F2913NLGK [RENESAS]

High Isolation SP2T RF Switch 50MHz to 6000MHz;
F2913NLGK
型号: F2913NLGK
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

High Isolation SP2T RF Switch 50MHz to 6000MHz

文件: 总20页 (文件大小:1249K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Isolation SP2T RF Switch  
50MHz to 6000MHz  
F2913  
Datasheet  
Description  
Features  
.
.
Low insertion loss: 0.79dB at 2GHz  
The F2913 is a high isolation, low insertion loss, 50Ω SP2T  
absorptive RF switch designed for a multitude of wireless and RF  
applications. This device covers a broad frequency range of  
50MHz to 6000MHz. In addition to providing low insertion loss,  
the F2913 also delivers high linearity and high isolation  
performance while providing a 50Ω termination at all RF ports.  
High isolation:  
.
.
.
71dB at 1GHz  
65dB at 2GHz  
58dB at 4GHz  
.
.
.
.
.
High IIP3: +65dBm at 2.6GHz  
Supply voltage: +2.7V to +5.5V  
1.8V and 3.3V compatible control logic  
Operating temperature: -40°C to +110°C  
4 × 4 mm 20-VFQFPN package  
The F2913 uses a single positive supply voltage of +2.7V to  
+5.5V and supports three states using either +1.8V or +3.3V  
control logic.  
Competitive Advantage  
.
.
.
.
.
.
Low insertion loss  
High isolation  
Excellent linearity  
Fast switching time  
High termination power handling  
Extended temperature range  
Block Diagram  
Figure 1. Block Diagram  
VDD  
C1  
C2  
RF1  
RF2  
Typical Applications  
.
.
.
.
.
.
.
.
.
.
Base Station 2G, 3G, 4G, 5G  
Portable Wireless  
50  
50Ω  
RFC  
Repeaters and E911 Systems  
Digital Pre-Distortion  
50Ω  
Point-to-Point Infrastructure  
Public Safety Infrastructure  
WIMAX Receivers and Transmitters  
Military Systems, JTRS Radios  
RFID Handheld and Portable Readers  
Test / ATE Equipment  
1
January 31, 2019  
Pin Assignments  
Figure 2. Pin Assignments for 4mm x 4mm x 0.95mm 20-QFN – Top View  
VDD GND GND C1 C2  
20 19 18 17 16  
1
2
3
4
5
15  
14  
13  
12  
11  
GND  
GND  
RF1  
GND  
GND  
RF2  
F2913  
GND  
GND  
GND  
GND  
EP  
6
7
8
9
10  
GND GND RFC GND GND  
Pin Descriptions  
Table 1.  
Pin Descriptions  
Pin  
Name  
Function  
This pin is internally connected to the exposed paddle. Connect this pin to ground as close as possible to  
the pin.  
1, 15, 18  
GND  
2, 4, 5, 6, 7,  
9, 10, 11, 12,  
14, 19  
GND  
Connect this pin directly to ground as close as possible to the pin with thru vias.  
3
RF1  
RFC  
RF2  
C2  
RF1 Port. If this pin is not 0V DC, then an external coupling capacitor must be used.  
RF Common Port. If this pin is not 0V DC, then an external coupling capacitor must be used.  
RF2 Port. If this pin is not 0V DC, then an external coupling capacitor must be used.  
Logic control pin. See Table 7 for proper logic setting.  
8
13  
16  
17  
20  
C1  
Logic control pin. See Table 7 for proper logic setting.  
VDD  
Power supply. Bypass to GND with capacitors shown in the Figure 30 as close as possible to the pin.  
Exposed Pad. This is internally connected to GND. Solder this exposed pad to a PCB pad that uses  
multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple  
ground vias are also required to achieve the specified RF performance.  
EP  
2
January 31, 2019  
Absolute Maximum Ratings  
Stresses beyond those listed below may cause permanent damage to the device. Functional operation of the device at these or any other  
conditions beyond those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
Table 2.  
Absolute Maximum Ratings  
Parameter  
Symbol  
Minimum  
Maximum  
Units  
VDD to GND  
VDD  
-0.5  
+6.0  
V
Lower of  
(VDD + 0.3, 3.9)  
C1, C2 to GND  
VLOGIC  
-0.3  
-0.3  
V
V
RF1, RF2, RFC to GND  
VRF  
0.3  
33  
Maximum Input CW Power,  
ZS = ZL = 50Ω, TEP = 25°C,  
VDD = 5.5V (any port) [a]  
Insertion loss states  
Terminated states  
Insertion loss states  
Terminated states  
PABSCW  
dBm  
dBm  
PABSCW_TERM  
PABSPK  
27  
36  
30  
Maximum Input Peak Power,  
ZS = ZL = 50Ω, TEP = 25°C,  
VDD = 5.5V (any port) [a, b]  
PABSPK_TERM  
Junction Temperature  
TJMAX  
TST  
140  
150  
260  
°C  
°C  
°C  
Storage Temperature Range  
Lead Temperature (soldering, 10s)  
-65  
TLEAD  
Electrostatic Discharge – HBM  
(JEDEC/ESDA JS-001-2012)  
2500  
(Class 2)  
VESDHBM  
VESDCDM  
V
V
Electrostatic Discharge – CDM  
(JEDEC 22-C101F)  
1000  
(Class C2)  
a. TEP = Temperature of the exposed paddle.  
b. 5% duty cycle of a 4.6ms period.  
3
January 31, 2019  
Recommended Operating Conditions  
Table 3.  
Recommended Operating Conditions  
Parameter  
Symbol  
Condition  
Minimum  
Typical  
Maximum  
Units  
Supply Voltage  
VDD  
TEP  
fRF  
2.7  
-40  
50  
3.3  
5.5  
+110  
V
°C  
Operating Temperature Range  
RF Frequency Range  
Exposed Paddle  
ZS = ZL = 50Ω  
6000  
MHz  
dBm  
Ω
Maximum Operating Input Power  
Port Impedance (RFC, RF1, RF2)  
PMAX  
ZRF  
See Figure 3  
50  
Figure 3. Maximum RF Input Operating Power vs. RF Frequency (ZS = ZL = 50Ω)  
4
January 31, 2019  
 
Electrical Characteristics  
Table 4.  
Electrical Characteristics  
See the F2913 Typical Application Circuit. Specifications apply when operated with VDD = +3.3V, TEP = +25°C, ZS = ZL = 50Ω, RF signals  
applied at RF1 or RF2 and measured at RFC, and Evaluation Board trace and connector losses are de-embedded, unless otherwise noted.  
Parameter  
Logic Input High  
Symbol  
Condition  
Min  
Typ  
Max  
Units  
Lower of  
(VDD, 3.6)  
VIH  
C1, C2 pins  
C1, C2 pins  
1.17 [b]  
V
Logic Input Low  
Logic Current  
VIL  
IIH, IIL  
IDD  
-0.3  
V
0.6  
+1  
-1 [a]  
µA  
µA  
DC Current (VDD)  
90  
0.77  
0.79  
0.79  
0.88  
1.03  
1.15  
1.25  
79  
170  
0.97  
1.00  
1.00  
1.10  
1.40  
1.50  
1.65  
50MHz fRF ≤ 400MHz  
400MHz < fRF ≤ 1GHz [c]  
1GHz < fRF ≤ 2GHz  
2GHz < fRF ≤ 3GHz  
3GHz < fRF ≤ 4GHz  
4GHz < fRF ≤ 5GHz  
5GHz < fRF ≤ 6GHz  
50MHz fRF ≤ 400MHz  
400MHz < fRF ≤ 1GHz  
1GHz < fRF ≤ 2GHz  
2GHz < fRF ≤ 3GHz  
3GHz < fRF ≤ 4GHz  
4GHz < fRF ≤ 5GHz  
5GHz < fRF ≤ 6GHz  
50MHz fRF ≤ 400MHz  
400MHz < fRF ≤ 1GHz  
1GHz < fRF ≤ 2GHz  
2GHz < fRF ≤ 3GHz  
3GHz < fRF ≤ 4GHz  
4GHz < fRF ≤ 5GHz  
5GHz < fRF ≤ 6GHz  
50MHz fRF 4GHz  
4GHz < fRF ≤ 6GHz  
50MHz fRF 4GHz  
4GHz < fRF ≤ 6GHz  
Insertion Loss  
RF1 to RFC or RF2 to RFC  
IL  
dB  
dB  
dB  
74  
66  
60  
57  
53  
50  
46  
80  
75  
67  
62  
57  
53  
51  
71  
65  
Isolation  
(RFC to RF1, RF2)  
(one path on)  
ISO1  
62  
58  
54  
51  
85  
80  
72  
Isolation  
(RF1 to RF2, RF2 to RF1)  
(one path on)  
ISO2  
67  
62  
58  
56  
Return Loss RF1, RF2 [d]  
Insertion Loss State  
20  
RL1  
RL2  
dB  
dB  
18.7  
18.0  
15.2  
Return Loss RFC [d]  
Insertion Loss State  
a. Items in min/max columns in bold italics are guaranteed by test.  
b. Items in min/max columns that are not bold italics are guaranteed by design characterization.  
c. Maximum spec guaranteed by test at 1GHz and by design characterization over the whole frequency range.  
d. Return loss includes mismatch effects of Evaluation Kit PCB and RF connectors.  
5
January 31, 2019  
Electrical Characteristics  
Table 5.  
Electrical Characteristics  
See F2913 Typical Application Circuit. Specifications apply when operated with VDD = +3.3V, TEP = +25°C, ZS = ZL = 50Ω, RF signals applied  
at RF1 or RF2 and measured at RFC, Evaluation Board trace and connector losses are de-embedded, unless otherwise noted.  
Parameter  
Symbol  
Condition  
50MHz fRF 4GHz  
Min  
Typ  
Max  
Units  
Return Loss RF1, RF2 [c]  
Terminated State, All Off State  
20.3  
19.3  
17.5  
15.3  
RL3  
dB  
4GHz < fRF ≤ 6GHz  
50MHz fRF 4GHz  
4GHz < fRF ≤ 6GHz  
Return Loss RFC [c]  
All Off State  
RL4  
IIP2  
dB  
f1 = 2.55GHz  
f2 = 2.65GHz  
PIN = +20dBm/tone  
Measure 5.2GHz product  
Input IP2  
115  
65  
dBm  
(RF1, RF2 to RFC)  
f1 = 2.55GHz  
f2 = 2.65GHz  
PIN = +13dBm/tone  
Measure 2.75GHz product  
Input IP3  
IIP3  
60 [b]  
dBm  
(RF1, RF2 to RFC)  
fRF = 50MHz  
35  
35  
34  
34  
37  
37  
36  
36  
fRF = 100MHz  
fRF = 2400MHz  
fRF = 6000MHz  
Input 1dB Compression [d]  
IP1dB  
PSPUR  
dBm  
dBm  
Spurious Output  
(No RF Applied) [e]  
All unused ports terminated  
RBW = 100Hz  
-127  
-120  
0.2  
Insertion Loss Flatness  
Group Delay  
ILFLAT  
GD  
Any 400MHz range  
0.1  
0.05  
155  
142  
234  
205  
dB  
ns  
50% control to 90% RF  
50% control to 10% RF  
50% control to 99% RF  
50% control to 1% RF  
230  
200  
300  
265  
25  
Switching Time [f]  
SWTIME  
ns  
Switching Rate  
SWRATE  
kHz  
a. Items in min/max columns in bold italics are guaranteed by test.  
b. Items in min/max columns that are not bold italics are guaranteed by design characterization.  
c. Return loss includes mismatch effects of Evaluation Kit PCB and RF connectors.  
d. The input 1 dB compression point is a linearity figure of merit. Refer to Figure 3 for the maximum RF operating input  
power levels.  
e. Spurious due to on-chip negative voltage generator. Typical generator fundamental frequency is 2.2MHz.  
f. Measured at fRF = 1GHz.  
6
January 31, 2019  
Thermal Characteristics  
Table 6.  
Package Thermal Characteristics  
Parameter  
Symbol  
Value  
Units  
Junction to Ambient Thermal Resistance  
θJA  
60.2  
°C/W  
Junction to Case Thermal Resistance  
(Case is defined as the exposed paddle)  
θJC_BOT  
9.5  
°C/W  
Moisture Sensitivity Rating (Per J-STD-020)  
MSL1  
Typical Operating Conditions (TOCs)  
Unless otherwise noted:  
.
.
.
.
.
.
.
.
V
T
DD = +3.3V  
EP = 25°C. All temperatures are referenced to the exposed paddle.  
ZS = ZL = 50Ω  
RF = 1GHz  
f
Small signal tests done at 0dBm input power.  
+13dBm per tone for IIP3 measurements.  
RF1 or RF2 are the driven ports.  
Evaluation Kit traces and connector losses are de-embedded for the insertion loss and isolation plots. All other plots include the loss and  
effects of the PCB.  
7
January 31, 2019  
Typical Performance Characteristics (1)  
Figure 4. RFC to RF1 Insertion Loss vs. Freq.  
Figure 5. RFC to RF2 Insertion Loss vs. Freq.  
over Temperature and Voltage  
over Temperature and Voltage  
0
0
2.7V, -40C  
2.7V, 25C  
2.7V, 110C  
3.3V, -40C  
3.3V, 25C  
3.3V, 110C  
5.5V, -40C  
5.5V, 25C  
5.5V, 110C  
2.7V, -40C  
2.7V, 25C  
2.7V, 110C  
3.3V, -40C  
3.3V, 25C  
3.3V, 110C  
5.5V, -40C  
5.5V, 25C  
5.5V, 110C  
-0.5  
-1  
-0.5  
-1  
-1.5  
-2  
-1.5  
-2  
-2.5  
-2.5  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
Frequency (GHz)  
Frequency (GHz)  
Figure 6. RFC to RF1 Isolation vs. Freq. over  
Figure 7. RFC to RF2 Isolation vs. Freq. over  
Temp. and Voltage (RF2 On State]  
Temp. and Voltage (RF1 On State]  
0
0
2.7V, -40C  
2.7V, 25C  
2.7V, 110C  
3.3V, -40C  
3.3V, 25C  
3.3V, 110C  
5.5V, -40C  
5.5V, 25C  
5.5V, 110C  
2.7V, -40C  
2.7V, 25C  
2.7V, 110C  
3.3V, -40C  
3.3V, 25C  
3.3V, 110C  
5.5V, -40C  
5.5V, 25C  
5.5V, 110C  
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
Frequency (GHz)  
Frequency (GHz)  
Figure 8. RF1 to RF2 Isolation vs. Freq. over  
Figure 9. RF2 to RF1 Isolation vs. Freq. over  
Temp. and Voltage (RF1 On State)  
Temp. and Voltage (RF2 On State)  
0
0
2.7V, -40C  
2.7V, 25C  
2.7V, 110C  
3.3V, -40C  
3.3V, 25C  
3.3V, 110C  
5.5V, -40C  
5.5V, 25C  
5.5V, 110C  
2.7V, -40C  
2.7V, 25C  
2.7V, 110C  
3.3V, -40C  
3.3V, 25C  
3.3V, 110C  
5.5V, -40C  
5.5V, 25C  
5.5V, 110C  
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
Frequency (GHz)  
Frequency (GHz)  
8
January 31, 2019  
Typical Performance Characteristics (2)  
Figure 10. RFC to RF1 Isolation vs. Freq. over  
Figure 11. RFC to RF2 Isolation vs. Freq. over  
Temp. and Voltage (All Off State)  
Temp. and Voltage (All Off State)  
0
0
2.7V, -40C  
2.7V, 25C  
2.7V, 110C  
3.3V, -40C  
3.3V, 25C  
3.3V, 110C  
5.5V, -40C  
5.5V, 25C  
5.5V, 110C  
2.7V, -40C  
2.7V, 25C  
2.7V, 110C  
3.3V, -40C  
3.3V, 25C  
3.3V, 110C  
5.5V, -40C  
5.5V, 25C  
5.5V, 110C  
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
Frequency (GHz)  
Frequency (GHz)  
Figure 12. RF1 to RF2 Isolation vs. Freq. over  
Figure 13. Evaluation Board Thru Line  
Temp. and Voltage (All Off State)  
Loss over Temperature  
0
0
2.7V, -40C  
2.7V, 25C  
2.7V, 110C  
3.3V, -40C  
3.3V, 25C  
3.3V, 110C  
5.5V, -40C  
5.5V, 25C  
5.5V, 110C  
-20  
-40  
-0.2  
-0.4  
-0.6  
-0.8  
-60  
-80  
-100  
-120  
-40C  
25C  
110C  
-1  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
Frequency (GHz)  
Frequency (GHz)  
Figure 14. Evaluation Board Thru Line Match  
over Temperature  
0
-40C  
25C  
110C  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
0
1
2
3
4
5
6
7
8
9
10  
Frequency (GHz)  
9
January 31, 2019  
Typical Performance Characteristics (3)  
Figure 15. RF1 Return Loss vs. Frequency over  
Figure 16. RF1 Return Loss vs. Frequency over  
Temp. and Voltage (RF1 On State)  
Temp. and Voltage (RF2 On State)  
0
0
2.7V, -40C  
2.7V, 25C  
2.7V, 110C  
3.3V, -40C  
3.3V, 25C  
3.3V, 110C  
5.5V, -40C  
5.5V, 25C  
5.5V, 110C  
2.7V, -40C  
2.7V, 25C  
2.7V, 110C  
3.3V, -40C  
3.3V, 25C  
3.3V, 110C  
5.5V, -40C  
5.5V, 25C  
5.5V, 110C  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
Frequency (GHz)  
Frequency (GHz)  
Figure 17. RF2 Return Loss vs. Frequency over  
Figure 18. RF2 Return Loss vs. Frequency over  
Temp. and Voltage (RF2 On State)  
Temp. and Voltage (RF1 On State)  
0
0
2.7V, -40C  
2.7V, 25C  
2.7V, 110C  
3.3V, -40C  
3.3V, 25C  
3.3V, 110C  
5.5V, -40C  
5.5V, 25C  
5.5V, 110C  
2.7V, -40C  
2.7V, 25C  
2.7V, 110C  
3.3V, -40C  
3.3V, 25C  
3.3V, 110C  
5.5V, -40C  
5.5V, 25C  
5.5V, 110C  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
Frequency (GHz)  
Frequency (GHz)  
Figure 19. RFC Return Loss vs. Frequency over  
Figure 20. RFC Return Loss vs. Frequency over  
Temp. and Voltage (RF1 On State)  
Temp. and Voltage (RF2 On State)  
0
0
2.7V, -40C  
2.7V, 25C  
2.7V, 110C  
3.3V, -40C  
3.3V, 25C  
3.3V, 110C  
5.5V, -40C  
5.5V, 25C  
5.5V, 110C  
2.7V, -40C  
2.7V, 25C  
2.7V, 110C  
3.3V, -40C  
3.3V, 25C  
3.3V, 110C  
5.5V, -40C  
5.5V, 25C  
5.5V, 110C  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
Frequency (GHz)  
Frequency (GHz)  
10  
January 31, 2019  
Typical Performance Characteristics (4)  
Figure 21. RF1 Return Loss vs. Frequency over  
Figure 22. RF2 Return Loss vs. Frequency over  
Temp. and Voltage (All Off State)  
Temp. and Voltage (All Off State)  
0
0
2.7V, -40C  
2.7V, 25C  
2.7V, 110C  
3.3V, -40C  
3.3V, 25C  
3.3V, 110C  
5.5V, -40C  
5.5V, 25C  
5.5V, 110C  
2.7V, -40C  
2.7V, 25C  
2.7V, 110C  
3.3V, -40C  
3.3V, 25C  
3.3V, 110C  
5.5V, -40C  
5.5V, 25C  
5.5V, 110C  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
Frequency (GHz)  
Frequency (GHz)  
Figure 24. RF1 Input IP3 vs. Frequency over  
Temp. and Voltage (RF1 On State)  
Figure 23. RFC Return Loss vs. Frequency over  
Temp. and Voltage (All Off State)  
0
70  
65  
60  
55  
50  
45  
40  
2.7V, -40C  
2.7V, 25C  
2.7V, 110C  
3.3V, -40C  
3.3V, 25C  
3.3V, 110C  
5.5V, -40C  
5.5V, 25C  
5.5V, 110C  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
2.7V, -40C  
2.7V, 25C  
2.7V, 110C  
3.3V, -40C  
3.3V, 25C  
3.3V, 110C  
5.5V, -40C  
5.5V, 25C  
5.5V, 110C  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
8
9
10  
Frequency (GHz)  
Frequency (GHz)  
Figure 25. RF2 Input IP3 vs. Frequency over  
Figure 26. Input P1dB vs. Frequency over Temp.  
Temp. and Voltage (RF2 On State)  
and Voltage (On States)  
70  
39  
38  
37  
36  
35  
34  
65  
60  
55  
50  
2.7V, -40C  
2.7V, 25C  
2.7V, 110C  
3.3V, -40C  
3.3V, 25C  
3.3V, 110C  
5.5V, -40C  
5.5V, 25C  
5.5V, 110C  
2.7V, -40C  
2.7V, 25C  
2.7V, 110C  
3.3V, -40C  
3.3V, 25C  
3.3V, 110C  
5.5V, -40C  
5.5V, 25C  
5.5V, 110C  
45  
40  
33  
32  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Frequency (GHz)  
Frequency (GHz)  
11  
January 31, 2019  
Control Mode  
Table 7.  
Switch Control Truth Table  
C1  
C2  
RFC – RF1  
RFC – RF2  
LOW  
LOW  
HIGH  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
OFF  
OFF  
ON  
OFF  
ON  
OFF  
N/A  
N/A  
Application Information  
Default Start-up  
The C1 and C2 control pins include no internal pull-down resistors to logic LOW or pull-up resistors to logic HIGH.  
Power Supplies  
A common VDD power supply should be used for all pins requiring DC power. All supply pins should be bypassed with external capacitors to  
minimize noise and fast transients. Supply noise can degrade the noise figure, and fast transients can trigger ESD clamps and cause them to  
fail. Supply voltage change or transients should have a slew rate slower than 1V / 20µs. In addition, all control pins should remain at 0V  
(± 0.3V) while the supply voltage ramps up or while it returns to zero.  
Control Pin Interface  
If a clean control signal for pins 16 and 17 cannot be guaranteed due to overshoot, undershoot, or ringing, etc., the following circuit at the  
input of the control pins is recommended.  
Figure 27. Control Pin Signal Integrity Improvement Circuit  
5 kΩ  
C1  
2 pF  
V DD GND GND  
20 19 18 17 16  
5 kΩ  
1
2
3
4
5
15  
14  
13  
12  
11  
GND  
GND  
RF1  
GND  
GND  
RF2  
C2  
2 pF  
F2913  
GND  
GND  
GND  
GND  
EP  
6
7
8
9
10  
GND GND RFC GND GND  
12  
January 31, 2019  
 
Evaluation Kit Picture  
Figure 28. Top View  
Figure 29. Bottom View  
13  
January 31, 2019  
Evaluation Kit / Applications Circuit  
Figure 30. Electrical Schematic  
Table 8.  
Bill of Material (BOM)  
Part Reference  
C1  
QTY  
Description  
Manufacturer Part #  
Manufacturer  
1
0
3
5
1
1
1
0.1µF ±10%, 16V X7R Ceramic Capacitor (0402)  
Not Installed (0402)  
GRM155R71C104KA88D  
Murata  
C2 – C9  
R1 – R3  
J1 – J5  
J6  
0Ω ±1%, 1/10W, Resistor (0402)  
SMA Edge Mount  
ERJ-2RKF1000X  
142-0761-881  
961216-6404-AR  
F2913NLGK  
Panasonic  
Cinch Connectivity  
Amphenol FCI  
IDT  
8x2 Vertical Pin Strip Header  
SP2T Switch 4mm x 4mm QFN  
Printed Circuit Board  
U1  
F2913 PCB  
IDT  
14  
January 31, 2019  
 
Evaluation Kit (EVKit) Operation  
External Supply Setup  
1. Set up a VDD power supply in the range of +2.7V to +5.5V with the power supply output disabled.  
2. Connect the disabled VDD supply connection to J6 pins 1, 3, 13, or 15 and GND to J6 pins 2, 4, 6, 8, 10, 12, 14, or 16.  
Logic Control Setup  
1. With the logic control lines disabled, set the HIGH and LOW logic levels to satisfy the levels stated in the electrical specifications table.  
2. Connect the disabled logic control to J6 VCTRL1 (pins 5 or 7) and VCTRL2 (pins 9 or 11).  
3. See Table 7 for the logic truth table. Note that C1 in the table corresponds to VCTRL1 on the EVKIT and C2 corresponds to VCTRL2.  
Turn On Procedure  
1. Set up the supplies and EVKIT as noted in the External Supply Setup and Logic Control Setup sections above.  
2. Enable the VDD supply.  
3. Enable the logic control signals.  
4. Set the logic settings to achieve the desired Table 7 configuration. Note that external control logic should not be applied without VDD  
being present.  
Turn Off Procedure  
1. Set the logic control pins to 0V.  
2. Disable the VDD supply.  
15  
January 31, 2019  
Package Drawings  
The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is  
the most current data available.  
www.idt.com/document/psc/20-vfqfpn-package-outline-drawing-40-x-40-x-095-mm-body-05mm-pitch-epad-20-x-20-mm-nlg20t1  
Marking Diagram  
Lines 1 and 2 – Part number  
Line 3 “ZE” – Die version  
Line 3 “705” – Production period, last digit of year plus workweek  
Line 3 “AHG” – Production process  
IDTF29  
13NLGK  
ZE705AHG  
Ordering Information  
Orderable Part Number  
Package  
MSL Rating  
Shipping Packaging  
Temperature  
F2913NLGK  
F2913NLGK8  
F2913EVBI  
4 × 4 × 0.95 mm 20-VFQFPN  
4 × 4 × 0.95 mm 20-VFQFPN  
MSL1  
MSL1  
Cut Tape  
Reel  
-40°C to +110°C  
-40°C to +110°C  
Evaluation Board  
16  
January 31, 2019  
Revision History  
Revision Date  
Description of Change  
Updated package for correct drawing number  
January 31, 2019  
September 29, 2017  
Initial release  
20-VFQFPN, Package Outline Drawing  
4.0 x 4.0 x 0.95 mm Body, 0.5mm Pitch, Epad 2.0 x 2.0 mm  
NLG20T1, PSC-4170-03, Rev 02, Page 1  
‹ꢀ,QWHJUDWHGꢀ'HYLFHꢀ7HFKQRORJ\ꢁꢀ,QFꢂ  
20-VFQFPN, Package Outline Drawing  
4.0 x 4.0 x 0.95 mm Body, 0.5mm Pitch, Epad 2.0 x 2.0 mm  
NLG20T1, PSC-4170-03, Rev 02, Page 2  
Package Revision History  
Description  
Rev 02 New Format, Add T1,Recalculate Land Pattern  
Rev 01 Change Max Dimension "A"  
Date Created Rev No.  
March 2, 2018  
Jan 23, 2017  
‹ꢀ,QWHJUDWHGꢀ'HYLFHꢀ7HFKQRORJ\ꢁꢀ,QFꢂ  
IMPORTANT NOTICE AND DISCLAIMER  
RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL  
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING  
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND  
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,  
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A  
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible  
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)  
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These  
resources are subject to change without notice. Renesas grants you permission to use these resources only for  
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly  
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.  
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,  
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject  
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources  
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.  
(Rev.1.0 Mar 2020)  
Corporate Headquarters  
Contact Information  
TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com  
For further information on a product, technology, the most  
up-to-date version of a document, or your nearest sales  
office, please visit:  
www.renesas.com/contact/  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas  
Electronics Corporation. All trademarks and registered  
trademarks are the property of their respective owners.  
© 2020 Renesas Electronics Corporation. All rights reserved.  

相关型号:

F2913NLGK8

High Isolation SP2T RF Switch 50MHz to 6000MHz
RENESAS

F2915

High Reliability SP5T RF Switch
IDT

F2915NBGK

High Reliability SP5T RF Switch
IDT

F2923

Constant Impedance K|Z| SP2T RF Switch 300 kHz to 8000 MHz
RENESAS

F2923NCGI

Constant Impedance K|Z| SP2T RF Switch 300 kHz to 8000 MHz
RENESAS

F2923NCGI8

Constant Impedance K|Z| SP2T RF Switch 300 kHz to 8000 MHz
RENESAS

F292CNS-T1052Z

Variable Coils
TOKO

F292CNS-T1053Z

Variable Coils
TOKO

F292CNS-T1054Z

Variable Coils
TOKO

F292CNS-T1055Z

Variable Coils
TOKO

F292CNS-T1056Z

Variable Coils
TOKO

F292CNS-T1057Z

Variable Coils
TOKO