HD404314H [RENESAS]

microcomputer designed to increase program productivity; 微机,旨在提高生产力的计划
HD404314H
型号: HD404314H
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

microcomputer designed to increase program productivity
微机,旨在提高生产力的计划

微控制器和处理器 外围集成电路
文件: 总68页 (文件大小:306K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
To all our customers  
Regarding the change of names mentioned in the document, such as Hitachi  
Electric and Hitachi XX, to Renesas Technology Corp.  
The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas  
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog  
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)  
Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand  
names are mentioned in the document, these names have in fact all been changed to Renesas  
Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and  
corporate statement, no changes whatsoever have been made to the contents of the document, and  
these changes do not constitute any alteration to the contents of the document itself.  
Renesology Home Page: http://www.renesas.com  
Renesas Technology Corp.  
Customer Support Dept.  
April 1, 2003  
Cautions  
Keep safety first in your circuit designs!  
1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better  
and more reliable, but there is always the possibility that trouble may occur with them. Trouble with  
semiconductors may lead to personal injury, fire or property damage.  
Remember to give due consideration to safety when making your circuit designs, with appropriate  
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or  
(iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
1. These materials are intended as a reference to assist our customers in the selection of the Renesas  
Technology Corporation product best suited to the customer's application; they do not convey any  
license under any intellectual property rights, or any other rights, belonging to Renesas Technology  
Corporation or a third party.  
2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any  
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or  
circuit application examcontained in these materials.  
3. All information contese materials, including product data, diagrams, charts, programs and  
algorithms represents ion products at the time of publication of these materials, and are  
subject to change by Renelogy Corporation without notice due to product improvements or  
other reasons. It is therefornded that customers contact Renesas Technology Corporation  
or an authorized Renesas Technoration product distributor for the latest product information  
before purchasing a product listed
The information described here may cnical inaccuracies or typographical errors.  
Renesas Technology Corporation assumesibility for any damage, liability, or other loss  
rising from these inaccuracies or errors.  
Please also pay attention to information publishsas Technology Corporation by various  
means, including the Renesas Technology Corporonductor home page  
(http://www.renesas.com).  
4. When using any or all of the information contained in thls, including product data, diagrams,  
charts, programs, and algorithms, please be sure to evaluate tion as a total system before  
making a final decision on the applicability of the information ts. Renesas Technology  
Corporation assumes no responsibility for any damage, liability os resulting from the  
information contained herein.  
5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device  
or system that is used under circumstances in which human life is potentially at stake. Please contact  
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor  
when considering the use of a product contained herein for any specific purposes, such as apparatus or  
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.  
6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in  
whole or in part these materials.  
7. If these products or technologies are subject to the Japanese export control restrictions, they must be  
exported under a license from the Japanese government and cannot be imported into a country other  
than the approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the  
country of destination is prohibited.  
8. Please contact Renesas Technology Corporation for further details on these materials or the products  
contained therein.  
HD404318 Series  
Rev. 6.0  
Sept. 1998  
Description  
The HD404318 Series is 4-bit HMCS400-series microcomputer with large-capacity memory designed to  
increase program productivitch microcomputer has an A/D converter and input capture timer built in.  
They also come with high-pins that can directly drive a fluorescent display.  
The HD404318 Series includes s: the HD404318 with 8-kword ROM; the HD404316 with 6-  
kword ROM; the HD404314 with 4M; the HD4074318 with 8-kword PROM.  
The HD4074318 is a PROM version ZTcomputer. Programs can be written to the PROM by a  
PROM writer, which can dramatically shordevelopment periods and smooth the process from  
debugging to mass production. (The PROM proifications are the same as for the 27256.)  
ZTAT : Zero Turn Around Time ZTAT is a trademchi Ltd.  
Features  
34 I/O pins  
One input-only pin  
33 input/output pins: 21 pins are high-voltage pins (40 V, max.)  
On-chip A/D converter (8-bit × 8-channel)  
Three timers  
One event counter input  
One timer output  
One input capture timer  
8-bit clock-synchronous serial interface (1 channel)  
Alarm output  
Built-in oscillators  
Ceramic or crystal oscillator  
External clock drive is also possible  
HD404318 Series  
Seven interrupt sources  
Two by external sources  
Three by timers  
One each by the A/D converter and serial interface  
Two low-power dissipation modes  
Standby mode  
Stop mode  
Instruction cycle time 1 µs (fosc = 4 MHz)  
Ordering Information  
Type  
Model Name  
ROM (words)  
RAM (digit)  
Package  
DP-42S  
FP-44A  
DP-42S  
FP-44A  
DP-42S  
FP-44A  
DP-42S  
FP-44A  
Mask ROM  
HD404314S  
HD40
HD404
HD404316
HD404318S  
HD404318H  
HD4074318S  
HD4074318H  
4,096  
384  
6,144  
2  
8
ZTAT  
Recommended PROM Programmers and Sockers  
PROM Programmer  
Manufacture  
Socket Adapter  
Package  
DP-42S  
Model Name  
Man
Model Name  
DATA I/O Corp.  
121B  
Hitachi  
HS4318ESS01H  
HS4318ESH01H  
HS4318ESS01H  
HS4318ESH01H  
FP-44A  
AVAL Corp.  
PKW-1000  
DP-42S  
Hitachi  
FP-44A  
2
HD404318 Series  
Pin Arrangement  
RA1/Vdisp  
R00/SCK  
R01/SI  
R02/SO  
R03/TOC  
TEST  
RESET  
OSC1  
OSC2  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
R23  
R22  
R21  
R20  
R13  
R12  
R11  
R10  
R83  
R82  
R81  
R80  
D8  
1
2
3
4
5
6
7
8
9
GND  
AVSS  
10  
11  
12  
13  
14  
15  
16  
2
DP-42S  
R30/AN0  
R/AN1  
N2  
R41
R42/A
R43/AN7  
AVCC  
D7  
D6  
D5  
D4/STOPC  
D3/BUZZ  
D2/EVNB  
D1/INT1  
VCC  
D0/INT0  
1
2
3
4
5
6
7
8
3
R12  
R11  
R10  
R83  
R82  
R81  
R80  
D8  
TEST  
RESET  
OSC1  
OSC2  
GND  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
FP-44A  
AVSS  
R30/AN0  
R31/AN1  
R32/AN2  
R33/AN3  
R40/AN4  
9
10  
11  
D7  
D6  
D5  
3
HD404318 Series  
PinDescription  
Pin Number  
Item  
Power supply VCC  
GND  
Symbol  
DP-42S FP-44A I/O Function  
21  
10  
16  
5
Applies power voltage  
Connected to ground  
Vdisp (shared 1  
with RA1)  
39  
Used as a high-voltage output power supply pin when  
selected by the mask option  
Test  
TEST  
6
1
I
Cannot be used in user applications. Connect this pin  
to GND.  
Reset  
RESET  
7
8
2
3
I
I
Resets the MCU  
Oscillator  
OSC1  
Input/output pin for the internal oscillator. Connect these  
pins to the ceramic or crystal oscillator, or OSC1 to an  
external oscillator circuit.  
OSC2  
D0–D8  
4
O
Port  
221, I/O Input/output pins addressed individually by bits; D0–D8  
are all high-voltage I/O pins. Each pin can be  
individually configured as selected by the mask option.  
RA1  
1
3
One-bit high-voltage input port pin  
R00–R03,  
R30–R43  
R10–R23,  
R80–R83  
INT0, INT1  
STOPC  
SCK  
2–5,  
40–43ur-bit input/output pins consisting of standard voltage  
12–19 7–14  
31–42 27–38 I/O ut/output pins consisting of high voltage pins  
Interrupt  
22, 23 17, 18  
I
I
Input pinal interrupts  
Stop clear  
26  
2
21  
40  
Input pin forom stop mode to active mode  
Serial  
interface  
I/O Serial interface output pin  
SI  
3
41  
42  
43  
19  
20  
15  
I
Serial interface receivinput pin  
Serial interface transmit data output pin  
Timer output pin  
SO  
4
O
O
I
Timer  
Alarm  
TOC  
EVNB  
BUZZ  
AVCC  
5
24  
25  
20  
Event count input pin  
O
Square waveform output pin  
A/D  
converter  
Power supply for the A/D converter. Connect this pin as  
close as possible to the VCC pin and at the same voltage  
as VCC. If the power supply voltage to be used for the  
A/D converter is not equal to VCC, connect a 0.1-µF  
bypass capacitor between the AVCC and AVSS pins.  
(However, this is not necessary when the AVCC pin is  
directly connected to the VCC pin.)  
AVSS  
11  
6
Ground for the A/D converter. Connect this pin as close  
as possible to GND at the same voltage as GND.  
AN0–AN7  
12–19 7–14  
I
Analog input pins for the A/D converter  
4
HD404318 Series  
Pin Description in PROM Mode  
The HD4074318 is a PROM version of a ZTAT microcomputer. In PROM mode, the MCU stops  
operating, thus allowing the user to program the on-chip PROM.  
Pin Number  
MCU Mode  
Pin  
PROM Mode  
Pin  
DP-42S  
1
FP-44A  
39  
40  
41  
42  
43  
1
I/O  
I
I/O  
RA1/Vdisp  
R00/SCK  
R01/SI  
R02/SO  
R03/TOC  
TEST  
2
I/O  
I/O  
I/O  
I/O  
I
VCC  
VCC  
3
4
5
6
VPP  
7
2
RESET  
C1  
I
RESET  
VCC  
I
8
3
I
9
4
O
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
5
GND  
GND  
O0  
6
AVSS  
7
R30/AN0  
R31/AN1  
R32/AN2  
R33/AN3  
R40/AN4  
R41/AN5  
R42/AN6  
R43/AN7  
AVCC  
O  
I/
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
8
O1  
9
O2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
23  
24  
25  
26  
O3  
O4  
VCC  
VCC  
M0  
VCC  
D0/INT0  
D1/INT1  
D2/EVNB  
D3/BUZZ  
D4/STOPC  
D5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
M1  
A1  
A2  
A3  
I
I
I
D6  
A4  
D7  
A9  
D8  
VCC  
5
HD404318 Series  
Pin Number  
MCU Mode  
Pin  
PROM Mode  
DP-42S  
31  
FP-44A  
27  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Pin  
CE  
OE  
A13  
A14  
A5  
I/O  
R80  
I
I
I
I
I
I
I
I
I
I
I
I
32  
28  
R81  
33  
29  
R82  
34  
30  
R83  
35  
31  
R10  
36  
32  
R11  
A6  
37  
33  
R12  
A7  
38  
34  
R13  
A8  
39  
35  
R20  
A0  
40  
36  
R21  
A10  
A11  
A12  
41  
37  
R22  
42  
38  
I/O: Input/output pin; I: Input pin; in  
6
HD404318 Series  
Block Diagram  
INT  
0
System control  
RAM  
Interrupt  
control  
D
D
D
D
D
D
D
D
D
0
1
2
3
4
5
6
7
8
INT  
1
× 4 bits)  
(384  
W
(2 bits)  
Timer A  
Time
Timer C  
X
(4 bits)  
R0  
R0  
R0  
R0  
0
1
2
3
EVNB  
TOC  
SPX  
(4 bits)  
Y
(4 bits)  
R1  
R1  
R1  
R1  
0
1
2
SPY  
bits)  
3
SI  
SO  
R2  
R2  
R2  
R2  
0
1
2
3
Serial  
interface  
SCK  
CA  
AV  
SS  
R3  
0
AN  
0
R3  
R3  
R3  
1
2
A/D  
converter  
ST  
(1 bit)  
(1 bit)  
3
AN  
7
A
AV  
CC  
(4 bits)  
R4  
R4  
R4  
R4  
0
1
2
3
B
(4 bits)  
BUZZ  
Buzzer  
SP  
(10 bits)  
R8  
R8  
R8  
R8  
0
1
2
Data bus  
Instruction  
decoder  
PC  
(14 bits)  
3
High voltage  
pin  
ROM  
(4,096 × 10 bits)  
(6,144 × 10 bits)  
(8,192 × 10 bits)  
RA  
1
Directional  
signal line  
7
HD404318 Series  
Memory Map  
ROM Memory Map  
Vector Address Area ($0000–$000F): Reserved for JMPL instructions that branch to the start addresses  
of the reset and interrupt routines.  
Zero-Page Subroutine Area ($0000–$003F): Reserved for subroutines. The program branches to a  
subroutine in this area in response to the CAL instruction.  
Pattern Area ($0000–$0FFF): Contains ROM data that can be referenced with the P instruction.  
Program Area ($0000–$0FFF (HD404314), $0000–$17FF (HD404316), $0000–$1FFF (HD404318,  
HD4074318)): The entire ROM area can be used for program coding.  
$0000  
$0000  
$0001  
$0002  
$0003  
$0004  
$0005  
$0006  
$0007  
0008  
09  
$
$000
$000E  
$000F  
JMPL instruction  
(jump to RESET, STOPC routine)  
Vecto
(16 w
JMPL instruction  
(jump to INT0 routine)  
$000F  
$0010  
JMPL instruction  
(jump to INT1 routine)  
Zero-page subroutine  
(64 words)  
JMPL instruction  
(jump to timer A routine)  
$003F  
$0040  
JMPL instruction  
(jump to timer B routine)  
Pattern  
(4,096 words)  
HD404314  
Program  
JMPL instruction  
(jump to timer C routine)  
(4,096 words)  
JMPL instruction  
A/D converter routine)  
$0FFF  
$1000  
L instruction  
serial routine)  
HD404316  
Program  
(6,144 words)  
$17FF  
$1800  
HD404318, HD4074318  
Program  
(8,192 words)  
$1FFF  
Note: Since the ROM address areas between $0000-$0FFF overlap, the user can determine how these areas  
are to be used.  
Figure 1 ROM Memory Map  
8
HD404318 Series  
RAM MemoryMap  
Initial values  
after reset  
$000  
$000  
$003  
$004  
$005  
Interrupt control bits area  
RAM-mapped registers  
Port mode register A  
Serial mode register  
(PMRA)  
(SMR)  
W
W
0000  
$040  
$050  
0000  
Memory registers (MR)  
Undefined  
$006  
Serial data register lower (SRL)  
R/W  
R/W  
W
Undefined  
-000  
$007 Serial data register upper (SRU)  
$008 Timer mode register A  
(TMA)  
Data (304 digits)  
$009  
$00A  
$00B  
Timer mode register B1 (TMB1)  
0000  
W
R/W  
R/W  
*1  
*2  
Timer B  
(TRBL/TWBL)  
(TRBU/TWBU)  
/0000  
Undefined  
$00C Miscellaneous register  
(MIS)  
00--  
W
W
$180  
$00D  
Timer mode register C  
(TMC)  
0000  
*2  
$00E  
$00F  
R/W  
R/W  
Timer C  
(TRCL/TWCL)  
(TRCU/TWCU)  
/0000  
Undefined  
Not used  
Not used  
$3C0  
$3FF  
Stack (64
A/D channel register  
(ACR)  
-000  
0000  
1000  
0000  
--00  
$016  
$017  
$018  
W
R
A/D data register lower (ADRL)  
A/D data register upper (ADRU)  
019 A/D mode register 1  
R
W
W
(AMR1)  
(AMR2)  
A  
A/D mode register 2  
Not used  
$020  
$023  
$024  
$025  
ter flag area  
Port
Port mo
(PMRB)  
(PMRC)  
TMB2)  
0000  
00-0  
-000  
W
W
W
$026 Timer mode
Not used  
Notes: 1. Two registers are mapped  
on the same area ($00A,  
$00B, $00E, $00F).  
$030  
Port R0 DCR  
(DCR0)  
W
0000  
2. Undefined.  
Not used  
Not used  
R: Read only  
W: Write only  
R/W: Read/write  
$033  
$034  
Port R3 DCR  
Port R4 DCR  
(DCR3)  
(DCR4)  
0000  
0000  
W
W
$03F  
Timer read register B lower (TRBL)  
Timer read register B upper (TRBU)  
Timer write register B lower (TWBL)  
Timer write register B upper (TWBU)  
$00A  
$00B  
R
R
W
W
Timer read register C lower (TRCL)  
Timer read register C upper (TRCU)  
R
R
$00E  
$00F  
Timer write register C lower (TWCL)  
Timer write register C upper (TWCU)  
W
W
Figure 2 RAM Memory Map and Initial Values  
9
HD404318 Series  
Table 1  
Initial Values of Flags after MCU Reset  
Item  
Initial Value  
Interrupt flags/mask  
Interrupt enable flag (IE)  
Interrupt request flag (IF)  
Interrupt mask (IM)  
0
0
1
0
0
0
0
0
0
Bit registers  
Watchdog timer on flag (WDON)  
A/D start flag (ADSF)  
Input capture status flag (ICSF)  
Input capture error flag (ICEF)  
IAD off flag (IAOF)  
RAM enable flag (RAME)  
RAM Address  
Bit 2  
Bit 1  
RSP  
Bit 0  
IE  
(I
IF0  
(IF of INT0)  
$0000  
$0001  
$0002  
$0003  
(Interrupt  
enable flag)  
(Reset SP bit)  
IMTA  
(IM of timer
IFTA  
timer A)  
IM1  
(IM of INT1)  
IF1  
(IF of INT1)  
IMTC  
(IM of timer C)  
(I
IMTB  
(IM of timer B)  
IFTB  
(IF of timer B)  
IMS  
(IM of serial)  
IF
(IF of se
IMAD  
M of A/D)  
IFAD  
(IF of A/D)  
Interrupt coea  
Bit 3  
Bit 2  
Bit 0  
W
(Watch
on flag)  
ADSF  
(A/D start flag)  
Not used  
Not used  
$020  
$021  
$022  
$023  
RAME  
(RAM enable  
flag)  
ICEF  
(Input capture  
error flag)  
ICSF  
(Input capture  
status flag)  
IAOF  
(IAD off flag)  
IF: Interrupt  
request flag  
IM: Interrupt  
mask  
IE: Interrupt  
enable flag  
SP: Stack pointer  
Not used  
Register flag area  
Figure 3 Interrupt Control Bits and Register Flag Areas Configuration  
10  
HD404318 Series  
TM/TMD  
SEM/SEMD  
Allowed  
REM/REMD  
Allowed  
IE  
IM  
Allowed  
IAOF  
IF  
ICSF  
ICEF  
RAME  
RSP  
Not executed  
Allowed  
Allowed  
Not executed  
Allowed  
Allowed  
Not executed  
Inhibited  
Inhibited  
Inhibited  
Allowed  
Inhibited  
WDON  
ADSF  
Not used  
Allowed  
Not executed  
Not executed  
Note:  
WDON is reset by or by STOPC enable for stop mode cancellation. The REM or REMD  
instruction must not bfor ADSF during A/D conversion. If the TM or TMD instruction is  
executed for the inhibiten-existing bits, the value in ST becomes invalid.  
Figure 4 Usage Liof RAM Bit Manipulation Instructions  
Memory registers  
$040 MR(0)  
Stack are
$3C0  
Level 16  
Level 15  
Level 14  
Level 13  
Level 12  
Level 11  
Level 10  
Level 9  
Level 8  
Level 7  
Level 6  
Level 5  
Level 4  
Level 3  
Level 2  
Level 1  
MR(1)  
MR(2)  
MR(3)  
MR(4)  
MR(5)  
MR(6)  
MR(7)  
MR(8)  
MR(9)  
MR(10)  
MR(11)  
MR(12)  
MR(13)  
MR(14)  
MR(15)  
$041  
$042  
$043  
$044  
$045  
$046  
$047  
$048  
$049  
$04A  
$04B  
$04C  
$04D  
$04E  
$04F  
S
Bit 2  
Bit 1  
Bit 0  
$3FC  
$3FD  
$3FE  
$3FF  
PC13  
PC12  
PC11  
PC10  
CA  
PC9  
PC6  
PC2  
PC8  
PC5  
PC1  
PC7  
PC4  
PC0  
PC3  
$3FF  
PC13–PC0 : Program counter  
ST: Status flag  
CA: Carry flag  
Figure 5 Configuration of Memory Registers and Stack Area, and Stack Position  
11  
HD404318 Series  
Registers and Flags  
3
3
0
0
0
(A)  
(B)  
Accumulator  
Initial value: Undefined, R/W  
B register  
W register  
Initial value: Undefined, R/W  
Initial value: Undefined, R/W  
1
(W)  
3
3
3
3
0
0
0
0
X register  
Initvalue: Undefined, R/W  
Initindefined, R/W  
Initial value: R/W  
Initial value: Undefine
Initial value: Undefined, R/W  
(X)  
(Y)  
Y register  
SPX register  
(SPX)  
(SPY)  
SPY register  
Carry  
0
(CA)  
0
Status  
Initial value: 1, no R/W  
13  
(ST)  
0
0
Program counter  
Initial value: 0,  
no R/W  
(PC)  
1
9
1
5
Stack pointer  
Initial value: $3FF, no R/W  
1
1
(SP)  
Figure 6 Registers and Flags  
12  
HD404318 Series  
Addressing Modes  
RAM Addressing Modes  
Register Indirect Addressing Mode: The contents of the W, X, and Y registers (10 bits total) are used as  
a RAM address.  
Direct Addressing Mode: A direct addressing instruction consists of two words. The first word contains  
the opcode, and the contents of the second word (10 bits) are used as a RAM address.  
Memory Register Addressing Mode (LAMR, XMRA): The memory registers (MR), which are located  
in 16 addresses from $040 to $04F, are accessed with the LAMR and XMRA instructions.  
0  
3
0
3
0
3
0
0
Y
X
Instruction  
Opcode  
9
0
9
RAM address  
Register Indirect Addressi
RAM address 0 0 0 1 0 0  
Memory Register Addressing  
1st instructio
word  
instruction  
ord  
9
0
Opcode  
Instruction  
9
RAM address  
Direct Addressing  
Figure 7 RAM Addressing Modes  
13  
HD404318 Series  
ROM Addressing Modes  
Direct Addressing Mode: A program can branch to any address in ROM memory space by executing the  
JMPL, BRL, or CALL instruction.  
Current Page Addressing Mode: A program can branch to any address in the current page (256 words  
per page) by executing the BR instruction.  
Zero-Page Addressing Mode: A program can branch to any subroutine located in the zero-page  
subroutine area ($0000–$003F) by executing the CAL instruction.  
Table Data Addressing Mode: A program can branch to an address determined by the contents of 4-bit  
immediate data, the accumulator, and the B register by executing the TBR instruction.  
1st  
2nd  
instruction worction word  
9
3
0
9
5
0
Opcode  
Opcode  
O
Operand  
13  
13  
0
Program counter  
Direct Addressing  
Program counter 0 0 0 0 0 0 0 0  
Zero-Page Addressing  
Operand  
9
7
0
3
0
7
3
0
Opcode  
Operand  
e  
B
A
13  
0
0
Program counter * * * * * *  
Current Page Addressing  
Program counter 0  
Table Data Addressing  
Figure 8 ROM Addressing Modes  
14  
HD404318 Series  
Table 2  
Instruction Set Classification  
Number of  
Instruction Type  
Immediate  
Function  
Instructions  
Transferring constants to the accumulator, B register, and RAM.  
4
8
Register-to-register  
Transferring contents of the B, Y, SPX, SPY, or memory registers to  
the accumulator  
RAM addressing  
RAM register  
Arithmetic  
Available when accessing RAM in register indirect addressing mode 13  
Transferring data between the accumulator and memory. 10  
Performing arithmetic operations with the contents of the accumulator, 25  
B register, or memory.  
Compare  
Comparing contents of the accumulator or memory with a constant  
12  
6
RAM bit manipulation Bit set, bit reset, and bit test.  
ROM addressing  
Input/output  
Brancand jump instructions based on the status condition.  
8
Coinput/output of the R and D ports; ROM data reference 11  
with thtion  
Control  
Controllincommunication interface and low-power  
dissipation m
4
Total: 101  
instructions  
15  
HD404318 Series  
Interrupts  
$000,0  
IE  
Interrupt  
request  
(RESET, STOPC)  
Priority Controller  
$000,2  
IF0  
Priority Order  
Vector Address  
$0000  
INT interrupt  
0
1
2
3
4
5
6
7
$0002  
$000,3  
I
$0004  
$0006  
$00
IF1  
$0008  
$000A  
INT interrupt  
1
$000C  
$001,1  
IM1  
$000E  
$001,2  
Timer A interrupt  
Timer B interrupt  
Timer C interrupt  
A/D interrupt  
IFTA  
$001,3  
IMTA  
$002,0  
IFTB  
$002,1  
IMTB  
$002,2  
IFTC  
$002,3  
IMTC  
$003,0  
IFAD  
$003,1  
IMAD  
$003,2  
IFS  
Serial interrupt  
$003,3  
IMS  
Figure 9 Interrupt Control Circuit  
16  
HD404318 Series  
Instruction cycles  
1
2
3
4
5
6
Instruction  
execution*  
Stacking  
Interrupt  
acceptance  
Vector address  
generation  
IE reset  
Execution of JMPL  
instruction at vector address  
Execution of  
instruction at  
start address  
of interrupt  
routine  
Note: * The stack ithe IE reset after the instruction  
is executed, eo-cycle instruction.  
Figurrupt Processing Sequence  
17  
HD404318 Series  
Operating Modes  
The MCU has three operating modes as shown in table 3. Transitions between operating modes are shown  
in figure 11.  
Table 3  
Operations in Each Operating Mode  
Function  
Active Mode  
Standby Mode  
OP  
Stop Mode  
Stopped  
Reset  
System oscillator  
CPU  
OP  
OP  
OP  
OP  
OP  
O
OP  
Retained  
Retained  
OP  
RAM  
Retained  
Reset  
Timer A  
Timers B, C  
Serial interface  
A/D  
OP  
Reset  
OP  
Reset  
OP  
Reset  
I/O  
Retained  
Reset  
Note: OP implies in operation  
18  
HD404318 Series  
Reset by  
RESET input or  
by watchdog timer  
RAME = 0  
RESET 1  
RAME = 1  
RESET 2  
STOPC  
Active  
mode  
Standby mode  
Stop mode  
BY  
ion  
fOSC: Oscillate  
fOSC: Oscillate  
STOP  
instruction  
fOSC: Stop  
øCPU: Stop  
øPER: Stop  
øCPU: Stop  
øPER: fcyc  
øCPU: fcyc  
øPER: fcyc  
I
fOSC: Main oscillation frequency  
fcyc fOSC/4  
:
øCPU: System clock  
øPER: Clock for other peripheral  
functions  
Figure 11 MCU Status Transit
In stop mode, the system oscillator is stopped. To ensure a proper oscillatstabilization period of at least  
tRC when clearing stop mode, execute the cancellation according to the timing chart in figure12.  
Stop mode  
Oscillator  
Internal  
clock  
RESET  
or  
STOPC  
tres  
t
res tRC (stabilization period)  
STOP instruction execution  
Figure 12 Timing of Stop Mode Cancellation  
19  
HD404318 Series  
MCU Operation Sequence: The MCU operates in the sequence shown in figure 13 and figure 14.  
The low-power mode operation sequence is shown in figure 14. With the IE flag cleared and an interrupt  
flag set together with its interrupt mask cleared, if a STOP/SBY instruction is executed, the instruction is  
cancelled (regarded as an NOP) and the following instruction is executed. Before executing a STOP/SBY  
instruction, make sure all interrupt flags are cleared or all interrupts are masked.  
Power ON  
No  
RESET = 0?  
Yes  
MCU operation cycle  
RAME = 0  
Yes  
IF = 1?  
Reset MCU  
No  
No  
IM = 0  
IE = 1  
Yes  
ion  
Reset input  
IE 0  
Stack (PC),  
(CA), (ST)  
SBY/STOP  
instruction  
No  
PC vector  
Low-power mode  
operation cycle  
(figure 15)  
PC (PC)+1  
address  
Figure 13 MCU Operating Sequence (Power ON)  
20  
HD404318 Series  
Low-power mode  
operation cycle  
No  
IF = 1 and  
IM = 0?  
Yes  
Stop mode  
Standby mode  
No  
No  
IF = 1 and  
IM = 0?  
STOPC = 0?  
Yes  
Yes  
Hardware
execution  
Hardware NOP  
execution  
RAME = 1  
Iocation  
PC Next  
ext  
Reset MCU  
Instructio
execution  
MCU operation  
cycle  
Figure 14 MCU Operating Sequence (Low-Power Mode Operation)  
21  
HD404318 Series  
Oscillator Circuit  
Figure 15 shows a block diagram of the clock generation circuit.  
CPU with ROM,  
RAM, registers,  
flags, and I/O  
fOSC  
fcyc  
tcyc  
øCPU  
Timing  
generator  
circuit  
OSC2  
OSC1  
1/4  
division  
circuit  
System  
oscillator  
Peripheral  
function  
øPER  
interrupt  
15 Clock Generation Circuit  
TEST  
RESET  
OSC1  
G
AVSS  
Figure 16 Typical Layout of Crystal and Ceramic Oscillator  
22  
HD404318 Series  
Table 4  
Oscillator Circuit Examples  
Circuit Configuration  
Circuit Constants  
External clock  
operation  
External  
oscillator  
OSC1  
Open  
OSC2  
Ceramic oscillator  
(OSC1, OSC2)  
Ceramic oscillator: CSA4.00MG (Murata)  
Rf = 1 MΩ ±20%  
C1  
OSC1  
OSC2  
C1 = C2 = 30 pF ±20%  
Ceramic  
Rf  
GND  
Crystal oscillator  
(OSC1, OSC2)  
Rf = 1 MΩ ±20%  
C1  
Crystal  
C2  
C1 = C2 = 10 to 22 pF ±20%  
Crystal: Equivalent to circuit shown below  
C0 = 7 pF max.  
OSC1  
Rf  
RS = 100 max.  
GND  
L
CS  
RS  
OSC1  
OSC2  
CO  
Notes: 1. Since the circuit constants change depending on the crystal oscillator and stray  
capacitance of the board, the user should consult with the crysceramic oscillator  
manufacturer to determine the circuit parameters.  
2. Wiring among OSC1, OSC2, and elements should be as short as possible, and must not cross  
other wiring (see figure 16).  
23  
HD404318 Series  
I/O Ports  
The MCU has 33 input/output pins (D0–D8, R0–R4, R8) and one input-only pin (RA1). The following  
describes the features of the I/O ports.  
The 21 pins consisting of D0–D8, R1, R2, and R8 are all high-voltage I/O pins. RA1 is a high-voltage  
input-only pin. These high-voltage pins can be equipped with or without pull-down resistance, as  
selected by the mask option.  
All standard output pins are CMOS output pins. However, the R02/SO pin can be programmed for  
NMOS open-drain output.  
In stop mode, input/output pins go to the high-impedance state  
All standard input/output pins have pull-up MOS built in, which can be individually turned on or off by  
software  
Table 5  
Control of StaI/O Pins by Program  
MIS3 (bit 3 of MIS)  
1
DCR  
PDR  
1
0
1
0
0
1
0
1
0
1
CMOS buffer  
PMOS  
NMOS  
On  
On  
On  
On  
On  
Pull-up MOS  
Note: — indicates off.  
Data control register (DCR0: $030, DCR3: $033, DCR
DCR0, DCR3,  
DCR4  
Bit  
3
0
2
0
1
0
0
0
Initial value  
Read/Write  
Bit name  
Bits 0 to 3 CMOS Buffer Control  
W
W
W
W
0
CMOS buffer off  
(high impedance)  
DCR03, DCR02, DCR01, DCR00,  
DCR33, DCR32, DCR31, DCR30,  
DCR43, DCR42, DCR41, DCR40  
1
CMOS buffer on  
Correspondence between ports and DCR bits  
Register  
DCR0  
DCR3  
DCR4  
Bit 3  
R03  
R33  
R43  
Bit 2  
R02  
R32  
R42  
Bit 1  
R01  
R31  
R41  
Bit 0  
R00  
R30  
R40  
Figure 17 Data Control Register (DCR)  
24  
HD404318 Series  
Table 6  
Circuit Configurations of Standard I/O Pins  
I/O Pin Type  
Circuit  
Pins  
Input/output pins  
R00, R01, R03  
R30–R33,  
HLT  
VCC  
Pull-up control signal  
VCC  
MIS3  
Buffer control  
signal  
R40–R43  
DCR  
PDR  
Output data  
Input data  
Input control signal  
R02  
HLT  
VCC  
Pull-up control signal  
VCC  
MIS3  
Buffer control  
signal  
DCR  
MIS2  
PDR  
Output data  
Input data  
ut control signal  
Peripheral  
function pins  
Input/ output  
pins  
SCK  
HLT  
Pull-up control signal  
MIS3  
Output data  
SCK  
data  
SCK  
Output pins  
SO  
HLT  
VCC  
Pulignal  
VCC  
MIS3  
Pl  
sig
MIS2  
SO  
Output data  
TOC  
HLT  
VCC  
Pull-up control signal  
VCC  
MIS3  
Output data  
TOC  
Notes on next page.  
25  
HD404318 Series  
I/O Pin Type  
Circuit  
Pins  
VCC  
Peripheral  
Input/ pins  
SI  
function pins  
HLT  
MIS3  
PDR  
SI  
Input data  
VCC  
AN0–AN7  
HLT  
MIS3  
PDR  
A/D input  
Input control  
Notes: 1. In stop mode, the is reset and the peripheral function selection is cancelled. The HLT  
signal goes low/output pins the enter high-impedance state.  
2. The HLT signal is and standby modes.  
26  
HD404318 Series  
Table 7  
Circuit Configurations for High-Voltage Input/Output Pins  
I/O Pin Type  
With Pull-Down Resistance  
Without Pull-Down Resistance  
Pins  
VCC  
VCC  
Input/output  
pins  
D0–D8,  
HLT  
Output  
data  
HLT  
Output  
data  
R10–R13,  
R20–R23,  
R80–R83  
Pull-down  
resistance  
Input data  
Input control  
signal  
Vdisp  
Input data  
Input control  
signal  
Input pins  
Input data RA1  
Input control  
signal  
VCC  
VCC  
Peripheral  
function pins  
Output  
pins  
BUZZ  
HLT  
HLT  
Output  
data  
Output  
data  
l-down  
ance  
t data  
Input data  
Input  
pins  
INT0,  
INT1,  
Pull-dow
resistance  
EVNB,  
STOPC  
Vdisp  
Notes: 1. In stop mode, the MCU is reset and the periphn selection is cancelled. The HLT  
signal goes low, and input/output pins the enter hnce state.  
2. The HLT signal is 1 in active and standby modes.  
3. The circuits of HD4074318 are without pull-down resist
27  
HD404318 Series  
Port mode register A (PMRA: $004)  
Bit  
3
0
2
0
1
0
0
0
Initial value  
Read/Write  
Bit name  
W
W
W
W
PMRA3 PMRA2 PMRA1 PMRA0  
PMRA0  
R02/SO Mode Selection  
0
1
R02  
SO  
PMRA2  
R03/TOC Mode Selection  
0
1
R03  
TOC  
PMRA1  
R01/SI Mode Selection  
0
1
R01  
SI  
PMRA3  
D3/BUZZ Mode Selection  
0
1
D3  
BUZZ  
Figrt Mode Register A (PMRA)  
Port mode register B (PMRB: 
Bit  
3
0
2
0
0
0
Initial value  
Read/Write  
Bit name  
W
W
W
*
PMRB3 PMRB2 PMRB1 PM
P
D0/INT0 Mode Selection  
0
1
PMRB2 D2/EVNB Mode Selection  
T0  
0
1
D2  
EVNB  
PMRB1  
D1/INT1 Mode Selection  
0
1
D1  
PMRB3 D4/STOPC Mode Selection  
INT1  
0
1
D4  
STOPC  
PMRB3 is reset to 0 only by RESET input. When STOPC is input in stop mode,  
PMRB3 is not reset but retains its value.  
Note: *  
Figure 19 Port Mode Register B (PMRB)  
28  
HD404318 Series  
Miscellaneous register (MIS: $00C)  
Bit  
3
0
2
0
1
0
Initial value  
Read/Write  
Bit name  
W
W
MIS3  
MIS2 Not used Not used  
CMOS Buffer  
On/Off Selection  
for Pin R02/SO  
Pull-Up MOS  
On/Off Selection  
MIS3  
MIS2  
Pull-up MOS off  
0
1
CMOS on  
CMOS off  
0
1
Pull-up MOS on  
(refer to table 5)  
Note: The on/each transistor and the peripheral function mode of each  
pin can be ndently.  
Figiscellaneous Register (MIS)  
29  
HD404318 Series  
Prescaler  
The MCU has a built-in prescaler labeled as prescaler S (PSS), which divides the system clock and then  
outputs divided clock signals to the peripheral function modules, as shown in figure21.  
Timer A  
Timer B  
System  
clock  
Clock  
selector  
Prescaler S  
Timer C  
Serial  
e 21 Prescaler Output Supply  
30  
HD404318 Series  
Timers  
The MCU has three built-in timers: A, B, and C. The functions of each timer are listed in table 7.  
Timer A  
Timer A is an 8-bit free-running timer that has the following features:  
One of eight internal clocks can be selected from prescaler S according to the setting of timer mode  
register A (TMA: $008)  
An interrupt request can be generated when timer counter A (TCA) overflows  
Input clock frequency must not be modified during timer A operation  
Table 7  
Timer Functions  
Functions  
Timer A  
Timer B  
Available  
Available  
Available  
Available  
Available  
Timer C  
Available  
Clock source  
Prescale
Available  
External eve
Timer functions  
Free-running  
Event counter  
Reload  
ble  
Available  
Available  
Available  
Watchdog  
Input capture  
PWM  
Available  
Timer output  
Available  
31  
HD404318 Series  
Timer A interrupt  
request flag  
(IFTA)  
Timer  
counter A  
(TCA)  
Overflow  
Selector  
øPER  
System  
clock  
3
Prescaler S (PSS)  
Timer mode  
register A  
(TMA)  
Figure 22 Block Diagram  
Timer mode register A (T
Bit  
3
2
0
0
Initial value  
Read/Write  
Bit name  
0
W
Not used TMA2  
TMA1  
Source  
Prescaler frequency  
Input clock  
TMA2 TMA1 TMA0  
0
1
0
0
1
0
1
0
1
0
1
PSS  
PSS  
PSS  
PSS  
PSS  
PSS  
PSS  
PSS  
2048tcyc  
1024tcyc  
512tcyc  
128tcyc  
32tcyc  
8tcyc  
1
0
1
4tcyc  
2tcyc  
Figure 23 Timer Mode Register A (TMA)  
32  
HD404318 Series  
Timer B  
Timer B is an 8-bit multifunction timer that includes free-running, reload, and input capture timer features.  
These are described as follows.  
By setting timer mode register B1 (TMB1: $009), one of seven internal clocks supplied from prescaler  
S can be selected, or timer B can be used as an external event counter  
By setting timer mode register B2 (TMB2: $026), detection edge type of EVNB can be selected  
By setting timer write register BL, BU (TWBL, BU: $00A, $00B), timer counter B (TCB) can be  
written to during reload timer operation  
By setting timer read register BL, BU (TRBL, BU: $00A, $00B), the contents of timer counter B can  
be read out  
Timer B can be used as an input capture timer to count the clock cycles between trigger edges input as  
an external event  
An interrupt can be requhen timer counter B overflows or when a trigger input edge is received  
during input capture op
33  
HD404318 Series  
Interrupt request  
flag of timer B  
(IFTB)  
Timer read  
register BU  
(TRBU)  
Timer read  
register B lower  
(TRBL)  
Clock  
Timer counter B  
(TCB)  
Overflow  
Free-running  
timer control  
signal  
Timer write  
register B upper  
(TWBU)  
Timer write  
register B lower  
(TWBL)  
S
EVNB  
Edge  
detector  
3
Timer mode  
register B1  
(TMB1)  
øPER  
System  
Prescaler S (PSS)  
Edge detectional  
clock  
2
Timer mode  
register B2  
(TMB2)  
Figure 24 Timer B Free-Running and Reload Operatiolock Diagram  
34  
HD404318 Series  
Input capture  
status flag  
(ICSF)  
Input capture  
error flag  
(ICEF)  
Interrupt request  
flag of timer B  
(IFTB)  
Error  
controller  
Timer read  
register BU  
(TRBU)  
Timer read  
register B lower  
(TRBL)  
EVNB  
Clock  
Timer counter B  
(TCB)  
Edge  
detector  
Overflow  
ut capture  
control  
ignal  
Selector  
3
Timer mode  
register B1  
(TMB1)  
øPER  
System  
clock  
Prescaler S (PSS)  
Edge detection control signa
2
Timer mode  
register B2  
(TMB2)  
Figure 25 Timer B Input Capture Operation Block Diagram  
35  
HD404318 Series  
Timer mode register B1 (TMB1: $009)  
Bit  
3
0
2
0
1
0
0
0
Initial value  
Read/Write  
Bit name  
W
W
W
W
TMB13 TMB12 TMB11 TMB10  
Free-Running/Reload  
TMB13 Timer Selection  
Input Clock Period and Input  
Clock Source  
TMB12 TMB11 TMB10  
0
1
Free-running timer  
Reload timer  
0
1
0
1
0
1
0
1
2048tcyc  
0
0
512tcyc  
1
128tcyc  
32tcyc  
1
8tcyc  
0
1
4tcyc  
2tcyc  
D2/EVNB (external event input)  
Figure 26 Timer ster B1 (TMB1)  
Timer mode register B2 (TMB2: $026)  
Bit  
3
2
0
1
0
0
0
Initial value  
Read/Write  
Bit name  
W
W
W
Not used TMB22 TMB21 TMB20  
TMB21 TMB20  
EVNB Edge Detection Selection  
No detection  
0
1
0
1
0
1
Falling edge detection  
Rising edge detection  
Rising and falling edge detection  
TMB22  
Free-Running/Reload and Input Capture Selection  
Free-Running/Reload  
0
1
Input capture  
Figure 27 Timer Mode Register B2 (TMB2)  
36  
HD404318 Series  
Timer C  
Timer C is an 8-bit multifunction timer that includes free-running, reload, and watchdog timer features,  
which are described as follows.  
By setting timer mode register C (TMC: $00D), one of eight internal clocks supplied from prescaler S  
can be selected  
By selecting pin TOC with bit 2 (PMRA2) of port mode register A (PMRA: $004), timer C output  
(PWM output) is enabled  
By setting timer write register CL, CU (TWCL, CU: $00E, $00F), timer counter C (TCC) can be  
written to  
By setting timer read register CL, CU (TRCL, CU: $00E, $00F), the contents of timer counter C can be  
read out  
An interrupt can be requested when timer counter C overflows  
Timer counter C can be a watchdog timer for detecting runaway program  
37  
HD404318 Series  
System reset signal  
Interrupt request  
flag of timer C  
(IFTC)  
Watchdog on  
flag (WDON)  
Watchdog timer  
controller  
Timer read register CU (TRCU)  
TOC  
Timer output  
control logic  
Timer read  
register C lower  
(TRCL)  
Clock  
Timer counter C  
(TCC)  
Overflow  
Timer  
output  
control  
ignal  
Timer write  
register C upper  
(TWCU)  
Timer write  
register C lower  
(TWCL)  
Selector  
Free-running  
mer control  
al  
3
Timer mode  
register C (TMC)  
øPER  
System  
clock  
Prescaler S (PSS)  
Port mode  
egister A (PMRA)  
Figure 28 Timer C Block Diagram  
38  
HD404318 Series  
Timer mode register C (TMC: $00D)  
Bit  
3
0
2
0
1
0
0
0
Initial value  
Read/Write  
Bit name  
W
W
W
W
TMC3  
TMC2  
TMC1  
TMC0  
Free-Running/Reload  
Timer Selection  
TMC2  
TMC1  
TMC0  
Input Clock Period  
TMC3  
2048tcyc  
1024tcyc  
0
1
0
1
0
1
0
1
0
1
0
0
1
Free-running timer  
Reload timer  
1
512tcyc  
128tcyc  
32tcyc  
8tcyc  
0
1
4tcyc  
2tcyc  
Figure 29 TimRegister C (TMC)  
×
T
(N +
TMC3 = 0  
(Free-running  
timer)  
×
T
256  
T
TMC3 = 1  
(Reload timer)  
T × (256 – N)  
Notes: T: Input clock period supplied to counter. (The clock source and system clock division ratio are  
determined by timer mode register C.)  
N: Value of timer write register C. (When N = 255 ($FF), PWM output is fixed low.)  
Figure 30 PWM Output Waveform  
39  
HD404318 Series  
$FF + 1  
Overflow  
Timer C  
count value  
$00  
Time  
CPU  
operation  
Normal  
operation  
Normal  
operation  
Timer C  
clear  
Normal  
operation  
Timer C  
clear  
Program  
runaway  
Reset  
Figure 31 Watchdog Timer Operation Flowchart  
Notes on Use  
When using the timer output as ut, note the following point. From the update of the timer write  
register until the occurrence of the interrupt, the PWM output differs from the period and duty  
settings, as shown in table 8. The Pt should therefore not be used until after the overflow  
interrupt following the update of the timester. After the overflow, the PWM output will have the  
set period and duty cycle.  
Table 8  
PWM Output Following Update of ite Register  
PWM Output  
Timer Write Register is Updated during  
High PWM Output  
te Register is Updated during  
Lutput  
Mode  
Timer write  
register  
mer write  
er  
Free running  
updated to Interrupt  
to  
N  
Interrupt  
request  
value N  
request  
T × (N' + 1)  
T × (255 – N) T × (N + 1)  
T × (255 – N) T × (N + 1)  
Timer write  
register  
Timer write  
register  
Reload  
updated to Interrupt  
updated to  
value N  
Interrupt  
request  
value N  
request  
T
T
T × (255 – N)  
T
T × (255 – N)  
T
40  
HD404318 Series  
Alarm Output Function  
The MCU has an alarm output function built in. By setting port mode register C (PMRC: $025), one of  
four alarm frequencies supplied from the PSS can be selected.  
Table 9  
Port Mode Register C  
PMRC  
Bit 3  
0
Bit 2  
System Clock Divisor  
0
1
0
1
÷ 2048  
÷ 1024  
÷ 512  
1
÷ 256  
BUZZ  
Alarm output  
ontrol signal  
Port mode  
register A  
(PMRA)  
Alarm ou
controller  
Selector  
ort mode  
ster C  
C)  
øPER  
System  
clock  
Prescaler S (PSS)  
Figure 32 Alarm Output Function Block Diagram  
41  
HD404318 Series  
Serial Interface  
The MCU has a one-channel serial interface built in with the following features.  
One of 13 different internal clocks or an external clock can be selected as the transmit clock. The  
internal clocks include the six prescaler outputs divided by two and by four, and the system clock.  
During idle states, the serial output pin can be controlled to be high or low output  
Transmit clock errors can be detected  
An interrupt request can be generated after transfer has completed when an error occurs  
Table 10  
Serial Interface Operating Modes  
SMR  
Bit 3  
1
PMRA  
Bit 1  
Bit 0  
Operating Mode  
0
0
1
Continuous clock output mode  
Transmit mode  
1
eceive mode  
smit/receive mode  
42  
HD404318 Series  
Serial interrupt  
request flag  
(IFS)  
Octal  
counter (OC)  
SO  
Idle  
controller  
SCK  
I/O  
Serial data  
controller  
register (SR)  
SI  
Clock  
1/2  
Transfer  
control  
signal  
1/2  
or  
3
Serial mode  
register  
(SMR)  
øPER  
System  
clock  
Prescaler S (PSS
Port mode  
register C  
(PMRC)  
Figure 33 Serial Interfacagram  
43  
HD404318 Series  
STS wait state  
(Octal counter = 000,  
transmit clock disabled)  
MCU reset  
SMR write  
SMR write (IFS 1)  
STS instruction  
Transmit clock  
Transfer state  
Transmit clock wait state  
(Octal counter = 000)  
(Octal counter = 000)  
8 transmit clocks or  
STS instruction (IFS  
1)  
External clock mode  
STS wait state  
(Octal counter = 000,  
MCU reset  
SMR write  
transmit clock disabled)  
Continuous clock output state  
(PMRA 0, 1 = 0, 0)  
R write  
8 transmit clocks or  
SMR write (IFS 1)  
STS instruction  
Transmit clock  
Transmit clock  
Transfer state  
Transmit clock wait state  
(Octal counter = 000)  
(Octal counter = 000)  
Sn (IFS  
1)  
Internal clock m
Figure 34 Serial Interface Statns  
Transmit clock  
1
2
3
4
5
6
7
8
Serial output  
data  
LSB  
MSB  
Serial input  
data latch  
timing  
Figure 35 Serial Interface Timing  
44  
HD404318 Series  
Transmit clock  
wait state  
Transmit clock  
wait state  
State  
STS wait state  
Transfer state  
STS wait state  
MCU reset  
PMRA write  
SMR write  
PMRC write  
Port selection  
External clock selection  
Dummy write for  
state transition  
Output level control in  
idle states  
Output level control in  
idle states  
Data write for transmission  
SRL, SRU  
write  
STS  
instruction  
SCK pin  
(input)  
SO pin  
IFS  
Undefined  
LSB  
MSB  
Flag reset at transfer completion  
clock mode  
ck  
State  
STS wait state  
nsfer state  
STS wait state  
MCU reset  
PMRA write  
SMR write  
PMRC write  
Port selection  
Internal clock selection  
Output level control in  
idle states  
Output level control in  
idle states  
Data write for transmission  
SRL, SRU  
write  
STS  
instruction  
SCK pin  
(output)  
Undefined  
LSB  
MSB  
SO pin  
IFS  
Flag reset at transfer completion  
Internal clock mode  
Figure 36 Example of Serial Interface Operation Sequence  
45  
HD404318 Series  
Transmit clock erors are detected as illustrated in figure 37.  
Transfer completion  
(IFS 1)  
Interrupts inhibited  
IFS  
0
SMR write  
Yes  
Transmit clock  
error processing  
Normal  
termination  
Transmit clock error dowchart  
smit clock wait state  
Transfer state  
Transmit clock  
wait state  
Transfer state  
State  
SCK pin (input)  
Noise  
1
2
3
4
5
6
7
8
Transfer state has been  
entered by the transmit  
clock error. When SMR  
is written, IFS is set.  
SMR write  
IFS  
Flag set because octal  
counter reaches 000.  
Flag reset at  
transfer completion.  
Transmit clock error detection procedure  
Figure 37 Transmit Clock Error Detection  
46  
HD404318 Series  
Table 11  
Transmit Clock Selection  
PMRC  
Bit 0  
0
SMR  
Bit 2  
Bit 1  
Bit 0  
0
System Clock Divisor  
Transmit Clock Frequency  
0
0
÷ 2048  
÷ 512  
÷ 128  
÷ 32  
4096tcyc  
1024tcyc  
256tcyc  
64tcyc  
1
1
0
0
1
0
0
1
1
0
0
÷ 8  
16tcyc  
1
÷ 2  
4tcyc  
1
0
÷ 4096  
÷ 1024  
÷ 256  
÷ 64  
8192tcyc  
2048tcyc  
512tcyc  
128tcyc  
32tcyc  
1
1
÷ 16  
1
8tcyc  
Serial mode register (SMR: $005)  
Bit  
3
0
2
0
1
0
0
Initial value  
Read/Write  
Bit name  
W
W
W
W
SMR3  
SMR2  
SMR1  
SMR0  
Prescaler  
Clock Source Division Ratio  
R00/SCK  
SMR3  
SMR2  
SMR1  
0
SMR0  
SCK  
Mode Selection  
0
1
Output Prescaler  
R00  
0
1
0
1
0
1
0
1
Refer to  
table 11  
0
SCK  
1
0
1
Output System clock  
1
Input  
External clock  
Figure 38 Serial Mode Register (SMR)  
47  
HD404318 Series  
Port mode register C (PMRC: $025)  
Bit  
3
0
2
0
1
0
0
Initial value  
Read/Write  
Bit name  
Undefined  
W
W
W
W
PMRC3  
PMRC1  
PMRC2  
PMRC0  
PMRC0  
Serial Clock Division Ratio  
Prescaler output divided by 2  
Prescaler output divided by 4  
Alarm output function.  
Refer to table 9.  
0
1
PMRC1  
Output Level Control in Idle States  
Low level  
0
1
High level  
Fiort Mode Register C (PMRC)  
48  
HD404318 Series  
A/D Converter  
The MCU also contains a built-in A/D converter that uses a sequential comparison method with a  
resistance ladder. It can perform digital conversion of eight analog inputs with 8-bit resolution. The  
following describes the A/D converter.  
A/D mode register 1 (AMR1: $019) is used to select digital or analog ports  
A/D mode register 2 (AMR2: $01A) is used to set the A/D conversion speed and to select digital or  
analog ports  
The A/D channel register (ACR: $016) is used to select an analog input channel  
A/D conversion is started by setting the A/D start flag (ADSF: $020, 2) to 1. After the conversion is  
completed, converted data is stored in the A/D data register, and at the same time, the A/D start flag is  
cleared to 0  
By setting the IAD off flag (OF: $021, 2) to 1, the current flowing through the resistance ladder can be  
cut off even while operatandby or active mode  
4
A/D mode  
register 1  
(AMR1)  
pt  
r
(
A/D mode  
register 2  
(AMR2)  
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
A/D data  
register  
DRU, L)  
Encoder  
+
Comp  
A/D channel  
register (ACR)  
A/D  
controller  
Control signal  
for conversion  
time  
AVCC  
AVSS  
A/D start flag  
(ADSF)  
IAD off flag  
(IAOF)  
D/A  
Operating mode signal (1 in stop mode)  
Figure 40 A/D Converter Block Diagram  
49  
HD404318 Series  
Notes on Usage  
Use the SEM or SEMD instruction for writing to the A/D start flag (ADSF)  
Do not write to the A/D start flag during A/D conversion  
Data in the A/D data register during A/D conversion is undefined  
Since the operation of the A/D converter is based on the clock from the system oscillator, the A/D  
converter does not operate in stop mode. In addition, to save power while in stop mode, all current  
flowing through the converter’s resistance ladder is cut off.  
If the power supply for the A/D converter is to be different from VCC, connect a 0.1-µF bypass capacitor  
between the AVCC and AVSS pins. (However, this is not necessary when the AVCC pin is directly  
connected to the VCC pin.)  
The port data register (PDR) is initialized to 1 by an MCU reset. At this time, if pull-up MOS is selected  
as active by bit 3 of the miscellaneous register (MIS3), the port will be pulled up to VCC. When using a  
shared R port/analog input n as an input pin, clear PDR to 0. Otherwise, if pull-up MOS is selected by  
MIS3 and PDR is set to selected by bit 1 of the A/D mode register as an analog pin will remain  
pulled up.  
A/D mode register 1 (A)  
Bit  
3
0
2
0
0
0
Initial value  
Read/Write  
Bit name  
W
W
W
AMR13 AMR12 AMR0  
10  
R30/AN0 Mode Selection  
R30  
N0  
AMR12  
R32/AN2 Mode Selection  
0
1
R32  
AN2  
AMR11  
1/AN1 Mode Selection  
0
1
R31  
AN1  
AMR13  
R33/AN3 Mode Selection  
0
1
R33  
AN3  
Figure 41 A/D Mode Register 1 (AMR1)  
50  
HD404318 Series  
A/D mode register 2 (AMR2: $01A)  
Bit  
3
2
1
0
0
0
Initial value  
Read/Write  
Bit name  
W
W
Not used Not used AMR21 AMR20  
AMR20  
Conversion Time  
0
1
34tcyc  
67tcyc  
AMR21  
R4/AN4–AN7 Pin Selection  
0
1
R4  
AN4–AN7  
A/D Mode Register (AMR2)  
A/D channel CR: $016)  
Bit  
1
0
0
0
Initial value  
Read/Write  
Bit name  
W
W
Not used AC
1  
ACR0  
ACR2 ACR1 ACR0 Analog Inn  
0
1
0
1
0
1
0
1
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
0
0
1
0
1
1
Figure 43 A/D Channel Register (ACR)  
51  
HD404318 Series  
A/D start flag (ADSF: $020, bit 2)  
Bit  
3
2
0
1
0
0
Initial value  
Read/Write  
Bit name  
R/W  
W
Not used ADSF WDON Not used  
WDON  
A/D Start Flag (ADSF)  
0
1
A/D conversion completed  
A/D conversion started  
Refer to the description of timers  
igure 44 A/D Start Flag (ADSF)  
IAD off flag (IAOF: )  
Bit  
3
0
0
1
0
0
Initial value  
Read/Write  
Bit name  
R/W  
RAME  
R/W  
IAOF  
I
R/W  
SF  
ICSF  
IAD Off Flag (IAOF)  
IAD current flows  
0
1
Refer to tion of timers  
IAD current is cut off  
ICEF  
RAME  
Refer to the description of timers  
Refer to the description of operating  
modes  
Figure 45 IAD Off Flag (IAOF)  
52  
HD404318 Series  
ADRU: $018  
ADRL: $017  
3
2
1
0
3
2
1
0
MSB  
bit 7  
LSB RESULT  
bit 0  
Figure 46 A/D Data Registers  
A/D data register (lower digit) (ADRL: $017)  
Bit  
3
2
1
0
0
Initial va
Read
Bit nam
0
R
0
R
0
R
R
ADRL3  
ADRL2  
ADRL1  
ADRL0  
Figure 4ta Register Lower Digit (ADRL)  
A/D data register (upper digit018)  
Bit  
3
1
0
Initial value  
Read/Write  
Bit name  
1
R
0
R
0
R
ADRU3  
ADR
RU1  
ADRU0  
Figure 48 A/D Data Register Upper Di)  
53  
HD404318 Series  
Notes on Mounting  
Assemble all parts including the HD404318 Series on a board, noting the points described below.  
1. Connect layered ceramic type capacitors (about 0.1 µF) between AVCC and AVSS, between VCC and  
GND, and between used analog pins and AVSS.  
2. Connect unused analog pins to AVSS.  
1. When not using an A/D converter.  
VCC  
AVCC  
AN0  
AN1  
to  
0.1 µF  
AN7  
AVSS  
GND  
2. When using pins AN0 and AN1 ing AN2 to AN7.  
AVCC  
VCC  
AN7  
AVSS  
GND  
0.1 µF × 3  
3. When using all analog pins.  
VCC  
AVCC  
AN0  
AN1  
AN2 to  
AN7  
AVSS  
GND  
0.1 µF × 9  
Figure 49 Example of Connections (1)  
54  
HD404318 Series  
Between the VCC and GND lines, connect capacitors designed for use in ordinary power supply circuits.  
An example connection is described in figure 50.  
No resistors can be inserted in series in the power supply circuit, so the capacitors should be connected in  
parallel. The capacitors are a large capacitance C1 and a small capacitance C2.  
VCC  
VCC  
C1  
C2  
GND  
GND  
50 Example of Connections (2)  
55  
HD404318 Series  
Absolute Maximum Ratings  
Item  
Symbol  
Value  
Unit  
V
Notes  
Supply voltage  
Programming voltage  
Pin voltage  
VCC  
VPP  
VT  
–0.3 to +7.0  
–0.3 to +14.0  
V
1
2
3
–0.3 to VCC + 0.3 V  
VCC – 45 to  
CC + 0.3  
V
V
Total permissible input current  
Total permissible output current  
Maximum input current  
IO  
IO  
IO  
70  
mA  
mA  
mA  
mA  
mA  
mA  
°C  
4
150  
5
4
6, 7  
6, 8  
9, 10  
10, 11  
20  
Maximum output current  
–IO  
4
30  
Operating temperature  
Storage temperature  
–20 to +75  
–55 to +125  
°C  
Notes: Permanent damage may occusolute maximum ratings are exceeded. Normal operation  
must be under the conditions statectrical characteristics tables. If these conditions are  
exceeded, the LSI may malfunction ility may be affected.  
1. Applies to pin TEST (VPP) of HD407
2. Applies to all standard voltage pins.  
3. Applies to high-voltage pins.  
4. The total permissible input current is the total rrents simultaneously flowing in from all  
the I/O pins to GND.  
5. The total permissible output current is the total of onts simultaneously flowing out from  
VCC to all I/O pins.  
6. The maximum input current is the maximum current flowih I/O pin to GND.  
7. Applies to ports R3 and R4.  
8. Applies to port R0.  
9. Applies to ports R0, R3, and R4.  
10. The maximum output current is the maximum current flowing from VCC to each I/O pin.  
11. Applies to ports D0–D8, R1, R2, and R8.  
56  
HD404318 Series  
Electrical Characteristics  
DC Characteristics (VCC = 4.0 to 5.5 V, GND = 0 V, Vdisp = VCC – 40 V to VCC, Ta = –20 to +75°C,  
unless otherwise specified)  
Item  
Symbol Pins  
Min  
Typ Max  
VCC + 0.3  
Unit Test Condition  
Notes  
Input high  
voltage  
VIH  
RESET, SCK, 0.8VCC  
SI, INT0, INT1,  
V
STOPC, EVNB  
OSC1  
VCC – 0.5 —  
VCC + 0.3  
0.2VCC  
V
V
Input low voltage VIL  
RESET, SCK, –0.3  
SI  
INT0, INT1,  
SC, EVNB  
VCC – 40  
0.2VCC  
V
V
–0.3  
0.5  
Output high  
voltage  
VOH  
VOL  
|IIL|  
SCVCC – 0.5 —  
V
–IOH = 0.5 mA  
IOL = 0.4 mA  
Output low  
voltage  
SCK, SO,
0.4  
1
V
I/O leakage  
current  
RESET, SCK,  
SI, SO, TOC,  
OSC1  
µA  
Vin = 0 V to VCC  
1
INT0, INT1,  
STOPC, EVNB  
VCC  
µA  
Vin = VCC – 40 to VCC  
1
Current  
dissipation in  
active mode  
ICC  
5
A VCC = 5 V,  
fOSC = 4 MHz  
2, 5  
8.0  
2.0  
2, 6  
3
Current  
dissipation in  
standby mode  
ISBY  
VCC  
mA VCC = 5 V,  
fOSC = 4 MHz  
Current  
dissipation in  
stop mode  
ISTOP  
VCC  
10  
µA  
VCC = 5 V  
4, 5  
4, 6  
2
20  
µA  
Stop mode  
VSTOP  
VCC  
V
retaining voltage  
Notes: 1. Excludes current flowing through pull-up MOS and output buffers.  
2. ICC is the source current when no I/O current is flowing while the MCU is in reset state.  
Test conditions: MCU: Reset  
Pins: RESET, TEST at GND  
R0, R3, R4 at VCC  
D0–D8, R1, R2, R8, RA1 at Vdisp  
57  
HD404318 Series  
3. ISBY is the source current when no I/O current is flowing while the MCU timer is operating.  
Test conditions: MCU: I/O reset  
Standby mode  
Pins:  
RESET at VCC  
TEST at GND  
R0, R3, R4 at VCC  
D0–D8, R1, R2, R8, RA1 at Vdisp  
4. This is the source current when no I/O current is flowing.  
Test conditions:  
Pins:  
R0, R3, R4 at VCC  
D0–D8, R1, R2, R8, RA1 at GND  
5. Applies to the HD404314, HD404316 and HD404318.  
6. Applies to the HD4074318.  
I/O Characteristics for Standrd Pins (VCC = 4.0 to 5.5 V, GND = 0 V, Vdisp = VCC – 40 V to VCC, Ta =  
–20 to +75°C, unless otherecified)  
Item  
Symbol P
Min  
Typ Max  
Unit Test Condition  
Note  
Input high  
voltage  
VIH  
R0, R7VCC  
VCC + 0.3 V  
Input low voltage VIL  
R0, R3, R4 
0.3VCC  
V
Output high  
voltage  
VOH  
R0, R3, R4 VC
V
V
V
–IOH = 0.5 mA  
IOL = 1.6 mA  
IOL = 10 mA  
Output low  
voltage  
VOL  
R3, R4  
4  
R0  
1
Input leakage  
current  
|IIL|  
R0, R3, R4  
Vin = 0 V to VCC  
1
Pull-up MOS  
–IPU  
R0, R3, R4 30  
30  
150  
80  
300  
180  
= 5 V, Vin = 0 V  
µ
2
3
Notes: 1. Output buffer current is excluded.  
2. Applies to the HD404314, HD404316, and HD404318.  
3. Applies to the HD4074318.  
58  
HD404318 Series  
I/O Characteristics for High-Voltage Pins (VCC = 4.0 to 5.5 V, GND = 0 V, Vdisp = VCC – 40 V to VCC,  
Ta = –20 to +75°C, unless otherwise specified)  
Item  
Symbol Pins  
Min  
Typ Max  
Unit Test Condition  
Note  
Input high  
voltage  
VIH  
D0–D8, R1,  
0.7VCC  
VCC + 0.3 V  
R2, R8, RA1  
D0–D8, R1,  
Input low  
voltage  
VIL  
VCC – 40  
0.3VCC  
V
R2, R8, RA1  
D0–D8, R1,  
Output high VOH  
voltage  
VCC – 3.0 —  
V
–IOH = 15 mA  
R2, R8, BUZZ  
VCC – 2.0 —  
VCC – 1.0 —  
V
V
V
–IOH = 10 mA  
–IOH = 4 mA  
Output low  
voltage  
VOL  
D0–DR1,  
VCC – 37  
Vdisp = VCC – 40 V  
1
RZZ  
VCC – 37  
20  
V
150 kat VCC – 40 V 2  
I/O leakage |IIL|  
current  
D0–D8,
R8, RA1, B
D0–D8, R1,  
µA Vin = VCC – 40 V to VCC  
3
Pull-down  
IPD  
600  
1000  
µA Vdisp = VCC – 35 V,  
1
MOS current  
R2, R8, BUZZ  
Vin = VCC  
Notes: 1. Applies to pins with pull-down MOS aby the mask option .  
2. Applies to pins without pull-down MOS aby the mask option.  
3. Excludes output buffer current.  
A/D Converter Characteristics (VCC = 4.0 to 5.5 V, GND = VCC – 40 V to VCC, Ta = –20 to  
+75°C, unless otherwise specified)  
Item  
Symbol Pins  
AVCC  
Min  
Typ Max  
Test Condition  
Note  
Analog supply voltage AVCC  
VCC – 0.3 VCC  
VCC + 0.3 V  
1
Analog input voltage  
AVin  
IAD  
AN0–AN7 AVSS  
AVCC  
200  
V
Current flowing  
µA  
VCC = AVCC = 5.0 V  
between AVCC and AVSS  
Analog input  
capacitance  
CAin  
AN0–AN7 —  
30  
pF  
Bit  
Resolution  
8
0
8
8
8
Number of input  
channels  
Chan  
nel  
Absolute accuracy  
Conversion time  
Input impedance  
34  
±2.0  
67  
LSB  
tcyc  
AN0–AN7 1  
MΩ  
Note: 1. Connect this to VCC if the A/D converter is not used.  
59  
HD404318 Series  
AC Characteristics (VCC = 4.0 to 5.5 V, GND = 0 V, Vdisp = VCC – 40 V to VCC, Ta = –20 to +75°C)  
Item  
Symbol Pins  
Min  
Typ Max Unit Test Condition  
Note  
Clock oscillation  
frequency  
fOSC  
OSC1, OSC2 0.4  
4
4.5  
MHz System clock  
divided by 4  
Instruction cycle time  
tcyc  
tRC  
0.89  
1
10  
µs  
Oscillation stabilization  
time (ceramic oscillator)  
OSC1, OSC2  
OSC1, OSC2  
7.5  
ms  
1
1
Oscillation stabilization  
time (crystal oscillator)  
tRC  
40  
ms  
External clock high width tCPH  
External clock low width tCPL  
OSC1  
92  
92  
2
20  
20  
ns  
ns  
ns  
ns  
tcyc  
2
2
2
2
3
OSC1  
External clock rise time  
External clock fall time  
tCPr  
t
OSC1  
OSC1  
INT0, INT1, EVNB high  
NT0, INT1,  
B  
widths  
INT0, INT1, EVNB low  
widths  
tIL  
,  
E
2
tcyc  
3
RESET low width  
STOPC low width  
RESET rise time  
STOPC rise time  
Input capacitance  
tRSTL  
tSTPL  
tRSTr  
tSTPr  
Cin  
RESE
STOPC  
RESET  
STOPC  
20  
20  
tcyc  
tRC  
ms  
ms  
4
5
4
5
All input pins  
except TEST  
pF  
f = 1 MHz, Vin = 0 V  
TEST  
6
7
18
Notes: 1. The oscillation stabilization time is the period required for the r to stabilize in the  
following situations:  
a. After VCC reaches 4.0 V at power-on.  
b. After RESET input goes low when stop mode is cancelled.  
c. After STOPC input goes low when stop mode is cancelled.  
To ensure the oscillation stabilization time at power-on or when stop mode is cancelled, RESET  
or STOPC must be input for at least a duration of tRC.  
When using a crystal or ceramic oscillator, consult with the manufacturer to determine what  
stabilization time is required, since it will depend on the circuit constants and stray capacitance.  
2. Refer to figure 51.  
3. Refer to figure 52.  
4. Refer to figure 53.  
5. Refer to figure 54.  
6. Applies to the HD404314, HD404316, and HD404318.  
7. Applies to the HD4074318.  
60  
HD404318 Series  
Serial Interface Timing Characteristics (VCC = 4.0 to 5.5 V, GND = 0 V, Vdisp = VCC – 40 V to VCC, Ta =  
–20 to +75°C, unless otherwise specified)  
During Transmit Clock Output  
Item  
Symbol Pins  
Min Typ Max Unit Test Condition  
Note  
Transmit clock cycle time tScyc  
Transmit clock high width tSCKH  
Transmit clock low width tSCKL  
Transmit clock rise time tSCKr  
SCK  
SCK  
SCK  
SCK  
SCK  
SO  
1
80  
80  
tcyc  
tScyc  
tScyc  
ns  
Load shown in figure 56  
Load shown in figure 56  
Load shown in figure 56  
Load shown in figure 56  
Load shown in figure 56  
Load shown in figure 56  
1
1
1
1
1
1
0.4  
0.4  
Transmit clock fall time  
tSCKf  
ns  
Serial output data delay tDSO  
time  
300 ns  
Serial input data setup  
time  
tS
SI  
100  
200  
ns  
ns  
1
1
Serial input data hold time tHS
During Transmit Clock Input  
Item  
Symbol Pins  
yp Max Unit Test Condition  
Note  
Transmit clock cycle time tScyc  
Transmit clock high width tSCKH  
Transmit clock low width tSCKL  
Transmit clock rise time tSCKr  
SCK  
SCK  
SCK  
SCK  
SCK  
SO  
1
80  
tcyc  
tScyc  
tScyc  
1
1
1
1
1
1
0.4  
0.4  
Transmit clock fall time  
tSCKf  
Serial output data delay tDSO  
time  
300
d shown in figure 56  
Serial input data setup  
time  
tSSI  
SI  
SI  
100  
200  
ns  
ns  
1
1
Serial input data hold time tHSI  
Note: 1. Refer to figure 55.  
OSC1  
1/fCP  
VCC – 0.5 V  
tCPH  
tCPL  
0.5 V  
tCPr  
tCPf  
Figure 51 External Clock Timing  
61  
HD404318 Series  
INT0, INT1, EVNB  
0.8VCC  
0.2VCC  
tIL  
tIH  
Figure 52 Interrupt Timing  
RESET  
0.8VCC  
0.2VCC  
tRSTL  
tRSTr  
53 RESET Timing  
STOPC  
0.8VCC  
0.2VCC  
Figure 54 STOPC Timing  
62  
HD404318 Series  
tScyc  
t SCKf  
tSCKr  
tSCKL  
VCC – 2.0 V (0.8VCC)*  
0.8 V (0.2VCC)*  
SCK  
SO  
SI  
tSCKH  
tDSO  
VCC – 2.0 V  
0.8 V  
t SSI  
t HSI  
0.8VCC  
0.2VCC  
Note:  
*VCC-2.0V and 0.8V athe threshold voltages for transmit clock output.  
0.8VCC and 0.2VChreshold voltages for transmit clock input.  
e 55 Serial Interface Timing  
VCC  
RL = 2.6 kΩ  
Test  
point  
Hitachi  
R =  
C =  
2074  
12 kΩ  
30 pF  
uivalent  
Figure 56 Timing Load Circuit  
63  
HD404318 Series  
Notes on ROM Out  
Please pay attention to the following items regarding ROM out.  
On ROM out, fill the ROM area indicated below with 1s to create the same data size for the HD404314 and  
HD404316 as an 8-kword version  
(HD404318). An 8-kword data size is required to change ROM data to mask manufacturing data since the  
program used is for an 8-kword version.  
This limitation applies when using an EPROM or a data base.  
ROM 4-kword version:  
HD404314  
ROM 6-kword version:  
HD404316  
Address $10$1FFF  
Address $1800–$1FFF  
$0000  
$0000  
Vector add
Vector address  
$000F  
$0010  
$000F  
$0010  
Zero-page subroutine  
(64 words)  
Zero-page subroutine  
(64 words)  
$003F  
$0040  
Pattern & program  
(4,096 words)  
Pattern & program  
(6,144 words)  
$0FFF  
$1000  
$17FF  
$1800  
Not used  
Not used  
$1FFF  
$1FFF  
Fill this area with 1s  
64  
HD404318 Series  
HD404314/HD404316/HD404318 Option List  
Please check off the appropriate applications and enter the necessary information.  
Date of order  
Customer  
1. ROM Size  
Department  
HD404314  
HD404316  
HD404318  
4-kword  
6-kword  
8-kword  
Name  
ROM code name  
LSI number  
2. I/O Options  
D: Without pull-down resistance  
E: With pull-down resistance  
I/O option  
I/O option  
Pin name  
D0/INT0  
D1/INT1  
D2/EVNB  
D3/BUZZ  
D4/STOPC  
D5  
I/O  
Pin name  
R10  
I/O  
E
D
E
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
R1  
R2  
RA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
R11  
R12  
R13  
R20  
R21  
R22  
R23  
R80  
R81  
82  
D6  
D7  
D8  
Selected in option (3)  
3. RA1/Vdisp  
RA1 without pull-down resistance  
Vdisp  
Note: If even only one pin is selected with I/O option  
E, pin RA1/Vdisp must be selected to function  
as Vdisp.  
4. ROM Code Media  
Please specify the first type below (the upper bits and lower bits are mixed together), when using  
the EPROM on-package microcomputer type (including ZTAT™ version).  
EPROM: The upper bits and lower bits are mixed together. The upper five bits and lower five bits  
are programmed to the same EPROM in alternating order (i.e., LULULU...).  
EPROM: The upper bits and lower bits are separated. The upper five bits and lower five bits are  
programmed to different EPROMS.  
6. Stop mode  
7. Package  
5. System Oscillator for OSC1 and OSC2  
Used  
DP-42S  
FP-44A  
Ceramic oscillator  
Crystal oscillator  
External clock  
f =  
f =  
f =  
MHz  
MHz  
MHz  
Not used  
65  
HD404318 Series  
Cautions  
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,  
copyright, trademark, or other intellectual property rights for information contained in this document.  
Hitachi bears no responsibility for problems that may arise with third party’s rights, including  
intellectual property rights, in connection with use of the information contained in this document.  
2. Products and product specifications may be subject to change without notice. Confirm that you have  
received the latest product standards or specifications before final design, purchase or use.  
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,  
contact Hitachi’s sales office before using the product in an application that demands especially high  
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,  
traffic, safety equipment or medical equipment for life support.  
4. Design your application so t the product is used within the ranges guaranteed by Hitachi particularly  
for maximum rating, opply voltage range, heat radiation characteristics, installation  
conditions and other charHitachi bears no responsibility for failure or damage when used  
beyond the guaranteed rangethin the guaranteed ranges, consider normally foreseeable  
failure rates or failure modes in ctor devices and employ systemic measures such as fail-  
safes, so that the equipment incorpochi product does not cause bodily injury, fire or other  
consequential damage due to operation achi product.  
5. This product is not designed to be radiatio
6. No one is permitted to reproduce or duplicate, m, the whole or part of this document without  
written approval from Hitachi.  
7. Contact Hitachi’s sales office for any questions regarocument or Hitachi semiconductor  
products.  
Copyright © Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.  
66  

相关型号:

HD404314S

4-bit HMCS400-series microcomputer
HITACHI

HD404314S

microcomputer designed to increase program productivity
RENESAS

HD404316H

4-bit HMCS400-series microcomputer
HITACHI

HD404316H

microcomputer designed to increase program productivity
RENESAS

HD404316S

4-bit HMCS400-series microcomputer
HITACHI

HD404316S

microcomputer designed to increase program productivity
RENESAS

HD404318

4-bit HMCS400-series microcomputer
HITACHI

HD404318

microcomputer designed to increase program productivity
RENESAS

HD404318H

4-bit HMCS400-series microcomputer
HITACHI

HD404318H

microcomputer designed to increase program productivity
RENESAS

HD404318S

4-bit HMCS400-series microcomputer
HITACHI

HD404318S

microcomputer designed to increase program productivity
RENESAS