 MHz  
500.0 MHz  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
106  
107  
108  
109  
-12 -10 -8 -6 -4 -2  
0
2
4
6
8
10 12 14 16 18 20  
Frequency (Hz)  
Gain Setting (dB)  
Figure 7. Output Return Loss versus  
Frequency [All States]  
Figure 8. Output Return Loss versus Gain  
Setting  
5
0
0
-5  
-5  
-10  
-15  
-20  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
50.0 MHz  
-25  
100.0 MHz  
150.0 MHz  
200.0 MHz  
250.0 MHz  
300.0 MHz  
350.0 MHz  
400.0 MHz  
450.0 MHz  
500.0 MHz  
-30  
-35  
-40  
106  
107  
108  
109  
-12 -10 -8 -6 -4 -2  
0
2
4
6
8
10 12 14 16 18 20  
Frequency (Hz)  
Gain Setting (dB)  
10  
September 11, 2018  
Typical Performance Characteristics  
Figure 9. Relative Insertion Phase versus  
Frequency [All States]  
Figure 10. Relative Insertion Phase versus Gain  
Setting  
30  
25  
20  
15  
10  
5
30  
50.0 MHz  
100.0 MHz  
150.0 MHz  
200.0 MHz  
250.0 MHz  
300.0 MHz  
350.0 MHz  
400.0 MHz  
450.0 MHz  
25  
20  
500.0 MHz  
15  
10  
5
0
0
-5  
-5  
-10  
-10  
106  
107  
108  
109  
109  
109  
-12 -10 -8 -6 -4 -2  
0
2
4
6
8
10 12 14 16 18 20  
Frequency (Hz)  
Gain Setting (dB)  
Figure 11. Relative Insertion Phase over any  
8dB Range versus Frequency  
Figure 12. Relative Insertion Phase over any  
8dB Range versus Gain Setting  
20  
18  
16  
14  
12  
10  
8
20  
50.0 MHz  
100.0 MHz  
150.0 MHz  
200.0 MHz  
250.0 MHz  
300.0 MHz  
350.0 MHz  
400.0 MHz  
450.0 MHz  
18  
16  
14  
500.0 MHz  
12  
10  
8
6
6
4
4
2
2
0
0
106  
107  
108  
-12 -10 -8 -6 -4 -2  
0
2
4
6
8
10 12 14 16 18 20  
Frequency (Hz)  
Gain Setting (dB)  
Figure 13. Maximum Gain versus Frequency  
22.0  
21.5  
21.0  
20.5  
20.0  
19.5  
19.0  
18.5  
18.0  
4.75V / -40C  
4.75V / +25C  
4.75V / +105C  
5.00V / -40C  
5.00V / +25C  
5.00V / +105C  
5.25V / -40C  
5.25V / +25C  
5.25V / +105C  
17.5  
17.0  
106  
107  
108  
Frequency (Hz)  
11  
September 11, 2018  
Typical Performance Characteristics  
Figure 14. Reverse Isolation versus Frequency  
[All States]  
Figure 15. Reverse Isolation versus Gain  
Setting  
0
0
-5  
50.0 MHz  
100.0 MHz  
150.0 MHz  
200.0 MHz  
250.0 MHz  
300.0 MHz  
350.0 MHz  
400.0 MHz  
450.0 MHz  
500.0 MHz  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
106  
107  
108  
109  
109  
109  
-12 -10 -8 -6 -4 -2  
0
2
4
6
8
10 12 14 16 18 20  
Frequency (Hz)  
Gain Setting (dB)  
Figure 16. Worse Case Gain Accuracy versus  
Frequency  
Figure 17. Gain Accuracy versus Gain Setting  
2.0  
2.0  
1.5  
1.0  
0.5  
0.0  
-40 C / Min  
+25 C / Min  
+105 C / Min  
-40 C / Max  
+25 C / Max  
+105 C / Max  
1.5  
1.0  
0.5  
0.0  
50.0 MHz  
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
100.0 MHz  
150.0 MHz  
200.0 MHz  
250.0 MHz  
300.0 MHz  
350.0 MHz  
400.0 MHz  
450.0 MHz  
500.0 MHz  
-1.0  
-1.5  
-2.0  
106  
107  
108  
-12 -10 -8 -6 -4 -2  
0
2
4
6
8
10 12 14 16 18 20  
Frequency (Hz)  
Gain Setting (dB)  
Figure 18. Worse Case Step Error versus  
Frequency  
Figure 19. Step Error versus Gain Setting  
0.5  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
-0.1  
-40 C / Min  
+25 C / Min  
+105 C / Min  
-40 C / Max  
+25 C / Max  
+105 C / Max  
0.4  
0.3  
0.2  
0.1  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
50.0 MHz  
100.0 MHz  
150.0 MHz  
200.0 MHz  
250.0 MHz  
300.0 MHz  
350.0 MHz  
400.0 MHz  
450.0 MHz  
500.0 MHz  
-0.2  
-0.3  
-0.4  
-0.5  
106  
107  
108  
-12 -10 -8 -6 -4 -2  
0
2
4
6
8
10 12 14 16 18 20  
Frequency (Hz)  
Gain Setting (dB)  
12  
September 11, 2018  
Typical Performance Characteristics  
Figure 20. Output IP3 versus Frequency  
[Maximum Gain]  
Figure 21. Second Harmonic versus Frequency  
[Maximum Gain]  
55  
50  
45  
40  
35  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
30  
-80  
-40 C  
-40 C  
25  
+25 C  
+25 C  
-90  
+105 C  
+105 C  
20  
-100  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
Frequency (MHz)  
Frequency (MHz)  
Figure 22. Output P1B Compression versus  
Frequency [Maximum Gain]  
Figure 23. Noise Figure versus Frequency  
[Maximum Gain]  
22  
21  
20  
19  
18  
17  
10  
9
8
7
6
5
4
3
16  
2
-40 C  
-40 C  
+25 C  
+105 C  
15  
+25 C  
1
0
+105 C  
14  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
Frequency (MHz)  
Frequency (MHz)  
13  
September 11, 2018  
Typical Performance Characteristics  
Figure 24.Output IP3 versus Gain State  
[200MHz]  
Figure 25.Output P1dB versus Gain State  
[200MHz]  
55  
22  
-40 C  
+25 C  
21  
20  
19  
18  
17  
+105 C  
50  
45  
40  
35  
30  
25  
20  
16  
-40 C  
+25 C  
15  
+105 C  
14  
-12 -10 -8 -6 -4 -2  
0
2
4
6
8
10 12 14 16 18 20  
-12 -10 -8 -6 -4 -2  
0
2
4
6
8
10 12 14 16 18 20  
Gain Setting (dB)  
Gain Setting (dB)  
Figure 26.Output IP3versus Gain State  
[350MHz]  
Figure 27.Output P1dB versus Gain State  
[350MHz]  
55  
22  
-40 C  
+25 C  
21  
20  
19  
18  
17  
+105 C  
50  
45  
40  
35  
30  
25  
20  
16  
-40 C  
15  
+25 C  
+105 C  
14  
-12 -10 -8 -6 -4 -2  
0
2
4
6
8
10 12 14 16 18 20  
-12 -10 -8 -6 -4 -2  
0
2
4
6
8
10 12 14 16 18 20  
Gain Setting (dB)  
Gain State (dB)  
Figure 28.Output IP3 versus Gain State  
[450MHz]  
Figure 29.Output P1dB versus Gain State  
[450MHz]  
55  
22  
-40 C  
+25 C  
21  
20  
19  
18  
17  
+105 C  
50  
45  
40  
35  
30  
25  
20  
16  
-40 C  
15  
+25 C  
+105 C  
14  
-12 -10 -8 -6 -4 -2  
0
2
4
6
8
10 12 14 16 18 20  
-12 -10 -8 -6 -4 -2  
0
2
4
6
8
10 12 14 16 18 20  
Gain Setting (dB)  
Gain State (dB)  
14  
September 11, 2018  
Typical Performance Characteristics  
Figure 30. 2nd Harmonic versus Gain State  
Figure 31. Noise Figure versus Gain State  
[200MHz]  
[200MHz]  
0
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
-40 C  
-40 C  
+25 C  
+25 C  
-10  
+105 C  
+105 C  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
6
4
2
0
-12 -10 -8 -6 -4 -2  
0
2
4
6
8
10 12 14 16 18 20  
-12 -10 -8 -6 -4 -2  
0
2
4
6
8
10 12 14 16 18 20  
Gain Setting (dB)  
Gain State (dB)  
Figure 32. 2nd Harmonic versus Gain State  
Figure 33. Noise Figure versus Gain State  
[350MHz]  
[350MHz]  
55  
30  
-40 C  
-40 C  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
+25 C  
+25 C  
+105 C  
+105 C  
50  
45  
40  
35  
30  
25  
20  
6
4
2
0
-12 -10 -8 -6 -4 -2  
0
2
4
6
8
10 12 14 16 18 20  
-12 -10 -8 -6 -4 -2  
0
2
4
6
8
10 12 14 16 18 20  
Gain Setting (dB)  
Gain State (dB)  
Figure 34. 2nd Harmonic versus Gain State  
Figure 35. Noise Figure versus Gain State  
[450MHz]  
[450MHz]  
55  
30  
-40 C  
-40 C  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
+25 C  
+25 C  
+105 C  
+105 C  
50  
45  
40  
35  
30  
25  
20  
6
4
2
0
-12 -10 -8 -6 -4 -2  
0
2
4
6
8
10 12 14 16 18 20  
-12 -10 -8 -6 -4 -2  
0
2
4
6
8
10 12 14 16 18 20  
Gain Setting (dB)  
Gain State (dB)  
15  
September 11, 2018  
Typical Performance Characteristics  
Figure 36. Channel Isolation versus Frequency  
[Maximum Gain]  
Figure 37. Current versus Power Supply  
0
162  
161  
160  
159  
158  
157  
156  
155  
154  
153  
152  
-10  
-20  
CH A to CH B  
-30  
CH B to CH A  
-40  
-50  
-60  
-70  
-80  
-40 C  
+25 C  
+105 C  
-90  
-100  
1.E+06  
1.E+07  
1.E+08  
1.E+09  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
400  
90  
Frequency (Hz)  
Voltage (Volts)  
Figure 38. Typical Standby OFF to ON  
Switching  
Figure 39. Typical Standby ON to OFF  
Switching  
15  
15  
10  
10  
5
5
0
0
-5  
-5  
Serial  
Serial  
Parallel  
-10  
-15  
-20  
-25  
-30  
-35  
-10  
-15  
-20  
-25  
-30  
-35  
Parallel  
-50  
0
50  
100  
150  
200  
250  
300  
350  
400  
-50  
0
50  
100  
150  
200  
250  
300  
350  
Time (ns)  
Time (ns)  
Figure 40. Typical Switching Characteristics  
Figure 41. Worse Case Switching  
Characteristics (8.5 to 8.0 dB)  
-1.4  
0.4  
+8.5 dB to +8.0 dB  
+8.0 dB to +8.5 dB  
+8.5 dB CW  
+8.0 dB CW  
+8.0 dB to +7.5 dB  
+7.5 dB to +8.0 dB  
+8.0 dB CW  
+7.5 dB CW  
-1.5  
-1.6  
-1.7  
-1.8  
-1.9  
-2.0  
-2.1  
-2.2  
-2.3  
-2.4  
-2.5  
-2.6  
-2.7  
-2.8  
0.2  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-1.4  
-1.6  
-1.8  
-2.0  
-2.2  
-2.4  
1.5 dB  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
Time (ns)  
Time (ns)  
16  
September 11, 2018  
 
 
Programming  
F1240 can be programmed using either the parallel or serial interface which is selectable via VMODE (pin 4). The serial mode is selected by  
setting VMODE to a logic LOW and the parallel mode by floating VMODE or by setting VMODE to a logic HIGH.  
Serial Mode  
F1240 Serial Mode is selected by setting VMODE to a logic LOW. The serial interface is a 16 bit shift register made up of two words. The first  
word is the address or channel word, which uses only 1 of 8 bits to select the channel that will be programmed. The second 8 bit word is the  
Gain (or attenuation) word, which uses 6 bits to control the DSA state and one bit to enable or disable the channel.  
When serial programming is used, all of the other parallel control input pins (3, 6-10, 25, 31, 32) can be left floating.  
Table 8.  
8-Bit SPI Address (Channel) Word Sequence  
Data Bit  
Symbol  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
A0  
Channel Selection  
Table 9.  
Truth Table for Address (Channel) Control Word  
A7  
(MSB)  
A0  
(LSB)  
A6  
A5  
A4  
A3  
A2  
A1  
Program Channel  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
A
B
Table 10. 8-Bit SPI Gain (Attenuation) Word Sequence  
Data Bit  
Symbol  
Enable Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Attenuation 16 dB Control Bit  
Attenuation 8 dB Control Bit  
Attenuation 4 dB Control Bit  
Attenuation 2 dB Control Bit  
Attenuation 1 dB Control Bit  
Attenuation 0.5 dB Control Bit  
Not Used  
17  
September 11, 2018  
Table 11. Truth Table for Serial Gain (Attenuation) Control Word  
D7  
(MSB)  
D0  
(LSB)  
Gain Setting  
Target (dB)  
Attenuation  
D6  
D5  
D4  
D3  
D2  
D1  
(dB)  
E
E
E
E
E
E
E
E
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
1
0
0
0
0
1
0
0
1
0
0
0
1
0
0
0
1
0
0
1
0
0
0
0
1
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
20  
19.5  
19  
0
0.5  
1
18  
2
16  
4
12  
8
4
16  
31.5  
-11.5  
[a] To enable the specified channel set E to a logic HIGH. To disable (or set for standby) the specific  
channel set E for logic LOW. For this bit to work properly the standby pins (19, 22) must be floating  
or set to logic HIGH.  
In the Serial Mode, the F1240 is programmed via the serial port on the rising edge of Chip Select bar (CSb). It is required that CSb be kept logic  
LOW until all data bits are clocked into the shift registers. The F1240 will change attenuation state after the data word is latched into the active  
register. Refer to Figure 42.  
Figure 42. Serial Register Timing Diagram  
18  
September 11, 2018  
 
 
Table 12. SPI Timing Diagram Values for the Serial Mode  
Parameter  
Symbol  
Test Condition  
Minimum  
Typical  
Maximum  
50  
Units  
CLK Frequency  
fC  
tCH  
tCL  
tS  
tP  
tH  
tCLS  
tLS  
tL  
20  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLK HIGH Duration Time  
CLK LOW Duration Time  
DATA to CLK Setup Time  
CLK Period [b]  
CLK to Data Hold Time  
Final CLK Rising Edge to LE Rising Edge  
LE to CLK Setup Time  
LE Trigger Pulse Width  
LE Trigger to CLK Setup Time [c]  
[a] (tCH + tCL) ≥ 1/fC.  
20  
20  
10  
40  
10  
10  
10  
10  
10  
tLC  
[b] Once all desired data has been clocked in, CSb must transition from LOW to HIGH after the minimum setup time tLC and  
before any further CLK signals.  
Serial Mode Enable Functions and Standby Pins  
There are two pins, STBY_A (pin 22) and STBY_B (pin 19) which can be used in the serial or parallel mode for fast switching of the two  
channels. These pins float HIGH and should be left disconnected or set for logic HIGH for serial operation.  
Using the Serial Mode for Standby  
.
.
Each channel must be programmed separately using the Enable bit (Bit 7) of the Data word.  
The gain setting is determined by the gain bits (D6-D1) are set for during the channel programming.  
Parallel Control Mode  
Parallel Mode is selected when VMODE (Pin 4) is floating or set to a logic HIGH. In this mode, the device will immediately react to any voltage  
changes on the parallel control pins (1-3, 5-10, 16, 25, 31, 32). Use the Parallel Mode for the fastest settling time. This also allows both channels  
to be programmed simultaneously.  
The truth table for the Parallel Mode is identical for bits D6 to D0 as shown in the Serial Mode truth table; see Table 11.  
Using the Standby Pins for Standby  
.
.
Both channels can be switch at the same time by setting the standby pins simultaneously  
The gain setting is determined by the gain bits (D6-D1) set during the last serial programming or by the existing parallel pins setting.  
Default Startup Condition  
When the device is first powered up, it will default to the maximum gain (minimum attenuation) of 20 dB (0 dB) and both channels will be enabled  
independent of the VMODE and parallel pin [D6:D0] conditions.  
19  
September 11, 2018  
 
 
Typical Application Circuit  
Figure 43 is a typical minimum circuit design needed for the F1240.  
Figure 43. Electrical Schematic  
C12  
C10  
R34  
U1  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
B1_3-SD  
B1_4-SCK  
B1_5  
OUT_A+  
OUT_A-  
L1  
L2  
GA3/DATA  
GA4/CLK  
GA5  
OUT_A+  
OUT_A-  
STBY_A  
GND21  
GND20  
STBY_B  
OUT_B-  
OUT_B+  
VCC_IF1  
C1  
C4  
P_EN  
R37  
Vmode  
NC  
R38  
B2_5  
B2_4  
B2_3  
GB5  
OUT_B-  
OUT_B+  
L4  
L3  
GB4  
VCC_IF2  
C5  
C7  
GB3  
VCC  
C16  
R36  
C17  
C18  
20  
September 11, 2018  
 
Evaluation Kit Picture  
Figure 44. Top View  
Figure 45. Bottom View  
21  
September 11, 2018  
Evaluation Kit / Applications Circuit  
Figure 46 shows the electrical schematic for the evaluation board used for customer evaluation.  
Figure 46. Electrical Schematic  
J1  
T1  
C2  
C12  
C10  
R34  
U1  
J4  
T5  
L1  
L2  
3
2
1
4
J6  
SEC  
PRI  
PD  
C1  
C3  
1
3
5
7
9
11  
13  
2
4
6
8
10  
12  
14  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
B1_0  
B1_2-CS  
B1_4-SCK  
B1_1  
B1_3-SD  
B1_5  
B1_3-SD  
B1_4-SCK  
B1_5  
OUT_A+  
OUT_A-  
GA3/DATA  
GA4/CLK  
GA5  
OUT_A+  
OUT_A-  
STBY_A  
GND21  
GND20  
STBY_B  
OUT_B-  
OUT_B+  
VCC_IF1  
CT  
B2_4  
B2_2  
B2_0  
B2_5  
B2_3  
B2_1  
6
4
6
J7  
SD  
1
2
3
4
P_EN  
R37  
C4  
C5  
Vmode  
NC  
R38  
T6  
L4  
L3  
B2_5  
B2_4  
B2_3  
3
2
1
GB5  
SEC  
CT  
PRI  
PD  
C8  
OUT_B-  
OUT_B+  
GB4  
VCC_IF2  
J5  
GB3  
SD  
C7  
C16  
VCC  
R36  
J8  
C17  
JP1  
C18  
R39  
R40  
R41  
R42  
C6  
TP1  
TP2  
TP3  
TP4  
T3  
J3  
22  
September 11, 2018  
 
Table 13. Bill of Material (BOM)  
Part Reference  
QTY  
Description  
Manufacturer Part #  
Manufacturer  
C1, C5, C10, C16  
C2, C3, C6 C,8  
C4, C7, C12, C17  
C18  
4
4
4
1
1000pF ±5%, 50V, C0G Ceramic Capacitor (0402)  
10nF ±5%, 50V, X7R Ceramic Capacitor (0402)  
100nF ±10%, 16V, X7R Ceramic Capacitor (0402)  
10uF ±20%, 6.3V, X5R Ceramic Capacitor (0603)  
GRM1555C1H102J  
GRM155R71H103J  
GRM155R71C104K  
GRM188R60J106M  
MURATA  
MURATA  
MURATA  
MURATA  
R37, R39, R40, R41,  
R42  
5
0Ω Resistors (0402)  
ERJ-2GE0R00X  
PANASONIC  
R34, R36  
2
1
1
1
5
3.83kΩ ±1%, 1/10W, Resistor (0402)  
CONN HEADER VERT SGL 2 X 1 POS GOLD  
CONN HEADER VERT DBL 2 X 2 POS GOLD  
CONN HEADER VERT DBL 7 X 2 POS GOLD  
Edge Launch SMA (0.250 inch pitch ground, round)  
ERJ-2RKF3831X  
961102-6404-AR  
90131-0762  
PANASONIC  
JP1  
3M  
Molex  
J7  
J6  
N2514-6002-RB  
142-0711-821  
3M  
J1, J3, J4, J5, J8  
Emerson Johnson  
390nH ±5%, 0.290A, Ferrite Ceramic Chip Inductor  
(0805)  
L1, L2, L3, L4  
4
0805CS-391XJL  
CoilCraft  
T1, T3, T5, T6  
U1  
4
1
1
3MHz - 800MHz 50Ω, RF Transformer (4:1)  
TC4-1WG2+  
F1240  
Mini Circuits  
IDT  
VGA  
Printed Circuit Board  
F1240 EVKIT REV 01  
IDT  
23  
September 11, 2018  
Evaluation Kit Operation  
Power Supply Setup  
Set up a power supply in the voltage range of 4.75V to 5.25V with the power supply output disabled. The voltage can be applied via one of the  
following connections (see Figure 47).  
.
.
Directly to J8 connector  
JP1 header connection (note the polarity of the GND pin on this connector)  
Figure 47. Power Supply Connections  
VCC  
GND  
1
Logic Control Setup  
The Evaluation Board has the ability to control the F1240 in the Parallel or Serial Mode. The logic voltages can be applied through the J4  
connector (see Figure 48). For both the parallel and serial mode see Table 14 for the connections.  
Figure 48. Logic Connections  
Pin 1  
Pin 3  
Pin 14  
24  
September 11, 2018  
 
 
Logic Control  
Table 14. Parallel and Serial Logic Pins  
J6 Pin  
Parallel Function  
Serial Function  
F1240 Pin  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
GA0  
GA1  
GA2  
GA3  
GA4  
GA5  
GND  
VMODE  
GB4  
GB5  
GB2  
GB3  
GB0  
GB1  
Not used  
Not used  
CSb  
DATA  
CLK  
Not used  
GND  
VMODE  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
25  
31  
32  
1
2
3
4
7
6
9
8
16  
10  
Standby Pins  
The evaluation board allows for setting the standby pins on connector J5. By default the standby pins are logic HIGH which allows the device  
to be enable. By setting the pin to logic LOW (ground) the device will not draw very little current.  
Figure 49. Standby Pins  
STBY_A STBY_B  
GND  
Power-On Procedure  
1. Set up the voltage supplies and Evaluation Board as described in the “Power Supply Setup” section and the “Logic Control Setup” section  
above.  
2. Enable the VCC supply. The F1240 should default to the maximum gain state.  
3. Enable the proper gain (attenuation) setting according to Table 7-10 for Serial Mode or Table 11 for the Parallel Mode.  
Power-Off Procedure  
1. Set the logic control pins to a logic LOW.  
2. Disable the VCC supply.  
25  
September 11, 2018  
 
Application Information  
The F1240 has been optimized for use in high performance IF sub-sampling applications. High absolute attenuator accuracy and low switching  
time make the F1240 ideal for these very demanding applications.  
Power Supplies  
A common VCC power supply should be used for all pins requiring DC power. All supply pins should be bypassed with external capacitors to  
minimize noise and fast transients. Supply noise can degrade noise figure and fast transients can trigger ESD clamps and cause them to fail.  
Supply voltage change or transients should have a slew rate smaller than 1V/20µS. In addition, all control pins should remain at 0V (+/-0.3V)  
while the supply voltage ramps or while it returns to zero.  
Digital Pin Voltage and Resistance Values  
Table 15 provides open-circuit DC voltage referenced to ground and resistance values for each of the control pins listed.  
Table 15. Digital Pin Voltages and Resistance  
Open Circuit  
DC Voltage  
Pin  
Name  
Internal Connection  
1 - 3, 6 - 10, 16,  
25, 31, 32  
Gain Control Bits  
0V  
> 10MΩ  
4
VMODE  
VCC  
VCC  
1.8MΩ  
.80MΩ  
19, 22  
STBY_B, STB_A  
Control Pin Interface  
If control signal integrity is a concern and clean signals cannot be guaranteed due to overshoot, undershoot, ringing, etc., the following circuit  
at the input of each control pin is recommended. This applies to control pins 1 - 4, 6 - 10, 16, 19, 22, 25, 31, and 32 as shown below.  
Figure 50. Signal Integrity Schematic  
5 k  
GA1  
5 kΩ  
2 pF  
5 kΩ  
GA0  
GA2 / CSb  
2 pF  
2 pF  
5 kΩ  
GA3 / DATA  
2 pF  
5 kΩ  
GA4 / CLK  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
2 pF  
EPAD  
5 kΩ  
GA5  
5 kΩ  
2 pF  
STBY_A  
2 pF  
5 kΩ  
VMODE  
2 pF  
5 kΩ  
5 kΩ  
GB5  
STBY_B  
2 pF  
2 pF  
5 kΩ  
GB4  
2 pF  
5 kΩ  
GB3  
2 pF  
5 kΩ  
5 kΩ  
5 kΩ  
GB2  
GB1  
GB0  
2 pF  
2 pF  
2 pF  
26  
September 11, 2018  
 
Matched Output  
Unlike competing devices the F1240 features a matched 200Ω differential output. All of the datasheet parameters are specified as such. For  
instance, the Gain of 20dB is a true Transducer Power gain (Power delivered to the matched load minus Power available from the source). This  
is in contrast to competing devices that usually have a high or low impedance output and must be terminated with resistors to operate properly.  
In IF sampling applications, the IF VGA usually drives a bandpass anti-alias filter which precedes the ADC. These filters typically need to ‘see’  
matched terminations. Only the F1240’s performance is preserved in this environment. See directly below for a comparison to popular VGA  
styles.  
Figure 51. VGA Output Amplifier - Voltage Mode Schematic  
Example 1: ‘Voltage Mode’ VGA  
50 Bandpass Anti-Alias Filter  
25  
2  
50 Ω  
50 Ω  
In  
200 Ω  
Out  
+
VS  
-
25 Ω  
Termination Resistors:  
Ensure BPF is terminated properly with 50 Ω  
Total load = 100 …..Available Power = V2S / 100  
Must Adjust Datasheet Values:  
Gain with 100 load = 22 dB  
True Gain in-system = 19 dB  
Half the Power is dissipated in the terminating resistors:  
(0.5VS)2 / 50  
The other half of the power is delivered to the input of the BPF  
Output IP3 with 100 load = +44 dBm  
True OIP3 in-system = +41 dBm  
Effectively, the Gain drops by 3 dB  
Figure 52. VGA Output Amplifier - Current Mode Schematic  
Example 2: ‘Current Mode’ VGA  
300 Bandpass Anti-alias Filter  
300  
300 Ω  
300 Ω  
IS  
In  
150 Ω  
Out  
5 k  
Termination Resistor:  
Ensures BPF is terminated properly with 300 .  
Must Adjust Datasheet Values:  
Total load = 150 ...Available Power = I2 X 150  
S
Half the Power is dissipated in the terminating resistor:  
(0.5IS)2 X 300  
Gain with 150 load = 19 dB  
True Gain in-system = 16 dB  
The other half of the power is delivered to the BPF  
Again effectively, the Gain drops by 3 dB  
Output IP3 with 150 load = +46 dBm  
True OIP3 in-system = +43 dBm  
27  
September 11, 2018  
Figure 53. VGA Output Amplifier - Matched Output Schematic  
IDT: ‘Matched’ VGA  
200  
Bandpass Anti-Alias Filter  
0
+
200  
In  
200 Ω  
200 Ω  
VS  
-
Out  
200 Ω  
0
Termination Resistors NOT NEEDED:  
VGA itself terminates BPF with proper Z = 200 Ω  
NO NEED to Adjust Datasheet Values:  
Total external load = 200 Ω  
Gain with 200 load = 20 dB  
True Gain in-system = 20 dB  
Available Power = V2S / 200  
ALL of the power is delivered to the input of the BPF  
Effectively, the Gain is unchanged!  
Output IP3 with 200 ohm load = +49 dBm  
True IP3O in-system = +49 dBm  
Noise Contour  
The remarkable FlatNoiseTM feature of the device (see first four graphs on page 10) has great benefits when implemented in wideband multi-  
carrier systems. For the first 13 dB of attenuation range, the device has only 2.3dB degradation in noise figure. This is in stark contrast to  
standard VGAs like the voltage or current mode devices described earlier. These devices have a linear dB-for-dB degradation in Noise Figure  
with increasing attenuation.  
Refer to the figure below. It depicts the F1240 driving a matched Anti-Alias Filter which is followed by an ADC with a differential resistive 200  
ohm termination. Note that at each point in the system the matching is preserved.  
Figure 54. VGA Output Amplifier – Anti-Alias Filter Schematic  
ZDIF F = 200 ohm  
ZDIF F = 200 ohm  
200 MHz Discrete Anti-Alias Filter  
CB  
V_IN+  
L3  
C2  
VGA_OUT+  
100  
100  
L1  
5V  
L2  
CB  
CB  
VCML  
Unbuffered  
L5  
C4  
F1240/1  
VGA_OUT-  
C1  
Pipeline ADC  
C3  
V_IN-  
L4  
CB  
ZDIF F = 200 ohm  
Loss = 2 dB  
Z
DIF F = 200 ohm  
28  
September 11, 2018  
A discrete realization of a 3rd order Anti-Alias filter is shown below. Sampling occurs in Nyquist Zone3 for a 60 MHz multi-carrier signal. Noise  
just 20 MHz above and below the signal band edges will alias from either Zone4 or Zone2 and show up as added noise in the desired band at  
the digital output of the ADC.  
Figure 55. VGA Output Amplifier – Anti-Alias Filter Schematic  
10  
Chebyshev Discrete LC  
filter 3rd order  
Zone2 Alias  
noise rejection  
only ~ 6 dB  
0
-10  
Multi-Carrier  
BW = 170 to 230  
30 dB filtering for  
H2 and IM2  
-20  
-30  
-40  
Zone4 Alias noise  
rejection only ~ 3 dB  
-50  
-60  
-70  
-80  
-90  
-100  
Sample Rate ~ 160 MHz  
Digital  
Downconversion BW  
-110  
-120  
3rd Nyquist Zone =  
3
1st Nyquist Zone =  
0 to f SAMP  
2nd Nyquist Zone =  
4th Nyquist Zone =  
3
½
½
f SAMP to f SAMP  
f SAMP to  
/ 2 f SAMP  
/
2 f SAMP to 2f SAMP  
-130  
0
40  
80  
120  
160  
200  
240  
280  
320  
360  
400  
440  
Frequency (MHz)  
The result is that the F1240 with its unique noise contour will improve SNR significantly in this multi-carrier instance. Note in the graph below:  
SNR improves over 2dB at high attenuation settings which potentially allows for the use of a lower cost 12-bit ADC in the Rx path.  
Figure 56. VGA Output Amplifier – Anti-Alias Filter Schematic  
13.0  
Standard VGA w/14 bit ADC  
Up to 2.1 dB advantage  
in SNR!  
11.0  
F1240/1 w/14 bit ADC  
F1240/1 w/12 bit ADC  
Enables use of low cost  
12-bit ADC with no loss  
of performance  
9.0  
7.0  
5.0  
3.0  
1.0  
SNR @ 200 MHz  
SNR @ 200 MHz  
with 165 fsec clock  
with 165 fsec clock  
jitter = 69.3 dB  
jitter = 67.7 dB  
0
4
8
12  
16  
20  
24  
VGA Attenuation below Max Gain (dB)  
Current Setting Resistors  
The F1240 already offers the best IM3 distortion performance over the widest power range when driving a matched load with 160mA total  
current for both channel. The user has the option to reduce the current even further at the expense of Output IP3.  
29  
September 11, 2018  
Settling Time  
The F1240 has been optimized to settle quickly and smoothly without any glitching when changing gain between ANY adjacent steps. Glitching  
is defined as the power increase over the maximum power from either of the two states being switched. Most states show no glitching at all. A  
few states have less than 0.4dB. Only one state was found with a 1.5 dB glitch. See Figure 40 and Figure 41 glitch Even for 1 dB steps that  
involve MSB transitions, the settling time is less than 15 ns.  
Gain Control Software  
To control the F1240, IDT can supply a total solution, F1240EVS, to test the device. The software can be downloaded from RF Digital Control  
Software Installer, and the user manual from AN-896 RF Products EVS Digital Control Software Guide.  
Operation into a 100Ω Load  
The F1240 can be dropped directly into a 100Ω termination environment without any topology changes, so no board redesign is necessary.  
The example schematic below is for a 153MHz IF center frequency. Simply replace the pullup inductors already on the board with 91nH and  
replace the series AC coupling capacitors already on the board with 18pF. The F1240 in this case will then drive a 100Ω filter with approximately  
16dB return loss. See schematic and measured results when matched to 100Ω below.  
Figure 57. 153MHz Output Filter to ADC Schematic  
AC coupling  
Capacitor  
ZDIFF = 100 ohm  
ZDIFF = 100 ohm  
153 MHz +/- 20MHz AAF  
18 pF  
CB  
CB  
Pins 24, 23  
V_IN+  
VGA_OUT+  
91 nH  
50  
50  
CB  
VCML  
Unbuffered  
Pipeline ADC  
F1240/1  
5V  
91 nH  
VGA_OUT-  
V_IN-  
Pins 18, 17  
CB  
18 pF  
Pullup Inductors:  
Coilcraft 0805CS  
ZDIFF = 100 ohm  
ZDIFF = 100 ohm  
AC coupling  
Capacitor  
Figure 58. Measure Performance for 153MHz  
Output Filter vs Frequency  
Figure 59. Measure OIP3 Performance for  
153MHz Output Filter vs Gain Setting  
25  
20  
15  
55  
174 MHz  
50  
45  
40  
10  
S21  
S22  
5
134 MHz  
154 MHz  
35  
30  
25  
20  
15  
0
-5  
-10  
-15  
-20  
-25  
-2  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
1.0E+08  
1.2E+08  
1.4E+08  
1.6E+08  
1.8E+08  
2.0E+08  
Gain Setting (dB)  
Frequency (Hz)  
30  
September 11, 2018  
Figure 60. Measured Harmonic Performance for  
153MHz Output Filter vs Gain Setting  
Figure 61. Measure Error Performance for  
153MHz Output Filter vs Gain Setting  
-50  
-55  
-60  
-65  
0.6  
0.4  
154 MHz Gain Step Error  
0.2  
-70  
174 MHz  
154 MHz  
-75  
0.0  
-80  
-85  
-90  
-0.2  
-0.4  
-0.6  
154 MHz Absolute Gain Error  
-95  
134 MHz  
-100  
-2  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
-4  
-2  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Gain Setting (dB)  
Gain Setting (dB)  
Package Outline Drawings  
The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is  
the most current data available.  
www.idt.com/document/psc/nbnbg32-package-outline-50-x-50-mm-body-epad-330mm-sq-050-mm-pitch-qfn  
Ordering Information  
Orderable Part Number  
Package  
MSL Rating  
Shipping Packaging  
Temperature  
F1240NBGI  
F1240NBGI8  
F1240EVBI  
F1240EVS  
5 × 5 × 0.75 mm 32-QFN  
5 × 5 × 0.75 mm 32-QFN  
1
1
Tray  
Reel  
-40° to +100°C  
-40° to +100°C  
Evaluation Board  
Evaluation Solution  
Marking Diagram  
.
.
Lines 1 and 2 are the part number.  
Line 3 indicates the following:  
.
.
“#” denotes stepping.  
“YY” is the last two digits of the year; “WW” is the work week number when the part  
was assembled.  
.
“$” denotes the mark code.  
.
Line 4 is the assembly lot number.  
31  
September 11, 2018  
Revision History  
Revision Date  
Description of Change  
Added spurs specification  
Linked the package outline drawings  
Updated the marking diagram  
Updated the document formatting  
September 11, 2018  
Added power supply and control pin paragraphs in Application section. Corrected Absolute Maximum Rating  
section. Corrected pin table. Addition of “Revision History” table. Addition of contacts and disclaimer table.  
Revision of package drawing and addition of land pattern.  
February 9, 2018  
March 31, 2012  
Minor edits.  
Initial release.  
IMPORTANT NOTICE AND DISCLAIMER  
RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL  
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING  
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND  
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,  
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A  
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible  
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)  
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These  
resources are subject to change without notice. Renesas grants you permission to use these resources only for  
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly  
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.  
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,  
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject  
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources  
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.  
(Rev.1.0 Mar 2020)  
Corporate Headquarters  
Contact Information  
TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com  
For further information on a product, technology, the most  
up-to-date version of a document, or your nearest sales  
office, please visit:  
www.renesas.com/contact/  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas  
Electronics Corporation. All trademarks and registered  
trademarks are the property of their respective owners.  
© 2020 Renesas Electronics Corporation. All rights reserved.  

相关型号:

F1240NBGI8

Dual Channel IF Digital Variable Gain Amplifier 10MHz to 500MHz
RENESAS

F124JB

8-bit Microcontrollers
FUJITSU

F124MB

8-bit Microcontrollers
FUJITSU

F124NB

8-bit Microcontrollers
FUJITSU

F125

QUADRUPLE BUS BUFFER GATE
TI

F1250T

solid state crowbar devices
TECCOR

F1257

1.25mm pitch FFC/FPC connector
ETC

F1257WV-10P

1.25mm pitch FFC/FPC connector
ETC

F1257WV-10P-T

1.25mm pitch FFC/FPC connector
ETC

F1257WV-11P

1.25mm pitch FFC/FPC connector
ETC

F1257WV-11P-T

1.25mm pitch FFC/FPC connector
ETC

F1257WV-12P

1.25mm pitch FFC/FPC connector
ETC