HA1630Q06T

更新时间:2024-09-18 08:32:02
品牌:RENESAS
描述:Low Voltage Operation CMOS Quad Operational Amplifier

HA1630Q06T 概述

Low Voltage Operation CMOS Quad Operational Amplifier 低工作电压CMOS四路运算放大器

HA1630Q06T 数据手册

通过下载HA1630Q06T数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
HA1630Q04/05/06 Series  
Low Voltage Operation CMOS Quad Operational Amplifier  
REJ03D0803-0100  
Rev.1.00  
Mar 10, 2006  
Description  
The HA1630Q04/05/06 are high slew rate single CMOS Operational Amplifiers realizing low voltage operation, low  
input offset voltage and low supply current. In addition to a low operating voltage from 1.8V, these device output can  
achieve full swing output voltage capability extending to either supply. Available in an ultra-small TSSOP-14 package  
that occupies only 1/4 the area of the SOP-14 package.  
Features  
Low power and single supply operation  
Low input offset voltage  
Low supply current (per channel)  
VDD = 1.8 to 5.5 V  
VIO = 4.0 mV Max  
I
I
I
DD = 200 µA Typ (HA1630Q04)  
DD = 400 µA Typ (HA1630Q05)  
DD = 800 µA Typ (HA1630Q06)  
High slew rate  
SR = 2 V/µs Typ (HA1630Q04)  
SR = 4 V/µs Typ (HA1630Q05)  
SR = 8 V/µs Typ (HA1630Q06)  
VOH = 2.9 V Min (at VDD = 3.0 V)  
IIB = 1 pA Typ  
Maximum output voltage  
Low input bias current  
Ordering Information  
Type No.  
HA1630Q04T  
Package Name  
Package Code  
PTSP0014JA-B  
TTP-14D  
HA1630Q05T  
TTP-14D  
TTP-14D  
PTSP0014JA-B  
PTSP0014JA-B  
HA1630Q06T  
Rev.1.00 Mar 10, 2006 page 1 of 23  
HA1630Q04/05/06 Series  
Pin Arrangement  
VOUT1  
VIN1(–)  
VIN1(+)  
VDD  
1
2
3
4
5
6
7
14 VOUT4  
13 VIN4(–)  
12 VIN4(+)  
11 VSS  
+  
+ −  
VIN2(+)  
VIN2(–)  
VOUT2  
10 VIN3(+)  
9 VIN3(–)  
8 VOUT3  
+  
+ −  
Equivalent Circuit (per one channel)  
VDD  
VIN(–)  
VIN(+)  
VOUT  
VSS  
Rev.1.00 Mar 10, 2006 page 2 of 23  
HA1630Q04/05/06 Series  
Absolute Maximum Ratings  
(Ta = 25°C)  
Items  
Supply voltage  
Symbol  
Ratings  
7
Unit  
V
Note  
VDD  
VIN(diff)  
VIN  
Differential input voltage  
Input voltage  
–VDD to +VDD  
–0.3 to +VDD  
400  
V
V
1
Power dissipation  
PT  
mW  
°C  
°C  
Operating temp. Range  
Storage temp. Range  
Topr  
Tstg  
–40 to +85  
–55 to +125  
Note: 1. Do not apply Input Voltage exceeding VDD or 7 V.  
Electrical Characteristics  
(VDD = 3.0 V, Ta = 25°C)  
Items  
Input offset voltage  
Input offset current  
Input bias current  
Output high voltage  
Output source current  
Symbol  
VIO  
Min  
Typ  
Max  
Unit  
mV  
pA  
pA  
V
Test Condition  
4.0  
0.1  
1.6  
3.2  
6.8  
Vin = 1.5 V  
IIO  
(1.0)  
(1.0)  
Vin = 1.5 V  
IIB  
Vin = 1.5 V  
VOH  
2.9  
RL = 100 kΩ  
IO SOURCE  
100  
200  
400  
800  
µA  
VOH = 2.5 V (HA1630Q04)  
VOH = 2.5 V (HA1630Q05)  
VOH = 2.5 V (HA1630Q06)  
RL = 100 kΩ  
200  
400  
Output low voltage  
Output sink current  
VOL  
V
IO SINK  
(5.0)  
(6.0)  
(6.5)  
mA  
VOL = 0.5 V (HA1630Q04)  
VOL = 0.5 V (HA1630Q05)  
VOL = 0.5 V (HA1630Q06)  
(HA1630Q04, HA1630Q05)  
(HA1630Q06)  
Common mode input voltage  
range  
VCM  
SR  
–0.05 to 2.1  
V
0 to 1.9  
Slew rate  
(2.0)  
(4.0)  
(8.0)  
90  
V/µs  
CL = 20 pF (HA1630Q04)  
CL = 20 pF (HA1630Q05)  
CL = 20 pF (HA1630Q06)  
Voltage gain  
AV  
60  
dB  
Gain bandwidth product  
BW  
(2100)  
(3300)  
(3600)  
70  
kHz  
CL = 20 pF (HA1630Q04)  
CL = 20 pF (HA1630Q05)  
CL = 20 pF (HA1630Q06)  
Power supply rejection ratio  
PSRR  
50  
50  
dB  
dB  
Common mode rejection ratio CMRR  
Supply current IDD  
70  
0.8  
mA  
RL = (HA1630Q04)  
RL = (HA1630Q05)  
RL = (HA1630Q06)  
1.6  
3.2  
Notes: 1. In the case of continuous current flow, use a sink current of under 4 mA.  
2. ( ) : Design specification  
Rev.1.00 Mar 10, 2006 page 3 of 23  
HA1630Q04/05/06 Series  
Table of Graphs  
HA1630Q04 HA1630Q05 HA1630Q06  
Test  
Electrical Characteristics  
Figure  
1-1  
Figure  
2-1  
Figure  
3-1  
Circuit  
Supply current  
IDD  
vs Supply voltage  
2
4
vs Ambient temperature  
vs Output source current  
vs Supply voltage  
1-2  
2-2  
3-2  
Output high voltage  
VOH  
1-3  
2-3  
3-3  
1-4  
2-4  
3-4  
Output source current  
Output low voltage  
Output sink current  
Input offset voltage  
IO SOURCE  
VOL  
IO SINK  
VIO  
vs Ambient temperature  
vs Output sink current  
vs Ambient temperature  
Distribution  
1-5  
2-5  
3-5  
6
5
6
1
1-6  
2-6  
3-6  
1-7  
2-7  
3-7  
1-8  
2-8  
3-8  
vs Supply voltage  
1-9  
2-9  
3-9  
vs Ambient temperature  
vs Ambient temperature  
1-10  
1-11  
2-10  
2-11  
3-10  
3-11  
Common mode input  
voltage range  
VCM  
7
1
Power supply rejection  
ratio  
PSRR  
CMRR  
AV  
vs Frequency  
vs Frequency  
vs Frequency  
1-12  
1-13  
1-14  
2-12  
2-13  
2-14  
3-12  
3-13  
3-14  
Common mode rejection  
ratio  
7
Voltage gain & phase  
angle  
10  
3
Input bias current  
IIB  
vs Ambient temperature  
vs Input voltage  
1-15  
1-16  
1-17  
1-18  
1-19  
2-15  
2-16  
2-17  
2-18  
2-19  
3-15  
3-16  
3-17  
3-18  
3-19  
Slew Rate (rising)  
Slew Rate (falling)  
Slew rate  
SRr  
SRf  
vs Ambient temperature  
vs Ambient temperature  
9
Large signal transient  
response  
Small signal transient  
response  
1-20  
2-20  
3-20  
Total harmonic distortion + (0 dB)  
vs. Output voltage p-p  
vs. Output voltage p-p  
vs Frequency  
1-21  
1-22  
1-23  
2-21  
2-22  
2-23  
3-21  
3-22  
3-23  
8
noise  
(40 dB)  
Maximum p-p output  
voltage  
Voltage noise density  
vs Frequency  
1-24  
2-24  
3-24  
Rev.1.00 Mar 10, 2006 page 4 of 23  
HA1630Q04/05/06 Series  
Main Characteristics (HA1630Q04)  
Figure 1-1. HA1630Q04  
Supply Current vs. Supply Voltage  
400  
Figure 1-2. HA1630Q04  
Supply Current vs. Ambient Temperature  
400  
300  
200  
100  
0
Ta = 25°C  
VDD = 5.5 V  
VDD = 3.0 V  
300  
200  
100  
0
VDD = 1.8 V  
1
2
3
4
5
6
40 20  
0
20  
40  
60  
80  
100  
Supply Voltage VDD (V)  
Ambient Temperature Ta (°C)  
Figure 1-3. HA1630Q04  
Output High Voltage vs. Output Source Current  
Figure 1-4. HA1630Q04  
Output High Voltage vs. Supply Voltage  
6
5
4
3
2
1
0
6
5
4
3
2
1
Ta = 25°C  
Ta = 25°C  
VDD = 3.0 V  
VDD = 5.5 V  
RL = 100 k  
VDD = 3.0 V  
VDD = 1.8 V  
0
100  
200  
300  
1
2
3
4
5
6
Output Source Current IOSOURCE (µA)  
Supply Voltage VDD (V)  
Figure 1-5. HA1630Q04  
Output Source Current vs. Ambient Temperature  
400  
VDD = 5.5 V  
VDD = 3.0 V  
VDD = 1.8 V  
300  
200  
100  
0
40 20  
0
20  
40  
60  
80  
100  
Ambient Temperature Ta (°C)  
Rev.1.00 Mar 10, 2006 page 5 of 23  
HA1630Q04/05/06 Series  
Figure 1-6. HA1630Q04  
Output Low Voltage vs. Output Sink Current  
Figure 1-7. HA1630Q04  
Output Sink Current vs. Ambient Temperature  
1.5  
1.0  
0.5  
0
10  
8
VDD = 5.5 V  
VDD = 3.0 V  
VDD = 5.5 V  
VDD = 3.0 V  
6
VDD = 1.8 V  
4
VDD = 1.8 V  
2
0
0
2
4
6
40 20  
0
20  
40  
60  
80 100  
Output Sink Current IOSINK (mA)  
Ambient Temperature Ta (°C)  
Figure 1-8. HA1630Q04  
Input Offset Voltage Distribution  
Figure 1-9. HA1630Q04  
Input Offset Voltage vs. Supply Voltage  
40  
30  
20  
10  
0
4
3
Ta = 25°C  
VIN = 0.5 V  
Ta = 25°C  
DD = 3.0 V  
V
2
1
0
1  
2  
3  
4  
4 3 2 1  
0
1
2
3
4
1
2
3
4
5
6
Input Offset Voltage VIO (mV)  
Supply Voltage VDD (V)  
Figure 1-11. HA1630Q04  
Common Mode Input Voltage vs.  
Ambient Temperature  
Figure 1-10. HA1630Q04  
Input Offset Voltage vs. Ambient Temperature  
4
3
3.0  
2.0  
1.0  
0
VDD = 1.8 V, VIN = 0.9 V  
VDD = 3.0 V, VIN = 1.5 V  
2
VDD = 3.0 V  
1
0
1  
2  
3  
4  
VDD = 5.5 V, VIN = 2.75 V  
1.0  
40 20  
0
20  
40  
60  
80  
100  
40 20  
0
20  
40  
60  
80 100  
Ambient Temperature Ta (°C)  
Ambient Temperature Ta (°C)  
Rev.1.00 Mar 10, 2006 page 6 of 23  
HA1630Q04/05/06 Series  
Figure 1-12. HA1630Q04  
Power Supply Rejection Ratio vs. Frequency  
100  
80  
60  
Ta = 25°C  
VDD = 3.0 V  
RL = 1 MΩ  
CL = 20 pF  
40  
20  
0
10  
100  
100  
100  
1k  
10k  
100k  
1M  
10M  
Frequency f (Hz)  
Figure 1-13. HA1630Q04  
Common Mode Rejection Ratio vs. Frequency  
100  
80  
60  
Ta = 25°C  
VDD = 3.0 V  
RL = 1 MΩ  
CL = 20 pF  
40  
20  
0
10  
1k  
10k  
100k  
1M  
10M  
Frequency f (Hz)  
Figure 1-14. HA1630Q04  
Open Loop Voltage Gain and Phase Angle vs. Frequency  
100  
80  
60  
40  
20  
0
225  
180  
135  
90  
Ta = 25°C  
VDD = 3.0 V  
RL = 1 MΩ  
CL = 20 pF  
Open Loop Voltage Gain  
Phase Angle  
45  
0
Phase Margin: 57 deg  
20  
45  
90  
40  
10  
1k  
10k  
100k  
1M  
10M  
Frequency f (Hz)  
Rev.1.00 Mar 10, 2006 page 7 of 23  
HA1630Q04/05/06 Series  
Figure 1-15. HA1630Q04  
Input Bias Current vs. Ambient Temperature  
Figure 1-16. HA1630Q04  
Input Bias Current vs. Input Voltage  
200  
100  
0
200  
100  
0
Ta = 25°C  
VDD = 3.0 V  
VDD = 3.0 V  
100  
200  
100  
200  
0
25  
50  
75  
100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Input Voltage VIN (V)  
Ambient Temperature Ta (°C)  
Figure 1-17. HA1630Q04  
Slew Rate (rising) vs. Ambient Temperature  
Figure 1-18. HA1630Q04  
Slew Rate (falling) vs. Ambient Temperature  
5
4
3
2
1
0
5
4
3
2
1
0
VDD = 5.5 V  
VDD = 3.0 V  
VDD = 5.5 V  
VDD = 3.0 V  
VDD = 1.8 V  
VDD = 1.8 V  
40 20  
0
20  
40  
60  
80  
100  
40 20  
0
20  
40  
60  
80 100  
Ambient Temperature Ta (°C)  
Ambient Temperature Ta (°C)  
Figure 1-19. HA1630Q04  
Large Signal Transient Response  
Figure 1-20. HA1630Q04  
Small Signal Transient Response  
Ta = 25°C  
DD = 3.0 V  
RL = 100 kΩ  
CL = 20 pF  
Ta = 25°C  
VDD = 3.0 V  
RL = 100 kΩ  
CL = 20 pF  
V
1.6 V  
1.4 V  
2.0 V  
0 V  
Vin = 2.1 Vp-p, 250 kHz  
Vin = 0.2 Vp-p, 250 kHz  
2.0 V  
0 V  
1.6 V  
1.4 V  
Rev.1.00 Mar 10, 2006 page 8 of 23  
HA1630Q04/05/06 Series  
Figure 1-21. HA1630Q04  
Figure 1-22. HA1630Q04  
Total Harmonic Distortion + Noise vs.  
Output Voltage p-p  
Total Harmonic Distortion + Noise vs.  
Output Voltage p-p  
10  
1
10  
1
VDD = 3.0 V  
Ta = 25°C  
Gain = 0 dB  
f = 10 kHz  
f = 1 kHz  
f = 100 Hz  
f = 10 kHz  
f = 1 kHz  
f = 100 Hz  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
VDD = 3.0 V  
Ta = 25°C  
Gain = 40 dB  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Output Voltage Vout p-p (V)  
Output Voltage Vout p-p (V)  
Figure 1-23. HA1630Q04  
Voltage Output p-p vs. Frequency  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Ta = 25°C  
VDD = 3.0 V  
Gain = 40 dB,  
IN = 0.03 Vp-p  
Gain = 20 dB,  
VIN = 0.3 Vp-p  
V
Gain = 0 dB,  
VIN = 2.0 Vp-p  
1k  
10k  
100k  
Frequency f (Hz)  
1M  
10M  
Figure 1-24. HA1630Q04  
Voltage Noise Density vs. Frequency  
200  
160  
120  
80  
VDD = 3.0 V  
Ta = 25°C  
Gain = 40 dB  
R
S = 1 kΩ  
40  
0
100  
1k  
10k  
Frequency f (Hz)  
Rev.1.00 Mar 10, 2006 page 9 of 23  
HA1630Q04/05/06 Series  
Main Characteristics (HA1630Q05)  
Figure 2-1. HA1630Q05  
Supply Current vs. Supply Voltage  
800  
Figure 2-2. HA1630Q05  
Supply Current vs. Ambient Temperature  
800  
600  
400  
200  
0
Ta = 25°C  
VDD = 5.5 V  
VDD = 3.0 V  
600  
400  
200  
0
VDD = 1.8 V  
1
2
3
4
5
6
40 20  
0
20  
40  
60  
80 100  
Supply Voltage VDD (V)  
Ambient Temperature Ta (°C)  
Figure 2-3. HA1630Q05  
Output High Voltage vs. Output Source Current  
Figure 2-4. HA1630Q05  
Output High Voltage vs. Supply Voltage  
6
5
4
3
2
1
0
6
5
4
3
2
1
Ta = 25°C  
Ta = 25°C  
VDD = 3.0 V  
RL = 100 k  
VDD = 5.5 V  
RL = 20 k  
VDD = 3.0 V  
VDD = 1.8 V  
0
100  
200  
300  
400  
500  
1
2
3
4
5
6
Output Source Current IOSOURCE (µA)  
Supply Voltage VDD (V)  
Figure 2-5. HA1630Q05  
Output Source Current vs. Ambient Temperature  
800  
VDD = 5.5 V  
VDD = 3.0 V  
VDD = 1.8 V  
600  
400  
200  
0
40 20  
0
20  
40  
60  
80 100  
Ambient Temperature Ta (°C)  
Rev.1.00 Mar 10, 2006 page 10 of 23  
HA1630Q04/05/06 Series  
Figure 2-6. HA1630Q05  
Output Low Voltage vs. Output Sink Current  
Figure 2-7. HA1630Q05  
Output Sink Current vs. Ambient Temperature  
1.5  
1.0  
0.5  
0
10  
8
VDD = 5.5 V  
VDD = 3.0 V  
VDD = 5.5 V  
VDD = 3.0 V  
6
VDD = 1.8 V  
4
VDD = 1.8 V  
2
0
0
2
4
6
8
40 20  
0
20  
40  
60  
80  
100  
Output Sink Current IOSINK (mA)  
Ambient Temperature Ta (°C)  
Figure 2-8. HA1630Q05  
Input Offset Voltage Distribution  
Figure 2-9. HA1630Q05  
Input Offset Voltage vs. Supply Voltage  
40  
30  
20  
10  
0
4
3
Ta = 25°C  
VIN = 0.5 V  
Ta = 25°C  
DD = 3.0 V  
V
2
1
0
1  
2  
3  
4  
4 3 2 1  
0
1
2
3
4
1
2
3
4
5
6
Input Offset Voltage VIO (mV)  
Supply Voltage VDD (V)  
Figure 2-11. HA1630Q05  
Common Mode Input Voltage vs.  
Ambient Temperature  
Figure 2-10. HA1630Q05  
Input Offset Voltage vs. Ambient Temperature  
4
3
3.0  
2.0  
1.0  
0
VDD = 1.8 V, VIN = 0.9 V  
VDD = 3.0 V, VIN = 1.5 V  
2
VDD = 3.0 V  
1
0
1  
2  
3  
4  
VDD = 5.5 V, VIN = 2.75 V  
1.0  
40 20  
0
20  
40  
60  
80  
100  
40 20  
0
20  
40  
60  
80 100  
Ambient Temperature Ta (°C)  
Ambient Temperature Ta (°C)  
Rev.1.00 Mar 10, 2006 page 11 of 23  
HA1630Q04/05/06 Series  
Figure 2-12. HA1630Q05  
Power Supply Rejection Ratio vs. Frequency  
100  
80  
60  
Ta = 25°C  
VDD = 3.0 V  
RL = 1 MΩ  
CL = 20 pF  
40  
20  
0
10  
100  
100  
100  
1k  
10k  
100k  
1M  
10M  
Frequency f (Hz)  
Figure 2-13. HA1630Q05  
Common Mode Rejection Ratio vs. Frequency  
100  
80  
60  
Ta = 25°C  
DD = 3.0 V  
RL = 1 MΩ  
CL = 20 pF  
V
40  
20  
0
10  
1k  
10k  
100k  
1M  
10M  
Frequency f (Hz)  
Figure 2-14. HA1630Q05  
Open Loop Voltage Gain and Phase Angle vs. Frequency  
100  
80  
60  
40  
20  
0
225  
Ta = 25°C  
VDD = 3.0 V 180  
Open Loop Voltage Gain  
RL = 1 MΩ  
CL = 20 pF  
135  
90  
Phase Angle  
45  
0
Phase Margin: 55 deg  
20  
45  
90  
40  
10  
1k  
10k  
100k  
1M  
10M  
Frequency f (Hz)  
Rev.1.00 Mar 10, 2006 page 12 of 23  
HA1630Q04/05/06 Series  
Figure 2-15. HA1630Q05  
Input Bias Current vs. Ambient Temperature  
Figure 2-16. HA1630Q05  
Input Bias Current vs. Input Voltage  
200  
100  
0
200  
100  
0
Ta = 25°C  
VDD = 3.0 V  
VDD = 3.0 V  
100  
200  
100  
200  
0
25  
50  
75  
100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Input Voltage VIN (V)  
Ambient Temperature Ta (°C)  
Figure 2-17. HA1630Q05  
Slew Rate (rising) vs. Ambient Temperature  
Figure 2-18. HA1630Q05  
Slew Rate (falling) vs. Ambient Temperature  
10  
8
10  
8
VDD = 5.5 V  
VDD = 3.0 V  
VDD = 5.5 V  
VDD = 3.0 V  
6
6
VDD = 1.8 V  
4
4
VDD = 1.8 V  
2
2
0
0
40 20  
0
20  
40  
60  
80  
100  
40 20  
0
20  
40  
60  
80  
100  
Ambient Temperature Ta (°C)  
Ambient Temperature Ta (°C)  
Figure 2-19. HA1630Q05  
Large Signal Transient Response  
Figure 2-20. HA1630Q05  
Small Signal Transient Response  
Ta = 25°C  
DD = 3.0 V  
RL = 100 kΩ  
CL = 20 pF  
Ta = 25°C  
VDD = 3.0 V  
RL = 100 kΩ  
CL = 20 pF  
1.6 V  
1.4 V  
1.6 V  
1.4 V  
V
2.0 V  
0V  
VIN = 2.1 Vp-p, 500 kHz  
VIN = 0.2 Vp-p, 500 kHz  
2.0 V  
0 V  
Rev.1.00 Mar 10, 2006 page 13 of 23  
HA1630Q04/05/06 Series  
Figure 2-21. HA1630Q05  
Figure 2-22. HA1630Q05  
Total Harmonic Distortion + Noise vs.  
Output Voltage p-p  
Total Harmonic Distortion + Noise vs.  
Output Voltage p-p  
10  
1
10  
1
VDD = 3.0 V  
Ta = 25°C  
Gain = 0 dB  
f = 10 kHz  
f = 1 kHz  
f = 100 Hz  
f = 10 kHz  
f = 1 kHz  
f = 100 Hz  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
VDD = 3.0 V  
Ta = 25°C  
Gain = 40 dB  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Output Voltage Vout p-p (V)  
Output Voltage Vout p-p (V)  
Figure 2-23. HA1630Q05  
Voltage Output p-p vs. Frequency  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Ta = 25°C  
VDD = 3.0 V  
Gain = 40 dB,  
VIN = 0.03 Vp-p  
Gain = 20 dB,  
VIN = 0.3 Vp-p  
Gain = 0 dB,  
IN = 2.0 Vp-p  
V
1k  
10k  
100k  
1M  
10M  
Frequency f (Hz)  
Figure 2-24. HA1630Q05  
Voltage Noise Density vs. Frequency  
200  
160  
120  
80  
VDD = 3.0 V  
Ta = 25°C  
Gain = 40 dB  
R
S = 1 kΩ  
40  
0
100  
1k  
10k  
Frequency f (Hz)  
Rev.1.00 Mar 10, 2006 page 14 of 23  
HA1630Q04/05/06 Series  
Main Characteristics (HA1630Q06)  
Figure 3-1. HA1630Q06  
Supply Current vs. Supply Voltage  
1600  
Figure 3-2. HA1630Q06  
Supply Current vs. Ambient Temperature  
1600  
1200  
800  
400  
0
Ta = 25°C  
VDD = 5.5 V  
VDD = 3.0 V  
1200  
800  
400  
0
VDD = 1.8 V  
1
2
3
4
5
6
40 20  
0
20  
40  
60  
80 100  
Supply Voltage VDD (V)  
Ambient Temperature Ta (°C)  
Figure 3-3. HA1630Q06  
Output High Voltage vs. Output Source Current  
Figure 3-4. HA1630Q06  
Output High Voltage vs. Supply Voltage  
6
5
4
3
2
1
0
6
5
4
3
2
1
Ta = 25°C  
Ta = 25°C  
RL = 100 k  
VDD = 5.5 V  
RL = 20 k  
VDD = 3.0 V  
VDD = 1.8 V  
0
200  
400  
600  
800  
1000  
1
2
3
4
5
6
Output Source Current IOSOURCE (µA)  
Supply Voltage VDD (V)  
Figure 3-5. HA1630Q06  
Output Source Current vs. Ambient Temperature  
1600  
VDD = 5.5 V  
VDD = 3.0 V  
VDD = 1.8 V  
1200  
800  
400  
0
40 20  
0
20  
40  
60  
80  
100  
Ambient Temperature Ta (°C)  
Rev.1.00 Mar 10, 2006 page 15 of 23  
HA1630Q04/05/06 Series  
Figure 3-6. HA1630Q06  
Output Low Voltage vs. Output Sink Current  
Figure 3-7. HA1630Q06  
Output Sink Current vs. Ambient Temperature  
1.5  
1.0  
0.5  
0
12  
10  
8
VDD = 5.5 V  
VDD = 3.0 V  
VDD = 5.5 V  
VDD = 3.0 V  
VDD = 1.8 V  
6
4
VDD = 1.8 V  
2
0
0
2
4
6
8
10  
40 20  
0
20  
40  
60  
80 100  
Output Sink Current IOSINK (mA)  
Ambient Temperature Ta (°C)  
Figure 3-8. HA1630Q06  
Input Offset Voltage Distribution  
Figure 3-9. HA1630Q06  
Input Offset Voltage vs. Supply Voltage  
40  
30  
20  
10  
0
4
3
Ta = 25°C  
VIN = 0.5 V  
Ta = 25°C  
VDD = 3.0 V  
2
1
0
1  
2  
3  
4  
4 3 2 1  
0
1
2
3
4
1
2
3
4
5
6
Input Offset Voltage VIO (mV)  
Supply Voltage VDD (V)  
Figure 3-11. HA1630Q06  
Common Mode Input Voltage vs.  
Ambient Temperature  
Figure 3-10. HA1630Q06  
Input Offset Voltage vs. Ambient Temperature  
4
3
3.0  
2.0  
1.0  
0
VDD = 1.8 V, VIN = 0.9 V  
VDD = 3.0 V, VIN = 1.5 V  
2
VDD = 3.0 V  
1
0
1  
2  
3  
4  
VDD = 5.5 V, VIN = 2.75 V  
1.0  
40 20  
0
20  
40  
60  
80 100  
40 20  
0
20  
40  
60  
80 100  
Ambient Temperature Ta (°C)  
Ambient Temperature Ta (°C)  
Rev.1.00 Mar 10, 2006 page 16 of 23  
HA1630Q04/05/06 Series  
Figure 3-12. HA1630Q06  
Power Supply Rejection Ratio vs. Frequency  
100  
80  
60  
Ta = 25°C  
DD = 3.0 V  
RL = 1 MΩ  
CL = 20 pF  
VRIP = 0.1 Vp  
V
40  
20  
0
10  
100  
100  
100  
1k  
10k  
100k  
1M  
10M  
Frequency f (Hz)  
Figure 3-13. HA1630Q06  
Common Mode Rejection Ratio vs. Frequency  
100  
80  
60  
Ta = 25°C  
VDD = 3.0 V  
RL = 1 MΩ  
CL = 20 pF  
40  
20  
0
10  
1k  
10k  
100k  
1M  
10M  
Frequency f (Hz)  
Figure 3-14. HA1630Q06  
Open Loop Voltage Gain and Phase Angle vs. Frequency  
100  
80  
60  
40  
20  
0
225  
Ta = 25°C  
Open Loop Voltage Gain  
VDD = 3.0 V 180  
RL = 1 MΩ  
CL = 20 pF  
135  
90  
Phase Angle  
45  
0
Phase Margin: 65 deg  
20  
45  
90  
40  
10  
1k  
10k  
100k  
1M  
10M  
Frequency f (Hz)  
Rev.1.00 Mar 10, 2006 page 17 of 23  
HA1630Q04/05/06 Series  
Figure 3-15. HA1630Q06  
Input Bias Current vs. Ambient Temperature  
Figure 3-16. HA1630Q06  
Input Bias Current vs. Input Voltage  
200  
100  
0
200  
100  
0
Ta = 25°C  
VDD = 3.0 V  
VDD = 3.0 V  
100  
200  
100  
200  
0
25  
50  
75  
100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Input Voltage VIN (V)  
Ambient Temperature Ta (°C)  
Figure 3-17. HA1630Q06  
Slew Rate (rising) vs. Ambient Temperature  
Figure 3-18. HA1630Q06  
Slew Rate (falling) vs. Ambient Temperature  
14  
12  
10  
8
14  
12  
10  
8
VDD = 5.5 V  
VDD = 3.0 V  
VDD = 5.5 V  
VDD = 3.0 V  
VDD = 1.8 V  
VDD = 1.8 V  
6
6
4
4
40 20  
0
20  
40  
60  
80 100  
40 20  
0
20  
40  
60  
80  
100  
Ambient Temperature Ta (°C)  
Ambient Temperature Ta (°C)  
Figure 3-19. HA1630Q06  
Large Signal Transient Response  
Figure 3-20. HA1630Q06  
Small Signal Transient Response  
Ta = 25°C  
Ta = 25°C  
VDD = 3.0 V  
RL = 100 kΩ  
CL = 20 pF  
VDD = 3.0 V  
RL = 100 kΩ  
CL = 20 pF  
2.0 V  
0 V  
1.6 V  
1.4 V  
1.6 V  
VIN = 1.9 Vp-p, 500 kHz  
VIN = 0.2 Vp-p, 500 kHz  
2.0 V  
0 V  
1.4 V  
Rev.1.00 Mar 10, 2006 page 18 of 23  
HA1630Q04/05/06 Series  
Figure 3-21. HA1630Q06  
Figure 3-22. HA1630Q06  
Total Harmonic Distortion + Noise vs.  
Output Voltage p-p  
Total Harmonic Distortion + Noise vs.  
Output Voltage p-p  
10  
1
10  
1
VDD = 3.0 V  
Ta = 25°C  
Gain = 0 dB  
f = 10 kHz  
f = 1 kHz  
f = 100 Hz  
f = 10 kHz  
f = 1 kHz  
f = 100 Hz  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
VDD = 3.0 V  
Ta = 25°C  
Gain = 40 dB  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Output Voltage Vout p-p (V)  
Output Voltage Vout p-p (V)  
Figure 3-23. HA1630Q06  
Voltage Output p-p vs. Frequency  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Ta = 25°C  
VDD = 3.0 V  
Gain = 40 dB,  
VIN = 0.03 Vp-p  
Gain = 20 dB,  
VIN = 0.3 Vp-p  
Gain = 0 dB,  
VIN = 2.0 Vp-p  
1k  
10k  
100k  
1M  
10M  
Frequency f (Hz)  
Figure 3-24. HA1630Q06  
Voltage Noise Density vs. Frequency  
200  
160  
120  
80  
VDD = 3.0 V  
Ta = 25°C  
Gain = 40 dB  
R
S = 1 kΩ  
40  
0
100  
1k  
10k  
Frequency f (Hz)  
Rev.1.00 Mar 10, 2006 page 19 of 23  
HA1630Q04/05/06 Series  
Test Circuits  
1. Power Supply Rejection Ratio, PSRP & Voltage Offset, VIO  
VIO  
VDD  
VDD  
2
RS  
RF  
VIO = VO  
×
RS + RF  
RS  
RS  
PSRR  
+
VO  
VO1 VO2  
RS  
VDD  
2
PSRR = 20log  
×
VDD1 VDD2  
RS + RF  
Measure VO corresponding to VDD1 = 2.95 V and VDD2 = 3.05 V  
2. Supply Current, IDD  
3. Input Bias Current, IIB  
VDD  
VDD  
A
+
+
A
VDD  
2
VDD  
2
4. Output High Voltage, VOH  
VDD  
VOH  
RL = 1 MΩ  
VIN1 = VDD / 2 0.05 V  
V
IN2 = VDD / 2 + 0.05 V  
+
VO  
VIN1 VIN2  
RL  
5. Output Low Voltage, VOL  
VDD  
VOL  
RL = 1 MΩ  
VIN1 = VDD / 2 + 0.05 V  
VIN2 = VDD / 2 0.05 V  
RL  
+
VO  
VIN1 VIN2  
Rev.1.00 Mar 10, 2006 page 20 of 23  
HA1630Q04/05/06 Series  
6. Output Source Current, IOSOURCE & Output Sink Current, IOSINK  
VDD  
IOSOURCE  
VO = VDD 0.5 V  
V
IN1 = VDD / 2 0.05 V  
IN2 = VDD / 2 + 0.05 V  
V
+
A
IOSINK  
VO = + 0.5 V  
VIN1 VIN2  
VO  
VIN1 = VDD / 2 + 0.05 V  
VIN2 = VDD / 2 0.05 V  
7. Common Mode Input Voltage, VCM & Common Mode Rejection Ratio, CMRR  
VDD  
CMRR  
RF  
VO1 VO2  
VIN1 VIN2  
RS  
RS  
RS  
CMRR = 20log  
×
RS + RF  
+
VO  
RF  
Measure VO corresponding to VIN1 = 0 V and VIN2 = 2.1 V  
VDD  
VIN  
2
8. Total Harmonic Distortion, THD  
VDD  
THD  
Gain Variable  
1 + RF / RS = 100  
VDD  
RF  
Gain Variable  
RS  
Gain = +1  
freq = 100 Hz, 1 kHz, 10 kHz  
+
+
VO  
VO  
VIN  
VIN  
VSS  
VSS  
9. Slew Rate, SR  
10. Gain, AV & Phase, GBW  
VDD  
VDD  
RF  
RS  
+
+
VO  
20 pF  
VO  
20 pF  
1 MΩ  
1 MΩ  
RS  
VSS  
VSS  
Rev.1.00 Mar 10, 2006 page 21 of 23  
HA1630Q04/05/06 Series  
Package Dimensions  
JEITA Package Code  
RENESAS Code  
Previous Code  
TTP-14DV  
MASS[Typ.]  
0.05g  
P-TSSOP14-4.4x5-0.65  
PTSP0014JA-B  
*1  
D
F
14  
8
NOTE)  
1. DIMENSIONS"*1 (Nom)"AND"*2"  
DO NOT INCLUDE MOLD FLASH.  
2. DIMENSION"*3"DOES NOT  
INCLUDE TRIM OFFSET.  
b p  
Index mark  
Terminal cross section  
( Ni/Pd/Au plating )  
Dimension in Millimeters  
Reference  
Symbol  
1
7
Min Nom Max  
D
*3  
5.00 5.30  
4.40  
bp  
Z
x
M
E
A2  
A1  
A
bp  
b1  
c
L1  
e
0.03 0.07 0.10  
1.10  
0.15 0.20 0.25  
0.10 0.15 0.20  
c1  
L
θ
HE  
e
x
y
0° 8°  
6.20 6.40 6.60  
y
Detail F  
0.65  
0.13  
0.10  
Z
L
L1  
0.83  
0.4 0.5 0.6  
1.0  
Rev.1.00 Mar 10, 2006 page 22 of 23  
HA1630Q04/05/06 Series  
Taping & Reel Specification  
[Taping]  
Package Code  
TSSOP-14  
W
P
8
Ao  
Bo  
Ko  
E
F
D1  
1.6  
Maximum Storage No.  
2,000 pcs/reel  
12  
6.5  
5.1  
1.5  
5.5  
Unit: mm  
4.0  
φ
1.5  
A0  
2.0  
Cover  
Tape  
K0  
D1  
P
Tape withdraw direction  
17.4  
[Reel]  
Package  
TSSOP-14  
Tape width  
12  
W1  
W2  
17.4 13.4  
[Ordering Information]  
Ordering Unit  
2,000 pcs  
13.4  
2.0  
2.0  
Mark Indication  
(1) to (4)  
Week code  
14  
8
(5),(8) to (10) Space  
0Q04  
HA1630Q04  
HA1630Q05  
HA1630Q06  
(6), (7)  
(11), (12)  
Product  
Name  
0Q05  
0Q06  
(1) (2) (3) (4)  
(5) (6) (7)  
(8) (9) (10) (11) (12)  
1
7
Index hole  
Rev.1.00 Mar 10, 2006 page 23 of 23  
Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
Keep safety first in your circuit designs!  
1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble  
may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.  
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary  
circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's  
application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.  
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data,  
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.  
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of  
publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is  
therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product  
information before purchasing a product listed herein.  
The information described here may contain technical inaccuracies or typographical errors.  
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.  
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor  
home page (http://www.renesas.com).  
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to  
evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes  
no responsibility for any damage, liability or other loss resulting from the information contained herein.  
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life  
is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a  
product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater  
use.  
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.  
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and  
cannot be imported into a country other than the approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.  
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.  
RENESAS SALES OFFICES  
http://www.renesas.com  
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.  
Renesas Technology America, Inc.  
450 Holger Way, San Jose, CA 95134-1368, U.S.A  
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501  
Renesas Technology Europe Limited  
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.  
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900  
Renesas Technology (Shanghai) Co., Ltd.  
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120  
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898  
Renesas Technology Hong Kong Ltd.  
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong  
Tel: <852> 2265-6688, Fax: <852> 2730-6071  
Renesas Technology Taiwan Co., Ltd.  
10th Floor, No.99, Fushing North Road, Taipei, Taiwan  
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999  
Renesas Technology Singapore Pte. Ltd.  
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632  
Tel: <65> 6213-0200, Fax: <65> 6278-8001  
Renesas Technology Korea Co., Ltd.  
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea  
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145  
Renesas Technology Malaysia Sdn. Bhd  
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia  
Tel: <603> 7955-9390, Fax: <603> 7955-9510  
© 2006. Renesas Technology Corp., All rights reserved. Printed in Japan.  
Colophon .6.0  

HA1630Q06T 相关器件

型号 制造商 描述 价格 文档
HA1630Q06T-E RENESAS IC,OP-AMP,QUAD,CMOS,TSSOP,14PIN,PLASTIC 获取价格
HA1630Q06TELL-E RENESAS HA1630Q06TELL-E 获取价格
HA1630S01 HITACHI J204077_HA1630S01 获取价格
HA1630S01 RENESAS Ultra-Small Low Voltage Operation CMOS Single Operational Amplifier 获取价格
HA1630S01CM RENESAS Ultra-Small Low Voltage Operation CMOS Single Operational Amplifier 获取价格
HA1630S01LP RENESAS Ultra-Small Low Voltage Operation CMOS Single Operational Amplifier 获取价格
HA1630S02 HITACHI J204077_HA1630S01 获取价格
HA1630S02 RENESAS Ultra-Small Low Voltage Operation CMOS Single Operational Amplifier 获取价格
HA1630S02CM RENESAS Ultra-Small Low Voltage Operation CMOS Single Operational Amplifier 获取价格
HA1630S02LP RENESAS Ultra-Small Low Voltage Operation CMOS Single Operational Amplifier 获取价格

HA1630Q06T 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6