F1975 [RENESAS]

6-Bit, 75Ω Digital Step Attenuator 5MHz to 3GHz;
F1975
型号: F1975
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

6-Bit, 75Ω Digital Step Attenuator 5MHz to 3GHz

文件: 总27页 (文件大小:3963K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
6-Bit, 75Ω Digital Step Attenuator  
5MHz to 3GHz  
F1975  
Datasheet  
Description  
Features  
The F1975 Digital Step Attenuator (DSA) is a product in IDT’s  
Glitch-FreeTM DSA Family, which is optimized for the demanding  
requirements of CATV and satellite systems. It operates in the  
frequency range of 5MHz to 3000MHz. This device is offered in a  
compact 4mm 4mm, 20-pin Thin QFN package with a 75Ω  
impedance for ease of integration.  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Frequency: 5MHz to 3000MHz  
Serial and 6-bit parallel interface  
31.5dB control range  
0.5dB step  
Glitch-FreeTM technology, low transient overshoot  
3.0V to 5.25V supply  
1.8V or 3.3V control logic  
Attenuator step error: 0.1dB at 1GHz  
Low insertion loss: 1.2dB at 1GHz  
Ultra-linear IIP3: +64dBm  
Advantages  
Digital step attenuators are used in receivers and transmitters to  
provide gain control. The F1975 is a 6-bit step attenuator optimized  
for these demanding applications. The silicon design has very low  
insertion loss and low distortion (+64dBm IIP3). The device has  
pinpoint attenuation accuracy. Most importantly, the F1975  
includes IDT’s Glitch-FreeTM technology, which results in low over-  
shoot and ringing during most significant bit (MSB) transitions.  
IIP2: +125dBm typical  
Stable integral non-linearity over temperature  
Low current consumption: 550µA typical  
Bi-directional  
Operating temperature: -40°C to +105°C  
4mm 4mm, 20-pin QFN package  
.
Glitch-FreeTM technology protects the power amplifier or  
analog-to-digital converter (ADC) from damage during  
transitions between attenuation states  
.
.
.
Extremely accurate attenuation levels  
Ultra-low distortion  
Block Diagram  
Figure 1. Block Diagram  
Low insertion loss for best signal-to-noise ratio (SNR)  
Typical Applications  
Glitch-FreeTM  
.
.
.
.
.
CATV infrastructure  
CATV set-top boxes  
CATV satellite modems  
Data network equipment  
Fiber networks  
RF2  
RF1  
SPI  
Decoder  
Bias  
1
Rev 1 September 21, 2017  
Pin Assignments  
Figure 2. Pin Assignments for 4mm 4mm 0.75mm, 20-pin QFN Package Top View (Through Package)  
20  
19  
18  
17  
16  
1
2
3
4
5
15  
14  
13  
12  
11  
D5  
RF1  
D4  
RF2  
VMODE  
NC  
DATA  
CLK  
LE  
Exposed Pad  
GND  
6
7
8
9
10  
2
Rev 1 September 21, 2017  
Pin Descriptions  
Table 1.  
Pin Descriptions  
Number  
Name  
Description  
1
2
3
4
D5  
RF1  
16dB attenuation control bit. This pin is activated by logic HIGH (see Table 11). [a]  
Device RF input or output (bi-directional).  
Serial interface data input.  
DATA  
CLK  
Serial interface clock input.  
Serial interface latch enable input. Internal pull-up (100kΩ). See Programmingsection for proper  
usage of this line.  
5
LE  
VDD  
NC  
6
Power supply pin.  
No internal connection. These pins can be left unconnected, have a voltage applied, or be connected to  
ground (recommended)  
79, 12, 18  
Internally grounded. Connect pin directly to paddle ground or as close as possible to the pin with thru  
vias.  
10, 11  
GND  
13  
14  
15  
16  
17  
19  
20  
VMODE  
RF2  
D4  
Pull this pin HIGH for Serial Control Mode. Ground this pin for Parallel Control Mode.  
Device RF input or output (bi-directional).  
8dB attenuation control bit. This pin is activated by logic HIGH (see Table 11).[a]  
4dB attenuation control bit. This pin is activated by logic HIGH (see Table 11).[a]  
2dB attenuation control bit. This pin is activated by logic HIGH (see Table 11).[a]  
1dB attenuation control bit. This pin is activated by logic HIGH (see Table 11).[a]  
0.5dB attenuation control bit. This pin is activated by logic HIGH (see Table 11).[a]  
D3  
D2  
D1  
D0  
Exposed paddle. Internally connected to ground (GND). Solder this exposed paddle to a printed circuit  
board (PCB) pad that uses multiple ground vias to provide heat transfer out of the device into the PCB  
ground planes. These multiple ground vias are also required to achieve the specified RF performance.  
EPAD  
[a] There is a 100kΩ pull-up resistor to the internally regulated 2.5V power supply.  
3
Rev 1 September 21, 2017  
 
Absolute Maximum Ratings  
The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device.  
Functional operation of the F1975 at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions could affect  
device reliability.  
Table 2.  
Absolute Maximum Ratings  
Parameter  
Symbol  
Minimum  
Maximum  
Units  
VDD to GND  
VDD  
-0.3  
+5.5  
V
Minimum  
(VDD+0.3, 3.6)  
DATA, LE, CLK, D[5:0], VMODE  
VLogic  
-0.3  
-0.3  
V
RF1, RF2  
VRF  
PRF  
+0.3  
+34  
V
Maximum Input Power Applied to RF1 or RF2 (>100MHz)  
Continuous Power Dissipation  
Junction Temperature  
dBm  
dBm  
°C  
Pdiss  
TJ  
1.75  
+140  
+150  
+260  
Storage Temperature Range  
Lead Temperature (soldering, 10s)  
TSTOR  
-65  
°C  
°C  
Electrostatic Discharge HBM  
(JEDEC/ESDA JS-001-2012)  
2000  
(Class 2)  
VESDHBM  
VESDCDM  
V
V
Electrostatic Discharge CDM  
(JEDEC 22-C101F)  
250  
(Class C1)  
4
Rev 1 September 21, 2017  
 
Recommended Operating Conditions  
Table 3.  
Recommended Operating Conditions  
Parameter  
Symbol  
VDD  
Condition  
Minimum  
Typical  
Maximum  
5.25  
Units  
V
Supply Voltage(s)  
3.00  
5
Frequency Range  
fRF  
3000  
MHz  
°C  
Operating Temperature Range  
RF CW Input Power  
RF1 Impedance  
TEP  
Exposed paddle  
RF1 or RF2  
-40  
105  
PCW  
ZRF1  
ZRF2  
See Figure 3  
dBm  
Ω
Single-ended  
Single-ended  
75  
75  
RF2 Impedance  
Ω
Figure 3. Maximum Continuous Operating RF Input Power versus Input Frequency (+25C)  
30  
28  
26  
24  
22  
20  
18  
16  
14  
+25 C - CW  
12  
10  
8
0.01  
0.1  
1
10  
100  
1000  
10000  
Frequency (MHz)  
5
Rev 1 September 21, 2017  
 
Electrical Characteristics  
The specifications in Table 4 apply at VDD = +3.3V, TEP = +25°C, fRF = 1000MHz, PIN = 0dBm, Serial Mode, ZS = ZL = 75Ω, Evaluation Board  
(EVKit) trace and connector losses are de-embedded, unless otherwise noted.  
Table 4.  
Electrical Characteristics  
Parameter  
Symbol  
Condition  
All control pins  
Minimum  
Typical  
Maximum  
Units  
Logic Input High Threshold  
VIH  
VDD > 3.6V  
1.17 [a]  
1.17  
3.6  
VDD  
0.63  
+35  
830  
900  
V
3.0V VDD 3.6V  
All control pins  
All control pins  
VDD = 3.3V  
Logic Input Low Threshold  
Logic Current  
VIL  
V
IIH, IIL  
-35  
µA  
550  
620  
18  
Supply Current [b]  
IDD  
µA  
VDD = 5.0V  
RF1 Return Loss  
RF2 Return Loss  
Attenuation Step  
S11  
S22  
dB  
dB  
dB  
18  
LSB  
Least significant bit  
0.5  
Insertion Loss  
(Minimum Attenuation)  
AMIN  
D[5:0]=[000000BIN] (IL State)  
D[5:0]=[111111BIN]=31.5dB  
1.2  
2.0  
dB  
Attenuation Range  
Step Error  
ARANGE  
DNL  
INL  
30.5  
31.1  
0.1  
31.7  
dB  
dB  
dB  
Absolute Error  
D[5:0]=[100111BIN]= 19.5dB  
-0.7  
+0.5  
fRF = 0.5GHz (AMAX to AMIN  
)
)
10  
20  
Insertion Phase Delta  
Input IP3  
ΦΔ  
deg  
fRF = 1.0GHz (AMAX to AMIN  
PIN = +10dBm/tone,  
f1 = 900MHz, f2 = 950MHz  
IIP3  
Attn = 0.0dB, RFIN = RF1  
Attn =15.5dB, RFIN = RF1  
60  
59  
64  
62  
dBm  
[a] Specifications in the minimum/maximum columns that are shown in bold italics are guaranteed by test. Specifications in these columns  
that are not shown in bold italics are guaranteed by design characterization.  
[b] Current is tested using the Serial Mode with parallel pins floating. If parallel pins are grounded, add 25µA per pin.  
6
Rev 1 September 21, 2017  
 
 
 
Electrical Characteristics (continued)  
The specifications in Table 5 apply at VDD = +3.3V, TEP = +25°C, fRF = 1000MHz, PIN = 0dBm, Serial Mode, ZS = ZL = 75Ω, Evaluation Board  
(EVKit) trace and connector losses are de-embedded, unless otherwise noted.  
Table 5.  
Electrical Characteristics  
Parameter  
Symbol  
Condition  
Minimum  
Typical  
Maximum  
Units  
PIN = +12dBm/tone  
f1= 945MHz,  
Input IP2  
IIP2  
f2 = 949MHz  
125  
dBm  
f1 + f2 = 1894MHz  
RFIN = RF1  
PIN = +15dBm  
RFIN = 945MHz  
RFOUT = 1890MHz  
RFIN = RF1  
Second Harmonic  
H2  
IP0.1  
tLSB  
108  
30.5  
500  
dBc  
dBm  
ns  
D[5:0] = [000000] = AMIN  
RFIN = RF1  
,
Input 0.1dB Compression [c]  
MSB Step Time  
Start at LE rising edge  
End ±0.10dB Pout  
settling for 15.5dB to  
16.0dB transition  
Maximum Spurious Level on any  
RF Port [d]  
SPURMAX  
SWRATE  
-130  
25  
dBm  
kHz  
Maximum Switching Rate  
Maximum to minimum  
attenuation to settle to  
within 0.5dB of final  
value  
0.9  
[e]  
DSA Settling Time  
µs  
SET  
Maximum to minimum  
attenuation to settle to  
within 0.5dB of final  
value  
1.8  
6
Control Interface  
SPIBIT  
SPICLK  
bit  
Serial Clock Speed  
25  
MHz  
[c] The input 0.1dB compression point is a linearity figure of merit. Refer to Absolute Maximum Ratingssection for the maximum RF input  
power. This specification is measured in a 50Ω system.  
[d] Spurious due to on-chip negative voltage generator. Typical generator fundamental frequency is 2.2MHz.  
[e] Speeds are measured after SPI programming is completed (data latched with LE = HIGH).  
7
Rev 1 September 21, 2017  
 
 
 
 
Thermal Characteristics  
Table 6.  
Package Thermal Characteristics  
Parameter  
Symbol  
Value  
Units  
Junction to Ambient Thermal Resistance  
θJA  
50  
°C/W  
Junction to Case Thermal Resistance  
(Case is defined as the exposed paddle)  
θJC-BOT  
3
°C/W  
Moisture Sensitivity Rating (Per J-STD-020)  
MSL 1  
Typical Operating Conditions (TOC)  
Unless otherwise noted for the TOC graphs on the following pages, the following conditions apply.  
.
.
.
.
.
.
.
.
.
VDD = +3.3V  
ZL = ZS = 75Ω single-ended  
TEP = +25°C  
fRF = 1GHz  
PIN = 0dBm for single tone measurements  
PIN = +10dBm/tone for multi-tone measurements  
Tone spacing = 50MHz  
Evaluation Board connector and board losses are de-embedded  
Measured in a 75Ω system unless otherwise specified  
8
Rev 1 September 21, 2017  
Typical Performance Characteristics  
Figure 4. Insertion Loss vs. Frequency  
Figure 5. Insertion Loss vs. Attenuation State  
0.0  
0
1 GHz, -40 C  
-40 C  
-0.5  
1 GHz, +25 C  
1 GHz, +105 C  
+25 C  
-5  
-10  
+105 C  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
-15  
-20  
-25  
-30  
-35  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
3.5  
3.5  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
Attenuation (dB)  
Frequency (GHz)  
Figure 6. RF1 Return Loss vs. Frequency  
(All States)  
Figure 7. RF1 Return Loss vs. Attenuation  
State  
0
-5  
0
0.01 GHz  
1.25 GHz  
0.50 GHz  
1.50 GHz  
0.75 GHz  
1.75 GHz  
1.00 GHz  
2.00 GHz  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
Attenuation (dB)  
Frequency (GHz)  
Figure 8. RF2 Return Loss vs. Frequency  
(All States)  
Figure 9. RF2 Return Loss vs. Attenuation  
State  
0
-5  
0
0.01 GHz  
1.25 GHz  
0.50 GHz  
1.50 GHz  
0.75 GHz  
1.75 GHz  
1.00 GHz  
2.00 GHz  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
Attenuation (dB)  
Frequency (GHz)  
9
Rev 1 September 21, 2017  
Typical Performance Characteristics  
Figure 10. Relative Insertion Phase vs.  
Frequency (All States)  
Figure 11. Relative Insertion Phase vs.  
Attenuation  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
0.01 GHz  
1.25 GHz  
0.50 GHz  
1.50 GHz  
0.75 GHz  
1.75 GHz  
1.00 GHz  
2.00 GHz  
0
0
-5  
-5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
Attenuation (dB)  
Frequency (GHz)  
Figure 12. Worst-Case Absolute Accuracy Error  
Figure 13. Accuracy Error vs. Attenuation  
0.5  
0.5  
0.01 GHz  
1.25 GHz  
0.50 GHz  
1.50 GHz  
0.75 GHz  
1.75 GHz  
1.00 GHz  
2.00 GHz  
0.0  
-0.5  
-1.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-40 C Min  
+25 C Min  
+105 C Min  
-40 C Max  
+25 C Max  
+105 C Max  
-1.5  
-2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
Attenuation (dB)  
Frequency (GHz)  
Figure 14. Worst-Case Step Accuracy  
Figure 15. Step Error vs. Attenuation  
0.3  
0.3  
0.01 GHz  
1.25 GHz  
0.50 GHz  
1.50 GHz  
0.75 GHz  
1.75 GHz  
1.00 GHz  
2.00 GHz  
-40 C Min  
+25 C Min  
+105 C Min  
-40 C Max  
+25 C Max  
+105 C Max  
0.2  
0.1  
0.2  
0.1  
0.0  
0.0  
-0.1  
-0.2  
-0.3  
-0.1  
-0.2  
-0.3  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
Attenuation (dB)  
Frequency (GHz)  
10  
Rev 1 September 21, 2017  
Typical Performance Characteristics  
Figure 16. Compression versus Input Power  
[Attenuation = 0.0dB]  
Figure 17. Input IP3 versus Attenuation Setting  
0.5  
75  
70  
65  
60  
55  
50  
45  
40  
0.005 GHz  
1.000 GHz  
0.050 GHz  
1.500 GHz  
0.100 GHz  
2.000 GHz  
0.500 GHz  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
0.035 GHz  
0.920 GHz  
0.065 GHz  
1.400 GHz  
0.130 GHz  
2.000 GHz  
0.500 GHz  
35  
30  
25  
Measured in a 50 ohm system  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
Attenuation Setting (dB)  
Input Power (dBm)  
11  
Rev 1 September 21, 2017  
Programming  
The F1975 can be programmed using either the parallel or the serial interface, which is selectable via VMODE (pin 13). Serial Mode is selected  
by floating VMODE or pulling it to a logic HIGH, and Parallel Mode is selected by setting VMODE to a logic LOW.  
For a comparison of the F1975 and F1975 products, see the Application Note AN945 Comparison of F1975 and F1975 Digital Step Attenuator  
Serial Programming Methods.  
Serial Control Mode  
The F1975 Serial Mode is selected by floating VMODE (pin 13) or pulling it to a logic HIGH. The serial interface is a 6-bit shift register and shifts  
in the most significant bit (MSB) (D5 bit) first.  
Table 7.  
6 Bit SPI DATA Word Sequence  
Bit  
D5  
D4  
D3  
D2  
D1  
D0  
Definition  
Attenuation 16dB Control Bit  
Attenuator 8dB Control Bit  
Attenuator 4dB Control Bit  
Attenuator 2dB Control Bit  
Attenuator 1dB Control Bit  
Attenuator 0.5dB Control Bit  
Table 8.  
Truth Table for Serial Control Word Bits  
D5  
(MSB)  
D0  
(LSB)  
D4  
D3  
D2  
D1  
Attenuation (dB)  
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
1
0
0
0
0
1
0
0
1
0
0
0
1
0
0
0
1
0
0
1
0
0
0
0
1
0
1
0
0
0
0
0
1
0
0.5  
1
2
4
8
16  
31.5  
12  
Rev 1 September 21, 2017  
 
Serial Mode Programming  
In the Serial Mode, the F1975 is programmed via the serial port on the rising edge of the Latch Enable (LE) signal. It is required that LE be kept  
at logic LOW until all data bits are clocked into the shift register. The F1975 will change its attenuation state after the data word is latched into  
the active register as illustrated in Figure 18. After the data word in the shift register has been latched into the active register, the LE signal must  
be dropped LOW. This allows shifting new data into the shift register without uploading it to the active register until the next time LE goes HIGH.  
The timing specification intervals are shown in blue font in Figure 18.  
Figure 18. Serial Register Timing Diagram  
Note: If the Serial Register programming method is used, the attenuator will change to the new attenuation state only after the data word is  
latched into the active register, a single programming event.  
Table 9.  
Serial Mode Timing Table  
Interval Symbol  
tmc  
tds  
Description  
Min Spec  
Max Spec  
Units  
ns  
Parallel Mode to Serial Mode setup time: from the rising edge of VMODE  
to the rising edge of CLK for the D5 bit  
100  
10  
Clock HIGH pulse width  
ns  
LE setup time: from the rising edge of the CLK pulse for D0 to LE rising  
edge minus half the clock period  
tcls  
10  
ns  
LE hold time: from the falling edge of the LE pulse to the rising edge of  
CLK  
tclh  
tlew  
tdcs  
tdht  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
LE pulse width  
Data setup time: from the starting edge of the data bit to the rising edge  
of CLK  
Data hold time: from rising edge of CLK to falling edge of the data bit  
13  
Rev 1 September 21, 2017  
 
Serial Mode Default Startup Condition  
When the device is first powered up, it will default to the maximum attenuation of 31.5dB independent of the parallel pin [D5:D0] conditions.  
Table 10. Default Control Word for the Serial Mode  
D5 (MSB)  
D4  
D3  
D2  
D1  
D0 (LSB) Attenuation (dB)  
31.5  
1
1
1
1
1
1
Parallel Control Mode  
For the F1975, the user has the option of programming in one of two parallel modes: Direct Parallel Mode or Latched Parallel Mode.  
Direct Parallel Mode  
Direct Parallel Mode is selected when VMODE (pin 13) is set to a logic LOW and LE (pin 5) is set to a logic HIGH. In this mode, the device will  
immediately react to any voltage changes in the parallel control pins (1, 15, 16, 17, 19, and 20). Use direct parallel mode for the fastest settling  
time.  
Direct Parallel Default Startup Condition  
In the Direct Parallel Mode, the attenuation value is determined by the logic condition of the parallel pins (1, 15, 16, 17, 19, and 20) at the time  
of start-up.  
Latched Parallel Mode  
The Latched Parallel Mode is selected when VMODE is set to a logic LOW and LE (pin 5) is toggled from a logic LOW to a logic HIGH.  
To utilize the Latched Parallel Mode, complete these steps:  
.
.
Set the LE pin to a logic LOW.  
Set pins 1, 15, 16, 17, 19, and 20 for the desired attenuation setting. (While LE is set to a logic LOW, the attenuation state will not  
change.)  
.
Toggle LE to a logic HIGH. The device will then transition to the attenuation settings reflected by pins D5 through D0.  
14  
Rev 1 September 21, 2017  
Latched Parallel Default Startup Condition  
The Latched Parallel Mode establishes a default attenuation state when the device is first powered up which is the maximum attenuation.  
Table 11. Truth Table for the Parallel Pins  
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Attenuation (dB)  
0
0.5  
1
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
2
0
0
1
0
0
0
4
0
1
0
0
0
0
8
1
0
0
0
0
0
16  
31.5  
1
1
1
1
1
1
Figure 19. Latched Parallel Mode Timing Diagram  
VMODE  
tSPS  
tLE  
tPDH  
tPDS  
Data Word Latched  
into the Register  
LE  
D[5:0]  
Time  
Table 12. Latched Parallel Mode Timing  
Interval Symbol  
Description  
Serial Mode to Parallel Mode setup time  
Parallel data hold time  
Min Spec  
Max Spec  
Units  
ns  
tSPS  
tPDH  
tPDS  
tLE  
100  
10  
ns  
LE minimum pulse width  
10  
ns  
Parallel data setup time  
10  
ns  
15  
Rev 1 September 21, 2017  
 
Applications Information  
F1975 Digital Pin Voltage and Resistance Values (Pins not Connected)  
Table 13 lists the resistance between various pins and ground when no DC power is applied. When the device is powered up with +5V DC,  
these pins will exhibit a voltage to ground as indicated.  
Table 13. Voltage and Resistance to Ground for the Logic Pins  
Pin  
13  
Name  
VMODE  
DC Voltage (Volts)  
Resistance (Ohms)  
100kΩ pull-up resistor to internally regulated 2.5V.  
100kΩ pull-up resistor to internally regulated 2.5V.  
2.5V  
2.5V  
3, 4, 5  
DATA, CLK, LE  
1, 1517,  
19, 20  
D5, D4, D3,  
D2, D1, D0  
2.5V  
100kΩ pull-up resistor to internally regulated 2.5V.  
16  
Rev 1 September 21, 2017  
 
F1975 Evaluation Kit  
Figure 20. F1975EVBI Evaluation Board Top View  
VDD  
Set U2 Switches D0 to D5  
for Parallel Data  
Logic HIGH Switch Position (+)  
Open Circuit Switch Position (O)  
Logic LOW Switch Position ()  
VMODE  
J4 Parallel Control Pins  
RF1  
RF2  
J11 Serial Control Pins  
17  
Rev 1 September 21, 2017  
 
Figure 21. F1975EVBI Evaluation Board Back View  
18  
Rev 1 September 21, 2017  
Evaluation Kit / Applications Circuit  
Figure 22. Electrical Schematic  
LENGTH  
=
RF1  
+
RF2 LINES  
J12  
J13  
F-TYPE  
F-TYPE  
Thru Cal  
75 ohm  
VLOGIC  
VDD  
J1  
J8  
VDD  
C1  
C2  
C11  
C10  
HEADER 1x2  
J2  
J3  
R1  
U2  
J5  
VDD  
1
2
HEADER 1x2  
R2  
HEADER 1x2  
8 pin DIP Switch  
Logic Low  
switch to '-' position  
switch to '+' position  
1
2
3
4
5
6
7
8
9
Logic High  
D0  
D1  
Open Circuit switch to 'O' position  
D2  
D3  
D4  
D5  
VMODE  
VDD  
GND  
VDD  
R5  
R3  
R4  
R6  
R7  
R8  
R9  
J4  
HEADER 1x9  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
R11  
R12  
R13  
R10  
U1  
RF1  
RF2  
F-TYPE  
J7  
R16  
F-TYPE  
R18  
1
2
3
4
5
15  
14  
13  
12  
11  
D5  
D4  
RF2  
J11  
HEADER 4X2  
J6  
Z0  
=
75 OHM  
Z0  
= 75 OHM  
RF1  
R25  
R26  
R27  
DATA  
CLK  
LE  
VMODE  
NC  
GND  
GND  
R21  
DATA  
CLK  
LE  
R22  
R23  
R24  
VDD  
C12  
C13  
C14  
C15  
19  
Rev 1 September 21, 2017  
Bill of Materials (BOM)  
Table 14. Evaluation Kit Bill of Material  
Part Reference  
C1, C11, C15  
C2, C10  
QTY  
Description  
Manufacturer Part #  
GRM155R71C104K  
GRM188R71H103J  
Manufacturer  
MURATA  
3
2
100nF ±10%, 16V, X7R Ceramic Capacitor (0402)  
10nF ±5%, 50V, X7R Ceramic Capacitor (0603)  
MURATA  
C3 - C9,  
C12, C13, C14  
10  
7
100pF ±5%, 50V, C0G Ceramic Capacitor (0402)  
100Ω ±1%, 1/10W, Resistor (0402)  
0Ω Resistor (0402)  
GRM1555C1H101J  
ERJ-2RKF1000X  
ERJ-2GE0R00X  
MURATA  
R3 - R9  
PANASONIC  
PANASONIC  
R10-R13, R15-R18,  
R24-R27  
12  
R21, R22, R23  
3
1
1
3
1
1
3kΩ ±1%, 1/10W, Resistor (0402)  
8.25kΩ ±1%, 1/10W, Resistor (0402)  
10kΩ ±5%, 1/10W, Resistor (0402)  
Conn Header Vert SGL 2 X 1 Pos Gold  
Conn Header Vert DBL 4 X 2 Pos Gold  
Conn Header Vert SGL 9 X 1 Pos Gold  
ERJ-2RKF3001X  
ERJ-2RKF8251X  
ERJ-2RKF1002X  
961102-6404-AR  
67997-108HLF  
PANASONIC  
PANASONIC  
PANASONIC  
3M  
R1  
R2  
J2, J3, J5  
J11  
FCI  
J4  
961109-6404-AR  
3M  
Edge Launch SMA  
(0.250 inch pitch ground, round)  
J1, J8  
2
142-0711-821  
Emerson Johnson  
J6, J7, J12, J13  
4
1
1
1
Edge Launch F-type 75 Ohm  
Switch 8-Position Dip Switch  
DSA  
222181  
KAT1108E  
Amphenol  
E-Switch  
IDT  
U2  
U1  
F1975NCGI  
Printed Circuit Board  
F1975 EVKit Rev 02  
IDT  
20  
Rev 1 September 21, 2017  
Evaluation Kit Operation  
Power Supply Setup  
Set up a power supply in the voltage range of 3.0V to 5.25V with the power supply output disabled. The voltage can be applied via one of the  
following connections (see Figure 23):  
.
.
.
J8 connector  
J5 header connection (note the polarity of the GND pin on this connector)  
Pin 8 (VDD) and pin 9 (GND) on the J4 header connection  
Figure 23. Power Supply and Logic Voltage Connections  
J3  
J2  
J5  
J1 Connector  
J8 Connector  
VDD J4, Pin 8  
GND J4, Pin 9  
Parallel Logic Control Setup  
The Evaluation Board has the ability to control the F1975 in the Parallel Mode. For external control, apply logic voltages to the J4 header pins 1  
through 6 (see Figure 20). For manual control, switches 1 through 6 on U2 can be set. The switch is a three-position switch. The bottom position  
“–” will ground the pin. The center position “O” will leave the pin open circuited. Setting the switch to the top position “+” will apply a voltage that  
is supplied to the switch.  
The logic voltage can be applied in one of two ways (see Figure 23):  
.
.
Direct connection to connector J1.  
Leave J1 open circuit, and add jumpers to headers J2 and J3. This will apply a logic voltage that is 0.24VDD.  
The F1975 has internal pull-up resistors for the D0 D5 parallel pins and VMODE. The switches can be used to apply a logic LOW (ground) for  
proper operation. To use the Parallel Mode, either apply a ground to the VMOD pin 7 on J4 or set U2 switch 7 (VMOD) to the “–” position (see  
Figure 20). The attenuation setting can be set via the U2 switches 1 through 6 (D0 through D5) according to Table 11.  
21  
Rev 1 September 21, 2017  
 
 
 
Serial Logic Control Setup  
The Evaluation Board has the ability to control the F1975 in the Serial Mode. Connect the serial controller to the J11 header connection as  
shown in Figure 24. To use the Serial Mode, set U2 switch 7 to the “+” or “O” position.  
The attenuation setting can be programmed according to Table 8.  
Figure 24. Serial Logic Connections  
Power-On Procedure  
Set up the voltage supplies and Evaluation Board as described in the Power Supply Setupsection and either the Parallel Logic Control Setup”  
or “Serial Logic Control Setupsections above.  
Enable the VDD supply.  
Enable the proper attenuation setting according to Figure 20 and Table 8 for Serial Mode or Table 11 for the Parallel Mode.  
Power-Off Procedure  
Set the logic control pins to a logic LOW.  
Disable the VDD supply.  
22  
Rev 1 September 21, 2017  
 
 
Package Drawings  
The package outline drawings are located at the end of this document. The package information is the most current data available and is subject  
to change without notice or revision of this document.  
Marking Diagram  
1. Line 1 and 2 are the part number.  
IDTF19  
2. Line 3: “ZA” is for die version.  
75NCGI  
ZA515BEG  
3. Line 3: “yww” = “515” = one digit year and two digit week that the part was assembled.  
4. Line 3: “BEG” denotes assembly site.  
Ordering Information  
Orderable Part Number  
Description and Package  
MSL Rating  
Shipping Packaging  
Temperature  
-40°C to +105°C  
-40°C to +105°C  
F1975NCGI  
4mm x 4mm x 0.75mm QFN  
4mm x 4mm x 0.75mm QFN  
Evaluation Board  
1
1
Tray  
Reel  
F1975NCGI8  
F1975EVBI  
Evaluation Solution including the Evaluation Board, Controller Board, and cable. The Evaluation Software is  
available for download on the product page on the IDT website: www.IDT.com/F1975  
F1975EVSI  
23  
Rev 1 September 21, 2017  
Revision History  
Revision  
Revision Date  
September 21, 2017 Updated evaluation board images, top markings, and updated to the latest template.  
July 31, 2017 Initial release of the datasheet.  
Description of Change  
1
O
24  
Rev 1 September 21, 2017  
20-QFN, Packꢀge Outline Drawinꢁ  
4.ꢂ x ꢃ.ꢄ x ꢂꢅ75 mm Bodyꢆ ꢄ.5ꢇꢇ ꢈꢉꢊꢋhꢌ Epꢍꢎ ꢏꢅꢂ6 x ꢏꢐꢄ6 ꢑꢇ  
ꢒCGꢏꢂꢈ1ꢆ ꢈSCꢓꢃꢃ4ꢔꢕꢂꢖꢆ Rꢗv ꢂ1ꢆ ꢈꢍꢘꢗ 1  
10  
ꢢꢣꢤ6  
0ꢮ3ꢆ  
1 6  
ꢩ9  
ꢥꢦꢏꢧ  
ꢪꢫꢬꢭ  
6
ꢵꢶDEꢷ  
ꢚꢖꢸK  
ꢁ Q 0ꢂ15  
1ꢯoꢰꢱꢲ  
0ꢟ6ꢠ  
0ꢡ45  
0ꢳꢴꢲ  
ꢁ ꢃ 0ꢄꢅꢆ  
0ꢹꢺ0@ C ꢖ B  
ꢻꢼ0ꢽꢾ C  
ꢇOP VIꢈW  
SꢌDꢍ VIꢎ  
ꢢ0ꢷ  
ꢿꣀꣁOꣂ ꣃꢔ꣄W  
o.so  
ꢀꢁꢂ7ꢃ  
0. 10  
Cꢂ  
I2/0Xꢁ ꢁ  
ꢉꢊ20 RꢋF  
[
r
Cꢂ  
I
0.08  
NOTE:  
ꢏꢐ ALꢑ DꢒMENꢓꢔOꢕ ꢖꢗꢘ ꢙN ꢚꢚꢛ ꢖꢜGꢝEꢓ ꢌꢜ ꢞꢘGRꢈꢘꢓ  
ꢢꢐ COꣅ꣆NAR꣇꣈ ꢖꣅꣅ꣉꣇꣊꣋ ꣌O ꣌H꣍ ꣊XꣅO꣋꣍D ꣅꢖD ꢖ꣋ ꣎꣊꣏꣉ ꢖ꣋ ꢇH꣐ ꣑꣊꣒ꣂI꣓A꣔꣋  
COP꣕N꣖Rꢔ꣗ ꣘꣙꣖ꢑꢝ ꣚O꣛ EX꣜EE꣝ ꢻ꣞0꣟ ꣠꣡  
꣢ꢄ ꣣ꢖRꣅꢖGꢋ ꢓ꣤ꢖ꣥ NO꣦ ꢋX꣧ꢋꢍD ꢲꢹꢪ0  
4꣨ R꣩꣪꣩R J꣊D꣊C ꢚ꣫-220  
꣬꣭꣬l꣮0꣯  
20-QFN, Package Outline Drawing  
4.0 x 4ꢀ0 x 0ꢀ75 mꢁ Body, 0.5mꢂ Pitch, Epad 2.06 x 2.06 ꢂm  
NCG20P1ꢃ PSC-4445ꢄ0ꢅ, Rev 01ꢆ Page 2  
-ꢀꢀꢀꢁ4.7 ꢂꢃꢃꢃꢄ  
0
-ꢁꢂ2.70ꢃꢁꢄ  
1
0,30  
ꢅꢆ00  
J
INDꢀX  
MARK  
ꢇꢈ00  
2ꢅ15  
RECOMENDED LAND PATꢁERN DIMEꢂSIOꢃ  
NOTE:  
1ꢅ ALꢆ DIMENSꢇON ARE IN MM. ANGLES IN DEGREES  
2ꢈ ꢉOP DOWN VIꢀW AS VꢇEWED ON PCB  
3ꢈ ꢊND PAꢋꢌꢀRN RꢀCOMMꢀNDAꢌION PꢀR IPCꢍ7351B GꢀNꢀRIC RꢀQUIRꢀMꢀNꢎ  
FOR SURFACꢀ MPOUNꢎ DꢀSIGN AND ꢊND PꢏꢐꢌꢀRN  
ꢄackage ꢅꢆvisꢇon Hꢇstoꢈ  
Description  
Date Created Rev No.  
Sept 12, 20ꢀ7 Rev 0ꢁ Correct Title  
Initial Rꢂꢃease  
Sept 11, 20ꢀ7 Rev 00  
IMPORTANT NOTICE AND DISCLAIMER  
RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL  
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING  
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND  
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,  
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A  
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible  
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)  
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These  
resources are subject to change without notice. Renesas grants you permission to use these resources only for  
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly  
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.  
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,  
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject  
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources  
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.  
(Rev.1.0 Mar 2020)  
Corporate Headquarters  
Contact Information  
TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com  
For further information on a product, technology, the most  
up-to-date version of a document, or your nearest sales  
office, please visit:  
www.renesas.com/contact/  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas  
Electronics Corporation. All trademarks and registered  
trademarks are the property of their respective owners.  
© 2020 Renesas Electronics Corporation. All rights reserved.  

相关型号:

F1975EVBI

6-Bit, 75Ω Digital Step Attenuator 5MHz to 3GHz
RENESAS

F1975EVSI

6-Bit, 75Ω Digital Step Attenuator 5MHz to 3GHz
RENESAS

F1975NCGI

6-Bit, 75Ω Digital Step Attenuator 5MHz to 3GHz
RENESAS

F1975NCGI8

Digital Step Attenuator
IDT

F1975NCGI8

6-Bit, 75Ω Digital Step Attenuator 5MHz to 3GHz
RENESAS

F1977

Digital Step Attenuator
IDT

F1977NBGI8

Digital Step Attenuator
IDT

F1978

6-Bit, 75 Digital Step Attenuator
IDT

F1978EVBI

6-Bit, 75 Digital Step Attenuator
IDT

F1978EVSI

6-Bit, 75 Digital Step Attenuator
IDT

F1978NCGK

6-Bit, 75 Digital Step Attenuator
IDT

F1978NCGK8

6-Bit, 75 Digital Step Attenuator
IDT