HD40L4812 [RENESAS]

4-Bit Single-Chip Microcomputer; 4位单片机
HD40L4812
型号: HD40L4812
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

4-Bit Single-Chip Microcomputer
4位单片机

文件: 总100页 (文件大小:370K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
To all our customers  
Regarding the change of names mentioned in the document, such as Hitachi  
Electric and Hitachi XX, to Renesas Technology Corp.  
The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas  
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog  
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)  
Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand  
names are mentioned in the document, these names have in fact all been changed to Renesas  
Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and  
corporate statement, no changes whatsoever have been made to the contents of the document, and  
these changes do not constitute any alteration to the contents of the document itself.  
Renesas Technology Home Page: http://www.renesas.com  
Renesas Technology Corp.  
Customer Support Dept.  
April 1, 2003  
Cautions  
Keep safety first in your circuit designs!  
1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better  
and more reliable, but there is always the possibility that trouble may occur with them. Trouble with  
semiconductors may lead to personal injury, fire or property damage.  
Remember to give due consideration to safety when making your circuit designs, with appropriate  
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or  
(iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
1. These materials are intended as a reference to assist our customers in the selection of the Renesas  
Technology Corporation product best suited to the customer's application; they do not convey any  
license under any intellectual property rights, or any other rights, belonging to Renesas Technology  
Corporation or a third party.  
2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any  
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or  
circuit application examples contained in these materials.  
3. All information contained in these materials, including product data, diagrams, charts, programs and  
algorithms represents information on products at the time of publication of these materials, and are  
subject to change by Renesas Technology Corporation without notice due to product improvements or  
other reasons. It is therefore recommended that customers contact Renesas Technology Corporation  
or an authorized Renesas Technology Corporation product distributor for the latest product information  
before purchasing a product listed herein.  
The information described here may contain technical inaccuracies or typographical errors.  
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss  
rising from these inaccuracies or errors.  
Please also pay attention to information published by Renesas Technology Corporation by various  
means, including the Renesas Technology Corporation Semiconductor home page  
(http://www.renesas.com).  
4. When using any or all of the information contained in these materials, including product data, diagrams,  
charts, programs, and algorithms, please be sure to evaluate all information as a total system before  
making a final decision on the applicability of the information and products. Renesas Technology  
Corporation assumes no responsibility for any damage, liability or other loss resulting from the  
information contained herein.  
5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device  
or system that is used under circumstances in which human life is potentially at stake. Please contact  
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor  
when considering the use of a product contained herein for any specific purposes, such as apparatus or  
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.  
6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in  
whole or in part these materials.  
7. If these products or technologies are subject to the Japanese export control restrictions, they must be  
exported under a license from the Japanese government and cannot be imported into a country other  
than the approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the  
country of destination is prohibited.  
8. Please contact Renesas Technology Corporation for further details on these materials or the products  
contained therein.  
HD404818 Series  
4-Bit Single-Chip Microcomputer  
Preliminary  
Rev. 2.0  
Sept. 1998  
Description  
The H D404818 Series of 4-bit single-chip HMCS400 series microcomputers provide high program  
productivity. It incorporates a large size memory, LCD controller/driver, voltage comparator, and 32-kHz  
watch oscillator circuit.  
The HD404818 Series has both standard voltage versions and low voltage versions available. The standard  
voltage versions operate at 4.0 V to 6.0 V (mask ROM version) and 4.0 V to 5.5 V (PROM version), while  
the low voltage versions operate at 2.7 V to 6.0 V (mask ROM) and 3.0 V to 5.5 V (PROM). Low voltage  
versions include an L in their product name.  
Standard voltage versions: HD404812, HD404814, HD404816, HD404818, HD4074818  
Low voltage versions: HD40L4812, HD40L4814, HD40L4816, HD40L4818, HD407L4818  
The HD4074818 and HD407L4818, containing PROMs, are ZTAT microcomputers which can  
dramatically shorten system development time and smoothly proceed from debugging to mass production.  
ZTATTM : Zero Turn Around Time ZTAT is a trademark of Hitachi Ltd.  
Features  
2048-word × 10-bit ROM (HD404812, HD40L4812)  
4096-word × 10-bit ROM (HD404814, HD40L4814)  
6144-word × 10-bit ROM (HD404816, HD40L4816)  
8192-word × 10-bit ROM (HD404818, HD40L4818, HD4074818, HD407L4818)  
1184-digit × 4-bit RAM  
30 I/O pins, including 10 high-current output pins, all CMOS and programmable as I/O pull-up MOS  
LCD controller/driver (32 segments × 4 commons)  
Three timer/counters  
Clock-synchronous 8-bit serial interface  
Six interrupt sources  
Two by external sources  
Four by internal sources  
HD404818 Series  
Subroutine stack up to 16 levels, including interrupts  
Instruction cycle time:  
1 µs (fOSC = 4 MHz for HD404812/HD404814/HD404816/HD404818/HD4074818)  
5 µs (fOSC = 800 kHz for HD40L4812/HD40L4814/HD40L4816/HD40L4818/HD407L4818)  
Four low-power dissipation modes  
Standby mode  
Stop mode  
Watch mode  
Subactive mode  
Internal oscillator:  
Main clock: Can be driven by ceramic oscillator, crystal oscillator, or external clock  
Subclock: 32.768-kHz crystal  
Voltage comparator (2 channels)  
Package  
80-pin plastic flat package  
(FP-80B, FP-80A)  
80-pin plastic thin flat package (TFP-80)  
2
HD404818 Series  
Ordering Information  
Supply  
Voltage  
Product  
Name  
Clock  
Type  
Model Name  
ROM (Word) Frequency Package  
Mask ROM  
Standard  
HD404812  
HD404812FS  
2,048  
4
FP-80B  
(4.0 to 6.0 V)  
HD404812H  
HD404812TF  
HD404814FS  
HD404814H  
HD404814TF  
HD404816FS  
HD404816H  
HD404816TF  
HD404818FS  
HD404818H  
HD404818TF  
HD40L4812FS  
FP-80A  
TFP-80  
FP-80B  
FP-80A  
TFP-80  
FP-80B  
FP-80A  
TFP-80  
FP-80B  
FP-80A  
TFP-80  
FP-80B  
HD404814  
HD404816  
HD404818  
HD40L4812  
4,096  
6,144  
8,192  
2,048  
Low-voltage  
operation  
0.8  
(2.7 to 6.0 V)  
HD40L4812H  
HD40L4812TF  
HD40L4814FS  
HD40L4814H  
HD40L4814TF  
HD40L4816FS  
HD40L4816H  
HD40L4816TF  
HD40L4818FS  
HD40L4818H  
HD40L4818TF  
HD4074818FS  
FP-80A  
TFP-80  
FP-80B  
FP-80A  
TFP-80  
FP-80B  
FP-80A  
TFP-80  
FP-80B  
FP-80A  
TFP-80  
FP-80B  
HD40L4814  
HD40L4816  
HD40L4818  
HD4074818  
4,096  
6,144  
8,192  
8,192  
ZTAT  
Standard  
4
(4.0 to 5.5 V)  
HD4074818H  
HD4074818TF  
FP-80A  
TFP-80  
FP-80B  
Low-voltage  
operation  
HD407L4818 HD407L4818FS  
0.8  
(3.0 to 5.5 V)  
HD407L4818H  
HD407L4818TF  
FP-80A  
TFP-80  
3
HD404818 Series  
Pin Arrangement  
1
2
3
4
5
6
7
8
SEG32  
SEG31  
SEG30  
SEG29  
SEG28  
SEG27  
SEG26  
SEG25  
SEG24  
SEG23  
SEG22  
SEG21  
SEG20  
SEG19  
SEG18  
SEG17  
SEG16  
64  
63  
62  
D2  
D3  
D4  
D5  
D6  
D7  
61  
60  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
D4  
D5  
D6  
D7  
D8  
SEG30  
SEG29  
SEG28  
SEG27  
SEG26  
SEG25  
SEG24  
SEG23  
SEG22  
SEG21  
SEG20  
SEG19  
SEG18  
SEG17  
SEG16  
SEG15  
SEG14  
SEG13  
SEG12  
SEG11  
2
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
3
D8  
D9  
D
4
5
9
6
D9  
D10  
VCref/D11  
COMP0/D12  
COMP1/D13  
10  
7
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
VCref /D  
11  
8
COMP0/D  
12  
9
COMP1/D13  
TFP-80  
FP-80A  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
FP-80B  
TEST  
X1  
TEST  
X1  
X2  
GND  
SCK/R00  
SI/R01  
SO/R02  
R03  
X2  
GND  
SCK/R00  
SI/R01  
SO/R02  
R03  
SEG15  
SEG14  
SEG13  
R10  
R11  
SEG12  
SEG11  
SEG10  
SEG9  
R10  
R11  
R12  
R13  
(top view)  
(top view)  
4
HD404818 Series  
Pin Description  
Pin Number  
Pin Number  
FP-80B  
1
FP-80A, TFP-80  
Pin Name  
D2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
FP-80B  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
FP-80A, TFP-80 Pin Name I/O  
79  
80  
1
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
R32/INT0  
R33/INT1  
SEG1  
I/O  
I/O  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
2
D3  
3
D4  
4
2
D5  
SEG2  
5
3
D6  
SEG3  
6
4
D7  
SEG4  
7
5
D8  
SEG5  
8
6
D9  
SEG6  
9
7
D10  
SEG7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
8
D11/VCref  
D12/COMP0  
D13/COMP1  
TEST  
X1  
I
SEG8  
9
I
SEG9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
I
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
I
I
X2  
O
GND  
R00/SCK  
R01/SI  
R02/SO  
R03  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
R10  
R11  
R12  
R13  
R20  
R21  
R22  
R23  
R30  
R31/TIMO  
5
HD404818 Series  
Pin Number  
Pin Number  
FP-80B  
61  
FP-80A, TFP-80  
Pin Name  
SEG29  
SEG30  
SEG31  
SEG32  
COM1  
COM2  
COM3  
COM4  
V1  
I/O  
O
O
O
O
O
O
O
O
FP-80B  
71  
FP-80A, TFP-80 Pin Name I/O  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
V3  
62  
72  
NUMO  
NUMO  
NUMG  
VCC  
63  
73  
64  
74  
65  
75  
66  
76  
OSC1  
OSC2  
RESET  
D0  
I
67  
77  
O
I
68  
78  
69  
79  
I/O  
I/O  
70  
V2  
80  
D1  
Note: I/O: Input/output pin, I: Input pin, O: Output pin, NUMO: Open, NUMG: GND  
6
HD404818 Series  
Pin Functions  
Power Supply  
VCC: Apply the VCC power supply voltage to this pin.  
GND: Connect to ground.  
TEST: For test purposes only. Connect it to VCC.  
RESET: MCU reset pin. Refer to the Reset section for details.  
NUMG: Non-user pin. Connect it to GND.  
NUMO: Non-user pin. Do not connect it to any lines.  
Oscillators  
OSC1, OSC2: Internal oscillator input pins. They both can be connected to a crystal, ceramic resonator, or  
external oscillator circuit. Refer to the Internal Oscillator Circuit section for details.  
X1, X2: Watch oscillator 32-kHz crystal pins.  
Ports  
D0–D13 (D Port): Fourteen 1-bit I/O ports. D0 to D are I/O ports and D10 to D13 are input ports. D0–D9 are  
9
high current output ports (15 mA max.). D11–D13 are also available as voltage comparators. Refer to the  
Input/Output section for details.  
R0–R3 (R Ports): 4-bit I/O ports. R00, R01, R02, R31, R32, and R33 are multiplexed with SCK, SI, SO,  
TIMO, INT0, and INT1, respectively.  
Interrupts  
INT0, INT1: External interrupt pins. INT1 can be used as an external event input pin for timer B. INT0 and  
INT1 are multiplexed with R32 and R33, respectively. For details, see the Interrupts section.  
Serial Interface  
SCK, SI, SO: The transmit clock I/O pin (SCK), serial data input pin (SI), and serial data output pin (SO)  
are used for serial interface. SCK, SI, and SO are multiplexed with R00, R01, and R02, respectively. For  
details, see the Serial Interface section.  
Timer  
TIMO: Variable duty-cycle pulse waveform output pin. See the Timer C section for details.  
7
HD404818 Series  
LCD Driver/Controller  
V1, V2, V3: Power supply pins for the LCD driver. Since the LCD driving resistors are provided internally,  
no lines should be connected to these pins. The voltage on each pin is VCC V1 V2 V3 GND. See the  
Liquid Crystal Display section for details.  
COM1 to COM4: Common signal output pins for the LCD display. See the Liquid Crystal Display section  
for details.  
SEG1 to SEG32: Segment signals output pins for the LCD display. See the Liquid Crystal Display section  
for details.  
Voltage Comparator  
COMP0, COMP1, VCref: Analog input pins for the voltage comparator. VC is used as a reference voltage  
ref  
pin to input the threshold voltage of the analog input pin.  
8
HD404818 Series  
Block Diagram  
System control circuit  
D0  
D1  
D2  
INT0  
INT1  
External  
interrupt  
control  
circuit  
RAM  
(1,184 × 4 bits)  
D3  
High-  
D4  
current  
D5  
pins  
D6  
W (2 bits)  
X (4 bits)  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
Timer A  
Timer B  
Timer C  
R00  
R01  
R02  
R03  
SPX (4 bits)  
Y (4 bits)  
R10  
R11  
R12  
R13  
TIMO  
SPY (4 bits)  
R20  
R21  
R22  
R23  
SI  
SO  
SCK  
Serial  
interface  
R30  
R31  
R32  
R33  
ALU  
CPU  
VCref  
Compa-  
rator  
COMP0  
COMP1  
ST  
CA  
(1 bit) (1 bit)  
A (4 bits)  
V1  
V2  
V3  
B (4 bits)  
COM1  
COM2  
COM3  
COM4  
SEG1  
SEG2  
SEG3  
SP (10 bits)  
LCD  
driver  
circuit  
Instruction  
decoder  
PC (14 bits)  
ROM  
SEG31  
SEG32  
(2,048 × 10 bits)  
(4,096 × 10 bits)  
(6,144 × 10 bits)  
(8,192 × 10 bits)  
: Data bus  
: Signal lines  
9
HD404818 Series  
Memory Map  
ROM Memory Map  
The ROM is described in the following paragraphs with the ROM memory map in figure 1.  
0
0
1
2
3
$0000  
$0001  
$0002  
$0003  
$0004  
$0005  
$0006  
$0007  
$0008  
$0009  
$000A  
$000B  
$000C  
$000D  
$000E  
$000F  
$0000  
JMPL instruction  
(jump to reset routine)  
Vector address  
JMPL instruction  
(jump to INT0 routine)  
$000F  
$0010  
15  
16  
JMPL instruction  
(jump to INT1 routine)  
4
5
6
7
8
9
Zero-page subroutine  
(64 words)  
JMPL instruction  
(jump to timer A routine)  
$003F  
$0040  
63  
64  
JMPL instruction  
(jump to timer B routine)  
Pattern  
(4096 words)  
JMPL instruction  
(jump to timer C routine)  
10  
11  
12  
13  
14  
15  
$0FFF  
$1000  
4095  
4096  
JMPL instruction  
(jump to serial routine)  
Program*  
$1FFF  
$2000  
8191  
8192  
Note: * HD404812, HD40L4812: 2048 words  
HD404814, HD40L4814: 4096 words  
HD404816, HD40L4816: 6144 words  
HD404818, HD40L4818,  
Not used  
HD4074818, HD407L4818: 8192 words  
$3FFF  
16383  
Figure 1 ROM Memory Map  
Vector Address Area ($0000 to $000F): Locations $0000 through $000F are reserved for JMPL  
instructions to branch to the starting address of the initialization program and of the interrupt programs.  
After reset or an interrupt routine, the program is executed from the vector address.  
Zero-Page Subroutine Area ($0000 to $003F): Locations $0000 through $003F are reserved for  
subroutines. The program sequence branches to subroutines by the CAL instruction.  
Pattern Area ($0000 to $0FFF): Locations $0000 through $0FFF are reserved for ROM data. The P  
instruction allows the MCU to reference ROM data as a pattern.  
Program Area ($0000 to $07FF: HD404812, HD40L4812; $0000 to $0FFF: HD404814, HD40L4814;  
$0000 to $17FF: HD404816, HD40L4816; $0000 to $1FFF: HD404818, HD40L4818, HD4074818,  
HD407L4818): Used for program coding.  
10  
HD404818 Series  
RAM Memory Map  
The MCU also contains a 1,184-digit × 4-bit RAM as the data and stack area. In addition to these areas,  
interrupt control bits and special function registers are mapped on the RAM memory space. The RAM  
memory map (figure 2) is described in the following paragraphs.  
Interrupt Control Bits Area ($000 to $003): The interrupt control bits area (figure 3) is used for interrupt  
control. It is accessible only by RAM bit manipulation instructions. However, the interrupt request flag  
cannot be set by software. The RSP bit is used only to reset the stack pointer.  
Special Function Registers Area ($004 to $01F, $024 to $03F): The special function registers are the  
mode or data registers for the serial interface, timer/counters, LCD, and the data control registers for the  
I/O ports. These registers are classified into three types: write-only, read-only, and read/write as shown in  
figure 2.  
The SEM/REM and SEMD/REMD instructions are available for the LCD control register (LCR).  
Other registers cannot be accessed by RAM bit manipulation instructions.  
Register Flag Area ($020 to $023): Consist of the LSON, WDON, TGSP, and DTON flags which are bit  
registers accessible by the RAM bit manip ula tion instruction.  
The WDON flag can only be set, and only by the SEM/SEMD instruction.  
The DTON flag can be set, reset, and tested by the SEM/SEMD, REM/REMD, and TMD instructions. Note  
that the DTON flag is active only in subactive mode, and is normally reset in active mode.  
LCD Data Area ($050 to $06F): Locations $050 to $06F store the LCD data which is automatically  
transmitted to the segment driver as display data. The LCD is illuminated with 1s and faded with 0s. This  
area can be used as a data area.  
Data Area ($040 to $2CF, $100 to $2CF; Bank 0/1): The 16 digits of $040 through $04F are called  
memory registers (MR) and are accessible by the LAMR and XMRA instructions (figure 4). 464 digits of  
$100 through $2CF are selected as bank 0 or 1 depending on the value of the V register.  
Stack Area ($3C0 to $3FF): Locations $3C0 through $3FF are reserved for LIFO stacks to save the  
contents of the program counter (PC), status flag (ST), and carry flag (CA) when subroutine calls (CAL or  
CALL instruction) and interrupts are processed. This area can be used as a 16-level nesting stack in which  
one level requires 4 digits.  
Figure 4 shows the save condition. The program counter is restored by the RTN and RTNI instructions. The  
status and carry flags are restored only by the RTNI instruction. This area, when not used as a stack, is  
available as a data area.  
11  
HD404818 Series  
0
0
1
2
$000  
$000  
$001  
$002  
$003  
$004  
$005  
$006  
$007  
RAM-mapped registers  
Interrupt control bits area  
$03F  
$040  
$050  
$070  
63  
64  
Memory registers (MR)  
3
4
LCD display area (32 digits)  
80  
112  
Port mode register A  
Serial mode register  
(PMRA)  
(SMR)  
W
W
5
6
Data (144 digits)  
Serial data register lower (SRL)  
Serial data register upper (SRU)  
R/W  
R/W  
W
$100  
7
8
Timer mode register A  
Timer mode register B  
(TMA)  
(TMB)  
$008  
$009  
W
9
10  
11  
Data (464 digits × 2)  
V = 0 (bank 0)  
R/W $00A  
Timer B  
(TCBL/TLRL)  
(TCBU/TLRU)  
V = 1 (bank 1)  
$00B  
$00C  
$00D  
$00E  
R/W  
W
Miscellaneous register  
Timer mode register C  
(MIS)  
12  
13  
14  
$2CF  
(TMC)  
W
R/W  
Timer C  
(TCCL/TCRL)  
(TCCU/TCRU)  
15  
Not used  
R/W $00F  
$010  
$3BF  
$3C0  
959  
960  
Not used  
Not used  
16  
17  
18  
19  
$011  
Stack (64 digits)  
Port mode register B  
LCD control register  
(PMRB)  
(LCR)  
W
W
W
$012  
$013  
$014  
$3FF  
1023  
20 LCD mode register  
Not used  
(LMR)  
32  
$020  
$023  
Register flag area  
35  
Not used  
Port R0 DCR  
Port R1 DCR  
Port R2 DCR  
(DCR0)  
(DCR1)  
(DCR2)  
(DCR3)  
W
W
W
W
$030  
$031  
$032  
$033  
48  
49  
50  
The data area has two banks:  
bank 0 (V = 0) and bank 1 (V = 1)  
51 Port R3 DCR  
$100  
$2CF  
Data (464 digits)  
V = 1 (bank 1)  
Data (464 digits)  
V = 0 (bank 0)  
Not used  
Port D0 –D3DCR  
Port D4 –D7DCR  
(DCRB)  
(DCRC)  
59  
60  
61  
$03B  
$03C  
$03D  
W
W
W
Note: Do not use any area labelled "Not used".  
R:  
W:  
Read only  
Write only  
Port D8 –D9DCR  
(DCRD)  
Not used  
R/W: Read/write  
V register  
(V-REG)  
63  
R/W $03F  
Timer counter B lower  
(TCBL)  
Timer load register B lower  
(TLRL)  
R
R
W
W
10  
$00A  
$00B  
Timer counter B upper  
(TCBU)  
Timer load register B upper  
(TLRU)  
11  
Timer counter C lower  
(TCCL)  
Timer load register C lower  
(TCRL)  
R
R
14  
15  
W
W
$00E  
$00F  
Timer counter C upper  
(TCCU)  
Timer load register C upper  
(TCRU)  
Figure 2 RAM Memory Map (1,184-digit × 4-bit)  
12  
HD404818 Series  
Bit 3  
IM0  
(IM of INT )  
Bit 2  
Bit 1  
Bit 0  
IF0  
(IF of INT0 )  
RSP  
(Reset SP bit)  
IE  
$000  
0
1
(Interrupt enable flag)  
0
IFTA  
(IF of timer A)  
IMTA  
(IM of timer A)  
IM1  
(IM of INT )  
IF1  
(IF of INT )  
$001  
$002  
$003  
1
1
IFTC  
(IF of timer C)  
IMTB  
(IM of timer B)  
IFTB  
(IF of timer B)  
IMTC  
(IM of timer C)  
2
3
IMS  
(IM of serial)  
IFS  
(IF of serial)  
Not used  
Not used  
Not used  
WDON  
(Watchdog on flag)  
LSON  
(Low speed on flag)  
DTON  
Direct transfer on flag  
32  
$020  
$021  
Not used  
$023  
IF: Interrupt request flag  
IM: Interrupt mask  
IE: Interrupt enable flag  
SP: Stack pointer  
Note:  
Bits in the interrupt control bits area and register flag area are set by the SEM or SEMD  
instruction, reset by the REM or REMD instruction, and tested by the TM or TMD instruction.  
Other instructions have no effect.  
However, note the following usage limitations of RAM bit manipulation instructions.  
SEM/SEMD  
Not executed  
REM/REMD  
Allowed  
TM/TMD  
Allowed  
Inhibited  
Inhibited  
Allowed  
IF  
Not executed  
Allowed  
RSP  
Allowed  
Not executed  
Allowed  
WDON  
DTON  
Not executed in active mode  
Used in subactive mode  
Note: WDON is reset only by MCU reset.  
DTON is always reset in active mode.  
If the TM or TMD instruction is executed for the inhibited bits or non-existing bits, the value in  
ST becomes invalid.  
Figure 3 Configuration of Interrupt Control Bits and Register Flag Areas  
13  
HD404818 Series  
Memory registers  
Stack area  
Level 16  
Level 15  
Level 14  
Level 13  
64  
65  
66  
67  
MR (0)  
MR (1)  
MR (2)  
MR (3)  
$040  
$041  
$042  
$043  
960  
$3C0  
PC13 to PC0: Program counter  
ST:  
CA:  
Status flag  
Carry flag  
MR (4)  
MR (5)  
MR (6)  
MR (7)  
MR (8)  
MR (9)  
MR (10)  
MR (11)  
MR (12)  
Level 12  
Level 11  
Level 10  
68  
69  
$044  
$045  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
$046  
$047  
$048  
$049  
$04A  
$04B  
$04C  
$04D  
$04E  
$04F  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Level  
9
Level  
Level  
Level  
Level  
Level  
8
7
6
5
4
PC13  
PC9  
PC6  
PC2  
PC12  
PC11  
ST  
PC10  
CA  
1020  
1021  
1022  
1023  
$3FC  
$3FD  
$3FE  
$3FF  
PC8  
PC5  
PC1  
PC7  
PC4  
PC0  
MR (13)  
MR (14)  
MR (15)  
Level  
Level  
Level  
3
2
1
PC3  
1023  
$3FF  
Figure 4 Configuration of Memory Registers, Stack Area, and Stack Position  
14  
HD404818 Series  
Functional Description  
Registers and Flags  
The MCU provides ten registers and two flags for CPU operations. They are illustrated in figure 5 and  
described in the following paragraphs.  
3
3
0
0
(A)  
(B)  
Accumulator  
Initial value: Undefined, R/W  
B register  
V register  
W register  
Initial value: Undefined, R/W  
Initial value: 0, R/W  
0
(V)  
1
0
Initial value: Undefined, R/W  
(W)  
3
3
3
3
0
0
0
0
X register  
Initial value: Undefined, R/W  
Initial value: Undefined, R/W  
Initial value: Undefined, R/W  
Initial value: Undefined, R/W  
Initial value: Undefined, R/W  
(X)  
(Y)  
Y register  
SPX register  
(SPX)  
(SPY)  
SPY register  
Carry  
0
(CA)  
0
Status  
Initial value: 1, no R/W  
13  
(ST)  
0
0
Program counter  
Initial value: 0,  
no R/W  
(PC)  
1
9
1
5
Stack pointer  
Initial value: $3FF, no R/W  
1
1
(SP)  
Figure 5 Registers and Flags  
Accumulator (A), B Register (B): The accumulator and B register are 4-bit registers which hold the  
results of the arithmetic logic unit (ALU), and exchange data between memory, I/O, and other registers.  
15  
HD404818 Series  
V Register (V): The V register, available for RAM address expansion, selects the bank of locations $100–  
$2CF on the RAM address (464 digits) depending on its value. Therefore, when accessing locations $100–  
$2CF on the RAM address, specify the value of the V register (V = $0: bank 0; V = $1: bank 1). Locations  
$000–$0FF and $300–$3FF can be accessed independently of the V register. The V register is located at  
$03F of the RAM address area.  
W Register (W), X Register (X), Y Register (Y): The 2-bit W register and 4-bit X and Y registers address  
RAM indirectly. The Y register is also available for addressing port D.  
SPX Register (SPX), SPY Register (SPY): The 4-bit SPX and SPY registers are available for assisting the  
X and Y registers, respectively.  
Carry Flag (CA): The carry flag holds the ALU overflow generated by an arithmetic operation. It is also  
affected by the SEC, REC, ROTL, and ROTR instructions. During an interrupt, the carry flag is pushed  
onto the stack and restored back from the stack by the RTNI instruction. (It is unaffected by the RTN  
instruction.)  
Status Flag (ST): The status flag holds the ALU overflow, ALU non-zero, and the results of a bit test  
instruction for arithmetic or compare instructions. The status flag is a branch condition of the BR, BRL,  
CAL, or CALL instruction. The value of the status flag remains unchanged until an instruction which  
affects the next status is executed. The status flag becomes 1 after the BR, BRL, CAL, or CALL instruction  
is either executed or skipped. During an interrupt, the status flag is pushed onto the stack and restored back  
from the stack by the RTNI instruction, not by the RTN instruction.  
Program Counter (PC): The program counter is a 14-bit binary counter for holding the ROM address.  
Stack Pointer (SP): The stack pointer is a 10-bit register to indicate the next stacking area up to 16 levels.  
The stack pointer is initialized to RAM address $3FF at MCU reset. It is decremented by 4 as data is  
pushed onto the stack, and incremented by 4 as data is restored back from the stack. The stack pointer is  
initialized to $3FF either by MCU reset or by the RSP bit reset from the REM/REMD instruction.  
16  
HD404818 Series  
Reset  
Setting the RESET pin high resets the MCU. At power-on or when cancelling the stop mode for the  
oscillator, apply the reset input for at least tRC for the oscillator to stabilize. In all other cases, at least two  
instruction cycles of reset input are required for the MCU reset.  
Table 1 shows the components initialized by MCU reset, and each of its status.  
Table 1 Initial Values after MCU Reset  
Items  
Initial Value  
Contents  
Program counter (PC)  
$0000  
Execute program from the top of the ROM  
address  
Status flag (ST)  
1
Enable branching with conditional branch  
instructions  
Stack pointer (SP)  
$3FF  
Stack level is 0  
V register (bank register) (V)  
0
0
Bank 0 (memory)  
Inhibit all interrupts  
Interrupt  
Interrupt enable flag (IE)  
flags/mask  
Interrupt request flag (IF)  
Interrupt mask (IM)  
0
No interrupt request  
1
Masks interrupt request  
I/O  
Port data register (PDR)  
Data control register (DCR)  
All bits are 1  
All bits are 0  
Enable to transmit high  
Output buffer is off (high impedance)  
See Port Mode Register A section  
See Port Mode Register B section  
See Timer Mode Register A section  
Port mode register A (PMRA) 0000  
Port mode register B (PMRB) 0000  
Timer/counters, Timer mode register A (TMA) 0000  
serial interface  
Timer mode register B (TMB) 0000  
Timer mode register C (TMC) 0000  
See Timer Mode Register B section  
See Timer Mode Register C section  
See Serial Mode Register section  
Serial mode register (SMR)  
Prescaler S  
0000  
$000  
$00  
$00  
$00  
$00  
$00  
$00  
000  
Prescaler W  
Timer counter A (TCA)  
Timer counter B (TCB)  
Timer counter C (TCC)  
Timer load register B (TLR)  
Timer load register C (TCR)  
Octal counter  
17  
HD404818 Series  
Table 1 Initial Values after MCU Reset (cont)  
Items  
Initial Value  
Contents  
LCD  
LCD control register (LCR)  
LCD mode register (LMR)  
Low speed on flag (LSON)  
000  
Refer to description of LCD Control  
Register  
0000  
Refer to description of LCD Duty/Clock  
Control  
Bit register  
0
0
Refer to description of Low-Power  
Dissipation Mode  
Watchdog timer on flag  
(WDON)  
Refer to description of Timer C  
Direct transfer on flag (DTON) 0  
Refer to description of Low-Power  
Dissipation Mode  
Miscellaneous  
register  
(MIS) 000  
After MCU Reset to Recover from After MCU Reset to Recover from  
Item  
Stop Mode  
Other Modes  
Carry flag (CA)  
The contents of the items before  
MCU reset are not retained. It is  
necessary to initialize them by  
software.  
The contents of the items before MCU  
reset are not retained. It is necessary to  
initialize them by software.  
Accumulator (A)  
B register (B)  
W register (W)  
X/SPX registers (X/SPX)  
Y/SPY registers (Y/SPY)  
Serial data register (SR)  
RAM  
The contents of RAM before MCU  
reset (just before STOP instruction)  
are retained.  
18  
HD404818 Series  
Interrupts  
Six interrupt sources are available on the MCU: external requests (INT0, INT1), timer/counters (timers A,  
B, and C), and the serial interface. For each source, an interrupt request flag (IF), interrupt mask (IM), and  
interrupt vector addresses are provided to control and maintain the interrupt request. The interrupt enable  
flag (IE) is also used to control interrupt operations.  
Interrupt Control Bits and Interrupt Servicing: The interrupt control bits are mapped on $000 through  
$003 by the RAM space. They are accessible by RAM bit manipulations instructions, although the interrupt  
request flag (IF) cannot be set by software. The interrupt enable flag (IE) and IF are cleared to 0, and the  
interrupt mask (IM) is set to 1 after MCU reset.  
Figure 6 is a block diagram of the interrupt control circuit. Table 2 shows the interrupt priority and vector  
addresses, and table 3 shows the interrupt conditions corresponding to each interrupt source.  
The interrupt request is generated when IF is set to 1 and IM is 0. If IE is 1 at this time, the interrupt will be  
activated and vector addresses will be generated from the priority PLA corresponding to the interrupt  
sources.  
19  
HD404818 Series  
$ 000,0  
IE  
Sequence control  
• Push PC/CA/ST  
• Reset IE  
• Jump to vector  
address  
$ 000,2  
IF0  
$ 000,3  
IM0  
Vector  
address  
Priority control logic  
$ 001,0  
IF1  
$ 001,1  
IM1  
$ 001,2  
IFTA  
$ 001,3  
IMTA  
$ 002,0  
IFTB  
$ 002,1  
IMTB  
$ 002,2  
IFTC  
$ 002,3  
IMTC  
$ 003,0  
IFS  
$ 003,1  
IMS  
Note: $m, n is RAM address $m, bit number n.  
Figure 6 Interrupt Control Circuit Block Diagram  
Table 2 Vector Addresses and Interrupt Priority  
Reset/Interrupt  
RESET  
INT0  
Priority  
Vector Addresses  
$0000  
1
$0002  
INT1  
2
$0004  
Timer A  
Timer B  
Timer C  
Serial  
3
$0006  
4
$0008  
5
$000A  
6
$000C  
20  
HD404818 Series  
Table 3 Interrupt Conditions  
Interrupt Source  
Interrupt Control Bit  
IE  
INT0  
INT1  
Timer A  
Timer B  
Timer C  
Serial  
1
1
*
*
*
*
*
1
0
1
*
*
*
*
1
0
0
1
*
*
*
1
0
0
0
1
*
*
1
0
0
0
0
1
*
1
0
0
0
0
0
1
IF0 IM0  
IF1 IM1  
IFTA IMTA  
IFTB IMTB  
IFTC IMTC  
IFS IMS  
Note: *Don’t care.  
Figure 7 shows the interrupt processing sequence, and figure 8 shows the interrupt processing flowchart. If  
an interrupt is requested, the instruction being executed finishes in the first cycle. The IE is reset in the  
second cycle. In the second and third cycles, the carry flag, status flag, and program counter are pushed  
onto the stack. In the third cycle, the instruction is executed after jumping to the vector address.  
In each vector address, program the JMPL instruction to branch to the starting address of the interrupt  
program. The IF, which caused the interrupt, must be reset by software in the interrupt program.  
Instruction  
cycles  
1
2
3
4
5
6
Instruction  
execution  
Stacking;  
vector address  
generated  
Interrupt  
acceptance  
Stacking;  
reset of IE  
JMPL instruction execution  
on the vector address  
Instruction  
execution at  
starting address  
of the interrupt  
routine  
Figure 7 Interrupt Processing Sequence  
21  
HD404818 Series  
Power  
on  
No  
RESET = 1 ?  
Yes  
Yes  
Interrupt  
request ?  
No  
No  
IE = 1?  
Yes  
Accept interrupt  
Execute instruction  
Reset MCU  
IE  
Stack  
Stack  
Stack  
0
PC (PC) + 1  
(PC)  
(CA)  
(ST)  
Yes  
Yes  
INT0  
PC $0002  
interrupt ?  
No  
INT1  
interrupt ?  
PC $0004  
No  
Yes  
Yes  
Yes  
Timer A  
interrupt ?  
PC $0006  
No  
Timer B  
interrupt ?  
PC $0008  
No  
Timer C  
interrupt ?  
PC $000A  
No  
PC $000C  
(serial interrupt)  
Figure 8 Interrupt Processing Flowchart  
22  
HD404818 Series  
Interrupt Enable Flag (IE: $000, Bit 0): The interrupt enable flag enables/disables interrupt requests  
(table 4). It is reset by an interrupt and set by the RTNI instruction.  
Table 4 Interrupt Enable Flag  
IE  
0
Interrupt Enabled/Disabled  
Disabled  
1
Enabled  
External Interrupts (INT0, INT1): The external interrupt request inputs (INT0, INT1) can be selected by  
port mode register A (PMRA: $004).  
The external interrupt request flags (IF0, IF1) are set at the falling edge of INT0 and INT1 inputs,  
respectively (table 5).  
The INT1 input can be used as a clock signal input to timer B, in which timer B counts up at each falling  
edge of the INT1 input. When using INT1 as the timer B external event input, the external interrupt mask  
(IM1) has to be set so that the interrupt request by INT1 will not be accepted (table 6).  
More than two instruction cycle times (2tcyc/2tsubcyc) are needed to detect the edge of INT0 or INT1.  
External Interrupt Request Flags (IF0: $000, Bit 2; IF1: $001, Bit 0): The external interrupt request  
flags (IF0, IF1) are set at the falling edge of the INT0 and INT1 inputs, respectively (table 5).  
Table 5 External Interrupt Request Flags  
IF0, IF1  
Interrupt Request  
0
1
No  
Yes  
External Interrupt Masks (IM0: $000, Bit 3; IM1: $001, Bit 1): The external interrupt masks mask the  
external interrupt requests (table 6).  
Table 6 External Interrupt Masks  
IM0, IM1  
Interrupt Request  
Enabled  
0
1
Disabled (masked)  
Timer A Interrupt Request Flag (IFTA: $001, Bit 2): The timer A interrupt request flag is set by the  
overflow output of timer A (table 7).  
23  
HD404818 Series  
Table 7 Timer A Interrupt Request Flag  
IFTA  
Interrupt Request  
0
1
No  
Yes  
Timer A Interrupt Mask (IMTA: $001, Bit 3): The timer A interrupt mask prevents an interrupt request  
from being generated by the timer A interrupt request flag (table 8).  
Table 8 Timer A Interrupt Mask  
IMTA  
Interrupt Request  
Enabled  
0
1
Disabled (masked)  
Timer B Interrupt Request Flag (IFTB: $002, Bit 0): The timer B interrupt request flag is set by the  
overflow output of timer B (table 9).  
Table 9 Timer B Interrupt Request Flag  
IFTB  
Interrupt Request  
0
1
No  
Yes  
Timer B Interrupt Mask (IMTB: $002, Bit 1): The timer B interrupt mask prevents an interrupt request  
from being generated by the timer B interrupt request flag (table 10).  
Table 10 Timer B Interrupt Mask  
IMTB  
Interrupt Request  
Enabled  
0
1
Disabled (masked)  
Timer C Interrupt Request Flag (IFTC: $002, Bit 2): The timer C interrupt request flag is set by the  
overflow output of timer C (table 11).  
Table 11 Timer C Interrupt Request Flag  
IFTC  
Interrupt Request  
0
1
No  
Yes  
24  
HD404818 Series  
Timer C Interrupt Mask (IMTC: $002, Bit 3): The timer C interrupt mask prevents the interrupt from  
being generated by the timer C interrupt request flag (table 12).  
Table 12 Timer C Interrupt Mask  
IMTC  
Interrupt Request  
Enabled  
0
1
Disabled (masked)  
Serial Interrupt Request Flag (IFS: $003, Bit 0): The serial interrupt request flag is set when the octal  
counter counts eight transmit clock signals, or when data transfer is discontinued by resetting the octal  
counter (table 13).  
Table 13 Serial Interrupt Request Flag  
IFS  
0
Interrupt Request  
No  
1
Yes  
Serial Interrupt Mask (IMS: $003, Bit 1): The serial interrupt mask masks the interrupt request (table  
14).  
Table 14 Serial Interrupt Mask  
IMS  
0
Interrupt Request  
Enabled  
1
Disabled (masked)  
25  
HD404818 Series  
Operating Modes  
The MCU has five operating modes that are specified by how the clock is used. The functions available in  
each mode are listed in table 15, and operations are shown in table 16. Transitions between operating  
modes are shown in figure 9.  
Table 16 provides additional information for table 26.  
Table 15 Functions Available in Each Operating Mode  
Mode Name  
Active  
Standby  
Stop  
Watch  
Subactive*4  
Activation method  
RESET  
cancellation, instruction  
interrupt  
SBY  
TMA3 = 0,  
STOP  
instruction  
TMA3 = 1,  
STOP  
instruction  
INT0 or timer A  
interrupt  
request from  
watch mode  
request  
Status System oscillator  
OP  
OP  
Stopped  
OP *1  
Stopped  
OP  
Stopped  
OP  
Subsystem oscillator OP  
OP  
Instruction execution OP  
Stopped  
Stopped  
Stopped  
OP  
(øCPU  
Peripheral function, OP  
interrupt (øPER  
Clock function,  
interrupt (øCLK  
)
OP  
OP  
Stopped  
Stopped  
Stopped  
OP  
)
OP  
OP *2  
OP *2  
)
RAM  
OP  
OP  
OP  
Retained  
Retained  
Retained  
Retained  
Reset  
Retained  
Retained  
Retained*3  
OP  
Registers/flags  
I/O  
OP  
High  
OP *3  
impedance*3  
Cancellation method  
RESET input, RESET input, RESET input RESET input, RESET input,  
STOP/SBY  
instruction  
interrupt  
request  
INT0 or timer A STOP/SBY  
interrupt  
request  
instruction  
Notes: OP indicates operating.  
1. To reduce current dissipation, stop all oscillation in external circuits.  
2. Refer to the Interrupt Frame section for details.  
3. Refer to interrupt frame.  
4. Subactive mode is an optional function to be specified on the function option list.  
5. In the watch and subactive modes, the MCU requires a 32.768-kHz crystal oscillator.  
26  
HD404818 Series  
Table 16 Operations in Low-Power Dissipation Modes  
Function  
CPU  
Stop Mode  
Reset  
Watch Mode  
Retained  
Retained  
OP  
Standby Mode  
Retained  
Retained  
OP  
Subactive Mode*2  
OP  
OP  
OP  
OP  
OP  
OP  
OP  
OP  
RAM  
Retained  
Reset  
Timer A  
Timer B  
Timer C  
Serial interface  
LCD  
Reset  
Stopped  
Stopped  
Stopped*3  
OP  
OP  
Reset  
OP  
Reset  
OP  
Reset  
Reset*1  
OP  
I/O  
Retained  
Retained  
Notes: OP indicates operating.  
1. Output pins are at high impedance.  
2. Subactive mode is an optional function to be specified on the function option list.  
3. Transmission/reception is activated if a clock is input in external clock mode. (However,  
interrupts are stopped.)  
Table 17 I/O Status in Low-Power Dissipation Modes  
Output  
Input  
Standby Mode, Watch Mode  
Stop Mode  
High impedance  
Active Mode, Subactive Mode  
Input enabled  
D0–D9  
Retained  
D10–D13  
R0–R3  
Input enabled  
Retained  
High impedance  
Input enabled  
System Clock (øCPU  
)
Operating  
Active mode  
Subactive mode  
Stopped  
Standby mode  
Non-time-base peripheral function clock (øPER  
)
Operating  
Stopped  
Watch mode (TMA3 = 1)  
Stop mode (TMA3 = 0)  
27  
HD404818 Series  
Reset  
Standby mode  
Active mode  
Stop mode  
(TMA3 = 0)  
(TMA3 = 0)  
fOSC  
fX :  
ø CPU  
ø CLK  
ø PER  
:
Operating  
Operating  
Stopped  
fcyc  
fOSC  
fX :  
ø CPU  
:
Operating  
Operating  
fcyc  
fcyc  
fcyc  
fOSC  
fX :  
ø CPU  
ø CLK  
:
ø PER  
:
:
Stopped  
Operating  
Stopped  
Stopped  
Stopped  
SBY (standby)  
Interrupt  
STOP  
:
:
:
:
:
ø CLK  
:
ø PER  
fcyc  
:
Timers A, B, C  
Serial,  
INT0, INT1  
Watch mode  
(TMA3 = 1)  
(TMA3 = 1, LSON = 0)  
fOSC  
fX :  
ø CPU  
ø CLK  
ø PER  
:
Operating  
Operating  
Stopped  
fSUB  
fOSC  
fX :  
ø CPU  
ø CLK  
ø PER  
:
Operating  
Operating  
fcyc  
fSUB  
fcyc  
f OSC  
f X :  
:
ø CPU  
:
ø CLK  
ø PER  
:
Stopped  
Operating  
Stopped  
fSUB  
SBY (standby)  
Interrupt  
STOP  
INT0,  
:
:
:
:
:
:
Timer A*1  
fcyc  
:
Stopped  
Timers A, B, C  
Serial,  
INT0, INT1  
*3  
*2  
fOSC  
fX :  
:
Main oscillation frequency  
Suboscillation frequency  
for time-base  
fOSC /4  
fX /8  
Subactive mode  
STOP  
(TMA3 = 1, LSON = 1)  
INT0,  
fOSC  
fX :  
ø CPU  
ø CLK  
ø PER  
:
Stopped  
Operating  
fSUB  
fSUB  
fSUB  
fOSC  
fX :  
ø CPU  
:
Stopped  
Operating  
Stopped  
fSUB  
fcyc  
:
Timer A*1  
fSUB  
:
:
:
:
:
ø
:
:
:
System clock  
STOP/SBY  
(LSON = 1)*4  
CPU  
:
ø CLK  
ø
ø
Clock for time-base  
Clock for other  
peripheral functions  
CLK  
PER  
:
Stopped  
ø PER  
LSON: Low speed on flag  
Notes: 1. Time-base interrupt  
DTON: Direct transfer on flag  
2. STOP/SBY (DTON = 1, LSON = 0)  
3. STOP/SBY (DTON = 0, LSON = 0)  
4. DTON is not affected  
Figure 9 MCU Status Transitions  
Active Mode: The MCU operates according to the clock generated by the system oscillators OSC1 and  
OSC2.  
Standby Mode: The MCU enters standby mode when the SBY instruction is executed from active mode.  
In this mode, the oscillators, interrupts, timer/counters, and serial interface continue to operate, but all  
instruction execution-related clocks stop. The stopping of these clocks stops the CPU, retaining all RAM  
and register contents and maintaining the current I/O pin status.  
Standby mode is terminated by a RESET input oran interrupt request. If it is terminated by a RESET input,  
the MCU is reset as well. After an interrupt request, the MCU enters active mode and resumes, executing  
28  
HD404818 Series  
the next instruction after the SBY instruction. If the interrupt enable flag is 1, that interrupt is then  
processed; if it is 0, the interrupt request is left pending and normal instruction execution continues. A  
flowchart of operation in standby mode is shown in figure 10.  
Standby  
Watch  
Oscillator: Active  
Peripheral clocks:  
Active  
All other clocks:  
Stop  
Oscillator: Stop  
Suboscillator: Active  
Peripheral clocks: Stop  
All other clocks: Stop  
No  
RESET  
= 1 ?  
Yes  
No  
No  
IF0 =  
1 ?  
Yes  
No  
No  
IF1 =  
1 ?  
IM0 =  
0 ?  
Yes  
No  
No  
IFTA =  
1 ?  
Yes  
IM1 =  
0 ?  
Yes  
No  
No  
IFTB =  
1 ?  
(SBY only) Yes  
IMTA =  
0 ?  
Yes  
No  
No  
IFTC =  
1 ?  
Yes  
IMTB =  
0 ?  
(SBY only) Yes  
Yes  
No  
No  
IFS =  
1 ?  
IMTC =  
0 ?  
Yes  
(SBY only)  
Yes  
IMS =  
0 ?  
(SBY only)  
Yes  
Restart  
processor clocks  
Restart  
processor clocks  
Execute  
next instruction  
(active mode)  
IF = 1,  
IM = 0, and  
IE = 1?  
No  
Yes  
Execute  
next instruction  
Accept interrupt  
Reset MCU  
Figure 10 MCU Operating Flowchart of Watch and Standby Modes  
29  
HD404818 Series  
Stop Mode: The MCU enters stop mode if the STOP instruction is executed in active mode when TMA3 =  
0. In this mode, the system oscillator stops, which stops all MCU functions as well.  
Stop mode is terminated by a RESET input as shown in figure 11. RESET must be high for at least one tRC  
to stabilize oscillation (refer to the AC Characteristics section). When the MCU restarts after stop mode is  
cancelled, all RAM contents are retained, but the accuracy of the contents of the accumulator, B register, W  
register, X/SPX register, Y/SPY register, carry flag, and serial data register cannot be guaranteed.  
Stop mode  
Oscillator  
Internal clock  
RESET  
tres  
tres tRC (stabilization time)  
STOP instruction execution  
Figure 11 Timing of Stop Mode Cancellation  
Watch Mode: The MCU enters watch mode if the STOP instruction is executed in active mode when  
TMA3 = 1, or if the STOP or SBY instruction is executed in subactive mode.  
Watch mode is terminated by a RESET input or a timer-A/INT0 interrupt request. For details on RESET  
input, refer to the Stop Mode section. When terminated by a timer-A/INT0 interrupt request, the MCU  
enters active mode if LSON is 0, or subactive mode if LSON is 1. After an interrupt request is generated,  
the time required to enter active mode is tRC for a timer A interrupt, and TX (where T + tRC TX 2T + tRC)  
for an INT0 interrupt, as shown in figure 12.  
Operation during mode transition is the same as that at standby mode cancellation (figure 10).  
30  
HD404818 Series  
Oscillation  
stabilization period  
Active mode  
Watch mode  
Active mode  
Interrupt strobe  
INT0  
Interrupt request  
generation  
tRC  
T
T
(During the transition  
from watch mode to  
active mode only)  
TX  
T: Interrupt frame length  
t
RC: Oscillation stabilization period  
Figure 12 Interrupt Frame  
Subactive Mode: The CPU operates with a clock generated by the X1 and X2 oscillation circuits.  
Functions that can operate in subactive mode are listed in table 16. When the STOP or SBY instruction is  
executed in subactive mode, the MCU enters either watch or active mode, depending on the statuses of  
LSON and DTON. The DTON flag can only be set in subactive mode; it is automatically reset after a  
transition to active mode.  
Subactive mode is an optional function that the user must specify on the function option list.  
Interrupt Frame: In watch and subactive modes, øCLK is supplied for timer A and the INT0 circuit.  
Prescaler W and timer A operate as time bases to generate interrupt frame timing. Three interrupt frame  
cycles (T) can be selected by the settings of the miscellaneous register, as shown in figure 13.  
In watch and subactive modes, timer A and INT0 interrupts are generated in synchronism with the interrupt  
frame. An interrupt request is generated at an interrupt strobe, except when the MCU enters active mode  
from watch mode. The INT0 falling edge is acknowledged regardless of the interrupt frame, but an interrupt  
is executed simultaneously with the second interrupt strobe. Timer A generates an overflow and interrupt  
request at an interrupt strobe.  
31  
HD404818 Series  
MIS: $00C  
MIS  
*1  
T *1  
Oscillation circuit  
condition  
tRC  
1 Bit 0 Bit  
MIS2 MIS1 MIS0  
0.12207 ms  
0
0
0.24414 ms  
External clock input  
0.24414 ms *2  
7.8125 ms  
31.25 ms  
t RC  
selection  
0
1
1
1
0
1
15.625 ms  
62.5 ms  
Ceramic or crystal  
oscillator  
Refer to  
table 20  
Not used  
Notes: 1. The value of tRC applies only when using  
a 32.768-kHz oscillator.  
2. Only direct transfer.  
Figure 13 Miscellaneous Register  
Direct Transfer: By controlling the DTON, the MCU can be placed directly from subactive to active  
mode. The detailed procedure is as follows:  
Set the DTON flag in subactive mode while LSON = 0.  
Execute the STOP or SBY instruction.  
After the oscillation stabilization time (a fixed value), the MCU will move automatically from subactive  
to active mode.  
Note that DTON ($020, bit 3) is valid only in subactive mode. When the MCU is in active mode, this flag  
is always at reset.  
The transition time (tD) from subactive to active mode is tRC < tD < T + tRC.  
STOP/SBY  
execution  
Oscillation  
stabilization  
time  
Internal  
execution  
time (< T)  
Subactive mode  
(LSON = 0, DTON = 1)  
Active mode  
Interrupt  
strobe  
Direct transfer  
timing  
tRC  
T
T:  
Interrupt frame period  
tRC : Oscillation stabilization period  
Figure 14 Direct Transfer Timing  
MCU Operating Sequence: The MCU operates in the sequence shown in figures 15 to 17. It is reset by an  
asynchronous RESET input, regardless of its state.  
32  
HD404818 Series  
The low-power mode operation sequence is shown in figure 17. With the IE flag cleared and an interrupt  
flag set together with its interrupt mask cleared, if a STOP/SBY instruction is executed, the instruction is  
cancelled (regarded as an NOP) and the following instruction is executed. Before executing a STOP/SBY  
instruction, make sure all interrupt flags are cleared or all interrupts are masked.  
Power on  
No  
RESET = 1 ?  
Yes  
MCU  
operation  
cycle  
Reset  
MCU  
Figure 15 MCU Operating Sequence (power on)  
33  
HD404818 Series  
MCU operation  
cycle  
Yes  
No  
IF = 1 ?  
No  
IM = 0 and  
IE = 1 ?  
Yes  
Instruction  
execution  
IE  
Stack  
0
Yes  
(PC),  
(CA),  
(ST)  
SBY/STOP  
instruction ?  
No  
Low-power mode  
operation cycle  
PC next  
location  
PC vector  
address  
IF: Interrupt request flag  
IM: Interrupt mask  
IE: Interrupt enable flag  
PC: Program counter  
CA: Carry flag  
ST: Status flag  
Figure 16 MCU Operating Sequence (MCU operation cycle)  
34  
HD404818 Series  
Low-power mode  
operation cycle  
No  
IF = 1 and  
IM = 0 ?  
Yes  
Standby/watch  
mode  
Stop mode  
No  
IF = 1 and  
IM = 0 ?  
Yes  
Hardware NOP  
execution  
Hardware NOP  
execution  
PC next  
PC next  
Iocation  
Iocation  
Instruction  
execution  
MCU operation  
cycle  
For specific IF and IM, see figure 10, MCU Operating Flowchart  
Figure 17 MCU Operating Sequence (low-power mode operation)  
Notes on Use:  
In subactive mode, a timer A interrupt request or an external interrupt request (INT0) occurs in  
synchronism with an interrupt strobe.  
If the STOP or SBY instruction is executed at the same time with an interrupt strobe, these interrupt  
requests will be cancelled and the corresponding interrupt request flags (IFTA, IF0) will not be set.  
In subactive mode, do not use the STOP or SBY instruction at the time of an interrupt strobe.  
35  
HD404818 Series  
When the MCU is in watch mode or subactive mode, if the high level period before the falling edge of  
INT0 is shorter than the interrupt frame, INT0 is not be detected. Also, if the low level period after the  
falling edge of INT0 is shorter than the interrupt frame, INT0 is not be detected.  
Edge detection is shown in figure 18. The level of the INT0 signal is sampled by a sampling clock.  
When this sampled value changes to low from high, a falling edge is detected.  
In figure 19, the level of the INT0 signal is sampled by an interrupt frame. In (a) the sampled value is  
low at point A, and also low at point B. Therefore, a falling edge is not detected. In (b), the sampled  
value is high at point A, and also high at point B. A falling edge is not detected in this case either.  
When the MCU is in watch mode or subactive mode, keep the high level and low level period of INT0  
longer than the interrupt frame.  
INT0  
Sampling  
High  
Low  
Low  
Figure 18 Edge Detection  
INT0  
INT0  
Interrupt  
frame  
Interrupt  
frame  
A: Low  
B: Low  
A: High  
B: High  
(a) High level period  
(b) Low level period  
Figure 19 Sampling Example  
36  
HD404818 Series  
Internal Oscillator Circuit  
Figure 20 shows the block diagram of the internal oscillator circuit. A ceramic oscillator can be connected  
to OSC1 and OSC2. A 32.768-kHz crystal oscillator can be connected to X1 and X2. External clock  
operation is available for the system oscillator.  
OSC1  
1/4  
divider  
circuit  
fOSC  
fcyc  
System  
oscillator  
Timing  
generator  
circuit  
System clock  
(øCPU  
Mode  
control  
circuit  
)
OSC2  
1/8  
divider  
circuit  
Timing  
generator  
circuit  
fX  
fSUB  
X1  
X2  
Subsystem  
oscillator  
System clock  
(øPER  
Timer-base  
clock (øCLK  
)
)
Figure 20 Internal Oscillator Circuit  
D0  
COMP1/D13  
RESET  
OSC2  
OSC1  
TEST  
X1  
X2  
VCC  
GND  
NUMG  
SCK/R00  
GND  
Figure 21 Layout of Crystal and Ceramic Oscillators  
37  
HD404818 Series  
Table 18 Examples of Oscillator Circuits  
Circuit Configuration  
Circuit Constants  
External clock operation  
OSC1  
Oscillator  
Open  
OSC2  
Ceramic oscillator  
HD404812, HD404814, HD404816,  
HD404818, HD4074818  
Ceramic oscillator: CSA4.00MG  
(Murata)  
C1  
OSC1  
Ceramic  
Rf  
Rf = 1MΩ ± 20%  
C1 = C2 = 30 pF ± 20%  
OSC2  
C2  
GND  
HD40L4812, HD40L4814,  
HD40L4816, HD40L4818,  
HD407L4818  
Ceramic oscillator: CSB400P  
(Murata)  
CSB400P22 (Murata)  
Rf = 1 MΩ ± 20%  
C1 = C2 = 220 pF ± 5%  
CSB800J (Murata)  
CSB800J122 (Murata)  
Rf = MΩ ± 20%  
C1 = C2 = 220 pF ± 5%  
Crystal oscillator  
HD404812, HD404814, HD404816,  
HD404818, HD4074818  
C1: 10 to 22 pF ± 20%  
C2: 10 to 22 pF ± 20%  
Rf = 1 MΩ ± 20%  
C1  
OSC1  
Crystal  
Rf  
Crystal: Equivalent to circut shown  
at bottom left.  
OSC2  
C2  
C0: 7 pF max.  
RS: 100 max  
GND  
L
CS  
RS  
C0  
38  
HD404818 Series  
Table 18 Examples of Oscillator Circuits (cont)  
Circuit Configuration  
Circuit Constants  
Crystal oscillator  
Crystal: 32.768 kHz: MX38T  
(Nippon Denpa Kogyo)  
C1: = 20 pF ± 20%  
C2: = 20 pF ± 20%  
RS: = 14 kΩ  
C1  
X1  
Crystal  
C0: = 1.5 pF  
X2  
C2  
GND  
L
C
S RS  
C0  
Notes: 1. The circuit parameters above are recommended by the crystal or ceramic oscillator  
manufacturer. The circuit parameters are affected by the crystal or ceramic oscillator and floating  
capacitance when designing the board. When using the oscillator, consult with the crystal or  
ceramic oscillator manufacturer to determine the circuit parameters.  
2. Writing among OSC1 and OSC2 or X1 and X2, and other elements should be as short as  
possible, and should not cross other wires. Refer to figure 21.  
3. When the 32.768-kHz crystal oscillator is not used, pin X1 must be fixed to Vcc and pin X2 must  
be left open.  
39  
HD404818 Series  
Input/Output  
The MCU provides 26 I/O pins and 4 input-only pins including 10 high-current pins (15 mA max.).  
Twenty-six I/O pins contain programmable pull-up MOS. When each I/O pin is used as an input, the data  
control register (DCR) controls the output buffer. Table 19 shows the I/O pin circuit types.  
The configuration of the I/O buffers is shown in table 19.  
40  
HD404818 Series  
Table 19 I/O Pin Circuit Types  
I/O Pins  
Circuit  
Pin Name  
I/O common pins  
(wint pull-up MOS)  
VCC  
D0-D9  
Pull-up control signal  
DCR  
Output data  
R00-R03  
R10-R13  
R20-R23  
R30-R33  
VCC  
PDR  
Input data  
Input control signal  
VCC  
SCK  
Pull-up control signal  
DCR  
Output data  
VCC  
SCK (internal)  
SCK  
Output data  
PDR  
Output pins  
(with pull-up MOS)  
VCC  
SO  
TIMO  
Pull-up control signal  
VCC  
DCR  
SO or TIMO  
Input pins  
INT0  
INT1  
SI  
VCC  
Pull-up control signal  
D10  
Input data  
D11/VCref  
Input control signal  
Input control  
D12/COMP0  
D13/COMP1  
(Multiplexed with  
analog inputs)  
Input data  
Analog input  
+
VCref  
Mode select signal  
Note: For RO2/SO, refer to table 20, note 3.  
41  
HD404818 Series  
D Port: Consists of ten 1-bit I/O ports and four input ports. Pins D0 to D9 are high-current I/O pins (15 mA  
max.). The sum of the current for all D-port pins is up to 100 mA. D port can be set/reset by the SED/RED  
and SEDD/REDD instructions, and can be tested by the TD/TDD instruction. Output data is stored in the  
port data register. The output buffer for port D can be turned on/off by the D-port data control registers  
(DCRB, DCRC, DCRD). The DCR is located in the memory address area. Pins D10 to D13 are input-only  
pins.  
Two operation modes are available for pins D12 and D13: digital input mode and analog input mode. The  
operation modes can be selected by port mode register B (PMRB; bits 1, 0). In the digital input mode, these  
pins can be used as input with the same characteristics as other I/O pins. In the analog input mode, users  
can read the result of the comparison between the reference voltage as input data. The reference voltage is  
input through D11/VCref.  
R Port: Consists of four 4-bit I/O ports and can receive/transmit data by the LAR/LRA and LBR/LRB  
instructions. Output data is stored in the port data register (PDR) of each pin.  
The output buffers of the R ports can be turned on/off by the R-port data control registers (DCR0–DCR3).  
The DCR is located in the memory address area.  
Pins R00, R01, and R02 are multiplexed with SCK, SI, and SO, respectively.  
Pins R31, R32, and R33 are multiplexed with TIMO, INT0, and INT1, respectively. Refer to figure 23.  
Pull-Up MOS Transfer Control: All I/O ports, except for pins D10–D13, contain programmable pull-up  
MOS.  
Bit 3 of port mode register B (PMRB3) controls the activation of all pull-up MOS simultaneously. Pull-up  
MOS is controlled by the port data register (PDR) of each pin. Therefore, each bit of pull-up MOS can be  
individually turned on or off. Refer to table 20.  
The on/off status of each transistor and the peripheral function mode of each pin can be set independently.  
Unused I/O Pins: If unused pins are left floating, the LSI may malfunction because of noise. The I/O pins  
should be fixed as follows to prevent this: pull-up to VCC through internal pull-up MOS, or pull-up to VCC  
through a resistor of approximately 100 k.  
42  
HD404818 Series  
Pin  
MPX  
Comparator  
+
VCref  
Mode  
register  
Figure 22 Configuration of D12 and D13  
43  
HD404818 Series  
SMR (serial mode register) ADR: $005  
3
2
1
0
R00 /SCK pin mode selection  
PMRA (port mode register A) ADR: $004  
3
2
1
0
R02 /SO pin mode selection  
R01 /SI pin mode selection  
R32 /INT0 pin mode selection  
R33 /INT pin mode selection  
1
PMRB (port mode register B) ADR: $012  
3
2
1
0
D12 /COMP0 pin mode selection  
D13 /COMP1 pin mode selection  
R31/TIMO pin mode selection  
Pull-up MOS on/off selection  
SMR  
Bit 3  
0
Port  
select  
R00  
SCK  
1
PMRA  
PMRA  
PMRA  
PMRA  
Port  
select  
Port  
select  
Port  
select  
Port  
select  
Bit 1  
Bit 2  
Bit 0  
Bit 3  
R33  
R32  
0
1
0
1
R01  
SI  
R02  
SO  
0
1
0
1
INT  
INT0  
1
PMRB  
PMRB  
Bit 0  
PMRB  
PMRB  
Port  
select  
Port  
select  
Pull-up MOS  
on/off  
Port  
select  
Bit 1  
Bit 2  
Bit 3  
D13  
D12  
0
1
Off  
On  
0
1
R31  
0
1
0
1
COMP1  
COMP0  
TIMO  
Figure 23 I/O Select Mode Registers  
44  
HD404818 Series  
Table 20 Input/Output by Program Control  
PMRB Bit 3  
DCR  
0
1
0
1
0
1
PDR  
0
1
0
1
0
1
0
1
PMOS (A)  
NMOS (B)  
Pull-up MOS  
On  
On  
On  
On  
On  
On  
Notes: — indicates off status.  
1. Combine the values of the above mode registers (PMRB3, DCR, and PDR) to select the  
input/output for PMOS (A), NMOS (B), and the pull-up MOS, individually.  
The DCR and PDR control each pin. Also, PMRB3 controls the on/off of all pull-up MOSs.  
2. The second bit of the miscellaneous register (MIS2) controls R02/SO. When MIS2 is 1, PMOS  
(A) is off.  
R02/SO  
MIS2  
PMOS (A)  
0
1
On  
Off  
3. Each bit of DCR corresponds to each port as follows:  
DCR  
Bit 3  
R03  
R13  
R23  
R33  
D3  
Bit 2  
R02  
R12  
R22  
R32  
D2  
Bit 1  
R01  
R11  
R21  
R31  
D1  
Bit 0  
R00  
R10  
R22  
R30  
D0  
DCR0  
DCR1  
DCR2  
DCR3  
DCRB  
DCRC  
DCRD  
D7  
D6  
D5  
D4  
D9  
D8  
45  
HD404818 Series  
VCC  
PMRB3  
DCR  
VCC  
Pull-up  
MOS  
PMOS (A)  
NMOS (B)  
PDR  
Input data  
Input control signal  
Figure 24 Configuration of the Input/Output Buffer  
46  
HD404818 Series  
Timers  
The MCU provides prescalers S and W (each with a different input clock source), and three timer/ counters  
(timers A, B, and C). Figures 25, 26 and 27 show their diagrams.  
Prescaler S: The input to prescaler S is the system clock signal. The prescaler is initialized to $000 by  
MCU reset, and starts to count up with the system clock signal as soon as the RESET input goes low. The  
prescaler keeps counting up except at MCU reset and in the stop and watch modes. The prescaler provides  
input clock signals to timers A to C and the transmit clock of the serial interface. They can be selected by  
timer mode registers A (TMA), B (TMB), C (TMC), and the serial mode register (SMR), respectively.  
Prescaler W: The input to prescaler W is a clock which divides the X1 input clock by 8. The output of  
prescaler W is available as an input clock for timer A by controlling timer mode register A (TMA).  
Timer A Operation: After timer A is initialized to $00 by MCU reset, it counts up at every clock input  
signal. When the next clock signal is applied after timer A has counted up to $FF, timer A is set to $00  
again, and an overflow output is generated. This sets the timer A interrupt request flag (IFTA: $001, bit 2)  
to 1. Therefore, timer A can function as an interval timer periodically generating overflow output at every  
256th clock signal input (figure 25).  
To use timer A as a watch time base, set TMA3 to 1. Timer counter A receives prescaler W output, and  
timer A generates interrupts with accurate timing (reference clock = 32-kHz crystal oscil lator). When  
using timer A as a watch time base, prescaler W and the timer counter can be initialized to $0 by setting  
timer mode register A.  
The clock input signals to timer A are selected by timer mode register A (TMA: $008).  
47  
HD404818 Series  
Timer A interrupt  
request flag  
(IFTA)  
(tsubcyc  
)
32.768-kHz  
oscillator  
Prescaler W  
(PSW)  
1/4  
1/2  
fSUB  
2 fSUB  
1/2 tsubcyc  
Selector  
Timer  
Clock  
counter A  
(TCA)  
Overflow  
Selector  
øPER  
System  
clock  
3
Prescaler S (PSS)  
Timer mode  
register A  
(TMA)  
Figure 25 Timer A Block Diagram  
48  
HD404818 Series  
Timer B Operation: Timer mode register B (TMB: $009) selects the auto-reload function, input clock  
source, and prescaler divide ratio for timer B. When an external event input is used as an input clock signal  
to timer B, select R33/INT1 as INT1 by port mode register A (PMRA: $004) to prevent an external interrupt  
request from occurring (figure 26)  
Timer B is initialized according to the data written into timer load register B by software. Timer B counts  
up at every clock input signal. When the next clock signal is applied to timer B after it is set to $FF, it will  
generate an overflow output. In this case, if the auto-reload function is selected, timer B is initialized  
according to the value of timer load register B. If it is not selected, timer B goes to $00. The timer B  
interrupt request flag (IFTB: $002, bit 0) will be set as this overflow is output.  
Timer B interrupt  
request flag  
(IFTB)  
Timer latch register BU (TLBU)  
Timer latch  
register BL  
(TLBL)  
Clock  
Timer counter B  
(TCB)  
Overflow  
Selector  
Timer load  
register BU  
(TLRU)  
INT1  
fcyc/fSUB  
Timer load  
register BL  
(TLRL)  
System  
clock  
Prescaler S (PSS)  
(tcyc/tsubcyc  
)
Free-running  
control  
3
Timer mode  
register B  
(TMB)  
Figure 26 Timer B Block Diagram  
Timer C Operation: Timer mode register C (TMC: $00D) selects the auto-reload function and the  
prescaler divide ratio for timer C.  
Timer C is initialized according to the data written into timer load register C by software. Timer C counts  
up at every clock input signal. When the next clock signal is applied to timer C after it is set to $FF, it will  
generate an overflow output. In this case, if the auto-reload function is selected, timer C is initialized  
49  
HD404818 Series  
according to the value of timer load register C. If it is not selected, timer C goes to $00. The timer C  
interrupt request flag (IFTC: $002, bit 2) will be set as this overflow is output.  
Timer C is also available as a watchdog timer for detecting runaway programs. MCU reset occurs when the  
watchdog on flag (WDON) is 1 and the counter overflow output is generated by a runaway program. If  
timer C stops, the watchdog timer function also stops. In the standby mode, this function is enabled.  
Timer C provides a variable duty-cycle pulse output function (PWM). The output waveform differs  
depending on the contents of the timer mode register and timer load register C (figure 28). When selecting  
the pulse output function, set R31/TIMO to TIMO by controlling port mode register B.  
When timer C stops, this functions also stops.  
System  
reset signal  
Timer C interrupt  
request flag  
(IFTC)  
Watchdog on  
flag (WDON)  
Watchdog timer  
control logic  
Timer output  
control logic  
TIMO  
Timer latch register CU (TLCU)  
Timer latch  
register CL  
(TLCL)  
Clock  
Timer counter C  
(TCC)  
Overflow  
Timer load  
register CU  
(TCRU)  
Selector  
Timer load  
register CL  
(TCRL)  
Free-running/  
reload control  
fcyc/fSUB  
System  
clock  
Prescaler S (PSS)  
(tcyc/tsubcyc  
)
3
Timer mode  
register C  
(TMC)  
Figure 27 Timer C Block Diagram  
50  
HD404818 Series  
T × (TCR + 1)  
TMC3 = 0  
TMC3 = 1  
T × 256  
T
T × (256 – TCR)  
T:  
Input clock period to counter (see table 23)  
TCR: The value of the timer load register  
Note: When TCR = $FF, this waveform is always fixed low.  
Figure 28 Variable Duty-Cycle Pulse Output Waveform  
51  
HD404818 Series  
Registers for Timers  
Timer Mode Register A (TMA: $008): Timer mode register A is a 4-bit write-only register which  
controls the timer A operation as table 21 shows. Timer mode register A is initialized to $0 at MCU reset.  
Timer Mode Register B (TMB: $009): Timer mode register B (TMB) is a 4-bit write-only register which  
selects the auto-reload function, the prescaler divide ratio, and the source of the clock input signal, as  
shown in table 22. Timer mode register B is initialized to $0 by MCU reset.  
The data of timer B changes at the second instruction cycle of a write instruction. Initialization of timer B  
by writing data into timer load register B should be performed after the contents of TMB are changed.  
Table 21 Timer Mode Register A  
TMA  
Source Prescaler, Input Clock Period,  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
Operating Mode  
PSS, 2048 tcyc  
PSS, 1024 tcyc  
PSS, 512 tcyc  
PSS, 128 tcyc  
PSS, 32 tcyc  
0
0
0
Timer A mode  
1
1
0
1
0
1
0
1
0
1
1
0
1
0
1
PSS, 8 tcyc  
0
PSS, 4 tcyc  
1
PSS, 2 tcyc  
1
0
PSW, 32 tsubcyc  
PSW, 16 tsubcyc  
PSW, 8 tsubcyc  
PSW, 2 tsubcyc  
PSW, 1/2 tsubcyc  
Do not use  
Time-base mode  
1
0
1
0
1
0
PSW, TCA reset  
1
Notes: 1. tsubcyc = 244.14 µs (when a 32.768-kHz crystal oscillator is used)  
2. Timer counter overflow output period (s) = input clock period (s) × 256  
3. If PSW or TCA reset is selected while the LCD is operating, LCD operation halts (power switch  
goes off).  
When the LCD is connected for display, the PSW and TCA reset periods must be set in the  
program to the minimum.  
4. In time base mode, the timer counter overflow output cycle must be greater than half of the  
interrupt frame period (T/2 = tRC).  
If 1/2 tsubcyc is selected, tRC must be 7.8125 ms ((MIS1, MIS0) = (0, 1), see figure 13).  
52  
HD404818 Series  
5. The division ratio must not be modified during time base mode operation, otherwise an overflow  
cycle error will occur.  
Timer Mode Register C (TMC: $00D): Timer mode register C is a 4-bit write-only register which selects  
the auto-reload function, input clock source, and prescaler divide ratio, as table 23 shows. Timer mode  
register C is initialized to $0 at MCU reset.  
The contents of timer mode register C will change in the second instruction cycle after a write instruction to  
TMC. Therefore, it is required to initialize timer C after the contents of timer mode register C have been  
changed completely.  
Timer B (TCBL: $00A, TCBU: $00B, TLRL: $00A, TLRU: $00B): Timer B consists of an 8-bit write-  
only timer load register, and an 8-bit read-only timer counter. Each of them has low-order digits (TCBL:  
$00A, TLRL: $00A) and high-order digits (TCBU: $00B, TLRU: $00B). (Refer to figure 26.)  
Timer counter B can be initialized by writing data into timer load register B. In this case, write the low-  
order digits first, and then the high-order digits. The timer counter is initialized when the high-order digit  
is written. The timer load register is initialized to $00 by MCU reset.  
The counter value of timer B can be obtained by reading timer counter B. In this case, read the high-order  
digits first, and then the low-order digits. The count value of the low-order digit is obtained when the high-  
order digit is read.  
Timer C (TCCL: $00E, TCCU: $00F, TCRL: $00E, TCRU: $00F): Timer C consists of the 8-bit write-  
only timer load register and the 8-bit read-only timer counter. These individually consist of low-order digits  
(TCCL: $00E, TCRL: $00E) and high-order digits (TCCU: $00F, TCRU: $00F). The operation mode of  
timer C is the same as that of timer B.  
Table 22 Timer Mode Register B  
TMB3  
Auto-Reload Function  
0
1
No  
Yes  
TMB2  
TMB1  
TMB0  
Prescaler Divide Ratio, Clock Input Source  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
÷ 2048  
÷ 512  
÷ 128  
÷ 32  
÷ 8  
÷ 4  
÷ 2  
INT1 (external event input)  
53  
HD404818 Series  
Table 23 Timer Mode Register C  
TMC3  
Auto-Reload Function  
0
1
No  
Yes  
TMC2  
TMC1  
TMC0  
Prescaler Divide Ratio, Clock Input Source  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
÷ 2048  
÷ 1024  
÷ 512  
÷ 128  
÷ 32  
÷ 8  
÷ 4  
÷ 2  
Notes on Use  
When using the timer output as variable duty-cycle pulse (PWM) output, note the following point. From  
the update of the timer write register until the occurrence of the overflow interrupt, the PWM output differs  
from the period and duty settings, as shown in table 24. The PWM output should therefore not be used until  
after the overflow interrupt following the update of the timer write register. After the overflow, the PWM  
output will have the set period and duty cycle.  
54  
HD404818 Series  
Table 24 PWM Output Following Update of Timer load Register  
PWM Output  
Timer load Register is Updated during  
High PWM Output  
Timer load Register is Updated during  
Low PWM Output  
Mode  
Timer load  
register  
Timer load  
register  
Free running  
updated to Interrupt  
updated to  
value N  
Interrupt  
request  
value N  
request  
T × (N' + 1)  
T × (255 – N) T × (N + 1)  
T × (255 – N) T × (N + 1)  
Timer load  
register  
Timer load  
register  
Reload  
updated to Interrupt  
updated to  
value N  
Interrupt  
request  
value N  
request  
T
T
T × (255 – N)  
T
T × (255 – N)  
T
55  
HD404818 Series  
Serial Interface  
The serial interface transmits/receives 8-bit data serially. It consists of the serial data register, the serial  
mode register, port mode register A, the octal counter, and the selector (figure 29). Pin R00/SCK and the  
transmit clock signal are controlled by the serial mode register. The data of the serial data register can be  
written and read by software. The data in the serial data register can be shifted synchronously with the  
transmit clock signal.  
The STS instruction starts serial interface operations and resets the octal counter to $0. The octal counter  
starts to count at the falling edge of the transmit clock signal (SCK) and increments by one at the rising  
edge of the SCK. When the octal counter is reset to $0 after eight transmit clock signals, or when a  
transmit/receive operation is discontinued by resetting the octal counter, the serial interrupt request flag will  
be set.  
Serial interrupt  
request flag  
Octal  
counter (OC)  
SO  
(IFS)  
I/O  
control  
logic  
SCK  
I/O  
Serial data  
register (SR)  
control  
logic  
SI  
Clock  
1/2  
Transfer  
control  
signal  
Selector  
3
Serial mode  
register  
(SMR)  
fcyc/fsub  
System  
clock  
Prescaler S (PSS)  
(tcyc/tsubcyc  
)
Port mode  
register  
(PMRA)  
Figure 29 Serial Interface Block Diagram  
56  
HD404818 Series  
Selection and Change of the Operation Mode: Table 25 shows the serial interface operation modes  
which are determined by a combination of the value in the port mode register and in the serial mode  
register.  
Initialize the serial interface by writing to the serial mode register to change the operation mode of the  
serial interface.  
Table 25 Serial Interface Operation Mode  
SMR3  
PMRA1  
PMRA0  
Serial Interface Operating Mode  
Clock continuous output mode  
Transmit mode  
1
1
1
1
0
0
1
1
0
1
0
1
Receive mode  
Transmit/receive mode  
Operating State of Serial Interface: The serial interface has three operating states: the STS waiting state,  
transmit clock wait state, and transfer state (figure 30).  
The STS waiting state is the initialization state of the serial interface internal state. The serial interface  
enters this state in one of two ways: either by changing the operation mode through a change in the data in  
the port mode register, or by writing data into the serial mode register. In this state, the serial interface does  
not operate even if the transmit clock is applied. If the STS instruction is executed then, the serial interface  
shifts to the transmit clock wait state.  
In the transmit clock wait state, the falling edge of the first transmit clock causes the serial interface to shift  
to the transfer state, while the octal counter counts up and the serial data register shifts simultaneously. As  
an exception, if the clock continuous output mode is selected, the serial interface stays in transmit clock  
wait state while the transmit clock outputs continuously. The octal counter becomes 000 again after 8  
external transmit clocks or by the execution of the STS instruction, the serial interface then returns to the  
transmit clock wait state, and the serial interrupt request flag is set simultaneously. In the transfer state the  
octal counter becomes 000 after 8 internal transmit clocks, the serial interface then enters the STS  
instruction waiting state, and the serial interrupt request flag is set simultaneously.  
When the internal transmit clock is selected, the transmit clock output is triggered by the execution of the  
STS instruction, and stops after 8 clocks.  
Program the SMR again to initialize the internal state of the serial interface when the PMRA is  
programmed in the transfer state or in the transmit clock wait state. Then the serial interface goes into the  
STS waiting state.  
57  
HD404818 Series  
STS waiting state  
Octal counter = 000  
transmit clock disable  
Transmit clock  
8 external transmit clocks  
Transfer state  
(Octal counter 000)  
Transmit clock wait state  
(Octal counter = 000)  
STS instruction  
(IFS 1)  
Figure 30 Serial Interface Operation States  
Example of Transmit Clock Error Detection: The serial interface malfunctions when the transmit clock  
is disturbed by external noise. In this case, transmit clock errors can be detected by the procedure shown in  
figure 31.  
If more than 8 transmit clocks are applied in the transmit clock wait state, the state of the serial interface  
shifts in the following sequence: transfer state, transmit clock wait state, and transfer state again. The serial  
interrupt request flag should be reset before entering into the STS waiting state by writing data to SMR.  
This procedure causes the serial interface request flag to be set again.  
58  
HD404818 Series  
Transmission finished  
(IFS 1)  
Disable interrupt  
IFS 0  
Write to SMR  
Transmit clock  
error processing  
Yes  
IFS = 1 ?  
No  
Normal end  
Figure 31 Transmit Clock Error Detection  
59  
HD404818 Series  
Registers for Serial Interface  
Serial Mode Register (SMR: $005): The 4-bit write-only serial mode register controls the R00/SCK,  
prescaler divide ratio, and transmit clock source (table 26, figure 32).  
A write signal to the serial mode register controls the internal state of the serial interface.  
A write signal to the serial mode register stops the serial data register and octal counter from applying the  
transmit clock, and it also resets the octal counter to $0 simultaneously. Therefore, when the serial interface  
is in the transfer state, a write signal causes the serial mode register to cease the data transfer and to set the  
serial interrupt request flag.  
Data in the serial mode register will change in the second instruction cycle after a write instruction to the  
serial mode register. Therefore, it is required to execute the STS instruction after the data in the serial mode  
register has been changed completely. The serial mode register will be reset to $0 by MCU reset.  
Serial Data Register (SRL: $006, SRU: $007): The 8-bit read/write serial data register consists of low-  
order digits (SRL: $006) and high-order digits (SRU: $007).  
The data in the serial data register will be output from the SO pin LSB first synchronously with the falling  
edge of the transmit clock signal. At the same time, external data will be input from the SI pin to the serial  
data register synchronously with the rising edge of the transmit clock. Figure 33 shows the I/O timing chart  
for the transmit clock signal and the data.  
The read/write operation of the serial data register should be performed after the completion of data  
transmit/receive. Otherwise, data accuracy cannot be guaranteed.  
Table 26 Serial Mode Register  
SMR3  
R00/SCK  
0
1
Used as R00 port input/output pin  
Used as SCK input/output pin  
Transmit Clock  
SMR2 SMR1 SMR0 R00/SCK Port Clock Source Prescaler Divide Ratio System Clock Divide Ratio  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
SCK/output  
SCK/output  
SCK/output  
SCK/output  
SCK/output  
SCK/output  
SCK/output  
SCK/input  
Prescaler  
÷ 2048  
÷ 512  
÷ 128  
÷ 32  
÷ 8  
÷ 4096  
÷ 1024  
÷ 256  
÷ 64  
÷ 16  
÷ 4  
Prescaler  
Prescaler  
Prescaler  
Prescaler  
Prescaler  
÷ 2  
System clock  
External clock  
÷ 1  
60  
HD404818 Series  
PMRA: $004  
SMR: $005  
PMRA3 PMRA2 PMRA1 PMRA0  
SMR3 SMR2 SMR1 SMR0  
Transmit clock selection  
R00/SCK pin mode selection  
R02/SO pin mode selection  
R01/SI pin mode selection  
Figure 32 Configurations and Functions of the Mode Registers  
Transmit  
clock  
1
2
3
4
5
6
7
8
Serial  
output  
data  
LSB  
MSB  
Serial input  
data  
latch timing  
Figure 33 Serial Interface I/O Timing  
61  
HD404818 Series  
LCD Controller/Driver  
The MCU contains four common signal pins, the controller, and the driver. The controller and the driver  
drive 32 segment signal pins. The controller consists of display data RAM, the LCD control register (LCR),  
and the LCD duty-cycle/clock control register (LMR) (figure 34). Four programmable duty cycles and  
LCD clocks are available. Since the MCU contains a dual port RAM, display data can be transferred to  
segment signal pins automatically without program control. When selecting the 32-kHz oscillation clock as  
the LCD clock source, the system allows the LCD to display even in watch mode, in which the system  
clock halts.  
VCC  
Power switch  
V1  
V2  
V3  
COM1  
COM2  
COM3  
COM4  
LCD  
common  
driver  
LCD  
power  
supply  
control  
circuit  
Display on/off  
LCD  
clock  
GND  
SEG1  
SEG2  
2
Display  
control  
$050  
Display  
area  
register  
LCD  
segment  
driver  
LCR: $013  
(dual port  
RAM)  
LMR: $014  
$06F  
LCD duty-  
cycle/clock  
control register  
SEG32  
RAM area  
2
2
LCD  
clock  
3
Duty selection  
Clock selection  
System clock dividing  
output (CL1–CL3)  
32-kHz clock dividing  
output (CL0)  
1
Figure 34 LCD Controller/Driver Configuration  
LCD Data Area and Segment Data ($050 to $06F): Figure 35 shows the configuration of the LCD RAM  
area. Each bit of this area, corresponding to four types of duty cycles, can be transmitted to the segment  
driver as display data by programming the area corresponding to the duty cycle.  
62  
HD404818 Series  
Bit 3  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG7  
SEG8  
SEG9  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
COM4  
Bit 2  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG7  
SEG8  
SEG9  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
COM3  
Bit 1  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG7  
SEG8  
SEG9  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
COM2  
Bit 0  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
$050  
$051  
$052  
$053  
$054  
$055  
$056  
$057  
$058  
$059  
$05A  
$05B  
$05C  
$05D  
$05E  
$05F  
96  
97  
98  
99  
$060  
$061  
$062  
$063  
$064  
$065  
$066  
$067  
$068  
$069  
$06A  
$06B  
$06C  
$06D  
$06E  
$06F  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG7  
SEG8  
SEG9  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
COM1  
SEG17  
SEG18  
SEG19  
SEG20  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
SEG32  
COM3  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
SEG32  
COM2  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
SEG32  
COM1  
100 SEG21  
101 SEG22  
102 SEG23  
103 SEG24  
104 SEG25  
105 SEG26  
106 SEG27  
107 SEG28  
108 SEG29  
109 SEG30  
110 SEG31  
111 SEG32  
COM4  
Figure 35 Configuration of LCD RAM Area (dual port RAM)  
LCD Control Register (LCR: $013): The LCD control register is a 3-bit write-only register which  
controls the blanking of the LCD, activation of the power switch, and display in watch mode/subactive  
mode (table 27, figure 36).  
Blank/display  
Blank: Segment signal is faded regardless of the LCD RAM data.  
Display: LCD RAM data is transmitted as a segment signal.  
Power switch on/off  
Off: Power switch is off.  
On: Power switch is on and V1 is VCC.  
Watch mode/subactive mode display  
Off: In the watch mode/subactive mode, all common/segment pins are fixed to GND, and the power  
switch is off.  
On: In the watch mode/subactive mode, LCD RAM data is transmitted as a segment signal.  
LCD Duty-Cycle/Clock Control Register (LMR: $014): The LCD duty-cycle/clock control register is a  
write-only register which specifies four display duty cycles and the reference clock for the LCD (table 28,  
figure 36).  
63  
HD404818 Series  
Table 27 LCD Control Register  
LCR  
Watch Mode/ Subactive Mode LCR  
LCR  
BIT 2  
Display  
BIT 1  
Power Switch On/Off  
BIT 0  
Blank/ Display  
Blank  
0
1
Off  
0
1
Off  
On  
0
1
On  
Display  
Note: With the LCD in watch mode, use the divider output of the 32-kHz oscillator as an LCD clock and set  
LCR bit 2 to 1. When the system oscillator divider output is used as an LCD clock, set LCR bit 2 to  
0.  
Table 28 LCD Duty-Cycle/Clock Control Register  
LMR  
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Duty Cycle Select/Input Clock Select  
1/4 duty cycle  
0
1
1/3 duty cycle  
1
0
1/2 duty cycle  
1
1
Static  
CL0 (32.768 kHz/64; when 32.768-kHz oscillator is used)  
0
1
CL1 (fcyc/256)  
1
0
CL2 (fcyc/2048)  
1
1
CL3 (Refer to table 29)  
Note: fcyc is the system oscillator divider output.  
LCR (LCD control register) ADR = $013  
2
1
0
Blank/display  
Power switch on/off  
Display on/off in watch mode  
(not used)  
LMR (LCD mode register) ADR = $014  
3
2
1
0
Duty cycle selection  
Input clock selection  
Figure 36 LCD Control Register  
64  
HD404818 Series  
Table 29 LCD Frame Frequency  
LMR  
Static  
Bit 3  
0
Bit 2  
0
Bit 3  
0
Bit 2  
1
Bit 3  
1
Bit 2  
0
Bit 3  
1
Bit 2  
1
Instruction  
cycle time  
CL0  
CL1  
CL2  
CL3*  
10 µs  
1 µs  
512 Hz  
512 Hz  
390.6 Hz  
3906 Hz  
48.8 Hz  
488Hz  
24.4 Hz/64 Hz  
244 Hz/64 Hz  
LMR  
1/2 Duty Cycle Bit 3  
Bit 2  
0
Bit 3  
0
Bit 2  
1
Bit 3  
1
Bit 2  
0
Bit 3  
1
Bit 2  
Instruction  
cycle time  
0
1
CL0  
CL1  
CL2  
CL3*  
10 µs  
1 µs  
256 Hz  
256 Hz  
195.3 Hz  
1953 Hz  
24.4 Hz  
244 Hz  
12.2 Hz/32 Hz  
122 Hz/32 Hz  
LMR  
1/3 Duty Cycle Bit 3  
Bit 2  
0
Bit 3  
0
Bit 2  
1
Bit 3  
1
Bit 2  
0
Bit 3  
1
Bit 2  
Instruction  
cycle time  
0
1
CL0  
CL1  
CL2  
CL3*  
10 µs  
1 µs  
170.6 Hz  
170.6 Hz  
130.2 Hz  
1302 Hz  
16.3 Hz  
162.6 Hz  
8.1 Hz/21.3 Hz  
81.3 Hz/21.3 Hz  
LMR  
1/4 Duty Cycle Bit 3  
Bit 2  
0
Bit 3  
0
Bit 2  
1
Bit 3  
1
Bit 2  
0
Bit 3  
1
Bit 2  
1
Instruction  
cycle time  
0
CL0  
CL1  
CL2  
CL3*  
10 µs  
1 µs  
128 Hz  
128 Hz  
97.7 Hz  
977 Hz  
12.2 Hz  
122 Hz  
6.1 Hz/16 Hz  
61 Hz/16 Hz  
Note: * Division ratio differs depending on the value of bit 3 of timer mode register A  
(TMA3 = 0/TMA3 = 1).  
If TMA3 = 0, CL3 = fcyc x duty cycle/4096; if TMA3 = 1, CL3 = 32.768 kHz x duty cycle/512.  
65  
HD404818 Series  
Large LCD Panel Driving and Driving Voltage (VLCD): When using a large LCD panel, lower the  
dividing resistance by attaching external resistors in parallel with the internal dividing resistors (figure 37).  
Since the liquid crystal display board is of a matrix configuration, the path of the charge/discharge current  
through the load capacitors is very complicated. Moreover, since it varies depending on display conditions,  
the value of resistance cannot be determined by simply referring to the load capacitance of the liquid crystal  
display. The value of resistance must be experimentally determined according to the demand for power  
consumption of the equipment in which the liquid crystal display is implemented. Capacitor C (0.1 to 0.3  
µF) is recommended to be attached. In general, R is 1 kto 10 k.  
Figure 37 shows a connection when changing the liquid crystal driving voltage (VLCD). In this case, the  
power supply switch for the dividing resistors (power switch) must be turned off. (Bit 1 of the LCR register  
is 0.)  
66  
HD404818 Series  
VCC (V1)  
VCC (V1)  
R
R
R
R
R
R
V2  
V3  
C
V2  
V3  
C
C = 0.1 to 0.3 µF  
C
GND  
GND  
4-digit LCD  
with signal  
VCC  
COM1  
.
.
V1  
V2  
V3  
GND  
VCC  
SEG1  
to  
SEG32  
32  
VLCD  
VLCD  
VLCD  
Static drive  
2
COM1  
COM2  
VCC  
8-digit LCD  
V1  
V2  
V3  
GND  
VCC  
SEG1  
to  
SEG32  
32  
1/2 duty, 1/2 bias drive  
COM1  
to  
COM3  
3
10-digit LCD  
with signal  
VCC  
.
V1  
VCC  
V2  
V3  
GND  
32  
SEG1  
to  
SEG32  
1/3 duty, 1/3 bias drive  
4
COM1  
to  
VCC  
16-digit LCD  
.
COM4  
V1  
V2  
V3  
GND  
VCC  
32  
SEG1  
to  
SEG32  
VLCD  
1/4 duty, 1/3 bias drive  
VCC VLCD GND  
Figure 37 Examples of LCD Connections  
67  
HD404818 Series  
Pin Description in PROM Mode  
The HD4074818 and HD407L4818 are ZTAT microcomputers incorporating a PROM. In the PROM  
mode, the MCU does not operate and the HD4074818 and HD407L4818 can program the on-chip PROM.  
Pin Number  
FP- FP-80A  
80B TFP-80 Pin Name  
MCU Mode  
PROM Mode  
Pin Number  
FP-80A  
I/O Pin Name I/O FP-80B TFP-80 Pin Name I/O Pin Name I/O  
MCU Mode  
PROM Mode  
1
79  
80  
1
D2  
I/O O2  
I/O O3  
I/O O4  
I/O O5  
I/O O6  
I/O O7  
I/O  
I/O 28  
I/O 29  
I/O 30  
I/O 31  
I/O 32  
I/O 33  
34  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
R23  
R30  
I/O A12  
I/O A13  
I
I
I
I
I
2
D3  
3
D4  
R31/TIMO I/O A14  
4
2
D5  
R32/INT0  
R33/INT1  
SEG1  
I/O CE  
5
3
D6  
I/O OE  
6
4
D7  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
7
5
D8  
SEG2  
8
6
D9  
I/O  
35  
SEG3  
9
7
D10  
I
VPP  
36  
SEG4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
8
D11/VCref  
D12/COMP0  
D13/COMP1  
TEST  
X1  
I
A9  
I
I
I
I
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
SEG5  
9
I
M0  
SEG6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
I
M1  
SEG7  
I
TEST  
GND  
SEG8  
I
SEG9  
X2  
O
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
GND  
R00/SCK  
R01/SI  
R02/SO  
R03  
GND  
I/O A1  
I/O A2  
I/O A3  
I/O A4  
I/O A5  
I/O A6  
I/O A7  
I/O A8  
I/O A0  
I/O A10  
I/O A11  
I
I
I
I
I
I
I
I
I
I
I
R10  
R11  
R12  
R13  
R20  
R21  
R22  
68  
HD404818 Series  
MCU Mode  
PROM Mode  
Pin Number  
MCU Mode  
PROM Mode  
Pin Number  
FP- FP-80A  
80B TFP-80 Pin Name  
FP-80A  
I/O Pin Name I/O FP-80B TFP-80 Pin Name I/O Pin Name I/O  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
SEG23  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
SEG32  
COM1  
COM2  
COM3  
O
O
O
O
O
O
O
O
O
O
O
O
O
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
COM4  
V1  
O
V2  
V3  
VCC  
NUMO  
NUMO  
NUMG  
VCC  
VCC  
VCC  
VCC  
OSC1  
OSC2  
RESET  
D0  
I
O
I
RESET  
I
I/O O0  
I/O O1  
I/O  
I/O  
D1  
Note: I/O: Input/output pin, I: Input pin, O: Output pin  
69  
HD404818 Series  
Programmable ROM Operation  
The MCU on-chip PROM is programmed in PROM mode. PROM mode is set by pulling TEST, M0, and  
M1 low, and RESET high, as shown in figure 38. In PROM mode, the MCU does not operate. It can be  
programmed like a standard 27256 EPROM using a standard PROM programmer and an 80-to-28-pin  
socket adapter. Table 31 lists the recommended PROM programmers and socket adapters.  
Since an instruction of the HMCS400 series consists of 10 bits, the HMCS400 series microcomputer  
incorporates a conversion circuit to enable the use of a general-purpose PROM programmer. By this circuit,  
an instruction is read or programmed using two addresses, a lower 5 bits and upper 5 bits. For example, if 8  
kwords of on-chip PROM are programmed by a general-purpose PROM pro-grammer, 16 kbytes of  
addresses ($0000–$3FFF) should be specified.  
Programming and Verification  
The MCU can be programmed at high speed without causing voltage stress or affecting data reliability.  
Table 30 shows how programming and verification modes are selected.  
Precautions  
1. Addresses $0000 to $3FFF must be specified if the PROM is programmed by a PROM programmer. If  
addresses of $4000 or higher are accessed, the PROM may not be programmed or verified. Note that  
plastic package types cannot be erased and reprogrammed. Data in unused addresses must be set to $FF.  
2. Ensure that the PROM programmer, socket adapter, and LSI match. Using the wrong programmer for  
the socket adapter may cause an overvoltage and damage the LSI. Make sure that the LSI is firmly fixed  
in the socket adapter, and that the socket adapter is firmly fixed onto the programmer.  
3. The PROM should be programmed with VPP = 12.5 V. Other PROMs use 21 V. If 21 V is applied to the  
MCU, the LSI may be permanently damaged. 12.5 V is the Intel 27256 setting.  
Table 30 PROM Mode Selection  
Pin  
Mode  
CE  
OE  
VPP  
VPP  
VPP  
VPP  
O0–O7  
Programming  
Verify  
Low  
High  
High  
High  
Low  
High  
Data input  
Data output  
High impedance  
Programming inhibited  
70  
HD404818 Series  
Table 31 PROM Programmers and Socket Adapters  
PROM Programmer  
Manufacturer  
DATA I/O  
Socket Adapter  
Type Name  
Manufacturer  
Type Name  
Package Type  
121B  
29B  
Hitachi  
HS460ESF01H  
FP-80B  
HS460ESH01H  
HS461EST01H  
HS460ESF01H  
HS460ESH01H  
HS461EST01H  
FP-80A  
TFP-80  
FP-80B  
FP-80A  
TFP-80  
AVAL Corp.  
PKW-1000  
Hitachi  
VCC  
VCC  
VCC  
RESET  
TEST  
M0  
M1  
VPP  
Data  
O0 to O7  
O0to O7  
A0to A14  
VPP  
Address  
A0to A14  
OE  
CE  
OE  
CE  
GND  
Figure 38 PROM Mode Dunction Diagram  
71  
HD404818 Series  
Addressing Modes  
RAM Addressing Modes  
As shown in figure 39, the MCU has three RAM addressing modes: register indirect addressing, direct  
addressing, and memory register addressing.  
Register Indirect Addressing Mode: The W register, X register, and Y register contents (10 bits total) are  
used as the RAM address.  
Direct Addressing Mode: A direct addressing instruction consists of two words, with the word (10 bits)  
following the opcode used as the RAM address.  
Memory Register Addressing Mode: The memory registers (16 digits from $040 to $04F) are accessed  
by executing the LAMR and XMRA instructions.  
ROM Addressing Modes and the P Instruction  
The MCU has four kinds of ROM addressing modes as shown in figure 40.  
Direct Addressing Mode: The program can branch to any address in ROM memory space by executing  
the JMPL, BRL, or CALL instruction. These instructions replace the 14 program counter bits (PC13 to PC0)  
with 14-bit immediate data.  
Current Page Addressing Mode: The MCU has 32 pages of ROM with 256 words per page. By executing  
the BR instruction, the program can branch to an address in the current page. This instruction replaces the  
lower eight bits of the program counter (PC7 to PC0) with 8-bit immediate data.  
When the BR instruction is on a page boundary (256n + 255) (figure 41), executing it transfers the PC  
contents to the next page according to the hardware architecture. Consequently, the program branches to  
the next page when the BR instruction is used on a page boundary. The HMCS400 series cross  
macroassembler has an automatic paging facility for ROM pages.  
Zero-Page Addressing Mode: By executing the CAL instruction, the program can branch to the zero-page  
subroutine area, which is located at $0000–$003F. When the CAL instruction is executed, 6-bit immediate  
data is placed in the lower six bits of the program counter (PC5 to PC0) and 0s are placed in the higher eight  
bits (PC13 to PC6).  
Table Data Addressing Mode: By executing the TBR instruction, the program can branch to the address  
determined by the contents of the 4-bit immediate data, accumulator, and B register.  
P Instruction: ROM data addressed by table data addressing can be referenced by the P instruction (figure  
42). When bit 8 in the referred ROM data is 1, eight bits of ROM data are written into the accumulator and  
B register. When bit 9 is 1, eight bits of ROM data is written into the R1 and R2 port output registers.  
When both bits 8 and 9 are 1, ROM data is written into the accumulator and B register, and also to the R1  
and R2 port output registers at the same time.  
72  
HD404818 Series  
The P instruction has no effect on the program counter.  
W register  
W1 W0  
X register  
Y register  
Y
Y
2
Y
1
Y0  
X3 X2 X1 X0  
3
RAM address  
AP9 AP8 AP7 AP6 AP5 AP4 AP3 AP2 AP1 AP0  
Register Indirect Addressing  
Instruction 1st word  
Opcode  
Instruction 2nd word  
d3 d2  
d1 d0  
d 9 d8  
d7 d6 d5 d4  
RAM address  
AP9 AP8 AP7 AP6 AP5 AP4 AP3 AP2 AP1 AP0  
Direct Addressing  
Instruction  
Opcode  
m3 m2 m1 m0  
0
0
0
1
0
0
RAM address  
AP9 AP8 AP7 AP6 AP5 AP4 AP3 AP2 AP1 AP0  
Memory Register Addressing  
Figure 39 RAM Addressing Modes  
73  
HD404818 Series  
Instruction 1st word  
Instruction 2nd word  
d3 d2  
[JMPL]  
[BRL]  
[CALL]  
Opcode  
d1 d0  
p3 p2 p1 p0 d9 d8  
d7 d6 d5 d4  
Program counter  
PC13PC12 PC11 PC10 PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0  
Direct Addressing  
Instruction  
[BR]  
b3 b2  
b1 b0  
Opcode  
b7 b6 b5 b4  
Program counter  
PC  
10 PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0  
PC13PC12 PC11  
Current Page Addressing  
Instruction  
a5 a 4  
a3 a2 a1 a 0  
[CAL]  
Opcode  
0
0
0
0
0
0
0
0
Program counter  
PC2  
PC1 PC0  
PC13PC12 PC11 PC10 PC9 PC8 PC7 PC6 PC5 PC4 PC3  
Zero Page Addressing  
Instruction  
Opcode  
P3 P2 P1 P0  
[TBR]  
B register  
B 3 B 2 B 1 B0  
Accumulator  
A3 A2 A1 A 0  
0
0
Program counter PC13PC12 PC11 PC10 PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0  
Table Data Addressing  
Figure 40 ROM Addressing Modes  
74  
HD404818 Series  
256 (n – 1) + 255  
256n  
BR AAA  
AAA NOP  
BR AAA  
BR BBB  
256n + 254  
256n + 255  
256 (n + 1)  
BBB NOP  
Figure 41 Page Boundary between BR Instruction and Branch Destination  
75  
HD404818 Series  
Instruction  
Opcode  
P3 P2 P1 P0  
[P]  
B register  
Accumulator  
A3 A2 A1 A 0  
B 3 B 2 B 1 B0  
0
0
Referred ROM address RA RA12 RA11 RA10 RA9 RA8 RA7 RA6 RA5 RA4 RA3 RA2 RA1 RA0  
13  
Address Designation  
ROM data  
RO9 RO8 RO7 RO6 RO5 RO4 RO3 RO2 RO1 RO0  
A0  
B3 B2 B1 B0 A 3 A 2 A1  
Accumulator, B register  
If RO8 = 1  
ROM data  
RO9 RO8 RO7 RO6 RO5 RO4 RO3 RO2 RO1 RO0  
R23 R22 R21 R20 R13 R12 R1 R10  
Output registers R1, R2  
If RO9 = 1  
1
Pattern  
Figure 42 P Instruction  
76  
HD404818 Series  
Absolute Maximum Ratings  
HD404812, HD404814, HD404816, HD404818, and HD4074818 Absolute Maximum Ratings  
Item  
Symbol  
VCC  
Value  
Unit  
V
Notes  
Supply voltage  
–0.3 to +7.0  
Programming voltage  
Pin voltage  
VPP  
–0.3 to +14.0  
V
1
VT  
–0.3 to VCC +0.3  
V
Total permissible input current  
Total permissible output current  
Maximum input current  
Io  
Io  
Io  
100  
mA  
mA  
mA  
mA  
mA  
°C  
°C  
2
50  
3
4
4, 5  
4, 6  
7, 8  
30  
Maximum output current  
Operating temperature  
Storage temperature  
–Io  
4
Topr  
Tstg  
–20 to +75  
–55 to +125  
Notes: Permanent damage may occur if these absolute maximum ratings are exceeded. Normal operation  
should be under the conditions of the electrical characteristics. If these conditions are exceeded, it  
may cause a malfunction or affect the reliability of the LSI.  
1. D10 (VPP) of the HD4074818.  
2. Total permissible input current is the sum of the input currents which flow in from all I/O pins to  
GND simultaneously.  
3. Total permissible output current is the sum of the output currents which flow out from VCC to all  
I/O pins simultaneously.  
4. Maximum input current is the maximum amount of input current from each I/O pin to GND.  
5. R0–R3.  
6. D0–D9.  
7. Maximum output current is the maximum amount of output current from VCC to each I/O pin.  
8. D0–D9 and R0–R3.  
77  
HD404818 Series  
HD40L4812, HD40L4814, HD40L4816, HD40L4818, and HD407L4818 Absolute Maximum Ratings  
Item  
Symbol  
VCC  
Value  
Unit  
V
Notes  
Supply voltage  
–0.3 to +7.0  
Programming voltage  
Pin voltage  
VPP  
–0.3 to +14.0  
V
1
VT  
–0.3 to VCC + 0.3  
V
Total permissible input current  
Total permissible output current  
Maximum input current  
Io  
Io  
Io  
100  
mA  
mA  
mA  
mA  
mA  
°C  
°C  
2
50  
3
4
4, 5  
4, 6  
7, 8  
30  
Maximum output current  
Operating temperature  
Storage temperature  
–Io  
4
Topr  
Tstg  
–20 to +75  
–55 to +125  
Notes: Permanent damage may occur if these absolute maximum ratings are exceeded. Normal operation  
should be under the conditions of the electrical characteristics. If these conditions are exceeded, it  
may cause a malfunction or affect the reliability of the LSI.  
1. D10 (VPP) of the HD407L4818.  
2. Total permissible input current is the sum of the input currents which flow in from all I/O pins to  
GND simultaneously.  
3. Total permissible output current is the sum of the output currents which flow out from VCC to all  
I/O pins simultaneously.  
4. Maximum input current is the maximum amount of input current from each I/O pin to GND.  
5. R0–R3.  
6. D0–D9.  
7. Maximum output current is the maximum amount of output current from VCC to each I/O pin.  
8. D0–D9 and R0–R3.  
78  
HD404818 Series  
Electrical Characteristics for Standard-Voltage  
HD404812, HD404814, HD404816, HD404818, and HD4074818 Electrical Characteristics  
DC Characteristics (HD404812, HD404814, HD404816, HD404818: VCC = 4 to 6 V; HD4074818: VCC  
= 4 to 5.5 V; GND = 0 V, Ta = –20°C to +75°C, unless otherwise specified)  
Item  
Symbol  
Pin  
Min  
Typ Max  
Unit Test Condition  
Notes  
Input high  
voltage  
VIH  
RESET, SCK,  
INT0, SI, INT1  
0.8VCC  
VCC  
0.3  
+
V
OSC1  
VCC – 0.5  
–0.3  
VCC  
0.3  
+
V
V
V
Input low  
voltage  
VIL  
RESET, SCK,  
INT0, SI, INT1  
0.2VCC  
OSC1  
–0.3  
0.5  
Output high VOH  
voltage  
SCK, TIMO,SO  
VCC – 1.0  
V
–IOH = 1.0 mA  
IOL = 1.6 mA  
Output low  
voltage  
VOL  
SCK, TIMO,SO  
0.4  
1
V
Input/output |IIL|  
leakage  
current  
RESET, SCK,  
INT0, INT1,  
SI, SO, TIMO,  
OSC1  
µA  
Vin = 0 V to VCC  
1
Stop mode  
retaining  
voltage  
VSTOP  
VCC  
2
V
Without 32-kHz  
oscillator  
4
2
Current  
ICC1  
VCC  
3.5  
7
mA  
VCC = 5 V,  
dissipation in  
active mode  
f
OSC = 4 MHz  
ICC2  
ISBY  
VCC  
VCC  
6
1
12  
2
mA  
mA  
VCC = 5 V,  
5
3
f
OSC = 4 MHz  
Current  
VCC = 5 V,  
OSC = 4 MHz  
dissipation in  
standby  
mode  
f
Current  
ISUB  
VCC  
150 300  
µA  
µA  
VCC = 5 V,  
LCD: On  
dissipation in  
subactive  
mode  
75  
150  
6
79  
HD404818 Series  
Item  
Symbol  
Pin  
Min  
Typ Max  
Unit Test Condition  
Notes  
Current  
IWTC1  
VCC  
10  
25  
1
20  
50  
10  
µA  
µA  
µA  
VCC = 5 V,  
LCD: Off  
dissipation in  
watch mode  
(1)  
Current  
IWTC2  
VCC  
VCC = 5 V,  
LCD: On  
dissipation in  
watch mode  
(2)  
Current  
ISTOP  
VCC  
VCC = 5 V,  
dissipation in  
stop mode  
Without 32-kHz  
oscillator  
Notes: 1. Excluding output buffer current.  
2. The MCU is in the reset state. Input/output current does not flow.  
MCU in reset state  
RESET, TEST: VCC  
3. The timer operates and input/output current does not flow.  
MCU in standby mode  
Input/output in reset state  
Serial interface: Stop  
RESET: GND  
TEST: VCC  
D12, D13: Digital input mode  
4. RAM data retention.  
5. D12/D13 is in the analog input mode.  
Input/output current does not flow. VCref, D12, D13: GND  
6. Applies to the HD404812, HD404814, HD404816, and HD404818.  
80  
HD404818 Series  
Input/Output Characteristics for Standard Pins (HD404812, HD404814, HD404816, HD404818: VCC  
= 4 to 6 V; HD4074818: VCC = 4 to 5.5 V; GND = 0 V, Ta = –20°C to +75°C, unless otherwise  
specified)  
Item  
Symbol  
Pin  
Min  
Typ Max  
Unit Test Condition  
Notes  
Input high  
voltage  
VIH  
D10–D13,  
R0– R3  
0.7VCC  
VCC  
0.3  
+
V
Input low  
voltage  
VIL  
D10–D13,  
R0–R3  
–0.3  
0.3VCC  
V
Output high VOH  
voltage  
R0–R3  
R0–R3  
R0–R3  
VCC – 1.0  
30  
V
–IOH = 1.0 mA  
Pull-up MOS –IPU  
current  
100 180  
µA  
V
VCC = 5 V,  
Vin = 0 V  
Output low  
voltage  
VOL  
0.4  
1
IOL = 1.6 mA  
Input/output |IIL|  
leakage  
D11–D13,  
R0– R3  
µA  
Vin = 0 V to VCC  
1
current  
D10  
1
µA  
µA  
V
Vin = 0 V to VCC  
Vin = 0 V to VCC  
2
3
20  
Input high  
voltage  
VIHA  
D12, D13  
Vcref+ 0.1  
(analog compare  
mode)  
Input low  
voltage  
VILA  
D12, D13  
(analog compare  
mode)  
VCref  
0.1  
V
V
Analog input VCref  
voltage  
0
VCC  
1.2  
Notes: 1. Output buffer current is excluded.  
2. Applies to HD404812, HD404814, HD404816, and HD404818.  
3. Applies to HD4074818.  
81  
HD404818 Series  
Input/Output Characteristics for High-Current Pins (HD404812, HD404814, HD404816, HD404818:  
VCC = 4 to 6 V; HD4074818: VCC = 4 to 5.5 V; GND = 0V, Ta = –20°C to +75°C, unless otherwise  
specified)  
Item  
Symbol Pin  
Min  
Typ  
Max  
Unit  
Test Condition  
Input high  
voltage  
VIH  
D0–D9  
0.7VCC  
VCC + 0.3  
V
Input low  
voltage  
VIL  
D0–D9  
D0–D9  
D0–D9  
D0–D9  
–0.3  
0.3VCC  
V
Output high VOH  
voltage  
VCC – 1.0  
30  
V
–IOH = 1.0 mA  
Pull-up MOS –IPU  
current  
100  
180  
2.0  
µA  
V
VCC = 5 V,  
Vin = 0 V  
Output low  
voltage  
VOL  
IOL = 15 mA,  
VCC = 4.5 to 6 V  
0.4  
1
V
IOL = 1.6 mA  
Input/output |IIL|  
leakage  
D0–D9  
µA  
Vin = 0 V to VCC  
current*  
Note: * Output buffer current is excluded.  
Liquid Crystal Circuit Characteristics (HD404812, HD404814, HD404816, HD404818: VCC = 4 to 6  
V; HD4074818: VCC = 4 to 5.5 V; GND = 0 V, Ta = –20°C to +75°C, unless otherwise specified)  
Item  
Symbol  
Pin  
Min  
Typ Max  
Unit Test Condition  
Note  
Segment  
driver voltage  
drop  
VDS  
SEG1 to SEG32  
0.6  
V
Id = 3 µA  
Id = 3 µA  
1
Common  
driver voltage  
drop  
VDC  
COM1 to COM4  
0.3  
V
1
LCD power  
supply  
dividing  
RW  
100  
4
300 900  
kΩ  
resistance  
LCD voltage VLCD  
V1  
VCC  
V
2
Notes: 1. Voltage drops from pins V1, V2, V3, and GND to each segment and common pin.  
2. Keep the relationship VCC V1 V2 V3 GND when VLCD is supplied by an external power  
supply.  
82  
HD404818 Series  
AC Characteristics (HD404812, HD404814, HD404816, HD404818: VCC = 4 to 6 V; HD4074818: VCC  
= 4 to 5.5 V; GND = 0 V, Ta = –20°C to +75°C, unless otherwise specified)  
Item  
Symbol  
Pin  
Min  
Typ  
Max  
Unit Test Condition  
Notes  
Oscillation  
frequency  
fOSC  
OSC1, OSC2  
1.6  
4.0  
4.2  
MHz  
X1, X2  
32.768  
4.0  
kHz  
Oscillation  
frequency  
fOSC  
tcyc  
OSC1, OSC2  
(without 32 kHz)  
0.25  
0.95  
0.95  
4.2  
2.5  
MHz  
Instruction  
cycle time  
1
1
µs  
16  
30  
Without 32 kHz  
Oscillator  
stabilization  
time  
tRC  
OSC1, OSC2  
ms  
ms  
Crystal  
1
1
7.5  
Ceramic  
f
OSC = 4 MHz  
X1, X2  
OSC1  
3
s
Ta = –10° to 60°C  
2
3
External  
clock  
fCP  
1.6  
4.2  
MHz  
frequency  
0.25  
110  
4.2  
MHz Without 32 kHz  
ns  
3
3
External  
clock high  
width  
tCPH  
tCPL  
tCPr  
OSC1  
OSC1  
OSC1  
External  
clock low  
width  
110  
ns  
ns  
ns  
3
3
External  
clock rise  
time  
20  
20  
External  
tCPf  
OSC1  
3
clock fall time  
INT0 high  
tIH  
INT0  
2
2
tcyc  
tsubcyc  
tcyc  
tsubcyc  
tcyc  
/
4, 6  
width  
INT0 low  
width  
tIL  
INT0  
/
4, 6  
INT1 high  
width  
tIH  
tIL  
INT1  
INT1  
2
2
4
4
INT1 low  
width  
tcyc  
83  
HD404818 Series  
Item  
Symbol  
Pin  
Min  
Typ  
Max  
Unit Test Condition  
Notes  
RESET high tRSTH  
width  
RESET  
2
tcyc  
5
Input  
Cin  
D10  
15  
pF  
f = 1 MHz, Vin = 0 V 8  
capacitance  
90  
15  
20  
pF  
pF  
ms  
f = 1 MHz, Vin = 0 V 9  
f = 1 MHz, Vin = 0 V  
All pins except D10  
RESET fall  
time  
tRSTf  
5
Analog  
tCSTB  
D12, D13  
2
tcyc  
7
comparator  
stabilization  
time  
Notes: 1. The oscillator stabilization time is the period up until the time the oscillator stabilizes after VCC  
reaches 4.0 V at power-on, or after RESET goes high. At power-on or stop mode release,  
RESET must be kept high for at least tRC. Since tRC depends on the ceramic oscillator’s circuit  
constant and stray capacitance, consult with the manufacturer when designing the reset circuit.  
2. The oscillator stabilization time is the period up until the time the oscillator stabilizes after VCC  
reaches 4.0 V at power-on. The time required to stabilize the oscillator (tRC) must be obtained.  
Since tRC depends on the crystal circuit constant and stray capacitance, consult with the  
manufacturer.  
3. See figure 43.  
4. See figure 44. The unit tcyc is applied when the MCU is in standby mode or active mode.  
5. See figure 45.  
6. See figure 44. The unit tsubcyc is applied when the MCU is in watch mode or subactive mode.  
tsubcyc = 244.14 µs (when a 32.768-kHz crystal oscillator is used)  
7. The analog comparator stabilization time is the period up until the analog comparator stabilizes  
and correct data can be read after placing D12/D13 into analog input mode.  
8. Applies to HD404812, HD404814, HD404816, and HD404818.  
9. Applies to HD4074818.  
84  
HD404818 Series  
Serial Interface Timing Characteristics  
During Transmit Clock Output (HD404812, HD404814, HD404816, HD404818: VCC = 4 to 6 V;  
HD4074818: VCC = 4 to 5.5 V; GND = 0 V, Ta = –20°C to +75°C, unless otherwise specified)  
Item  
Symbol Pin  
SCK  
Min  
Typ  
Max  
Unit Test Condition  
tcyc  
tsubcyc  
tScyc  
Notes  
/
Transmit clock cycle time tScyc  
1
1, 2, 4  
Transmit clock high and tSCKH, tSCKL SCK  
low widths  
0.5  
1, 2  
1, 2  
1, 2  
1
Transmit clock rise and  
fall times  
tSCKr, tSCKf SCK  
100  
300  
ns  
ns  
ns  
ns  
Serial output data delay tDSO  
time  
SO  
SI  
Serial input data setup  
time  
tSSI  
200  
150  
Serial input data hold time tHSI  
SI  
1
During Transmit Clock Input  
Item  
Symbol Pin  
SCK  
Min  
Typ  
Max  
Unit Test Condition  
Notes  
tcyc  
tsubcyc  
tScyc  
/
Transmit clock cycle time tScyc  
1
1, 4  
Transmit clock high and tSCKH, tSCKL SCK  
low widths  
0.5  
1
Transmit clock rise and  
fall times  
tSCKr,  
tSCKf  
SCK  
100  
300  
ns  
1
Serial output data delay tDSO  
time  
SO  
SI  
ns  
ns  
ns  
1, 2  
1
Serial input data setup  
time  
tSSI  
200  
Serial input data hold time tHSI  
SI  
150  
1
1
tcyc  
tsubcyc  
/
Transmit clock completion tSCKHD  
detect time  
SCK  
1,2, 3, 4  
Notes: 1. See figure 46.  
2. See figure 47.  
3. The transmit clock completion detect time is the high level period after 8 pulses of transmit  
clocks are input. The serial interrupt request flag is not set if the next transmit clock is input  
before the transmit clock completion detect time has passed.  
4. The unit tsubcyc is applied when the MCU is in subactive mode. tsubcyc = 244.14 µs (for a 32.768-  
kHz crystal oscillator).  
85  
HD404818 Series  
1/fCP  
VCC – 0.5 V  
0.5 V  
tCPH  
tCPL  
OSC1  
tCPr  
tCPf  
Figure 43 Oscillator Timing  
0.8VCC  
INT0, INT1  
tIH  
tIL  
0.2VCC  
Figure 44 Interrupt Timing  
0.8VCC  
RESET  
tRSTH  
0.2VCC  
tRSTf  
Figure 45 Reset Timing  
tScyc  
After 8 pulses  
are input  
t SCKf  
tSCKr  
tSCKL  
VCC – 2.0 V (0.8VCC)*  
0.8 V (0.2VCC)*  
SCK  
SO  
SI  
tSCKH  
tSCKHD  
tDSO  
VCC – 2.0 V  
0.8 V  
t SSI  
t HSI  
0.8VCC  
0.2VCC  
Note: * VCC– 2.0 V and 0.8 V are the threshold voltages for transmit clock output.  
0.8VCC and 0.2VCC are the threshold voltages for transmit clock input.  
Figure 46 Serial Interface Timing  
86  
HD404818 Series  
VCC  
RL= 2.6 k  
Test  
point  
1S2074 H  
or equivalent  
R
C
30 pF  
12 k  
Figure 47 Timing Load Circuit  
87  
HD404818 Series  
Electrical Characteristics for Low-Voltage Versions  
HD40L4812, HD40L4814, HD40L4816, HD40L4818, and HD407L4818 Electrical Characteristics  
DC Characteristics (HD40L4812, HD40L4814, HD40L4816, HD40L4818: VCC = 2.7 to 6 V;  
HD407L4818: VCC = 3 to 5.5 V; GND = 0 V, Ta = –20°C to +75°C, unless otherwise specified)  
Item  
Symbol  
Pin  
Min  
Typ Max  
Unit Test Condition  
Notes  
Input high  
voltage  
VIH  
RESET, SCK,  
INT0, SI, INT1  
0.9VCC  
VCC  
0.3  
+
V
OSC1  
VCC – 0.3  
–0.3  
VCC  
0.3  
+
V
V
V
Input low  
voltage  
VIL  
RESET, SCK,  
INT0, SI, INT1  
0.1VCC  
OSC1  
–0.3  
0.3  
Output high VOH  
voltage  
SCK, TIMO, SO VCC – 1.0  
V
–IOH = 0.5 mA  
IOL = 0.4 mA  
Output low  
voltage  
VOL  
SCK, TIMO, SO  
0.4  
1
V
Input/output |IIL|  
leakage  
current  
RESET, SCK,  
INT0, INT1,  
SI, SO, TIMO,  
OSC1  
µA  
Vin = 0 V to VCC  
1
Stop mode  
retaining  
voltage  
VSTOP  
VCC  
VCC  
VCC  
2
V
Without 32-kHz  
oscillator  
4
2
5
Current  
dissipation in  
active mode  
ICC1  
400 1000  
µA  
mA  
VCC = 3V,  
fOSC = 400 kHz  
ICC2  
1
2
VCC = 3 V,  
OSC = 400 kHz,  
f
analog input mode  
(D12/D13)  
Current  
ISBY  
VCC  
200 500  
µA  
µA  
µA  
VCC = 3 V  
fOSC = 400 kHz  
3
dissipation in  
standby  
mode  
Current  
ISUB  
VCC  
50  
35  
100  
70  
VCC = 3 V,  
LCD: On  
dissipation in  
subactive  
mode  
6
88  
HD404818 Series  
Item  
Symbol  
Pin  
Min  
Typ Max  
Unit Test Condition  
Notes  
Current  
IWTC1  
VCC  
5
15  
35  
10  
µA  
µA  
µA  
VCC = 3 V,  
LCD: Off  
dissipation in  
watch mode  
(1)  
Current  
IWTC2  
VCC  
15  
1
VCC = 3 V,  
LCD: On  
dissipation in  
watch mode  
(2)  
Current  
ISTOP  
VCC  
VCC = 3 V,  
dissipation in  
stop mode  
Without 32-kHz  
oscillator  
Notes: 1. Excluding output buffer current.  
2. The MCU is in the reset state. Input/output current does not flow.  
MCU in reset state  
RESET, TEST: VCC  
3. The timer operates and input/output current does not flow.  
MCU in standby mode  
Input/output in reset state  
Serial interface: Stop  
RESET: GND  
TEST: VCC  
D0–D13, R0–R3: VCC  
D12, D13: Digital input mode  
4. RAM data retention.  
5. D12/D13 is in the analog input mode.  
Input/output current does not flow. VCref, D12, D13: GND  
6. Applies to HD40L4812, HD40L4814, HD40L4816, and HD40L4818.  
89  
HD404818 Series  
Input/Output Characteristics for Standard Pins (HD40L4812, HD40L4814, HD40L4816,  
HD40L4818: VCC = 2.7 to 6 V; HD407L4818: VCC = 3 to 5.5 V; GND = 0 V, Ta = –20°C to +75°C,  
unless otherwise specified)  
Item  
Symbol  
Pin  
Min  
Typ Max  
Unit Test Condition  
Notes  
Input high  
voltage  
VIH  
D10–D13,  
R0–R3  
0.7VCC  
VCC  
0.3  
+
V
Input low  
voltage  
VIL  
D10–D13,  
R0–R3  
–0.3  
VCC –1.0  
5
0.3VCC  
V
Output high VOH  
voltage  
R0–R3  
R0–R3  
R0–R3  
V
–IOH = 0.5 mA  
Pull-up MOS –IPU  
current  
40  
90  
0.4  
1
µA  
V
VCC = 3 V,  
Vin = 0 V  
Output low  
voltage  
VOL  
IOL = 0.4 mA  
Input/output |IIL|  
leakage  
D11–D13,  
R0–R3  
µA  
Vin = 0 V to VCC  
1
current  
D10  
1
µA  
µA  
V
Vin = 0 V to VCC  
Vin = 0 V to VCC  
2
3
20  
Input high  
voltage  
VIHA  
D12, D13  
VCref +  
(Analog compare 0.1  
mode)  
Input low  
voltage  
VILA  
D12, D13  
(Analog compare  
mode)  
VCref  
0.1  
V
V
Analog input VCref  
voltage  
0
VCC  
1.2  
Notes: 1 Output buffer current is excluded.  
2. Applies to HD40L4812, HD40L4814, HD40L4816, and HD40L4818.  
3. Applies to HD407L4818.  
90  
HD404818 Series  
Input/Output Characteristics for High-Current Pins (HD40L4812, HD40L4814, HD40L4816,  
HD40L4818: VCC = 2.7 to 6 V; HD407L4818: VCC = 3 to 5.5 V; GND = 0 V, Ta = –20°C to +75°C,  
unless otherwise specified)  
Item  
Symbol Pin  
Min  
Typ  
Max  
Unit  
Test Condition  
Input high  
voltage  
VIH  
D0–D9  
0.7VCC  
VCC + 0.3  
V
Input low  
voltage  
VIL  
D0–D9  
D0–D9  
D0–D9  
D0–D9  
–0.3  
VCC –1.0  
5
0.3VCC  
V
Output high VOH  
voltage  
V
–IOH = 0.5 mA  
Pull-up MOS –IPU  
current  
40  
90  
µA  
V
VCC = 3 V,  
Vin = 0 V  
Output low  
voltage  
VOL  
2.0  
IOL = 15 mA,  
VCC = 4.5 to 6 V  
0.4  
1
V
IOL = 0.4 mA  
Input/output |IIL|  
leakage  
D0–D9  
µA  
Vin = 0 V – VCC  
current*  
Note: * Output buffer current is excluded.  
Liquid Crystal Circuit Characteristics (HD40L4812, HD40L4814, HD40L4816, HD40L4818: VCC  
=
2.7 to 6 V; HD407L4818: VCC = 3 to 5.5 V; GND = 0 V, Ta = –20°C to +75°C, unless otherwise  
specified)  
Item  
Symbol Pin  
Min  
Typ Max  
Unit Test Condition  
Notes  
Segment driver voltage VDS  
drop  
SEG1 to  
SEG32  
0.6  
V
Id = 3 µA  
1
Common driver voltage VDC  
drop  
COM1 to  
COM4  
0.3  
300 900  
VCC  
V
Id = 3 µA  
1
LCD power supply  
dividing resistance  
RW  
100  
2.7  
kΩ  
V
LCD voltage  
VLCD  
V1  
2, 3  
Notes: 1. Voltage drops from pins V1, V2, V3, and GND to each segment and common pin.  
2. Keep the relation VCC V1 V2 V3 GND when VLCD is supplied by an external power supply.  
3. VLCD min. = 2.7 V (HD40L4812, HD40L4814, HD40L4816, HD40L4818)  
V
LCD min. = 3 V (HD407L4818)  
91  
HD404818 Series  
AC Characteristics (HD40L4812, HD40L4814, HD40L4816, HD40L4818: VCC = 2.7 to 6 V;  
HD407L4818: VCC = 3 to 5.5 V; GND = 0 V, Ta = –20°C to +75°C, unless otherwise specified)  
Item  
Symbol Pin(s)  
Min  
Typ  
Max Unit Test Condition  
Notes  
Oscillation  
frequency  
fOSC  
OSC1, OSC2  
250  
800  
900 kHz  
X1, X2  
32.768  
5
kHz  
Instruction cycle  
time  
tcyc  
tRC  
4.45  
16  
µs  
Oscillator  
OSC1, OSC2  
7.5  
ms  
fOSC = 400 kHz  
1
stabilization time  
7.5  
3
ms  
s
fOSC = 800 kHz  
1
2
3
X1, X2  
OSC1  
Ta= –10° to 60°C  
External clock  
frequency  
fCP  
250  
525  
525  
900 kHz  
External clock high tCPH  
width  
OSC1  
OSC1  
OSC1  
OSC1  
INT0  
ns  
ns  
3
External clock low tCPL  
width  
3
External clock rise tCPr  
time  
30  
30  
ns  
ns  
3
External clock fall tCPf  
time  
3
INT0 high width  
tIH  
2
2
tcyc/  
tsubcyc  
tcyc/  
tsubcyc  
tcyc  
4, 6  
INT0 low width  
tIL  
INT0  
4, 6  
INT1 high width  
INT1 low width  
tIH  
tIL  
INT1  
2
2
2
4
4
5
INT1  
tcyc  
RESET high width tRSTH  
Input capacitance Cin  
RESET  
D10  
tcyc  
15  
90  
15  
20  
2
pF  
f = 1 MHz, Vin = 0 V 8  
pF  
f = 1 MHz, Vin = 0 V 9  
All pins except D10  
D12, D13  
pF  
f = 1 MHz, Vin = 0 V  
Reset fall time  
tRSTf  
ms  
tcyc  
5
7
Analog  
tCSTB  
comparator  
stabilization time  
Notes: 1. The oscillator stabilization time is the period from when VCC reaches 2.7 V (HD407L4818: VCC  
=
3.0 V) at power-on until the oscillator stabilizes, or after RESET goes high. At power-on or when  
recovering from stop mode, RESET must be kept high for more than tRC. Since tRC depends on  
the ceramic oscillator’s circuit constant and stray capacitance, consult with the ceramic oscillator  
manufacturer when designing the reset circuit.  
92  
HD404818 Series  
2. The oscillator stabilization time is the period from when VCC reaches 2.7 V (HD407L4818: VCC  
=
3.0 V) at power-on until the oscillator stabilizes. The time required to stabilize the oscillator (tRC  
must be obtained. Since tRC depends on the ceramic oscillator’s circuit constant and stray  
capacitance, consult with the ceramic oscillator manufacturer.  
)
3. See figure 48.  
4. See figure 49. The unit tcyc is applied when the MCU is in standby mode or active mode.  
5. See figure 50.  
6. See figure 49. The unit tsubcyc is applied when the MCU is in watch mode or subactive mode.  
tsubcyc = 244.14 µs (when a 32.768-kHz crystal oscillator is used)  
7. The analog comparator stabilization time is the period from when D12/D13 is placed in analog  
input mode until the analog comparator stabilizes and correct data can be read.  
8. Applies to HD40L4812, HD40L4814, HD40L4816, and HD40L4818.  
9. Applies to HD407L4818.  
Serial Interface Timing Characteristics  
During Transmit Clock Output (HD40L4812, HD40L4814, HD40L4816, HD40L4818: VCC = 2.7 to 6  
V; HD407L4818: VCC = 3 to 5.5 V; GND = 0 V, Ta = –20°C to +75°C, unless otherwise specified)  
Item  
Symbol Pin(s) Min  
Typ  
Max Unit Test Condition  
tcyc  
tsubcyc  
tScyc  
Notes  
/
Transmit clock cycle time  
tScyc  
SCK  
SCK  
SCK  
1
1, 2, 4  
Transmit clock high and low tSCKH  
widths  
,
0.5  
1, 2  
1, 2  
tSCKL  
tSCKr  
tSCKf  
Transmit clock rise and fall  
times  
,
200 ns  
Serial output data delay time tDSO  
Serial input data setup time tSSI  
SO  
SI  
500 ns  
1, 2  
1
300  
300  
ns  
ns  
Serial input data hold time  
tHSI  
SI  
1
93  
HD404818 Series  
During Transmit Clock Input  
Item  
Symbol Pin(s) Min  
Typ  
Max Unit Test Condition  
tcyc  
tsubcyc  
tScyc  
Notes  
/
Transmit clock cycle time  
tScyc  
SCK  
SCK  
SCK  
1
1, 4  
Transmit clock high and low tSCKH  
widths  
,
0.5  
1
1
tSCKL  
tSCKr  
tSCKf  
Transmit clock rise and fall  
times  
,
200 ns  
Serial output data delay time tDSO  
Serial input data setup time tSSI  
SO  
SI  
500 ns  
1, 2  
1
300  
300  
1
ns  
ns  
tcyc  
Serial input data hold time  
tHSI  
tSCKHD  
SI  
1
/
Transmit clock completion  
detect time  
SCK  
1, 2,  
3, 4  
tsubcyc  
Notes: 1. See figure 51.  
2
See figure 52.  
3. The transmit clock completion detect time is the high level period after 8 pulses of transmit  
clocks are input. The serial interrupt request flag is not set if the next transmit clock is input  
before the transmit clock completion detect time has passed.  
4. tsubcyc is applied when the MCU is in subactive mode. tsubcyc = 244.14 µs (for a 32.768-kHz crystal  
oscillator).  
1/fCP  
VCC – 0.3 V  
tCPL  
tCPH  
OSC1  
0.3 V  
tCPr  
tCPf  
Figure 48 Oscillator Timing  
0.9VCC  
INT0, INT1  
tIL  
tIH  
0.1VCC  
Figure 49 Interrupt Timing  
0.9VCC  
RESET  
tRSTH  
0.1VCC  
tRSTf  
Figure 50 Reset Timing  
94  
HD404818 Series  
After 8 pulses  
are input  
tScyc  
t SCKf  
tSCKr  
tSCKL  
VCC – 1.0 V (0.9VCC)*  
0.4 V (0.1VCC)*  
SCK  
SO  
SI  
tSCKH  
tSCKHD  
tDSO  
VCC – 1.0 V  
0.4 V  
t SSI  
t HSI  
0.9VCC  
0.1VCC  
Note: * VCC – 1.0 V and 0.4 V are the threshold voltages for transmit clock output.  
0.9VCC and 0.1VCC are the threshold voltages for transmit clock input.  
Figure 51 Timing of Serial Interface  
VCC  
RL= 2.6 k  
Test  
point  
1S2074 H  
or equivalent  
R
C
30 pF  
12 k  
Figure 52 Timing Load Circuit  
95  
HD404818 Series  
Notes on ROM Out  
Please pay attention to the following items regarding ROM out.  
On ROM out, fill the ROM area indicated below with 1s to create the same data size as an 8-kword version  
(HD404818 and HD40L4818). An 8-kword data size is required to change ROM data to mask  
manufacturing data since the program used is for an 8-kword version.  
This limitation applies when using an EPROM or a data base.  
ROM 2-kword version:  
HD404812, HD40L4812  
Address $0800–$1FFF  
ROM 4-kword version:  
HD404814, HD40L4814  
Address $1000–$1FFF  
ROM 6-kword version:  
HD404816, HD40L4816  
Address $1800–$1FFF  
$0000  
$0000  
$0000  
Vector address  
Vector address  
Vector address  
$000F  
$0010  
$000F  
$0010  
$000F  
$0010  
Zero-page  
subroutine  
(64 words)  
Zero-page  
subroutine  
(64 words)  
Zero-page  
subroutine  
(64 words)  
$003F  
$0040  
$003F  
$0040  
$003F  
$0040  
Pattern  
(4,096 words)  
Pattern & program  
(2,048 words)  
$0FFF  
$1000  
Pattern & program  
(4,096 words)  
Program  
(6,144 words)  
$07FF  
$0800  
$0FFF  
$1000  
$17FF  
$1800  
Not used  
Not used  
Not used  
$1FFF  
$1FFF  
Fill this area with 1s  
96  
HD404818 Series  
HD404812, HD404814, HD404816, HD404818, HD40L4812, HD40L4814,  
HD40L4816, HD40L4818 Option List  
Please check off the appropriate applications and  
enter the necessary information.  
Date of order  
Customer  
/
/
1. ROM Size  
Department  
Name  
5-V operation  
HD404812  
2-kword  
4-kword  
6-kword  
8-kword  
Low-voltage operation HD40L4812  
5-V operation  
Low-voltage operation HD40L4814  
5-V operation HD404816  
Low-voltage operation HD40L4816  
5-V operation HD404818  
HD404814  
ROM code name  
LSI type number  
(Hitachi’s entry)  
Low-voltage operation HD40L4818  
2. Optional Functions  
With 32-kHz CPU operation and with watch time base  
*
*
Without 32-kHz CPU operation and with watch time base  
Without 32-kHz CPU operation and without watch time base  
Note:  
* Options marked with an asterisk require a subsystem crystal oscillator (X1, X2).  
3. ROM Code Media  
Please specify the first type below (the upper bits and lower bits are mixed together), when using  
the EPROM on-package microcomputer type (including ZTAT™ version).  
EPROM: The upper bits and lower bits are mixed together. The upper five bits and lower five bits are  
programmed to the same EPROM in alternating order (i.e., LULULU...).  
EPROM: The upper bits and lower bits are separated. The upper five bits and lower five bits are  
programmed to different EPROMs.  
4. Oscillator  
Ceramic oscillator  
Crystal oscillator  
External clock  
f =  
f =  
f =  
MHz  
MHz  
MHz  
5. Stop mode  
Used  
Not used  
6. Package  
FP-80A  
FP-80B  
TFP-80  
97  
HD404818 Series  
Cautions  
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,  
copyright, trademark, or other intellectual property rights for information contained in this document.  
Hitachi bears no responsibility for problems that may arise with third party’s rights, including  
intellectual property rights, in connection with use of the information contained in this document.  
2. Products and product specifications may be subject to change without notice. Confirm that you have  
received the latest product standards or specifications before final design, purchase or use.  
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,  
contact Hitachi’s sales office before using the product in an application that demands especially high  
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,  
traffic, safety equipment or medical equipment for life support.  
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly  
for maximum rating, operating supply voltage range, heat radiation characteristics, installation  
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used  
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable  
failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-  
safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other  
consequential damage due to operation of the Hitachi product.  
5. This product is not designed to be radiation resistant.  
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without  
written approval from Hitachi.  
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor  
products.  
Copyright © Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.  
98  

相关型号:

HD40L4812FS

4-Bit Single-Chip Microcomputer
RENESAS

HD40L4812H

4-Bit Single-Chip Microcomputer
RENESAS

HD40L4812SFS

Microcontroller, 4-Bit, MROM, 0.8MHz, CMOS, PQFP80, PLASTIC, QFP-80
HITACHI

HD40L4812STF

Microcontroller, 4-Bit, MROM, 0.8MHz, CMOS, PQFP80, PLASTIC, TQFP-80
HITACHI

HD40L4812TF

4-Bit Single-Chip Microcomputer
RENESAS

HD40L4814

16-digit LCD driver
HITACHI

HD40L4814

4-Bit Single-Chip Microcomputer
RENESAS

HD40L4814FS

4-Bit Single-Chip Microcomputer
RENESAS

HD40L4814H

16-digit LCD driver
HITACHI

HD40L4814H

4-Bit Single-Chip Microcomputer
RENESAS

HD40L4814SFS

Microcontroller, 4-Bit, MROM, 0.8MHz, CMOS, PQFP80, PLASTIC, QFP-80
HITACHI

HD40L4814SH

Microcontroller, 4-Bit, MROM, 0.8MHz, CMOS, PQFP80, PLASTIC, QFP-80
HITACHI