HA17384SPS-E [RENESAS]

1A SWITCHING CONTROLLER, 500kHz SWITCHING FREQ-MAX, PDIP8, 6.30 X 9.60 MM, 2.54 MM PITCH, PLASTIC, DIP-8;
HA17384SPS-E
型号: HA17384SPS-E
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

1A SWITCHING CONTROLLER, 500kHz SWITCHING FREQ-MAX, PDIP8, 6.30 X 9.60 MM, 2.54 MM PITCH, PLASTIC, DIP-8

开关 光电二极管
文件: 总29页 (文件大小:478K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HA17384SPS/SRP, HA17384HPS/HRP,  
HA17385HPS/HRP  
High Speed Current Mode PWM Control IC  
for Switching Power Supply  
REJ03F0149-0300  
(Previous: ADE-204-028B)  
Rev.3.00  
Jun 15, 2005  
Description  
The HA17384S/H and HA17385H are PWM control switching regulator IC series suitable for highspeed, current-mode  
switching power supplies. With ICs from this series and a few external parts, a small, low cost flyback-transformer  
switching power supply can be constructed, which facilitates good line regulation by current mode control.  
Synchronous operation driven after an external signal can also be easily obtainech offers various applications such  
as a power supply for monitors small multi-output power supply.  
The IC series are composed of circuits required for a switching regula-voltage lockout (UVL), a  
high precision reference voltage regulator (5.0 V ± 2%), a triangulgeneration, a high-gain  
error amplifier, and as totem pole output driver circuit which direr MOSFETs found in main  
switching devices. In addition, a pulse-by-pulse type, highmparator circuit with variable  
detection level is incorporated which is required for curre
The HA17384SPS includes the above basic functo these basic functions, the H Series  
incorporates thermal shut-down protection (TSion (OVP) functions, for configuration of  
switching power supplies that meet the dema
Between the HA17384 and HA17385, oages differ as shown in the product lineup table.(See  
next page.)  
This IC is pin compatible with e by other companies in the electronics industry. However,  
due to the characteristics of to achieve ICs that offer full compatibility in every detail.  
Therefore, when using onanother manufacturer’s IC, it must be recognized that it has different  
electrical characteristics, and confirm that there is no problem with the power supply (mounting) set  
used.  
Rev.3.00 Jun 15, 2005 page 1 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
Functions  
Under-voltage lockout system  
Reference voltage regulator of 5.0 V ± 2%  
Triangular wave (sawtooth) oscillator  
Error amplifier  
Totem pole output driver circuit (direct driving for power MOS FETs)  
Current-detection comparator circuit for current mode  
OVP function (over voltage protection) *1  
TSD function (thermal shut-down protection) *1  
Protect function by zener diode (between power input and GND)  
Note: 1. H series only.  
Features  
High-safety UVL circuit is used (Both VIN and Vref are monitored)  
High speed operation:  
Current detection response time: 100 ns Typ  
Maximum oscillation frequency: 500 kHz  
Low standby current: 170 µA Typ  
Wide range dead band time  
(Discharge current of timing capacitance is constant 8.4 mA Typ)  
Able to drive power MOSFET directly  
(Absolute maximum rating of output current is ±1 A peak)  
OVP function (over voltage protection) is included *1  
(Output stops when FB terminal voltage is 7.0 V Ty
TSD function (thermal shut-down protection) is i
(Output stops when the temperature is 160°C
Zener protection is included  
(Clamp voltage between VIN and GND
Wide operating temperature range:  
Operating temperature: –20°
Junction temperature: 15
Notes: 1. H series only.  
2. S series only.  
Rev.3.00 Jun 15, 2005 page 2 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
Product Lineup  
Package  
Additional Function  
UVL Power Supply  
Threshold Voltage  
TSD  
OVP  
(Thermal shut-down  
protection)  
(Over voltage  
protection)  
DILP8 (DP-8B) SOP8 (FP-8DC)  
VTH UVL (V) Typ  
VTL UVL (V) Typ  
HA17384SPS  
HA17384HPS  
HA17385HPS  
HA17384SRP  
HA17384HRP  
HA17385HRP  
16.0  
10.0  
8.4  
7.6  
Pin Arrangement  
1
2
3
4
8
7
6
COMP  
FB  
Vref  
VI
CS  
RT/CT  
(To
Pin Function  
Pin No.  
Symbol  
nction  
Note  
1
2
3
4
5
6
7
8
COMP  
FB  
Err
OVP input pin  
put pin  
1
CS  
RT/CT  
GND  
OUT  
VIN  
ing capacitance connect pin  
tput pin  
ly voltage input pin  
Rece voltage 5V output pin  
Vref  
Note: 1. Overvoltage protection (OVP) input is usable only for the HA17384H and HA17385H.  
Rev.3.00 Jun 15, 2005 page 3 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
Block Diagram  
0.8mA  
UVL1  
5V band  
gap  
H
COMP  
1
2
3
4
8
Vref  
reference  
regulator  
L
VH  
VL  
EA  
+
UVL2  
6.5V  
1
OVP  
latch  
Vref  
2
(2.5V)  
Q
R
Vref > 4.7V  
S
OVP  
+
*
1
FB  
7
VIN  
(OVP input)  
2VF  
TSD  
sense  
7.0V  
1V  
OR  
34V  
2R  
R
160°C  
CS  
latch  
R
S
CS  
+
CS  
6
OUT  
Q
PWM
Oscillat
set  
ulse  
RT/CT  
5
GND  
Note: 1. Bre not included in HA17384SPS/SRP.  
Rev.3.00 Jun 15, 2005 page 4 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
Absolute Maximum Ratings  
(Ta = 25°C)  
Item  
Symbol  
Rating  
30  
Unit  
V
Note  
Supply voltage  
VIN  
DC output current  
IO  
±0.1  
A
Peak output current  
IO PEAK  
VFB  
VCOMP  
IOEA  
PT  
±1.0  
A
Error amplifier input voltage  
COMP terminal input voltage  
Error output sink current  
Power dissipation  
–0.3 to VIN  
–0.3 to +7.5  
10  
V
V
mA  
mW  
°C  
°C  
°C  
°C  
°C  
680  
1, 2  
Operating temperature  
Junction temperature  
Topr  
Tj  
–20 to +105  
125  
3
4
3
4
150  
Storage temperature  
Tstg  
–55 to +125  
–55 to +150  
Notes: 1. For the HA17384HPS and HA17385HPS,  
This value applies up to Ta = 43°C; at temperatures above this, 8.3 mC derating should be applied.  
For the HA17384SPS,  
This value applies up to Ta = 68°C; at temperatures above thising should be applied.  
800  
680mW  
S  
600  
17384HPS, HA17385HPS  
374mW  
400  
200 166mW  
68°C  
105°C  
120  
125°C  
140  
150°C  
0
20  
60  
80  
100  
160  
ent Temperature Ta (°C)  
Rev.3.00 Jun 15, 2005 page 5 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
Absolute Maximum Ratings (cont.)  
Notes: 2. This is the value when the device is mounted on a glass-epoxy substrate (40 mm × 40 mm × 1.6 mm).  
However,  
For the HA17384HRP and HA17385HRP,  
Derating should be performed with 8.3 mW/°C in the Ta 43°C range if the substrate wiring density is 10%.  
Derating should be performed with 11.1 mW/°C in the Ta 63°C range if the substrate wiring density is 30%.  
For the HA17384SRP,  
Derating should be performed with 8.3 mW/°C in the Ta 68°C range if the substrate wiring density is 10%.  
Derating should be performed with 11.1 mW/°C in the Ta 89°C range if the substrate wiring density is 10%.  
HA17384SRP  
: 11.1 mW/°C (wiring density is 30%)  
: 8.3 mW/°C (wiring density is 10%)  
HA17384HRP, HA17385HRP  
: 11.1 mW/°C (wiring density is 30%)  
: 8.3 mW/°C (wiring density is 10%)  
800  
600  
400  
200  
0
680 mW  
500 mW  
374 mW  
222 mW  
166 mW  
43°C  
63°C  
68°C  
140  
150°C  
20  
0
20  
40  
60  
160  
Ambient Te
3. Applies to the HA17384HPS/HRP and
4. Applies to the HA17384SPS/SRP.  
Rev.3.00 Jun 15, 2005 page 6 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
Electrical Characteristics  
(The condition is: Ta = 25°C, VIN = 15 V, CT = 3300 pF, RT = 10 kwithout notice)  
Reference Part  
Item  
Symbol  
Vref  
Min  
4.9  
Typ  
5.0  
20  
Max  
5.1  
50  
Unit  
V
Test Condition  
Io = 1 mA  
Note  
Reference output voltage  
Line regulation  
Regline  
Regload  
los  
mV  
mV  
mA  
12 V VIN 25 V  
–1 mA Io 20 mA  
Vref = 0V  
Load regulation  
10  
25  
Output short current  
Temperature stability  
–30  
–100  
80  
–180  
Vref  
ppm/°C Io = –1 mA,  
–20°C Ta 105°C  
1
Output noise voltage  
VN  
100  
µV  
10 Hz fnoise 10 kHz  
1
Note: 1. Reference value for design.  
Triangular Wave Oscillator Part  
Item  
Symbol  
Min  
Typ  
Max  
Unit  
Test Condition  
Note  
Typical oscillating  
frequency  
fosc Typ  
fosc Max  
fosc 1  
47  
52  
57  
kHz  
CT = 3300 pF,  
= 10 kΩ  
Maximum oscillating  
frequency  
500  
kHz  
Supply voltage  
±0.5  
±2.0  
25 V  
dependency of oscillating  
frequency  
Temperature dependency  
of oscillating frequency  
fosc 2  
±5.0  
a 105°C  
1
Discharge current of CT  
IsinkCT  
7.5  
8.
= 2.0 V  
Low level threshold voltage VTLCT  
1
1
High level threshold  
voltage  
VTHCT  
Triangular wave amplitude  
VCT  
V
VCT = VTHCT – VTLCT  
1
Note: 1. Reference value for design.  
°C, VIN = 15 V, CT = 3300 pF, RT = 10 kwithout notice)  
Error Amplifire Part / OV
Item  
yp  
2.50  
–0.2  
90  
Max  
2.58  
–2.0  
Unit  
V
Test Condition  
VCOMP = 2.5 V  
Note  
Non-inverting input volta
Input bias current  
µA  
dB  
VFB = 5.0 V  
Open loop voltage gain  
Unity gain bank width  
AV
BW  
65  
2.0 V VO 4.0 V  
0.7  
60  
1.0  
MHz  
dB  
Power supply voltage  
rejection ratio  
PSRR  
70  
12 V VIN 25 V  
Output sink current  
IOsink EA  
IOsource EA  
VOH EA  
3.0  
–0.5  
5.5  
9.0  
–0.8  
6.5  
mA  
mA  
V
VFB = 2.7 V, VCOMP = 1.1 V  
VFB = 2.3 V, VCOMP = 5.0 V  
Output source current  
High level output voltage  
7.5  
VFB = 2.3 V,  
RL = 15 k(GND)  
Low level output voltage  
VOL EA  
VOVP  
0.7  
7.0  
30  
1.1  
8.0  
50  
V
V
VFB = 2.7 V,  
RL = 15 k(Vref)  
Increase FB terminal voltage  
VFB = 8.0 V  
OVP latch threshold  
voltage  
6.0  
1
OVP (FB) terminal input  
current  
IFB(OVP)  
µA  
V
1
1
OVP latch reset VIN voltage VIN(OVP RES)  
6.0  
7.0  
8.0  
Decreasing VIN after OVP  
latched  
Note: 1. These values are not prescribe to the HA17384SPS/SRP because OVP function is not included.  
Rev.3.00 Jun 15, 2005 page 7 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
Electrical Characteristics (cont.)  
(The condition is: Ta = 25°C, VIN = 15 V, CT = 3300 pF, RT = 10 kwithout notice)  
Current Sensing Part  
Item  
Symbol  
AVCS  
Min  
2.85  
0.9  
Typ  
3.00  
1.0  
Max  
3.15  
1.1  
Unit  
V/V  
V
Test Condition  
VFB = 0 V  
Note  
Voltage gain  
1
Maximum sensing voltage  
VthCS  
Power supply voltage  
rejection ratio  
PSRR  
70  
dB  
12 V VIN 25 V  
2
3
Input bias current  
IBCS  
tpd  
–2  
–10  
150  
µA  
ns  
VCS = 2 V  
Current sensing  
response time  
50  
100  
Time from when VCS becomes  
2 V to when output becomes  
“L” (2 V)  
Notes: 1. The gain this case is the ratio of error amplifier output change to the current-sensing threshold voltage  
change.  
2. Reference value for design.  
3. Current sensing response time tpd is definded a shown in the figure 1.  
Vth  
VCS  
VOUT  
(PWM)  
Figure 1 Definition oonse Time tpd  
PWM Output Part  
Item  
Symbo
VOL1  
.5  
2.2  
Unit  
V
Test Condition  
losink = 20 mA  
Note  
Output low voltage 1  
Output low voltage 2  
Output high voltage 1  
Output high voltage 2  
V
V
losink = 200 mA  
1
5  
13.3  
0.8  
V
losource = –20 mA  
losource = –200 mA  
V
1
Output low voltage at  
standby mode  
1.1  
V
VIN = 5 V,  
losink = 1 mA  
Rise time  
tr  
80  
70  
96  
150  
130  
100  
0
ns  
ns  
%
%
CL = 1000 pF  
CL = 1000 pF  
Fall time  
tf  
Maximum ON duty  
Minimum ON duty  
Du max  
Du min  
94  
Note: 1. Pulse application test  
Rev.3.00 Jun 15, 2005 page 8 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
Electrical Characteristics (cont.)  
(The condition is: Ta = 25°C, VIN = 15 V, CT = 3300 pF, RT = 10 kwithout notice)  
UVL Part  
Item  
Symbol  
Min  
14.5  
7.6  
9.0  
6.8  
5.0  
0.6  
4.3  
Typ  
16.0  
8.4  
Max  
17.5  
9.2  
Unit  
V
Test Condition  
Turn-ON voltage  
when VIN is rising  
Note  
Threshold voltage for  
high VIN level  
VTH UVL  
1
V
2
1
2
1
2
Threshold voltage for  
low VIN level  
VTL UVL  
10.0  
7.6  
11.0  
8.4  
V
Minimum operating  
V
voltage after turn-ON  
VHYS UVL = VTH UVL – VTL UVL  
VIN UVL hysteresis voltage VHYS UVL  
Vref UVL threshold voltage VT Vref  
6.0  
7.0  
V
0.8  
1.0  
V
4.7  
Vref  
V
Voltage is forced toVref  
terminal  
Notes: 1. For the HA17384S/H.  
2. For the HA17385H.  
Total Characteristics  
Item  
Symbol  
IIN  
Min  
7.0  
120  
200  
31  
Typ  
10.0  
170  
270  
34  
Max  
13.0  
230  
340  
Unit  
m
Test Condition  
pF, VFB = VCS = 0 V  
rt up  
Note  
Operating current  
Standby current  
Current of latch  
ISTBY  
ILATCH  
VINZ  
VFB = VOVP  
1, 2  
3, 4  
Power supply zener  
voltage  
Overheat protection  
starting temperature  
TjTSD  
160  
Notes: 1. These values are not prescribe to the HVP function is not included.  
2. VIN = 8.5 V in case of the HA17384H
3. These values are not prescribe to ause TSD function is not included.  
4. Reference value for design.  
Rev.3.00 Jun 15, 2005 page 9 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
Timing Chart  
Signal Name  
Waveform timing (Outline)  
OVP input  
OVP latched  
Power ON  
IC turn ON  
Power OFF  
Reset of  
Stationary operation  
condition  
OVP latch  
16 V  
(8.4 V)  
Input voltage  
VIN Pin 7  
10 V  
(7.6 V)  
This voltage is determined  
by the transformer  
2 V  
7.0 V  
2 V  
0V  
0V  
( ) shows the case  
using HA17385H  
UVL1  
Internal signal which  
cannot be externally  
monitored.  
5 V  
Reference voltage  
Vref Pin 8  
4.7 V  
4.7 V  
0V  
0V  
UVL2  
Internal signal which  
cannot be externally  
monitored.  
2.8 V  
1.2 V  
Oscillation voltage of  
triangular wave  
RT/CT Pin 4  
0V  
IC operates and  
PWM output stops.  
St
Start up signal  
Internal signal which  
cannot be externally  
monitored.  
0V  
PWM latch setting signal  
internal signal which  
cannot be externally  
monitored.  
0V  
0V  
7.0 V typ  
(OVP input)  
Error amplifier input signal  
VFB Pin 2  
VCOMP  
Error amplifier output s
VCO1MP Pin 1  
ID  
*
I
D
OVP latch signal  
Internal signal which  
cannot be externally  
monitored.  
VIN  
PWM output voltage  
0V  
VOUT Pin 6  
Note: 1. ID indicates the power MOSFET drain current; it is actually observed as voltage VS generated  
by power MOSFET current detection source resistance RS.  
VCOMP indicates the error amp output voltage waveform. Current mode operation is  
performed so that a voltage 1/3 that of VCOMP is the current limiter level.  
Rev.3.00 Jun 15, 2005 page 10 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
Operation (Description of Timing Chart)  
From Power ON to Turn On  
After the power is switched ON, the power supply terminal voltage (VIN) of this IC rises by charging through bleeder  
resistor RB. At this time, when the power voltage is in the range of 2 V to 16 V*1. The low-voltage, lock out UVL1  
operates and accordingly the OUT voltage, that is, the gate voltage of the power MOS FET, is fixed at 1.3 V or a lower  
value, resulting in the power MOS FET remaining in the OFF state.  
When the power supply voltage reaches 16 V, UVL1 of this IC is reset and the reference voltage (Vref) generating part  
turns ON. However, until Vref becomes 4.7 V, the low-voltage, lock out UVL2 operates to keep the OUT terminal  
voltage low. After Vref terminal voltage becomes 4.7 V or higher, OUT terminal outputs a PWM pulse.  
Note: 1. The value is for the HA17384S/H.  
The value is 8.4 V for the HA17385H.  
Generation of Triangular Wave and PWM Pulse  
After the output of the Vref, each blocks begins to operate. The triangular wave is generated on the RT/CT terminal.  
For PWM pulses, the triangular wave rise time is taken as the variable on-duty on-time. The triangular wave fall time is  
taken as the dead-band time. The initial rise of the triangular wave starts from 0 V, and to prevent a large on-duty at  
this time, the initial PWM pulse is masked and not output. PWM pulses are oud after the second triangular wave.  
The above operation is enabled by the charge energy which is charged throuer resistor RB into the capacitor  
CB of VIN.  
Stationary Operation  
PWM pulses are outputted after the second wave of the trianguration as the switching power  
supply starts.  
By switching operation from ON/OFF to OFF/ON in MOS FET), the transformer converts  
the voltage. The power supply of IC VIN is fed by ransformer.  
In the current mode of the IC, the current in thmonitored by a source resistor RCS. Then the  
current limiter level is varied according to rminal voltage) for PWM control. One third of  
the error voltage level, which is divided the IC, is used to sense the current (R = 25 k).  
Two diodes between the error outponly as a DC level shifter. Actually, these diodes are  
connected between the 2R-R circnt sensing comparator and GND, respectively. Therefore,  
these blocks operate 1.4 V higcordingly, the error of the current sensing level caused by the  
switching noise on the Gated. The zener diode of 1 V symbolically indicates that the  
maximum sensing voltas 1 V.  
Rev.3.00 Jun 15, 2005 page 11 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
Power OFF  
At power OFF, the input voltage of the transformer gradually decreases and then VIN of IC also decreases according to  
the input voltage. When VIN becomes lower than 10 V*2 or Vref becomes lower than 4.7 V, UVL1 (UVL2) operates  
again and the PWM pulse stops.  
Note: 2. The value is for the HA17384S/H.  
The value is 7.6 V for the HA17385H.  
Commercial AC voltage  
RB  
220k  
1/4W  
+
SBD  
ex. HRP24  
100µ  
200V  
+
Rectifier  
+
bridge diode  
HRP32  
B
Power switch Line filter  
+
P
S
DC  
output  
VIN  
CB  
10µ  
50V  
20k  
+
1000µ  
3.6k  
OVP input  
(Ex: from photocoupler)  
10V  
0.1µ  
Floating  
ground  
COMP  
FB  
Vref  
150k  
100p  
VIN  
RT  
10k  
MOSFET  
567  
CS  
OU
RT/CT  
CT  
3300p  
HA1
H
VCS  
RCS  
1
2W  
330p  
Figure 2 Mountineration Expression  
Rev.3.00 Jun 15, 2005 page 12 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
VCOMP  
COMP terminal  
(Error output)  
2 R  
2VF  
CS  
R
1 V  
latch  
R
S
CS  
VCS  
CS terminal  
+
PWM pulse  
Q
Latch setting pulse  
(Implemented in triagular  
wave oscillator)  
Latch setting  
pulse  
VCOMP  
Error voltage  
1
×
3
VCS  
Current sensing  
level  
Figure 3 Operation Diagram of Current SPart  
Point: 1) At maximum rated load, the setting
approximately 90% of area A be
2) When the OVP latch is operaade  
in area B or C.  
1.0  
Heavy lo
0.8  
nary operation / PWM  
0.6  
urrent-mode operation)  
Current limit operation / Max duty cycle  
C : No sensitivity area / No PWM output  
0.4  
0.2  
0.0  
4.4V  
7.5V  
0
3
4
5
6
7
8
ifier Output Voltage Vcomp (V)  
Figure 4 Current Sense Characteristics  
Rev.3.00 Jun 15, 2005 page 13 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
Features and Theory of Current Mode Control  
Features of Current Mode Control  
Switch element current detection is performed every cycle, giving a high feedback response speed.  
Operation with a constant transformer winding current gives a highly stable output voltage (with excellent line  
regulation characteristics, in particular).  
Suitable for flyback transformer use.  
External synchronous operation is easily achieved. (This feature, for example, is applicable to synchronization with  
a forizontal synchronizing signal of CRT monitor.)  
Theory of Current Mode Control  
In current mode control, a PWM pulse is generated not by comparing an error voltage with a triangular wave voltage in  
the voltage mode, but by changing the current limiter level in accordance with the error voltage (COMP terminal in this  
IC, that is,output of the error amplifier output) which is obtained by constantly monitoring the current of the switching  
device (power MOS FET) using source resistor RCS.  
One of the features of current mode control is that the current limited operates in all cycles of PWM as described by the  
above theory.  
In voltage mode, only one feedback loop is made by an output voltage. In e, on the other hand, two loops  
are used. One is an output voltage loop and the other is a loop of the swient itself. The current of the  
switching device can be controlled switch high speed. In current modhe transformer winding is  
kept constant, resulting in high stability. An important consequlation in terms of total  
characteristics is better than that in voltage mode.  
AC  
input  
DC  
output  
OSC  
S
IS  
Vref  
+
VCOMP  
2R  
R
Error amplifier  
Figure 5 Block Diagram of Current Mode Switching Power Spply  
Rev.3.00 Jun 15, 2005 page 14 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
A. Control in the case of heavy load  
VCS  
IS  
B. Control in the case of light load  
VCS  
IS  
As the load becomes heavy and the DC output decreases, the current sensing  
level is raised as shown in A. above in order to increase the current in the switching  
device in each cycle. When the load decreases, inverse control is carried out as  
shown in B. above.  
Figure 6 Primary Current Control of Transformer in Curnceptual Diagram)  
Rev.3.00 Jun 15, 2005 page 15 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
Main Characteristics  
Supply Current vs. Supply Voltage (HA17384S/H)  
20  
Supply Current vs. Supply Voltage (HA17385H)  
20  
Ta = 25°C  
CT = 3300pF  
Ta = 25°C  
CT = 3300pF  
fosc = 52kHz  
RT = 10kΩ  
fosc = 52kHz  
RT = 10kΩ  
15  
10  
5
15  
10  
5
Latch current  
(HA17384H)  
Latch current  
0
0
0
10  
20  
30  
40  
0
10  
20  
30  
40  
Power supply voltage VIN (V)  
Power supply voltage VIN (V)  
Standby Current/Latch Current vs. Supply Voltage  
Standby Current/Latch Current vs. Supply Voltage  
Exploded diagram of the small current part from the above figure  
Exploded diagram of thall current part from the above figure  
(HA17384S/H)  
7385H)  
2.0  
2.0  
Ta = 25°C  
Ta  
1.5  
1.5  
1.0  
Latch current  
(HA17384H)  
Latch current  
0.5  
0
0
10  
20  
10  
20  
30  
40  
Power supply voltag
Power supply voltage VIN (V)  
Operating Current vs. dby Current/Latch Current vs. Ambient Temperature  
12  
400  
VIN = 15V  
fosc = 52
Latch current  
V
V
IN = 15V (HA17384H)  
IN = 8.5V (HA17385H)  
11  
10  
300  
200  
9
8
100  
0
Stanby current  
20  
0
20  
40  
60  
80  
105  
20  
0
20  
40  
60  
80  
105  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
Rev.3.00 Jun 15, 2005 page 16 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
UVL Threshold Voltage vs. Ambient Temperature  
Line Regulation Characteristics of Reference Voltage  
20  
5.2  
Ta = 25°C  
VIN = 10V or more (HA17384S/H) RT = 10kΩ  
CT = 3300pF  
HA17384S/H  
VIN = 7.6V or more (HA17385H)  
15  
10  
5
VTH  
VTL  
5.1  
5.0  
HA17385H  
VTH  
VTL  
4.9  
4.8  
0
20  
0
20  
40  
60  
85  
0
10  
Supply voltage VIN (V)  
20  
30  
Ambient temperature Ta (°C)  
Load Regulation Characteristics of Reference Voltage  
6.0  
Reference Voltage vs. Ambient Temperature  
5.2  
Ta = 25°C  
IN = 15V  
CT = 3300pF  
VIN = 15V  
CT = 3300pF  
V
RT = 10kΩ  
RT = 10kΩ  
5.5  
5.0  
5.1  
5.
Vref short  
protection  
operates  
4.5  
4.0  
0
20  
40  
60  
80  
20  
40  
60  
80  
105  
Output current of Vref termin
Ambient temperature Ta (°C)  
CT Discharge Current vs. RT/
9.5  
Discharge Current vs. Ambient Temperature  
9.5  
VIN=15 V  
Ta = 25°C  
M
VIN = 15V  
9.0  
8.5  
9.0  
Measured when RT/CT  
terminal voltage of 2 V is  
externally supplied  
Minimum
triangular w
8.5  
Maltage of  
triangwave  
8.0  
8.0  
7.5  
7.5  
0
1
2
3
4
20  
0
20  
40  
60  
80  
105  
RT/CT terminal voltage VCT (V)  
Ambient temperature Ta (°C)  
Rev.3.00 Jun 15, 2005 page 17 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
500  
Ta = 25°C  
V
IN = 15V  
200  
100  
C
T
= 4  
1000pF  
2200p
4700pF  
0.01  
7
0
p
F
50  
0.022  
µ
F
0.047  
20  
10  
µ
F
µ
F
5
500 1k  
2k  
5k 10k 20k  
50k 100k 200k  
Timing resistance RT ()  
Figure 7 scillation Frequency vs. Timing Resistance  
Case 1.  
Setting large maximum duty cycle.  
Triangular wave  
PWM maximum
u max = 95%  
fosc = 52kHz  
case of small CT and large RT  
x. CT = 3300pF, RT = 10k)  
Case 2.  
Setting small maximu
r wave  
um ON pulse  
Du max = 40%  
fosc = 52kHz  
In the case of large CT and small RT  
(ex. CT = 0.033µF, RT = 680)  
Figure 8 Relationship Between Triangular Wave and Maximum ON Duty of PWM Pulse  
Rev.3.00 Jun 15, 2005 page 18 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
100  
Ta = 25°C  
75  
50  
25  
V
IN = 15V  
0
500  
1k  
2k  
5k  
10k 20k  
50k 100k 200k  
Timing Resistance RT ()  
Note: In the oscillation system of this IC, a constant dischargcurrent of 8.4mA  
flows the timing capacitor during triangular wave fall. re, note that a  
small maximum ON duty (large dead band) leads pply current.  
Refer to the equations of oscillation frequency andetails.  
Figure 9 PWM Pulse ON Duty vs
Rev.3.00 Jun 15, 2005 page 19 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
Oscillation Frequency vs. Ambient Temperature  
Operating Current vs. Maximum ON Duty  
25  
65  
60  
55  
50  
45  
40  
VIN = 15V  
CL = 1000pF  
VIN = 15V  
Ta=25  
°C  
CL = 1000pF  
20  
15  
10  
5
VCS = 0V  
VFB = 0V  
CT = 3300pF  
RT = 10kΩ  
Dumax = 95%  
CT = 0.033µF  
RT = 680Ω  
Dumax = 40%  
0
0
25  
50  
75  
100  
20  
0
20  
40  
60  
80  
105  
Ambient Temperature Ta (°C)  
Maximum ON Duty Du max (%)  
Rise/Fall Time of Output Pulse vs. Load Capacitance  
250  
Rise/Fall Time of Output Pulse vs. Ambient Temperature  
250  
VIN = 15V  
VCS = 0V  
CL = 1000pF  
VIN = 15V  
VCS = 0V  
Ta = 25°C  
CT = 3300pF  
RT = 10kΩ  
V
FB = 0
200  
150  
100  
50  
V
FB = 0V  
200  
150  
CT = 3300pF  
RT = 10kΩ  
ime tf  
0
0
1000  
2000  
3000  
20  
40  
60  
80  
105  
Output load capacitance C
Ambient temperature Ta (°C)  
tionship Between Low Voltage Malfunction  
Protection and PWM Output  
Current Sensing Level vs. A
1.25  
VIN = 15V Measure
VFB = 0V voltag
1.00  
VIN  
(UVL1)  
L
H
H
L
Vref  
(UVL2)  
L
L
L
L
H
H
L
0.75  
0.50  
0.25  
0
Available  
to  
output  
PWM  
OUTPUT  
IC is in  
the ON  
state and  
output is  
fixed to  
LO.  
Condition  
description state  
Standby  
Operation Standby  
state state  
20  
0
20  
40  
60  
80  
105  
Ambient temperature Ta (°C)  
Rev.3.00 Jun 15, 2005 page 20 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
100  
VIN = 15V, Ta = 25°C  
75  
50  
Gain AVO  
Unit gain frequency  
fT = 1MHz Typ  
25  
0
0
60  
Phase Φ  
Phase margin  
at fT  
25  
120  
ΦO = 60° Typ  
180  
10M  
10  
100  
1k  
10k  
100k  
1M  
Error Amplifier Input Signal Frequency f (Hz)  
Figure 10 Open Loop Gain Characterisrics of Err Amplifier  
Rev.3.00 Jun 15, 2005 page 21 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
Calculation of operation parameters  
Triangular wave  
1. Maximum ON duty Du max (Refer to the right figure.)  
1
Du max =  
190Ω  
RT 440Ω  
1 + 1.78 × In 1 +  
(
)
2. Oscillation frequency fosc  
PWM maximum  
ON pulse  
1
fosc =  
190Ω  
C × R × 0.56 + In 1 +  
{
(
R 440)}  
T
T
T
From the above two equations, the following two equations are  
obtained.  
3. Equalization to device RT from Du max  
Dumax is the ratio of  
maximum ON time of  
PWM to one cycle time.  
190Ω  
RT =  
+ 440Ω  
0.56 (1/Du max 1)  
e
1  
(e = 2.71828.base of natural logarithm)  
4. Equation to device CT from fosc and RT  
In the above case,  
Dumax = 95%  
Du max  
CT = 1.78 ×  
fosc × RT  
5. Operating current IIN  
IIN = IQ + IsinkCT × (1 Du max) + Ciss × VIN × fosc  
providing that IQ = 8.4mA Typ (Supply curops.)  
Ciss is the input gate capacitance of thonnected and VIN is  
the supply voltage of the IC.  
Example 1: Calculation when RT = 10k
fosc = 52kHz, Du max = 95%,
Example 2: Calculation for 50% of
RT = 693, CT = 6360p
However, Ciss = 100
Note that the actucalculated one because of the internal  
delay in operatof the POWER MOS FET. Check the  
value when
Additionalarge supply current, even if the frequency is  
not chome difficult. In such a case, the following  
mea
er, a small bleeder resistance is required.  
ce between Vref and GND is required.  
(max with a triangular wave and raise the current limit of the  
vice to around the maximum value (1.0V Typ).  
VTHCS  
RCS  
IDmax  
=
The current limit is essed as  
Figure 11 Calculation of Operation Parameters  
Rev.3.00 Jun 15, 2005 page 22 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
Application Circuit Example (1)  
Rectifier bridge diode  
+
141V  
+
100µ  
200V 1/4W  
220k  
SBD  
HRP24  
1000µ  
10V  
Commercial  
AC 100V  
+
Line filter  
HRP32  
B
16.4V  
VIN  
+
P
S
DC 5V, 3A  
OUTPUT  
20k  
+
10µ  
50V  
3.6k  
HA17384H,  
HA17385H  
10k  
Transformer specification  
example  
EI-22 type core  
(H7C18 × 06Z)  
Gap length  
2SA1029  
0.1µ  
Vref  
COMP  
FB  
150k  
100p  
10k  
lg = 0.3mm  
VIN  
OUT  
GND  
51  
K1567  
RT  
10k  
47k  
CS  
nsformer coil example  
80T/570µH  
6T Bifiler/22µH  
/170µH  
RT/CT  
HA17431  
CT  
3300p  
The circuit for  
output current limiter  
1k  
470p  
1k  
Notes: 1.  
: PRIMARY GND, : S
2. Check the wiring directi
3. Insert a snubber circu
4. OVP function is noRP.  
Snubber circuit  
example  
s a flyback type, the voltages in the  
dary (s) coils of the transformer and  
re proportional to each other. Using this,  
age of the backup coil (VIN of IC) is controlled  
16.4V. (The voltage of the point divided by  
f 20kand 3.6kis 2.5V).  
470p  
1kV  
51  
FRD  
DFG1C8  
oltage Sensing Flyback Converter  
Rev.3.00 Jun 15, 2005 page 23 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
Application Circuit Example (2)  
When the error amplifier is used  
Transformer specification  
example  
EI-22 type core  
(H7C18 × 06Z)  
Gap length  
Rectifier bridge diode  
+
141V  
+
100µ  
200V 1/4W  
220k  
lg = 0.3mm  
Transformer coil example  
P: 0.580T/570µH  
S: 0.516T Bifiler/22µH  
Commercial  
AC 100V  
Line filter  
SBD  
B: 0.244T/170µH  
HRP24  
+
HRP32  
P
2SA1029  
10k  
10k  
VIN  
16.4V  
1.8k  
330  
S
+
+
B
10µ  
50V  
1000µ  
10V  
DC  
3.3k  
3.3µ  
5V, 3A  
OUTPUT  
+
47k HA17431  
B
4.7k  
The circuit for  
output current limiter  
HA17431  
HA17384H,  
HA17385H  
0.1µ  
Vref  
COMP  
150k  
100p  
ler  
ntrol)  
FB  
VIN  
OUT  
GND  
2SK1567  
51  
RT  
10k  
CS  
RT/CT  
CT  
3300p  
1k  
470p  
1k  
When the error  
amplifier is not used  
eory)  
ndary side (S) of the flyback converter,  
plification is carried out by a shunt  
or and photocoupler.  
COMP  
OVP input  
voltage of the backup coil (B) is not monitored,  
hich differs from the application example (1).  
Bleeder resistor  
(adjuster according  
to the rating of the  
Photocoupler)  
In addition, OVP operates on the secondary side  
(S) using a photocoupler.  
Refer to the application example (1) for the other  
notes.  
Figure 13 Secondary Voltage Sensing Flyback Converter  
Rev.3.00 Jun 15, 2005 page 24 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
Application Examples for Fuller Exploitation of Power Supply Functions  
A number of application examples are briefly described below.  
1. Soft start  
A soft start is a start method in which the PWM pulse width is gradually increased when the power supply is  
activated. This prevents the stress on the transformer and switch element caused by a rapid increase in the PWM  
pulse width, and also prevents overshoot when the secondary-side output voltage rises. The circuit diagram is  
shown in figure 14.  
VIN  
7
DIN  
(5V)  
VREF  
8
1
IO  
Vref  
5V  
800µA typ  
RCU  
COMP  
D2  
FB  
2
EA  
(4.4V)  
(3.7V)  
+
D1  
CST  
2.5V  
(3V)  
2R  
R
IC internal circuit  
(around error amp.)  
(1V)  
1V  
To power supply  
detection  
comparator  
nal circuit  
rtially shown)  
Figure 14 Circuit Diagram f
Operation: In this circuit, error amp output source current IO (the switch element  
current detection level, using a voltage slope that charges shen the voltage at each node  
is at the value shown in parentheses in the figure, the some is thus given by the  
following formula:  
TST = (3.7 V/800 µA) × CST 4.62 CST (m
(CST unit: µF)  
External parts other than CST operate as fo
Diode D1  
Diode D2  
: Current detection se-flow prevention.  
: Together with rge drawing when power supply falls.  
Resistance RCU : For CST chaUse a high resistance of the order of several  
hundred
Note: During a soft start, output for a while after the IC starts operating, there is a lack of  
energy during thde may be entered. In this case, the capacitance between Vref and  
GND should be inF to 10 µF.  
Rev.3.00 Jun 15, 2005 page 25 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
Notice for Use  
OVP Latch Block  
Case  
When DC power is applied directly as the power supply of the HA17384H, HA17385H, without using the  
transformer backup coil. Also, when high-frequency noise is superimposed on the VIN pin.  
Problem  
The IC may not be turn on in the case of a circuit in which VIN rises quickly (10 V/100 µs or faster), such as that  
shown in figure 15. Also, the OVP latch may operate even though the FB pin is normally at VOVP or below after the  
IC is activated.  
Reason  
Because of the IC circuit configuration, the timer latch block operates first.  
Remedy (counter measure)  
Take remedial action such as configuring a time constant circuit (RB, CB) as shown in figure 16, to keep the VIN rise  
speed below 10 V/100 µs. Also, if there is marked high-frequency noise on the VIN pin, a noise cancellation  
capacitor (CN) with the best possible high-frequency characteristics (such as a ceramic capacitor) should be inserted  
between the VIN pin and GND, and close to the VIN pin.  
When configuring an IC power supply with an activation resistance and backuing, such as an AC/DC converter,  
the rise of VIN will normally be around 1 V/100 µs, and there is no risk of occurring, but careful attention  
must be paid to high-frequency noise.  
Also, this phenomenon is not occuring to the HA17384S, because O
Input  
VIN  
eedback  
Ficuit with Fast VIN Rise Time  
Rev.3.00 Jun 15, 2005 page 26 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
Input  
Output  
Time constant  
circuit  
RB  
51Ω  
CN  
VIN  
VIN  
18V  
Feedback  
HA17384  
Series  
+
CB  
1µF  
GND  
Figure 16 Sample Remedial Circuit  
Externally Synchronized Operation  
Case  
When, with a power supply using the HA17384S/H or HA17385H, externally synchronized operation is performed  
by applying an external syncronous signal to the RT/CT pin (pin 4).  
Problem  
Synchronized operation may not be possible if the amplitude of the externnous signal is too large.  
Reason  
The RT/CT pin falls to a potential lower than the ground.  
Remedy (counter measure)  
In this case, clamping is necessary using a diode with as smalh as a schottky barrier  
diode, as shown in figure 17.  
Vref  
ous  
HA17384  
Series  
nal  
Remedial Circuit  
Rev.3.00 Jun 15, 2005 page 27 of 28  
HA17384SPS/SRP, HA17384HPS/HRP, HA17385HPS/HRP  
Package Dimensions  
JEITA Package Code  
P-DIP8-6.3x9.6-2.54  
RENESAS Code  
PRDP0008AF-A  
Previous Code  
DP-8B  
MASS[Typ.]  
0.51g  
D
8
5
1
4
b 3  
0.89  
Z
Dimension in Millimeters  
Reference  
Symbol  
Min  
Nom  
7.62  
9.6  
Max  
e 1  
D
10.6  
7.4  
E
6.3  
A
5.06  
A 1  
b p  
b 3  
c
0.5  
0.38  
0.48  
1.3  
0.58  
0.35  
0.20  
0.25  
bp  
e
θ
0°  
15°  
e
2.29  
2.54  
2.54  
2.79  
1.27  
Z
L
JEITA Package Code  
P-SOP8-3.95x4.9-1.27  
RENESAS Code  
PRSP0008DD-B  
Pre
*1  
NOTE)  
F
D
1. DIMENSIONS"*1 (Nom)"AND"*2"  
DO NOT INCLUDE MOLD FLASH.  
2. DIMENSION"*3"DOES NOT  
INCLUDE TRIM OFFSET.  
8
bp  
b1  
Index mark  
Dimension in Millimeters  
Reference  
Symbol  
Min  
Nom  
4.90  
3.95  
Max  
5.30  
Terminal cross section  
D
E
A 2  
A 1  
A
1
4
0.10  
0.34  
0.19  
0.14  
0.25  
1.75  
0.50  
*3  
e
bp  
Z
x
M
L 1  
b p  
b 1  
c
0.42  
0.40  
0.22  
0.20  
0.25  
c
1
θ
H E  
e
0
°
8°  
5.80  
6.10  
1.27  
6.20  
x
0.25  
0.10  
0.75  
1.27  
L
y
y
Z
Detail F  
L
0.40  
0.60  
1.08  
L
1
Rev.3.00 Jun 15, 2005 page 28 of 28  
Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-mhiyoda-ku, Tokyo 100-0004, Japan  
Keep safety first in your circuit designs!  
1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and me is always the possibility that trouble  
may occur with them. Trouble with semiconductors may lead to personal injury, fire or property dam
Remember to give due consideration to safety when making your circuit designs, with appropriate ent of substitutive, auxiliary circuits,  
(ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
1. These materials are intended as a reference to assist our customers in the selection of tht suited to the customer's  
application; they do not convey any license under any intellectual property rights, or annology Corp. or a third party.  
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringemethe use of any product data,  
diagrams, charts, programs, algorithms, or circuit application examples contained i
3. All information contained in these materials, including product data, diagrams, chinformation on products at the time of  
publication of these materials, and are subject to change by Renesas Technoloprovements or other reasons. It is  
therefore recommended that customers contact Renesas Technology Corp. rp. product distributor for the latest product  
information before purchasing a product listed herein.  
The information described here may contain technical inaccuracies or ty
Renesas Technology Corp. assumes no responsibility for any damageaccuracies or errors.  
Please also pay attention to information published by Renesas Techthe Renesas Technology Corp. Semiconductor  
home page (http://www.renesas.com).  
4. When using any or all of the information contained in these matearts, programs, and algorithms, please be sure to  
evaluate all information as a total system before making a finaation and products. Renesas Technology Corp. assumes  
no responsibility for any damage, liability or other loss result
5. Renesas Technology Corp. semiconductors are not desigr system that is used under circumstances in which human life  
is potentially at stake. Please contact Renesas Technolnology Corp. product distributor when considering the use of a  
product contained herein for any specific purposes, sution, vehicular, medical, aerospace, nuclear, or undersea repeater  
use.  
6. The prior written approval of Renesas Technology e in whole or in part these materials.  
7. If these products or technologies are subject to hey must be exported under a license from the Japanese government and  
cannot be imported into a country other than
Any diversion or reexport contrary to the exand/or the country of destination is prohibited.  
8. Please contact Renesas Technology Cor the products contained therein.  
RENESAS SALES O
http://www.renesas.com  
Refer to "http://www.renesas.comatest and detailed information.  
Renesas Technology America, Inc.  
450 Holger Way, San Jose, CA 95134-1A  
Tel: <1> (408) 382-7500, Fax: <1> (408) 3501  
Renesas Technology Europe Limited  
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.  
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900  
Renesas Technology Hong Kong Ltd.  
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong  
Tel: <852> 2265-6688, Fax: <852> 2730-6071  
Renesas Technology Taiwan Co., Ltd.  
10th Floor, No.99, Fushing North Road, Taipei, Taiwan  
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999  
Renesas Technology (Shanghai) Co., Ltd.  
Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China  
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952  
Renesas Technology Singapore Pte. Ltd.  
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632  
Tel: <65> 6213-0200, Fax: <65> 6278-8001  
© 2005. Renesas Technology Corp., All rights reserved. Printed in Japan.  
Colophon 2.0  

相关型号:

HA17384SRP

High Speed Current Mode PWM Control IC for Switching Power Supply
HITACHI

HA17384SRP

High Speed Current Mode PWM Control IC for Switching Power Supply
RENESAS

HA17384SRP-E

1A SWITCHING CONTROLLER, 500kHz SWITCHING FREQ-MAX, PDSO8, 3.95 X 4.90 MM, 1.27 MM PITCH, PLASTIC, SOP-8
RENESAS

HA17385BFP

1 A SWITCHING CONTROLLER, 500 kHz SWITCHING FREQ-MAX, PDSO14, SOP-14
RENESAS

HA17385BPS

1 A SWITCHING CONTROLLER, 500 kHz SWITCHING FREQ-MAX, PDIP8, PLASTIC, MO-001AN, DIP-8
RENESAS

HA17385EPS

Switching Controller, Current-mode, 1A, 500kHz Switching Freq-Max, PDIP8, DIP-8
HITACHI

HA17385FP

CURRENT MODE PWM CONTROL SWITTCHING REGULATOR ICS
HITACHI

HA17385HPS

High Speed Current Mode PWM Control IC for Switching Power Supply
HITACHI

HA17385HPS

High Speed Current Mode PWM Control IC for Switching Power Supply
RENESAS

HA17385HPS-E

暂无描述
RENESAS

HA17385HPS/HRP

High Speed Current Mode PWM Control IC for Switching Power Supply
HITACHI

HA17385HRP

High Speed Current Mode PWM Control IC for Switching Power Supply
HITACHI