F159V [RENESAS]

Dual-Path RF Transmitter IC 450MHz to 2800MHz;
F159V
型号: F159V
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Dual-Path RF Transmitter IC 450MHz to 2800MHz

文件: 总78页 (文件大小:3262K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual-Path RF Transmitter IC  
450MHz to 2800MHz  
F159V  
Datasheet  
Description  
Features  
The F159V is a Dual-Path RF Transmitter IC that has an operating  
frequency range of 450MHz to 2800MHz. The device provides two  
independent transmit paths each with 18.3dB typical maximum  
gain with corresponding output noise floor of -142.5dBm/Hz,  
+31dBm OIP3, and +14dBm output P1dB designed to operate with  
a single +3.3V supply while consuming only 685mA DC current.  
.
.
.
.
.
.
Independent dual-path operation  
RF output frequency: 450MHz to 2800MHz  
18.3dB typical maximum gain (no attenuation)  
+31dBm OIP3 (no attenuation)  
+14dBm Output P1dB (no attenuation)  
13dB NF corresponds to -142.5dBm/Hz output noise floor (no  
attenuation)  
Each signal path includes a quadrature modulator, voltage variable  
attenuator (VVA), digital step attenuator (DSA), and a fixed gain  
amplifier. The device supports a total of 32dB VVA adjustment  
range using a SPI-controlled 11-bit DAC, and each DSA has 31dB  
gain control range in 1dB steps using SPI control.  
.
.
.
.
Output noise floor -152.3dBm/Hz (VVA=14dB, DSA=1dB)  
Channel Isolation: 47dB  
DSA with 31dB total gain range in 1dB steps  
Multiple VVAs with 32dB gain range controlled by on-chip SPI  
controlled 11-bit DAC  
An on-chip frequency synthesizer is shared by both paths and is  
optimized for use in multi-carrier, multi-mode FDD and TDD base  
station transmitters achieving GSM-grade performance. The  
synthesizer offers both an integer mode and fractional mode. It  
requires an external loop filter and an external reference oscillator  
in the frequency range of 10MHz to 250MHz.  
.
Variable Gain amplifier (VGA) is comprised of DSAs, VVAs,  
and a fixed-gain amplifier  
.
.
.
.
.
.
.
.
.
.
I lead Q by 90 degrees for high side LO injection  
Supports ZIF or CIF architectures  
The F159V is packaged in a 10mm x 10mm, 68-pin QFN with 110Ω  
differential drive from external I/Q DACs and single-ended 50Ω RF  
output impedance for ease of integration into the signal-path lineup  
for each of the two transmitter paths. Each path has independent  
power supply control thereby allowing optimum power efficiency.  
Common-mode voltage range: +0.1V to +0.8V  
Integer-N and Fractional-N Synthesizer  
Direct 110Ω differential driven from I/Q DAC  
50Ω single-ended RF output impedance  
Internal or external LO select  
Competitive Advantage  
+3.3V supply voltage at 685mA (LO_Out not turned on)  
Specified Case Temperature; -20°C to +115°C  
10mm x 10mm, 68-pin QFN package  
.
High level of integration includes frequency synthesizer / PLL,  
dual-path DSA, Modulator, and VVA  
.
.
.
.
High reliability  
Block Diagram  
Figure 1. Block Diagram  
Low DC current  
Zero DistortionTM technology  
GlitchFreeTM technology  
Channel 0  
Amplifier MOD MOD  
Enable Enable Couple  
Q+  
Q-  
I+  
I-  
Typical Applications  
SPI Controller  
90 / 0  
.
.
.
.
.
.
.
.
Application Multi-mode, Multi-carrier Transmitters  
PCS1900 Base Stations  
Zero-DistortionTM  
RESET  
Vdd  
DCS1800 Base Stations  
LO_LD  
REF_IN  
CP_OUT  
VTUNE  
VCOM  
Frequency  
Synthesizer  
RFOUT  
Channel 0  
WiMAX and LTE Base Stations  
UMTS/WCDMA 3G Base Stations  
PHS/PAS Base Stations  
DAC  
DAC  
RFOUT  
Channel 1  
/M  
Distributed Antenna Systems  
Digital Radio  
LO  
Switch  
Matrix  
/2  
90 / 0  
Glitch-FreeTM  
Amplifier MOD MOD  
Enable Enable Couple  
+
-
+
-
Q+  
Q-  
I+  
I-  
LO_IN  
LO_OUT  
Channel 1  
© 2020 Renesas Electronics Corporation  
1
May 15, 2020  
F159V Datasheet  
Contents  
1. Pin Assignments...........................................................................................................................................................................................5  
2. Pin Descriptions............................................................................................................................................................................................6  
3. Absolute Maximum Ratings..........................................................................................................................................................................9  
4. Recommended Operating Conditions.........................................................................................................................................................10  
5. Electrical Characteristics ............................................................................................................................................................................11  
6. Thermal Characteristics..............................................................................................................................................................................21  
7. Typical Operating Conditions (TOC)...........................................................................................................................................................21  
8. Typical Performance Characteristics..........................................................................................................................................................22  
9. Typical Performance Characteristics - VVA................................................................................................................................................23  
10. Typical Performance Characteristics - DSA ...............................................................................................................................................24  
11. Typical Performance Characteristics - Cascaded Gain..............................................................................................................................25  
12. Typical Performance Characteristics - Cascaded Gain (Cont.)..................................................................................................................26  
13. Typical Performance Characteristics - Cascaded OIP3 .............................................................................................................................27  
14. Typical Performance Characteristics - Cascaded OIP3 (Cont.) .................................................................................................................28  
15. Typical Performance Characteristics - Cascaded OIP2 .............................................................................................................................29  
16. Typical Performance Characteristics - Cascaded OIP2 (Cont.) .................................................................................................................30  
17. Typical Performance Characteristics - Cascaded OP1dB..........................................................................................................................31  
18. Typical Performance Characteristics - Cascaded OP1dB (Cont.)..............................................................................................................32  
19. Typical Performance Characteristics - Harmonics, Current, Switching ......................................................................................................33  
20. Typical Performance Characteristics - Modulator Coupled Output.............................................................................................................34  
21. Typical Performance Characteristics - Modulator Coupled Output.............................................................................................................35  
22. Typical Performance Characteristics - LO..................................................................................................................................................36  
23. Theory of Operation....................................................................................................................................................................................37  
23.1. Frequency Generator.......................................................................................................................................................................37  
23.1.1. Internal (VCO) Frequency.................................................................................................................................................38  
23.1.2. Reference Frequency........................................................................................................................................................38  
23.1.3. Charge Pump....................................................................................................................................................................39  
23.1.4. External Loop Filter...........................................................................................................................................................39  
23.1.5. LO Frequency ...................................................................................................................................................................39  
23.1.6. Voltage Control Oscillator (VCO)......................................................................................................................................40  
23.1.7. LO Switch Matrix...............................................................................................................................................................42  
23.2. Modulator.........................................................................................................................................................................................44  
23.3. Variable Gain Amplifier ....................................................................................................................................................................44  
23.4. General Settings ..............................................................................................................................................................................45  
23.4.1. Initial Startup.....................................................................................................................................................................45  
23.4.2. Logic Pins .........................................................................................................................................................................46  
24. Programming..............................................................................................................................................................................................46  
24.1. Special Programming Note..............................................................................................................................................................47  
24.2. Register Definition............................................................................................................................................................................48  
24.2.1. Register 0 (00h) ................................................................................................................................................................50  
© 2020 Renesas Electronics Corporation  
2
May 15, 2020  
F159V Datasheet  
24.2.2. Register 1 (01h) ................................................................................................................................................................50  
24.2.3. Register 2 (01h) ................................................................................................................................................................51  
24.2.4. Register 3 (03h) ................................................................................................................................................................51  
24.2.5. Register 4 (04h) ................................................................................................................................................................51  
24.2.6. Register 5 (05h) ................................................................................................................................................................52  
24.2.7. Register 6 (06h) ................................................................................................................................................................52  
24.2.8. Register 7 (07h) ................................................................................................................................................................52  
24.2.9. Register 8 (08h) ................................................................................................................................................................52  
24.2.10. Register 9 (09h) ................................................................................................................................................................52  
24.2.11. Register 10 (0Ah)..............................................................................................................................................................52  
24.2.12. Register 11 (0Bh)..............................................................................................................................................................52  
24.2.13. Register 12 (0Ch)..............................................................................................................................................................53  
24.2.14. Register 13 (0Dh)..............................................................................................................................................................53  
24.2.15. Register 14 (0Eh)..............................................................................................................................................................53  
24.2.16. Register 15 (0Fh)..............................................................................................................................................................54  
24.2.17. Register 16 (10h) ..............................................................................................................................................................54  
24.2.18. Register 17 (11h) ..............................................................................................................................................................55  
24.2.19. Register 18 (12h) ..............................................................................................................................................................56  
24.2.20. Register 19 (13h) ..............................................................................................................................................................56  
24.2.21. Register 20 (14h) ..............................................................................................................................................................57  
24.2.22. Register 21 (15h) ..............................................................................................................................................................57  
24.2.23. Register 22 (16h) ..............................................................................................................................................................58  
24.2.24. Register 23 (17h) ..............................................................................................................................................................58  
24.2.25. Register 24 (18h) ..............................................................................................................................................................59  
24.2.26. Register 25 (19h) ..............................................................................................................................................................60  
24.2.27. Register 26 (1Ah)..............................................................................................................................................................61  
24.2.28. Register 27 (1Bh)..............................................................................................................................................................62  
24.2.29. Register 28 (1Ch)..............................................................................................................................................................63  
24.2.30. Register 29 (1Dh)..............................................................................................................................................................63  
24.2.31. Register 30 (1Eh)..............................................................................................................................................................64  
24.2.32. Register 31 (1Fh)..............................................................................................................................................................64  
24.2.33. Register 32 (20h) ..............................................................................................................................................................65  
24.2.34. Register 33 (21h) ..............................................................................................................................................................65  
24.2.35. Register 34 (22h) ..............................................................................................................................................................66  
24.2.36. Register 35 (23h) ..............................................................................................................................................................66  
24.2.37. Register 36 (24h) ..............................................................................................................................................................67  
24.2.38. Register 37 (25h) ..............................................................................................................................................................67  
24.2.39. Register 38 (26h) ..............................................................................................................................................................68  
24.2.40. Register 39 (27h) ..............................................................................................................................................................68  
24.2.41. Register 40 (28h) ..............................................................................................................................................................68  
24.2.42. Register 41 (29h) ..............................................................................................................................................................68  
© 2020 Renesas Electronics Corporation  
3
May 15, 2020  
F159V Datasheet  
24.2.43. Register 42 (2Ah)..............................................................................................................................................................68  
24.2.44. Register 43 (2Bh)..............................................................................................................................................................68  
24.2.45. Register 44 (2Ch)..............................................................................................................................................................68  
24.2.46. Register 45 (2Dh)..............................................................................................................................................................69  
24.2.47. Register 46 (2Eh)..............................................................................................................................................................69  
24.2.48. Register 47 (2Fh)..............................................................................................................................................................69  
24.2.49. Register 48 (30h) ..............................................................................................................................................................69  
24.2.50. Register 49 (31h) ..............................................................................................................................................................69  
25. Evaluation Kit Picture .................................................................................................................................................................................70  
26. Evaluation Kit / Applications Circuit............................................................................................................................................................71  
27. Application Information...............................................................................................................................................................................75  
27.1. Power Supplies................................................................................................................................................................................75  
27.2. Power Supply Sequencing...............................................................................................................................................................75  
27.3. Digital Pin Voltage and Resistance Values......................................................................................................................................75  
27.4. Phase Relation between the Quadrature Input Signals: I and Q .....................................................................................................75  
27.5. Signal Integrity .................................................................................................................................................................................75  
28. Package Outline Drawings .........................................................................................................................................................................77  
29. Ordering Information...................................................................................................................................................................................77  
30. Marking Diagram........................................................................................................................................................................................77  
© 2020 Renesas Electronics Corporation  
4
May 15, 2020  
F159V Datasheet  
1. Pin Assignments  
Figure 2. Pin Assignments for 10mm x 10mm x 0.9mm QFN Package – Top View  
Vdd_SPI  
GND_SPI  
RESET  
CH0_Vdd_VVA  
CH0_RDIST_AMP  
CH0_RBIAS  
CH0_Vdd_AMP  
GND  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
1
2
SPI Controller  
90 / 0  
Lock  
Detect  
3
Vdd_REF  
REF_IN  
NC  
4
Reference  
Dividers  
5
Phase  
GND  
6
Frequency  
Detector  
GND_REF  
Vdd_CP  
DNC  
CH0_RFOUT  
GND  
7
8
DAC  
DAC  
Frac-N  
Divider  
VVA2 DSA AMP  
VVA1  
GND  
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
GND_CP  
CP_OUT  
GND_VCO  
VTUNE  
Charge  
Pump  
CH1_RFOUT  
GND  
/M  
LO  
Switch  
Matrix  
GND  
VREF_VCO  
Vdd_VCO  
VCOM  
CH1_Vdd_AMP  
CH1_RBIAS  
CH1_RDIST_AMP  
CH1_Vdd_VVA  
/2  
90 / 0  
Vdd_LO  
© 2020 Renesas Electronics Corporation  
5
May 15, 2020  
 
F159V Datasheet  
2. Pin Descriptions  
Table 1.  
Number  
1
Pin Descriptions  
Name  
Description  
Channel 0 voltage variable attenuator (VVA) power supply. Place bypass capacitors to GND as  
close to this pin as possible.  
CH0_Vdd_VVA  
2
3
CH0_RDIST_AMP Channel 0 VGA amplifier distortion bias.  
CH0_RBIAS  
Channel 0 VGA amplifier current bias.  
Channel 0 variable gain amplifier (VGA) power supply. Place bypass capacitors to GND as close to  
this pin as possible.  
4
CH0_Vdd_AMP  
5
6
GND  
GND  
Internally grounded. This pin must be grounded as close to the device as possible.  
Internally grounded. This pin must be grounded as close to the device as possible.  
Channel 0 RF output. Must be AC-coupled.  
7
CH0_RFOUT  
GND  
8
Internally grounded. This pin must be grounded as close to the device as possible.  
Internally grounded. This pin must be grounded as close to the device as possible.  
Internally grounded. This pin must be grounded as close to the device as possible.  
Channel 1 RF output. Must be AC-coupled.  
9
GND  
10  
11  
12  
13  
GND  
CH1_RFOUT  
GND  
Internally grounded. This pin must be grounded as close to the device as possible.  
Internally grounded. This pin must be grounded as close to the device as possible.  
GND  
Channel 1 variable gain amplifier (VGA) power supply. Place bypass capacitors to GND as close to  
this pin as possible.  
14  
CH1_Vdd_AMP  
CH1_RBIAS  
15  
16  
Channel 1 VGA amplifier current bias.  
CH1_RDIST_AMP Channel 1 VGA amplifier distortion bias.  
Channel 1 voltage variable attenuator (VVA) power supply. Place bypass capacitors to GND as  
close to this pin as possible.  
17  
CH1_Vdd_VVA  
CH1_AMPEN  
Channel 1 Amplifier Enable / Disable. Logic LOW enable (normal operation); logic HIGH or NC for  
disable (power down).  
18  
19  
20  
CH1_MODCOUPLE Channel 1 modulator coupled output.  
Channel 1 modulator power supply pin. Place bypass capacitors to GND as close to this pin as  
CH1_Vdd_MODAMP  
possible.  
21  
22  
23  
CH1_RDIST_MOD Channel 1 modulator amplifier bias  
CH1_QBB+  
Channel 1 Quadrature differential baseband input. Internally matched to 110Ω.  
CH1_QBB-  
NC  
No internal connection. This pin can be left unconnected, have a voltage applied, or be connected to  
ground (recommended).  
24  
25  
26  
CH1_IBB+  
CH1_IBB-  
Channel 1 In-Phase differential baseband input. Internally matched to 110Ω.  
© 2020 Renesas Electronics Corporation  
6
May 15, 2020  
 
F159V Datasheet  
Table 2.  
Number  
27  
Pin Descriptions (Cont.)  
Name  
Description  
Enable or disable Channel 1 modulator output. Logic LOW will enable the output (normal operation).  
Logic HIGH or NC will disable the output (power down).  
CH1_MODEN  
CH1_Vdd_MODLO2  
NC  
Channel 1 modulator LO driver power supply. Place bypass capacitors to GND as close as possible  
to the pin.  
28  
29  
No internal connection. This pin can be left unconnected, have a voltage applied, or be connected to  
ground (recommended).  
30  
31  
32  
33  
34  
35  
36  
37  
GND_LO  
LO_IN+  
Internally grounded. This pin must be grounded as close to the device as possible.  
Local oscillator (LO) 100Ω differential input. Pins must be AC-coupled.  
LO_IN-  
LO_OUT+  
LO_OUT-  
Vdd_LO  
VCOM  
Local oscillator (LO) 100Ω differential output. Pins must be AC-coupled.  
Power supply pin. Place bypass capacitors to GND as close as possible to the pin.  
Requires a capacitor from this pin to Vdd_VCO or to VREF_VCO for noise reduction.  
Power Supply Voltage. Place bypass capacitors to GND as close as possible to the pin.  
Vdd_VCO  
Place decoupling capacitors (≥ 0.1µF) to ground, as close to the pin as possible. This pin indicates  
voltage 2.8V when part is turned on.  
38  
VREF_VCO  
39  
40  
VTUNE  
Voltage control input to tune the VCO.  
GND_VCO  
Internally grounded. This pin must be grounded as close to the device as possible.  
Charge Pump Output. When enabled, this output provides ± ICP to the external loop filter. The  
output of the loop filter is connected to VTUNE to drive the internal VCO.  
41  
CP_OUT  
42  
43  
GND_CP  
DNC  
Internally grounded. This pin must be grounded as close to the device as possible.  
Do not connect anything to this pin.  
Charge Pump Power Supply. Vdd_CP must have the same value as Vdd. Place decoupling  
capacitors to the ground plane as close to this pin as possible.  
44  
45  
46  
Vdd_CP  
GND_REF  
NC  
Internally grounded. This pin must be grounded as close to the device as possible.  
No internal connection. This pin can be left unconnected, have a voltage applied, or be connected to  
ground (recommended).  
Reference Input. This CMOS input has a nominal threshold of Vdd/2 and a DC equivalent input  
resistance of 100kΩ. This input can be driven from a TTL or CMOS crystal oscillator, or it can be  
AC-coupled.  
47  
REF_IN  
48  
49  
Vdd_REF  
RESET  
Power supply for reference path. Place bypass capacitors to GND as close as possible to the pin.  
HIGH: Reset PLL. Resets all settings to default.  
LOW: Normal Operating  
50  
51  
52  
53  
54  
GND_SPI  
Vdd_SPI  
SPI_CSN  
SPI_CLK  
SPI_DIO  
Internally grounded. This pin must be grounded as close to the device as possible.  
SPI power supply pin. Place bypass capacitors to GND as close to this pin as possible.  
Serial chip Select. CSN pin can be pulled up to Vdd and down to GND.  
Serial Clock Input.  
Data write/read of 3-wire serial interface.  
© 2020 Renesas Electronics Corporation  
7
May 15, 2020  
F159V Datasheet  
Table 3.  
Pin Descriptions (Cont.)  
Number  
55  
Name  
Description  
SPI_DO  
LO_LD  
Data read of 4-wire serial interface.  
56  
LO Lock Detect output. Logic HIGH indicates PLL lock. Logic LOW indicates loss of PLL lock.  
Power supply for DACs. Place bypass capacitors to GND as close as possible to the pin.  
57  
Vdd_DAC  
Channel 0 modulator LO driver power supply. Place bypass capacitors to GND as close as possible  
to the pin.  
58  
59  
CH0_Vdd_MODLO2  
CH0_MODEN  
Channel 0 modulator Enable / Disable. Logic LOW enable (normal operation); logic HIGH or NC for  
disable (power down).  
60  
61  
CH0_IBB-  
CH0_IBB+  
Channel 0 In-Phase differential baseband input. Internally matched to 110Ω.  
No internal connection. This pin can be left unconnected, have a voltage applied, or be connected to  
ground (recommended).  
62  
NC  
63  
64  
65  
CH0_QBB-  
CH0_QBB+  
Channel 0 Quadrature differential baseband input. Internally matched to 110Ω.  
CH0_RDIST_MOD Channel 0 modulator amplifier bias.  
Channel 0 modulator power supply pin. Place bypass capacitors to GND as close to this pin as  
66  
67  
68  
CH0_Vdd_MODAMP  
possible.  
CH0_MODCOUPLE Channel 0 modulator coupled output.  
Enable or disable Channel 0 modulator output. Logic LOW will enable the output (normal operation).  
Logic HIGH or NC will disable the output (power down).  
CH0_AMPEN  
-EPAD  
Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses  
multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These  
multiple ground vias are also required to achieve the noted RF performance.  
© 2020 Renesas Electronics Corporation  
8
May 15, 2020  
F159V Datasheet  
3. Absolute Maximum Ratings  
The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device.  
Functional operation of the F159V at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect  
device reliability.  
Table 4.  
Absolute Maximum Ratings  
Parameter  
Symbol  
Minimum  
Maximum  
Units  
All VDD pins to GND  
VDD  
-0.3  
-0.3  
+3.6  
V
V
SPI_DIO, SPI_CLK, SPI_DO, SPI_CSN, LO_LD  
VSPILogic  
VDD + 0.25  
CH0_MODEN, CH1_MODEN,  
CH0_AMPEN, CH1_AMPEN  
VEnableLogic  
-0.3  
VDD + 0.25  
V
CH0_RDIST_AMP, CH1_RDIST_AMP  
CH0_RBIAS, CH1_RBIAS  
VRDIST  
VRBIAS  
-0.3  
-0.3  
-0.3  
-0.3  
0.3  
V
V
V
V
1
CH0_MODCOUPLE, CH1_MODCOUPLE  
CH0_RDIST_MOD, CH1_RDIST_MOD  
VMODOUT  
VRDIST_MOD  
VDD + 0.25  
0.6  
CH0_QBB+, CH0_QBB-, CH0_IBB+, CH0_IBB-  
CH1_QBB+, CH1_QBB-, CH1_IBB+, CH1_IBB-  
VBBIQ  
-0.3  
1.8  
V
LO_IN-, LO_IN+, LO_OUT-, LO_OUT+  
REF_IN, CP_OUT, VTUNE  
CH0_RFOUT, CH1_RFOUT externally applied DC voltage  
RESET  
VLO  
VLOGIC  
VRFOUT  
VRESET  
VVCOM  
VREFVCO  
Pdiss  
-0.3  
-0.3  
0
VDD + 0.25  
VDD + 0.25  
1.8  
V
V
V
-0.3  
-0.3  
-0.3  
VDD + 0.25  
VDD + 0.25  
VDD + 0.25  
2.7  
V
VCOM  
V
VREF_VCO  
V
Continuous Power Dissipation  
Junction Temperature  
W
°C  
°C  
°C  
TJ  
+150  
Storage Temperature Range  
Lead Temperature (soldering, 10s)  
TSTOR  
-65  
+150  
+260  
Electrostatic Discharge – HBM  
(JEDEC/ESDA JS-001-2012)  
1000  
(Class 1C)  
VESDHBM  
VESDCDM  
V
V
Electrostatic Discharge – CDM  
(JEDEC 22-C101F)  
750  
(Class C2)  
© 2020 Renesas Electronics Corporation  
9
May 15, 2020  
 
F159V Datasheet  
4. Recommended Operating Conditions  
Table 5.  
Recommended Operating Conditions  
Parameter  
Symbol  
VDD  
Condition  
All VDD pins  
Exposed Paddle Temperature  
Minimum  
3.15  
Typical  
3.3  
Maximum  
Units  
V
Supply Voltage(s)  
3.45  
+115  
3.15  
2.95  
Operating Temperature Range [a]  
TEP  
-20  
+25  
°C  
VCOVOLT1 Auto-calibration off  
VCOVOLT2 Auto-calibration on  
0.15  
Min/Max VCO Tuning Voltage  
V
0.35  
Based on RF Power degraded  
from Maximum Gain to  
Baseband Input Frequency Range  
fBB  
DC  
600  
MHz  
Minimum Gain  
LO Input Frequency Range [b]  
LO Input Power  
fLO  
PLO  
fRF  
450  
-8  
2800  
0
MHz  
dBm  
MHz  
V
RF Output Frequency Range [b]  
Baseband Common Mode Voltage  
450  
0.1  
2800  
0.8  
VCM  
TEP = -20°C to +115°C  
Each baseband pin  
0.325  
110  
Baseband Input Voltage  
Compliance Range  
VBB  
0
1
Vpeak  
ZBB0I_IN  
ZBB1I_IN  
ZBB0Q_IN  
ZBB1Q_IN  
Baseband Input Port Impedance  
Differential  
Ω
LO Input Port Impedance  
LO Output Port Impedance  
RF Output Impedance  
ZLO_IN  
ZLO_OUT  
ZRFO  
Differential  
100  
100  
50  
Ω
Ω
Ω
Ω
Differential  
Single Ended  
Single Ended  
Modulator Output Impedance  
ZMODO  
50  
[a] On startup of the device, the temperature can be as low as -40°C. Device will not lose PLL lock with auto-calibration on after it  
warms up. Device functions normally but not specified for temperatures below -20°C.  
[b] Expect a slight performance degradation from 600MHz to 450MHz.  
© 2020 Renesas Electronics Corporation  
10  
May 15, 2020  
 
 
F159V Datasheet  
5. Electrical Characteristics  
Table 6.  
General Characteristics  
See the F159V Typical Application Circuit. Operated as a dual-path transmitter, VDD = +3.3V, Internal fLO = 2050MHz to generate fRF = 2000MHz,  
LO_SW_OUT= +4dBm setting, TEP = +25°C, maximum gain setting, all Enable pins = GND, BB_IQ frequency = 49MHz or 50MHz, I leads Q  
by 90 degrees, BB_I&Q levels = 100mVp-p each tone differential, I and Q = 0.325V common-mode bias, ZBB_DIFF = 110Ω, ZRFO = 50Ω,  
parameters measured at RF output, Evaluation Board (EVKit) traces and connectors are de-embedded, unless otherwise stated.  
Parameter  
Symbol  
Condition  
Minimum  
Typical  
Maximum  
Units  
DC  
+1.1 [a]  
0.0  
VDD + 0.25  
+0.6  
Logic Input HIGH  
Logic Input LOW  
VIH  
VIL  
JEDEC 1.8 and JEDEC 3.3  
JEDEC 1.8 and JEDEC 3.3  
JEDEC 1.8  
V
V
VOH_1.8  
VOH_3.3  
VOL_1.8  
VOL_3.3  
IIH  
+1.4  
+2.0  
0.0  
+2.1  
Logic Output High  
Logic Output Low  
V
V
JEDEC 3.3  
+3.6  
JEDEC 1.8  
+0.4  
JEDEC 3.3  
0.0  
+0.66  
100  
Logic Current – High Logic  
Logic Current – Low Logic  
µA  
µA  
-100  
-100  
IIL  
100  
IDD_PLL  
Frequency Synthesizer  
132  
33  
170  
External LO Driver at  
maximum LO_buffer gain  
IDD_LO  
40  
IDD_2MOD  
IDD_2AMP  
IDD_DAC  
2 modulators  
2 VGAs  
387  
153  
14  
450  
183  
17  
Supply Current – Both paths [b]  
mA  
2 DACs  
IDD_Enable2 Standby Mode dual path  
51  
IDD_PLL  
Frequency Synthesizer  
132  
170  
40  
External LO Driver at  
maximum LO_buffer gain  
IDD_LO  
33  
Supply Current – One path [b]  
Charge Pump Current  
mA  
mA  
IDD_1MOD  
IDD_1AMP  
IDD_DAC  
1 modulator  
1 VGA  
194  
79  
235  
95  
2 DACs  
14  
17  
Programmable in ~0.3mA  
steps  
ICP  
0.2  
6
General  
LO output power  
External LO input Return Loss  
External LO output Return Loss  
SPI  
LOPout  
RLLO_IN  
LO_OUT Setting = +4dBm  
dBm  
dB  
-2  
8
+4  
Differential 100Ω  
15  
15  
RLLO_OUT Differential 100Ω  
10  
dB  
Serial Clock Speed  
SPICLK  
MHz  
20  
[a] Specifications in the minimum/maximum columns that are shown in bold italics are guaranteed by test. Specifications in these  
columns that are not shown in bold italics are guaranteed by design characterization.  
[b] Values valid for CP current set to 0.94mA, LO_SW_OUT = 0dBm.  
© 2020 Renesas Electronics Corporation  
11  
May 15, 2020  
 
 
 
F159V Datasheet  
Table 7.  
Electrical Characteristics  
See the F159V Typical Application Circuit. Operated as a dual-path transmitter, VDD = +3.3V, Internal fLO = 2050MHz to generate fRF = 2000MHz,  
LO_SW_OUT= +4dBm setting, TEP = +25°C, maximum gain setting, all Enable pins = GND, BB_IQ frequency = 49MHz or 50MHz, I leads Q  
by 90 degrees, BB_I&Q levels = 100mVp-p each tone differential, I and Q = 0.325V common-mode bias, ZBB_DIFF = 110Ω, ZRFO = 50Ω,  
parameters measured at RF output, Evaluation Board (EVKit) traces and connectors are de-embedded, unless otherwise stated.  
Parameter  
Digital Step Attenuator  
DSA adjustment range  
DSA step  
Symbol  
Condition  
Minimum  
Typical  
Maximum  
Units  
GDSA  
31  
1
dB  
dB  
GDSASTEP  
+2 /  
-2.3  
Max DSA Glitching  
Gain Accuracy  
ATTNG  
During DSA state change  
dB  
dB  
DSAACCMAX Gain Error vs. line (AMIN ref)  
Worst case 4dB step  
± (0.05 + 5% ATTN value)  
4
6
Worst case 8dB step  
DSA_PH  
Relative Phase Shift  
Deg  
µs  
fRF = 2.8GHz  
Worst case 2dB step  
4
0dB to Max attenuation  
Maximum attenuation to 0dB  
End DSA register  
configuration to output within  
0.1dB  
DSA Gain Settling Time  
DSAST  
1
2
Voltage Variable Attenuator  
DAC input  
0 for maximum attenuation  
2047 for minimum attenuation  
26 [a]  
VVA adjustment range  
GVVA  
32  
dB  
VVA step  
GVVASTEP Using on-chip 11-bit DAC  
VVAPHASE Worst case 2dB step  
0.02  
4
dB  
Relative Phase Shift  
Deg  
Gain variation from DAC code  
VVAERROR 250 to 1750 relative to typical  
gain variation  
Relative Error  
-2  
2
dB  
µs  
Any 1dB step  
TSETTL0.1dB Includes DAC + VVA  
response  
Settling Time to within 0.1dB  
0.40  
[a] Specifications in the minimum/maximum columns that are shown in bold italics are guaranteed by test. Specifications in these  
columns that are not shown in bold italics are guaranteed by design characterization.  
© 2020 Renesas Electronics Corporation  
12  
May 15, 2020  
F159V Datasheet  
Table 8.  
Electrical Characteristics (Cont.)  
See the F159V Typical Application Circuit. Operated as a dual-path transmitter, VDD = +3.3V, Internal fLO = 2050MHz to generate fRF = 2000MHz,  
LO_SW_OUT= +4dBm setting, TEP = +25°C, maximum gain setting, all Enable pins = GND, BB_IQ frequency = 49MHz or 50MHz, I leads Q  
by 90 degrees, BB_I&Q levels = 100mVp-p each tone differential, I and Q = 0.325V common-mode bias, ZBB_DIFF = 110Ω, ZRFO = 50Ω,  
parameters measured at RF output, Evaluation Board (EVKit) traces and connectors are de-embedded, unless otherwise stated.  
Parameter  
Modulator Stage  
Symbol  
Condition  
Minimum Typical Maximum Units  
BB input = 210mVp-p differential  
Modulator output  
Maximum VVA & DSA attenuation  
Modulator power coupled output  
PM_OUT  
-31 [a]  
-9  
-28  
-6  
dBm  
dBm  
dBm  
P1dB at Modulator coupled output OP1dBM_OUT Maximum VVA & DSA attenuation  
BB input = 210mVp-p differential per  
OIP3M_OUT tone  
Maximum VVA & DSA attenuation  
IP3 at Modulator coupled output  
fLO ± 2*fBB Rejection  
10.7  
fBB ≤ 100MHz  
Mod output coupled node  
BB input = 210mVp-p differential  
Maximum VVA & DSA attenuation  
2BBREJ_CPL  
3BBREJ_CPL  
5BBREJ_CPL  
-82  
-80  
-96  
-50  
-50  
dBc  
dBc  
dBc  
fBB ≤ 100MHz  
Mod output coupled node  
BB input = 210mVp-p differential  
Maximum VVA & DSA attenuation  
fLO ± 3*fBB Rejection  
FBB ≤ 100MHz  
Mod output coupled node  
BB input = 210mVp-p differential  
Maximum VVA & DSA attenuation  
fLO ± 5*fBB Rejection  
Turn-on time  
Enable = LOW to HIGH. Power is within  
0.05dB of final power  
PON  
0.6  
0.1  
µs  
µs  
Enable = HIGH to LOW. Power  
is -30dBc from initial output power  
Turn off time  
Cascaded VGA  
Turn-on time  
POFF  
Enable = LOW to HIGH. Power is within  
0.05dB of final power  
PON  
0.8  
0.1  
µs  
µs  
Enable = HIGH to LOW. Power  
is -30dBc from initial output power  
Turn off time  
POFF  
[a] Specifications in the minimum/maximum columns that are shown in bold italics are guaranteed by test. Specifications in these  
columns that are not shown in bold italics are guaranteed by design characterization.  
© 2020 Renesas Electronics Corporation  
13  
May 15, 2020  
 
F159V Datasheet  
Table 9.  
Electrical Characteristics – Frequency Synthesizer  
See the F159V Typical Application Circuit. Operated as a dual-path transmitter, VDD = +3.3V, Internal fLO = 2050MHz to generate fRF = 2000MHz,  
LO_SW_OUT= +4dBm setting, TEP = +25°C, maximum gain setting, all Enable pins = GND, BB_IQ frequency = 49MHz or 50MHz, I leads Q  
by 90 degrees, BB_I&Q levels = 100mVp-p each tone differential, I and Q = 0.325V common-mode bias, ZBB_DIFF = 110Ω, ZRFO = 50Ω,  
parameters measured at RF output, Evaluation Board (EVKit) traces and connectors are de-embedded, unless otherwise stated.  
Synthesizer conditions include: PLL Ref = 30.72MHz, CP current = 0.63mA, LO_OUT power = +4dBm, Cal_LoPN_Mode = 0, Ref Doubler =  
ON, Reference Divider is set for 1. Synthesizer performance will be evaluated at the LO output pins. The evaluation board and connector losses  
are de-embedded, unless otherwise noted.  
Parameter  
Symbol  
Condition  
Minimum  
Typical  
Maximum  
Units  
Frequency Synthesizer / VCO  
Synthesizer Output Frequency  
Input Reference Frequency [b]  
450 [a]  
10  
2800  
250  
FRFSYNTH_OUT Divider values; 1, 2, 4, 8  
FREF_IN  
MHz  
MHz  
30.72  
Single-ended, peak-peak  
AC coupled  
PLL Reference Input Level  
VCO Frequency  
VREF_pp  
V
0.7  
3.3  
FVCO  
Fundamental VCO Mode  
MHz  
µs  
2000  
4000  
Includes SPI configuration  
time using a 10MHz SPI  
Maximum Lock Time  
TLOCK  
360  
End of SPI configuration to  
LO_LD logic high  
Power-up Time  
TPOWERUP  
1.25  
ms  
SPUR1  
SPUR2  
100kHz – 30MHz offset  
>30MHz offset  
< -90  
< -90  
-97  
Spurs (non-harmonics)  
dBc  
PN_200K 200kHz offset  
PN_400K 400kHz offset  
PN_600K 600kHz offset  
PN_1.2M 1.2MHz offset  
PN_1.8M 1.8MHz offset  
-126  
-136  
-140  
-146  
-152  
-94  
PLL Phase Noise Performance  
LO = 942.5MHz  
(Use internal VCO at 3770MHz and  
divide by 4)  
dBc/Hz  
PN_6M  
6.0MHz offset  
PN_200K 200kHz offset  
PN_400K 400kHz offset  
PN_600K 600kHz offset  
PN_1.2M 1.2MHz offset  
PN_1.8M 1.8MHz offset  
-123  
-131  
-137  
-141  
-150  
PLL Phase Noise Performance  
LO = 1847.5MHz  
(Use internal VCO at 3695MHz and  
divide by 2)  
dBc/Hz  
PN_6M  
6.0MHz offset  
[a] Specifications in the minimum/maximum columns that are shown in bold italics are guaranteed by test. Specifications in these  
columns that are not shown in bold italics are guaranteed by design characterization.  
[b] When input reference frequency is between 10MHz and 20MHz, the reference doubler must be turned on.  
© 2020 Renesas Electronics Corporation  
14  
May 15, 2020  
 
 
F159V Datasheet  
Table 10. Electrical Characteristics – Frequency Synthesizer (Cont.)  
See the F159V Typical Application Circuit. Operated as a dual-path transmitter, VDD = +3.3V, Internal fLO = 2050MHz to generate fRF = 2000MHz,  
LO_SW_OUT= +4dBm setting, TEP = +25°C, maximum gain setting, all Enable pins = GND, BB_IQ frequency = 49MHz or 50MHz, I leads Q  
by 90 degrees, BB_I&Q levels = 100mVp-p each tone differential, I and Q = 0.325V common-mode bias, ZBB_DIFF = 110Ω, ZRFO = 50Ω,  
parameters measured at RF output, Evaluation Board (EVKit) traces and connectors are de-embedded, unless otherwise stated.  
Synthesizer conditions include: PLL Ref = 30.72MHz, CP current = 0.63mA, LO_OUT power = +4dBm, Cal_LoPN_Mode = 0, Reference Doubler  
= ON, Reference Divider is set for 1. Synthesizer performance will be evaluated at the LO output pins. The evaluation board and connector  
losses are de-embedded, unless otherwise noted.  
Parameter  
Symbol  
Condition  
Minimum  
Typical  
-138  
Maximum  
Units  
PN_2.1M 2.1MHz offset  
PN_3.5M 3.5MHz offset  
PN_7.5M 7.5MHz offset  
PN_2.1M 2.1MHz offset  
PN_3.5M 3.5MHz offset  
PN_7.5M 7.5MHz offset  
PLL Phase Noise Performance  
LO = 2155MHz  
(Use internal VCO frequency at  
2155MHz and divide by 1)  
-143  
dBc/Hz  
-152  
-138  
PLL Phase Noise Performance  
LO = 2655MHz  
(Use internal VCO frequency at  
2655MHz and divide by 1)  
-143  
dBc/Hz  
-151  
Table 11. Electrical Characteristics – Signal Path Cascaded Performance  
See the F159V Typical Application Circuit. Operated as a dual-path transmitter, VDD = +3.3V, Internal fLO = 2050MHz to generate fRF = 2000MHz,  
LO_SW_OUT= +4dBm setting, TEP = +25°C, maximum gain setting, all Enable pins = GND, BB_IQ frequency = 49MHz or 50MHz, I leads Q  
by 90 degrees, BB_I&Q levels = 100mVp-p each tone differential, I and Q = 0.325V common-mode bias, ZBB_DIFF = 110Ω, ZRFO = 50Ω,  
parameters measured at RF output, Evaluation Board (EVKit) traces and connectors are de-embedded, unless otherwise stated.  
Parameter  
Symbol  
Condition  
Minimum  
Typical  
Maximum  
Units  
16 [a]  
21  
Input power is sum of I + Q  
For BB_I = BB_Q = 94mVp-p  
differential each, total power =  
-17dBm  
PGain max  
18.3  
Power Gain  
dB  
PGain min  
-45  
Gain Variation  
Gain Flatness  
TEP from -20°C to +115°C  
-1 to +0.5  
dB  
GVAR_ T  
1400MHz to 2700MHz  
measured using 100MHz  
steps  
GFLAT  
0.0021  
0.005  
dB/MHz  
fRF = 450MHz  
fLO = 500MHz  
Power Gain at 450MHz RF  
G450  
13.5  
dB  
[a] Specifications in the minimum/maximum columns that are shown in bold italics are guaranteed by test. Specifications in these  
columns that are not shown in bold italics are guaranteed by design characterization.  
© 2020 Renesas Electronics Corporation  
15  
May 15, 2020  
 
F159V Datasheet  
Table 12. Electrical Characteristics – Signal Path Cascaded Noise Figure Performance  
See the F159V Typical Application Circuit. Operated as a dual-path transmitter, VDD = +3.3V, Internal fLO = 2050MHz to generate fRF = 2000MHz,  
LO_SW_OUT= +4dBm setting, TEP = +25°C, maximum gain setting, all Enable pins = GND, BB_IQ frequency = 49MHz or 50MHz, I leads Q  
by 90 degrees, BB_I&Q levels = 100mVp-p each tone differential, I and Q = 0.325V common-mode bias, ZBB_DIFF = 110Ω, ZRFO = 50Ω,  
parameters measured at RF output, Evaluation Board (EVKit) traces and connectors are de-embedded, unless otherwise stated.  
Parameter  
Symbol  
Condition  
No attenuation  
Minimum  
Typical  
Maximum  
Units  
NFGMAX  
13.0  
14.3 [a]  
VVA 14dB attenuation  
DSA 1dB attenuation  
NFG-15  
NFG-19  
NFG-31  
NFG-40  
17.9  
21.4  
23.3  
23.6  
19.7  
VVA 14dB attenuation  
DSA 5dB attenuation  
VVA 14dB attenuation  
DSA 17dB attenuation  
VVA 14dB attenuation  
DSA 26dB attenuation  
VVA 5dB attenuation  
DSA 1dB attenuation  
TEP = +115°C  
NFG-6  
NFG-10  
NFG-22  
NFG-31  
NFG-23  
NFG-27  
NFG-39  
15.5  
16.9  
18  
16.8  
VVA 5dB attenuation  
DSA 5dB attenuation  
TEP = +115°C  
VVA 5dB attenuation  
DSA 17dB attenuation  
TEP = +115°C  
Noise Figure  
dB  
VVA 5dB attenuation  
DSA 26dB attenuation  
TEP = +115°C  
19.6  
19.7  
23  
VVA 22dB attenuation  
DSA 1dB attenuation  
TEP = -20°C  
21.2  
VVA 22dB attenuation  
DSA 5dB attenuation  
TEP = -20°C  
VVA 22dB attenuation  
DSA 17dB attenuation  
TEP = -20°C  
24.8  
VVA 22dB attenuation  
DSA 26dB attenuation  
TEP = -20°C  
NFG-48  
NFloor  
30.4  
VVA 14dB attenuation  
DSA 1dB attenuation  
Output Noise Floor  
-152.3  
dBm/Hz  
[a] Specifications in the minimum/maximum columns that are shown in bold italics are guaranteed by test. Specifications in these  
columns that are not shown in bold italics are guaranteed by design characterization.  
© 2020 Renesas Electronics Corporation  
16  
May 15, 2020  
 
F159V Datasheet  
Table 13. Electrical Characteristics – Signal Path Cascaded IP3 Performance  
See the F159V Typical Application Circuit. Operated as a dual-path transmitter, VDD = +3.3V, Internal fLO = 2050MHz to generate fRF = 2000MHz,  
LO_SW_OUT= +4dBm setting, TEP = +25°C, maximum gain setting, all Enable pins = GND, BB_IQ frequency = 49MHz or 50MHz, I leads Q  
by 90 degrees, BB_I&Q levels = 100mVp-p each tone differential, I and Q = 0.325V common-mode bias, ZBB_DIFF = 110Ω, ZRFO = 50Ω,  
parameters measured at RF output, Evaluation Board (EVKit) traces and connectors are de-embedded, unless otherwise stated.  
Parameter  
Symbol  
OIP31  
Condition  
Minimum  
Typical  
28.6  
31  
Maximum  
Units  
Output IP3  
VVA 14dB attenuation  
DSA 1dB attenuation  
PIN = -13dBm/tone  
fLO = 900MHz  
fRF = 850MHz  
dBm  
OIP32  
No attenuation  
VVA 14dB attenuation  
OIP3G-15 DSA 1dB attenuation  
25 [a]  
31  
PIN = -13dBm/tone  
VVA 14dB attenuation  
OIP3G-19 DSA 5dB attenuation  
PIN = -9dBm/tone  
28.4  
16.4  
6.8  
VVA 14dB attenuation  
OIP3G-31 DSA 17dB attenuation  
PIN = -9dBm/tone  
VVA 14dB attenuation  
OIP3G-40 DSA 26dB attenuation  
PIN = -9dBm/tone  
VVA 5dB attenuation  
DSA 1dB attenuation  
PIN = -13dBm/tone  
TEP = +115°C  
OIP3G-6  
25  
25  
Output IP3  
fLO = 2050MHz  
RF = 2000MHz  
dBm  
f
VVA 5dB attenuation  
DSA 5dB attenuation  
PIN = -9dBm/tone  
OIP3G-10  
TEP = +115°C  
VVA 5dB attenuation  
DSA 17dB attenuation  
PIN = -9dBm/tone  
TEP = +115°C  
OIP3G-22  
16.4  
7.4  
19  
VVA 5dB attenuation  
DSA 26dB attenuation  
PIN = -9dBm/tone  
TEP = +115°C  
OIP3G-31  
VVA 22dB attenuation  
DSA 1dB attenuation  
PIN = -13dBm/tone  
OIP3G-23  
TEP = -20°C  
[a] Specifications in the minimum/maximum columns that are shown in bold italics are guaranteed by test. Specifications in these  
columns that are not shown in bold italics are guaranteed by design characterization.  
© 2020 Renesas Electronics Corporation  
17  
May 15, 2020  
 
F159V Datasheet  
Table 14. Electrical Characteristics – Signal Path Cascaded IP3 Performance (Cont.)  
See the F159V Typical Application Circuit. Operated as a dual-path transmitter, VDD = +3.3V, Internal fLO = 2050MHz to generate fRF = 2000MHz,  
LO_SW_OUT= +4dBm setting, TEP = +25°C, maximum gain setting, all Enable pins = GND, BB_IQ frequency = 49MHz or 50MHz, I leads Q  
by 90 degrees, BB_I&Q levels = 100mVp-p each tone differential, I and Q = 0.325V common-mode bias, ZBB_DIFF = 110Ω, ZRFO = 50Ω,  
parameters measured at RF output, Evaluation Board (EVKit) traces and connectors are de-embedded, unless otherwise stated.  
Parameter  
Symbol  
Condition  
Minimum  
Typical  
Maximum  
Units  
VVA 22dB attenuation  
DSA 5dB attenuation  
PIN = -9dBm/tone  
TEP = -20°C  
OIP3G-27  
20.4  
VVA 22dB attenuation  
DSA 17dB attenuation  
PIN = -9dBm/tone  
TEP = -20°C  
Output IP3  
fLO = 2050MHz  
RF = 2000MHz  
OIP3G-39  
OIP3G-48  
8.7  
-2  
dBm  
f
VVA 22dB attenuation  
DSA 26dB attenuation  
PIN = -9dBm/tone  
TEP = -20°C  
Output IP3  
fLO = 2750MHz  
fRF = 2700MHz  
VVA 14dB attenuation  
OIP3G-15 DSA 1dB attenuation  
PIN = -13dBm/tone  
28  
28  
dBm  
dBm  
Output IP3  
fLO = 500MHz  
VVA 14dB attenuation  
DSA 1dB attenuation  
OIP3450  
fRF = 450MHz  
PIN = -13dBm/tone  
© 2020 Renesas Electronics Corporation  
18  
May 15, 2020  
F159V Datasheet  
Table 15. Electrical Characteristics – Signal Path Cascaded P1dB Performance  
See the F159V Typical Application Circuit. Operated as a dual-path transmitter, VDD = +3.3V, Internal fLO = 2050MHz to generate fRF = 2000MHz,  
LO_SW_OUT= +4dBm setting, TEP = +25°C, maximum gain setting, all Enable pins = GND, BB_IQ frequency = 49MHz or 50MHz, I leads Q  
by 90 degrees, BB_I&Q levels = 100mVp-p each tone differential, I and Q = 0.325V common-mode bias, ZBB_DIFF = 110Ω, ZRFO = 50Ω,  
parameters measured at RF output, Evaluation Board (EVKit) traces and connectors are de-embedded, unless otherwise stated.  
Parameter  
Symbol  
Condition  
No attenuation  
Minimum  
Typical  
Maximum  
Units  
OP1dB1  
14  
VVA 14dB attenuation  
DSA 1dB attenuation  
10 [a]  
OP1dBG-15  
OP1dBG-19  
OP1dBG-31  
OP1dBG-40  
12  
11.2  
-0.8  
-10  
VVA 14dB attenuation  
DSA 5dB attenuation  
VVA 14dB attenuation  
DSA 17dB attenuation  
VVA 14dB attenuation  
DSA 26dB attenuation  
VVA 5dB attenuation  
OP1dBG-6 DSA 1dB attenuation  
TEP = +115°C  
12.6  
12.6  
2.8  
VVA 5dB attenuation  
OP1dBG-10 DSA 5dB attenuation  
TEP = +115°C  
Output P1dB  
VVA 5dB attenuation  
OP1dBG-22 DSA 17dB attenuation  
TEP = +115°C  
fLO = 2050MHz  
RF = 2000MHz  
dBm  
f
VVA 5dB attenuation  
OP1dBG-31 DSA 26dB attenuation  
TEP = +115°C  
-6.2  
6.6  
VVA 22dB attenuation  
OP1dBG-23 DSA 1dB attenuation  
TEP = -20°C  
VVA 22dB attenuation  
OP1dBG-27 DSA 5dB attenuation  
TEP = -20°C  
2.9  
VVA 22dB attenuation  
OP1dBG-39 DSA 17dB attenuation  
TEP = -20°C  
-9.4  
-18.7  
13.8  
VVA 22dB attenuation  
OP1dBG-48 DSA 26dB attenuation  
TEP = -20°C  
Output P1dB  
fLO = 500MHz  
fRF = 450MHz  
OP1dB450  
dBm  
[a] Specifications in the minimum/maximum columns that are shown in bold italics are guaranteed by test. Specifications in these  
columns that are not shown in bold italics are guaranteed by design characterization.  
© 2020 Renesas Electronics Corporation  
19  
May 15, 2020  
 
F159V Datasheet  
Table 16. Electrical Characteristics – Signal Path Cascaded General Performance  
See the F159V Typical Application Circuit. Operated as a dual-path transmitter, VDD = +3.3V, Internal fLO = 2050MHz to generate fRF = 2000MHz,  
LO_SW_OUT= +4dBm setting, TEP = +25°C, maximum gain setting, all Enable pins = GND, BB_IQ frequency = 49MHz or 50MHz, I leads Q  
by 90 degrees, BB_I&Q levels = 100mVp-p each tone differential, I and Q = 0.325V common-mode bias, ZBB_DIFF = 110Ω, ZRFO = 50Ω,  
parameters measured at RF output, Evaluation Board (EVKit) traces and connectors are de-embedded, unless otherwise stated.  
Parameter  
Symbol  
Condition  
Minimum  
Typical  
Maximum  
Units  
From CH0_IBB/QBB to  
CH1_IBB_QBB and vice  
versa  
ISOIQBB  
89  
Channel Isolation  
dB  
ISOVGA  
LOsupp  
SS  
See note [b]  
45 [a]  
47  
-25  
-40  
LO (Carrier) Suppression  
Native, uncorrected  
Native, uncorrected  
fLO = 900MHz, measured at  
fLO + (fBB1 ± fBB2  
fLO = 2050MHz, measured at  
fLO + (fBB1 ± fBB2  
fLO = 2900MHz, measured at  
fLO + (fBB1 ± fBB2  
fBB ≤ 100MHz  
fBB ≤ 100MHz  
fBB ≤ 100MHz  
fBB ≤ 100MHz  
fBB ≤ 100MHz  
dBm  
dBc  
-18  
-23  
Sideband (Image) Suppression  
Output IP2 at 850MHz  
Output IP2 at 2.00GHz  
Output IP2 at 2.85GHz  
OIP21  
OIP22  
OIP23  
78  
62  
61  
dBm  
dBm  
dBm  
)
59  
)
)
fLO ± 2* fBB Rejection  
fLO ± 3* fBB Rejection  
fLO ± 5*fBB Rejection  
2nd Harmonic of the LO  
3rd Harmonic of the LO  
2BBREJ  
3BBREJ  
5BBREJ  
HD2  
-72  
-95  
-87  
-42  
-67  
-67  
-75  
-78  
dBc  
dBc  
dBc  
dBc  
dBc  
HD3  
Within DPD bandwidth  
VVA = 14dB  
RF Output Return Loss  
RLRFO  
10  
12  
dB  
DSA = 1dB  
Between 2 channels with any  
attenuator setting  
Group Delay Error  
GD  
±3  
ns  
[a] Specifications in the minimum/maximum columns that are shown in bold italics are guaranteed by test. Specifications in these  
columns that are not shown in bold italics are guaranteed by design characterization.  
[b] Baseband signals applied to CH0 baseband inputs (CH1 baseband inputs) with CH1 baseband inputs (CH0 baseband inputs)  
turned off. Measure the difference in the RF power between CH0_RFOUT (CH1_RFOUT) and CH1_RFOUT (CH0_RFOUT).  
This difference is the channel isolation.  
© 2020 Renesas Electronics Corporation  
20  
May 15, 2020  
 
 
F159V Datasheet  
6. Thermal Characteristics  
Table 17. Package Thermal Characteristics  
Parameter  
Symbol  
Value  
Units  
Junction to Ambient Thermal Resistance  
θJA  
32  
°C/W  
Junction to Case Thermal Resistance.  
(Case is defined as the exposed paddle)  
θJC-BOT  
3
°C/W  
Moisture Sensitivity Rating (Per J-STD-020)  
MSL 3  
7. Typical Operating Conditions (TOC)  
Unless otherwise noted, for the TOC graphs on the following pages, the following conditions apply:  
.
.
.
.
.
.
.
.
.
.
.
Baseband I and Q levels = -20dBm each tone (~ 100mVp-p differential/channel/tone across 110)  
Baseband I and Q tones = 49MHz, 50MHz  
Maximum Gain Setting  
Use internal LO with LO_SW_OUT for +4dBm setting  
TEP = +25°C  
VDD = +3.3V  
VCM = +0.325V  
Internal fLO = 2050MHz  
OIP2 Measured at fLO + (fBB1 ± fBB2  
Enable pins = GND  
)
EVKit RF output trace and connector losses de-embedded  
© 2020 Renesas Electronics Corporation  
21  
May 15, 2020  
 
 
F159V Datasheet  
8. Typical Performance Characteristics  
Figure 3. Baseband Differential Input Return  
Loss  
Figure 4. LO Differential Input Return Loss  
0
0
-5  
-20 C / BB_I  
+25 C / BB_I  
+115 C / BB_I  
-20 C / BB_Q  
+25 C / BB_Q  
+115 C / BB_Q  
-5  
-10  
-15  
-20  
-25  
-30  
-10  
-15  
-20  
-25  
-30  
-20 C  
+25 C  
+115 C  
0
200  
400  
600  
800  
1000  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Baseband Frequency (MHz)  
LO Frequency (GHz)  
Figure 5. Modulator Coupled Output Return  
Loss  
Figure 6. LO Differential Output Return Loss  
0
0
-5  
-20 C / CH0_MOD  
+25 C / CH0_MOD  
+115 C / CH0_MOD  
-20 C / CH1_MOD  
+25 C / CH1_MOD  
+115 C / CH1_MOD  
-5  
-10  
-15  
-20  
-25  
-30  
-10  
-15  
-20  
-20 C  
+25 C  
+115 C  
-25  
-30  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
RF Frequency (GHz)  
Frequency (GHz)  
Figure 7. RF Output Return Loss (Maximum  
Gain)  
Figure 8. RF Output Return Loss (+25 °C)  
0
0
DSA= 5 dB / VVA= 5 dB  
DSA=14 dB / VVA= 5 dB  
DSA=22 dB / VVA= 5 dB  
DSA= 5 dB / VVA=14 dB  
DSA=14 dB / VVA=14 dB  
DSA=22 dB / VVA=14 dB  
DSA= 5 dB / VVA=25 dB  
-20 C / CH0_RF  
+25 C / CH0_RF  
+115 C / CH0_RF  
-20 C / CH1_RF  
+25 C / CH1_RF  
+115 C / CH1_RF  
DSA=14 dB / VVA=25 dB  
DSA=22 dB / VVA=25 dB  
-5  
-10  
-15  
-20  
-25  
-30  
-5  
-10  
-15  
-20  
-25  
-30  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
RF Frequency (GHz)  
RF Frequency (GHz)  
© 2020 Renesas Electronics Corporation  
22  
May 15, 2020  
 
F159V Datasheet  
9. Typical Performance Characteristics - VVA  
Figure 9. Gain versus VVA DAC Setting  
(+3.3V, 2GHz)  
Figure 10. Relative Phase versus VVA DAC  
Setting (+3.3V, +25°C)  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
-5  
-10  
0
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-15  
-20  
-5  
0.45 GHz  
0.84 GHz  
1.95 GHz  
2.00 GHz  
2.81 GHz  
-10  
0
200 400 600 800 1000 1200 1400 1600 1800 2000 2200  
0
200 400 600 800 1000 1200 1400 1600 1800 2000 2200  
DAC Setting  
DAC Setting  
Figure 11. OIP3 versus VVA DAC Setting  
(+3.3V, 2GHz)  
Figure 12. VVA Maximum to Minimum Switching  
(+3.3V, +25°C, 2GHz)  
35  
30  
25  
20  
15  
10  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
5
0
0
200 400 600 800 1000 1200 1400 1600 1800 2000 2200  
DAC Setting  
Figure 13. VVA Minimum to Maximum Switching  
(+3.3V, +25°C, 2GHz)  
© 2020 Renesas Electronics Corporation  
23  
May 15, 2020  
 
F159V Datasheet  
10. Typical Performance Characteristics - DSA  
Figure 14. Gain versus DSA (+3.3V)  
Figure 15. Relative Phase versus DSA  
(+3.3V, +25°C)  
20  
15  
10  
5
20  
15  
10  
5
0
0
-5  
-5  
-10  
-10  
-15  
-20  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-15  
-20  
0.45 GHz  
0.84 GHz  
1.95 GHz  
2.00 GHz  
2.81 GHz  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
Attenuator Setting (dB)  
Attenuator Setting (dB)  
Figure 16. Gain Accuracy versus DSA  
(+3.3V)  
Figure 17. DSA Maximum to Minimum Switching  
(+3.3V, +25°C)  
0.5  
0.0  
-0.5  
-1.0  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-1.5  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
Attenuator Setting (dB)  
Figure 18. Step Error versus DSA (+3.3V)  
Figure 19. DSA Minimum to Maximum Switching  
(+3.3V, +25°C)  
0.4  
0.3  
0.2  
0.1  
0.0  
-0.1  
-0.2  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-0.3  
-0.4  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
Attenuator Setting (dB)  
© 2020 Renesas Electronics Corporation  
24  
May 15, 2020  
 
F159V Datasheet  
11. Typical Performance Characteristics - Cascaded Gain  
Figure 20. Gain versus Frequency (+25°C)  
Figure 21. Gain versus Frequency (+3.3V)  
20  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
VVA = 0 dB, DSA = 0 dB  
VVA = 0 dB, DSA = 0 dB  
19  
18  
17  
16  
15  
14  
13  
12  
+3.15 V / CH 0  
+3.30 V / CH 0  
+3.45 V / CH 0  
+3.15 V / CH 1  
+3.30 V / CH 1  
+3.45 V / CH 1  
-20 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
+25 C / CH 0  
+115 C / CH 0  
11  
10  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
3.5  
3.5  
RF Frequency (GHz)  
RF Frequency (GHz)  
Figure 22. Gain versus Frequency (+3.3V)  
Figure 23. Gain versus Frequency (+3.3V)  
10  
-2  
VVA = 5 dB, DSA = 5 dB  
VVA = 5 dB, DSA = 17 dB  
9
8
7
6
5
4
3
2
1
0
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
-11  
-12  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
RF Frequency (GHz)  
RF Frequency (GHz)  
Figure 24. Gain versus Frequency (+3.3V)  
Figure 25. Gain versus Frequency (+3.3V)  
-2  
-10  
VVA = 22 dB, DSA = 1 dB  
VVA = 5 dB, DSA = 26 dB  
-3  
-4  
-11  
-12  
-13  
-14  
-15  
-16  
-17  
-18  
-19  
-20  
-5  
-6  
-7  
-8  
-9  
-10  
-11  
-12  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
RF Frequency (GHz)  
RF Frequency (GHz)  
© 2020 Renesas Electronics Corporation  
25  
May 15, 2020  
 
F159V Datasheet  
12. Typical Performance Characteristics - Cascaded Gain (Cont.)  
Figure 26. Gain versus Frequency (+3.3V)  
Figure 27. Gain versus Frequency (+3.3V)  
2
-6  
-7  
VVA = 14 dB, DSA = 5 dB  
VVA = 22 dB, DSA = 5 dB  
1
0
-8  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
-11  
-12  
-13  
-14  
-15  
-16  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
3.5  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
3.5  
3.5  
RF Frequency (GHz)  
RF Frequency (GHz)  
Figure 28. Gain versus Frequency (+3.3V)  
Figure 29. Gain versus Frequency (+3.3V)  
-10  
-18  
VVA = 14 dB, DSA = 17 dB  
VVA = 22 dB, DSA = 17 dB  
-11  
-12  
-13  
-14  
-15  
-16  
-17  
-18  
-19  
-20  
-19  
-20  
-21  
-22  
-23  
-24  
-25  
-26  
-27  
-28  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
RF Frequency (GHz)  
RF Frequency (GHz)  
Figure 30. Gain versus Frequency (+3.3V)  
Figure 31. Gain versus Frequency (+3.3V)  
-20  
-28  
VVA = 14 dB, DSA = 26 dB  
VVA = 22 dB, DSA = 26 dB  
-21  
-22  
-23  
-24  
-25  
-26  
-27  
-28  
-29  
-30  
-29  
-30  
-31  
-32  
-33  
-34  
-35  
-36  
-37  
-38  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
RF Frequency (GHz)  
RF Frequency (GHz)  
© 2020 Renesas Electronics Corporation  
26  
May 15, 2020  
 
F159V Datasheet  
13. Typical Performance Characteristics - Cascaded OIP3  
Figure 32. OIP3 versus Frequency (+25°C)  
Figure 33. OIP3 versus Frequency (+3.3V)  
40  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
VVA = 0 dB, DSA = 0 dB  
VVA = 0 dB, DSA = 0 dB  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
+3.15 V / CH 0  
+3.30 V / CH 0  
+3.45 V / CH 0  
+3.15 V / CH 1  
+3.30 V / CH 1  
+3.45 V / CH 1  
-20 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
+25 C / CH 0  
+115 C / CH 0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
3.5  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
3.5  
3.5  
RF Frequency (GHz)  
RF Frequency (GHz)  
Figure 34. OIP3 versus Frequency (+3.3V)  
Figure 35. OIP3 versus Frequency (+3.3V)  
34  
30  
VVA = 5 dB, DSA = 5 dB  
VVA = 5 dB, DSA = 17 dB  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
RF Frequency (GHz)  
RF Frequency (GHz)  
Figure 36. OIP3 versus Frequency (+3.3V)  
Figure 37. OIP3 versus Frequency (+3.3V)  
34  
20  
VVA = 22 dB, DSA = 1 dB  
VVA = 5 dB, DSA = 26 dB  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
18  
16  
14  
12  
10  
8
6
4
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
2
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
RF Frequency (GHz)  
RF Frequency (GHz)  
© 2020 Renesas Electronics Corporation  
27  
May 15, 2020  
 
F159V Datasheet  
14. Typical Performance Characteristics - Cascaded OIP3 (Cont.)  
Figure 38. OIP3 versus Frequency (+3.3V)  
Figure 39. OIP3 versus Frequency (+3.3V)  
34  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
VVA = 14 dB, DSA = 5 dB  
VVA = 22 dB, DSA = 5 dB  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-20 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
+25 C / CH 0  
+115 C / CH 0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
3.5  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
3.5  
3.5  
RF Frequency (GHz)  
RF Frequency (GHz)  
Figure 40. OIP3 versus Frequency (+3.3V)  
Figure 41. OIP3 versus Frequency (+3.3V)  
26  
16  
VVA = 14 dB, DSA = 17 dB  
VVA = 22 dB, DSA = 17 dB  
24  
22  
20  
18  
16  
14  
12  
10  
8
14  
12  
10  
8
6
4
2
0
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-2  
-4  
6
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
RF Frequency (GHz)  
RF Frequency (GHz)  
Figure 42. OIP3 versus Frequency (+3.3V)  
Figure 43. OIP3 versus Frequency (+3.3V)  
16  
6
VVA = 14 dB, DSA = 26 dB  
VVA = 22 dB, DSA = 26 dB  
14  
12  
10  
8
4
2
0
-2  
6
-4  
4
-6  
2
-8  
0
-10  
-12  
-14  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-2  
-4  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
RF Frequency (GHz)  
RF Frequency (GHz)  
© 2020 Renesas Electronics Corporation  
28  
May 15, 2020  
 
F159V Datasheet  
15. Typical Performance Characteristics - Cascaded OIP2  
Figure 44. OIP2 versus Frequency (+25°C)  
Figure 45. OIP2 versus Frequency (+3.3V)  
85  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
VVA = 0 dB, DSA = 0 dB  
VVA = 0 dB, DSA = 0 dB  
80  
75  
70  
65  
60  
55  
+3.15 V / CH 0  
+3.30 V / CH 0  
+3.45 V / CH 0  
+3.15 V / CH 1  
+3.30 V / CH 1  
+3.45 V / CH 1  
-20 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
50  
45  
+25 C / CH 0  
+115 C / CH 0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
3.5  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
3.5  
3.5  
RF Frequency (GHz)  
RF Frequency (GHz)  
Figure 46. OIP2 versus Frequency (+3.3V)  
Figure 47. OIP2 versus Frequency (+3.3V)  
90  
80  
VVA = 5 dB, DSA = 5 dB  
VVA = 5 dB, DSA = 17 dB  
85  
80  
75  
70  
65  
60  
55  
50  
75  
70  
65  
60  
55  
50  
45  
40  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
RF Frequency (GHz)  
RF Frequency (GHz)  
Figure 48. OIP2 versus Frequency (+3.3V)  
Figure 49. OIP2 versus Frequency (+3.3V)  
80  
70  
VVA = 22 dB, DSA = 1 dB  
VVA = 5 dB, DSA = 26 dB  
75  
70  
65  
60  
55  
50  
45  
40  
65  
60  
55  
50  
45  
40  
35  
30  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
RF Frequency (GHz)  
RF Frequency (GHz)  
© 2020 Renesas Electronics Corporation  
29  
May 15, 2020  
 
F159V Datasheet  
16. Typical Performance Characteristics - Cascaded OIP2 (Cont.)  
Figure 50. OIP2 versus Frequency (+3.3V)  
Figure 51. OIP2 versus Frequency (+3.3V)  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
VVA = 14 dB, DSA = 5 dB  
VVA = 22 dB, DSA = 5 dB  
80  
75  
70  
65  
60  
55  
50  
45  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-20 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
+25 C / CH 0  
+115 C / CH 0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
3.5  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
3.5  
3.5  
RF Frequency (GHz)  
RF Frequency (GHz)  
Figure 52. OIP2 versus Frequency (+3.3V)  
Figure 53. OIP2 versus Frequency (+3.3V)  
80  
70  
VVA = 14 dB, DSA = 17 dB  
VVA = 22 dB, DSA = 17 dB  
75  
70  
65  
60  
55  
50  
45  
40  
65  
60  
55  
50  
45  
40  
35  
30  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
RF Frequency (GHz)  
RF Frequency (GHz)  
Figure 54. OIP2 versus Frequency (+3.3V)  
Figure 55. OIP2 versus Frequency (+3.3V)  
65  
65  
VVA = 14 dB, DSA = 26 dB  
VVA = 22 dB, DSA = 26 dB  
60  
55  
50  
45  
40  
35  
30  
25  
60  
55  
50  
45  
40  
35  
30  
25  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
RF Frequency (GHz)  
RF Frequency (GHz)  
© 2020 Renesas Electronics Corporation  
30  
May 15, 2020  
 
F159V Datasheet  
17. Typical Performance Characteristics - Cascaded OP1dB  
Figure 56. Output P1dB vs Frequency (+25°C)  
Figure 57. Output P1dB vs Frequency (+3.3V)  
16  
16  
VVA = 0 dB, DSA = 0 dB  
VVA = 0 dB, DSA = 0 dB  
14  
12  
10  
8
14  
12  
10  
8
6
6
4
4
2
2
0
0
+3.15 V / CH 0  
+3.30 V / CH 0  
+3.45 V / CH 0  
+3.15 V / CH 1  
+3.30 V / CH 1  
+3.45 V / CH 1  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-2  
-4  
-2  
-4  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
3.5  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
3.5  
3.5  
RF Frequency (GHz)  
RF Frequency (GHz)  
Figure 58. Output P1dB vs Frequency (+3.3V)  
Figure 59. Output P1dB vs Frequency (+3.3V)  
16  
6
VVA = 5 dB, DSA = 5 dB  
VVA = 5 dB, DSA = 17 dB  
14  
12  
10  
8
4
2
0
-2  
-4  
-6  
-8  
-10  
6
4
2
0
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-2  
-4  
-12  
-14  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
RF Frequency (GHz)  
RF Frequency (GHz)  
Figure 60. Output P1dB vs Frequency (+3.3V)  
Figure 61. Output P1dB vs Frequency (+3.3V)  
16  
-4  
VVA = 22 dB, DSA = 1 dB  
VVA = 5 dB, DSA = 26 dB  
14  
12  
10  
8
-6  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
6
4
2
0
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-2  
-4  
-22  
-24  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
RF Frequency (GHz)  
RF Frequency (GHz)  
© 2020 Renesas Electronics Corporation  
31  
May 15, 2020  
 
F159V Datasheet  
18. Typical Performance Characteristics - Cascaded OP1dB (Cont.)  
Figure 62. Output P1dB vs Frequency (+3.3V)  
Figure 63. Output P1dB vs Frequency (+3.3V)  
14  
6
VVA = 14 dB, DSA = 5 dB  
VVA = 22 dB, DSA = 5 dB  
12  
10  
8
4
2
0
6
-2  
-4  
-6  
-8  
-10  
4
2
0
-2  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-4  
-6  
-12  
-14  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
3.5  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
3.5  
3.5  
RF Frequency (GHz)  
RF Frequency (GHz)  
Figure 64. Output P1dB vs Frequency (+3.3V)  
Figure 65. Output P1dB vs Frequency (+3.3V)  
4
-6  
VVA = 14 dB, DSA = 17 dB  
VVA = 22 dB, DSA = 17 dB  
2
0
-8  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-2  
-4  
-6  
-8  
-10  
-12  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-14  
-16  
-24  
-26  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
RF Frequency (GHz)  
RF Frequency (GHz)  
Figure 66. Output P1dB vs Frequency (+3.3V)  
Figure 67. Output P1dB vs Frequency (+3.3V)  
-6  
-16  
VVA = 14 dB, DSA = 26 dB  
VVA = 22 dB, DSA = 26 dB  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-18  
-20  
-22  
-24  
-26  
-28  
-30  
-32  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-24  
-26  
-34  
-36  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
RF Frequency (GHz)  
RF Frequency (GHz)  
© 2020 Renesas Electronics Corporation  
32  
May 15, 2020  
 
F159V Datasheet  
19. Typical Performance Characteristics - Harmonics, Current, Switching  
Figure 68. Second Harmonic vs Frequency  
(+3.3V)  
Figure 69. Current vs Frequency (+3.3V)  
-60  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
VVA = 0 dB, DSA = 0 dB  
VVA = 0 dB, DSA = 0 dB  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-20 C / CH 0  
-20 C / CH 1  
+25 C / CH 0  
-20 C / CH 0  
-20 C / CH 1  
+25 C / CH 0  
-20 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
+25 C / CH 0  
+115 C / CH 0  
-105  
-110  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
3.5  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
RF Frequency (GHz)  
RF Frequency (GHz)  
Figure 70. Third Harmonic vs Frequency  
(+3.3V)  
Figure 71. Amplifier Enable Pin Switched from  
LOW to HIGH  
-60  
VVA = 0 dB, DSA = 0 dB  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-105  
-110  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
RF Frequency (GHz)  
Figure 72. Fifth Harmonic vs Frequency  
(+3.3V)  
Figure 73. Amplifier Enable Pin Switched from  
HIGH to LOW  
-60  
VVA = 0 dB, DSA = 0 dB  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-105  
-110  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
RF Frequency (GHz)  
© 2020 Renesas Electronics Corporation  
33  
May 15, 2020  
 
F159V Datasheet  
20. Typical Performance Characteristics - Modulator Coupled Output  
Figure 74. Gain versus Frequency (+3.3V)  
Figure 75. Output Power versus Frequency  
(+3.3V)  
-15  
-16  
-17  
-18  
-19  
-20  
-21  
-22  
-20  
-21  
-22  
-23  
-24  
-25  
-26  
-27  
-28  
-29  
-30  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-23  
-24  
-25  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
3.5  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
RF Frequency (GHz)  
RF Frequency (GHz)  
Figure 76. OIP3 versus Frequency (+3.3V)  
Figure 77. OIP2H versus Frequency (+3.3V)  
20  
18  
16  
14  
12  
10  
8
80  
75  
70  
65  
60  
55  
50  
6
4
2
0
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
45  
40  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
RF Frequency (GHz)  
RF Frequency (GHz)  
Figure 78. OP1dB versus Frequency (+3.3V)  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-10  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
RF Frequency (GHz)  
© 2020 Renesas Electronics Corporation  
34  
May 15, 2020  
 
F159V Datasheet  
21. Typical Performance Characteristics - Modulator Coupled Output  
nd  
Figure 79. 2 Baseband Harmonic versus  
Figure 80. LO Leakage  
Frequency (+3.3V, fLO +/- 2fIF)  
-60  
0
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-70  
-80  
-90  
-100  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-110  
-120  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
3.5  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
RF Frequency (GHz)  
RF Frequency (GHz)  
rd  
Figure 81. 3 Baseband Harmonic versus  
Frequency (+3.3V, fLO +/- 3fIF)  
Figure 82. Switching Time ON to OFF  
-60  
-70  
-80  
-90  
-100  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-110  
-120  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
RF Frequency (GHz)  
th  
Figure 83. 5 Baseband Harmonic versus  
Frequency (+3.3V, fLO +/- 5fIF)  
Figure 84. Switching Time OFF to ON  
-60  
-70  
-80  
-90  
-100  
-20 C / CH 0  
+25 C / CH 0  
+115 C / CH 0  
-20 C / CH 1  
+25 C / CH 1  
+115 C / CH 1  
-110  
-120  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
RF Frequency (GHz)  
© 2020 Renesas Electronics Corporation  
35  
May 15, 2020  
 
F159V Datasheet  
22. Typical Performance Characteristics - LO  
Figure 85. LO Output Power versus Frequency  
(+3.3V)  
Figure 86. Lock Detect (fLO = 1.8745GHz)  
10  
8
6
SPI_CSN  
Lock Detect  
4
2
0
-2  
-4  
-6  
+25 C / Pin = -2 dBm  
+115 C / Pin = -2 dBm  
+25 C / Pin = +4 dBm  
+115 C / Pin = +4 dBm  
-8  
-10  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
LO Frequency (GHz)  
Figure 87. LO Output Phase Noise  
(0.9425GHz)  
Figure 88. LO Output Phase Noise  
(1.8475GHz)  
0
0
-20 C  
+25 C  
+115 C  
-20 C  
+25 C  
+115 C  
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
1.E+07  
1.E+08  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
1.E+07  
1.E+08  
Offset Frequency (Hz)  
Offset Frequency (Hz)  
Figure 89. LO Output Phase Noise  
(2.1550GHz)  
Figure 90. LO Output Phase Noise  
(2.6550GHz)  
0
0
-20 C  
-20 C  
+25 C  
+115 C  
+25 C  
+115 C  
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
1.E+07  
1.E+08  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
1.E+07  
1.E+08  
Offset Frequency (Hz)  
Offset Frequency (Hz)  
© 2020 Renesas Electronics Corporation  
36  
May 15, 2020  
 
F159V Datasheet  
23. Theory of Operation  
The F159V transmit chip can be defined as three separate functions:  
. Frequency Generator – The F159V uses either an internal voltage controlled oscillator (VCO) that is locked using a fractional-N phase  
lock loop (PLL) or an external frequency source. The internal VCO has a frequency range of 2GHz–4GHz. If an external frequency is used  
this must be supplied using a 100Ω differential signal. There is only one frequency generator per device but this signal is split into two  
different paths.  
. Modulator – The baseband signals, which are 100Ω differential I/Q signals, are up-converted with the signal generated from the  
frequency generator. There are two modulators per device.  
. Variable Gain Amplifier – After a signal is modulated for each of the paths, the signal is amplified and can be attenuated with both a  
digital step attenuator (DSA) and voltage variable attenuator (VVA). There are two variable gain amplifiers (VGA) per device.  
Controlling the F159V is done using fifty 8-bit registers.  
23.1. Frequency Generator  
The signal used as the carrier for the modulator can be supplied via an external source or internally generated via a fractional-N phase lock  
loop (PLL). The block diagram is shown in Figure 91. Controlling the various switches, dividers, and PLL is done by serially programming  
registers to generate the required frequency. The registers are described in the following section.  
Figure 91. Phase Lock Loop (PLL) Schematic  
Reference  
Divider  
fREF  
REF_in  
1+D  
R
LD  
fPDF  
Lock Detect  
R
Phase  
Frequency  
Detector  
Charge  
Pump  
CP_out  
D
Divider  
Filter  
NFrac  
NMod  
NInt +  
fVCO  
Divider  
/M  
VTune  
VCO  
fLO_Internal  
Divider  
/D2  
Switch  
fLO  
fLO_External  
fLO_Out_Ext  
LO in  
LO out  
© 2020 Renesas Electronics Corporation  
37  
May 15, 2020  
 
 
 
F159V Datasheet  
23.1.1.  
Internal (VCO) Frequency  
The fractional-N architecture is implemented via a cascaded programmable dual modulus prescaler. The N divider offers a division ratio in the  
feedback path of the PLL, and is given by programming the values of NInt, NFrac, and NMod. The VCO frequency is determined by the following  
equation:  
ꢇꢋꢌꢍꢎ  
ꢇꢏꢐꢑ  
ꢁꢂꢃ  
ꢁꢂꢃ  
= ꢄꢅꢆ �ꢇꢈꢉꢊ +  
ꢒ ꢐꢌ ꢀ  
=
ꢄꢅꢆ  
ꢇꢋꢌꢍꢎ  
ꢇꢏꢐꢑ  
ꢇꢈꢉꢊ +  
Each of the values is a 16-bit word that requires the programming of two registers.  
Table 18. Feedback Divider Values  
Name  
Register  
Description  
Register Name  
Function  
This sets the integer value for feedback divider which is a  
16-bit word. The value is limited between 7 and 65,535.  
NInt_0 is the lower 8 bits.  
17  
18  
Feedback Divider  
Integer Value  
NInt_0  
NInt_1  
NInt  
NInt_1 is the upper 8 bits.  
The default value is 63 = 0000_0000_0011_1111b.  
This sets the fractional value for feedback divider which  
is a 16-bit word. There is no limit to the value and can be  
between 0 and 65,535.  
NFrac_0 is the lower 8 bits.  
NFrac_1 is the upper 8 bits.  
19  
20  
Feedback Divider  
Fractional Value  
NFrac_0  
NFrac_1  
NFrac  
NMod  
The default value is 31232 = 0111_1010_0000_0000b.  
This sets the modulus value for feedback divider which is  
a 16-bit word. The value must be between 2 and 65,535.  
NMod_0 is the lower 8 bits.  
21  
22  
Feedback Divider  
Modulus Value  
NMod_0  
NMod_1  
NMod_1 is the upper 8 bits.  
The default value is 65535 = 1111_1111_1111_1111b.  
The Fractional-N PLL can be put into an integer N mode. This is accomplished by setting the fractional value, NFrac, to 0.  
23.1.2. Reference Frequency  
The Phase Frequency Detector also requires a reference frequency for proper operation. The externally applied reference signal can be either  
a sine or square wave. This signal can be translated for various performance enhancements.  
1 + D  
ꢄꢅꢆ  
= ꢀ  
ꢕꢖꢅ  
When setting the frequency for the phase frequency detector, fPFD, it is possible to double (D=1) the reference frequency before dividing the  
frequency (R). The phase frequency detector has an upper frequency limit of 250MHz in the Integer-N mode. When used in the Fractional-N  
mode, the upper frequency is limited to 105MHz.  
© 2020 Renesas Electronics Corporation  
38  
May 15, 2020  
 
 
F159V Datasheet  
Table 19. Reference Frequency Divider Values  
Name  
Register  
Description  
Register Name  
Function  
This is a 1-bit control word that will double the externally  
applied reference frequency. This is the fifth bit on the  
word of the 8-bit word.  
Reference  
Frequency Doubler  
D
16  
Ref_Doubler  
The default value is 1 (doubler is on).  
This is a 4-bit control word that sets the divider for the  
externally applied reference frequency. The value is  
Ref_Doubler between 1 and 15. If the value is 0 then the divider is set  
Reference  
Frequency Divider  
R
16  
for 1. This is the first four bits of the word.  
The default value is 1 = 0000b.  
23.1.3.  
Charge Pump  
The charge pump current is programmable via the ICP register for maximum flexibility for PLL Bandwidth and performance. We recommend  
that default value be used.  
Table 20. Charge Pump  
Name  
Register  
Description  
Register Name  
Function  
This is a 4-bit control word that sets the output current of  
the charge pump. This is the first four bits of the word.  
The default value is 0.94mA = 0010b.  
Charge Pump  
Current  
ICP  
24  
ChrgPmp  
23.1.4.  
External Loop Filter  
An external loop filter is required which is connected between CP_OUT and VTUNE. The design is application specific. See Application Note  
849 for a general description for a loop filter design.  
23.1.5.  
LO Frequency  
The frequency that is used for the modulator is obtained from one of two paths. The first is from the internal VCO and PLL circuit. The output  
frequency of the VCO can be divided by up to a factor of 8 using a 3-bit control word.  
ꢁꢂꢃ  
=
ꢘꢃ_ꢙꢚꢛꢜꢝꢚꢞꢟ  
There is a switch that allows this internal signal or an external signal to be used. There is another divider that can be used to further reduce the  
frequency by a factor of 2. This divider can be used on either the internal signal or the external frequency supplied.  
ꢘꢃ_ꢖꢡꢛꢜꢝꢚꢞꢟ  
ꢘꢃ_ꢙꢚꢛꢜꢝꢚꢞꢟ  
ꢘꢃ  
=
ꢐꢌ  
2  
2  
It is important to note that for the lower frequency LO signals () lower than 1.15GHz, the quadrature divider must be enabled to generate  
ꢘꢃ  
the quadrature LO signal. At higher frequencies, an optimized filter is provided that properly splits the signal for the two paths, therefore the  
quadrature divider must be disabled.  
© 2020 Renesas Electronics Corporation  
39  
May 15, 2020  
 
 
 
F159V Datasheet  
Table 21. LO Frequency Divider Values  
Name  
Register  
Description  
Register Name  
Function  
This is a 3-bit control word that divides the VCO signal.  
This is first three bits of the word.  
MDiv  
23  
Output Divide Ratio  
MDiv  
The default value is 1 = 001b (divide by 2).  
This is a 1-bit control word that sets the divide by 2 option  
for signal used in the modulator. This can be applied to  
either the internal or external signal. This is the fourth bit  
of the word.  
D2  
23  
Quadrature Divider  
MDiv  
The default value is to divide by 1.  
23.1.6.  
Voltage Control Oscillator (VCO)  
The VCO should be set for automatic calibration. If needed, the user can manually change the frequency. There are also different ways to set  
how the VCO is locked.  
Table 22. VCO setting  
Name  
Register  
Description  
Register Name  
Function  
This is a 1-bit control word that forces the PLL to  
recalibrate itself. The default value is to not relock (0b).  
When the value is enabled (1b), the PLL is recalibrated  
and then the bit is self-clearing (reset to 0b).  
Force_Relock  
36  
VCO Locking  
Force_Relock  
This is a 1-bit control word that deals with the PLL  
recalibration. If any registers from 16 to 22 are written to,  
Band_Select_Disable  
Auto_Recal_Enable  
BandSelDiv  
36  
36  
Band Selection  
Recalibration  
Force_Relock then the PLL is recalibrated with the default value of 0b.  
When the value is enabled (1b), the PLL is not  
recalibrated.  
This is a 1-bit control word that sets the PLL in the auto-  
recalibration mode. The default value of 0b will disable  
the auto recalibration. When the value is enabled (1b),  
the PLL will allow auto-recalibration mode.  
Force_Relock  
This is a 12-bit word that will manually set the VCO band  
to be used.  
38  
39  
BandSelect_0  
Band Select Divider  
BandSelect_0 is the lower 8 bits.  
BandSelect_1  
BandSelect_1 has the upper 4 bits.  
The default value is 256 = 0001_0000_0000b.  
© 2020 Renesas Electronics Corporation  
40  
May 15, 2020  
 
F159V Datasheet  
Table 23. LO Signal Power  
Name  
Register  
Description  
Register Name  
Function  
This 1-bit word sets the operation of the LO frequency  
range.  
If set for logic LOW then frequency range is 1.50GHz to  
2.00GHz. If set for logic HIGH, the frequency range is  
either 0.45GHz to 1.50GHz or 2.00GHz to 2.80GHz.  
The default value is the 1.50GHz to 2.00GHz frequency  
range = 0b.  
Sets the LO  
frequency range  
LO_BAND  
33  
Freq_Band  
This 1-bit word sets the operation of the RF frequency  
range.  
If set for logic LOW then frequency range is 0.55GHz to  
2.80GHz. If set for logic HIGH, the frequency range is  
either 0.45GHz to 0.55GHz.  
The default value is the 1.50GHz to 2.00GHz frequency  
range = 0b.  
Sets the RF  
frequency range  
RF_BAND  
33  
34  
Freq_Band  
Logic  
This 1-bit word sets the logic level for the device  
operation.  
If set for logic LOW, then JEDEC 1.8V logic is used. If set  
for logic HIGH, then JEDEC 3.3V logic is used  
The default value is JEDEC 1.8V logic = 0b.  
Sets the logic  
voltage  
Dig_Out_Level  
This 3-bit word sets the precision setting for the  
frequency lock detection.  
The default value is 11.5ns = 000b  
Sets the lock time for  
the frequency  
LDP  
35  
35  
Freq_Lock  
Freq_Lock  
This 2-bit word sets how the voltage on the Lock pin is  
set.  
The default value is for Normal lock detection = 00b  
Set operation of the  
LOCK pin  
LDPinMode  
© 2020 Renesas Electronics Corporation  
41  
May 15, 2020  
F159V Datasheet  
23.1.7.  
LO Switch Matrix  
Through the LO Switch matrix, the F159V will route an LO signal from the internal PLL or from an external source. The device can also route  
the internal LO externally for use in other components. The external LO signals are differential signals and the impedance is 100Ω. In addition,  
the power can be modified to adjust the performance.  
Table 24. LO Signal Power  
Name  
Register  
Description  
Register Name  
Function  
This is a 2-bit control word that sets the output power to  
the quadrature divider. The power can be adjusted  
from -2dBm to +4dBm in 2dB steps.  
LO Power to  
Quadrature Divider  
LO_Out_Pwr  
25  
LO_Set_1  
The default value is 0dBm = 01b.  
This is a 2-bit control word that sets the output power to  
the external LO port. The power can be adjusted  
from -2dBm to +4dBm in 2dB steps.  
LO Power to  
External LO Port  
LO_SW_Out_Pwr  
LO_Out_Pwr_extra  
25  
25  
LO_Set_1  
LO_Set_1  
The default value is 0dBm = 01b.  
This 1-bit word will increase the LO output power by  
adding 9.6mA of current to the pre-driver.  
The default value is no extra power= 0b.  
Add extra power  
Table 25. LO Signal Routing  
Name  
Register  
Description  
Register Name  
Function  
This is a 1-bit control word that enables or disables the  
LO input amplifier. The default has this amplifier disabled  
(turned off).  
LO_In_Enable  
26  
LO Input Amplifier  
LO_Set_2  
This is a 1-bit control word that enables or disables the  
LO output amplifier. The default has this amplifier  
disabled (turned off).  
LO_Out_Enable  
26  
LO Output Amplifier  
LO_Set_2  
This is a 1-bit control word that enables or disables the  
switch to route the LO from the PLL to the output LO port.  
The default has switch enabled (turned on).  
LO_SW_Out_Enable  
DAC_Enable  
26  
26  
26  
LO Output Switch  
DAC Control  
LO_Set_2  
LO_Set_2  
LO_Set_2  
This is a 1-bit control word that enables or disables the  
DAC. The default has this enabled (turned on).  
This is a 1-bit control word that enables or disables the  
PLL. The default has the PLL enabled (turned on or  
internal LO signal).  
PLL_Enable  
PLL Control  
When this bit is set for logic LOW, the switch selects the  
output of the internal VCO. When this bit is set for logic  
HIGH, the switch selects the LO_IN (external) input. This  
is the control for the switch shown in Figure 92.  
LO_SW_Out_Select  
26  
PLL Control  
LO_Set_2  
© 2020 Renesas Electronics Corporation  
42  
May 15, 2020  
 
F159V Datasheet  
The LO_IN+/LO_IN- inputs are 100Ω differential inputs. The 100Ω termination is provided internal to the synthesizer die (as shown below). In  
addition, an internal bias ensures the proper DC operating level. For this input configuration, it is preferred that the inputs are AC coupled into  
LO_IN+/LO_IN-  
Figure 92. LO Input Schematic  
LO_IN+  
50Ω  
Internal  
Bias  
50Ω  
LO_IN-  
Equivalent Circuit  
for LO Input  
The LO_OUT+/LO_OUT- output pair is derived from the drain of an NMOS differential pair with on-chip termination resistors to VDD (as shown  
below).  
Figure 93. LO Output Schematic  
VDD  
50Ω  
50Ω  
LO_OUT+  
LO_OUT-  
Equivalent Circuit  
for LO Output  
© 2020 Renesas Electronics Corporation  
43  
May 15, 2020  
 
F159V Datasheet  
23.2. Modulator  
There are two modulators, one for each channel. The LO generated by the frequency generator is shared by both modulators. Each modulator  
has its own differential IF signal input. Figure 94 shows a general schematic to interface a Digital to Analog Converter (DAC) to the modulator  
input. There is a coupled output of the RF signal before the variable gain amplifier. There is no control of the modulator.  
Figure 94. Generic DAC Interface  
IDC= IBIAS+0.5*IFS  
0 to 20mA  
LCM DAC  
F159V  
VCM  
VCM  
IDC  
IDC  
IOUTxP  
RINT  
LPF  
BBP  
BBN  
IOUTxN  
RINT  
RDAC  
50Ω  
RDAC  
50Ω  
F159V Baseband Impedance  
DC = RINT = 62single ended for each port  
AC ~ 110differential  
LCM DAC: Low Current Mode Voltage DAC which usually has a high output impedance and will  
source an output current.  
IBIAS  
IFS  
LPF:  
VCM  
:
Internal bias current of the DAC  
:
Full Scale current of the DAC  
Differential Low Pass Filter for unwanted harmonics.  
:
Common Mode Voltage is determined by the DAC bias current and DC impedance of the  
IQ Modulator and DAC. It is given as  
23.3. Variable Gain Amplifier  
There are two variable gain amplifiers, one for each channel, which are used to adjust the output signal amplitude. There is both a digital step  
attenuator (DSA) which has 31dB of attenuation in 1dB steps and a voltage variable attenuator (VVA) that has 33dB of attenuation. The VVA  
can be set with a 12-bit word. Minimum attenuation is at the maximum digital word of 2047.  
Table 26. Digital Step Attenuator Setting  
Name  
Register  
Description  
Register Name  
Function  
This is a 5-bit control word that sets the attenuation setting  
for the DSA Channel 0. This is the first 5 bits of the word.  
The default value is 0dB = 0 0000b.  
Attenuator setting for  
DSA in Path 0  
DSA0  
27  
DSA0  
This is a 5-bit control word that sets the attenuation setting  
for the DSA Channel 1. This is the first 5 bits of the word.  
The default value is 0dB = 0 0000b.  
Attenuator setting for  
DSA in Path 1  
DSA1  
28  
DSA1  
© 2020 Renesas Electronics Corporation  
44  
May 15, 2020  
 
 
 
F159V Datasheet  
Table 27. Digital Step Attenuator Truth Table  
Attenuator  
Setting (dB)  
DSA[4]  
DSA[3]  
DSA[2]  
DSA[1]  
DSA[0]  
LOW  
LOW  
LOW  
LOW  
LOW  
HIGH  
HIGH  
LOW  
LOW  
LOW  
LOW  
HIGH  
LOW  
HIGH  
LOW  
LOW  
LOW  
HIGH  
LOW  
LOW  
HIGH  
LOW  
LOW  
HIGH  
LOW  
LOW  
LOW  
HIGH  
LOW  
HIGH  
LOW  
LOW  
LOW  
LOW  
HIGH  
0
1
2
4
8
16  
31  
Table 28. Voltage Variable Attenuator Setting  
Name  
Register  
Description  
Register Name  
Function  
This is a 12-bit control word that sets the attenuation  
setting for the VVA in Channel 0.  
DAC0_0 is the lower 8 bits.  
29  
30  
Voltage setting for  
VVA in Path 0  
DAC0_0  
DAC0_1  
VVA0  
DAC0_1 is the upper 4 bits.  
The default value is 2047 = 0111_1111_1111b.  
This is a 12-bit control word that sets the attenuation  
setting for the VVA in Channel 1.  
DAC1_0 is the lower 8 bits.  
31  
32  
Voltage setting for  
VVA in Path 1  
DAC1_0  
DAC1_1  
DSA1  
DAC1_1 has the upper 4 bits.  
The default value is 2047 = 0111_1111_1111b.  
23.4. General Settings  
23.4.1.  
Initial Startup  
When the F159V is initially powered up, power is applied to all the VDD pins, or the RESET pin is set to logic LOW, the device is placed in the  
following state:  
.
.
.
.
.
.
.
.
.
Default logic is 1.8V.  
The reference frequency doubler is enabled.  
The PLL is set for integer mode with a divider of 63.  
The LO signal used for the modulator is set for half the frequency of the PLL frequency and 0dBm.  
The LO is set for the 1.50GHz to 2.00GHz range.  
The internal LO signal is used for the modulator.  
The PLL is enabled.  
Digital step attenuators are set for the minimum attenuation (0dB).  
Voltage variable attenuators are set for the minimum attenuation (state 2047) and the DAC used to control them is turned on.  
© 2020 Renesas Electronics Corporation  
45  
May 15, 2020  
 
 
F159V Datasheet  
23.4.2.  
Logic Pins  
The following pins are individual pins to the F159V to reset the device, enable the channel modulator output ports, and enable the channel  
amplifiers.  
Table 29. Amplifier Enable Pin Truth Table  
Parameter  
Logic Level  
Function  
LOW  
Amplifier in channel path has the DC power turned on.  
CH0_AMPEN (pin 68)  
CH1_AMPEN (pin 18)  
HIGH or No Connect Amplifier in channel path has the DC power turned off.  
Table 30. Coupled Modulator Output Enable Pin Truth Table  
Parameter  
Logic Level  
Function  
LOW  
Coupled modulator output path has the DC power turned on.  
CH0_MODEN (pin 59)  
CH1_MODEN (pin 27)  
HIGH or No Connect Coupled modulator output path has the DC power turned off.  
Table 31. RESET Pin Truth Table  
Parameter  
Logic Level  
Function  
LOW  
Resets all registers to the default states.  
RESET (pin 49)  
HIGH or No Connect Normal operation.  
24. Programming  
Figure 95. Serial Timing Diagram  
Note: Falling edge of the last clock period is required in order to properly program the SPI.  
© 2020 Renesas Electronics Corporation  
46  
May 15, 2020  
 
 
F159V Datasheet  
Figure 96. Serial Timing Diagram for Multiple Bits  
Table 32. SPI Timing Parameters  
Minimum for SPI  
Timing (ns)  
Maximum for SPI  
Timing (ns)  
Parameter  
Description  
tds  
tdh  
SDIO to SCLK rising edge Setup  
SCLK rising edge to SDIO Hold  
8
10  
10  
8
50  
(default)  
tclk  
Period of SCLK  
thi  
tlo  
High width of SPI clock  
25  
Low width of SPI clock  
CS falling edge to SCLK rising edge,  
setup time  
SCLK rising edge to CS rising edge,  
hold time  
25  
10  
ts  
tc  
20  
30  
10  
SCLK falling edge to valid readback  
data, SDIO/SDO, tdv  
tdv  
24.1. Special Programming Note  
LD Mode must be programmed to be logic HIGH for proper operation of the lock detection circuit. This is set in Register 37 and the digital word  
to be used is 129 = 81h = 1000_0001b.  
© 2020 Renesas Electronics Corporation  
47  
May 15, 2020  
 
F159V Datasheet  
24.2. Register Definition  
The F159V is programmed via a 3 or 4 wire SPI connection. There are 50 registers that can be programmed for various components of the  
device including the PLL, voltage variable attenuators, digital step attenuators, LO output power. Each register is 8-bits long. There are some  
parameters that require two registers to fulfill the functionality.  
Note: The following numbering nomenclature is used. If the letter “h” is after characters, the number is a hexadecimal. If “b” follows characters,  
the number is binary. The binary number is also separated into groups of 4 bits (e.g., 1010_0011b). Otherwise, the number is decimal.  
Table 33. Register Definition  
Hex  
Address  
Default  
Value  
Register  
Type  
Description  
0
1
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
R/W 0000_0000b This register configures the Reset and bit definition.  
R/W 0000_0000b This register configures the Single instruction.  
R/W 0000_0000b This register configures the data transfer.  
2
3
R
R
R
R
0000_0001b Chip type.  
4
0000_0000b Chip ID – lower 8 bits (total 16 bits).  
0000_0000b Chip ID – higher 8 bits (total 16 bits).  
0000_0011b Chip version.  
5
6
7
R/W 0000_0000b Unused at this time.  
R/W 0000_0000b Unused at this time.  
R/W 0000_0000b Unused at this time.  
R/W 0000_0000b Unused at this time.  
R/W 0000_0000b Unused at this time.  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
R
R
0010_0110b Vendor ID – lower 8 bits (total of 16 bits).  
0000_0100b Vendor ID – higher 8 bits (total of 16 bits).  
R/W 0000_0000b Unused at this time.  
R/W 0000_0000b Unused at this time.  
R/W 0001_0000b 5-bit word to control the Reference Divider and Reference Doubler.  
R/W 0011_1111b FB divider integer part, lower 8 bits (total of 16 bits). Minimum divide ratio is 7.  
R/W 0000_0000b FB divider integer part, higher 8 bits (total of 16-bits).  
R/W 0000_0000b FB divider fractional numerator, lower 8 bits (total of 16 bits). Default = 31,232.  
R/W 0111_1010b FB divider fractional numerator, higher 8 bits (total of 16-bits).  
FB divider fractional denominator, lower 8 bits (total of 16 bits). Minimum modulus value is 2.  
21  
15h  
R/W 1111_1111b  
Default = 65,535.  
22  
23  
24  
16h  
17h  
18h  
R/W 1111_1111b FB divider fractional denominator, higher 8 bits (total of 16 bits).  
R/W 0000_0001b 1-bit for the Quadrature Divider, 3-bit for the output divider.  
R/W 0000_0010b Charge pump current setting, 4 bits.  
© 2020 Renesas Electronics Corporation  
48  
May 15, 2020  
 
F159V Datasheet  
Table 34. Register Definition–(Cont.)  
Hex  
Address  
Default  
Value  
Register  
Type  
Description  
Setting for LO output: 2 bits for Output Power, 2 bits for Switched Output Power, 1 bit for  
additional pre-driver current (output power).  
25  
19h  
R/W 0000_0101b  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
R/W 0001_1100b Set the various LO switch parameters, and if the PLL and DAC are enabled.  
R/W 0000_0000b 5-bit word to control the DSA in Channel 0 (1dB LSB).  
R/W 0000_0000b 5-bit word to control the DSA in Channel 1 (1dB LSB).  
R/W 1111_1111b Lower 8 bits of 11-bit word to control the VVA in Channel 0.  
R/W 0000_0111b Higher 3 bits of 11-bit word to control the VVA in Channel 0.  
R/W 1111_1111b Lower 8-bits of 11-bit word to control the VVA in Channel 1.  
R/W 0000_0111b Higher 3-bits of 11-bit word to control the VVA in Channel 1.  
R/W 0000_0000b 1 bit for the RF Band, 1 bit for the LO Band.  
R/W 0000_0000b 1 bit for Digital Output Logic.  
R/W 0000_0000b 3 bits for Lock Detect Precision, 2 bits for Lock Detect.  
1 bit for a force recalibration. 1 bit for Disabling the VCO recalibration,  
1 bit for Automatic recalibration.  
36  
24h  
R/W 0000_0000b  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
R/W 0000_0001b 1 bit for Lock Detection.  
R/W 0000_0000b Lower 8 bits of a 12-bit word for the Band Select Divider.  
R/W 0000_0001b Higher 4 bits of a 12-bit word for the Band Select Divider.  
R/W 0000_0000b Reserved for Vendor Use. Use only the default value.  
R/W 0000_0000b Reserved for Vendor Use. Use only the default value.  
R/W 0000_0010b Reserved for Vendor Use. Use only the default value.  
R/W 1100_1011b Reserved for Vendor Use. Use only the default value.  
R/W 0000_0000b Reserved for Vendor Use. Use only the default value.  
R/W 0000_0000b Reserved for Vendor Use. Use only the default value.  
R
R
N/A  
N/A  
N/A  
N/A  
Reserved for Vendor Use. Use only the default value.  
Reserved for Vendor Use. Use only the default value.  
Reserved for Vendor Use. Use only the default value.  
Reserved for Vendor Use. Use only the default value.  
R
R/W  
© 2020 Renesas Electronics Corporation  
49  
May 15, 2020  
F159V Datasheet  
24.2.1.  
Register 0 (00h)  
This register sets how the entire serial communication functions. Since the device can use either the most significant bit (MSB) or least significant  
bit (LSB) order, only four parameters are set. By mirroring the bits, the parameters can be used properly in either mode. The default value is 0  
= 00h = 0000_0000b.  
Table 35. Register 0: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
Set to logic LOW is for normal operation.  
Set to logic HIGH to reset all registers above register 2 (02h), with write capability, to a default  
state. Registers 0 and 1 are not reset.  
0
SoftReset  
0
Defines the bit transmitted first in SPIN transfers between the master and slave.  
If this bit is set to logic LOW, data is oriented as MSB first.  
If this bit is set to logic HIGH, data is oriented as LSB first.  
1
2
LSBFirst  
0
0
Defines how the addresses are incremented in streaming SPI mode.  
If this bit is set to logic LOW, addresses are auto-decremented.  
If this bit is set to logic HIGH, addresses are auto-incremented.  
AddressAscend  
Selects the unidirectional or bidirectional data transfer mode for the SDIO pin.  
If this bit is cleared or set to logic LOW, then SPI 3-wire mode is used and:  
- SDIO is the SPI bidirectional data I/O pin  
3
SDO Active  
0
- SDO pin is not used and is in high-impedance  
If this-bit is cleared or set to logic HIGH, then SPI 4-wire mode is used and:  
- SDIO is the SPI data input pin  
- SDO is the SPI data output pin  
4
5
6
7
SDO Active  
AddressAscend  
LSBFirst  
0
0
0
0
Must be equal to bit 3 (Mirror image to be independent of MSB or LSB).  
Must be equal to bit 2 (Mirror image to be independent of MSB or LSB).  
Must be equal to bit 1 (Mirror image to be independent of MSB or LSB).  
Must be equal to bit 0 (Mirror image to be independent of MSB or LSB).  
SoftReset  
24.2.2.  
Register 1 (01h)  
This register is used to determine how data is read back from the device. The default value is 0 = 00h = 0000_0000b.  
Table 36. Register 1: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
0
1
2
3
4
0
0
0
0
0
Unused.  
Unused.  
Unused.  
Unused.  
Unused.  
Double Buffer. Vendor can choose to design in a secondary buffer for reading.  
If set for logic HIGH, then when reading from the device the information is obtained for the  
second buffer. If set for logic LOW, then when reading from the device the information is  
obtained for the active register.  
5
BufferReadMode  
0
6
7
0
0
Unused.  
Unused.  
© 2020 Renesas Electronics Corporation  
50  
May 15, 2020  
 
 
F159V Datasheet  
24.2.3.  
Register 2 (01h)  
This register is unused and reserved for future use. The default value is 0 = 00h = 0000_0000b.  
24.2.4. Register 3 (03h)  
This register is used to define what type of Chip this is and is READ ONLY. It is 8 bits long. The default value is 1 = 01h = 0000_0001b.  
Table 37. Register 3: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
0
1
2
3
4
5
6
7
ChipType[0]  
ChipType[1]  
ChipType[2]  
ChipType[3]  
ChipType[4]  
ChipType[5]  
ChipType[6]  
ChipType[7]  
1
0
0
0
0
0
0
0
Bit 0 of the value.  
Bit 1 of the value.  
Bit 2 of the value.  
Bit 3 of the value.  
Bit 4 of the value.  
Bit 5 of the value.  
Bit 6 of the value.  
Bit 7 of the value.  
24.2.5.  
Register 4 (04h)  
Register 5 and 4 define the value for the ChipID. The ChipID is a 16-bit word with a default value of 0 = 0000h = 0000_0000_0000_0000b.  
Register 4 is the lower 8 bits of the word and the default value is 0 = 00h = 0000_0000b. This register is READ ONLY.  
Table 38. Register 4: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
0
1
2
3
4
5
6
7
ChipID[0]  
ChipID[1]  
ChipID[2]  
ChipID[3]  
ChipID[4]  
ChipID[5]  
ChipID[6]  
ChipID[7]  
0
0
0
0
0
0
0
0
Bit 0 of the value.  
Bit 1 of the value.  
Bit 2 of the value.  
Bit 3 of the value.  
Bit 4 of the value.  
Bit 5 of the value.  
Bit 6 of the value.  
Bit 7 of the value.  
© 2020 Renesas Electronics Corporation  
51  
May 15, 2020  
 
 
 
F159V Datasheet  
24.2.6.  
Register 5 (05h)  
Register 5 and 4 define the value for the ChipID. The ChipID is a 16-bit word with a default value of 0 = 0000h = 0000_0000_0000_0000b.  
Register 5 is the higher 8 bits of the word and the default value is 0 = 00h = 0000_0000b. This register is READ ONLY.  
Table 39. Register 5: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
0
1
2
3
4
5
6
7
ChipID[8]  
ChipID[9]  
0
0
0
0
0
0
0
0
Bit 8 of the value.  
Bit 9 of the value.  
Bit 10 of the value.  
Bit 11 of the value.  
Bit 12 of the value.  
Bit 13 of the value.  
Bit 14 of the value.  
Bit 15 of the value.  
ChipID[10]  
ChipID[11]  
ChipID[12]  
ChipID[13]  
ChipID[14]  
ChipID[15]  
24.2.7.  
Register 6 (06h)  
This register is READ ONLY and contains the Chip Version value. The Chip Version is an 8-bit word. The default value is 3 = 03h= 0000_0011b.  
Table 40. Register 6: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
0
1
2
3
4
5
6
7
ChipVersion[0]  
ChipVersion[1]  
ChipVersion[2]  
ChipVersion[3]  
ChipVersion[4]  
ChipVersion[5]  
ChipVersion[6]  
ChipVersion[7]  
1
1
0
0
0
0
0
0
Bit 0 of the value.  
Bit 1 of the value.  
Bit 2 of the value.  
Bit 3 of the value.  
Bit 4 of the value.  
Bit 5 of the value.  
Bit 6 of the value.  
Bit 7 of the value.  
24.2.8.  
Register 7 (07h)  
This register is unused and reserved for future use. The default value is 0 = 00h = 0000_0000b.  
24.2.9. Register 8 (08h)  
This register is unused and reserved for future use. The default value is 0 = 00h = 0000_0000b.  
24.2.10. Register 9 (09h)  
This register is unused and reserved for future use. The default value is 0 = 00h = 0000_0000b.  
24.2.11. Register 10 (0Ah)  
This register is unused and reserved for future use. The default value is 0 = 00h = 0000_0000b.  
24.2.12. Register 11 (0Bh)  
This register is unused and reserved for future use. The default value is 0 = 00h = 0000_0000b.  
© 2020 Renesas Electronics Corporation  
52  
May 15, 2020  
 
 
 
 
 
 
 
F159V Datasheet  
24.2.13. Register 12 (0Ch)  
Register 13 and 12 define the value of the Vendor ID. The Vendor ID is a 16-bit word. IDT’s vendor code is 1062 = 0426h. Register 12 is the  
lower 8 bits of the word and the default value is 38 = 26h= 0010_0110b. This register is READ ONLY.  
Table 41. Register 12: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
0
1
2
3
4
5
6
7
VendorID[0]  
VendorID[1]  
VendorID[2]  
VendorID[3]  
VendorID[4]  
VendorID[5]  
VendorID[6]  
VendorID[7]  
0
1
1
0
0
1
0
0
Bit 0 of the value.  
Bit 1 of the value.  
Bit 2 of the value.  
Bit 3 of the value.  
Bit 4 of the value.  
Bit 5 of the value.  
Bit 6 of the value.  
Bit 7 of the value.  
24.2.14. Register 13 (0Dh)  
Register 13 and 12 define the value of the Vendor ID. The Vendor ID is a 16-bit word. IDT’s vendor code is 1062 = 0426h. Register 13 is the  
higher 8 bits of the word and the default value is 4 = 04h= 0000_0100b. This register is READ ONLY.  
Table 42. Register 13: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
0
1
2
3
4
5
6
7
VendorID[8]  
VendorID[9]  
VendorID[10]  
VendorID[11]  
VendorID[12]  
VendorID[13]  
VendorID[14]  
VendorID[15]  
0
0
1
0
0
0
0
0
Bit 8 of the value.  
Bit 9 of the value.  
Bit 10 of the value.  
Bit 11 of the value.  
Bit 12 of the value.  
Bit 13 of the value.  
Bit 14 of the value.  
Bit 15 of the value.  
24.2.15. Register 14 (0Eh)  
This register is unused and reserved for future use. The default value is 0 = 00h = 0000_0000b.  
© 2020 Renesas Electronics Corporation  
53  
May 15, 2020  
 
 
 
F159V Datasheet  
24.2.16. Register 15 (0Fh)  
This register determines how the data in transferred from the buffers in the active register when a multi-byte word is sent. The default value is  
0 = 00h= 0000_0000b.  
Table 43. Register 15: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
This device implements double-buffered registers for various parameters that are larger than one  
byte (8 bits).  
If this is set to logic LOW, then there is no transfer.  
If this is set to logic HIGH, then the data (multiple bytes) into the device is synchronized so as to  
not affect the operation of the device.  
0
TransferOn  
0
This bit is always reset to logic LOW 0 after the operation, and this is called Auto-Clear.  
1
2
3
4
5
6
7
0
0
0
0
0
0
0
Unused.  
Unused.  
Unused.  
Unused.  
Unused.  
Unused.  
Unused.  
24.2.17. Register 16 (10h)  
This register controls the Reference Frequency Divider within the PLL. The reference frequency can be first be doubled, then divided. The  
default value is 16 = 10h = 0001_0000b.  
Table 44. Register 16: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
0
1
2
3
R[0]  
R[1]  
R[2]  
R[3]  
0
0
0
0
Bit 0 of a 4-bit word to determine the divider ratio (R) of the reference frequency (Table 45).  
Bit 1 of a 4-bit word to determine the divider ratio (R) of the reference frequency (Table 45).  
Bit 2 of a 4-bit word to determine the divider ratio (R) of the reference frequency (Table 45).  
Bit 3 of a 4-bit word to determine the divider ratio (R) of the reference frequency (Table 45).  
If this is set to logic LOW, then the reference frequency doubler (D) is disabled (multiplier is set  
for 1).  
4
RefDoub  
1
If this is set to logic HIGH, then the reference frequency doubler (D) is enable (multiplier is set for  
2). This is the default value.  
5
6
7
0
0
0
Unused.  
Unused.  
Unused.  
© 2020 Renesas Electronics Corporation  
54  
May 15, 2020  
 
 
F159V Datasheet  
Table 45. 4-bit Pre Divider Value (R) Description  
Decimal Bit 3 Bit 2 Bit 1 Bit 0  
Definition  
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Divide by 1 (default)  
Divide by 1  
Divide by 2  
Divide by 3  
Divide by 4  
Divide by 5  
Divide by 6  
Divide by 7  
Divide by 8  
Divide by 9  
Divide by 10  
Divide by 11  
Divide by 12  
Divide by 13  
Divide by 14  
Divide by 15  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
24.2.18. Register 17 (11h)  
Registers 18 and 17 control the Feedback Frequency Divider within the PLL. This is a 16-bit word that gives the integer value of the divider.  
The integer can vary from 7 to 65,535. The default value is 63 = 003Fh = 0000_0000_0011_1111b. Register 17 is the lower 8 bits of the word  
and has a default value 63 = 3Fh = 0011_1111b.  
Table 46. Register 17: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
0
1
2
3
4
5
6
7
NInt[0]  
NInt[1]  
NInt[2]  
NInt[3]  
NInt[4]  
NInt[5]  
NInt[6]  
NInt[7]  
1
1
1
1
1
1
0
0
Bit 0 of a 16-bit word to determine Integer value for the feedback divider.  
Bit 1 of a 16-bit word to determine Integer value for the feedback divider.  
Bit 2 of a 16-bit word to determine Integer value for the feedback divider.  
Bit 3 of a 16-bit word to determine Integer value for the feedback divider.  
Bit 4 of a 16-bit word to determine Integer value for the feedback divider.  
Bit 5 of a 16-bit word to determine Integer value for the feedback divider.  
Bit 6 of a 16-bit word to determine Integer value for the feedback divider.  
Bit 7 of a 16-bit word to determine Integer value for the feedback divider.  
© 2020 Renesas Electronics Corporation  
55  
May 15, 2020  
 
 
F159V Datasheet  
24.2.19. Register 18 (12h)  
Registers 18 and 17 control the Feedback Frequency Divider within the PLL. This is a 16-bit word that gives the integer value of the divider.  
The integer can vary from 7 to 65,535. The default value is 63 = 003Fh = 0000_0000_0011_1111b. Register 18 is the higher 8 bits of the word  
and has a default value of 0 = 00h = 0000_0000b.  
Table 47. Register 18: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
0
1
2
3
4
5
6
7
NInt[8]  
NInt[9]  
0
0
0
0
0
0
0
0
Bit 8 of a 16-bit word to determine integer value for the feedback divider.  
Bit 9 of a 16-bit word to determine integer value for the feedback divider.  
Bit 10 of a 16-bit word to determine integer value for the feedback divider.  
Bit 11 of a 16-bit word to determine integer value for the feedback divider.  
Bit 12 of a 16-bit word to determine integer value for the feedback divider.  
Bit 13 of a 16-bit word to determine integer value for the feedback divider.  
Bit 14 of a 16-bit word to determine integer value for the feedback divider.  
Bit 15 of a 16-bit word to determine integer value for the feedback divider.  
NInt[10]  
NInt[11]  
NInt[12]  
NInt[13]  
NInt[14]  
NInt[15]  
24.2.20. Register 19 (13h)  
Registers 20 and 19 control the NFrac term, which is the numerator in the fractional part of the equation for the PLL’s Feedback Frequency  
Divider: NInt + (NFrac / NMod). NFrac is a 16-bit word that can vary from 0 to 65,535. There is a restriction that NFrac must be less than the  
denominator value NMod (see registers 21 and 22). The default value for NFrac is 31232 = 7A00h = 0111_1010_0000_0000b. Register 19 is  
the lower 8 bits of NFrac, and its default value is 0 = 00h = 0000_0000b.  
Table 48. Register 19: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
0
1
2
3
4
5
6
7
NFrac[0]  
NFrac[1]  
NFrac[2]  
NFrac[3]  
NFrac[4]  
NFrac[5]  
NFrac[6]  
NFrac[7]  
0
0
0
0
0
0
0
0
Bit 0 in the 16-bit NFrac numerator in the fraction term in the feedback divider equation.  
Bit 1 in the 16-bit NFrac numerator in the fraction term in the feedback divider equation.  
Bit 2 in the 16-bit NFrac numerator in the fraction term in the feedback divider equation.  
Bit 3 in the 16-bit NFrac numerator in the fraction term in the feedback divider equation.  
Bit 4 in the 16-bit NFrac numerator in the fraction term in the feedback divider equation.  
Bit 5 in the 16-bit NFrac numerator in the fraction term in the feedback divider equation.  
Bit 6 in the 16-bit NFrac numerator in the fraction term in the feedback divider equation.  
Bit 7 in the 16-bit NFrac numerator in the fraction term in the feedback divider equation.  
© 2020 Renesas Electronics Corporation  
56  
May 15, 2020  
 
 
F159V Datasheet  
24.2.21. Register 20 (14h)  
Registers 20 and 19 control the NFrac term, which is the numerator in the fractional part of the equation for the PLL’s Feedback Frequency  
Divider: NInt + (NFrac / NMod). NFrac is a 16-bit word that can vary from 0 to 65,535. There is a restriction that NFrac must be less than the  
denominator value NMod (see registers 21 and 22). The default value for NFrac is 31232 = 7A00h = 0111_1010_0000_0000b. Register 20 is  
the upper 8 bits of NFrac, and its default value is 122 = 7Ah = 0111_1010b.  
Table 49. Register 20: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
0
1
2
3
4
5
6
7
NFrac[8]  
NFrac[9]  
0
1
0
1
1
1
1
0
Bit 8 in the 16-bit NFrac numerator in the fraction term in the feedback divider equation.  
Bit 9 in the 16-bit NFrac numerator in the fraction term in the feedback divider equation.  
Bit 10 in the 16-bit NFrac numerator in the fraction term in the feedback divider equation.  
Bit 11 in the 16-bit NFrac numerator in the fraction term in the feedback divider equation.  
Bit 12 in the 16-bit NFrac numerator in the fraction term in the feedback divider equation.  
Bit 13 in the 16-bit NFrac numerator in the fraction term in the feedback divider equation.  
Bit 14 in the 16-bit NFrac numerator in the fraction term in the feedback divider equation.  
Bit 15 in the 16-bit NFrac numerator in the fraction term in the feedback divider equation.  
NFrac[10]  
NFrac[11]  
NFrac[12]  
NFrac[13]  
NFrac[14]  
NFrac[15]  
24.2.22. Register 21 (15h)  
Registers 22 and 21 control the NMod term, which is the denominator in the fractional part of the equation for the PLL’s Feedback Frequency  
Divider: NInt + (NFrac / NMod). NMod is a 16-bit word that can vary from 2 to 65,535. There is a restriction that NMod must be greater than the  
numerator NFrac value (see registers 19 and 20). The default value for NMod is 65535 = FFFFh = 1111_1111_1111_1111b. Register 21 is the  
lower 8 bits of NMod, and its default value is 255 = FFh = 1111_1111b.  
Table 50. Register 21: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
0
1
2
3
4
5
6
7
NMod[0]  
NMod[1]  
NMod[2]  
NMod[3]  
NMod[4]  
NMod[5]  
NMod[6]  
NMod[7]  
1
1
1
1
1
1
1
1
Bit 0 in the 16-bit NMod denominator in the fraction term in the feedback divider equation.  
Bit 1 in the 16-bit NMod denominator in the fraction term in the feedback divider equation.  
Bit 2 in the 16-bit NMod denominator in the fraction term in the feedback divider equation.  
Bit 3 in the 16-bit NMod denominator in the fraction term in the feedback divider equation.  
Bit 4 in the 16-bit NMod denominator in the fraction term in the feedback divider equation.  
Bit 5 in the 16-bit NMod denominator in the fraction term in the feedback divider equation.  
Bit 6 in the 16-bit NMod denominator in the fraction term in the feedback divider equation.  
Bit 7 in the 16-bit NMod denominator in the fraction term in the feedback divider equation.  
© 2020 Renesas Electronics Corporation  
57  
May 15, 2020  
 
 
F159V Datasheet  
24.2.23. Register 22 (16h)  
Registers 22 and 21 control the NMod term, which is the denominator in the fractional part of the equation for the PLL’s Feedback Frequency  
Divider: NInt + (NFrac / NMod). NMod is a 16-bit word that can vary from 2 to 65,535. There is a restriction that NMod must be greater than the  
numerator NFrac value (see registers 19 and 20). The default value for NMod is 65535 = FFFFh = 1111_1111_1111_1111b. Register 22 is the  
upper 8 bits of NMod, and its default value is 255 = FFh = 1111_1111b.  
Table 51. Register 22: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
0
1
2
3
4
5
6
7
NMod[8]  
NMod[9]  
1
1
1
1
1
1
1
1
Bit 8 in the 16-bit NMod denominator in the fraction term in the feedback divider equation.  
Bit 9 in the 16-bit NMod denominator in the fraction term in the feedback divider equation.  
Bit 10 in the 16-bit NMod denominator in the fraction term in the feedback divider equation.  
Bit 11 in the 16-bit NMod denominator in the fraction term in the feedback divider equation.  
Bit 12 in the 16-bit NMod denominator in the fraction term in the feedback divider equation.  
Bit 13 in the 16-bit NMod denominator in the fraction term in the feedback divider equation.  
Bit 14 in the 16-bit NMod denominator in the fraction term in the feedback divider equation.  
Bit 15 in the 16-bit NMod denominator in the fraction term in the feedback divider equation.  
NMod[10]  
NMod[11]  
NMod[12]  
NMod[13]  
NMod[14]  
NMod[15]  
24.2.24. Register 23 (17h)  
Register 23 creates the proper frequency that is used by the modulator. There are two separate dividers. The Quad Divider is a divide by 2 and  
will work with both the internal frequency generator and an external frequency generator. The other divider, MDiv, only works on the internal  
frequency generator and is 3-bit word that allows values of 1 to 8. The Quad Divider default is 0 and the other divider, MDiv, is 1. Bits 4 to 7 are  
not used. The default value is 1 = 01h = 0000_0001b.  
Table 52. Register 23: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
Bit 0 of 3-bit word for divider (see Table 53).  
0
1
2
MDiv[0]  
MDiv[1]  
MDiv[2]  
1
0
0
Bit 1 of 3-bit word for divider (see Table 53).  
Bit 2 of 3-bit word for divider (see Table 53).  
Quadrature Divider.  
Set for logic LOW for divide by 1. This is the default value.  
Set for logic HIGH for divide by 2.  
3
Quad_Divider  
0
4
5
6
7
0
0
0
0
Unused.  
Unused.  
Unused.  
Unused.  
© 2020 Renesas Electronics Corporation  
58  
May 15, 2020  
 
 
F159V Datasheet  
Table 53. 3-Bit Divider Value (MDiv) Description  
Decimal Bit 2 Bit 1 Bit 0  
Definition  
0
1
2
3
4
5
6
7
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Divide by 1  
Divide by 2 (default)  
Divide by 4  
Divide by 8  
Unused  
Unused  
Unused  
Unused  
24.2.25. Register 24 (18h)  
This register changes the characteristics of the charge pump. This is a 4-bit word that will adjust the current of the charge pump. The default  
current is 0.94mA. Bits 4 to 7 are not used. The default value is 2 = 02h = 0000_0010b.  
Table 54. Register 24: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
0
1
2
3
4
5
6
7
ChrgPmp[0]  
ChrgPmp[1]  
ChrgPmp[2]  
ChrgPmp[3]  
0
1
0
0
0
0
0
0
Bit 0 of 4-bit word for charge pump current (see Table 55).  
Bit 1 of 4-bit word for charge pump current (see Table 55).  
Bit 2 of 4-bit word for charge pump current (see Table 55).  
Bit 3 of 4-bit word for charge pump current (see Table 55).  
Unused.  
Unused.  
Unused.  
Unused.  
© 2020 Renesas Electronics Corporation  
59  
May 15, 2020  
 
 
F159V Datasheet  
Table 55. 4-Bit Charge Pump Current  
Decimal Bit 3 Bit 2 Bit 1 Bit 0  
Definition  
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Set current for 0.31mA  
Set current for 0.63mA  
2
Set current for 0.94mA (default)  
Set current for 1.25mA  
Set current for 1.56mA  
Set current for 1.88mA  
Set current for 2.19mA  
Set current for 2.50mA  
Set current for 2.81mA  
Set current for 3.13mA  
Set current for 3.44mA  
Set current for 3.75mA  
Set current for 4.06mA  
Set current for 4.38mA  
Set current for 4.69mA  
Set current for 5.00mA  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
24.2.26. Register 25 (19h)  
This register controls the LO power levels for the modulator and external LO port. Each power level defaults to 0dBm. If needed, the modulator  
LO power can be increased by setting a 1 bit word. Bits 5 to 7 are unused. The register default is 5 = 05h = 0000_0101b.  
Table 56. Register 25: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
0
1
2
3
LO_Out_Pwr[0]  
LO_Out_Pwr[1]  
1
0
1
0
Bit 0 of a 2-bit word to set the LO power to the modulator (see Table 57).  
Bit 1 of a 2-bit word to set the LO power to the modulator (see Table 57).  
Bit 0 of a 2-bit word to set LO power to the external port (see Table 58).  
Bit 1 of a 2-bit word to set LO power to the external port (see Table 58).  
LO_SW_Out_Pwr[0]  
LO_SW_Out_Pwr[1]  
If this bit is set for logic HIGH, then the LO predriver increases the output power to the  
modulator. The addition power is different for each of the LO_Out_Pwr settings.  
If this bit is set for logic LOW (default), then the LO predriver will not increase the output power.  
4
LO_Out_Pwr_extra  
0
5
6
7
0
0
0
Unused.  
Unused.  
Unused.  
© 2020 Renesas Electronics Corporation  
60  
May 15, 2020  
 
 
F159V Datasheet  
Table 57. 2-Bit Power Setting for the Modulator Signal  
Decimal Bit 1 Bit 0  
Definition  
0
1
2
3
0
0
1
1
0
1
0
1
Set for -2dBm  
Set for 0dBm (default)  
Set for +2dBm  
Set for +4dBm  
Table 58. 2-Bit LO Power for the External LO Port (LO_OUT)  
Decimal Bit 1 Bit 0 Definition  
0
1
2
3
0
0
1
1
0
1
0
1
Set for -2dBm  
Set for 0dBm (default)  
Set for +2dBm  
Set for +4dBm  
24.2.27. Register 26 (1Ah)  
This register controls the LO Switch matrix. There are five single-bit words for various configurations. Bits 6 and 7 are unused. The default value  
is 28 = 1Ch = 0001_1100b.  
Table 59. Register 26: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
This bit turns on the signal buffer that allows an external LO signal to be used as the signal for  
the modulator. If this bit is set for logic LOW (default), then the buffer is turned off. If this bit is set  
for logic HIGH, then the buffer is turned on. This bit works with bit LO_SW_Out_Select to use an  
external signal for the LO.  
0
LO_IN_Enable  
0
This bit turns on the signal buffer that allows the LO signal to be sent to other devices. If this bit  
is set for logic LOW (default), then the buffer is turned off. If this bit is set for logic HIGH, then the  
buffer is turned on.  
1
LO_Out_Enable  
0
This bit turns on the switch buffer that controls which signal to use for modulator. If this bit is set  
for logic LOW then the buffer is turned off. If this bit is set for logic HIGH (default), then the buffer  
is turned on.  
2
3
4
LO_SW_Out_Enable  
DAC_Enable  
1
1
1
This bit allows the DAC to control the VVAs. If this bit is set for logic LOW, then the DAC is  
disabled. If this bit is set for logic HIGH (default), then the DAC is enabled.  
This bit controls power to the PLL. If this bit is set for logic LOW, then the power to the PLL is  
disabled for minimum current. If this bit is set for logic HIGH (default), then the power to the PLL  
is enabled.  
PLL_Enable  
This bit selects which signal is used for the modulator. If this bit is set for logic LOW (default),  
then the internal signal from the PLL is used. If this bit is set for logic HIGH, then the external  
signal from LO_IN is used.  
5
LO_SW_Out_Select  
0
6
7
0
0
Unused.  
Unused.  
© 2020 Renesas Electronics Corporation  
61  
May 15, 2020  
 
 
 
F159V Datasheet  
24.2.28. Register 27 (1Bh)  
This register controls the Digital Step Attenuator in Channel 0. This is a 5-bit word. Bits 5 to 7 are unused. The default is 0dB, 0 = 00h =  
0000_0000b.  
Table 60. Register 27: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
0
1
2
3
4
5
6
7
DSA0[0]  
DSA0[1]  
DSA0[2]  
DSA0[3]  
DSA0[4]  
0
0
0
0
0
0
0
0
Bit 0 of a 5-bit word to set the DSA for Channel 0 (see Table 61).  
Bit 1 of a 5-bit word to set the DSA for Channel 0 (see Table 61).  
Bit 2 of a 5-bit word to set the DSA for Channel 0 (see Table 61).  
Bit 3 of a 5-bit word to set the DSA for Channel 0 (see Table 61).  
Bit 4 of a 5-bit word to set the DSA for Channel 0 (see Table 61).  
Unused.  
Unused.  
Unused.  
Table 61. 5-Bit Digital Attenuator Setting used for both DSA0 and DSA1  
Definition  
Decimal Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
0
1
0
0
0
0
0
1
1
0
0
0
0
1
0
1
0
0
0
1
0
0
1
0
0
1
0
0
0
1
0
1
0
0
0
0
1
0dB (default)  
1dB  
2
2dB  
4
4dB  
8
8dB  
16  
31  
16dB  
31dB  
© 2020 Renesas Electronics Corporation  
62  
May 15, 2020  
 
 
F159V Datasheet  
24.2.29. Register 28 (1Ch)  
This register controls the Digital Step Attenuator in Channel 1. This is a 5-bit word. Bits 5 to 7 are unused. The default is 0dB, 0 = 0h =  
0000_0000b.  
Table 62. Register 28: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
0
1
2
3
4
5
6
7
DSA1[0]  
DSA1[1]  
DSA1[2]  
DSA1[3]  
DSA1[4]  
0
0
0
0
0
0
0
0
Bit 0 of a 5-bit word to set the DSA for Channel 1 (see Table 61).  
Bit 1 of a 5-bit word to set the DSA for Channel 1 (see Table 61).  
Bit 2 of a 5-bit word to set the DSA for Channel 1 (see Table 61).  
Bit 3 of a 5-bit word to set the DSA for Channel 1 (see Table 61).  
Bit 4 of a 5-bit word to set the DSA for Channel 1 (see Table 61).  
Unused.  
Unused.  
Unused.  
24.2.30. Register 29 (1Dh)  
Registers 30 and 29 control the Voltage Variable Attenuator in Channel 0, and is an 11-bit word. The minimum attenuation (0dB) is at the  
maximum DAC setting (2047). The default is 2047 = 7FFh = 111_1111_1111b. Register 29 is the lower 8 bits of the word and the default is 255  
= FFh = 1111_1111b.  
Table 63. Register 29: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
0
1
2
3
4
5
6
7
DAC0[0]  
DAC0[1]  
DAC0[2]  
DAC0[3]  
DAC0[4]  
DAC0[5]  
DAC0[6]  
DAC0[7]  
1
1
1
1
1
1
1
1
Bit 0 of an 11-bit word to set the VVA for Channel 0.  
Bit 1 of an 11-bit word to set the VVA for Channel 0.  
Bit 2 of an 11-bit word to set the VVA for Channel 0.  
Bit 3 of an 11-bit word to set the VVA for Channel 0.  
Bit 4 of an 11-bit word to set the VVA for Channel 0.  
Bit 5 of an 11-bit word to set the VVA for Channel 0.  
Bit 6 of an 11-bit word to set the VVA for Channel 0.  
Bit 7 of an 11-bit word to set the VVA for Channel 0.  
© 2020 Renesas Electronics Corporation  
63  
May 15, 2020  
 
 
F159V Datasheet  
24.2.31. Register 30 (1Eh)  
Registers 30 and 29 control the Voltage Variable Attenuator in Channel 0, and is an 11-bit word. The minimum attenuation (0dB) is at the  
maximum DAC setting (2047). The default is 2047 = 7FFh = 111_1111_1111b. Bits 3 to 7 of this register are unused. Register 30 is the higher  
3 bits of the word and the default is 7 = 7h = 0000_0111b.  
Table 64. Register 30: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
0
1
2
3
4
5
6
7
DAC0[8]  
DAC0[9]  
DAC0[10]  
Unused  
Unused  
Unused  
Unused  
Unused  
1
1
1
0
0
0
0
0
Bit 8 of an 11-bit word to set the VVA for Channel 0.  
Bit 9 of an 11-bit word to set the VVA for Channel 0.  
Bit 10 of an 11-bit word to set the VVA for Channel 0.  
Unused.  
Unused.  
Unused.  
Unused.  
Unused.  
24.2.32. Register 31 (1Fh)  
Registers 32 and 31 control the Voltage Variable Attenuator in Channel 1, and is an 11-bit word. The minimum attenuation (0dB) is at the  
maximum DAC setting (2047). The default is 2047 = 7FFh = 111_1111_1111b. . Register 31 is the lower 8 bits of the word and the default is  
255 = FFh = 1111_1111b.  
Table 65. Register 31: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
0
1
2
3
4
5
6
7
DAC1[0]  
DAC1[1]  
DAC1[2]  
DAC1[3]  
DAC1[4]  
DAC1[5]  
DAC1[6]  
DAC1[7]  
1
1
1
1
1
1
1
1
Bit 0 of an 11-bit word to set the VVA for Channel 1.  
Bit 1 of an 11-bit word to set the VVA for Channel 1.  
Bit 2 of an 11-bit word to set the VVA for Channel 1.  
Bit 3 of an 11-bit word to set the VVA for Channel 1.  
Bit 4 of an 11-bit word to set the VVA for Channel 1.  
Bit 5 of an 11-bit word to set the VVA for Channel 1.  
Bit 6 of an 11-bit word to set the VVA for Channel 1.  
Bit 7 of an 11-bit word to set the VVA for Channel 1.  
© 2020 Renesas Electronics Corporation  
64  
May 15, 2020  
 
 
F159V Datasheet  
24.2.33. Register 32 (20h)  
Registers 32 and 31 control the Voltage Variable Attenuator in Channel 1, and is an 11-bit word. The minimum attenuation (0dB) is at the  
maximum DAC setting (2047). The default is 2047 = 7FFh = 111_1111_1111b. Bits 3 to 7 of this register are unused. Register 30 is the higher  
3 bits of the word and the default is 7 = 7h = 0000_0111b.  
Table 66. Register 32: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
0
1
2
3
4
5
6
7
DAC1[8]  
DAC1[9]  
DAC1[10]  
Unused  
Unused  
Unused  
Unused  
Unused  
1
1
1
0
0
0
0
0
Bit 8 of an 11-bit word to set the VVA for Channel 1.  
Bit 9 of an 11-bit word to set the VVA for Channel 1.  
Bit 10 of an 11-bit word to set the VVA for Channel 1.  
Unused.  
Unused.  
Unused.  
Unused.  
Unused.  
24.2.34. Register 33 (21h)  
This register selects the RF and LO bands used for the device. Bits 2 to 7 are unused. The default is 0 = 0h = 0000_0000b.  
Table 67. Register 33: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
Set the LO band of operation.  
Set to logic LOW to select the 1.50GHz to 2.00GHz range for the LO band. This is the default.  
Set to logic HIGH to select the either the 0.45GHz to 1.50GHz range or the 2.00GHz to 2.80GHz  
range for the LO band.  
0
LO_BAND  
0
Set the RF band of operation.  
Set to logic LOW to select the 0.55GHz to 2.80GHz range for the RF band. This is the default.  
Set to logic HIGH to select the 0.45GHz to 0.55GHz range for the RF band.  
1
RF_BAND  
0
2
3
4
5
6
7
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
0
0
0
0
0
0
Unused.  
Unused.  
Unused.  
Unused.  
Unused.  
Unused.  
© 2020 Renesas Electronics Corporation  
65  
May 15, 2020  
 
 
F159V Datasheet  
24.2.35. Register 34 (22h)  
This register selects the logic levels used for the digital output. Default is JEDEC 1.8 V logic and the default value is 0 = 00h = 0000_0000b.  
Bits 1 to 7 are unused.  
Table 68. Register 34: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
Set for logic LOW for JEDEC 1.8 Volt logic (default).  
Set for logic HIGH for JEDEC 3.3 V logic.  
0
Dig_Out_Level  
0
1
2
3
4
5
6
7
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
0
0
0
0
0
0
0
Unused.  
Unused.  
Unused.  
Unused.  
Unused.  
Unused.  
Unused.  
24.2.36. Register 35 (23h)  
This register selects the precision of the Lock Detection and how the LO Lock Detection pin (56) is used. Bit 3, 6, and 7 are unused. The default  
is 0 = 0h = 0000_0000b.  
Table 69. Register 35: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
0
1
2
3
4
5
6
7
LDP[0]  
LDP[1]  
0
0
0
0
0
0
0
0
Bit 0 of a 3-bit word to set when the VCO precision lock detection is set (see Table 70).  
Bit 1 of a 3-bit word to set when the VCO precision lock detection is set (see Table 70).  
LDP[2]  
Bit 2 of a 3-bit word to set when the VCO precision lock detection is set (see Table 70).  
Unused  
Unused.  
LDPinMode[0]  
LDPinMode[1]  
Unused  
Bit 0 of a 2-bit word to set the LD pin operation (see Table 71).  
Bit 1 of a 2-bit word to set the LD pin operation (see Table 71).  
Unused.  
Unused.  
Unused  
Table 70. 3-bit VCO Lock Precision Detection Description  
Decimal Bit 2 Bit 1 Bit 0  
Definition  
0
1
2
3
4
5
6
7
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Set for lock detection to within 11.5ns (default).  
Set for lock detection to within 6.5ns.  
Set for lock detection to within 6.5ns.  
Set for lock detection to within 3.0ns.  
Set for lock detection to within 5.0ns.  
Set for lock detection to within 5.0ns.  
Set for lock detection to within 1.5ns.  
Set for lock detection to within 1.5ns.  
© 2020 Renesas Electronics Corporation  
66  
May 15, 2020  
 
 
 
F159V Datasheet  
Table 71. 2-bit Lock Detection Pin Description  
Decimal Bit 1 Bit 0  
Definition  
0
1
2
3
0
0
1
1
0
1
0
1
Digital Lock (normal operation) (default).  
VCO calibration is done.  
Set for logic LOW.  
Set for logic HIGH.  
24.2.37. Register 36 (24h)  
This register controls how the PLL locks the VCO frequency. The default value is 0 = 00h = 0000_0000b. Bits 3 to 7 are unused.  
Table 72. Register 36: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
0 = No VCO relocking (default).  
1 = Force the VCO to recalibrate. This-bit is self-clearing.  
0
Force_Relock  
0
0 = If registers16-22 are written, then the VCO will recalibrate (default).  
1 = No VCO recalibration is done.  
1
2
Band_Sel_Disable  
Auto_Recal_Enable  
0
0
0 = Disable Auto Recalibration (default).  
1 = Enable Auto Recalibration.  
3
4
5
6
7
Unused  
Unused  
Unused  
Unused  
Unused  
0
0
0
0
0
Unused.  
Unused.  
Unused.  
Unused.  
Unused.  
24.2.38. Register 37 (25h)  
This register controls the lock detection of the PLL. The default value is 1 = 01h = 0000_0001b.  
Note: LD Mode must be programmed to be logic HIGH for proper operation of the lock detection circuit. IDT requires the following  
digital word to be used 129 = 81h = 1000_0001b.  
Table 73. Register 37: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
0
1
2
3
4
5
6
Vendor Supplied  
Vendor Supplied  
Vendor Supplied  
Vendor Supplied  
Vendor Supplied  
Vendor Supplied  
Vendor Supplied  
1
0
0
0
0
0
0
Reserved for vendor use. Use only the default value.  
Reserved for vendor use. Use only the default value.  
Reserved for vendor use. Use only the default value.  
Reserved for vendor use. Use only the default value.  
Reserved for vendor use. Use only the default value.  
Reserved for vendor use. Use only the default value.  
Reserved for vendor use. Use only the default value.  
Changes the lock timing loop. The default is logic LOW. This pin is required to be  
programmed to logic HIGH.  
7
LD Mode  
0
© 2020 Renesas Electronics Corporation  
67  
May 15, 2020  
 
 
 
F159V Datasheet  
24.2.39. Register 38 (26h)  
Register 39 and 38 select the VCO Band within the PLL. This is a 12-bit word that can vary from 1 to 4095. The default value is 256 = 100h =  
0001_0000_0000b. Register 38 is the lower 8 bits of the word and the default value is 0 = 00h = 0000_0000b.  
Table 74. Register 38: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
Bit 0 of a 12-bit word to select the VCO Band.  
0
1
2
3
4
5
6
7
BndSelDiv[0]  
BndSelDiv[1]  
BndSelDiv[2]  
BndSelDiv[3]  
BndSelDiv[4]  
BndSelDiv[5]  
BndSelDiv[6]  
BndSelDiv[7]  
0
0
0
0
0
0
0
0
Bit 1 of a 12-bit word to select the VCO Band.  
Bit 2 of a 12-bit word to select the VCO Band.  
Bit 3 of a 12-bit word to select the VCO Band.  
Bit 4 of a 12-bit word to select the VCO Band.  
Bit 5 of a 12-bit word to select the VCO Band.  
Bit 6 of a 12-bit word to select the VCO Band.  
Bit 7 of a 12-bit word to select the VCO Band.  
24.2.40. Register 39 (27h)  
Register 39 and 38 select the VCO Band within the PLL. This is a 12-bit word that can vary from 1 to 4095. The default value is 256 = 100h =  
0001_0000_0000b. Register 39 is the higher 4 bits of the word and the default value is 1 = 01h = 0000_0001b.  
Table 75. Register 39: Bit Definition  
Bit  
Bit Field Name  
Default  
Definition  
Bit 8 of a 12-bit word to select the VCO Band.  
0
1
2
3
4
5
6
7
BndSelDiv[8]  
BndSelDiv[9]  
BndSelDiv[10]  
BndSelDiv[11]  
Unused  
1
0
0
0
0
0
0
0
Bit 9 of a 12-bit word to select the VCO Band.  
Bit 10 of a 12-bit word to select the VCO Band.  
Bit 11 of a 12-bit word to select the VCO Band.  
Unused.  
Unused.  
Unused.  
Unused.  
Unused  
Unused  
Unused  
24.2.41. Register 40 (28h)  
This register is reserved for internal use. The default value is 0 = 00h = 0000_0000b.  
24.2.42. Register 41 (29h)  
This register is reserved for internal use. The default value is 0 = 00h = 0000_0000b.  
24.2.43. Register 42 (2Ah)  
This register is reserved for internal use. The default value is 2 = 02h = 0000_0010b.  
24.2.44. Register 43 (2Bh)  
This register is reserved for internal use. The default value is 203 = CBh = 1100_1011b.  
24.2.45. Register 44 (2Ch)  
This register is reserved for internal use. The default value is 0 = 00h = 0000_0000b.  
© 2020 Renesas Electronics Corporation  
68  
May 15, 2020  
 
 
 
 
 
 
 
F159V Datasheet  
24.2.46. Register 45 (2Dh)  
This register is reserved for internal use. The default value is 0 = 00h = 0000_0000b.  
24.2.47. Register 46 (2Eh)  
This register is reserved for internal use and is READ ONLY. The default value does not apply.  
24.2.48. Register 47 (2Fh)  
This register is reserved for internal use and is READ ONLY. The default value does not apply.  
24.2.49. Register 48 (30h)  
This register is reserved for internal use and is READ ONLY. The default value does not apply.  
24.2.50. Register 49 (31h)  
This register is reserved for internal use. The default value does not apply.  
© 2020 Renesas Electronics Corporation  
69  
May 15, 2020  
 
 
 
 
 
F159V Datasheet  
25. Evaluation Kit Picture  
Figure 97. Top View – Differential Board  
Figure 98. Bottom View – Differential Board  
© 2020 Renesas Electronics Corporation  
70  
May 15, 2020  
 
F159V Datasheet  
26. Evaluation Kit / Applications Circuit  
Figure 99. Electrical Schematic for the Differential Evaluation Board  
All differential ports have transmission lines of equal length.  
J1  
J3  
J4  
J2  
CH0_BBI-  
J5  
CH0_BBQ+  
CH0_BBQ-  
CH0_BBI+  
CH0_MOD_C  
HEADER 8X2  
J6  
C1  
C2  
C3  
C4  
CH0_MODEN  
Vdd_MODLO_CH0  
Vdd_DAC  
2
4
6
1
3
5
7
D1  
LED  
8
10  
12  
14  
16  
9
CH0_AMPEN  
CH1_AMPEN  
CH0_MODEN  
CH1_MODEN  
VDD_MODAMP_CH0  
11  
13  
15  
R28  
R29  
R31  
R35  
R25  
R23  
C11  
C12  
C14  
CH0_AMPEN  
R26  
R27  
R30  
R34  
C22 C21 C20 C19  
R33  
C13  
CH0_RDST_MOD  
C15  
C16  
C17 C18  
R32  
B1  
B
A1  
A
Vdd_SPI  
SW1  
SPST 5N PANASONIC  
Vdd_SPI  
5
C24  
R36  
R37 C23  
Vdd_VVA_CH0  
C25  
U1  
J8  
REF_IN  
R40  
C62  
CH0_RDIST_AMP CH0_RBIAS  
R39  
Vdd_REF  
C29  
C28  
R42  
R43  
R41  
CH0_RF_OUT  
TP30  
J10  
C30  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
R44  
Vdd_AMP_CH0  
R45  
CH0_Vdd_VVA  
CH0_RDIST_AMP  
CH0_RBIAS  
CH0_Vdd_AMP  
GND  
GND  
CH0_RFOUT  
GND  
GND  
GND  
CHI_RFOUT  
GND  
GND  
Vdd_SPI  
GND_SPI  
RESET  
Vdd_REF  
REF_IN  
NC  
GND_REF  
Vdd_CP  
DNC  
GND_CP  
CP_OUT  
GND_VCO  
VTUNE  
C33  
C27  
R46  
C31  
Vdd_CP  
C26  
C32  
TP6  
R48  
C35  
C36  
R50  
C38  
R49  
CH1_RF_OUT  
C39  
J11  
C40  
CH1_Vdd_AMP  
CH1_RBIAS  
CH1_RDIST_AMP  
CH1_Vdd_VVA  
VREF_VCO  
Vdd_VCO  
VCOM  
R51  
Vdd_AMP_CH1  
C41  
C42  
Vdd_LO  
C43  
VREF_VCO  
R52  
R54  
C47  
C46  
C44  
J12  
HEADER  
Vdd_VCO  
1
R53  
4
C48  
2
3
4
DATA  
CLK  
CSB  
These pins are only  
used by IDT.  
CH1_RDIST_AMP CH1_RBIAS  
VCOM  
Vdd_VVA_CH1  
Vdd_LO  
C50  
C49  
J17  
J14  
J16  
J13  
C58  
C57  
C55  
C51  
LO_OUT-  
LO_OUT+  
LO_IN-  
C56  
CH1_RDIST_MOD  
R55  
C53  
CH1_AMPEN  
Vdd_MODAMP_CH1  
C52  
CH1_MODEN  
Vdd_MODLO_CH1  
J15  
CH1_MOD_C  
LO_IN+  
C67  
J19  
C69  
J21  
C66  
C68  
J18  
J20  
CH1_BBQ+  
CH1_BBQ-  
CH1_BBI+  
CH1_BBI-  
© 2020 Renesas Electronics Corporation  
71  
May 15, 2020  
 
F159V Datasheet  
Figure 100. DC Electrical Schematic for the Differential Evaluation Board  
VDD_DAC  
L2  
100mA  
VDD_DAC  
C70  
C80  
C88  
C72  
C81  
C92  
C73  
C82  
C93  
J24  
BEAD FERRITE/SM  
HEADER  
3
R87  
R89  
VDD_VVA_CH0  
L4  
50mA  
C77  
VDD_CP  
L1  
VDD_VVA_CH0  
R91  
R93  
VDD_3_3V_EXT  
100mA  
VDD_CP  
VDD_LO  
VDD_SPI  
C79  
BEAD FERRITE/SM  
L6  
J26  
HEADER  
VDD_MODLO_CH0  
3
BEAD FERRITE/SM  
C71  
C74  
C75  
VREG_5V  
U2  
50mA  
VDD_MODLO_CH0  
J28  
VDD_LO  
L3  
VDD_3_3V_EXT  
J30  
1
1
2
3
4
12  
BEAD FERRITE/SM  
L8  
50mA  
VDD  
GND  
EN  
VR1  
2
3
4
5
11  
10  
9
VDD_AMP_CH0  
VR2  
VR3  
VR4  
C83  
C84  
C85  
HEADER  
3
BEAD FERRITE/SM  
300mA  
VDD_AMP_CH0  
REF  
C100  
C101  
C102  
C87  
VDD_SPI  
BEAD FERRITE/SM  
L11  
L5  
VDD_3_3V_EXT  
50mA  
VDD_MODAMP_CH0  
VDD_MODAMP_CH0  
R99  
C95  
J32  
HEADER  
C89  
C90  
C91  
300mA  
3
R101  
C97  
BEAD FERRITE/SM  
C114  
C145  
C109  
C118  
C123  
C104  
C115  
C146  
C110  
C119  
C124  
C105  
C116  
R103  
R106  
BEAD FERRITE/SM  
L17  
VDD_VCO  
L7  
VDD_3_3V_EXT  
VDD_3_3V_EXT  
VDD_AMP_CH1  
300mA  
VDD_VCO  
300mA  
C98  
C99  
C103  
VDD_AMP_CH1  
BEAD FERRITE/SM  
J49  
C147  
C111  
C120  
C125  
C106  
BEAD FERRITE/SM  
L10  
2
1
VREF_VCO  
VDD_VVA_CH1  
GND1  
GND4  
HEADER 1x2  
50mA  
GND  
GND  
GND  
VDD_VVA_CH1  
VDD_3_3V  
GND2  
GND3  
J45  
GND5  
BEAD FERRITE/SM  
L12  
R136  
VDD_3_3V_EXT  
VDD_MODLO_CH1  
VDD_3_3V_EXT  
GND  
GND  
C139  
C140  
C141  
50mA  
VDD_MODLO_CH1  
BEAD FERRITE/SM  
L13  
VCC_5V  
J47  
R137  
VDD_MODAMP_CH1  
VREG_5V  
VREG_5V  
300mA  
C142  
C143  
C144  
VDD_MODAMP_CH1  
BEAD FERRITE/SM  
L9  
VDD_REF  
100mA  
VDD_REF  
BEAD FERRITE/SM  
© 2020 Renesas Electronics Corporation  
72  
May 15, 2020  
F159V Datasheet  
Table 76. Bill of Material (BOM)  
Part Reference  
QTY  
Description  
Manufacturer Part #  
Manufacturer  
C14, C30, C40, C51,  
C55, C56, C57, C58  
8
100pF ±5%, 50V, C0G Ceramic Capacitor (0402)  
GRM1555C1H101J  
Murata  
C11, C13, C25, C27,  
C43, C49, C52, C53  
8
1000pF ±5%, 50V, C0G Ceramic Capacitor (0402)  
GRM1555C1H102J  
Murata  
C72, C74, C81, C84,  
C90, C92, C99, C101,  
C105, C110, C115,  
C119, C124, C140,  
C146  
15  
10nF ±5%, 50V, X7R Ceramic Capacitor (0402)  
GRM155R71H103J  
Murata  
C12, C24, C28, C29,  
C32, C48, C50  
7
100nF ±10%, 16V, X7R Ceramic Capacitor (0402)  
10µF ±20%, 16V, X6S Ceramic Capacitor (0603)  
GRM155R71C104K  
GRM188C81C106M  
Murata  
Murata  
C70, C71, C80, C83,  
C88, C89, C100,  
C104, C109, C114,  
C118, C123, C145  
13  
C139  
1
1
1
1
1
1
1
10µF ±10%, 16V, X6S Ceramic Capacitor (0805)  
2700pF ±10%, 50V, X7R Ceramic Capacitor (0402)  
47nF ±10%, 50V, X7R Ceramic Capacitor (0402)  
680pF ±5%, 50V, C0G Ceramic Capacitor (0402)  
2.2µF ±10%, 10V, X5R Ceramic Capacitor (0402)  
33nF ±10%, 50V, X7R Ceramic Capacitor (0402)  
150µF ±20%, 6.3V, X5R Ceramic Capacitor (1210)  
GRM21BC81C106K  
GRM155R71H272K  
GRM155R71H473K  
GRM1555C1H681  
GRM155R61A225K  
GRM155R71H333K  
JMK325ABJ157M  
Murata  
Murata  
C35  
C38  
Murata  
C36  
Murata  
C44  
Murata  
C46  
C98  
Murata  
Taiyo Yuden  
R25, R36, R40, R45,  
C1, C2, C3, C4, C62, 13  
C66, C67, C68, C69  
0Ω Resistor (0402)  
ERJ-2GE0R00X  
Panasonic  
R136  
R23  
1
1
0Ω Resistor (0805)  
ERJ-6GEY0R00  
ERJ-2RKF33R0X  
Panasonic  
Panasonic  
33Ω ±1%, 1/10W, Resistor (0402)  
R28, R29, R31, R32,  
R35  
5
Panasonic  
100Ω ±1%, 1/10W, Resistor (0402)  
360Ω ±1%, 1/10W, Resistor (0402)  
1kΩ ±1%, 1/10W, Resistor (0402)  
ERJ-2RKF1000X  
ERJ-2RKF3600X  
ERJ-2RKF1001X  
R50  
1
3
Panasonic  
Panasonic  
R39, R46, R54  
R26, R27, R30, R34,  
R33, R55, C15, C16,  
C17, C18  
10  
2kΩ ±1%, 1/10W, Resistor (0402)  
ERJ-2RKF2001X  
Panasonic  
R41, R52  
R37  
2
1
3.9kΩ ±1%, 1/10W, Resistor (0402)  
ERJ-2RKF3901X  
ERJ-2RKF5111X  
Panasonic  
Panasonic  
5.11kΩ ±1%, 1/10W, Resistor (0402)  
© 2020 Renesas Electronics Corporation  
73  
May 15, 2020  
F159V Datasheet  
Table 77. Bill of Material (BOM) (Cont.)  
Part Reference  
QTY  
Description  
Manufacturer Part #  
Manufacturer  
L1- L13, L17  
14  
1
EMI Filter Beads Chips 220 Ohm 450mA (0603)  
LED GREEN CLEAR SMD (0603)  
BLM18BB221SN1D  
LTST-C191KGKT  
EVQ-PBG05R  
Murata  
LITE-ON  
Panasonic  
3M  
D1  
SW1  
1
SWITCH TACTILE SPST-NO 0.02A 15V  
CONN HEADER VERT SGL 3 X 1 POS GOLD  
CONN HEADER VERT SGL 4 X 1 POS GOLD  
CONN HEADER VERT SGL 5 X 1 POS GOLD  
CONN HEADER VERT DBL 8 X 2 POS GOLD  
J24, J26, J30, J32  
4
961103-6404-AR  
961104-6404-AR  
961105-6404-AR  
67997-116HLF  
J12  
J28  
J6  
1
3M  
1
3M  
1
FCI  
J1, J2, J3, J4, J5, J8,  
J10, J11, J13, J14,  
J15, J16, J17,J18,  
J19, J20, J21  
17  
Edge Launch SMA (0.375 inch pitch ground, tab)  
142-0701-851  
Emerson Johnson  
J45  
U1  
1
1
1
Edge Launch SMA (0.250 inch pitch ground, round)  
RF Transmitter 2 Channels  
142-0711-821  
F159VNLGN  
Emerson Johnson  
IDT  
IDT  
Printed Circuit Board  
F159V EVKIT REV 02  
Note: All other parts noted in the schematic that are not contained in this Bill of Material are not installed.  
© 2020 Renesas Electronics Corporation  
74  
May 15, 2020  
F159V Datasheet  
27. Application Information  
The F159V is optimized for use in high-performance RF applications from 450MHz to 2800MHz.  
27.1. Power Supplies  
A common VDD power supply should be used for all pins requiring DC power. All supply pins should be bypassed with external capacitors to  
minimize noise and fast transients. Supply noise can degrade noise figure and fast transients can trigger ESD clamps and cause them to fail.  
Supply voltage change or transients should have a slew rate smaller than 1V/20µS. In addition, all control pins should remain at 0V (+/-0.3V)  
while the supply voltage ramps or while it returns to zero. For multiple devices driven by a single control line, values will need to be adjusted so  
as to not load the control line.  
27.2. Power Supply Sequencing  
All power supply pins must be turned on simultaneously.  
27.3. Digital Pin Voltage and Resistance Values  
The following table provides open-circuit DC voltage referenced to ground and resistance values for each of the control pins listed.  
Table 78. Digital Pin Voltages and Resistance  
Pull-up or Pull-down  
Resistance Value (kΩ)  
Pin  
Name  
DC Voltage (volts)  
18  
27  
49  
52  
53  
54  
59  
68  
CH1_AMPEN  
CH1_MODEN  
RESET  
3.3  
3.3  
0
50  
50  
51  
51  
51  
51  
50  
50  
SPI_CSN  
0
SPI_CLK  
0
SPI_DIO  
1.8  
3.3  
3.3  
CH0_MODEN  
CH0_AMPEN  
27.4. Phase Relation between the Quadrature Input Signals: I and Q  
When BBI leads BBQ by 90 degrees, HS LO injection is used. When BBQ leads BBI by 90 degrees, LS LO injection is used.  
27.5. Signal Integrity  
If control signal integrity is a concern and clean signals cannot be guaranteed due to overshoot, undershoot, ringing, etc., the following circuit  
at the input of each control pin is recommended. This applies to all SPI and control pins as shown below. Note that the recommended resistor  
and capacitor values do not necessarily match the EVKit BOM for the case of poor control signal integrity.  
© 2020 Renesas Electronics Corporation  
75  
May 15, 2020  
 
 
 
 
 
 
F159V Datasheet  
Figure 101. Control Pin Interface  
5 kΩ  
5 kΩ  
SPI_DIO  
SPI_DO  
SPI_CLK  
SPI_CSN  
2 pF  
2 pF  
5 kΩ  
5 kΩ  
5 kΩ  
CH0_AMPEN  
5 kΩ  
CH0_MODEN  
2 pF  
2 pF  
2 pF  
2 pF  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
1
2
5 kΩ  
RESET  
3
2 pF  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
5 kΩ  
5 kΩ  
CH1_AMPEN  
CH1_MODEN  
2 pF  
2 pF  
© 2020 Renesas Electronics Corporation  
76  
May 15, 2020  
F159V Datasheet  
28. Package Outline Drawings  
The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is  
the most current data available.  
www.idt.com/us/en/document/psc/nlnlg68-package-outline-100-x-100-mm-epad-770-mm-sq-vfqfp-n  
29. Ordering Information  
Orderable Part Number  
Package  
MSL Rating  
Shipping Packaging  
Temperature  
F159VNLGN  
F159VNLGN8  
F159VEVBN  
10 x 10 x 0.9 mm 68-VFQFPN  
10 x 10 x 0.9 mm 68-VFQFPN  
3
Tray  
Reel  
-20° to +115°C  
-20° to +115°C  
3
Evaluation Board  
30. Marking Diagram  
.
.
.
.
.
Line 1 and 2 are the part number.  
Line 3 “ZK” is for die version.  
IDT  
F159VNLGN  
ZK1729L  
Line 3 “yyww” = 1729 has two digits for the year and week that the part was assembled.  
Line 3 “L” denotes assembly site.  
Line 4 “Q57BO12PY THA” is the assembly lot number.  
Q57BO12PY THA  
Revision History  
Revision Date  
Description of Change  
May 15, 2020  
Rebranded/reformatted document.  
Updated for format, theory of operation, and register definition.  
Initial release.  
November 10, 2017  
December 23, 2016  
© 2020 Renesas Electronics Corporation  
77  
May 15, 2020  
 
 
 
IMPORTANT NOTICE AND DISCLAIMER  
RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL  
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING  
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND  
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,  
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A  
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible  
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)  
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These  
resources are subject to change without notice. Renesas grants you permission to use these resources only for  
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly  
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.  
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,  
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject  
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources  
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.  
(Rev.1.0 Mar 2020)  
Corporate Headquarters  
Contact Information  
TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com  
For further information on a product, technology, the most  
up-to-date version of a document, or your nearest sales  
office, please visit:  
www.renesas.com/contact/  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas  
Electronics Corporation. All trademarks and registered  
trademarks are the property of their respective owners.  
© 2020 Renesas Electronics Corporation. All rights reserved.  

相关型号:

F159VEVBN

Dual-Path RF Transmitter IC 450MHz to 2800MHz
RENESAS

F159VNLGN

Dual-Path RF Transmitter IC 450MHz to 2800MHz
RENESAS

F159VNLGN8

Dual-Path RF Transmitter IC 450MHz to 2800MHz
RENESAS

F15A05K

TRANSISTOR | IGBT | N-CHAN | 500V V(BR)CES | 15A I(C) | MODULE-Q
ETC

F15A06GF

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 15A I(C) | TO-247
ETC

F15A10G

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 15A I(C) | TO-247
ETC

F15A10K

TRANSISTOR | IGBT | N-CHAN | 1KV V(BR)CES | 15A I(C) | MODULE-Q
ETC

F15A12GF

TRANSISTOR | IGBT | N-CHAN | 1.2KV V(BR)CES | 15A I(C) | TO-247
ETC

F15A250V10A

Military Qualified Product Listing MIL-F-15160 Fuses - Instruments, Power and Telephone
COOPER

F15A250V10A

MIL-F-15160 military qualified fuses instruments, power and telephone
EATON

F15A250V15A

Military Qualified Product Listing MIL-F-15160 Fuses - Instruments, Power and Telephone
COOPER

F15A250V15A

MIL-F-15160 military qualified fuses instruments, power and telephone
EATON