HD6413378F [RENESAS]

16-BIT, 10MHz, MICROCONTROLLER, PQFP80, QFP-80;
HD6413378F
型号: HD6413378F
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

16-BIT, 10MHz, MICROCONTROLLER, PQFP80, QFP-80

时钟 微控制器 外围集成电路
文件: 总375页 (文件大小:1109K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Hitachi Single-Chip Microcomputer  
H8/338 Series  
H8/338  
HD6473388, HD6433388, HD6413388  
H8/337  
HD6473378, HD6433378, HD6413378  
H8/336  
HD6433368  
Hardware Manual  
ADE-602-039B  
Rev. 3.0  
September 21, 1998  
Hitachi Company or Division  
Cautions  
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s  
patent, copyright, trademark, or other intellectual property rights for information contained in  
this document. Hitachi bears no responsibility for problems that may arise with third party’s  
rights, including intellectual property rights, in connection with use of the information  
contained in this document.  
2. Products and product specifications may be subject to change without notice. Confirm that you  
have received the latest product standards or specifications before final design, purchase or  
use.  
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.  
However, contact Hitachi’s sales office before using the product in an application that  
demands especially high quality and reliability or where its failure or malfunction may directly  
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear  
power, combustion control, transportation, traffic, safety equipment or medical equipment for  
life support.  
4. Design your application so that the product is used within the ranges guaranteed by Hitachi  
particularly for maximum rating, operating supply voltage range, heat radiation characteristics,  
installation conditions and other characteristics. Hitachi bears no responsibility for failure or  
damage when used beyond the guaranteed ranges. Even within the guaranteed ranges,  
consider normally foreseeable failure rates or failure modes in semiconductor devices and  
employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi  
product does not cause bodily injury, fire or other consequential damage due to operation of  
the Hitachi product.  
5. This product is not designed to be radiation resistant.  
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document  
without written approval from Hitachi.  
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi  
semiconductor products.  
Preface  
The H8/338 Series is a series of high-performance single-chip microcomputers having a fast  
H8/300 CPU core and a set of on-chip supporting functions optimized for embedded control.  
These include ROM, RAM, three types of timers, a serial communication interface, an A/D  
converter, a D/A converter, I/O ports, and other functions needed in control system configurations,  
so that compact, high-performance systems can be realized easily. The H8/338 Series includes  
three chips: the H8/338 with 48K-byte ROM and 2K-byte RAM; the H8/337 with 32K-byte ROM  
and 1K-byte RAM; and the H8/336 with 24K-byte ROM and 1K-byte RAM.  
The H8/338 and H8/337 are available in a masked ROM version, a ZTAT *(Zero Turn-Around  
Time) version, and a ROMless version, providing a quick and flexible response to conditions from  
ramp-up through full-scale volume producion, even for applications with frequently-changing  
specifications.  
This manual describes the hardware of the H8/338 Series. Refer to the H8/300 Series  
Programming Manual for a detailed description of the instruction set.  
Note: ZTAT is a registered trademark of Hitachi, Ltd.  
Rev. 3.0, 09/98, page i of viii  
Contents  
Section 1 Overview..........................................................................................................  
1.1 Overview ..........................................................................................................................  
1.2 Block Diagram..................................................................................................................  
1.3 Pin Assignments and Functions........................................................................................  
1.3.1 Pin Arrangement..................................................................................................  
1.3.2 Pin Functions.......................................................................................................  
1
1
4
5
5
8
Section 2 CPU.................................................................................................................... 15  
2.1 Overview .......................................................................................................................... 15  
2.1.1 Features................................................................................................................ 15  
2.2 Register Configuration...................................................................................................... 16  
2.2.1 General Registers................................................................................................. 17  
2.2.2 Control Registers................................................................................................. 17  
2.2.3 Initial Register Values ......................................................................................... 18  
2.3 Addressing Modes ............................................................................................................ 19  
2.3.1 Addressing Modes............................................................................................... 19  
2.3.2 How to Calculate Where the Excution Starts ...................................................... 21  
2.4 Data Formats..................................................................................................................... 25  
2.4.1 Data Formats in General Registers...................................................................... 26  
2.4.2 Memory Data Formats......................................................................................... 27  
2.5 Instruction Set................................................................................................................... 28  
2.5.1 Data Transfer Instructions ................................................................................... 30  
2.5.2 Arithmetic Operations ......................................................................................... 32  
2.5.3 Logic Operations ................................................................................................. 33  
2.5.4 Shift Operations................................................................................................... 33  
2.5.5 Bit Manipulations ................................................................................................ 35  
2.5.6 Branching Instructions......................................................................................... 39  
2.5.7 System Control Instructions ................................................................................ 41  
2.5.8 Block Data Transfer Instruction .......................................................................... 42  
2.6 CPU States........................................................................................................................ 44  
2.6.1 Program Execution State ..................................................................................... 45  
2.6.2 Exception-Handling State.................................................................................... 45  
2.6.3 Power-Down State............................................................................................... 46  
2.7 Access Timing and Bus Cycle.......................................................................................... 47  
2.7.1 Access to On-Chip Memory (RAM and ROM)................................................... 47  
2.7.2 Access to On-Chip Register Field and External Devices .................................... 49  
Section 3 MCU Operating Modes and Address Space.......................................... 53  
3.1 Overview .......................................................................................................................... 53  
Rev. 3.0, 09/98, page ii of viii  
3.1.1 Mode Selection.................................................................................................... 53  
3.1.2 Mode and System Control Registers (MDCR and SYSCR)................................ 54  
3.2 System Control Register (SYSCR) HFFC4 .................................................................. 54  
3.3 Mode Control Register (MDCR) HFFC5...................................................................... 56  
3.4 Address Space Map .......................................................................................................... 57  
Section 4 Exception Handling....................................................................................... 61  
4.1 Overview .......................................................................................................................... 61  
4.2 Reset ................................................................................................................................. 61  
4.2.1 Overview ............................................................................................................. 61  
4.2.2 Reset Sequence.................................................................................................... 61  
4.2.3 Disabling of Interrupts after Reset....................................................................... 64  
4.3 Interrupts........................................................................................................................... 64  
4.3.1 Overview ............................................................................................................. 64  
4.3.2 Interrupt-Related Registers.................................................................................. 66  
4.3.3 External Interrupts............................................................................................... 68  
4.3.4 Internal Interrupts ................................................................................................ 68  
4.3.5 Interrupt Handling ............................................................................................... 68  
4.3.6 Interrupt Response Time ..................................................................................... 74  
4.3.7 Precaution............................................................................................................ 75  
4.4 Note on Stack Handling.................................................................................................... 76  
Section 5 Clock Pulse Generator.................................................................................. 77  
5.1 Overview .......................................................................................................................... 77  
5.1.1 Block Diagram..................................................................................................... 77  
5.2 Oscillator Circuit .............................................................................................................. 78  
5.3 System Clock Divider....................................................................................................... 80  
Section 6 I/O Ports............................................................................................................ 81  
6.1 Overview .......................................................................................................................... 81  
6.2 Port 1 ................................................................................................................................ 84  
6.3 Port 2 ................................................................................................................................ 88  
6.4 Port 3 ................................................................................................................................ 92  
6.5 Port 4 ................................................................................................................................ 96  
6.6 Port 5 ................................................................................................................................ 100  
6.7 Port 6 ................................................................................................................................ 105  
6.8 Port 7 ................................................................................................................................ 111  
6.9 Port 8 ................................................................................................................................ 113  
6.10 Port 9 ................................................................................................................................ 119  
Section 7 16-Bit Free-Running Timer ........................................................................ 127  
7.1 Overview .......................................................................................................................... 127  
7.1.1 Features................................................................................................................ 127  
Rev. 3.0, 09/98, page iii of viii  
7.1.2 Block Diagram..................................................................................................... 127  
7.1.3 Input and Output Pins.......................................................................................... 129  
7.1.4 Register Configuration ........................................................................................ 129  
7.2 Register Descriptions........................................................................................................ 130  
7.2.1 Free-Running Counter (FRC) HFF92.............................................................. 130  
7.2.2 Output Compare Registers A and B (OCRA and OCRB) HFF94 ................... 131  
7.2.3 Input Capture Registers A to D (ICRA to ICRD)  
HFF98, HFF9A, HFF9C, HFF9E ..................................................................... 131  
7.2.4 Timer Interrupt Enable Register (TIER) HFF90.............................................. 134  
7.2.5 Timer Control/Status Register (TCSR) HFF91................................................ 136  
7.2.6 Timer Control Register (TCR) HFF96............................................................. 139  
7.2.7 Timer Output Compare Control Register (TOCR) HFF97 .............................. 141  
7.3 CPU Interface ................................................................................................................... 143  
7.4 Operation .......................................................................................................................... 146  
7.4.1 FRC Incrementation Timing................................................................................ 146  
7.4.2 Output Compare Timing...................................................................................... 148  
7.4.3 Input Capture Timing .......................................................................................... 149  
7.4.4 Setting of FRC Overflow Flag (OVF)................................................................. 152  
7.5 Interrupts........................................................................................................................... 152  
7.6 Sample Application .......................................................................................................... 153  
7.7 Application Notes............................................................................................................. 154  
Section 8 8-Bit Timers .................................................................................................... 159  
8.1 Overview .......................................................................................................................... 159  
8.1.1 Features................................................................................................................ 159  
8.1.2 Block Diagram..................................................................................................... 160  
8.1.3 Input and Output Pins.......................................................................................... 161  
8.1.4 Register Configuration ........................................................................................ 161  
8.2 Register Descriptions........................................................................................................ 162  
8.2.1 Timer Counter (TCNT) HFFCC (TMR0), HFFD4 (TMR1)........................... 162  
8.2.2 Time Constant Registers A and B (TCORA and TCORB)  
HFFCA and HFFCB (TMR0), HFFD2 and HFFD3 (TMR1)........................... 162  
8.2.3 Timer Control Register (TCR) HFFC8 (TMR0), HFFD0 (TMR1)................. 163  
8.2.4 Timer Control/Status Register (TCSR) HFFC9 (TMR0), HFFD1 (TMR1).... 166  
8.2.5 Serial/Timer Control Register (STCR) HFFC3 ............................................... 168  
8.3 Operation .......................................................................................................................... 169  
8.3.1 TCNT Incrementation Timing............................................................................. 169  
8.3.2 Compare Match Timing....................................................................................... 170  
8.3.3 External Reset of TCNT...................................................................................... 172  
8.3.4 Setting of TCSR Overflow Flag (OVF)............................................................... 172  
8.4 Interrupts........................................................................................................................... 173  
8.5 Sample Application .......................................................................................................... 173  
8.6 Application Notes............................................................................................................. 174  
Rev. 3.0, 09/98, page iv of viii  
Section 9 PWM Timers................................................................................................... 179  
9.1 Overview .......................................................................................................................... 179  
9.1.1 Features................................................................................................................ 179  
9.1.2 Block Diagram..................................................................................................... 180  
9.1.3 Input and Output Pins.......................................................................................... 181  
9.1.4 Register Configuration ........................................................................................ 181  
9.2 Register Descriptions........................................................................................................ 181  
9.2.1 Timer Counter (TCNT) HFFA2 (PWM0), HFFA6 (PWM1).......................... 181  
9.2.2 Duty Register (DTR) HFFA1 (PWM0), HFFA5 (PWM1) ............................. 182  
9.2.3 Timer Control Register (TCR) HFFA0 (PWM0), HFFA4 (PWM1)............... 182  
9.3 Operation .......................................................................................................................... 184  
9.3.1 Timer Incrementation .......................................................................................... 184  
9.3.2 PWM Operation................................................................................................... 185  
9.4 Application Notes............................................................................................................. 186  
Section 10 Serial Communication Interface................................................................ 187  
10.1 Overview .......................................................................................................................... 187  
10.1.1 Features................................................................................................................ 187  
10.1.2 Block Diagram..................................................................................................... 188  
10.1.3 Input and Output Pins.......................................................................................... 188  
10.1.4 Register Configuration ........................................................................................ 189  
10.2 Register Descriptions........................................................................................................ 190  
10.2.1 Receive Shift Register (RSR).............................................................................. 190  
10.2.2 Receive Data Register (RDR) HFFDD, HFF8D ............................................. 190  
10.2.3 Transmit Shift Register (TSR)............................................................................. 190  
10.2.4 Transmit Data Register (TDR) HFFDB, HFF8B ............................................ 191  
10.2.5 Serial Mode Register (SMR) HFFD8, HFF88 ................................................ 191  
10.2.6 Serial Control Register (SCR) HFFDA, HFF8A............................................. 194  
10.2.7 Serial Status Register (SSR) HFFDC, HFF8C................................................ 197  
10.2.8 Bit Rate Register (BRR) HFFD9, HFF89 ....................................................... 200  
10.2.9 Serial/Timer Control Register (STCR) HFFC3 ............................................... 204  
10.3 Operation .......................................................................................................................... 205  
10.3.1 Overview ............................................................................................................. 205  
10.3.2 Asynchronous Mode............................................................................................ 207  
10.3.3 Synchronous Mode.............................................................................................. 218  
10.4 Interrupts........................................................................................................................... 224  
10.5 Application Notes............................................................................................................. 224  
Section 11 A/D Converter................................................................................................. 227  
11.1 Overview .......................................................................................................................... 227  
11.1.1 Features................................................................................................................ 227  
11.1.2 Block Diagram..................................................................................................... 228  
11.1.3 Input Pins............................................................................................................. 229  
Rev. 3.0, 09/98, page v of viii  
11.1.4 Register Configuration ........................................................................................ 229  
11.2 Register Descriptions........................................................................................................ 230  
11.2.1 A/D Data Registers (ADDR) HFFE0 to HFFE6 ............................................. 230  
11.2.2 A/D Control/Status Register (ADCSR) HFFE8............................................... 230  
11.2.3 A/D Control Register (ADCR) HFFEA........................................................... 233  
11.3 Operation .......................................................................................................................... 234  
11.3.1 Single Mode (SCAN = 0) .................................................................................... 234  
11.3.2 Scan Mode (SCAN = 1)....................................................................................... 237  
11.3.3 Input Sampling Time and A/D Conversion Time................................................ 239  
11.3.4 External Trigger Input Timing............................................................................. 241  
11.4 Interrupts........................................................................................................................... 242  
Section 12 D/A Converter................................................................................................. 243  
12.1 Overview .......................................................................................................................... 243  
12.1.1 Features................................................................................................................ 243  
12.1.2 Block Diagram..................................................................................................... 244  
12.1.3 Input and Output Pins.......................................................................................... 245  
12.1.4 Register Configuration ........................................................................................ 245  
12.2 Register Descriptions........................................................................................................ 246  
12.2.1 D/A Data Registers 0 and 1 (DADR0, DADR1) HFFA8, HFFA9 .................... 246  
12.2.2 D/A Control Register (DACR) HFFAA ............................................................. 246  
12.3 Operation .......................................................................................................................... 248  
Section 13 RAM.................................................................................................................. 249  
13.1 Overview .......................................................................................................................... 249  
13.2 Block Diagram.................................................................................................................. 249  
13.3 RAM Enable Bit (RAME) in System Control Register (SYSCR).................................... 250  
13.4 Operation .......................................................................................................................... 250  
13.4.1 Expanded Modes (Modes 1 and 2) ...................................................................... 250  
13.4.2 Single-Chip Mode (Mode 3)................................................................................ 250  
Section 14 ROM.................................................................................................................. 251  
14.1 Overview .......................................................................................................................... 251  
14.1.1 Block Diagram..................................................................................................... 252  
14.2 PROM Mode (H8/338, H8/337)....................................................................................... 252  
14.2.1 PROM Mode Setup ............................................................................................. 252  
14.2.2 Socket Adapter Pin Assignments and Memory Map........................................... 253  
14.3 Programming .................................................................................................................... 257  
14.3.1 Writing and Verifying ......................................................................................... 257  
14.3.2 Notes on Writing ................................................................................................. 261  
14.3.3 Reliability of Written Data .................................................................................. 262  
14.3.4 Erasing of Data.................................................................................................... 263  
14.4 Handling of Windowed Packages..................................................................................... 263  
Rev. 3.0, 09/98, page vi of viii  
Section 15 Power-Down State......................................................................................... 265  
15.1 Overview .......................................................................................................................... 265  
15.2 System Control Register: Power-Down Control Bits ....................................................... 266  
15.3 Sleep Mode....................................................................................................................... 268  
15.3.1 Transition to Sleep Mode..................................................................................... 268  
15.3.2 Exit from Sleep Mode.......................................................................................... 268  
15.4 Software Standby Mode ................................................................................................... 269  
15.4.1 Transition to Software Standby Mode................................................................. 269  
15.4.2 Exit from Software Standby Mode...................................................................... 269  
15.4.3 Sample Application of Software Standby Mode ................................................. 270  
15.4.4 Application Note.................................................................................................. 271  
15.5 Hardware Standby Mode .................................................................................................. 272  
15.5.1 Transition to Hardware Standby Mode................................................................ 272  
15.5.2 Recovery from Hardware Standby Mode ............................................................ 272  
15.5.3 Timing Relationships........................................................................................... 272  
Section 16 Electrical Specifications............................................................................... 275  
16.1 Absolute Maximum Ratings............................................................................................. 275  
16.2 Electrical Characteristics .................................................................................................. 275  
16.2.1 DC Characteristics............................................................................................... 275  
16.2.2 AC Characteristics............................................................................................... 281  
16.2.3 A/D Converter Characteristics............................................................................. 286  
16.2.4 D/A Converter Characteristics............................................................................. 287  
16.3 MCU Operational Timing................................................................................................. 287  
16.3.1 Bus Timing.......................................................................................................... 288  
16.3.2 Control Signal Timing......................................................................................... 290  
16.3.3 16-Bit Free-Running Timer Timing .................................................................... 292  
16.3.4 8-Bit Timer Timing ............................................................................................. 293  
16.3.5 Pulse Width Modulation Timer Timing............................................................... 294  
16.3.6 Serial Communication Interface Timing ............................................................. 294  
16.3.7 I/O Port Timing ................................................................................................... 295  
Appendix A CPU Instruction Set ................................................................................... 297  
A.1 Instruction Set List............................................................................................................ 297  
A.2 Operation Code Map......................................................................................................... 305  
A.3 Number of States Required for Execution........................................................................ 307  
Appendix B Register Field............................................................................................... 313  
B.1 Register Addresses and Bit Names................................................................................... 313  
B.2 Register Descriptions........................................................................................................ 317  
Rev. 3.0, 09/98, page vii of viii  
Appendix C Pin States....................................................................................................... 356  
C.1 Pin States in Each Mode................................................................................................... 356  
Appendix D Timing of Transition to and Recovery from  
Hardware Standby Mode.......................................................................... 358  
Appendix E Package Dimensions.................................................................................. 359  
Rev. 3.0, 09/98, page viii of viii  
Section 1 Overview  
1.1  
Overview  
The H8/338 Series of single-chip microcomputers features an H8/300 CPU core and a  
complement of on-chip supporting modules implementing a variety of system functions.  
The H8/300 CPU is a high-speed processor with an architecture featuring powerful bit-  
manipulation instructions, ideally suited for realtime control applications. The on-chip supporting  
modules implement peripheral functions needed in system configurations. These include ROM,  
RAM, three types of timers (16-bit free-running timer, 8-bit timers, pulse-width modulation  
timers), a serial communication interface (SCI), an A/D converter, a D/A converter, and I/O ports.  
The H8/338 Series can operate in a single-chip mode or in two expanded modes, depending on the  
requirements of the application. (The operating mode will be referred to as the MCU mode in this  
manual.)  
The entire H8/338 Series is available with masked ROM. The H8/338 and H8/337 are also  
available in ZTAT versions* that can be programmed at the user site, and in ROMless versions.  
Note: ZTAT is a registered trademark of Hitachi, Ltd.  
Table 1.1 lists the features of the H8/338 Series.  
Rev. 3.0, 09/98, page 1 of 361  
Table 1.1 Features  
Item  
Specification  
Two-way general register configuration  
CPU  
Eight 16-bit registers, or  
Sixteen 8-bit registers  
High-speed operation  
Maximum clock rate: 10MHz  
Add/subtract: 0.2µs  
Multiply/divide: 1.4µs  
Streamlined, concise instruction set  
Instruction length: 2 or 4 bytes  
Register-register arithmetic and logic operations  
MOV instruction for data transfer between registers and memory  
Instruction set features  
Multiply instruction (8 bits × 8 bits)  
Divide instruction (16 bits ÷ 8 bits)  
Bit-accumulator instructions  
Register-indirect specification of bit positions  
H8/338: 48k-byte ROM; 2k-byte RAM  
H8/337: 32k-byte ROM; 1k-byte RAM  
H8/336: 24k-byte ROM; 1k-byte RAM  
One 16-bit free-running counter (can also count external events)  
Two output-compare lines  
Memory  
16-bit free-  
running timer  
(1 channel)  
Four input capture lines (can be buffered)  
8-bit timer  
Each channel has  
(2 channels)  
One 8-bit up-counter (can also count external events)  
Two time constant registers  
PWM timer  
(2 channels)  
Duty cycle can be set from 0 to 100%  
Resolution: 1/250  
Serial  
Asynchronous or clocked synchronous mode (selectable)  
Full duplex: can transmit and receive simultaneously  
On-chip baud rate generator  
communication  
interface (SCI)  
(2 channels)  
Rev. 3.0, 09/98, page 2 of 361  
Table 1.1 Features (cont)  
Item  
Specification  
8-bit resolution  
A/D converter  
Eight channels: single or scan mode (selectable)  
Start of A/D conversion can be externally triggered  
Sample-and-hold function  
D/A converter  
I/O ports  
8-bit resolution  
Two channels  
58 input/output lines (16 of which can drive LEDs)  
8 input-only lines  
Interrupts  
Nine external interrupt lines: NMI, IRQ0 to IRQ7  
22 on-chip interrupt sources  
Operating  
modes  
Expanded mode with on-chip ROM disabled (mode 1)  
Expanded mode with on-chip ROM enabled (mode 2)  
Single-chip mode (mode 3)  
Power-down  
modes  
Sleep mode  
Software standby mode  
Hardware standby mode  
Other features  
Series lineup  
On-chip oscillator  
5-V version  
3-V version  
Package  
ROM  
HD6473388CG HD6473388VCG 84-pin windowed LCC (CG-84) PROM  
HD6473388F HD6473388VF 80-pin QFP (FP-80A)  
HD6433388CP HD6433388VCP 84-pin PLCC (CP-84)  
HD6433388F HD6433388VF 80-pin QFP (FP-80A)  
HD6413388F HD6413388VF 80-pin QFP (FP-80A)  
Masked ROM  
ROMless  
HD6473378CG HD6473378VCG 84-pin windowed LCC (CG-84) PROM  
HD6473378F HD6473378VF 80-pin QFP (FP-80A)  
HD6433378CP HD6433378VCP 84-pin PLCC (CP-84)  
HD6433378F HD6433378VF 80-pin QFP (FP-80A)  
HD6413378F HD6413378VF 80-pin QFP (FP-80A)  
HD6433368CP HD6433368VCP 84-pin PLCC (CP-84)  
HD6433368F HD6433368VF 80-pin QFP (FP-80A)  
Masked ROM  
ROMless  
Masked ROM  
Rev. 3.0, 09/98, page 3 of 361  
1.2  
Block Diagram  
Figure 1.1 shows a block diagram of the H8/338 Series.  
*
1
Clock  
pulse  
gener-  
ator  
CPU  
H8/300  
Data bus (Low)  
P10/A0  
P11/A1  
P12/A2  
P13/A3  
P14/A4  
P15/A5  
P16/A6  
P17/A7  
P90/ADTRG /IRQ2  
P91/IRQ1  
P92/IRQ0  
P93/RD  
P94/WR  
P95/AS  
P96/Ø  
*2  
PROM  
RAM  
(or masked ROM)  
P97/WAIT  
P20 /A8  
P21 /A9  
P30/D0  
P31/D1  
P32/D2  
P33/D3  
P34/D4  
P35/D5  
P36/D6  
P37/D7  
P22/A10  
P23/A11  
P24/A12  
Serial  
communication  
(2 channels)  
16 -bit free-  
running timer  
P25/A13  
P26/A14  
P27/A15  
8-bit timer  
(2 channels)  
8-bit D/A converter  
(8 channels)  
P60/FTCI  
P61/FTOA  
P80  
P81  
P82  
P83  
P62 /FTIA  
PWM timer  
(2 channels)  
8-bit D/A converter  
(2 channels)  
P63 /FTIB  
P64/FTIC  
P84/TxD1/IRQ3  
P65/FTID  
P85/RxD1/IRQ4  
P86/SCK1/IRQ5  
P66/FTOB/IRQ6  
P67 /IRQ7  
Port 4  
Port 7  
Port 5  
Memory Sizes  
H8/338  
Notes: 1. CP-84 and CG-84 only.  
2. PROM is available in the H8/338 and H8/337 only.  
H8/337  
H8/336  
ROM  
RAM  
48k bytes  
2k bytes  
32k bytes  
1k byte  
24k bytes  
1k byte  
Figure 1.1 Block Diagram  
Rev. 3.0, 09/98, page 4 of 361  
1.3  
Pin Assignments and Functions  
1.3.1  
Pin Arrangement  
Figure 1.2 shows the pin arrangement of the CG-84 package. Figure 1.3 shows the pin  
arrangement of the CP-84 package. Figure 1.4 shows the pin arrangement of the FP-80A package.  
11 10  
9
8
7
6
5
4
3
2
1 84 83 82 81 80 79 78 77 76 75  
RES 12  
XTAL 13  
74 P1  
73 P1  
72 P1  
71 P1  
4
5
6
7
/A4  
/A5  
/A6  
/A7  
EXTAL 14  
MD  
1
0
15  
16  
MD  
70 VSS  
NMI 17  
STBY 18  
VCC 19  
69 P2  
68 P2  
67 P2  
66 P2  
65 P2  
0
1
2
3
4
/A  
8
9
/A  
/A1  
/A1  
/A1  
0
1
2
P5  
P5  
P5  
2
/SCK  
/RxD  
/TxD  
0
0
0
20  
21  
22  
1
0
64 VSS  
VSS 23  
VSS 24  
63 P2  
62 P2  
61 P2  
5
6
7
/A1  
/A1  
/A1  
3
4
5
P97/WAIT 25  
P9 /Ø 26  
P9 /AS 27  
P9 /WR 28  
P9 /RD 29  
6
60 VCC  
5
59 P4  
58 P4  
57 P4  
56 P4  
55 P4  
54 P4  
7
6
5
4
3
2
/PW  
1
0
4
/PW  
3
/TMRI  
1
P9  
2
1
/IRQ  
/IRQ  
0
1
30  
31  
/TMO  
/TMCI  
/TMRI  
1
P9  
1
0
P90 /IRQ2 /ADTRG 32  
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53  
Figure 1.2 Pin Arrangement (CG-84, Top view)  
Rev. 3.0, 09/98, page 5 of 361  
11 10 9  
8 7 6 5 4 3 2 1 84 83 82 81 80 79 78 77 76 75  
RES  
XTAL  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
P14/A4  
P15/A5  
EXTAL  
P16/A6  
MD1  
P17/A7  
MD0  
VSS  
NMI  
P20/A8  
STBY  
P21/A9  
VCC  
P22/A10  
P23/A11  
P24/A12  
VSS  
P52/SCK0  
P51/RxD0  
P50/TxD0  
VSS  
P25/A13  
P26/A14  
P27/A15  
VCC  
VSS  
P97/WAIT  
P96/Ø  
P95/AS  
P47/PW1  
P46/PW0  
P45/TMRI1  
P44/TMO1  
P43/TMCI1  
P42/TMRI0  
P94/WR  
P93/RD  
P92/IRQ0  
P91/IRQ1  
P90/IRQ2/ADTRG  
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53  
Figure 1.3 Pin Arrangement (CP-84, Top view)  
Rev. 3.0, 09/98, page 6 of 361  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
RES  
XTAL  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
P14/A4  
2
P15/A5  
EXTAL  
MD1  
3
P16/A6  
4
P17/A7  
MD0  
5
VSS  
NMI  
6
P20/A8  
STBY  
7
P21/A9  
VCC  
8
P22/A10  
P23/A11  
P24/A12  
P25/A13  
P26/A14  
P27/A15  
VCC  
P52/SCK0  
P51/RxD0  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
0
P5 /TxD0  
VSS  
P97/WAIT  
P96/Ø  
P95/AS  
P47/PW1  
P46/PW0  
P45/TMRI1  
P44/TMO1  
P43/TMCI1  
P42/TMRI0  
P94/WR  
P93/RD  
P92/IRQ0  
P91/IRQ1  
P90/ADTRG/IRQ2  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
Figure 1.4 Pin Arrangement (FP-80A, Top view)  
Rev. 3.0, 09/98, page 7 of 361  
1.3.2  
Pin Functions  
(1) Pin Assignments in Each Operating Mode: Table 1.2 lists the assignments of the pins of  
the FP-80A, CP-84, and CG-84 packages in each operating mode.  
Table 1.2 Pin Assignments in Each Operating Mode  
Pin No.  
CP-84  
CG-84 FP-80A Mode 1  
Expanded Modes  
Single-Chip Mode  
PROM  
Mode  
Mode 2  
D6  
Mode 3  
1
71  
D6  
P36  
EO6  
VSS  
EO7  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VPP  
NC  
NC  
VSS  
VSS  
EA9  
VSS  
VCC  
NC  
NC  
NC  
VSS  
VSS  
NC  
2
VSS  
D7  
VSS  
D7  
VSS  
3
72  
73  
74  
75  
76  
77  
78  
79  
80  
1
P37  
4
VSS  
P80  
P81  
P82  
P83  
VSS  
P80  
P81  
P82  
P83  
VSS  
5
P80  
6
P81  
7
P82  
8
P83  
9
P84 / TxD1 / IRQ3  
P85 / RxD1 / IRQ4  
P86 / SCK1 / IRQ5  
RES  
P84 / TxD1 / IRQ3  
P85 / RxD1 / IRQ4  
P86 / SCK1 / IRQ5  
RES  
P84 / TxD1 / IRQ3  
P85 / RxD1 / IRQ4  
P86 / SCK1 / IRQ5  
RES  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
2
XTAL  
XTAL  
XTAL  
3
EXTAL  
EXTAL  
EXTAL  
4
MD1  
MD1  
MD1  
5
MD0  
MD0  
MD0  
6
NMI  
NMI  
NMI  
7
STBY  
STBY  
STBY  
8
VCC  
VCC  
VCC  
9
P52 / SCK0  
P51 / RxD0  
P50 / TxD0  
VSS  
P52 / SCK0  
P51 / RxD0  
P50 / TxD0  
VSS  
P52 / SCK0  
P51 / RxD0  
P50 / TxD0  
VSS  
10  
11  
12  
VSS  
VSS  
VSS  
13  
WAIT  
WAIT  
P97  
Note: Pins marked NC should be left unconnected.  
For details on PROM mode, refer to 14.2, “PROM Mode.”  
Rev. 3.0, 09/98, page 8 of 361  
Table 1.2 Pin Assignments in Each Operating Mode (cont)  
Pin No.  
CP-84  
CG-84 FP-80A Mode 1  
Expanded Modes  
Single-Chip Mode  
PROM  
Mode  
Mode 2  
φ
Mode 3  
P96 / φ  
P95  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
φ
NC  
AS  
AS  
NC  
WR  
WR  
P94  
NC  
RD  
RD  
P93  
NC  
P92 / IRQ0  
P91 / IRQ1  
P92 / IRQ0  
P91 / IRQ1  
P92 / IRQ0  
P91 / IRQ1  
PGM  
EA15  
P90 / ADTRG / IRQ2 P90 / ADTRG / IRQ2 P90 / ADTRG / IRQ2 EA16  
P60 / FTCI  
P61 / FTOA  
P62 / FTIA  
P63 / FTIB  
P64 / FTIC  
P65 / FTID  
P66 / FTOB / IRQ6  
P67 / IRQ7  
VSS  
P60 / FTCI  
P61 / FTOA  
P62 / FTIA  
P63 / FTIB  
P64 / FTIC  
P65 / FTID  
P66 / FTOB / IRQ6  
P67 / IRQ7  
VSS  
P60 / FTCI  
P61 / FTOA  
P62 / FTIA  
P63 / FTIB  
P64 / FTIC  
P65 / FTID  
P66 / FTOB / IRQ6  
P67 / IRQ7  
VSS  
NC  
NC  
NC  
VCC  
VCC  
NC  
NC  
NC  
VSS  
VCC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
NC  
NC  
NC  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
AVCC  
AVCC  
AVCC  
P70 / AN0  
P71 / AN1  
P72 / AN2  
P73 / AN3  
P74 / AN4  
P75 / AN5  
P76 / AN6 /DA0  
P77 / AN7 /DA1  
AVSS  
P70 / AN0  
P71 / AN1  
P72 / AN2  
P73 / AN3  
P74 / AN4  
P75 / AN5  
P76 / AN6 /DA0  
P77 / AN7 /DA1  
AVSS  
P70 / AN0  
P71 / AN1  
P72 / AN2  
P73 / AN3  
P74 / AN4  
P75 / AN5  
P76 / AN6 /DA0  
P77 / AN7 /DA1  
AVSS  
P40 / TMCI0  
P41 / TMO0  
P42 / TMRI0  
P40 / TMCI0  
P41 / TMO0  
P42 / TMRI0  
P40 / TMCI0  
P41 / TMO0  
P42 / TMRI0  
Note: Pins marked NC should be left unconnected.  
For details on PROM mode, refer to 14.2, “PROM Mode.”  
Rev. 3.0, 09/98, page 9 of 361  
Table 1.2 Pin Assignments in Each Operating Mode (cont)  
Pin No.  
CP-84  
CG-84 FP-80A Mode 1  
Expanded Modes  
Single-Chip Mode  
PROM  
Mode  
Mode 2  
Mode 3  
P43 / TMCI1  
P44 / TMO1  
P45 / TMRI1  
P46 / PW0  
P47 / PW1  
VCC  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
42  
43  
44  
45  
46  
47  
48  
49  
50  
P43 / TMCI1  
P43 / TMCI1  
NC  
P44 / TMO1  
P44 / TMO1  
P45 / TMRI1  
P46 / PW0  
P47 / PW1  
VCC  
NC  
P45 / TMRI1  
NC  
P46 / PW0  
P47 / PW1  
VCC  
A15  
A14  
A13  
VSS  
A12  
A11  
A10  
A9  
NC  
NC  
VCC  
CE  
P27 / A15  
P26 / A14  
P25 / A13  
VSS  
P27  
P26  
EA14  
EA13  
VSS  
P25  
VSS  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
P24 / A12  
P23 / A11  
P22 / A10  
P21 / A9  
P20 / A8  
VSS  
P24  
EA12  
EA11  
EA10  
OE  
P23  
P22  
P21  
A8  
P20  
EA8  
VSS  
VSS  
A7  
VSS  
P17 / A7  
P16 / A6  
P15 / A5  
P14 / A4  
P13 / A3  
P12 / A2  
P11 / A1  
P10 / A0  
D0  
P17  
EA7  
EA6  
EA5  
EA4  
EA3  
EA2  
EA1  
EA0  
EO0  
EO1  
EO2  
EO3  
EO4  
EO5  
A6  
P16  
A5  
P15  
A4  
P14  
A3  
P13  
A2  
P12  
A1  
P11  
A0  
P10  
D0  
P30  
D1  
D1  
P31  
D2  
D2  
P32  
D3  
D3  
P33  
D4  
D4  
P34  
D5  
D5  
P35  
Note: Pins marked NC should be left unconnected.  
For details on PROM mode, refer to 14.2, “PROM Mode.”  
Rev. 3.0, 09/98, page 10 of 361  
(2) Pin Functions: Table 1.3 gives a concise description of the function of each pin.  
Table 1.3 Pin Functions  
Pin No.  
CG-84  
Type  
Symbol  
CP-84  
FP-80A I/O Name and Function  
Power  
VCC  
19, 60  
8, 47  
I
I
I
I
Power: Connected to the power supply (+5V).  
Connect both VCC pins to the system power  
supply (+5V).  
VSS  
2, 4, 23, 12, 56,  
24, 41, 73  
64, 70  
Ground: Connected to ground (0V). Connect  
all VSS pins to the system power supply (0V).  
Clock  
XTAL  
EXTAL  
13  
2
Crystal: Connected to a crystal oscillator. The  
crystal frequency should be double the desired  
system clock frequency  
14  
3
External crystal: Connected to a crystal  
oscillator or external clock. The frequency of  
the external clock should be double the desired  
system clock frequency. See section 15.2,  
“Oscillator Circuit,” for examples of connections  
to a crystal and external clock.  
26  
14  
O
System clock: Supplies the system clock to  
peripheral devices.  
System  
control  
RES  
12  
18  
1
7
I
I
Reset: A Low input causes the chip to reset.  
STBY  
Standby: A transition to the hardware standby  
mode (a power-down state) occurs when a Low  
input is received at the STBY pin.  
Address  
bus  
A15 to A0  
D7 to D0  
61 to 63, 48 to 55, O  
65 to 69, 57 to 64  
71 to 78  
Address bus: Address output pins.  
Data bus  
3, 1,  
72 to 65 I/O Data bus: 8-Bit bidirectional data bus.  
84 to 79  
Rev. 3.0, 09/98, page 11 of 361  
Table 1.3 Pin Functions (cont)  
Pin No.  
CG-84  
CP-84  
Type  
Symbol  
FP-80A I/O Name and Function  
Bus control WAIT  
25  
13  
I
Wait: Requests the CPU to insert TW states  
into the bus cycle when an external address is  
accessed.  
RD  
WR  
AS  
29  
28  
27  
17  
17  
16  
15  
6
O
O
O
I
Read: Goes Low to indicate that the CPU is  
reading an external address.  
Write: Goes Low to indicate that the CPU is  
writing to an external address.  
Address Strobe: Goes Low to indicate that  
there is a valid address on the address bus.  
Interrupt  
signals  
NMI  
NonMaskable Interrupt: Highest-priority  
interrupt request. The NMIEG bit in the system  
control register determines whether the  
interrupt is requested on the rising or falling  
edge of the NMI input.  
IRQ0 to  
IRQ7  
30 to 32, 18 to 20, I  
9 to 11, 78 to 80,  
Interrupt Request 0 to 7: Maskable interrupt  
request pins.  
39, 40  
27, 28  
Operating MD1,  
15  
16  
4
5
I
Mode: Input pins for setting the MCU  
operating mode according to the table below.  
mode  
MD0  
control  
MD1 MD0 Mode Description  
0
0
0
1
Mode 0 Setting prohibited  
Mode 1 Expanded mode with  
on-chip ROM disabled  
1
0
Mode 2 Expanded mode with  
on-chip ROM enabled  
1
1
Mode 3 Single-chip mode  
These pins must not be changed during MCU  
operation.  
Serial  
communi- TxD1  
cation  
TxD0,  
22  
9
11  
78  
O
I
Transmit Data (channels 0 and 1): Data  
output pins for the serial communication  
interface.  
interface  
RxD0,  
RxD1  
21  
10  
10  
79  
Receive Data (channels 0 and 1): Data input  
pins for the serial communication interface.  
SCK0,  
SCK1  
20  
11  
9
80  
I/O Serial Clock (channels 0 and 1): Input/output  
pins for the serial clock.  
Rev. 3.0, 09/98, page 12 of 361  
Table 1.3 Pin Functions (cont)  
Pin No.  
CG-84  
CP-84  
Type  
Symbol  
FP-80A I/O Name and Function  
16-bit free- FTOA,  
34  
39  
22  
27  
O
FRT Output compare A and B: Output pins  
controlled by comparators A and B of the free-  
running timer.  
running  
timer  
FTOB  
FTCI  
33  
21  
I
FRT counter Clock Input: Input pin for an  
external clock signal for the free-running timer.  
FTIA to  
FTID  
35 to 38 23 to 26 I  
FRT Input capture A to D: Input capture pins  
for the free-running timer.  
8-bit timer TMO0,  
TMO1  
53  
56  
40  
43  
O
I
8-bit Timer Output (channels 0 and 1):  
Compare-match output pins for the 8-bit timers.  
TMCI0,  
TMCI1  
52  
55  
39  
42  
8-bit Timer counter Clock Input (channels 0  
and 1): External clock input pins for the 8-bit  
timer counters.  
TMRI0,  
TMRI1  
54  
57  
41  
44  
I
8-bit Timer counter Reset Input (channels 0  
and 1): A High input at these pins resets the 8-  
bit timer counters.  
PWM  
timer  
PW0,  
PW1  
58  
59  
45  
46  
O
PWM timer output (channels 0 and 1):  
Pulse-width modulation timer output pins.  
A/D  
AN7 to  
50 to 43 37 to 30 I  
Analog input: Analog signal input pins for the  
converter AN0  
A/D converter.  
ADTRG  
32  
20  
I
A/D Trigger: External trigger input for starting  
the A/D converter.  
D/A  
DA0  
49  
50  
36  
37  
O
I
Analog output: Analog signal output pins for  
the D/A converter.  
converter DA1  
A/D and  
D/A  
converters  
AVCC  
42  
29  
Analog reference Voltage: Reference voltage  
pin for the A/D and D/A converters. If the A/D  
and D/A converters are not used, connect  
AVCC to the system power supply (+5V).  
AVSS  
51  
38  
I
Analog ground: Ground pin for the A/D and  
D/A converters.Connect to system ground (0V).  
Rev. 3.0, 09/98, page 13 of 361  
Table 1.3 Pin Functions (cont)  
Pin No.  
CG-84  
CP-84  
Type  
Symbol  
FP-80A I/O Name and Function  
General-  
purpose  
I/O  
P17 to P10 71 to 78 57 to 64 I/O Port 1: An 8-bit input/output port with  
programmable MOS input pull-ups and LED  
driving capability. The direction of each bit can  
be selected in the port 1 data direction register  
(P1DDR).  
P27 to P20 61 to 63, 48 to 55 I/O Port 2: An 8-bit input/output port with  
65 to 69  
programmable MOS input pull-ups and LED  
driving capability. The direction of each bit can  
be selected in the port 2 data direction register  
(P2DDR).  
P37 to P30 3, 1,  
84 to 79  
72 to 65 I/O Port 3: An 8-bit input/output port with  
programmable MOS input pull-ups. The  
direction of each bit can be selected in the port  
3 data direction register (P3DDR).  
P47 to P40 59 to 52 46 to 39 I/O Port 4: An 8-bit input/output port. The  
direction of each bit can be selected in the port  
4 data direction register (P4DDR).  
P52 to P50 20 to 22 9 to 11 I/O Port 5: A 3-bit input/output port. The direction  
of each bit can be selected in the port 5 data  
direction register (P5DDR).  
P67 to P60 40 to 33 28 to 21 I/O Port 6: An 8-bit input/output port. The  
direction of each bit can be selected in the port  
6 data direction register (P6DDR).  
P77 to P70 50 to 43 37 to 30 I  
Port 7: An 8-bit input port.  
P86 to P80 11 to 5 80 to 74 I/O Port 8: A 7-bit input/output port. The direction  
of each bit can be selected in the port 8 data  
direction register (P8DDR).  
P97 to P90 25 to 32 13 to 20 I/O Port 9: An 8-bit input/output port. The  
direction of each bit (except for P96) can be  
selected in the port 9 data direction register  
(P9DDR).  
Rev. 3.0, 09/98, page 14 of 361  
Section 2 CPU  
2.1  
Overview  
The H8/338 Series has the H8/300 CPU: a fast central processing unit with eight 16-bit general  
registers (also configurable as 16 eight-bit registers) and a concise instruction set designed for  
high-speed operation.  
2.1.1  
Features  
The main features of the H8/300 CPU are listed below.  
Two-way register configuration  
Sixteen 8-bit general registers, or  
Eight 16-bit general registers  
Instruction set with 57 basic instructions, including:  
Multiply and divide instructions  
Powerful bit-manipulation instructions  
Eight addressing modes  
Register direct (Rn)  
Register indirect (@Rn)  
Register indirect with displacement (@(d:16, Rn))  
Register indirect with post-increment or pre-decrement (@Rn+ or @Rn)  
Absolute address (@aa:8 or @aa:16)  
Immediate (#xx:8 or #xx:16)  
PC-relative (@(d:8, PC))  
Memory indirect (@@aa:8)  
Maximum 64K-byte address space  
High-speed operation  
All frequently-used instructions are executed in two to four states  
The maximum clock rate is 10MHz  
8- or 16-bit register-register add or subtract: 0.2µs  
8 × 8-bit multiply:  
16 ÷ 8-bit divide:  
1.4µs  
1.4µs  
Power-down mode  
SLEEP instruction  
Rev. 3.0, 09/98, page 15 of 361  
2.2  
Register Configuration  
Figure 2.1 shows the register structure of the CPU. There are two groups of registers: the general  
registers and control registers.  
7
07  
0
R0H  
R1H  
R2H  
R3H  
R4H  
R5H  
R6H  
R7H  
R0L  
R1L  
R2L  
R3L  
R4L  
R5L  
R6L  
R7L  
(SP)  
PC  
SP: Stack Pointer  
15  
0
PC: Program Counter  
7 6 5 4 3 2 1 0  
I U H U N Z V C  
CCR: Condition Code Register  
Carry flag  
CCR  
Overflow flag  
Zero flag  
Negative flag  
Half-carry flag  
Interrupt mask bit  
User bit  
User bit  
Figure 2.1 CPU Registers  
Rev. 3.0, 09/98, page 16 of 361  
2.2.1  
General Registers  
All the general registers can be used as both data registers and address registers. When used as  
address registers, the general registers are accessed as 16-bit registers (R0 to R7). When used as  
data registers, they can be accessed as 16-bit registers, or the high and low bytes can be accessed  
separately as 8-bit registers (R0H to R7H and R0L to R7L).  
R7 also functions as the stack pointer, used implicitly by hardware in processing interrupts and  
subroutine calls. In assembly-language coding, R7 can also be denoted by the letters SP. As  
indicated in figure 2.2, R7 (SP) points to the top of the stack.  
Unused area  
SP  
(R7)  
Stack area  
Figure 2.2 Stack Pointer  
2.2.2  
Control Registers  
The CPU control registers include a 16-bit program counter (PC) and an 8-bit condition code  
register (CCR).  
(1) Program Counter (PC): This 16-bit register indicates the address of the next instruction the  
CPU will execute. Each instruction is accessed in 16 bits (1 word), so the least significant bit of  
the PC is ignored (always regarded as 0).  
(2) Condition Code Register (CCR): This 8-bit register contains internal status information,  
including carry (C), overflow (V), zero (Z), negative (N), and half-carry (H) flags and the interrupt  
mask bit (I).  
Bit 7 Interrupt Mask Bit (I): When this bit is set to “1,” all interrupts except NMI are masked.  
This bit is set to “1” automatically by a reset and at the start of interrupt handling.  
Bit 6 User Bit (U): This bit can be written and read by software (using the LDC, STC, ANDC,  
ORC, and XORC instructions).  
Bit 5 Half-Carry Flag (H): This flag is set to “1” when the ADD.B, ADDX.B, SUB.B,  
SUBX.B, NEG.B, or CMP.B instruction causes a carry or borrow out of bit 3, and is cleared to  
Rev. 3.0, 09/98, page 17 of 361  
“0” otherwise. Similarly, it is set to “1” when the ADD.W, SUB.W, or CMP.W instruction causes  
a carry or borrow out of bit 11, and cleared to “0” otherwise. It is used implicitly in the DAA and  
DAS instructions.  
Bit 4 User Bit (U): This bit can be written and read by software (using the LDC, STC, ANDC,  
ORC, and XORC instructions).  
Bit 3 Negative Flag (N): This flag indicates the most significant bit (sign bit) of the result of an  
instruction.  
Bit 2 Zero Flag (Z): This flag is set to “1” to indicate a zero result and cleared to “0” to  
indicate a nonzero result.  
Bit 1 Overflow Flag (V): This flag is set to “1” when an arithmetic overflow occurs, and  
cleared to “0” at other times.  
Bit 0 Carry Flag (C): This flag is used by:  
Add and subtract instructions, to indicate a carry or borrow at the most significant bit of the  
result  
Shift and rotate instructions, to store the value shifted out of the most significant or least  
significant bit  
Bit manipulation and bit load instructions, as a bit accumulator  
The LDC, STC, ANDC, ORC, and XORC instructions enable the CPU to load and store the CCR,  
and to set or clear selected bits by logic operations. The N, Z, V, and C flags are used in  
conditional branching instructions (BCC).  
For the action of each instruction on the flag bits, see the H8/300 Series Programming Manual.  
2.2.3  
Initial Register Values  
When the CPU is reset, the program counter (PC) is loaded from the vector table and the interrupt  
mask bit (I) in the CCR is set to “1.” The other CCR bits and the general registers are not  
initialized.  
In particular, the stack pointer (R7) is not initialized. To prevent program crashes the stack pointer  
should be initialized by software, by the first instruction executed after a reset.  
Rev. 3.0, 09/98, page 18 of 361  
2.3  
Addressing Modes  
2.3.1  
Addressing Mode  
The H8/300 CPU supports eight addressing modes. Each instruction uses a subset of these  
addressing modes.  
Table 2.1 Addressing Modes  
No.  
(1)  
(2)  
(3)  
(4)  
Addressing mode  
Symbol  
Rn  
Register direct  
Register indirect  
@Rn  
Register indirect with displacement  
@(d:16, Rn)  
Register indirect with post-increment  
Register indirect with pre-decrement  
@Rn+  
@Rn  
(5)  
(6)  
(7)  
(8)  
Absolute address  
Immediate  
@aa:8 or @aa:16  
#xx:8 or #xx:16  
@(d:8, PC)  
Program-counter-relative  
Memory indirect  
@@aa:8  
(1) Register Direct Rn: The register field of the instruction specifies an 8- or 16-bit general  
register containing the operand. In most cases the general register is accessed as an 8-bit register.  
Only the MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 bits × 8 bits), and  
DIVXU (16 bits ÷ 8 bits) instructions have 16-bit operands.  
(2) Register indirect @Rn: The register field of the instruction specifies a 16-bit general  
register containing the address of the operand.  
(3) Register Indirect with Displacement @(d:16, Rn): This mode, which is used only in  
MOV instructions, is similar to register indirect but the instruction has a second word (bytes 3 and  
4) which is added to the contents of the specified general register to obtain the operand address.  
For the MOV.W instruction, the resulting address must be even.  
(4) Register Indirect with Post-Increment or Pre-Decrement @Rn+ or @Rn:  
Register indirect with Post-Increment @Rn+  
The @Rn+ mode is used with MOV instructions that load registers from memory.  
It is similar to the register indirect mode, but the 16-bit general register specified in the register  
field of the instruction is incremented after the operand is accessed. The size of the increment  
is 1 or 2 depending on the size of the operand: 1 for MOV.B; 2 for MOV.W. For MOV.W,  
the original contents of the 16-bit general register must be even.  
Rev. 3.0, 09/98, page 19 of 361  
Register Indirect with Pre-Decrement @Rn  
The @Rn mode is used with MOV instructions that store register contents to memory.  
It is similar to the register indirect mode, but the 16-bit general register specified in the register  
field of the instruction is decremented before the operand is accessed. The size of the  
decrement is 1 or 2 depending on the size of the operand: 1 for MOV.B; 2 for MOV.W. For  
MOV.W, the original contents of the 16-bit general register must be even.  
(5) Absolute Address @aa:8 or @aa:16: The instruction specifies the absolute address of the  
operand in memory. The MOV.B instruction uses an 8-bit absolute address of the form HFFxx.  
The upper 8 bits are assumed to be 1, so the possible address range is HFF00 to HFFFF (65280 to  
65535). The MOV.B, MOV.W, JMP, and JSR instructions can use 16-bit absolute addresses.  
(6) Immediate #xx:8 or #xx:16: The instruction contains an 8-bit operand in its second byte,  
or a 16-bit operand in its third and fourth bytes. Only MOV.W instructions can contain 16-bit  
immediate values.  
The ADDS and SUBS instructions implicitly contain the value 1 or 2 as immediate data. Some bit  
manipulation instructions contain 3-bit immediate data (#xx:3) in the second or fourth byte of the  
instruction, specifying a bit number.  
(7) Program-Counter-Relative @(d:8, PC): This mode is used to generate branch addresses  
in the BCC and BSR instructions. An 8-bit value in byte 2 of the instruction code is added as a  
sign-extended value to the program counter contents. The result must be an even number. The  
possible branching range is 126 to +128 bytes (63 to +64 words) from the current address.  
(8) Memory Indirect @@aa:8: This mode can be used by the JMP and JSR instructions. The  
second byte of the instruction code specifies an 8-bit absolute address from H0000 to H00FF (0  
to 255). The word located at this address contains the branch address. The upper 8 bits of the  
absolute address are an “0” (H'00), thus the branch address is limited to values from 0 to 255  
(H'0000 to H'00FF). Note that addresses H'0000 to H'0047 (0 to 71) are located in the vector  
table.  
If an odd address is specified as a branch destination or as the operand address of a MOV.W  
instruction, the least significant bit is regarded as “0,” causing word access to be performed at the  
address preceding the specified address. See section 2.4.2, “Memory Data Formats,” for further  
information.  
Rev. 3.0, 09/98, page 20 of 361  
2.3.2  
How to Calculate Where the Execution Starts  
Table 2.2 shows how to calculate the Effective Address (EA: Effective Address) for each  
addressing mode.  
In the operation instruction, 1) register direct, as well as 6) immediate (for each instruction,  
ADD.B, ADDX, SUBX, CMP.B, AND, OR, XOR) are used.  
In the move instruction, 7) program counter relative and 8) all addressing mode to delete the  
memory indirect can be used.  
In the bit manipulation instruction for the operand specifications, 1) register direct, 2) register  
indirect, as well as 5) absolute address (8 bit) can be used. Furthermore, to specify the bit number  
within the operand, 1) register direct (for each instruction, BSET, BCLR, BNOT, BTST) as well  
as 6) immediate (3 bit) can be used independently.  
Rev. 3.0, 09/98, page 21 of 361  
Addressing mode and  
No. instruction format  
Effective address calculation  
Effective address  
3
0
3
0
1
Register direct, Rn  
regm  
regn  
15  
8
7
4
4
3
3
0
0
op  
regm  
regn  
Operands are contained in registers regm  
and regn  
15  
0
0
2
3
Register indirect, @Rn  
16-bit register contents  
15  
0
15  
7 6  
op  
reg  
15  
Register indirect with displacement,  
@(d:16, Rn)  
16-bit register contents  
15  
0
15  
7
6
4
3
0
op  
reg  
disp  
disp  
15  
0
15  
0
4
Register indirect with  
post-increment, @Rn+  
16-bit register contents  
15  
7
6
4
3
0
op  
reg  
1 or 2*  
15  
0
Register indirect with pre-decrement,  
@–Rn  
16-bit register contents  
15  
0
15  
7
6
4
3
0
op  
reg  
*
1 or 2  
Note: * 1 for a byte operand, 2 for a word operand  
Addressing mode and  
No. instruction format  
Effective address calculation  
Effective address  
15  
8
7
0
0
5
Absolute address  
@aa:8  
H'FF  
15  
8
7
0
0
op  
abs  
@aa:16  
15  
15  
op  
abs  
6
Immediate  
#xx:8  
15  
8
7
0
0
op  
IMM  
Operand is 1- or 2-byte immediate data  
#xx:16  
15  
op  
IMM  
15  
0
7
PC-relative  
@(d:8, PC)  
PC contents  
15  
0
Sign extension  
disp  
15  
8
7
0
op  
disp  
Table 3-2. Effective Address Calculation (3)  
Addressing mode and  
No. instruction format  
Effective address calculation  
Effective address  
8
Memory indirect, @@aa:8  
15  
8
7
0
op  
abs  
15  
8
7
0
H'00  
15  
0
Memory contents (16 bits)  
Notation  
reg: General register  
op: Operation code  
disp: Displacement  
IMM: Immediate data  
abs: Absolute address  
2.4  
Data Formats  
The H8/300 CPU can process 1-bit data, 4-bit (BCD) data, 8-bit (byte) data, and 16-bit (word)  
data.  
Bit manipulation instructions operate on 1-bit data specified as bit n (n = 0, 1, 2, ..., 7) in a byte  
operand.  
All arithmetic and logic instructions except ADDS and SUBS can operate on byte data.  
The DAA and DAS instruction perform decimal arithmetic adjustments on byte data in packed  
BCD form. Each nibble of the byte is treated as a decimal digit.  
The MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 bits × 8 bits), and  
DIVXU (16 bits ÷ 8 bits) instructions operate on word data.  
Rev. 3.0, 09/98, page 25 of 361  
2.4.1  
Data Formats in General Registers  
Data of all the sizes above can be stored in general registers as shown in figure 2.3.  
Data type  
1-Bit data  
Register No.  
Data format  
7
0
RnH  
RnL  
7
6
5
4
3
2
1
0
don't care  
7
0
1-Bit data  
don't care  
7
6
5
4
3
2
1
0
7
0
Byte data  
RnH MSB  
LSB  
don't care  
7
0
Byte data  
RnL  
don't care  
MSB  
LSB  
15  
0
Word data  
4-Bit BCD data  
Rn  
MSB  
LSB  
7
4
3
0
RnH  
RnL  
Upper digit  
Lower digit  
don't care  
7
4
3
0
4-Bit BCD data  
Legend  
don't care  
Upper digit  
Lower digit  
RnH Upper digit of general register  
RnL Lower digit of general register  
MSB Most significant bit  
LSB Least significant bit it  
Figure 2.3 Register Data Formats  
Rev. 3.0, 09/98, page 26 of 361  
2.4.2  
Memory Data Formats  
Figure 2.4 indicates the data formats in memory.  
Word data stored in memory must always begin at an even address. In word access the least  
significant bit of the address is regarded as “0.” If an odd address is specified, no address error  
occurs but the access is performed at the preceding even address. This rule affects MOV.W  
instructions and branching instructions, and implies that only even addresses should be stored in  
the vector table.  
Data type  
Address  
Data format  
7
0
1-Bit data  
Byte data  
Address n  
7
6
5
4
3
2
1
0
Address n MSB  
LSB  
LSB  
Even address MSB  
Odd address  
Upper 8 bits  
Lower 8 bits  
Word data  
Byte data (CCR) on stack  
Word data on stack  
Even address MSB  
Odd address MSB  
CCR  
LSB  
LSB  
CCR*  
Even address MSB  
Odd address  
LSB  
Note: * Ignored when returned  
Legend  
CCR: Condition Code Register  
Figure 2.4 Memory Data Formats  
When the stack is addressed by register R7, it must always be accessed a word at a time. When  
the CCR is pushed on the stack, two identical copies of the CCR are pushed to make a complete  
word. When they are returned, the lower byte is ignored.  
Rev. 3.0, 09/98, page 27 of 361  
2.5  
Instruction Set  
Table 2.3 lists the H8/300 instruction set.  
Table 2.3 Instruction Classification  
Function  
Instructions  
Types  
Data transfer  
MOV, MOVTPE*3, MOVFPE*3, PUSH*1, POP*1  
3
Arithmetic operations  
ADD, SUB, ADDX, SUBX, INC, DEC, ADDS, SUBS,  
DAA, DAS, MULXU, DIVXU, CMP, NEG  
14  
Logic operations  
Shift  
AND, OR, XOR, NOT  
4
8
SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL,  
ROTXR  
Bit manipulation  
BSET, BCLR, BNOT, BTST, BAND, BIAND, BOR, BIOR,14  
BXOR, BIXOR, BLD, BILD, BST, BIST  
Branch  
Bcc*2, JMP, BSR, JSR, RTS  
RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP  
EEPMOV  
5
System control  
Block data transfer  
8
1
Total 57  
Notes: 1. PUSH Rn is equivalent to MOV.W Rn, @SP.  
POP Rn is equivalent to MOV.W @SP+, Rn.  
2. BCC is a conditional branch instruction in which cc represents a condition code.  
3. Not supported by the H8/338 Series.  
The following sections give a concise summary of the instructions in each category, and indicate  
the bit patterns of their object code. The notation used is defined next.  
Rev. 3.0, 09/98, page 28 of 361  
Operation Notation  
Rd  
General register (destination)  
Rs  
General register (source)  
General register  
Destination operand  
Source operand  
Stack pointer  
Rn  
(EAd)  
(EAs)  
SP  
PC  
CCR  
N
Program counter  
Condition code register  
N (negative) flag of CCR  
Z (zero) flag of CCR  
V (overflow) flag of CCR  
C (carry) flag of CCR  
Immediate data  
3-Bit immediate data  
8-Bit immediate data  
16-Bit immediate data  
Displacement  
Z
V
C
#imm  
#xx:3  
#xx:8  
#xx:16  
disp  
+
Addition  
Subtraction  
×
Multiplication  
÷
Division  
AND logical  
OR logical  
Exclusive OR logical  
Move  
¬
Not  
Rev. 3.0, 09/98, page 29 of 361  
2.5.1  
Data Transfer Instructions  
Table 2.4 describes the data transfer instructions. Figure 2.5 shows their object code formats.  
Table 2.4 Data Transfer Instructions  
Instruction Size*  
Function  
MOV  
B/W  
(EAs) Rd, Rs (EAd)  
Moves data between two general registers or between a general register  
and memory, or moves immediate data to a general register.  
The Rn, @Rn, @(d:16, Rn), @aa:16, #xx:8 or #xx:16, @Rn, and @Rn+  
addressing modes are available for byte or word data. The @aa:8  
addressing mode is available for byte data only.  
The @R7 and @R7+ modes require word operands. Do not specify  
byte size for these two modes.  
MOVTPE  
MOVFPE  
PUSH  
B
Not supported by the H8/338 Series.  
Not supported by the H8/338 Series.  
B
W
Rn @SP  
Pushes a 16-bit general register onto the stack. Equivalent to MOV.W  
Rn, @SP.  
POP  
W
@SP+ Rn  
Pops a 16-bit general register from the stack. Equivalent to MOV.W  
@SP+, Rn.  
Note: Size: operand size  
B: Byte  
W: Word  
Rev. 3.0, 09/98, page 30 of 361  
15  
8
7
0
MOV  
Op  
rm  
rn  
rn  
rn  
Rm Rn  
Op  
rm  
rm  
Rn @Rm, or @Rm  
Rn  
Op  
Op  
@(d:16, Rm)  
Rn,or  
disp.  
Rn @(d:16, Rm)  
rm  
rn  
rn  
@Rm+ Rn, or Rn @-Rm  
@aa:8 Rn, or Rn @aa:8  
Op  
Op  
rn  
abs.  
Op  
@aa:16 Rn. or  
Rn @aa:16  
abs.  
rn  
#imm.  
#XX:8  
Rn  
Op  
rn  
#XX:16  
Rn  
#imm.  
abs.  
Op  
Op  
rn  
rn  
MOVFRE, MOVTPE  
PUSH, POP  
Legend  
Op  
: Operation field  
rm, rn : Register field  
disp. : Displacement  
abs.  
: Absolute address  
IMM : immediate data  
Figure 2.5 Data Transfer Instruction Codes  
Rev. 3.0, 09/98, page 31 of 361  
2.5.2  
Arithmetic Operations  
Table 2.5 describes the arithmetic instructions. See figure 2.6 in section 2.5.4, “Shift Operations”  
for their object codes.  
Table 2.5 Arithmetic Instructions  
Instruction Size*  
Function  
ADD  
SUB  
B/W  
Rd ± Rs Rd, Rd + #imm Rd  
Performs addition or subtraction on data in two general registers, or  
addition on immediate data and data in a general register. Immediate  
data cannot be subtracted from data in a general register. Word data can  
be added or subtracted only when both words are in general registers.  
ADDX  
SUBX  
B
Rd ± Rs ± C Rd, Rd ± #imm ± C Rd  
Performs addition or subtraction with carry or borrow on byte data in two  
general registers, or addition or subtraction on immediate data and data in  
a general register.  
INC  
DEC  
B
Rd ± #1 Rd  
Increments or decrements a general register.  
ADDS  
SUBS  
W
Rd ± #imm Rd  
Adds or subtracts immediate data to or from data in a general register.  
The immediate data must be 1 or 2.  
DAA  
DAS  
B
Rd decimal adjust Rd  
Decimal-adjusts (adjusts to packed BCD) an addition or subtraction result  
in a general register by referring to the CCR.  
MULXU  
DIVXU  
CMP  
B
Rd × Rs Rd  
Performs 8-bit × 8-bit unsigned multiplication on data in two general  
registers, providing a 16-bit result.  
B
Rd ÷ Rs Rd  
Performs 16-bit ÷ 8-bit unsigned division on data in two general registers,  
providing an 8-bit quotient and 8-bit remainder.  
B/W  
Rd Rs, Rd #imm  
Compares data in a general register with data in another general register  
or with immediate data. Word data can be compared only between two  
general registers.  
NEG  
B
0 Rd Rd  
Obtains the two’s complement (arithmetic complement) of data in a  
general register.  
Note: Size: operand size  
B: Byte  
W: Word  
Rev. 3.0, 09/98, page 32 of 361  
2.5.3  
Logic Operations  
Table 2.6 describes the four instructions that perform logic operations. See figure 2.6 in section  
2.5.4, “Shift Operations,” for their object codes.  
Table 2.6 Logic Operation Instructions  
Instruction Size*  
Function  
AND  
OR  
B
B
B
B
Rd Rs Rd,  
Rd #imm Rd  
Performs a logical AND operation on a general register and another  
general register or immediate data.  
Rd Rs Rd,  
Rd #imm Rd  
Performs a logical OR operation on a general register and another  
general register or immediate data.  
XOR  
NOT  
Rd Rs Rd,  
Rd #imm Rd  
Performs a logical exclusive OR operation on a general register and  
another general register or immediate data.  
¬ (Rd) (Rd)  
Obtains the one’s complement (logical complement) of general register  
contents.  
Note: Size: operand size  
B: Byte  
2.5.4  
Shift Operations  
Table 2.7 describes the eight shift instructions. Figure 2.6 shows the object code formats of the  
arithmetic, logic, and shift instructions.  
Table 2.7 Shift Instructions  
Instruction Size*  
Function  
SHAL  
SHAR  
B
B
B
B
Rd shift Rd  
Performs an arithmetic shift operation on general register contents.  
SHLL  
SHLR  
Rd shift Rd  
Performs a logical shift operation on general register contents.  
ROTL  
ROTR  
Rd rotate Rd  
Rotates general register contents.  
ROTXL  
ROTXR  
Rd rotate through carry Rd  
Rotates general register contents through the C (carry) bit.  
Note: Size: operand size  
B: Byte  
Rev. 3.0, 09/98, page 33 of 361  
15  
8
7
0
Op  
rm  
r
n
n
ADD, AUB, CMP  
ADDX, SUBX(R  
m
), MULXU, DIVXU  
Op  
r
ADDS, SUBS, INC, DEC, DAA,  
DAS, NEG, NOT  
Op  
rn  
#imm.  
#imm.  
ADD, ADDX, SUBX, CMP  
(#XX:8)  
Op  
rm  
r
n
AND, OR, XOR(Rm)  
Op  
rn  
AND, OR, XOR(#XX:8)  
Op  
r
n
SHAL, SHAR, SHLL, SHLR,  
ROTL, ROTR, ROTXL, ROTXR  
Legend:  
Op  
, r  
: Operation field  
: Register field  
r
m
n
IMM : immediate data  
Figure 2.6 Arithmetic, Logic, and Shift Instruction Codes  
Rev. 3.0, 09/98, page 34 of 361  
2.5.5  
Bit Manipulations  
Table 2.8 describes the bit-manipulation instructions. Figure 2.7 shows their object code formats.  
Table 2.8 Bit-Manipulation Instructions  
Instruction Size*  
Function  
BSET  
BCLR  
BNOT  
BTST  
B
B
B
B
B
1 (<bit-No.> of <EAd>)  
Sets a specified bit in a general register or memory to “1.” The bit is  
specified by a bit number, given in 3-bit immediate data or the lower three  
bits of a general register.  
0 (<bit-No.> of <EAd>)  
Clears a specified bit in a general register or memory to “0.” The bit is  
specified by a bit number, given in 3-bit immediate data or the lower three  
bits of a general register.  
¬ (<bit-No.> of <EAd>) (<bit-No.> of <EAd>)  
Inverts a specified bit in a general register or memory. The bit is specified  
by a bit number, given in 3-bit immediate data or the lower three bits of a  
general register  
¬ (<bit-No.> of <EAd>) Z  
Tests a specified bit in a general register or memory and sets or clears  
the Z flag accordingly. The bit is specified by a bit number, given in 3-bit  
immediate data or the lower three bits of a general register.  
BAND  
C
(<bit-No.> of <EAd>) C  
ANDs the C flag with a specified bit in a general register or memory.  
BIAND  
C
[¬ (<bit-No.> of <EAd>)] C  
ANDs the C flag with the inverse of a specified bit in a general register or  
memory.  
The bit number is specified by 3-bit immediate data.  
BOR  
B
B
C
(<bit-No.> of <EAd>) C  
ORs the C flag with a specified bit in a general register or memory.  
BIOR  
C
[¬ (<bit-No.> of <EAd>)] C  
ORs the C flag with the inverse of a specified bit in a general register or  
memory.  
The bit number is specified by 3-bit immediate data.  
BXOR  
C
(<bit-No.> of <EAd>) C  
XORs the C flag with a specified bit in a general register or memory.  
Note: Size: operand size  
B: Byte  
Rev. 3.0, 09/98, page 35 of 361  
Table 2.8 Bit-Manipulation Instructions (cont)  
Instruction Size* Function  
BIXOR  
B
C
¬ [(<bit-No.> of <EAd>)] C  
XORs the C flag with the inverse of a specified bit in a general register or  
memory.  
The bit number is specified by 3-bit immediate data.  
BLD  
B
(<bit-No.> of <EAd>) C  
Copies a specified bit in a general register or memory to the C flag.  
BILD  
¬ (<bit-No.> of <EAd>) C  
Copies the inverse of a specified bit in a general register or memory to the  
C flag.  
The bit number is specified by 3-bit immediate data.  
BST  
B
C (<bit-No.> of <EAd>)  
Copies the C flag to a specified bit in a general register or memory.  
BIST  
¬ C (<bit-No.> of <EAd>)  
Copies the inverse of the C flag to a specified bit in a general register or  
memory.  
The bit number is specified by 3-bit immediate data.  
Note: Size: operand size  
B: Byte  
Notes on Bit Manipulation Instructions: BSET, BCLR, BNOT, BST, and BIST are read-  
modify-write instructions. They read a byte of data, modify one bit in the byte, then write the byte  
back. Care is required when these instructions are applied to registers with write-only bits and to  
the I/O port registers.  
Step  
Description  
1
2
3
Read  
Modify  
Write  
Read one data byte at the specified address  
Modify one bit in the data byte  
Write the modified data byte back to the specified address  
Example 1: BCLR is executed to clear bit 0 in the port 4 data direction register (P4DDR) under  
the following conditions.  
P47:  
P46:  
Input pin, Low  
Input pin, High  
P45 P40: Output pins, Low  
The intended purpose of this BCLR instruction is to switch P40 from output to input.  
Rev. 3.0, 09/98, page 36 of 361  
Before Execution of BCLR Instruction  
P47  
Input  
Low  
0
P46  
Input  
High  
0
P45  
P44  
P43  
P42  
P41  
P40  
Input/output  
Pin state  
DDR  
Output Output Output Output Output Output  
Low  
1
Low  
1
Low  
1
Low  
1
Low  
1
Low  
1
DR  
1
0
0
0
0
0
0
0
Execution of BCLR Instruction  
BCLR #0, @P4DDR  
;clear bit 0 in data direction register  
After Execution of BCLR Instruction  
P47 P46 P45  
P44  
P43  
P42  
P41  
P40  
Input/output  
Pin state  
DDR  
Output Output Output Output Output Output Output Input  
Low  
1
High  
Low  
1
Low  
1
Low  
1
Low  
1
Low  
1
High  
1
0
0
0
DR  
1
0
0
0
0
0
Explanation: To execute the BCLR instruction, the CPU begins by reading P4DDR. Since  
P4DDR is a write-only register, it is read as HFF, even though its true value is H3F.  
Next the CPU clears bit 0 of the read data, changing the value to HFE.  
Finally, the CPU writes this value (HFE) back to P4DDR to complete the BCLR instruction.  
As a result, P40DDR is cleared to “0,” making P40 an input pin. In addition, P47DDR and  
P46DDR are set to “1,” making P47 and P46 output pins.  
Rev. 3.0, 09/98, page 37 of 361  
15  
8
7
0
BSET, BCLR, BNOT, BTST  
Operand: register direct (Rn)  
Bit No.: immediate (#xx:3)  
Operand: register direct (Rn)  
Bit No.: register direct (Rm)  
Operand: register indirect (@Rn)  
Bit No.: immediate (#xx:3)  
Op  
#imm.  
r
n
n
Op  
rm  
r
Op  
Op  
r
n
0
0
0
0
0
0
0
0
#imm.  
Op  
Op  
r
n
0
0
0
0
0
0
0
0
Operand: register indirect (@Rn)  
Bit No.: register direct (Rm)  
r
m
Op  
abs.  
Operand: absolute (@aa:8)  
Bit No.: immediate (#xx:3)  
Op  
#imm.  
0
0
0
0
0
0
0
Op  
Op  
abs.  
Operand: absolute (@aa:8)  
Bit No.: register direct (Rm)  
r
m
0
BAND, BOR, BXOR, BLD, BST  
Operand: register direct (Rn)  
Bit No.: immediate (#xx:3)  
Op  
#imm.  
rn  
Op  
Op  
r
n
0
0
0
0
0
0
0
0
Operand: register indirect (@Rn)  
Bit No.: immediate (#xx:3)  
#imm.  
#imm.  
#imm.  
Op  
Op  
abs.  
Operand: absolute (@aa:8)  
Bit No.: immediate (#xx:3)  
0
0
0
0
BIAND, BIOR, BIXOR, BILD, BIST  
Operand: register direct (Rn)  
Bit No.: immediate (#xx:3)  
Op  
rn  
Op  
Op  
r
n
0
0
0
0
0
0
0
0
Operand: register indirect (@Rn)  
Bit No.: immediate (#xx:3)  
#imm.  
Op  
Op  
abs.  
Operand: absolute (@aa:8)  
Bit No.: immediate (#xx:3)  
#imm.  
0
0
0
0
Legend:  
Op  
, r  
: Operation field  
: Register field  
r
m
n
abs. : Absolute address  
IMM : immediate data  
Figure 2.7 Bit Manipulation Instruction Codes  
Rev. 3.0, 09/98, page 38 of 361  
2.5.6  
Branching Instructions  
Table 2.9 describes the branching instructions. Figure 2.8 shows their object code formats.  
Table 2.9 Branching Instructions  
Instruction Size  
Function  
BCC  
Branches if condition cc is true.  
Mnemonic  
BRA (BT)  
BRN (BF)  
BHI  
cc field  
0 0 0 0  
0 0 0 1  
0 0 1 0  
0 0 1 1  
0 1 0 0  
Description  
Always (True)  
Never (False)  
High  
Condition  
Always  
Never  
C
C
Z = 0  
Z = 1  
BLS  
Low or Same  
Carry Clear  
(High or Same)  
Carry Set (Low)  
Not Equal  
BCC (BHS)  
C = 0  
BCS (BLO)  
BNE  
BEQ  
BVC  
BVS  
0 1 0 1  
0 1 1 0  
0 1 1 1  
1 0 0 0  
1 0 0 1  
1 0 1 0  
1 0 1 1  
1 1 0 0  
1 1 0 1  
1 1 1 0  
1 1 1 1  
C = 1  
Z = 0  
Z = 1  
V = 0  
V = 1  
N = 0  
N = 1  
Equal  
Overflow Clear  
Overflow Set  
Plus  
BPL  
BMI  
Minus  
BGE  
BLT  
Greater or Equal  
Less Than  
N
N
Z
V = 0  
V = 1  
BGT  
BLE  
Greater Than  
Less or Equal  
(N V) = 0  
(N V) = 1  
Z
JMP  
JSR  
BSR  
Branches unconditionally to a specified address.  
Branches to a subroutine at a specified address.  
Branches to a subroutine at a specified displacement from the current  
address.  
RTS  
Returns from a subroutine  
Rev. 3.0, 09/98, page 39 of 361  
15  
8
7
0
Op  
CC  
disp.  
BCC  
Op  
r
m
0
0
0
0
JMP(@Rm)  
Op  
JMP(@aa:16)  
abs.  
Op  
Op  
Op  
abs.  
JMP(@@aa:8)  
BSR  
disp.  
r
m
0
0
0
0
JSR(@Rm)  
JSR(@aa:16)  
Op  
abs.  
Op  
abs.  
JSR(@@aa:8)  
RTS  
Op  
Legend:  
Op  
: Operation field  
: Condition field  
: Register field  
CC  
rm  
disp. : Displacement  
abs. : Absolute address  
Figure 2.8 Branching Instruction Codes  
Rev. 3.0, 09/98, page 40 of 361  
2.5.7  
System Control Instructions  
Table 2.10 describes the system control instructions. Figure 2.9 shows their object code formats.  
Table 2.10 System Control Instructions  
Instruction Size  
RTE  
Function  
Returns from an exception-handling routine.  
Causes a transition to the power-down state.  
SLEEP  
LDC  
B
Rs CCR, #imm CCR  
Moves immediate data or general register contents to the condition code  
register.  
STC  
B
B
B
B
CCR Rd  
Copies the condition code register to a specified general register.  
ANDC  
ORC  
XORC  
NOP  
CCR #imm CCR  
Logically ANDs the condition code register with immediate data.  
CCR #imm CCR  
Logically ORs the condition code register with immediate data.  
CCR #imm CCR  
Logically exclusive-ORs the condition code register with immediate data.  
PC + 2 PC  
Only increments the program counter.  
Note: Size: operand size  
B: Byte  
Rev. 3.0, 09/98, page 41 of 361  
15  
8
7
0
Op  
RTE, SLEEP, NOP  
Op  
rn  
LDC, STC(Rn)  
Op  
#imm.  
ANDC, ORC, XORC, LDC  
(#XX:8)  
Legend:  
Op  
: Operation field  
: Register field  
r
n
#imm. : immediate data  
Figure 2.9 System Control Instruction Codes  
Block Data Transfer Instruction  
2.5.8  
Table 2.11 describes the EEPMOV instruction. Figure 2.10 shows its object code format.  
Table 2.11 Block Data Transfer Instruction/EEPROM Write Operation  
Instruction Size  
Function  
EEPMOV  
if R4L 0 then  
repeat @R5+ @R6+  
R4L 1 R4L  
until  
R4L = 0  
else next;  
Moves a data block according to parameters set in general registers R4L,  
R5, and R6.  
R4L: size of block (bytes)  
R5: starting source address  
R6: starting destination address  
Execution of the next instruction starts as soon as the block transfer is  
completed.  
Rev. 3.0, 09/98, page 42 of 361  
15  
8
7
0
Op  
Op  
EEPROM  
Op: Operation field  
Figure 2.10 Block Data Transfer Instruction/EEPROM Write Operation Code  
Notes on EEPMOV Instruction  
Note 1  
1. The EEPMOV instruction is a block data transfer instruction. It moves the number of bytes  
specified by R4L from the address specified by R5 to the address specified by R6.  
R5  
R6  
R5 + R4L →  
R6 + R4L  
2. When setting R4L and R6, make sure that the final destination address (R6 + R4L) does not  
exceed HFFFF. The value in R6 must not change from HFFFF to H0000 during execution of  
the instruction.  
R5 →  
R6  
R5 + R4L  
H'FFFF  
Not allowed  
R6 + R4L  
Note 2  
CPU will malfunction after EEPMOV instruction execution, in the following conditions.  
EEPMOV instruction performs block data transfer function.  
Condition  
When the following conditions are all true:  
The LSI is set to expanded mode (i.e. mode 1 or mode 2).  
The destination address of EEPMOV instruction is external area.  
At least one wait state is inserted to the last write bus cycle to the destination address by  
EEPMOV instruction.  
Rev. 3.0, 09/98, page 43 of 361  
2.6  
CPU States  
The CPU has three states: the program execution state, exception-handling state, and power-down  
state. The power-down state is further divided into three modes: the sleep mode, software  
standby mode, and hardware standby mode. Figure 2.11 summarizes these states, and figure 2.12  
shows a map of the state transitions.  
State  
Program execution state  
The CPU executes successive program instructions.  
Exception-handling state  
A transient state triggered by a reset or interrupt. The CPU executes  
a hardware sequence that includes loading the program counter  
from the vector table.  
Power-down state  
Sleep mode  
A state in which some or all of  
the chip functions are stopped  
to conserve power.  
Software standby mode  
Hardware standby mode  
Figure 2.11 Operating States  
Rev. 3.0, 09/98, page 44 of 361  
Program  
execution state  
SLEEP instruction  
with SSBY bit set  
Exception  
handing  
request  
SLEEP  
instruction  
Exception  
handing  
Exception-  
Sleep mode  
handling state  
Interrupt request  
NMI or IRQ0  
to IRQ2  
Software  
RES= 1  
standby mode  
Hardware  
standby mode  
STBY= 1, RES= 0  
Reset state  
Power-down state  
A transition to the reset state occurs when RES goes Low, except when  
the chip is in the hardware standby mode.  
A transition from any state to the hardware standby mode occurs when  
STBY goes Low.  
Notes: 1.  
2.  
Figure 2.12 State Transitions  
2.6.1  
In this state the CPU executes program instructions.  
2.6.2 Exception-Handling State  
Program Execution State  
The exception-handling state is a transient state that occurs when the CPU is reset or accepts an  
interrupt. In this state the CPU carries out a hardware-controlled sequence that prepares it to  
execute a user-coded exception-handling routine.  
In the hardware exception-handling sequence the CPU does the following:  
(1) Saves the program counter and condition code register to the stack (except in the case of a  
reset).  
(2) Sets the interrupt mask (I) bit in the condition code register to “1.”  
(3) Fetches the start address of the exception-handling routine from the vector table.  
(4) Branches to that address, returning to the program execution state.  
See section 4, “Exception Handling,” for further information on the exception-handling state.  
Rev. 3.0, 09/98, page 45 of 361  
2.6.3  
Power-Down State  
The power-down state includes three modes: the sleep mode, the software standby mode, and the  
hardware standby mode.  
(1) Sleep Mode: The sleep mode is entered when a SLEEP instruction is executed. The CPU  
halts, but CPU register contents remain unchanged and the on-chip supporting modules continue  
to function.  
(2) Software Standby Mode: The software standby mode is entered if the SLEEP instruction is  
executed while the SSBY (Software Standby) bit in the system control register (SYSCR) is set.  
The CPU and all on-chip supporting modules halt. The on-chip supporting modules are  
initialized, but the contents of the on-chip RAM and CPU registers remain unchanged. I/O port  
outputs also remain unchanged.  
(3) Hardware Standby Mode: The hardware standby mode is entered when the input at the  
STBY pin goes Low. All chip functions halt, including I/O port output. The on-chip supporting  
modules are initialized, but on-chip RAM contents are held.  
See section 14, “Power-Down State,” for further information.  
Rev. 3.0, 09/98, page 46 of 361  
2.7  
Access Timing and Bus Cycle  
The CPU is driven by the system clock (φ). The period from one rising edge of the system clock  
to the next is referred to as a “state.”  
Memory access is performed in a two- or three-state bus cycle. On-chip memory, on-chip  
supporting modules, and external devices are accessed in different bus cycles as described below.  
2.7.1  
Access to On-Chip Memory (RAM and ROM)  
On-chip ROM and RAM are accessed in a cycle of two states designated T1 and T2. Either byte or  
word data can be accessed, via a 16-bit data bus. Figure 2.13 shows the on-chip memory access  
cycle. Figure 2.14 shows the associated pin states.  
Bus cycle  
T1 state  
T2 state  
Ø
Address  
Internal address bus  
Internal Read signal  
Internal data bus  
(read)  
Read data  
Internal Write signal  
Internal data bus  
(write)  
Write data  
Figure 2.13 On-Chip Memory Access Cycle  
Rev. 3.0, 09/98, page 47 of 361  
Bus cycle  
T1 state  
T2 state  
Ø
Address  
Address bus  
AS: High  
RD: High  
WR: High  
Data bus:  
high impedance state  
Figure 2.14 Pin States during On-Chip Memory Access Cycle  
Rev. 3.0, 09/98, page 48 of 361  
2.7.2  
Access to On-Chip Register Field and External Devices  
The on-chip register field (I/O ports, dual-port RAM, on-chip supporting module registers, etc.)  
and external devices are accessed in a cycle consisting of three states: T1, T2, and T3. Only one  
byte of data can be accessed per cycle, via an 8-bit data bus. Access to word data or instruction  
codes requires two consecutive cycles (six states).  
Figure 2.15 shows the access cycle for the on-chip register field. Figure 2.16 shows the associated  
pin states. Figures 2.17 (a) and (b) show the read and write access timing for external devices.  
Bus cycle  
T1 state  
T2 state  
T3 state  
Ø
Address  
Internal address bus  
Internal Read signal  
Read data  
Internal data bus  
(read)  
Internal Write signal  
Write data  
Internal data bus  
(write)  
Figure 2.15 On-Chip Register Field Access Cycle  
Rev. 3.0, 09/98, page 49 of 361  
Bus cycle  
T2 state  
T1 state  
T3 state  
Ø
Address  
Address bus  
AS: High  
RD: High  
WR: High  
Data bus:  
high impedance state  
Figure 2.16 Pin States during On-Chip Register Field Access Cycle  
Rev. 3.0, 09/98, page 50 of 361  
Read cycle  
T2 state  
T1 state  
T3 state  
Ø
Address  
Address bus  
AS  
RD  
WR: High  
Read data  
Data bus  
Figure 2.17 (a) External Device Access Timing (Read)  
Rev. 3.0, 09/98, page 51 of 361  
Write cycle  
T2 state  
T1 state  
T3 state  
Ø
Address  
Address bus  
AS  
RD: High  
WR  
Write data  
Data bus  
Figure 2.17 (b) External Device Access Timing (Write)  
Rev. 3.0, 09/98, page 52 of 361  
Section 3 MCU Operating Modes and Address Space  
3.1  
Overview  
3.1.1  
Mode Selection  
The H8/338 Series operates in three modes numbered 1, 2, and 3. The mode is selected by the  
inputs at the mode pins (MD1 and MD0) when the chip comes out of a reset. See table 3.1.  
The ROMless versions of the H8/338 Series (HD6413388, HD6413378) can be used only in mode  
1 (expanded mode with on-chip ROM disabled).  
Table 3.1 Operating Modes  
Mode  
MD1  
Low  
Low  
High  
High  
MD0  
Low  
High  
Low  
High  
Address space  
On-chip ROM  
On-chip RAM  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Expanded  
Expanded  
Single-chip  
Disabled  
Enabled  
Enabled  
Enabled*  
Enabled*  
Enabled  
Note: If the RAME bit in the system control register (SYSCR) is cleared to 0, off-chip memory can  
be accessed instead.  
Modes 1 and 2 are expanded modes that permit access to off-chip memory and peripheral devices.  
The maximum address space supported by these externally expanded modes is 64K bytes.  
In mode 3 (single-chip mode), only on-chip ROM and RAM and the on-chip register field are  
used. All ports are available for general-purpose input and output.  
Mode 0 is inoperative in the H8/338 Series. Avoid setting the mode pins to mode 0.  
In addition, the mode pins must not be changed during MCU operation.  
Rev. 3.0, 09/98, page 53 of 361  
3.1.2  
Mode and System Control Registers (MDCR and SYSCR)  
Table 3.2 lists the registers related to the chip’s operating mode: the system control register  
(SYSCR) and mode control register (MDCR). The mode control register indicates the inputs to the  
mode pins MD1 and MD0.  
Table 3.2 Mode and System Control Registers  
Name  
Abbreviation  
SYSCR  
Read/Write  
Address  
H’FFC4  
H’FFC5  
System control register  
Mode control register  
R/W  
R
MDCR  
3.2  
System Control Register (SYSCR) H’FFC4  
Bit:  
7
SSBY  
0
6
STS2  
0
5
STS1  
0
4
STS0  
0
3
2
NMIEG  
0
1
0
RAME  
1
DPME  
Initial value:  
Read/Write:  
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W*  
R/W  
Note: Do not write “1” in this bit.  
The system control register (SYSCR) is an eight-bit register that controls the operation of the chip.  
Bit 7 Software Standby (SSBY): Enables transition to the software standby mode. For details,  
see section 14, “Power-Down State.”  
On recovery from software standby mode by an external interrupt, the SSBY bit remains set to  
“1.” It can be cleared by writing “0.”  
Bit 7  
SSBY  
Description  
0
1
The SLEEP instruction causes a transition to sleep mode.  
The SLEEP instruction causes a transition to software standby mode.  
(Initial value)  
Rev. 3.0, 09/98, page 54 of 361  
Bits 6 to 4 Standby Timer Select 2 to 0 (STS2 to STS0): These bits select the clock settling  
time when the chip recovers from the software standby mode by an external interrupt. During the  
selected time the CPU and on-chip supporting modules continue to stand by. These bits should be  
set according to the clock frequency so that the settling time is at least 10ms. For specific settings,  
see section 14.2, “System Control Register: Power-Down Control Bits.”  
Bit 6  
Bit 5  
Bit 4  
STS2  
STS1  
STS0  
Description  
0
0
0
0
1
0
0
1
1
0
1
0
1
Settling time = 8192 states  
Settling time = 16384 states  
Settling time = 32768 states  
Settling time = 65536 states  
Settling time = 131072 states  
(Initial value)  
Bit 3 Reserved: This bit cannot be modified and is always read as “1.”  
Bit 2 NMI Edge (NMIEG): Selects the valid edge of the NMI input.  
Bit 2  
NMIEG  
Description  
0
1
An interrupt is requested on the falling edge of the NMI input.  
An interrupt is requested on the rising edge of the NMI input.  
(Initial value)  
Bit 1 Dual-Port RAM Mode Enable (DPME): Reserved. Do not write “1” in this bit.  
Bit 0 RAM Enable (RAME): Enables or disables the on-chip RAM. The RAME bit is  
initialized by a reset, but is not initialized in the software standby mode.  
Bit 0  
RAME  
Description  
0
1
The on-chip RAM is disabled.  
The on-chip RAM is enabled.  
(Initial value)  
Rev. 3.0, 09/98, page 55 of 361  
3.3  
Mode Control Register (MDCR) H’FFC5  
Bit:  
7
6
5
4
3
2
1
MDS1  
*
0
MDS0  
*
Initial value:  
Read/Write:  
1
1
1
0
0
1
R
R
R
R
R
R
R
R
Note: Initialized according to MD1 and MD0 inputs.  
The mode control register (MDCR) is an eight-bit register that indicates the operating mode of the  
chip.  
Bits 7 to 5 Reserved: These bits cannot be modified and are always read as “1.”  
Bits 4 and 3 Reserved: These bits cannot be modified and are always read as “0.”  
Bit 2 Reserved: This bit cannot be modified and is always read as “1.”  
Bits 1 and 0 Mode Select 1 and 0 (MDS1 and MDS0): These bits indicate the values of the  
mode pins (MD1 and MD0), thereby indicating the current operating mode of the chip. MDS1  
corresponds to MD1 and MDS0 to MD0. These bits can be read but not written. When the mode  
control register is read, the levels at the mode pins (MD1 and MD0) are latched in these bits.  
Rev. 3.0, 09/98, page 56 of 361  
3.4  
Address Space Map  
Figures 3.1 to 3.3 show memory maps of the H8/338, H8/337, and H8/336 in modes 1, 2, and 3.  
Mode 1  
Mode 2  
Mode 3  
Expanded Mode without  
On-Chip ROM  
Expanded Mode with  
On-Chip ROM  
Single-Chip Mode  
H'0000  
H'0000  
H'0000  
Vector Table  
Vector Table  
Vector Table  
H'0047  
H'0048  
H'0047  
H'0048  
H'0047  
H'0048  
On-Chip ROM,  
48k bytes  
On-Chip ROM,  
48k bytes  
External Address Space  
H'BFFF  
H'C000  
H'BFFF  
External Address Space  
H'F77F  
H'F780  
H'F77F  
H'F780  
H'F780  
H'FF7F  
On-Chip RAM*,  
2k bytes  
On-Chip RAM*,  
2k bytes  
On-Chip RAM*,  
2k bytes  
H'FF7F  
H'FF80  
H'FF87  
H'FF88  
H'FF7F  
H'FF80  
H'FF87  
H'FF88  
External Address Space  
On-Chip Register Field  
External Address Space  
On-Chip Register Field  
H'FF88  
H'FFFF  
On-Chip Register Field  
H'FFFF  
H'FFFF  
Note: * External memory can be accessed at these addresses when the RAME bit in the system control register  
SYSCR) is cleared to 0.  
Figure 3.1 H8/338 Address Space Map  
Rev. 3.0, 09/98, page 57 of 361  
Mode 1  
Mode 2  
Mode 3  
Expanded Mode without  
On-Chip ROM  
Expanded Mode with  
On-Chip ROM  
Single-Chip Mode  
H'0000  
H'0000  
H'0000  
Vector Table  
Vector Table  
Vector Table  
H'0047  
H'0048  
H'0047  
H'0048  
H'0047  
H'0048  
On-Chip ROM,  
32k bytes  
On-Chip ROM,  
32k bytes  
External Address Space  
H'7FFF  
H'8000  
H'7FFF  
Reserved*1  
H'BFFF  
H'C000  
External Address Space  
Reserved*1,*2  
H'F77F  
H'F780  
H'F77F  
H'F780  
Reserved*1,*2  
H'FB7F  
H'FB80  
H'FB7F  
H'FB80  
H'FB80  
H'FF7F  
On-Chip RAM*2,  
1k byte  
On-Chip RAM,  
1k byte  
On-Chip RAM*2,  
1k byte  
H'FF7F  
H'FF80  
H'FF87  
H'FF88  
H'FF7F  
H'FF80  
H'FF87  
H'FF88  
External Address Space  
External Address Space  
H'FF88  
H'FFFF  
On-Chip Register Field  
On-Chip Register Field  
On-Chip Register Field  
H'FFFF  
H'FFFF  
Notes: 1. Do not access these reserved areas.  
2. External memory can be accessed at these addresses when the RAME bit in  
the system control register (SYSCR) is cleared to 0.  
Figure 3.2 H8/337 Address Space Map  
Rev. 3.0, 09/98, page 58 of 361  
Mode 1  
Mode 2  
Mode 3  
Expanded Mode without  
On-Chip ROM  
Expanded Mode with  
On-Chip ROM  
Single-Chip Mode  
H'0000  
H'0000  
H'0000  
Vector Table  
Vector Table  
Vector Table  
H'0047  
H'0048  
H'0047  
H'0048  
H'0047  
H'0048  
On-Chip ROM,  
24k bytes  
On-Chip ROM,  
24k bytes  
H'5FFF  
H'6000  
H'5FFF  
External Address Space  
Reserved*1  
H'BFFF  
H'C000  
External Address Space  
Reserved*1,*2  
H'F77F  
H'F780  
H'F77F  
H'F780  
Reserved*1,*2  
H'FB7F  
H'FB80  
H'FB7F  
H'FB80  
H'FB80  
H'FF7F  
On-Chip RAM*2,  
1k byte  
On-Chip RAM*2,  
1k byte  
On-Chip RAM, 1k byte  
On-Chip Register Field  
H'FF7F  
H'FF80  
H'FF87  
H'FF88  
H'FF7F  
H'FF80  
H'FF87  
H'FF88  
External Address Space  
On-Chip Register Field  
External Address Space  
On-Chip Register Field  
H'FF88  
H'FFFF  
H'FFFF  
H'FFFF  
Notes: 1. Do not access these reserved areas.  
2. External memory can be accessed at these addresses when the RAME bit in  
the system control register (SYSCR) is cleared to 0.  
Figure 3.3 H8/336 Address Space Map  
Rev. 3.0, 09/98, page 59 of 361  
Rev. 3.0, 09/98, page 60 of 361  
Section 4 Exception Handling  
4.1  
Overview  
The H8/338 Series recognizes only two kinds of exceptions: interrupts and the reset. Table 4.1  
indicates their priority and the timing of their hardware exception-handling sequence.  
Table 4.1 Hardware Exception-Handling Sequences and Priority  
Type of  
Priority  
Exception  
Timing of Exception-Handling Sequence  
High  
Reset  
The hardware exception-handling sequence begins as soon as RES  
changes from Low to High.  
Interrupt  
When an interrupt is requested, the hardware exception-handling  
sequence begins at the end of the current instruction, or at the end of  
the current hardware exception-handling sequence.  
Low  
4.2  
Reset  
4.2.1  
Overview  
A reset has the highest exception-handling priority. When the RES pin goes Low, all current  
processing stops and the chip enters the reset state. The internal state of the CPU and the registers  
of the on-chip supporting modules are initialized. When RES returns from Low to High, the reset  
exception-handling sequence starts.  
4.2.2  
Reset Sequence  
The reset state begins when RES goes Low. To ensure correct resetting, at power-on the RES pin  
should be held Low for at least 20ms. In a reset during operation, the RES pin should be held Low  
for at least 10 system clock cycles. For the pin states during a reset, see appendix C, “Pin States.”  
When RES returns from Low to High, hardware carries out the following reset exception-  
handling sequence.  
(1) The internal state of the CPU and the registers of the on-chip supporting modules are  
initialized, and the I bit in the condition code register (CCR) is set to “1.”  
(2) The CPU loads the program counter with the first word in the vector table (stored at addresses  
H'0000 and H'0001) and starts program execution.  
The RES pin should be held Low when power is switched off, as well as when power is switched  
on.  
Rev. 3.0, 09/98, page 61 of 361  
Figure 4.1 indicates the timing of the reset sequence in modes 2 and 3. Figure 4.2 indicates the  
timing in mode 1.  
Vector fetch  
Internal  
Instruction prefetch  
processing  
RES  
Ø
Internal address  
bus  
(1)  
(2)  
Internal Read  
signal  
Internal Write  
signal  
Internal data bus  
(16 bits)  
(2)  
(3)  
(1) Reset vector address (H'0000)  
(2) Starting address of program (contents of H'0000 to H'0001)  
(3) First instruction of program  
Figure 4.1 Reset Sequence (Mode 2 or 3, Program Stored in on-chip ROM)  
Rev. 3.0, 09/98, page 62 of 361  
Figure 4.2 Reset Sequence (Mode 1)  
Rev. 3.0, 09/98, page 63 of 361  
4.2.3  
Disabling of Interrupts after Reset  
After a reset, if an interrupt were to be accepted before initialization of the stack pointer (SP: R7),  
the program counter and condition code register might not be saved correctly, leading to a  
program crash. To prevent this, all interrupts, including NMI, are disabled immediately after a  
reset. The first program instruction is therefore always executed. This instruction should initialize  
the stack pointer (example: MOV.W #xx:16, SP).  
4.3  
Interrupts  
4.3.1  
Overview  
The interrupt sources include nine input pins for external interrupts (NMI, IRQ0 to IRQ7) and 22  
internal sources in the on-chip supporting modules. Table 4.2 lists the interrupt sources in priority  
order and gives their vector addresses. When two or more interrupts are requested, the interrupt  
with highest priority is served first.  
The features of these interrupts are:  
NMI has the highest priority and is always accepted. All internal and external interrupts except  
NMI can be masked by the I bit in the CCR. When the I bit is set to “1,” interrupts other than  
NMI are not accepted.  
IRQ0 to IRQ7 can be sensed on the falling edge of the input signal, or level-sensed. The type of  
sensing can be selected for each interrupt individually. NMI is edge-sensed, and either the  
rising or falling edge can be selected.  
All interrupts are individually vectored. The software interrupt-handling routine does not have  
to determine what type of interrupt has occurred.  
Rev. 3.0, 09/98, page 64 of 361  
Table 4.2 Interrupts  
Address of Entry in  
Vector Table  
Interrupt source  
NMI  
No.  
3
Priority  
H’0006  
H’0008  
H’000A  
H’000C  
H’000E  
H’0010  
H’0012  
H’0014  
H’0016  
H’0018  
H’001A  
H’001C  
H’001E  
H’0020  
H’0022  
H’0024  
H’0026  
H’0028  
H’002A  
H’002C  
H’002E  
H’0030  
H’0032  
H’0034  
H’0036  
H’0038  
H’003A  
H’003C  
H’003E  
H’0040  
H’0042  
H’0044  
H’0046  
H’0007  
High  
IRQ0  
4
H’0009  
H’000B  
H’000D  
H’000F  
H’0011  
H’0013  
H’0015  
H’0017  
H’0019  
H’001B  
H’001D  
H’001F  
H’0021  
H’0023  
H’0025  
H’0027  
H’0029  
H’002B  
H’002D  
H’002F  
H’0031  
H’0033  
H’0035  
H’0037  
H’0039  
H’003B  
H’003D  
H’003F  
H’0041  
H’0043  
H’0045  
H’0047  
IRQ1  
5
IRQ2  
6
IRQ3  
7
IRQ4  
8
IRQ5  
9
IRQ6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
IRQ7  
16-Bit free-  
running timer  
ICIA (Input capture A)  
ICIB (Input capture B)  
ICIC (Input capture C)  
ICID (Input capture D)  
OCIA (Output compare A)  
OCIB (Output compare B)  
FOVI (Overflow)  
8-Bit timer 0  
8-Bit timer 1  
Reserved  
CMI0A (Compare-match A)  
CMI0B (Compare-match B)  
OVI0 (Overflow)  
CMI1A (Compare-match A)  
CMI1B (Compare-match B)  
OVI1 (Overflow)  
Serial  
communication  
interface 0  
ERI0 (Receive error)  
RXI0 (Receive end)  
TXI0 (TDR empty)  
TEI0 (TSR empty)  
ERI1 (Receive error)  
RXI1 (Receive end)  
TXI1 (TDR empty)  
TEI1 (TSR empty)  
ADI (Conversion end)  
Serial  
communication  
interface 1  
A/D converter  
Low  
Notes: 1. H’0000 and H’0001 contain the reset vector.  
2. H’0002 to H’0005 are reserved in the H8/338 Series and are not available to the user.  
Rev. 3.0, 09/98, page 65 of 361  
4.3.2  
Interrupt-Related Registers  
The interrupt-related registers are the system control register (SYSCR), IRQ sense control register  
(ISCR), and IRQ enable register (IER).  
Table 4.3 Registers Read by Interrupt Controller  
Name  
Abbreviation  
SYSCR  
ISCR  
Read/write  
R/W  
Address  
H’FFC4  
H’FFC6  
H’FFC7  
System control register  
IRQ sense control register  
IRQ enable register  
R/W  
IER  
R/W  
System Control Register (SYSCR) H’FFC4  
Bit:  
7
SSBY  
0
6
STS2  
0
5
STS1  
0
4
STS0  
0
3
1
2
NMIEG  
0
1
0
RAME  
1
DPME  
Initial value:  
Read/Write:  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The valid edge on the NMI line is controlled by bit 2 (NMIEG) in the system control register.  
Bit 2 NMI Edge (NMIEG): Determines whether a nonmaskable interrupt is generated on the  
falling or rising edge of the NMI input signal.  
Bit 2  
NMIEG  
Description  
0
1
An interrupt is generated on the falling edge of NMI.  
An interrupt is generated on the rising edge of NMI.  
(Initial state)  
See section 2.2, “System Control Register,” for information on the other SYSCR bits.  
IRQ Sense Control Register (ISCR) H’FFC6  
Bit:  
7
6
5
4
3
2
1
0
IRQ7SC IRQ6SC IRQ5SC IRQ4SC IRQ3SC IRQ2SC IRQ1SC IRQ0SC  
Initial value:  
Read/Write:  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Rev. 3.0, 09/98, page 66 of 361  
Bits 0 to 7 IRQ0 to IRQ7 Sense Control (IRQ0SC to IRQ7SC): These bits determine whether  
IRQ0 to IRQ7 are level-sensed or sensed on the falling edge.  
Bits 0 to 7  
IRQ0SC to IRQ7SC  
Description  
0
An interrupt is generated when IRQ0 to IRQ7  
inputs are Low.  
(Initial state)  
1
An interrupt is generated by the falling edge of the IRQ0 to IRQ7 inputs.  
IRQ Enable Register (IER) H’FFC7  
Bit:  
7
IRQ7E  
0
6
IRQ6E  
0
5
IRQ5E  
0
4
IRQ4E  
0
3
IRQ3E  
0
2
IRQ2E  
0
1
IRQ1E  
0
0
IRQ0E  
0
Initial value:  
Read/Write:  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Bits 0 to 7 IRQ0 to IRQ7 Enable (IRQ0E to IRQ7E): These bits enable or disable the IRQ0 to  
IRQ7 interrupts individually.  
Bits 0 to 7  
IRQ0E to IRQ7E  
Description  
0
1
IRQ0 to IRQ7 interrupt requests are disabled.  
IRQ0 to IRQ7 interrupt requests are enabled.  
(Initial state)  
When edge sensing is selected (by setting bits IRQ0SC to IRQ7SC to “1”), it is possible for an  
interrupt-handling routine to be executed even though the corresponding enable bit (IRQ0E to  
IRQ7E) is cleared to “0” and the interrupt is disabled. If an interrupt is requested while the enable  
bit (IRQ0E to IRQ7E) is set to “1,” the request will be held pending until served. If the enable bit  
is cleared to “0” while the request is still pending, the request will remain pending, although new  
requests will not be recognized. If the interrupt mask bit (I) in the CCR is cleared to “0,” the  
interrupt-handling routine can be executed even though the enable bit is now “0.”  
If execution of interrupt-handling routines under these conditions is not desired, it can be avoided  
by using the following procedure to disable and clear interrupt requests.  
1. Set the I bit to “1” in the CCR, masking interrupts. Note that the I bit is set to 1 automatically  
when execution jumps to an interrupt vector.  
2. Clear the desired bits from IRQ0E to IRQ7E to “0” to disable new interrupt requests.  
3. Clear the corresponding IRQ0SC to IRQ7SC bits to “0,” then set them to “1” again. Pending  
IRQn interrupt requests are cleared when I = “1” in the CCR, IRQnSC = “0,” and IRQnE =  
“0.”  
Rev. 3.0, 09/98, page 67 of 361  
4.3.3  
External Interrupts  
The nine external interrupts are NMI and IRQ0 to IRQ7. NMI, IRQ0, IRQ1, and IRQ2 can be used  
to recover from software standby mode.  
(1) NMI: A nonmaskable interrupt is generated on the rising or falling edge of the NMI input  
signal regardless of whether the I (interrupt mask) bit is set in the CCR. The valid edge is selected  
by the NMIEG bit in the system control register. The NMI vector number is 3. In the NMI  
hardware exception-handling sequence the I bit in the CCR is set to “1.”  
(2) IRQ0 to IRQ7: These interrupt signals are level-sensed or sensed on the falling edge of the  
input, as selected by ISCR bits IRQ0SC to IRQ7SC. These interrupts can be masked collectively  
by the I bit in the CCR, and can be enabled and disabled individually by setting and clearing bits  
IRQ0E to IRQ7E in the IRQ enable register.  
When one of these interrupts is accepted, the I bit is set to “1.” IRQ0 to IRQ7 have interrupt vector  
numbers 4 to 11. They are prioritized in order from IRQ7 (Low) to IRQ0 (High). For details, see  
table 4.2.  
Interrupts IRQ0 to IRQ7 do not depend on whether pins IRQ0 to IRQ7 are input or output pins.  
When using external interrupts IRQ0 to IRQ7, clear the corresponding DDR bits to “0” to set these  
pins to the input state, and do not use these pins as input or output pins for the timers, serial  
communication interface, or A/D converter.  
4.3.4  
Internal Interrupts  
Twenty-two internal interrupts can be requested by the on-chip supporting modules. Each  
interrupt source has its own vector number, so the interrupt-handling routine does not have to  
determine which interrupt has occurred. All internal interrupts are masked when the I bit in the  
CCR is set to “1.” When one of these interrupts is accepted, the I bit is set to 1 to mask further  
interrupts (except NMI). The vector numbers are 12 to 35. For the priority order, see table 4.2.  
4.3.5  
Interrupt Handling  
Interrupts are controlled by an interrupt controller that arbitrates between simultaneous interrupt  
requests, commands the CPU to start the hardware interrupt exception-handling sequence, and  
furnishes the necessary vector number. Figure 4.3 shows a block diagram of the interrupt  
controller.  
Rev. 3.0, 09/98, page 68 of 361  
Interrupt  
controller  
CPU  
NMI interrupt  
*
IRQ flag  
Interrupt request  
Vector number  
IRQ 0E  
IRQ0  
interrupt  
Priority  
decision  
ADF  
ADIE  
ADI  
interrupt  
I (CCR)  
Note: * For edge-sensed interrupts, these AND gates change to the circuit shown below.  
IRQ0 flag  
IRQ0 edge  
S
Q
IRQ0 interrupt  
IRQ0 E  
Figure 4.3 Block Diagram of Interrupt Controller  
The IRQ interrupts and interrupts from the on-chip supporting modules all have corresponding  
enable bits. When the enable bit is cleared to “0,” the interrupt signal is not sent to the interrupt  
controller, so the interrupt is ignored. These interrupts can also all be masked by setting the  
CPU’s interrupt mask bit (I) to “1.” Accordingly, these interrupts are accepted only when their  
enable bit is set to “1” and the I bit is cleared to “0.”  
The nonmaskable interrupt (NMI) is always accepted, except in the reset state and hardware  
standby mode.  
When an NMI or another enabled interrupt is requested, the interrupt controller transfers the  
interrupt request to the CPU and indicates the corresponding vector number. (When two or more  
interrupts are requested, the interrupt controller selects the vector number of the interrupt with the  
highest priority.) When notified of an interrupt request, at the end of the current instruction or  
current hardware exception-handling sequence, the CPU starts the hardware exception-handling  
sequence for the interrupt and latches the vector number.  
Figure 4.4 is a flowchart of the interrupt (and reset) operations. Figure 4.6 shows the interrupt  
timing sequence for the case in which the software interrupt-handling routine is in on-chip ROM  
and the stack is in on-chip RAM.  
Rev. 3.0, 09/98, page 69 of 361  
(1) An interrupt request is sent to the interrupt controller when an NMI interrupt occurs, and when  
an interrupt occurs on an IRQ input line or in an on-chip supporting module provided the  
enable bit of that interrupt is set to “1.”  
(2) The interrupt controller checks the I bit in the CCR and accepts the interrupt request if the I bit  
is cleared to “0.” If the I bit is set to “1” only NMI requests are accepted; other interrupt  
requests remain pending.  
(3) Among all accepted interrupt requests, the interrupt controller selects the request with the  
highest priority and passes it to the CPU. Other interrupt requests remain pending.  
(4) When it receives the interrupt request, the CPU waits until completion of the current  
instruction or hardware exception-handling sequence, then starts the hardware exception-  
handling sequence for the interrupt and latches the interrupt vector number.  
(5) In the hardware exception-handling sequence, the CPU first pushes the PC and CCR onto the  
stack. See figure 4.5. The stacked PC indicates the address of the first instruction that will be  
executed on return from the software interrupt-handling routine.  
(6) Next the I bit in the CCR is set to “1,” masking all further interrupts except NMI.  
(7) The vector address corresponding to the vector number is generated, the vector table entry at  
this vector address is loaded into the program counter, and execution branches to the software  
interrupt-handling routine at the address indicated by that entry.  
Rev. 3.0, 09/98, page 70 of 361  
Program execution  
No  
Interrupt  
requested?  
Yes  
NMI?  
No  
Yes  
No  
Pending  
I = 0?  
Yes  
No  
IRQ 0?  
Yes  
No  
IRQ 1?  
Yes  
ADI?  
Yes  
Latch vector No.  
Save PC  
Save CCR  
Reset  
I
1
Read vector address  
Branch to software  
interrupt-handling  
routine  
Figure 4.4 Hardware Interrupt-Handling Sequence  
Rev. 3.0, 09/98, page 71 of 361  
SP-4  
SP-3  
SP-2  
SP-1  
SP(R7)  
SP(R7)  
SP+1  
SP+2  
SP+3  
SP+4  
CCR  
CCR*  
PC  
H
PCL  
Even address  
Stack area  
Before interrupt  
is accepted  
After interrupt  
is accepted  
Pushed onto stack  
Legend:  
PC  
H
Program counter (upper byte)  
Program counter (lower byte)  
Condition code register  
Stack pointer  
PCL  
CCR  
SP  
Notes: 1. The PC contains the address of the first instruction  
executed after return.  
2. Registers must be saved and restored by word  
access at an even address.  
* Ignored on return.  
Figure 4.5 Usage of Stack in Interrupt Handling  
Rev. 3.0, 09/98, page 72 of 361  
Figure 4.6 Timing of Interrupt Sequence  
Rev. 3.0, 09/98, page 73 of 361  
4.3.6  
Interrupt Response Time  
Table 4.4 indicates the number of states that elapse from an interrupt request signal until the first  
instruction of the software interrupt-handling routine is executed. Since on-chip memory is  
accessed 16 bits at a time, very fast interrupt service can be obtained by placing interrupt-handling  
routines in on-chip ROM and the stack in on-chip RAM.  
Table 4.4 Number of States before Interrupt Service  
Number of States  
No.  
1
Reason for Wait  
On-Chip Memory External Memory  
Interrupt priority decision  
Wait for completion of current instruction*1  
Save PC and CCR  
Fetch vector  
2*3  
2*3  
2
1 to 13  
5 to 17*2  
12*2  
3
4
4
2
6*2  
5
Fetch instruction  
4
12*2  
6
Internal processing  
Total  
4
4
17 to 29  
41 to 53 *2  
Notes: 1. These values do not apply if the current instruction is EEPMOV.  
2. If wait states are inserted in external memory access, add the number of wait states.  
3. 1 for internal interrupts.  
Rev. 3.0, 09/98, page 74 of 361  
4.3.7  
Precaution  
Note that the following type of contention can occur in interrupt handling.  
Contention between Interrupt Request and Disable: When software clears the enable bit of an  
interrupt to “0” to disable the interrupt, the interrupt becomes disabled after execution of the  
clearing instruction. If an enable bit is cleared by a BCLR or MOV instruction, for example, and  
the interrupt is requested during execution of that instruction, at the instant when the instruction  
ends the interrupt is still enabled, so after execution of the instruction, the hardware exception-  
handling sequence is executed for the interrupt. If a higher-priority interrupt is requested at the  
same time, however, the hardware exception-handling sequence is executed for the higher-priority  
interrupt and the interrupt that was disabled is ignored.  
Similar considerations apply when an interrupt request flag is cleared to “0.”  
Figure 4.7 shows an example in which the OCIAE bit is cleared to “0.”  
CPU write  
cycle to TIER  
OCIA interrupt handling  
Ø
TIER address  
Internal address bus  
Internal write signal  
OCIAE  
OCFA  
OCIA interrupt signal  
Figure 4.7 Contention between Interrupt and Disabling Instruction  
The above contention does not occur if the enable bit or flag is cleared to “0” while the interrupt  
mask bit (I) is set to “1.”  
Rev. 3.0, 09/98, page 75 of 361  
4.4  
Note on Stack Handling  
In word access, the least significant bit of the address is always assumed to be 0. The stack is  
always accessed by word access. Care should be taken to keep an even value in the stack pointer  
(general register R7). Use the PUSH and POP (or MOV.W Rn, @SP and MOV.W @SP+, Rn)  
instructions to push and pop registers on the stack.  
Setting the stack pointer to an odd value can cause programs to crash. Figure 4.8 shows an  
example of damage caused when the stack pointer contains an odd address.  
PC  
H
SP  
R1L  
PC  
H'FECC  
H'FECD  
SP  
PC  
L
L
SP  
H'FECF  
BSR instruction  
MOV.B R1L, @-R7  
H'FECF set in SP  
PC is improperly stored  
beyond top of stack  
PCH is lost  
Legend:  
PCH: Upper byte of program counter  
PCL: Lower byte of program counter  
R1L: General register  
SP : Stack pointer  
Figure 4.8 Example of Damage Caused by Setting an Odd Address in R7  
Although the CCR consists of only one byte, it is treated as word data when pushed on the stack.  
In the hardware interrupt exception-handling sequence, two identical CCR bytes are pushed onto  
the stack to make a complete word. When popped from the stack by an RTE instruction, the CCR  
is loaded from the byte stored at the even address. The byte stored at the odd address is ignored.  
Rev. 3.0, 09/98, page 76 of 361  
Section 5 Clock Pulse Generator  
5.1  
Overview  
The H8/338 Series has a built-in clock pulse generator (CPG) consisting of an oscillator circuit, a  
system (φ) clock divider, and a prescaler. The prescaler generates clock signals for the on-chip  
supporting modules.  
5.1.1  
Block Diagram  
CPG  
XTAL  
EXTAL  
Oscillator  
circuit  
Divider 2  
Prescaler  
Ø
Ø/2 to Ø/4096  
Figure 5.1 Block Diagram of Clock Pulse Generator  
Rev. 3.0, 09/98, page 77 of 361  
5.2  
Oscillator Circuit  
If an external crystal is connected across the EXTAL and XTAL pins, the on-chip oscillator circuit  
generates a clock signal for the system clock divider. Alternatively, an external clock signal can  
be applied to the EXTAL pin.  
(1) Connecting an External Crystal  
Circuit Configuration: An external crystal can be connected as in the example in figure 5.2.  
An AT-cut parallel resonating crystal should be used.  
C
L1  
EXTAL  
XTAL  
C
L2  
C
L1 = CL2 = 10 to 22pF  
Figure 5.2 Connection of Crystal Oscillator (Example)  
Crystal Oscillator: The external crystal should have the characteristics listed in table 5.1.  
Table 5.1 External Crystal Parameters  
Frequency (MHz)  
Rs max ()  
C0 (pF)  
2
4
8
12  
40  
16  
30  
20  
20  
500  
120  
60  
7 pF max  
C
L
L
R
S
XTAL  
EXTAL  
C
0
AT-cut parallel resonating crystal  
Figure 5.3 Equivalent Circuit of External Crystal  
Rev. 3.0, 09/98, page 78 of 361  
Note on Board Design: When an external crystal is connected, other signal lines should be  
kept away from the crystal circuit to prevent induction from interfering with correct oscillation.  
See figure 5.4. The crystal and its load capacitors should be placed as close as possible to the  
XTAL and EXTAL pins.  
Not allowed  
Signal A Signal B  
H8/337  
CL2  
XTAL  
EXTAL  
CL1  
(Example of H8/337)  
Figure 5.4 Notes on Board Design around External Crystal  
Rev. 3.0, 09/98, page 79 of 361  
(2) Input of External Clock Signal  
Circuit Configuration: An external clock signal can be input as shown in the examples in  
figure 5.5. In example (b) in figure 5.5, the external clock signal should be kept high during  
standby.  
EXTAL  
External clock input  
XTAL  
Open  
(a)  
EXTAL  
XTAL  
External clock input  
74HC04  
(b)  
Figure 5.5 External Clock Input (Example)  
External Clock Input  
Frequency  
Duty factor  
Double the system clock (φ) frequency  
45% to 55%  
5.3  
System Clock Divider  
The system clock divider divides the crystal oscillator or external clock frequency by 2 to create  
the system clock (φ).  
Rev. 3.0, 09/98, page 80 of 361  
Section 6 I/O Ports  
6.1  
Overview  
The H8/338 Series has nine parallel I/O ports, including:  
Six 8-bit input/output ports-ports 1, 2, 3, 4, 6, and 9  
One 8-bit input port-port 7  
One 7-bit input/output port-port 8  
One 3-bit input/output port-port 5  
Ports 1, 2, and 3 have programmable input pull-up transistors. Ports 1 to 6, 8, and 9 can drive a  
Darlington pair. Ports 1 to 4, 6, and 9 can drive one TTL load and a 90pF capacitive load. Ports 5  
and 8 can drive one TTL load and a 30pF capacitive load. Ports 1 and 2 can drive LEDs (10mA  
current sink).  
Input and output are memory-mapped. The CPU views each port as a data register (DR) located in  
the register field at the high end of the address space. Each port (except port 7) also has a data  
direction register (DDR) which determines which pins are used for input and which for output.  
Output: To send data to an output port, the CPU selects output in the data direction register and  
writes the desired data in the data register, causing the data to be held in a latch. The latch output  
drives the pin through a buffer amplifier. If the CPU reads the data register of an output port, it  
obtains the data held in the latch rather than the actual level of the pin.  
Input: To read data from an I/O port, the CPU selects input in the data direction register and  
reads the data register. This causes the input logic level at the pin to be placed directly on the  
internal data bus. There is no intervening input latch.  
The data direction registers are write-only registers; their contents are invisible to the CPU. If the  
CPU reads a data direction register all bits are read as “1,” regardless of their true values. Care is  
required if bit manipulation instructions are used to set and clear the data direction bits. See the  
note on bit manipulation instructions in section 3.5.5, “Bit Manipulations.”  
Auxiliary Functions: In addition to their general-purpose input/output functions, all of the I/O  
ports have auxiliary functions. Most of the auxiliary functions are software-selectable and must be  
enabled by setting bits in control registers. When selected, an auxiliary function usually replaces  
the general-purpose input/output function, but in some cases both functions can operate  
simultaneously. Table 6.1 summarizes the functions of the ports.  
Rev. 3.0, 09/98, page 81 of 361  
Table 6.1 Port Functions  
Single-Chip  
Mode  
Expanded Modes  
Mode 2  
Port Description  
Pins  
Mode 1  
Mode 3  
Port 1  
P17 to P10/ Address output General input  
General input/  
8-bit input-output port  
Can drive LEDs  
Input pull-ups  
A7 to A0  
(low)  
when DDR = “0” output  
(initial state)  
Address output  
(low) when  
DDR = “1”  
Port 2  
P27 to P20/ Address output General input  
General input/  
8-bit input-output port  
Can drive LEDs  
Input pull-ups  
A15 to A8  
(high)  
when DDR = “0” output  
(initial state)  
Address output  
(high) when  
DDR = “1”  
Port 3  
Port 4  
P37 to P30/ Data bus  
D7 to D0  
Data bus  
General input/  
output  
8-bit input-output port  
Input pull-ups  
P47 to P40 General input/output, 8-bit timer 0/1 input/output  
(TMCI0, TMO0, TMRI0, TMCI1, TMO1, TMRI1), or  
PWM timer 0/1 output (PW0, PW1)  
8-bit input-output port  
Port 5  
Port 6  
P52 to P50 General input/output or serial communication  
interface 0 input/output (TxD0, RxD0, SCK0)  
3-bit input-output port  
8-bit input-output port  
P67 to P60 General input/output, 16-bit free-running timer  
input/output (FTCI, FTOA, FTOB, FTIA, FTIB,  
FTIC, FTID), or external interrupt input (IRQ6,  
IRQ7)  
Rev. 3.0, 09/98, page 82 of 361  
Table 6.1 Port Functions (cont)  
Single-Chip  
Mode  
Expanded Modes  
Mode 2  
Port Description  
Pins  
Mode 1  
Mode 3  
Port 7  
P77 to P70 General input, analog input to A/D converter (AN7  
to AN0), or analog output from D/A converter (DA0,  
DA1)  
8-bit input port  
Port 8  
P86/SCK1/ General input/output, serial communication  
7-bit input-output port  
IRQ5  
P85/RxD1/  
IRQ4  
interface 1 input/output (TxD1, RxD1, SCK1), or  
external interrupt input (IRQ3, IRQ4, IRQ5)  
P84/TxD1/  
IRQ3  
P83 to P80 General input/output  
Port 9  
P97/WAIT  
WAIT input  
General input/  
output  
8-bit input-output port  
P96/φ  
System clock  
output  
General input  
when DDR = ”0”  
(initial state)  
System clock  
output when  
DDR = “1”  
P95/AS  
P94/WR  
P93/RD  
AS output  
WR output  
RD output  
General input/  
output  
P92/IRQ0  
P91/IRQ1  
General input/output or external interrupt input  
(IRQ0, IRQ1)  
P90/ADTRG/ General input/output, A/D converter trigger input  
IRQ2 (ADTRG), or external interrupt input (IRQ2)  
Rev. 3.0, 09/98, page 83 of 361  
6.2  
Port 1  
Port 1 is an 8-bit input/output port that also provides the low bits of the address bus. The function  
of port 1 depends on the MCU mode as indicated in table 6.2.  
Table 6.2 Functions of Port 1  
Mode 1  
Mode 2  
Mode 3  
Address bus (Low)  
(A7 to A0)  
Input port or Address bus (Low)  
(A7 to A0)*  
Input/output port  
Note: Depending on the bit settings in the data direction register: 0 input pin; 1 address pin  
Pins of port 1 can drive a single TTL load and a 90pF capacitive load when they are used as output  
pins. They can also drive light-emitting diodes and a Darlington pair. When they are used as  
input pins, they have programmable MOS transistor pull-ups.  
Table 6.3 details the port 1 registers.  
Table 6.3 Port 1 Registers  
Name  
Abbreviation Read/Write Initial Value  
Address  
Port 1 data direction register  
P1DDR  
W
H’FF (mode 1)  
H’FFB0  
H’00 (modes 2 and 3)  
Port 1 data register  
P1DR  
R/W  
R/W  
H’00  
H’00  
H’FFB2  
H’FFAC  
Port 1 input pull-up control register P1PCR  
Port 1 Data Direction Register (P1DDR) H’FFB0  
Bit  
7
6
5
4
3
2
1
0
P17DDR P16DDR P15DDR P14DDR P13DDR P12DDR P11DDR P10DDR  
Mode 1  
Initial value  
Read/Write  
Modes 2 and 3  
Initial value  
Read/Write  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
P1DDR is an 8-bit register that selects the direction of each pin in port 1. A pin functions as an  
output pin if the corresponding bit in P1DDR is set to “1,” and as an input pin if the bit is cleared  
to “0.”  
Rev. 3.0, 09/98, page 84 of 361  
Port 1 Data Register (P1DR) H’FFB2  
Bit:  
7
P17  
0
6
P16  
0
5
P15  
0
4
P14  
0
3
P13  
0
2
P12  
0
1
P11  
0
0
P10  
0
Initial value:  
Read/Write:  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P1DR is an 8-bit register containing the data for pins P17 to P10. When the CPU reads P1DR, for  
output pins it reads the value in the P1DR latch, but for input pins, it obtains the logic level  
directly from the pin, bypassing the P1DR latch.  
Port 1 Input Pull-Up Control Register (P1PCR) H’FFAC  
Bit:  
7
6
5
4
3
2
1
0
P17PCR P16PCR P15PCR P14PCR P13PCR P12PCR P11PCR P10PCR  
Initial value:  
Read/Write:  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P1PCR is an 8-bit readable/writable register that controls the input pull-up transistors in port 1. If  
a bit in P1DDR is cleared to “0” (designating input) and the corresponding bit in P1PCR is set to  
“1,” the input pull-up transistor for that bit is turned on.  
Mode 1: In mode 1 (expanded mode without on-chip ROM), port 1 is automatically used for  
address output. The port 1 data direction register is unwritable. All bits in P1DDR are  
automatically set to “1” and cannot be cleared to “0.”  
Mode 2: In mode 2 (expanded mode with on-chip ROM), the usage of port 1 can be selected on a  
pin-by-pin basis. A pin is used for general-purpose input if its data direction bit is cleared to “0,”  
or for address output if its data direction bit is set to “1.”  
Mode 3: In the single-chip mode port 1 is a general-purpose input/output port.  
Reset: A reset clears P1DDR, P1DR, and P1PCR to all “0,” placing all pins in the input state  
with the pull-up transistors off. In mode 1, when the chip comes out of reset, P1DDR is set to all  
“1.”  
Hardware Standby Mode: All pins are placed in the high-impedance state with the pull-up  
transistors off. P1DR and P1PCR are initialized to H'00. In modes 2 and 3, P1DDR is initialized  
to H'00.  
Software Standby Mode: In the software standby mode, P1DDR, P1DR, and P1PCR remain in  
their previous state. Address output pins are Low. General-purpose output pins continue to output  
the data in P1DR.  
Rev. 3.0, 09/98, page 85 of 361  
Input Pull-Up Transistors: Port 1 has built-in programmable input pull-up transistors that are  
available in modes 2 and 3. The pull-up for each bit can be turned on and off individually. To  
turn on an input pull-up in mode 2 or 3, set the corresponding P1PCR bit to “1” and clear the  
corresponding P1DDR bit to “0.” P1PCR is cleared to H'00 by a reset and in the hardware standby  
mode, turning all input pull-ups off. In software standby mode, the previous state is maintained.  
Table 6.4 indicates the states of the input pull-up transistors in each operating mode.  
Table 6.4 States of Input Pull-Up Transistors (Port 1)  
Mode  
Reset  
Off  
Hardware Standby  
Software Standby  
Other Operating Modes  
1
Off  
Off  
Off  
Off  
Off  
2
Off  
On/off  
On/off  
On/off  
On/off  
3
Off  
Notes: Off:  
The input pull-up transistor is always off.  
On/off: The input pull-up transistor is on if P1PCR = “1” and P1DDR = “0,” but off  
otherwise.  
Rev. 3.0, 09/98, page 86 of 361  
Figure 6.1 shows a schematic diagram of port 1.  
Reset  
R
D
Q
P1nPCR  
C
WP1P  
RP1P  
Reset  
Mode 1  
Hardware standby  
S
Q
R
D
P1nDDR  
C
*
WP1D  
Mode 3  
Reset  
R
D
Q
P1n  
P1nDR  
C
Mode 1 or 2  
WP1  
RP1  
WP1P: Write Port 1 PCR  
WP1D: Write Port 1 DDR  
WP1: Write Port 1  
RP1P : Read Port 1 PCR  
RP1:  
Read Port 1  
n = 0 to 7  
Note: * Set-priority  
Figure 6.1 Port 1 Schematic Diagram  
Rev. 3.0, 09/98, page 87 of 361  
6.3  
Port 2  
Port 2 is an 8-bit input/output port that also provides the high bits of the address bus. The function  
of port 2 depends on the MCU mode as indicated in table 6.5.  
Table 6.5 Functions of Port 2  
Mode 1  
Mode 2  
Mode 3  
Address bus (High)  
(A15 to A8)  
Input port or Address bus (High)  
(A15 to A8)*  
Input/output port  
Note: Depending on the bit settings in the data direction register: 0 input pin; 1 address pin  
Pins of port 2 can drive a single TTL load and a 90pF capacitive load when they are used as output  
pins. They can also drive light-emitting diodes and a Darlington pair. When they are used as  
input pins, they have programmable MOS transistor pull-ups.  
Table 6.6 details the port 2 registers.  
Table 6.6 Port 2 Registers  
Name  
Abbreviation Read/Write Initial Value  
Address  
Port 2 data direction register  
P2DDR  
W
H’FF (mode 1)  
H’FFB1  
H’00 (modes 2 and 3)  
Port 2 data register  
P2DR  
R/W  
R/W  
H’00  
H’00  
H’FFB3  
H’FFAD  
Port 2 input pull-up control register P2PCR  
Port 2 Data Direction Register (P2DDR) H’FFB1  
Bit  
7
6
5
4
3
2
1
0
P27DDR P26DDR P25DDR P24DDR P23DDR P22DDR P21DDR P20DDR  
Mode 1  
Initial value  
Read/Write  
Modes 2 and 3  
Initial value  
Read/Write  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
P2DDR is an 8-bit register that selects the direction of each pin in port 2. A pin functions as an  
output pin if the corresponding bit in P2DDR is set to “1,” and as an input pin if the bit is cleared  
to “0.”  
Rev. 3.0, 09/98, page 88 of 361  
Port 2 Data Register (P2DR) H’FFB3  
Bit:  
7
P27  
0
6
P26  
0
5
P25  
0
4
P24  
0
3
P23  
0
2
P22  
0
1
P21  
0
0
P20  
0
Initial value:  
Read/Write:  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P2DR is an 8-bit register containing the data for pins P27 to P20. When the CPU reads P2DR, for  
output pins it reads the value in the P2DR latch, but for input pins, it obtains the logic level  
directly from the pin, bypassing the P2DR latch.  
Port 2 Input Pull-Up Control Register (P2PCR) H’FFAD  
Bit:  
7
6
5
4
3
2
1
0
P27PCR P26PCR P25PCR P24PCR P23PCR P22PCR P21PCR P20PCR  
Initial value:  
Read/Write:  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P2PCR is an 8-bit readable/writable register that controls the input pull-up transistors in port 2. If  
a bit in P2DDR is cleared to “0” (designating input) and the corresponding bit in P2PCR is set to  
“1,” the input pull-up transistor for that bit is turned on.  
Mode 1: In mode 1 (expanded mode without on-chip ROM), port 2 is automatically used for  
address output. The port 2 data direction register is unwritable. All bits in P2DDR are  
automatically set to “1” and cannot be cleared to “0.”  
Mode 2: In mode 2 (expanded mode with on-chip ROM), the usage of port 2 can be selected on a  
pin-by-pin basis. A pin is used for general-purpose input if its data direction bit is cleared to “0,”  
or for address output if its data direction bit is set to “1.”  
Mode 3: In the single-chip mode port 2 is a general-purpose input/output port.  
Reset: A reset clears P2DDR, P2DR, and P2PCR to all “0,” placing all pins in the input state with  
the pull-up transistors off. In mode 1, when the chip comes out of reset, P2DDR is set to all “1.”  
Hardware Standby Mode: All pins are placed in the high-impedance state with the pull-up  
transistors off. P2DR and P2PCR are initialized to H'00. In modes 2 and 3, P2DDR is initialized  
to H'00.  
Software Standby Mode: In the software standby mode, P2DDR, P2DR, and P2PCR remain in  
their previous state. Address output pins are Low. General-purpose output pins continue to output  
the data in P2DR.  
Rev. 3.0, 09/98, page 89 of 361  
Input Pull-Up Transistors: Port 2 has built-in programmable input pull-up transistors that are  
available in modes 2 and 3. The pull-up for each bit can be turned on and off individually. To  
turn on an input pull-up in mode 2 or 3, set the corresponding P2PCR bit to “1” and clear the  
corresponding P2DDR bit to “0.” P2PCR is cleared to H'00 by a reset and in the hardware  
standby mode, turning all input pull-ups off. In software standby mode, the previous state is  
maintained.  
Table 6.7 indicates the states of the input pull-up transistors in each operating mode.  
Table 6.7 States of Input Pull-Up Transistors (Port 2)  
Mode  
Reset  
Off  
Hardware Standby  
Software Standby  
Other Operating Modes  
1
Off  
Off  
Off  
Off  
Off  
2
Off  
On/off  
On/off  
On/off  
On/off  
3
Off  
Notes: Off:  
The input pull-up transistor is always off.  
On/off: The input pull-up transistor is on if P2PCR = “1” and P2DDR = “0,” but off  
otherwise.  
Rev. 3.0, 09/98, page 90 of 361  
Figure 6.2 shows a schematic diagram of port 2.  
Reset  
R
D
Q
P2nPCR  
C
WP2P  
RP2P  
Mode 1 Reset  
Hardware standby  
S
Q
R
D
P2n DDR  
C
*
WP2D  
Reset  
Mode 3  
R
D
Q
P2n  
P2nDR  
C
Mode 1 or 2  
WP2  
RP2  
WP2P: Write Port 2 PCR  
WP2D: Write Port 2 DDR  
WP2: Write Port 2  
RP2P : Read Port 2 PCR  
RP2:  
Read Port 2  
n = 0 to 7  
Note: * Set-priority  
Figure 6.2 Port 2 Schematic Diagram  
Rev. 3.0, 09/98, page 91 of 361  
6.4  
Port 3  
Port 3 is an 8-bit input/output port that also provides the external data bus. The function of port 3  
depends on the MCU mode as indicated in table 6.8.  
Table 6.8 Functions of Port 3  
Mode 1  
Mode 2  
Mode 3  
Data bus  
Data bus  
Input/output port  
Pins of port 3 can drive a single TTL load and a 90pF capacitive load when they are used as output  
pins. They can also drive a Darlington pair. When they are used as input pins, they have  
programmable MOS transistor pull-ups.  
Table 6.9 details the port 3 registers.  
Table 6.9 Port 3 Registers  
Name  
Abbreviation  
P3DDR  
Read/Write Initial Value Address  
Port 3 data direction register  
Port 3 data register  
W
H’00  
H’00  
H’00  
H’FFB4  
H’FFB6  
H’FFAE  
P3DR  
R/W  
R/W  
Port 3 input pull-up control register  
P3PCR  
Port 3 Data Direction Register (P3DDR) H’FFB4  
Bit:  
7
6
5
4
3
2
1
0
P37DDR P36DDR P35DDR P34DDR P33DDR P32DDR P31DDR P30DDR  
Initial value:  
Read/Write:  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
P3DDR is an 8-bit register that selects the direction of each pin in port 3. A pin functions as an  
output pin if the corresponding bit in P3DDR is set to “1,” and as an input pin if the bit is cleared  
to “0.”  
Port 3 Data Register (P3DR) H’FFB6  
Bit:  
7
P37  
0
6
P36  
0
5
P35  
0
4
P34  
0
3
P33  
0
2
P32  
0
1
P31  
0
0
P30  
0
Initial value:  
Read/Write:  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Rev. 3.0, 09/98, page 92 of 361  
P3DR is an 8-bit register containing the data for pins P37 to P30. When the CPU reads P3DR, for  
output pins it reads the value in the P3DR latch, but for input pins, it obtains the logic level  
directly from the pin, bypassing the P3DR latch.  
Port 3 Input Pull-Up Control Register (P3PCR) H’FFAE  
Bit:  
7
6
5
4
3
2
1
0
P37PCR P36PCR P35PCR P34PCR P33PCR P32PCR P31PCR P30PCR  
Initial value:  
Read/Write:  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P3PCR is an 8-bit readable/writable register that controls the input pull-up transistors in port 3. If  
a bit in P3DDR is cleared to “0” (designating input) and the corresponding bit in P3PCR is set to  
“1,” the input pull-up transistor for that bit is turned on.  
Modes 1 and 2: In the expanded modes, port 3 is automatically used as the data bus. The values  
in P3DDR, P3DR, and P3PCR are ignored.  
Mode 3: In the single-chip mode, port 3 can be used as a general-purpose input/output port.  
Reset and Hardware Standby Mode: A reset or entry to the hardware standby mode clears  
P3DDR, P3DR, and P3PCR to all “0.” All pins are placed in the high-impedance state with the  
pull-up transistors off.  
Software Standby Mode: In the software standby mode, P3DDR, P3DR, and P3PCR remain in  
their previous state. In modes 1 and 2, all pins are placed in the data input (high-impedance) state.  
In mode 3, all pins remain in their previous input or output state.  
Input Pull-Up Transistors: Port 3 has built-in programmable input pull-up transistors that are  
available in mode 3. The pull-up for each bit can be turned on and off individually. To turn on an  
input pull-up in mode 3, set the corresponding P3PCR bit to “1” and clear the corresponding  
P3DDR bit to “0.” P3PCR is cleared to H'00 by a reset and in the hardware standby mode, turning  
all input pull-ups off. In software standby mode, the previous state is maintained.  
Rev. 3.0, 09/98, page 93 of 361  
Table 6.10 indicates the states of the input pull-up transistors in each operating mode.  
Table 6.10 States of Input Pull-Up Transistors (Port 3)  
Mode  
Reset  
Off  
Hardware Standby  
Software Standby  
Other Operating Modes  
1
Off  
Off  
Off  
Off  
Off  
2
Off  
Off  
Off  
3
Off  
On/off  
On/off  
Notes: Off:  
The input pull-up transistor is always off.  
On/off: The input pull-up transistor is on if P3PCR = “1” and P3DDR = “0,” but off  
otherwise.  
Rev. 3.0, 09/98, page 94 of 361  
Figure 6.3 shows a schematic diagram of port 3.  
Reset  
Mode 3  
R
D
Q
P3nPCR  
C
RP3P  
WP3P  
Mode 3  
Reset  
R
D
Q
External address write  
P3nDDR  
C
WP3D  
Mode 3  
Reset  
R
D
Q
P3n  
P3nDR  
C
Mode 1 or 2  
WP3  
RP3  
External address  
read  
WP3P: Write Port 3 PCR  
WP3D: Write Port 3 DDR  
WP3: Write Port 3  
RP3P : Read Port 3 PCR  
RP3:  
Read Port 3  
n = 0 to 7  
Figure 6.3 Port 3 Schematic Diagram  
Rev. 3.0, 09/98, page 95 of 361  
6.5  
Port 4  
Port 4 is an 8-bit input/output port that also provides the input and output pins for the 8-bit timers  
and the output pins for the PWM timers. The pin functions depend on control bits in the control  
registers of the timers. Pins not used by the timers are available for general-purpose input/output.  
Table 6.11 lists the pin functions, which are the same in both the expanded and single-chip modes.  
Table 6.11 Port 4 Pin Functions (Modes 1 to 3)  
Usage  
I/O port  
Timer  
Pin Functions  
P40  
P41  
P42  
P43  
P44  
P45  
P46  
P47  
TMCI0  
TMO0  
TMRI0  
TMCI1  
TMO1  
TMRI1  
PW0  
PW1  
See section 7, “8-Bit Timers” and section 8, “PWM Timers,” for details of the timer control bits.  
Pins of port 4 can drive a single TTL load and a 90pF capacitive load when they are used as output  
pins. They can also drive a Darlington pair.  
Table 6.12 details the port 4 registers.  
Table 6.12 Port 4 Registers  
Name  
Abbreviation  
P4DDR  
Read/Write Initial Value Address  
Port 4 data direction register  
Port 4 data register  
W
H’00  
H’00  
H’FFB5  
H’FFB7  
P4DR  
R/W  
Port 4 Data Direction Register (P4DDR) H’FFB5  
Bit:  
7
6
5
4
3
2
1
0
P47DDR P46DDR P45DDR P44DDR P43DDR P42DDR P41DDR P40DDR  
Initial value:  
Read/Write:  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
P4DDR is an 8-bit register that selects the direction of each pin in port 4. A pin functions as an  
output pin if the corresponding bit in P4DDR is set to “1,” and as an input pin if the bit is cleared  
to “0.”  
Rev. 3.0, 09/98, page 96 of 361  
Port 4 Data Register (P4DR) H’FFB7  
Bit:  
7
P47  
0
6
P46  
0
5
P45  
0
4
P44  
0
3
P43  
0
2
P42  
0
1
P41  
0
0
P40  
0
Initial value:  
Read/Write:  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P4DR is an 8-bit register containing the data for pins P47 to P40. When the CPU reads P4DR, for  
output pins (P4DDR = “1”) it reads the value in the P4DR latch, but for input pins (P4DDR =  
“0”), it obtains the logic level directly from the pin, bypassing the P4DR latch. This also applies  
to pins used for timer input or output.  
Pins P40, P42, P43, and P45: As indicated in table 6.11, these pins can be used for general-  
purpose input or output, or input of 8-bit timer clock and reset signals. When a pin is used for  
timer signal input, its P4DDR bit should normally be cleared to “0;” otherwise the timer will  
receive the value in P4DR.  
Pins P41, P44, P46, and P47: As indicated in table 6.11, these pins can be used for general-  
purpose input or output, or for 8-bit timer output (P41 and P44) or PWM timer output (P46 and  
P47). Pins used for timer output are unaffected by the values in P4DDR and P4DR.  
Reset and Hardware Standby Mode: A reset or entry to the hardware standby mode clears  
P4DDR and P4DR to all “0” and makes all pins into input port pins.  
Software Standby Mode: In the software standby mode, the control registers of the 8-bit and  
PWM timers are initialized but P4DDR and P4DR remain in their previous states. All pins  
become input or output port pins depending on the setting of P4DDR. Output pins output the  
values in P4DR.  
Rev. 3.0, 09/98, page 97 of 361  
Figures 6.4 (a) and 6.4 (b) show schematic diagrams of port 4.  
Reset  
R
D
Q
P4nDDR  
C
WP4D  
Reset  
R
D
P4n  
Q
P4nDR  
C
WP4  
RP4  
8-bit timer module  
Counter reset input  
Counter clock input  
WP4D: Write Port 4 DDR  
WP4:  
RP4:  
Write Port 4  
Read Port 4  
n = 0, 2, 3, 5  
Figure 6.4 (a) Port 4 Schematic Diagram (Pins P40, P42, P43, and P45)  
Rev. 3.0, 09/98, page 98 of 361  
Reset  
R
D
Q
P4nDDR  
C
WP4D  
Reset  
R
D
Q
P4n  
P4nDR  
C
8-bit timer module,  
PWM timer module  
WP4  
Output enable  
8-bit timer output  
or PWM timer output  
RP4  
WP4D: Write Port 4 DDR  
WP4:  
RP4:  
Write Port 4  
Read Port 4  
n = 1, 4, 6, 7  
Figure 6.4 (b) Port 4 Schematic Diagram (Pins P41, P44, P46, and P47)  
Rev. 3.0, 09/98, page 99 of 361  
6.6  
Port 5  
Port 5 is a 3-bit input/output port that also provides the input and output pins for serial communi-  
cation interface 0 (SCI0). The pin functions depend on control bits in the serial control register  
(SCR). Pins not used for serial communication are available for general-purpose input/output.  
Table 6.13 lists the pin functions, which are the same in both the expanded and single-chip modes.  
Table 6.13 Port 5 Pin Functions (Modes 1 to 3)  
Usage  
Pin Functions  
P50  
I/O port  
P51  
P52  
Serial communication interface 0  
TxD0  
RxD0  
SCK0  
See section 9, “Serial Communication Interface,” for details of the serial control bits. Pins used by  
the serial communication interface are switched between input and output without regard to the  
values in the data direction register.  
Pins of port 5 can drive a single TTL load and a 30pF capacitive load when they are used as output  
pins. They can also drive a Darlington pair.  
Table 6.14 details the port 5 registers.  
Table 6.14 Port 5 Registers  
Name  
Abbreviation  
P5DDR  
Read/Write Initial Value Address  
Port 5 data direction register  
Port 5 data register  
W
H’F8  
H’F8  
H’FFB8  
H’FFBA  
P5DR  
R/W  
Port 5 Data Direction Register (P5DDR) H’FFB8  
Bit:  
7
1
6
1
5
1
4
1
3
1
2
1
0
P52DDR P51DDR P50DDR  
Initial value:  
Read/Write:  
0
0
0
W
W
W
P5DDR is an 8-bit register that selects the direction of each pin in port 5. A pin functions as an  
output pin if the corresponding bit in P5DDR is set to “1,” and as an input pin if the bit is cleared  
to “0.”  
Rev. 3.0, 09/98, page 100 of 361  
Port 5 Data Register (P5DR) H’FFBA  
Bit:  
7
1
6
1
5
1
4
1
3
1
2
P52  
0
1
P51  
0
0
P50  
0
Initial value:  
Read/Write:  
R/W  
R/W  
R/W  
P5DR is an 8-bit register containing the data for pins P52 to P50. When the CPU reads P5DR, for  
output pins (P5DDR = “1”) it reads the value in the P5DR latch, but for input pins (P5DDR =  
“0”), it obtains the logic level directly from the pin, bypassing the P5DR latch. This also applies  
to pins used for serial communication.  
Pin P50: This pin can be used for general-purpose input or output, or for output of serial transmit  
data (TxD0). When used for TxD0 output, this pin is unaffected by the values in P5DDR and  
P5DR.  
Pin P51: This pin can be used for general-purpose input or output, or for input of serial receive  
data (RxD0). When used for RxD0 input, this pin is unaffected by P5DDR and P5DR.  
Pin P52: This pin can be used for general-purpose input or output, or for serial clock input or  
output (SCK0). When used for SCK0 input or output, this pin is unaffected by P5DDR and P5DR.  
Reset and Hardware Standby Mode: A reset or entry to the hardware standby mode makes all  
pins of port 5 into input port pins.  
Software Standby Mode: In the software standby mode, the serial control register is initialized  
but P5DDR and P5DR remain in their previous states. All pins become input or output port pins  
depending on the setting of P5DDR. Output pins output the values in P5DR.  
Rev. 3.0, 09/98, page 101 of 361  
Figures 6.5 (a) to 6.5 (c) show schematic diagrams of port 5.  
Reset  
R
D
Q
P50DDR  
C
WP5D  
Reset  
R
D
Q
P50  
P50DR  
C
SCI module  
WP5  
Transmit enable  
Transmit data  
RP5  
WP5D: Write Port 5 DDR  
WP5:  
RP5:  
Write Port 5  
Read Port 5  
Figure 6.5 (a) Port 5 Schematic Diagram (Pin P50)  
Rev. 3.0, 09/98, page 102 of 361  
Reset  
R
D
Q
P51DDR  
C
SCI module  
WP5D  
Receive enable  
Reset  
R
D
P51  
Q
P51DR  
C
WP5  
RP5  
Receive data  
WP5D: Write Port 5 DDR  
WP5:  
RP5:  
Write Port 5  
Read Port 5  
Figure 6.5 (b) Port 5 Schematic Diagram (Pin P51)  
Rev. 3.0, 09/98, page 103 of 361  
Reset  
R
D
Q
P52DDR  
C
SCI module  
WP5D  
Clock input enable  
Reset  
R
D
Q
P52  
P52DR  
C
WP5  
Clock output enable  
Clock output  
RP5  
Clock input  
WP5D: Write Port 5 DDR  
WP5:  
RP5:  
Write Port 5  
Read Port 5  
Figure 6.5 (c) Port 5 Schematic Diagram (Pin P52)  
Rev. 3.0, 09/98, page 104 of 361  
6.7  
Port 6  
Port 6 is an 8-bit input/output port that also provides the input and output pins for the free-running  
timer and the IRQ6 and IRQ7 input/output pins. The pin functions depend on control bits in the  
free-running timer control registers, and on bit 6 or 7 of the interrupt enable register. Pins not  
used for timer or interrupt functions are available for general-purpose input/output. Table 6.15  
lists the pin functions, which are the same in both the expanded and single-chip modes.  
Table 6.15 Port 6 Pin Functions  
Usage  
Pin Functions (Modes 1 to 3)  
I/O port  
P60  
P61  
P62  
P63  
P64  
P65  
P66  
P67  
Timer/interrupt FTCI  
FTOA  
FTIA  
FTIB  
FTIC  
FTID  
FTOB/IRQ6  
IRQ7  
See section 4 “Exception Handling” and section 6, “16-Bit Free-Running Timer” for details of the  
free-running timer and interrupts.  
Pins of port 6 can drive a single TTL load and a 90pF capacitive load when they are used as output  
pins. They can also drive a Darlington pair.  
Table 6.16 details the port 6 registers.  
Table 6.16 Port 6 Registers  
Name  
Abbreviation  
P6DDR  
Read/Write Initial Value Address  
Port 6 data direction register  
Port 6 data register  
W
H’00  
H’00  
H’FFB9  
H’FFBB  
P6DR  
R/W  
Port 6 Data Direction Register (P6DDR) H’FFB9  
Bit:  
7
6
5
4
3
2
1
0
P67DDR P66DDR P65DDR P64DDR P63DDR P62DDR P61DDR P60DDR  
Initial value:  
Read/Write:  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
P6DDR is an 8-bit register that selects the direction of each pin in port 6. A pin functions as an  
output pin if the corresponding bit in P6DDR is set to “1,” and as an input pin if the bit is cleared  
to “0.”  
Rev. 3.0, 09/98, page 105 of 361  
Port 6 Data Register (P6DR) H’FFBB  
Bit:  
7
P67  
0
6
P66  
0
5
P65  
0
4
P64  
0
3
P63  
0
2
P62  
0
1
P61  
0
0
P60  
0
Initial value:  
Read/Write:  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P6DR is an 8-bit register containing the data for pins P67 to P60. When the CPU reads P6DR, for  
output pins (P6DDR = “1”) it reads the value in the P6DR latch, but for input pins (P6DDR =  
“0”), it obtains the logic level directly from the pin, bypassing the P6DR latch. This also applies  
to pins used for input and output of timer and interrupt signals.  
Pins P60, P62, P63, P64 and P65: As indicated in table 6.15, these pins can be used for general-  
purpose input or output, or for input of free-running timer clock and input capture signals. When a  
pin is used for free-running timer input, its P6DDR bit should be cleared to “0;” otherwise the  
free-running timer will receive the value in P6DR.  
Pin P61: This pin can be used for general-purpose input or output, or for the output compare A  
signal (FTOA) of the free-running timer. When used for FTOA output, this pin is unaffected by  
the values in P6DDR and P6DR.  
Pin P66: This pin can be used for general-purpose input or output, for the output compare B  
signal (FTOB) of the free-running timer, or for IRQ6 input. When used for FTOB output, this pin  
is unaffected by the values in P6DDR and P6DR. When this pin is used for IRQ6 input, P66DDR  
should normally be cleared to “0,” so that the value in P6DR will not generate interrupts.  
Pin P67: This pin can be used for general-purpose input or output, or IRQ7 input. When it is used  
for IRQ7 input, P67DDR should normally be cleared to “0,” so that the value in P6DR will not  
generate interrupts.  
Reset and Hardware Standby Mode: A reset or entry to the hardware standby mode clears  
P6DDR and P6DR to all “0” and makes all pins into input port pins.  
Software Standby Mode: In the software standby mode, the free-running timer control registers  
are initialized but P6DDR and P6DR remain in their previous states. All pins become input or  
output port pins depending on the setting of P6DDR. Output pins output the values in P6DR.  
Rev. 3.0, 09/98, page 106 of 361  
Figures 6.6 (a) to 6.6 (d) shows schematic diagrams of port 6.  
Reset  
R
D
Q
P6nDDR  
C
WP6D  
Reset  
R
D
P6n  
Q
P6nDR  
C
WP6  
RP6  
Free-running  
timer module  
Input capture  
input, counter  
clock input  
WP6D: Write Port 6 DDR  
WP6:  
RP6:  
Write Port 6  
Read Port 6  
n = 0, 2 - 5  
Figure 6.6 (a) Port 6 Schematic Diagram (Pins P60, P62, P63, P64, and P65)  
Rev. 3.0, 09/98, page 107 of 361  
Reset  
R
D
Q
P61DDR  
C
WP6D  
Reset  
R
D
Q
P61  
P61DR  
C
Free-running  
timer module  
WP6  
Output enable  
Output-compare  
output  
RP6  
WP6D: Write Port 6 DDR  
WP6:  
RP6:  
Write Port 6  
Read Port 6  
Figure 6.6 (b) Port 6 Schematic Diagram (Pin P61)  
Rev. 3.0, 09/98, page 108 of 361  
Reset  
R
D
Q
P66DDR  
C
WP6D  
Reset  
R
D
Q
P66  
P66DR  
C
Free-running  
timer module  
WP6  
Output enable  
Output-compare  
output  
RP6  
IRQ6 input  
IRQ6 enable register  
IRQ6 enable  
WP6D: Write Port 6 DDR  
WP6:  
RP6:  
Write Port 6  
Read Port 6  
Figure 6.6 (c) Port 6 Schematic Diagram (Pin P66)  
Rev. 3.0, 09/98, page 109 of 361  
Reset  
R
D
Q
P67DDR  
C
WP6D  
Reset  
R
D
P6  
7
Q
P67DR  
C
WP6  
RP6  
IRQ7 input  
WP6D: Write Port 6 DDR  
WP6: Write Port 6  
IRQ enable register  
IRQ7 enable  
RP6:  
Read Port 6  
Figure 6.6 (d) Port 6 Schematic Diagram (Pin P67)  
Rev. 3.0, 09/98, page 110 of 361  
6.8  
Port 7  
Port 7 is an 8-bit input port that also provides the analog input pins for the A/D converter module,  
and analog output pins for the D/A converter module. The pin functions are the same in both the  
expanded and single-chip modes.  
Table 6.17 lists the pin functions. Table 6.18 describes the port 7 data register, which simply  
consists of connections of the port 7 pins to the internal data bus. Figure 6.7 (a) and 6.7 (b) show  
schematic diagrams of port 7.  
Table 6.17 Port 7 Pin Functions (Modes 1 to 3)  
Usage  
Pin Functions  
I/O port  
P70  
P71  
P72  
P73  
P74  
P75  
P76  
AN6  
DA0  
P77  
AN7  
DA1  
Analog input  
Analog output  
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
Table 6.18 Port 7 Register  
Name  
Abbreviation  
Read/Write Initial Value  
Undetermined  
Address  
Port 7 data register  
P7DR  
R
H’FFBE  
Port 7 Data Register (P7DR) H’FFBE  
Bit:  
7
P77  
*
6
P76  
*
5
P75  
*
4
P74  
*
3
P73  
*
2
P72  
*
1
P71  
*
0
P70  
*
Initial value:  
Read/Write:  
R
R
R
R
R
R
R
R
Note: Depends on the levels of pins P77 to P70.  
Rev. 3.0, 09/98, page 111 of 361  
RP7  
A/D converter module  
P7n  
Analog input  
RP7: Read port 7  
n = 0 to 5  
Figure 6.7 (a) Port 7 Schematic Diagram (Pins P70 to P75)  
RP7  
P7n  
A/D converter module  
Analog input  
D/A converter module  
Output enable  
RP7: Read port 7  
n = 6 or 7  
Analog output  
Figure 6.7 (b) Port 7 Schematic Diagram (Pins P76 and P77)  
Rev. 3.0, 09/98, page 112 of 361  
6.9  
Port 8  
Port 8 is a 7-bit input/output port that also provides pins for interrupt input and serial  
communication. Table 6.19 lists the pin functions.  
Table 6.19 Port 8 Pin Functions  
Pin  
P80  
P81  
P82  
P83  
P84  
P85  
P86  
I/O Port  
Serial Communication  
Interrupt Input  
Input/output  
Input/output  
Input/output  
Input/output  
Input/output  
Input/output  
Input/output  
TxD1 output  
IRQ3 input  
IRQ4 input  
IRQ5 input  
RxD1 input  
SCK1 input/output  
Pins of port 8 can drive a single TTL load and a 30pF capacitive load when they are used as output  
pins. They can also drive a Darlington pair.  
Table 6.20 details the port 8 registers.  
Table 6.20 Port 8 Registers  
Name  
Abbreviation  
P8DDR  
Read/Write Initial Value Address  
Port 8 data direction register  
Port 8 data register  
W
H’80  
H’80  
H’FFBD  
H’FFBF  
P8DR  
R/W  
Port 8 Data Direction Register (P8DDR) H’FFBD  
Bit:  
7
1
6
5
4
3
2
1
0
P86DDR P85DDR P84DDR P83DDR P82DDR P81DDR P80DDR  
Initial value:  
Read/Write:  
0
0
0
0
0
0
0
W
W
W
W
W
W
W
P8DDR is an 8-bit register that selects the direction of each pin in port 8. A pin functions as an  
output pin if the corresponding bit in P8DDR is set to “1,” and as in input pin if the bit is cleared  
to “0.”  
Bit 7 is reserved. It cannot be modified, and is always read as “1.”  
Rev. 3.0, 09/98, page 113 of 361  
Port 8 Data Register (P8DR) H’FFBF  
Bit:  
7
1
6
P86  
0
5
P85  
0
4
P84  
0
3
P83  
0
2
P82  
0
1
P81  
0
0
P80  
0
Initial value:  
Read/Write:  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P8DR is an 8-bit register containing the data for pins P86 to P80. When the CPU reads P8DR, for  
output pins (P8DDR = “1”) it reads the value in the P8DR latch, but for input pins (P8DDR =  
“0”), it obtains the logic level directly from the pin, bypassing the P8DR latch. This also applies  
to pins used for interrupt input and serial communication.  
Bit 7 is reserved. It cannot be modified, and is always read as “1.”  
Pins 80 to P83: These pins are available for general-purpose input or output.  
Pin P84: This pin has the same functions in all modes. It can be used for general-purpose input or  
output, for output of serial transmit data (TxD1), or for IRQ3 input. When used for TxD1 output,  
this pin is unaffected by the values in P8DDR and P8DR. When this pin is used for IRQ3 input,  
P84DDR should normally be cleared to “0,” so that the value in P8DR will not generate interrupts.  
Pin P85: This pin has the same functions in all modes. It can be used for general-purpose input or  
output, for input of serial receive data (RxD1), or for IRQ4 input. When used for RxD1 input, this  
pin is unaffected by the values in P8DDR and P8DR. When this pin is used for IRQ4 input,  
P85DDR should normally be cleared to “0,” so that the value in P8DR will not generate interrupts.  
Pin P86: This pin has the same functions in all modes. It can be used for general-purpose input or  
output, for serial clock input or output (SCK1), or for IRQ5 input. When this pin is used for IRQ5  
input, P86DDR should normally be cleared to “0,” so that the value in P8DR will not generate  
interrupts.  
When used for SCK1 input or output, this pin is unaffected by the values in P8DDR and P8DR.  
Reset: A reset clears bits P86DDR to P80DDR to “0” and clears the serial control bits and  
interrupt enable bits to “0,” making P86 to P80 into input port pins.  
Hardware Standby Mode: All pins are placed in the high-impedance state.  
Software Standby Mode: In the software standby mode, the serial control register is initialized,  
but the interrupt enable register, P8DDR, and P8DR remain in their previous states. Pins that were  
being used for serial communication revert to general-purpose input or output, depending on the  
value in P8DDR. Other pins remain in their previous state. Output pins output the values in  
P8DR.  
Rev. 3.0, 09/98, page 114 of 361  
Figures 6.8 (a) to 6.8 (d) show schematic diagrams of port 8.  
Reset  
R
D
Q
P8nDDR  
C
WP8D  
Reset  
R
D
P8n  
Q
P8nDR  
C
WP8  
RP8  
WP8D: Write Port 8 DDR  
WP8:  
Write Port 8  
Read Port 8  
RP8:  
n = 0 to 3  
Figure 6.8 (a) Port 8 Schematic Diagram (Pins P80 to P83)  
Rev. 3.0, 09/98, page 115 of 361  
Reset  
R
D
Q
P84DDR  
C
WP8D  
Reset  
R
D
Q
P84  
P84DR  
C
SCI module  
WP8  
Transmit enable  
Transmit data  
RP8  
IRQ3 input  
IRQ enable register  
WP8D: Write Port 8 DDR  
WP8:  
RP8:  
Write Port 8  
Read Port 8  
IRQ3 enable  
Figure 6.8 (b) Port 8 Schematic Diagram (Pin P84)  
Rev. 3.0, 09/98, page 116 of 361  
Reset  
R
D
Q
P85DDR  
C
SCI module  
WP8D  
Receive enable  
Reset  
R
D
P85  
Q
P85DR  
C
WP8  
RP8  
Receive data  
IRQ4 input  
IRQ enable register  
WP8D: Write Port 8 DDR  
WP8:  
RP8:  
Write Port 8  
Read Port 8  
IRQ4 enable  
Figure 6.8 (c) Port 8 Schematic Diagram (Pin P85)  
Rev. 3.0, 09/98, page 117 of 361  
Reset  
R
D
Q
P86DDR  
C
SCI module  
WP8D  
Clock input enable  
Reset  
R
D
Q
P86  
P86DR  
C
WP8  
Clock output enable  
Clock output  
RP8  
Clock input  
IRQ5 input  
IRQ enable register  
IRQ5 enable  
WP8D: Write Port 8 DDR  
WP8:  
RP8:  
Write Port 8  
Read Port 8  
Figure 6.8 (d) Port 8 Schematic Diagram (Pin P86)  
Rev. 3.0, 09/98, page 118 of 361  
6.10  
Port 9  
Port 9 is an 8-bit input/output port that also provides pins for interrupt input (IRQ0 to IRQ2), A/D  
trigger input, system clock (φ) output, and bus control signals (in the expanded modes).  
Pins P97 to P93 have different functions in different modes. Pins P92 to P90 have the same  
functions in all modes. Table 6.21 lists the pin functions.  
Table 6.21 Port 9 Pin Functions  
Pin  
P90  
P91  
P92  
P93  
P94  
P95  
P96  
P97  
Expanded Modes  
Single-Chip Mode  
P90 input/output , IRQ2 input, and ADTRG input (simultaneously)  
P91 input/output and IRQ1 input (simultaneously)  
P92 input/output and IRQ0 input (simultaneously)  
RD output  
WR output  
AS output  
φ output  
P93 input/output  
P94 input/output  
P95 input/output  
P96 input or φ output  
P97 input/output  
WAIT input  
Pins of port 9 can drive a single TTL load and a 90pF capacitive load when they are used as output  
pins.  
Table 6.22 details the port 9 registers.  
Table 6.22 Port 9 Registers  
Name  
Abbreviation Read/Write Initial Value  
Address  
Port 9 data direction register  
P9DDR  
W
H’40 (modes 1 and 2) H’FFC0  
H’00 (mode 3)  
Port 9 data register  
P9DR  
R/W*1  
Undetermined*2  
H’FFC1  
Notes: 1. Bit 6 is read-only.  
2. Bit 6 is undetermined. Other bits are initially “0.”  
Rev. 3.0, 09/98, page 119 of 361  
Port 9 Data Direction Register (P9DDR) H’FFC0  
Bit  
7
6
5
4
3
2
1
0
P97DDR P96DDR P95DDR P94DDR P93DDR P92DDR P91DDR P90DDR  
Modes 1 and 2  
Initial value  
Read/Write  
Mode 3  
0
1
0
0
0
0
0
0
W
W
W
W
W
W
W
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
P9DDR is an 8-bit register that selects the direction of each pin in port 9. A pin functions as an  
output pin if the corresponding bit in P9DDR is set to “1,” and as in input pin if the bit is cleared  
to “0.”  
Port 9 Data Register (P9DR) H’FFC1  
Bit:  
7
P97  
0
6
P96  
*
5
P95  
0
4
P94  
0
3
P93  
0
2
P92  
0
1
P91  
0
0
P90  
0
Initial value:  
Read/Write:  
R/W  
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Note: Determined by the level at pin P96.  
P9DR is an 8-bit register containing the data for pins P97 to P90. When the CPU reads P9DR, for  
output pins (P9DDR = “1”) it reads the value in the P9DR latch, but for input pins (P9DDR =  
“0”), it obtains the logic level directly from the pin, bypassing the P9DR latch. This also applies  
to pins used for interrupt input, A/D trigger input, clock output, and control signal input or output.  
Pins P90, P91, and P92: Can be used for general-purpose input or output, interrupt request input,  
or A/D trigger input. See table 6.21. If a pin is used for interrupt or A/D trigger input, its data  
direction bit should be cleared to “0,” so that the output from P9DR will not generate an interrupt  
request or A/D trigger signal.  
Pins P93, P94, and P95: In modes 1 and 2 (the expanded modes), these pins are used for output of  
the RD, WR, and AS bus control signals. They are unaffected by the values in P9DDR and  
P9DR.  
In mode 3 (single-chip mode), these pins can be used for general-purpose input or output.  
Pin P96: In modes 1 and 2, this pin is used for system clock (φ) output.  
Rev. 3.0, 09/98, page 120 of 361  
In mode 3, this pin is used for general-purpose input if P96DDR is cleared to “0,” or system clock  
output if P96DDR is set to “1.”  
Pin P97: In modes 1 and 2, this pin is used for input of the WAIT bus control signal. It is  
unaffected by the values in P9DDR and P9DR.  
In mode 3 (single-chip mode), this pin can be used for general-purpose input or output.  
Reset: In the single-chip mode (mode 3), a reset initializes all pins of port 9 to the general-  
purpose input function. In the expanded modes (modes 1 and 2), P90 to P92 are initialized as input  
port pins, and P93 to P97 are initialized to their bus control and system clock output functions.  
Hardware Standby Mode: All pins are placed in the high-impedance state.  
Software Standby Mode: All pins remain in their previous state. For RD, WR, AS, and φ this  
means the High output state.  
Rev. 3.0, 09/98, page 121 of 361  
Figures 6.9 (a) to 6.9 (e) show schematic diagrams of port 9.  
Reset  
R
D
Q
P90DDR  
C
WP9D  
Reset  
R
D
P90  
Q
P90 DR  
C
WP9  
RP9  
A/D converter  
module  
ADTRG  
IRQ2 input  
WP9D: Write Port 9 DDR  
WP9:  
RP9:  
Write Port 9  
Read Port 9  
IRQ enable register  
IRQ2 enable  
Figure 6.9 (a) Port 9 Schematic Diagram (Pin P90)  
Rev. 3.0, 09/98, page 122 of 361  
Reset  
R
D
Q
P9nDDR  
C
WP9D  
Reset  
R
D
P9n  
Q
P9nDR  
C
WP9  
RP9  
IRQ0 input  
IRQ1 input  
IRQ enable register  
WP9D: Write Port 9 DDR  
WP9:  
RP9:  
Write Port 9  
Read Port 9  
n = 1, 2  
IRQ0 enable  
IRQ1 enable  
Figure 6.9 (b) Port 9 Schematic Diagram (Pins P91 and P92)  
Rev. 3.0, 09/98, page 123 of 361  
Hardware standby  
Mode 1 or 2  
Reset  
R
D
Q
P9nDDR  
C
WP9D  
Mode 3  
Reset  
R
D
Q
P9 n  
P9nDR  
C
Mode 1 or 2  
WP9  
RD output  
WR output  
AS ouput  
RP9  
WP9D: Write Port 9 DDR  
WP9:  
Write Port 9  
Read Port 9  
RP9:  
n = 3, 4, 5  
Figure 6.9 (c) Port 9 Schematic Diagram (Pins P93, P94, and P95)  
Rev. 3.0, 09/98, page 124 of 361  
Mode 1, 2  
Reset  
Hardware standby  
S
Q
R
D
P96DDR  
*
C
WP9D  
Ø
P96  
RP9  
WP9D: Write Port 9 DDR  
WP9:  
RP9:  
Write Port 9  
Read Port 9  
Note: * Set-priority  
Figure 6.9 (d) Port 9 Schematic Diagram (Pin P96)  
Rev. 3.0, 09/98, page 125 of 361  
Reset  
Mode 1 or 2  
R
D
Q
P97DDR  
C
WP9D  
Reset  
R
D
P97  
Q
P97DR  
C
WP9  
RP9  
WAIT input  
WP9D: Write Port 9 DDR  
WP9:  
RP9:  
Write Port 9  
Read Port 9  
Figure 6.9 (e) Port 9 Schematic Diagram (Pin P97)  
Rev. 3.0, 09/98, page 126 of 361  
Section 7 16-Bit Free-Running Timer  
7.1  
Overview  
The H8/338 Series has an on-chip 16-bit free-running timer (FRT) module that uses a 16-bit free-  
running counter as a time base. Applications of the FRT module include rectangular-wave output  
(up to two independent waveforms), input pulse width measurement, and measurement of external  
clock periods.  
7.1.1  
Features  
The features of the free-running timer module are listed below.  
Selection of four clock sources  
The free-running counter can be driven by an internal clock source (φ/2, φ/8, or φ/32), or an  
external clock input (enabling use as an external event counter).  
Two independent comparators  
Each comparator can generate an independent waveform.  
Four input capture channels  
The current count can be captured on the rising or falling edge (selectable) of an input signal.  
The four input capture registers can be used separately, or in a buffer mode.  
Counter can be cleared under program control  
The free-running counters can be cleared on compare-match A.  
Seven independent interrupts  
Compare-match A and B, input capture A to D, and overflow interrupts are requested  
independently.  
7.1.2  
Block Diagram  
Figure 7.1 shows a block diagram of the free-running timer.  
Rev. 3.0, 09/98, page 127 of 361  
External  
clock source  
Internal  
clock sources  
Ø/2  
Ø/8  
FTCI  
Ø/32  
Clock  
Clock select  
CORA (H/L)  
Comparator A  
FRC (H/L)  
Compare-match A  
FTOA  
FTOB  
Internal  
data bus  
Overflow  
Clear  
Comparator B  
OCRB (H/L)  
FTIA  
FTIB  
FTIC  
FTID  
Compare-  
match B  
Control  
logic  
Capture  
ICRA (H/L)  
ICRB (H/L)  
ICRC (H/L)  
ICRD (H/L)  
TCSR  
TIER  
TCR  
TOCR  
ICIA  
ICIB  
ICIC  
Interrupt signals  
ICID  
OCIA  
OCIB  
FOVI  
Legend:  
OCRA, B  
FRC  
Free-Running Counter (16 bits)  
Output Compare Register A, B (16 bits)  
ICRA to D Input Capture Register A, B, C, D (16 bits)  
TCSR  
TIER  
TCR  
Timer Control/Status Register (8 bits)  
Timer Interrupt Enable Register (8 bits)  
Timer Control Register (8 bits)  
TOCR  
Timer Output Compare Control  
Figure 7.1 Block Diagram of 16-Bit Free-Running Timer  
Rev. 3.0, 09/98, page 128 of 361  
7.1.3  
Input and Output Pins  
Table 7.1 lists the input and output pins of the free-running timer module.  
Table 7.1 Input and Output Pins of Free-Running Timer Module  
Name  
Abbreviation I/O  
Function  
Counter clock input FTCI  
Output compare A FTOA  
Output compare B FTOB  
Input  
Input of external free-running counter clock signal  
Output Output controlled by comparator A  
Output Output controlled by comparator B  
Input capture A  
Input capture B  
Input capture C  
Input capture D  
FTIA  
FTIB  
FTIC  
FTID  
Input  
Input  
Input  
Input  
Trigger for capturing current count into input capture  
register A  
Trigger for capturing current count into input capture  
register B  
Trigger for capturing current count into input capture  
register C  
Trigger for capturing current count into input capture  
register D  
7.1.4  
Register Configuration  
Table 7.2 lists the registers of the free-running timer module.  
Table 7.2 Register Configuration  
Name  
Abbreviation  
TIER  
R/W  
Initial Value  
Address  
H’FF90  
H’FF91  
H’FF92  
H’FF93  
H’FF94*2  
H’FF95*2  
H’FF96  
H’FF97  
H’FF98  
H’FF99  
Timer interrupt enable register  
Timer control/status register  
Free-running counter (High)  
Free-running counter (Low)  
Output compare register A/B (High)*2  
Output compare register A/B (Low)*2  
Timer control register  
R/W  
R/(W)*1 H’00  
H’01  
TCSR  
FRC (H)  
FRC (L)  
OCRA/B (H)  
OCRA/B (L)  
TCR  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
H’00  
H’00  
H’FF  
H’FF  
H’00  
H’E0  
H’00  
H’00  
Timer output compare control register  
Input capture register A (High)  
Input capture register A (Low)  
TOCR  
ICRA (H)  
ICRA (L)  
R
Notes: 1. Software can write a “0” to clear bits 7 to 1, but cannot write a “1” in these bits.  
2. OCRA and OCRB share the same addresses. Access is controlled by the OCRS bit in  
TOCR.  
Rev. 3.0, 09/98, page 129 of 361  
Table 7.2 Register Configuration (cont)  
Name  
Abbreviation  
R/W  
R
Initial Value  
H’00  
Address  
H’FF9A  
H’FF9B  
H’FF9C  
H’FF9D  
H’FF9E  
H’FF9F  
Input capture register B (High)  
Input capture register B (Low)  
Input capture register C (High)  
Input capture register C (Low)  
Input capture register D (High)  
Input capture register D (Low)  
ICRB (H)  
ICRB (L)  
ICRC (H)  
ICRC (L)  
ICRD (H)  
ICRD (L)  
R
H’00  
R
H’00  
R
H’00  
R
H’00  
R
H’00  
7.2  
Register Descriptions  
7.2.1  
Free-Running Counter (FRC) H’FF92  
Bit: 15 14 13 12 11 10  
9
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Initial value:  
0
0
0
0
0
0
0
Read/Write: R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
The FRC is a 16-bit readable/writable up-counter that increments on an internal pulse generated  
from a clock source. The clock source is selected by the clock select 1 and 0 bits (CKS1 and  
CKS0) of the timer control register (TCR).  
When the FRC overflows from HFFFF to H0000, the overflow flag (OVF) in the timer  
control/status register (TCSR) is set to “1.”  
Because the FRC is a 16-bit register, a temporary register (TEMP) is used when the FRC is  
written or read. See section 7.3, “CPU Interface,” for details.  
The FRC is initialized to H'0000 at a reset and in the standby modes. It can also be cleared by  
compare-match A.  
Rev. 3.0, 09/98, page 130 of 361  
7.2.2  
Output Compare Registers A and B (OCRA and OCRB) H’FF94  
Bit: 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
1
1
0
1
Initial value:  
1
1
1
1
1
1
1
1
1
1
1
1
1
Read/Write: R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
OCRA and OCRB are 16-bit readable/writable registers, the contents of which are continually  
compared with the value in the FRC. When a match is detected, the corresponding output  
compare flag (OCFA or OCFB) is set in the timer control/status register (TCSR).  
In addition, if the output enable bit (OEA or OEB) in the timer output compare control register  
(TOCR) is set to “1,” when the output compare register and FRC values match, the logic level  
selected by the output level bit (OLVLA or OLVLB) in the TOCR is output at the output compare  
pin (FTOA or FTOB).  
OCRA and OCRB share the same address. They are differentiated by the OCRS bit in the TOCR.  
A temporary register (TEMP) is used for write access, as explained in section 7.3, “CPU  
Interface.”  
OCRA and OCRB are initialized to H'FFFF at a reset and in the standby modes.  
7.2.3  
Input Capture Registers A to D (ICRA to ICRD) H’FF98, H’FF9A, H’FF9C,  
H’FF9E  
Bit: 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Initial value:  
Read/Write:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
Each input capture register is a 16-bit read-only register.  
When the rising or falling edge of the signal at an input capture pin (FTIA to FTID) is detected,  
the current value of the FRC is copied to the corresponding input capture register (ICRA to  
ICRD).* At the same time, the corresponding input capture flag (ICFA to ICFD) in the timer  
control/status register (TCSR) is set to “1.” The input capture edge is selected by the input edge  
select bits (IEDGA to IEDGD) in the timer control register (TCR).  
Note: The FRC contents are transferred to the input capture register regardless of the value of  
the input capture flag (ICFA/B/C/D).  
Rev. 3.0, 09/98, page 131 of 361  
Input capture can be buffered by using the input capture registers in pairs. When the BUFEA bit  
in the timer control register (TCR) is set to “1,” ICRC is used as a buffer register for ICRA as  
shown in figure 7.2. When an FTIA input is received, the old ICRA contents are moved into  
ICRC, and the new FRC count is copied into ICRA.  
BUFEA  
IEDGA IEDGC  
Edge detect and  
capture signal  
FTIA  
generating circuit  
ICRC  
ICRA  
FRC  
BUFEA : Buffer Enable A  
IEDGA : Edge Select A  
IEDGC : Input Edge Select C  
ICRC : Input Capture Register C  
ICRA : Input Capture Register A  
FRC  
: Free-Running Counter  
Figure 7.2 Input Capture Buffering  
Similarly, when the BUFEB bit in TIER is set to “1,” ICRD is used as a buffer register for ICRB.  
When input capture is buffered, if the two input edge bits are set to different values (IEDGA ≠  
IEDGC or IEDGB IEDGD), then input capture is triggered on both the rising and falling edges  
of the FTIA or FTIB input signal. If the two input edge bits are set to the same value (IEDGA =  
IEDGC or IEDGB = IEDGD), then input capture is triggered on only one edge.  
Rev. 3.0, 09/98, page 132 of 361  
Table 7.3 Buffered Input Capture Edge Selection (Example)  
IEDGA  
IEDGC  
Input Capture Edge  
0
0
1
1
0
1
0
1
Captured on falling edge of input capture A (FTIA)  
(Initial value)  
Captured on both rising and falling edges of input capture A (FTIA)  
Captured on rising edge of input capture A (FTIA)  
Because the input capture registers are 16-bit registers, a temporary register (TEMP) is used when  
they are read. See section 7.3, “CPU Interface,” for details.  
To ensure input capture, the width of the input capture pulse (FTIA, FTIB, FTIC, FTID) should be  
at least 1.5 system clock periods (1.5 φ). When triggering is enabled on both edges, the input  
capture pulse width should be at least 2.5 system clock periods.  
The input capture registers are initialized to H'0000 at a reset and in the standby modes.  
Note: When input capture is detected, the FRC value is transferred to the input capture register  
even if the input capture flag is already set.  
Rev. 3.0, 09/98, page 133 of 361  
7.2.4  
Timer Interrupt Enable Register (TIER)-H’FF90  
Bit:  
7
ICIAE  
0
6
ICIBE  
0
5
ICICE  
0
4
ICIDE  
0
3
OCIAE  
0
2
OCIBE  
0
1
OVIE  
0
0
1
Initial value:  
Read/Write:  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The TIER is an 8-bit readable/writable register that enables and disables interrupts.  
The TIER is initialized to H01 (all interrupts disabled) at a reset and in the standby modes.  
Bit 7 Input Capture Interrupt A Enable (ICIAE): This bit selects whether to request input  
capture interrupt A (ICIA) when input capture flag A (ICFA) in the timer status/control register  
(TCSR) is set to “1.”  
Bit 7  
ICIAE  
Description  
0
1
Input capture interrupt request A (ICIA) is disabled.  
Input capture interrupt request A (ICIA) is enabled.  
(Initial value)  
Bit 6 Input Capture Interrupt B Enable (ICIBE): This bit selects whether to request input  
capture interrupt B (ICIB) when input capture flag B (ICFB) in the timer status/control register  
(TCSR) is set to “1.”  
Bit 6  
ICIBE  
Description  
0
1
Input capture interrupt request B (ICIB) is disabled.  
Input capture interrupt request B (ICIB) is enabled.  
(Initial value)  
Bit 5 Input Capture Interrupt C Enable (ICICE): This bit selects whether to request input  
capture interrupt C (ICIC) when input capture flag C (ICFC) in the timer status/control register  
(TCSR) is set to “1.”  
Bit 5  
ICICE  
Description  
0
1
Input capture interrupt request C (ICIC) is disabled.  
Input capture interrupt request C (ICIC) is enabled.  
(Initial value)  
Rev. 3.0, 09/98, page 134 of 361  
Bit 4 Input Capture Interrupt D Enable (ICIDE): This bit selects whether to request input  
capture interrupt D (ICID) when input capture flag D (ICFD) in the timer status/control register  
(TCSR) is set to “1.”  
Bit 4  
ICIDE  
Description  
0
1
Input capture interrupt request D (ICID) is disabled.  
Input capture interrupt request D (ICID) is enabled.  
(Initial value)  
Bit 3 Output Compare Interrupt A Enable (OCIAE): This bit selects whether to request  
output compare interrupt A (OCIA) when output compare flag A (OCFA) in the timer  
status/control register (TCSR) is set to “1.”  
Bit 3  
OCIAE  
Description  
0
1
Output compare interrupt request A (OCIA) is disabled.  
Output compare interrupt request A (OCIA) is enabled.  
(Initial value)  
Bit 2 Output Compare Interrupt B Enable (OCIBE): This bit selects whether to request  
output compare interrupt B (OCIB) when output compare flag B (OCFB) in the timer  
status/control register (TCSR) is set to “1.”  
Bit 2  
OCIBE  
Description  
0
1
Output compare interrupt request B (OCIB) is disabled.  
Output compare interrupt request B (OCIB) is enabled.  
(Initial value)  
Bit 1 Timer overflow Interrupt Enable (OVIE): This bit selects whether to request a free-  
running timer overflow interrupt (FOVI) when the timer overflow flag (OVF) in the timer  
status/control register (TCSR) is set to “1.”  
Bit 1  
OVIE  
Description  
0
1
Timer overflow interrupt request (FOVI) is disabled.  
Timer overflow interrupt request (FOVI) is enabled.  
(Initial value)  
Bit 0 Reserved: This bit cannot be modified and is always read as “1.”  
Rev. 3.0, 09/98, page 135 of 361  
7.2.5  
Timer Control/Status Register (TCSR) H’FF91  
Bit:  
7
ICFA  
0
6
ICFB  
0
5
ICFC  
0
4
ICFD  
0
3
2
1
OVF  
0
0
CCLRA  
0
OCFA  
0
OCFB  
0
Initial value:  
Read/Write: R/(W)*  
R/(W)*  
R/(W)*  
R/(W)*  
R/(W)*  
R/(W)*  
R/(W)*  
R/W  
The TCSR is an 8-bit readable and partially writable* register that contains the seven interrupt  
flags and specifies whether to clear the counter on compare-match A (when the FRC and OCRA  
values match).  
Note: Software can write a “0” in bits 7 to 1 to clear the flags, but cannot write a “1” in these  
bits.  
The TCSR is initialized to H'00 at a reset and in the standby modes.  
Bit 7 Input Capture Flag A (ICFA): This status bit is set to “1” to flag an input capture A  
event. If BUFEA = “0,” ICFA indicates that the FRC value has been copied to ICRA. If BUFEA  
= “1,” ICFA indicates that the old ICRA value has been moved into ICRC and the new FRC value  
has been copied to ICRA.  
ICFA must be cleared by software. It is set by hardware, however, and cannot be set by software.  
Bit 7  
ICFA  
Description  
0
To clear ICFA, the CPU must read ICFA after it has been set to “1,”  
then write a “0” in this bit.  
(Initial value)  
1
This bit is set to 1 when an FTIA input signal causes the FRC value  
to be copied to ICRA.  
Rev. 3.0, 09/98, page 136 of 361  
Bit 6 Input Capture Flag B (ICFB): This status bit is set to “1” to flag an input capture B  
event. If BUFEB = “0,” ICFB indicates that the FRC value has been copied to ICRB. If BUFEB  
= “1,” ICFB indicates that the old ICRB value has been moved into ICRD and the new FRC value  
has been copied to ICRB.  
ICFB must be cleared by software. It is set by hardware, however, and cannot be set by software.  
Bit 6  
ICFB  
Description  
0
To clear ICFB, the CPU must read ICFB after it has been set to “1,”  
then write a “0” in this bit.  
(Initial value)  
1
This bit is set to 1 when an FTIB input signal causes the FRC value  
to be copied to ICRB.  
Bit 5 Input Capture Flag C (ICFC): This status bit is set to “1” to flag input of a rising or  
falling edge of FTIC as selected by the IEDGC bit. When BUFEA = “0,” this indicates capture of  
the FRC count in ICRC. When BUFEA = “1,” however, the FRC count is not captured, so ICFC  
becomes simply an external interrupt flag. In other words, the buffer mode frees FTIC for use as a  
general-purpose interrupt signal (which can be enabled or disabled by the ICICE bit).  
ICFC must be cleared by software. It is set by hardware, however, and cannot be set by software.  
Bit 5  
ICFC  
Description  
0
To clear ICFC, the CPU must read ICFC after it has been set to “1,”  
then write a “0” in this bit.  
(Initial value)  
1
This bit is set to 1 when an FTIC input signal is received.  
Bit 4 Input Capture Flag D (ICFD): This status bit is set to “1” to flag input of a rising or  
falling edge of FTID as selected by the IEDGD bit. When BUFEB = “0,” this indicates capture of  
the FRC count in ICRD. When BUFEB = “1,” however, the FRC count is not captured, so ICFD  
becomes simply an external interrupt flag. In other words, the buffer mode frees FTID for use as a  
general-purpose interrupt signal (which can be enabled or disabled by the ICIDE bit).  
ICFD must be cleared by software. It is set by hardware, however, and cannot be set by software.  
Bit 4  
ICFD  
Description  
0
To clear ICFD, the CPU must read ICFD after it has been set to “1,”  
then write a “0” in this bit.  
(Initial value)  
1
This bit is set to 1 when an FTID input signal is received.  
Rev. 3.0, 09/98, page 137 of 361  
Bit 3 Output Compare Flag A (OCFA): This status flag is set to “1” when the FRC value  
matches the OCRA value. This flag must be cleared by software. It is set by hardware, however,  
and cannot be set by software.  
Bit 3  
OCFA  
Description  
0
To clear OCFA, the CPU must read OCFA after it has been set to “1,” (Initial value)  
then write a “0” in this bit.  
1
This bit is set to 1 when FRC = OCRA.  
Bit 2 Output Compare Flag B (OCFB): This status flag is set to “1” when the FRC value  
matches the OCRB value. This flag must be cleared by software. It is set by hardware, however,  
and cannot be set by software.  
Bit 2  
OCFB  
Description  
0
To clear OCFB, the CPU must read OCFB after it has been set to “1,” (Initial value)  
then write a “0” in this bit.  
1
This bit is set to 1 when FRC = OCRB.  
Bit 1 Timer Overflow Flag (OVF): This status flag is set to “1” when the FRC overflows  
(changes from H'FFFF to H'0000). This flag must be cleared by software. It is set by hardware,  
however, and cannot be set by software.  
Bit 1  
OVF  
Description  
0
To clear OVF, the CPU must read OVF after it has been set to “1,”  
then write a “0” in this bit.  
(Initial value)  
1
This bit is set to 1 when FRC changes from H'FFFF to H'0000.  
Bit 0 Counter Clear A (CCLRA): This bit selects whether to clear the FRC at compare-match  
A (when the FRC and OCRA values match).  
Bit 0  
CCLRA  
Description  
0
1
The FRC is not cleared.  
The FRC is cleared at compare-match A.  
(Initial value)  
Rev. 3.0, 09/98, page 138 of 361  
7.2.6  
Timer Control Register (TCR)-H’FF96  
Bit:  
7
IEDGA  
0
6
IEDGB  
0
5
IEDGC  
0
4
IEDGD  
0
3
2
1
CKS1  
0
0
CKS0  
0
BUFEA BUFEB  
Initial value:  
Read/Write:  
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The TCR is an 8-bit readable/writable register that selects the rising or falling edge of the input  
capture signals, enables the input capture buffer mode, and selects the FRC clock source.  
The TCR is initialized to H00 at a reset and in the standby modes.  
Bit 7 Input Edge Select A (IEDGA): This bit causes input capture A events to be recognized  
on the selected edge of the input capture A signal (FTIA).  
Bit 7  
IEDGA  
Description  
0
1
Input capture A events are recognized on the falling edge of FTIA.  
Input capture A events are recognized on the rising edge of FTIA.  
(Initial value)  
Bit 6 Input Edge Select B (IEDGB): This bit causes input capture B events to be recognized  
on the selected edge of the input capture B signal (FTIB).  
Bit 6  
IEDGB  
Description  
0
1
Input capture B events are recognized on the falling edge of FTIB.  
Input capture B events are recognized on the rising edge of FTIB.  
(Initial value)  
Bit 5 Input Edge Select C (IEDGC): This bit causes input capture C events to be recognized  
on the selected edge of the input capture C signal (FTIC).  
Bit 5  
IEDGC  
Description  
0
1
Input capture C events are recognized on the falling edge of FTIC.  
Input capture C events are recognized on the rising edge of FTIC.  
(Initial value)  
Rev. 3.0, 09/98, page 139 of 361  
Bit 4 Input Edge Select D (IEDGD): This bit causes input capture D events to be recognized  
on the selected edge of the input capture D signal (FTID).  
Bit 4  
IEDGD  
Description  
0
1
Input capture D events are recognized on the falling edge of FTID.  
Input capture D events are recognized on the rising edge of FTID.  
(Initial value)  
Bit 3 Buffer Enable A (BUFEA): This bit selects whether to use ICRC as a buffer register for  
ICRA.  
Bit 3  
BUFEA  
Description  
0
1
ICRC is used for input capture C.  
(Initial value)  
ICRC is used as a buffer register for input capture A. Input C is not captured.  
Bit 2 Buffer Enable B (BUFEB): This bit selects whether to use ICRD as a buffer register for  
ICRB.  
Bit 2  
BUFEB  
Description  
0
1
ICRD is used for input capture D.  
(Initial value)  
ICRD is used as a buffer register for input capture B. Input D is not captured.  
Bits 1 and 0 Clock Select (CKS1 and CKS0): These bits select external clock input or one of  
three internal clock sources for the FRC. External clock pulses are counted on the rising edge.  
Bit 1  
Bit 0  
CKS1  
CKS0  
Description  
0
0
1
1
0
1
0
1
φ/2 Internal clock source  
φ/8 Internal clock source  
φ/32 Internal clock source  
External clock source (rising edge)  
(Initial value)  
Rev. 3.0, 09/98, page 140 of 361  
7.2.7  
Timer Output Compare Control Register (TOCR) H’FF97  
Bit:  
7
1
6
1
5
1
4
OCRS  
0
3
2
1
OLVLA  
0
0
OLVLB  
0
OEA  
0
OEB  
0
Initial value:  
Read/Write:  
R/W  
R/W  
R/W  
R/W  
R/W  
The TOCR is an 8-bit readable/writable register that controls the output compare function.  
The TOCR is initialized to HE0 at a reset and in the standby modes.  
Bits 7 to 5 Reserved: These bits cannot be modified and are always read as “1.”  
Bit 4 Output Compare Register Select (OCRS): When the CPU accesses addresses H'FF94  
and H'FF95, this bit directs the access to either OCRA or OCRB. These two registers share the  
same addresses as follows:  
Upper byte of OCRA and upper byte of OCRB: H'FF94  
Lower byte of OCRA and lower byte of OCRB: H'FF95  
Bit 4  
OCRS  
Description  
0
1
The CPU can access OCRA.  
The CPU can access OCRB.  
(Initial value)  
Bit 3 Output Enable A (OEA): This bit enables or disables output of the output compare A  
signal (FTOA).  
Bit 3  
OEA  
Description  
0
1
Output compare A output is disabled.  
Output compare A output is enabled.  
(Initial value)  
Bit 2 Output Enable B (OEB): This bit enables or disables output of the output compare B  
signal (FTOB).  
Bit 2  
OEB  
Description  
0
1
Output compare B output is disabled.  
Output compare B output is enabled.  
(Initial value)  
Rev. 3.0, 09/98, page 141 of 361  
Bit 1 Output Level A (OLVLA): This bit selects the logic level to be output at the FTOA pin  
when the FRC and OCRA values match.  
Bit 1  
OLVLA  
Description  
0
A “0” logic level (Low) is output for compare-match A.  
A “1” logic level (High) is output for compare-match A.  
(Initial value)  
1
Bit 0 Output Level B (OLVLB): This bit selects the logic level to be output at the FTOB pin  
when the FRC and OCRB values match.  
Bit 0  
OLVLB  
Description  
0
1
A “0” logic level (Low) is output for compare-match B.  
A “1” logic level (High) is output for compare-match B.  
(Initial value)  
Rev. 3.0, 09/98, page 142 of 361  
7.3  
CPU Interface  
The free-running counter (FRC), output compare registers (OCRA and OCRB), and input capture  
registers (ICRA to ICRD) are 16-bit registers, but they are connected to an 8-bit data bus. When  
the CPU accesses these registers, to ensure that both bytes are written or read simultaneously, the  
access is performed using an 8-bit temporary register (TEMP).  
These registers are written and read as follows:  
Register Write  
When the CPU writes to the upper byte, the byte of write data is placed in TEMP. Next, when  
the CPU writes to the lower byte, this byte of data is combined with the byte in TEMP and all  
16 bits are written in the register simultaneously.  
Register Read  
When the CPU reads the upper byte, the upper byte of data is sent to the CPU and the lower  
byte is placed in TEMP. When the CPU reads the lower byte, it receives the value in TEMP.  
(As an exception, when the CPU reads OCRA or OCRB, it reads both the upper and lower  
bytes directly, without using TEMP.)  
Programs that access these registers should normally use word access. Equivalently, they may  
access first the upper byte, then the lower byte by two consecutive byte accesses. Data will not be  
transferred correctly if the bytes are accessed in reverse order, or if only one byte is accessed.  
Coding Examples  
To write the contents of general register R0 to OCRA:  
To transfer the contents of ICRA to general register R0:  
MOV.W R0, @OCRA  
MOV.W @ICRA, R0  
Figure 7.3 shows the data flow when the FRC is accessed. The other registers are accessed in the  
same way.  
Rev. 3.0, 09/98, page 143 of 361  
(1) Upper byte write  
Module data bus  
CPU writes  
data H'AA  
Bus interface  
TEMP  
[H'AA]  
FRC H  
FRC L  
[
]
[
]
(2) Lower byte write  
Module data bus  
CPU writes  
data H'55  
Bus interface  
TEMP  
[H'AA]  
FRC H  
[H'AA]  
FRC L  
[H'55]  
Figure 7.3 (a) Write Access to FRC (when CPU writes H’AA55)  
Rev. 3.0, 09/98, page 144 of 361  
(1) Upper byte read  
Module data bus  
CPU reads  
data H'AA  
Bus interface  
TEMP  
[H'55]  
FRC H  
[H'AA]  
FRC L  
[H'55]  
(2) Lower byte read  
Module data bus  
CPU reads  
data H'55  
Bus interface  
TEMP  
[H'55]  
FRC H  
FRC L  
[
]
[
]
Figure 7.3 (b) Read Access to FRC (when FRC contains H’AA55)  
Rev. 3.0, 09/98, page 145 of 361  
7.4  
Operation  
7.4.1  
FRC Incrementation Timing  
The FRC increments on a pulse generated once for each period of the selected (internal or  
external) clock source. The clock source is selected by bits CKS0 and CKS1 in the TCR.  
Internal Clock: The internal clock sources (φ/2, φ/8, φ/32) are created from the system clock (φ)  
by a prescaler. The FRC increments on a pulse generated from the falling edge of the prescaler  
output. See figure 7.4.  
Ø
Internal  
clock  
FRC clock  
pulse  
N
N + 1  
N - 1  
FRC  
Figure 7.4 Increment Timing for Internal Clock Source  
External Clock: If external clock input is selected, the FRC increments on the rising edge of the  
FTCI clock signal. Figure 7.5 shows the increment timing.  
The pulse width of the external clock signal must be at least 1.5 system clock (φ) periods. The  
counter will not increment correctly if the pulse width is shorter than 1.5 system clock periods.  
Rev. 3.0, 09/98, page 146 of 361  
Ø
FTCI  
FRC clock pulse  
N
N + 1  
FRC  
Figure 7.5 Increment Timing for External Clock Source  
Ø
N + 1  
N
N + 1  
FRC  
OCRA  
N
N
N
Internal compare-  
match A signal  
Clear*  
OLVLA  
FTOA  
Note: * Cleared by software  
Figure 7.6 Minimum External Clock Pulse Width  
Rev. 3.0, 09/98, page 147 of 361  
7.4.2  
Output Compare Timing  
(1) Setting of Output Compare Flags A and B (OCFA and OCFB): The output compare flags  
are set to “1” by an internal compare-match signal generated when the FRC value matches the  
OCRA or OCRB value. This compare-match signal is generated at the last state in which the two  
values match, just before the FRC increments to a new value.  
Accordingly, when the FRC and OCR values match, the compare-match signal is not generated  
until the next period of the clock source. Figure 7.7 shows the timing of the setting of the output  
compare flags.  
Ø
Internal compare-  
match A signal  
H' 0000  
N
FRC  
Figure 7.7 Setting of Output Compare Flags  
(2) Output Timing: When a compare-match occurs, the logic level selected by the output level  
bit (OLVLA or OLVLB) in TOCR is output at the output compare pin (FTOA or FTOB).  
Figure 7.8 shows the timing of this operation for compare-match A.  
Ø
Input at FTI pin  
Internal input  
capture signal  
Figure 7.8 Timing of Output Compare A  
Rev. 3.0, 09/98, page 148 of 361  
(3) FRC Clear Timing: If the CCLRA bit in the TCSR is set to “1,” the FRC is cleared when  
compare-match A occurs. Figure 7.9 shows the timing of this operation.  
Read cycle: CPU reads upper byte of ICR  
T
1
T
2
T3  
Ø
Input at FTI pin  
Internal input  
capture signal  
Figure 7.9 Clearing of FRC by Compare-Match A  
Input Capture Timing  
7.4.3  
(1) Input Capture Timing: An internal input capture signal is generated from the rising or  
falling edge of the signal at the input capture pin FTIx (x = A, B, C, D), as selected by the  
corresponding IEDGx bit in TCR. Figure 7.10 shows the usual input capture timing when the  
rising edge is selected (IEDGx = “1”).  
Ø
FTIA  
Internal input  
capture signal  
n + 1  
N
N + 1  
n
FRC  
n
N
n
M
m
n
ICRA  
ICRC  
M
M
Figure 7.10 Input Capture Timing (Usual case)  
Rev. 3.0, 09/98, page 149 of 361  
If the upper byte of ICRA/B/C/D is being read when the corresponding input capture signal  
arrives, the internal input capture signal is delayed by one state. Figure 7.11 shows the timing for  
this case.  
Read cycle: CPU reads upper byte of ICRA or ICRC  
T
1
T
2
T3  
Ø
Input at  
FTIA pin  
Internal input  
capture signal  
Figure 7.11 Input Capture Timing (1-State delay)  
In buffer mode, this delay occurs if the CPU is reading either of the two registers concerned.  
When ICRA and ICRC are used in buffer mode, for example, if the upper byte of either ICRA or  
ICRC is being read when the FTIA input arrives, the internal input capture signal is delayed by  
one state. Figure 7.12 shows the timing for this case. The case of ICRB and ICRD is similar.  
Ø
Internal input  
capture signal  
ICFA to D  
FRC  
N
ICRA to D  
N
Figure 7.12 Input Capture Timing (1-State delay, buffer mode)  
Rev. 3.0, 09/98, page 150 of 361  
Figure 7.13 shows how input capture operates when ICRA and ICRC are used in buffer mode and  
IEDGA and IEDGC are set to different values (IEDGA = 0 and IEDGC = 1, or IEDGA = 1 and  
IEDGC = 0), so that input capture is performed on both the rising and falling edges of FTIA.  
Ø
N
N
N + 1  
FRC  
OCRA or B  
Internal compare-  
match signal  
OCFA or B  
Figure 7.13 Buffered Input Capture with Both Edges Selected  
In this mode, input capture does not cause the FRC contents to be copied to ICRC. However,  
input capture flag C still sets on the input capture edge selected by IEDGC, and if the interrupt  
enable bit (ICICE) is set, a CPU interrupt is requested.  
The situation when ICRB and ICRD are used in buffer mode is similar.  
(2) Timing of Input Capture Flag (ICF) Setting: The input capture flag ICFx (x = A, B, C, D)  
is set to “1” by the internal input capture signal. Figure 7.14 shows the timing of this operation.  
Ø
Internal compare-  
match A signal  
H' 0000  
N
FRC  
Figure 7.14 Setting of Input Capture Flag  
Rev. 3.0, 09/98, page 151 of 361  
7.4.4  
Setting of FRC Overflow Flag (OVF)  
The FRC overflow flag (OVF) is set to “1” when the FRC overflows (changes from H'FFFF to  
H'0000). Figure 7.15 shows the timing of this operation.  
FRC  
Clear counter  
H'FFFF  
6
OCRA  
OCRB  
H'0000  
FTOA  
FTOB  
Figure 7.15 Setting of Overflow Flag (OVF)  
7.5  
Interrupts  
The free-running timer can request seven types of interrupts: input capture A to D (ICIA, ICIB,  
ICIC, ICID), output compare A and B (OCIA and OCIB), and overflow (FOVI). Each interrupt is  
requested when the corresponding enable and flag bits are set. Independent signals are sent to the  
interrupt controller for each type of interrupt. Table 7.4 lists information about these interrupts.  
Table 7.4 Free-Running Timer Interrupts  
Interrupt Description  
Priority  
ICIA  
Requested when ICFA and ICIAE are set  
High  
ICIB  
Requested when ICFB and ICIBE are set  
Requested when ICFC and ICICE are set  
Requested when ICFD and ICIDE are set  
Requested when OCFA and OCIAE are set  
Requested when OCFB and OCIBE are set  
Requested when OVF and OVIE are set  
ICIC  
ICID  
OCIA  
OCIB  
FOVI  
Low  
Rev. 3.0, 09/98, page 152 of 361  
7.6  
Sample Application  
In the example below, the free-running timer is used to generate two square-wave outputs with a  
50% duty cycle and arbitrary phase relationship. The programming is as follows:  
(1) The CCLRA bit in the TCSR is set to “1.”  
(2) Each time a compare-match interrupt occurs, software inverts the corresponding output level  
bit in TOCR (OLVLA or OLVLB).  
Write cycle: CPU write to lower byte of FRC  
T
1
T
2
T3  
Ø
FRC address  
Internal address bus  
Internal write signal  
FRC clear signal  
FRC  
H' 0000  
N
Figure 7.16 Square-Wave Output (Example)  
Rev. 3.0, 09/98, page 153 of 361  
7.7  
Application Notes  
Application programmers should note that the following types of contention can occur in the free-  
running timers.  
(1) Contention between FRC Write and Clear: If an internal counter clear signal is generated  
during the T3 state of a write cycle to the lower byte of the free-running counter, the clear signal  
takes priority and the write is not performed.  
Figure 7.17 shows this type of contention.  
Write cycle: CPU write to lower byte of FRC  
T1  
T
2
T3  
Ø
FRC address  
Internal address bus  
Internal write signal  
FRC clock pulse  
FRC  
N
M
Write data  
Figure 7.17 FRC Write-Clear Contention  
(2) Contention between FRC Write and Increment: If an FRC increment pulse is generated  
during the T3 state of a write cycle to the lower byte of the free-running counter, the write takes  
priority and the FRC is not incremented.  
Rev. 3.0, 09/98, page 154 of 361  
Figure 7.18 shows this type of contention.  
Write cycle: CPU write to lower byte of OCRA or OCRB  
T1  
T2  
T3  
Ø
OCR address  
Internal address bus  
Internal write signal  
FRC  
N + 1  
N
OCRA or OCRB  
M
N
Write data  
Compare-match  
A or B signal  
Inhibited  
Figure 7.18 FRC Write-Increment Contention  
(3) Contention between OCR Write and Compare-Match: If a compare-match occurs during  
the T3 state of a write cycle to the lower byte of OCRA or OCRB, the write takes priority and the  
compare-match signal is inhibited.  
Rev. 3.0, 09/98, page 155 of 361  
(4) Incrementation Caused by Changing of Internal Clock Source: When an internal clock  
source is changed, the changeover may cause the FRC to increment. This depends on the time at  
which the clock select bits (CKS1 and CKS0) are rewritten, as shown in table 7.5.  
The pulse that increments the FRC is generated at the falling edge of the internal clock source. If  
clock sources are changed when the old source is High and the new source is Low, as in case No.  
3 in table 7.5, the changeover generates a falling edge that triggers the FRC increment clock pulse.  
Switching between an internal and external clock source can also cause the FRC to increment.  
Table 7.5 Effect of Changing Internal Clock Sources  
No.  
Description  
Timing chart  
1
Low Low:  
CKS1 and CKS0 are  
rewritten while both  
clock sources are Low.  
Old clock  
source  
New clock  
source  
FRC clock  
pulse  
N
N + 1  
FRC  
CKS rewrite  
2
Low High:  
CKS1 and CKS0 are  
rewritten while old  
Old clock  
source  
clock source is Low and  
new clock source is High.  
New clock  
source  
FRC clock  
pulse  
N
N + 1  
N + 2  
FRC  
CKS rewrite  
Rev. 3.0, 09/98, page 156 of 361  
Table 7.5 Effect of Changing Internal Clock Sources (cont)  
No.  
Description  
Timing chart  
3
High Low:  
CKS1 and CKS0 are  
rewritten while old  
clock source is High and  
new clock source is Low.  
Old clock  
source  
New clock  
source  
*
FRC clock  
pulse  
FRC  
N
N + 1  
N + 2  
CKS rewrite  
4
High High:  
CKS1 and CKS0 are  
rewritten while both  
clock sources are High.  
Old clock  
source  
New clock  
source  
FRC clock  
pulse  
N
N + 1  
N + 2  
FRC  
CKS rewrite  
Note: The switching of clock sources is regarded as a falling edge that increments the FRC.  
Rev. 3.0, 09/98, page 157 of 361  
Rev. 3.0, 09/98, page 158 of 361  
Section 8 8-Bit Timers  
8.1  
Overview  
The H8/338 Series includes an 8-bit timer module with two channels (TMR0 and TMR1). Each  
channel has an 8-bit counter (TCNT) and two time constant registers (TCORA and TCORB) that  
are constantly compared with the TCNT value to detect compare-match events. One application  
of the 8-bit timer module is to generate a rectangular-wave output with an arbitrary duty cycle.  
8.1.1  
Features  
The features of the 8-bit timer module are listed below.  
Selection of seven clock sources  
The counters can be driven by one of six internal clock signals or an external clock input  
(enabling use as an external event counter).  
Selection of three ways to clear the counters  
The counters can be cleared on compare-match A or B, or by an external reset signal.  
Timer output controlled by two time constants  
The timer output signal in each channel is controlled by two independent time constants,  
enabling the timer to generate output waveforms with an arbitrary duty factor.  
Three independent interrupts  
Compare-match A and B and overflow interrupts can be requested independently.  
Rev. 3.0, 09/98, page 159 of 361  
8.1.2  
Block Diagram  
Figure 8.1 shows a block diagram of one channel in the 8-bit timer module. The other channel is  
identical.  
Internal  
clock sources  
External  
clock source  
Channel 0  
Channel 1  
Ø/2  
Ø/2  
Ø/8  
Ø/8  
TMCI  
Ø/32  
Ø/64  
Ø/256  
Ø/1024  
Ø/64  
Ø/128  
Ø/1024  
Ø/2048  
Clock  
Clock select  
TCORA  
Compare-match A  
Comparator A  
TCNT  
TMO  
TMRI  
Internal  
data bus  
Overflow  
Clear  
Comparator B  
TCORB  
Compare-match B  
Control  
logic  
TCSR  
TCR  
CMIA  
CMIB  
OVI  
Interrupt signals  
TCR  
: Timer Control Register (8 bits)  
TCSR  
: Timer Control Status Register (8 bits)  
TCORA : Time Constant Register A (8 bits)  
TCORB : Time Constant Register B (8 bits)  
TCNT  
: Timer Counter  
Figure 8.1 Block Diagram of 8-Bit Timer  
Rev. 3.0, 09/98, page 160 of 361  
8.1.3  
Input and Output Pins  
Table 8.1 lists the input and output pins of the 8-bit timer.  
Table 8.1 Input and Output Pins of 8-Bit Timer  
Abbreviation  
Name  
TMR0  
TMO0  
TMCI0  
TMRI0  
TMR1  
TMO1  
TMCI1  
TMRI1  
I/O  
Function  
Timer output  
Timer clock input  
Timer reset input  
Output Output controlled by compare-match  
Input  
Input  
External clock source for the counter  
External reset signal for the counter  
8.1.4  
Register Configuration  
Table 8.2 lists the registers of the 8-bit timer module. Each channel has an independent set of  
registers.  
Table 8.2 8-Bit Timer Registers  
Address  
Name  
Abbreviation  
TCR  
R/W  
Initial Value TMR0  
TMR1  
Timer control register  
Timer control/status register  
Timer constant register A  
Timer constant register B  
Timer counter  
R/W  
H’00  
H’FFC8  
H’FFC9  
H’FFD0  
H’FFD1  
TCSR  
R/(W)* H’10  
TCORA  
TCORB  
TCNT  
R/W  
R/W  
R/W  
R/W  
H’FF  
H’FF  
H’00  
H’F8  
H’FFCA H’FFD2  
H’FFCB H’FFD3  
H’FFCC H’FFD4  
Serial/timer control register  
STCR  
H’FFD0  
H’FFC3  
Note: Software can write a “0” to clear bits 7 to 5, but cannot write a “1” in these bits.  
Rev. 3.0, 09/98, page 161 of 361  
8.2  
Register Descriptions  
8.2.1  
Timer Counter (TCNT) H’FFCC (TMR0), H’FFD4 (TMR1)  
Bit:  
7
6
5
4
3
2
1
0
Initial value:  
Read/Write:  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Each timer counter (TCNT) is an 8-bit up-counter that increments on a pulse generated from an  
internal or external clock source selected by clock select bits 2 to 0 (CKS2 to CKS0) of the timer  
control register (TCR). The CPU can always read or write the timer counter.  
The timer counter can be cleared by an external reset input or by an internal compare-match signal  
generated at a compare-match event. Clock clear bits 1 and 0 (CCLR1 and CCLR0) of the timer  
control register select the method of clearing.  
When a timer counter overflows from HFF to H00, the overflow flag (OVF) in the timer  
control/status register (TCSR) is set to “1.”  
The timer counters are initialized to H'00 at a reset and in the standby modes.  
8.2.2  
Time Constant Registers A and B (TCORA and TCORB) H’FFCA and H’FFCB  
(TMR0), H’FFD2 and H’FFD3 (TMR1)  
Bit:  
7
6
5
4
3
2
1
0
Initial value:  
Read/Write:  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
TCORA and TCORB are 8-bit readable/writable registers. The timer count is continually  
compared with the constants written in these registers. When a match is detected, the  
corresponding compare-match flag (CMFA or CMFB) is set in the timer control/status register  
(TCSR).  
The timer output signal (TMO0 or TMO1) is controlled by these compare-match signals as  
specified by output select bits 3 to 0 (OS3 to OS0) in the timer control/status register (TCSR).  
TCORA and TCORB are initialized to H'FF at a reset and in the standby modes.  
Rev. 3.0, 09/98, page 162 of 361  
Compare-match is not detected during the T3 state of a write cycle to TCORA or TCORB. See  
item (3) in section 8.6, “Application Notes.”  
8.2.3  
Timer Control Register (TCR) H’FFC8 (TMR0), H’FFD0 (TMR1)  
Bit:  
7
CMIEB  
0
6
CMIEA  
0
5
OVIE  
0
4
CCLR1  
0
3
CCLR0  
0
2
CKS2  
0
1
CKS1  
0
0
CKS0  
0
Initial value:  
Read/Write:  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Each TCR is an 8-bit readable/writable register that selects the clock source and the time at which  
the timer counter is cleared, and enables interrupts.  
The TCRs are initialized to H'00 at a reset and in the standby modes.  
For timing diagrams, see section 8.3, “Operation.”  
Bit 7 Compare-match Interrupt Enable B (CMIEB): This bit selects whether to request  
compare-match interrupt B (CMIB) when compare-match flag B (CMFB) in the timer  
control/status register (TCSR) is set to “1.”  
Bit 7  
CMIEB  
Description  
0
1
Compare-match interrupt request B (CMIB) is disabled.  
Compare-match interrupt request B (CMIB) is enabled.  
(Initial value)  
Bit 6 Compare-match Interrupt Enable A (CMIEA): This bit selects whether to request  
compare-match interrupt A (CMIA) when compare-match flag A (CMFA) in the timer  
control/status register (TCSR) is set to “1.”  
Bit 6  
CMIEA  
Description  
0
1
Compare-match interrupt request A (CMIA) is disabled.  
Compare-match interrupt request A (CMIA) is enabled.  
(Initial value)  
Rev. 3.0, 09/98, page 163 of 361  
Bit 5 Timer Overflow Interrupt Enable (OVIE): This bit selects whether to request a timer  
overflow interrupt (OVI) when the overflow flag (OVF) in the timer control/status register  
(TCSR) is set to “1.”  
Bit 5  
OVIE  
Description  
0
1
The timer overflow interrupt request (OVI) is disabled.  
The timer overflow interrupt request (OVI) is enabled.  
(Initial value)  
Bits 4 and 3 Counter Clear 1 and 0 (CCLR1 and CCLR0): These bits select how the timer  
counter is cleared: by compare-match A or B or by an external reset input.  
Bit 4  
Bit 3  
CCLR1  
CCLR0  
Description  
0
0
1
1
0
1
0
1
Not cleared.  
(Initial value)  
Cleared on compare-match A.  
Cleared on compare-match B.  
Cleared on rising edge of external reset input signal.  
Rev. 3.0, 09/98, page 164 of 361  
Bits 2, 1, and 0 Clock Select (CKS2, CKS1, and CKS0): These bits and bits ICKS1 and  
ICKS0 in the serial/timer control register (STCR) select the internal or external clock source for  
the timer counter. Six internal clock sources, derived by prescaling the system clock, are available  
for each timer channel. For internal clock sources the counter is incremented on the falling edge  
of the internal clock. For an external clock source, these bits can select whether to increment the  
counter on the rising or falling edge of the clock input, or on both edges.  
TCR  
STCR  
Bit 2 Bit 1 Bit 0 Bit 1 Bit 0  
Channel CKS2 CKS1 CKS0 ICKS1 ICKS0 Description  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
1
1
0
0
1
1
0
1
1
0
0
1
1
0
1
0
1
No clock source (timer stopped)  
(Initial value)  
0
1
0
1
0
1
φ/8 internal clock, counted on falling edge  
φ/2 internal clock, counted on falling edge  
φ/64 internal clock, counted on falling edge  
φ/32 internal clock, counted on falling edge  
φ/1024 internal clock, counted on falling edge  
φ/256 internal clock, counted on falling edge  
No clock source (timer stopped)  
External clock source, counted on rising edge  
External clock source, counted on falling edge  
External clock source, counted on both rising and  
falling edges  
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
1
1
0
0
1
1
0
1
1
0
0
1
1
0
1
0
1
No clock source (timer stopped)  
(Initial value)  
0
1
0
1
0
1
φ/8 internal clock, counted on falling edge  
φ/2 internal clock, counted on falling edge  
φ/64 internal clock, counted on falling edge  
φ/128 internal clock, counted on falling edge  
φ/1024 internal clock, counted on falling edge  
φ/2048 internal clock, counted on falling edge  
No clock source (timer stopped)  
External clock source, counted on rising edge  
External clock source, counted on falling edge  
External clock source, counted on both rising and  
falling edges  
Rev. 3.0, 09/98, page 165 of 361  
8.2.4  
Timer Control/Status Register (TCSR) H’FFC9 (TMR0), H’FFD1 (TMR1)  
Bit:  
7
CMFB  
0
6
5
OVF  
0
4
1
3
2
1
0
CMFA  
0
OS3  
0
OS2  
0
OS1  
0
OS0  
0
Initial value:  
Read/Write: R/(W)*  
R/(W)*  
R/(W)*  
R/W  
R/W  
R/W  
R/W  
Note: Software can write a “0” in bits 7 to 5 to clear the flags, but cannot write a “1” in these bits.  
The TCSR is an 8-bit readable and partially writable register that indicates compare-match and  
overflow status and selects the effect of compare-match events on the timer output signal.  
The TCSR is initialized to H10 at a reset and in the standby modes.  
Bit 7 Compare-Match Flag B (CMFB): This status flag is set to “1” when the timer count  
matches the time constant set in TCORB. CMFB must be cleared by software. It is set by  
hardware, however, and cannot be set by software.  
Bit 7  
CMFB  
Description  
0
To clear CMFB, the CPU must read CMFB after it has been set to “1,” (Initial value)  
then write a “0” in this bit.  
1
This bit is set to 1 when TCNT = TCORB.  
Bit 6 Compare-Match Flag A (CMFA): This status flag is set to “1” when the timer count  
matches the time constant set in TCORA. CMFA must be cleared by software. It is set by  
hardware, however, and cannot be set by software.  
Bit 6  
CMFA  
Description  
0
To clear CMFA, the CPU must read CMFA after it has been set to “1,” (Initial value)  
then write a “0” in this bit.  
1
This bit is set to 1 when TCNT = TCORA.  
Rev. 3.0, 09/98, page 166 of 361  
Bit 5 Timer Overflow Flag (OVF): This status flag is set to “1” when the timer count  
overflows (changes from H'FF to H'00). OVF must be cleared by software. It is set by hardware,  
however, and cannot be set by software.  
Bit 5  
OVF  
Description  
0
To clear OVF, the CPU must read OVF after it has been set to “1,”  
then write a “0” in this bit.  
(Initial value)  
1
This bit is set to 1 when TCNT changes from H'FF to H'00.  
Bit 4 Reserved: This bit is always read as “1.” It cannot be written.  
Bits 3 to 0 Output Select 3 to 0 (OS3 to OS0): These bits specify the effect of compare-match  
events on the timer output signal (TCOR or TCNT). Bits OS3 and OS2 control the effect of  
compare-match B on the output level. Bits OS1 and OS0 control the effect of compare-match A  
on the output level.  
If compare-match A and B occur simultaneously, any conflict is resolved as explained in item (4)  
in section 8.6, “Application Notes.”  
After a reset, the timer output is “0” until the first compare-match event.  
When all four output select bits are cleared to “0” the timer output signal is disabled.  
Bit 3  
OS3  
Bit 2  
OS2  
Description  
0
0
1
1
0
1
0
1
No change when compare-match B occurs.  
Output changes to “0” when compare-match B occurs.  
Output changes to “1” when compare-match B occurs.  
Output inverts (toggles) when compare-match B occurs.  
(Initial value)  
Bit 1  
OS1  
Bit 0  
OS0  
Description  
0
0
1
1
0
1
0
1
No change when compare-match A occurs.  
Output changes to “0” when compare-match A occurs.  
Output changes to “1” when compare-match A occurs.  
Output inverts (toggles) when compare-match A occurs.  
(Initial value)  
Rev. 3.0, 09/98, page 167 of 361  
8.2.5  
Serial/Timer Control Register (STCR) H’FFC3  
Bit:  
7
1
6
1
5
1
4
1
3
1
2
1
ICKS1  
0
0
ICKS0  
0
MPE  
0
Initial value:  
Read/Write:  
R/W  
R/W  
R/W  
The STCR is an 8-bit readable/writable register that controls the serial communication interface  
and selects internal clock sources for the timer counters.  
The STCR is initialized to HF8 at a reset.  
Bits 7 to 3 Reserved: These bits cannot be modified and are always read as “1.”  
Bit 2 Multiprocessor Enable (MPE): Controls the operating mode of serial communication  
interfaces 0 and 1. For details, see section 9, “Serial Communication Interface.”  
Bits 1 and 0 Internal Clock Source Select 1 and 0 (ICKS1 and ICKS0): These bits and bits  
CKS2 to CKS0 in the TCR select clock sources for the timer counters. For details, see section  
8.2.3, “Timer Control Register.”  
Rev. 3.0, 09/98, page 168 of 361  
8.3  
Operation  
8.3.1  
TCNT Incrementation Timing  
The timer counter increments on a pulse generated once for each period of the selected (internal or  
external) clock source.  
Internal Clock: Internal clock sources are created from the system clock by a prescaler. The  
counter increments on an internal TCNT clock pulse generated from the falling edge of the  
prescaler output, as shown in figure 8.2. Bits CKS2 to CKS0 of the TCR and bits ICKS1 and  
ICKS0 of the STCR can select one of the six internal clocks.  
Ø
Internal clock  
TCNT clock pulse  
N
N + 1  
N - 1  
TCNT  
Figure 8.2 Count Timing for Internal Clock Input  
External Clock: If external clock input (TMCI) is selected, the timer counter can increment on  
the rising edge, the falling edge, or both edges of the external clock signal. Figure 8.3 shows  
incrementation on both edges of the external clock signal.  
The external clock pulse width must be at least 1.5 system clock periods for incrementation on a  
single edge, and at least 2.5 system clock periods for incrementation on both edges. See  
figure 8.4. The counter will not increment correctly if the pulse width is shorter than these values.  
Rev. 3.0, 09/98, page 169 of 361  
Ø
External clock  
source  
TCNT clock  
pulse  
N
N + 1  
N - 1  
TCNT  
Figure 8.3 Count Timing for External Clock Input  
Compare Match Timing  
8.3.2  
(1) Setting of Compare-Match Flags A and B (CMFA and CMFB): The compare-match flags  
are set to “1” by an internal compare-match signal generated when the timer count matches the  
time constant in TCNT or TCOR. The compare-match signal is generated at the last state in  
which the match is true, just before the timer counter increments to a new value.  
Accordingly, when the timer count matches one of the time constants, the compare-match signal is  
not generated until the next period of the clock source. Figure 8.4 shows the timing of the setting  
of the compare-match flags.  
Ø
N
N
N + 1  
TCNT  
TCOR  
Internal  
compare-match  
signal  
CMF  
Figure 8.4 Setting of Compare-Match Flags  
Rev. 3.0, 09/98, page 170 of 361  
(2) Output Timing: When a compare-match event occurs, the timer output (TMO0 or TMO1)  
changes as specified by the output select bits (OS3 to OS0) in the TCSR. Depending on these bits,  
the output can remain the same, change to “0,” change to “1,” or toggle.  
Figure 8.5 shows the timing when the output is set to toggle on compare-match A.  
Ø
Internal  
compare-match  
A signal  
Timer output  
(TMO)  
Figure 8.5 Timing of Timer Output  
(3) Timing of Compare-Match Clear: Depending on the CCLR1 and CCLR0 bits in the TCR,  
the timer counter can be cleared when compare-match A or B occurs. Figure 8.6 shows the timing  
of this operation.  
Ø
Internal  
compare-match  
signal  
N' 00  
TCNT  
N
Figure 8.6 Timing of Compare-Match Clear  
Rev. 3.0, 09/98, page 171 of 361  
8.3.3  
External Reset of TCNT  
When the CCLR1 and CCLR0 bits in the TCR are both set to “1,” the timer counter is cleared on  
the rising edge of an external reset input. Figure 8.7 shows the timing of this operation. The timer  
reset pulse width must be at least 1.5 system clock periods.  
Ø
External reset  
input (TMRI)  
Internal clear  
pulse  
N
N' 00  
N - 1  
TCNT  
Figure 8.7 Timing of External Reset  
Setting of TCSR Overflow Flag (OVF)  
8.3.4  
The overflow flag (OVF) is set to “1” when the timer count overflows (changes from H'FF to  
H'00). Figure 8.8 shows the timing of this operation.  
Ø
H' FF  
H' 00  
TCNT  
Internal overflow  
signal  
OVF  
Figure 8.8 Setting of Overflow Flag (OVF)  
Rev. 3.0, 09/98, page 172 of 361  
8.4  
Interrupts  
Each channel in the 8-bit timer can generate three types of interrupts: compare-match A and B  
(CMIA and CMIB), and overflow (OVI). Each interrupt is requested when the corresponding  
enable bits are set in the TCR and TCSR. Independent signals are sent to the interrupt controller  
for each interrupt. Table 8.3 lists information about these interrupts.  
Table 8.3 8-Bit Timer Interrupts  
Interrupt Description  
Priority  
CMIA  
CMIB  
OVI  
Requested when CMFA and CMIEA are set  
High  
Requested when CMFB and CMIEB are set  
Requested when OVF and OVIE are set  
Low  
8.5  
Sample Application  
In the example below, the 8-bit timer is used to generate a pulse output with a selected duty cycle.  
The control bits are set as follows:  
(1) In the TCR, CCLR1 is cleared to “0” and CCLR0 is set to “1” so that the timer counter is  
cleared when its value matches the constant in TCORA.  
(2) In the TCSR, bits OS3 to OS0 are set to “0110,” causing the output to change to “1” on  
compare-match A and to “0” on compare-match B.  
With these settings, the 8-bit timer provides output of pulses at a rate determined by TCORA with  
a pulse width determined by TCORB. No software intervention is required.  
TCNT  
Clear counter  
H'FF  
TCORA  
TCOTB  
H'00  
TMO pin  
Figure 8.9 Example of Pulse Output  
Rev. 3.0, 09/98, page 173 of 361  
8.6  
Application Notes  
Application programmers should note that the following types of contention can occur in the 8-bit  
timer.  
(1) Contention between TCNT Write and Clear: If an internal counter clear signal is  
generated during the T3 state of a write cycle to the timer counter, the clear signal takes priority  
and the write is not performed.  
Figure 8.10 shows this type of contention.  
Write cycle: CPU writes to TCNT  
T1  
T2  
T3  
Ø
Internal Address  
bus  
TCNT address  
Internal write  
signal  
Counter clear  
signal  
TCNT  
H' 00  
N
Figure 8.10 TCNT Write-Clear Contention  
Rev. 3.0, 09/98, page 174 of 361  
(2) Contention between TCNT Write and Increment: If a timer counter increment pulse is  
generated during the T3 state of a write cycle to the timer counter, the write takes priority and the  
timer counter is not incremented.  
Figure 8.11 shows this type of contention.  
Write cycle: CPU writes to TCNT  
T
1
T
2
T3  
Ø
Internal Address  
bus  
TCNT address  
Internal write  
signal  
TCNT clock pulse  
TCNT  
N
M
Write data  
Figure 8.11 TCNT Write-Increment Contention  
Rev. 3.0, 09/98, page 175 of 361  
(3) Contention between TCOR Write and Compare-Match: If a compare-match occurs  
during the T3 state of a write cycle to TCORA or TCORB, the write takes precedence and the  
compare-match signal is inhibited.  
Figure 8.12 shows this type of contention.  
Write cycle: CPU writes to TCORA or TCORB  
T1  
T2  
T3  
Ø
Internal address  
bus  
TCOR address  
Internal write  
signal  
TCNT  
N + 1  
N
TCORA or  
TCORB  
N
M
TCOR write data  
Compare-match  
A or B signal  
Inhibited  
Figure 8.12 Contention between TCOR Write and Compare-Match  
(4) Contention between Compare-Match A and Compare-Match B: If identical time  
constants are written in TCORA and TCORB, causing compare-match A and B to occur  
simultaneously, any conflict between the output selections for compare-match A and B is resolved  
by following the priority order in table 8.4.  
Table 8.4 Priority of Timer Output  
Output Selection  
Toggle  
Priority  
High  
“1” Output  
“0” Output  
No change  
Low  
Rev. 3.0, 09/98, page 176 of 361  
(5) Incrementation Caused by Changing of Internal Clock Source: When an internal clock  
source is changed, the changeover may cause the timer counter to increment. This depends on the  
time at which the clock select bits (CKS1, CKS0) are rewritten, as shown in table 8.5.  
The pulse that increments the timer counter is generated at the falling edge of the internal clock  
source signal. If clock sources are changed when the old source is High and the new source is  
Low, as in case No. 3 in table 8.5, the changeover generates a falling edge that triggers the TCNT  
clock pulse and increments the timer counter.  
Switching between an internal and external clock source can also cause the timer counter to  
increment.  
Table 8.5 Effect of Changing Internal Clock Sources  
No.  
Description  
Timing chart  
1
Low Low*1:  
Old clock  
source  
Clock select bits are  
rewritten while both  
clock sources are Low.  
New clock  
source  
TCNT clock  
pulse  
N
N + 1  
TCNT  
CKS rewrite  
2
Low High*2:  
Clock select bits are  
rewritten while old  
Old clock  
source  
clock source is Low and  
new clock source is High.  
New clock  
source  
TCNT clock  
pulse  
N
N + 1  
N + 2  
TCNT  
CKS rewrite  
Notes: 1. Including a transition from Low to the stopped state (CKS1 = 0, CKS0 = 0), or a  
transition from the stopped state to Low.  
2. Including a transition from the stopped state to High.  
Rev. 3.0, 09/98, page 177 of 361  
Table 8.5 Effect of Changing Internal Clock Sources (cont)  
No.  
Description  
Timing chart  
3
High Low*1:  
Clock select bits are  
rewritten while old  
clock source is High and  
new clock source is Low.  
Old clock  
source  
New clock  
source  
2
*
TCNT clock  
pulse  
TCNT  
N
N + 1  
N + 2  
CKS rewrite  
4
High High:  
Clock select bits are  
rewritten while both  
clock sources are High.  
Old clock  
source  
New clock  
source  
TCNT clock  
pulse  
N
N + 1  
N + 2  
TCNT  
CKS rewrite  
Notes: 1. Including a transition from High to the stopped state.  
2. The switching of clock sources is regarded as a falling edge that increments the TCNT.  
Rev. 3.0, 09/98, page 178 of 361  
Section 9 PWM Timers  
9.1  
Overview  
The H8/338 Series has an on-chip pulse-width modulation (PWM) timer module with two  
independent channels (PWM0 and PWM1). Both channels are functionally identical. Each PWM  
channel generates a rectangular output pulse with a duty cycle of 0 to 100%. The duty cycle is  
specified in an 8-bit duty register (DTR).  
9.1.1  
Features  
The PWM timer module has the following features:  
Selection of eight clock sources  
Duty cycles from 0 to 100% with 1/250 resolution  
Output with positive or negative logic and software enable/disable control  
Rev. 3.0, 09/98, page 179 of 361  
9.1.2  
Block Diagram  
Figure 9.1 shows a block diagram of one PWM timer channel.  
Compare-match  
Output  
control  
Pulse  
DTR  
Comparator  
TCNT  
Internal  
data bus  
TCR  
Internal clock sources  
Ø/2  
Ø/8  
Ø/32  
Clock  
select  
Clock  
Ø/128  
Ø/256  
Ø/1024  
Ø/2048  
Ø/4096  
Legend:  
DTR : Timer Control Register (8 bits)  
TCNT : Duty Register (8 bits)  
TCR : Times Counter (8 bits)  
Figure 9.1 Block Diagram of PWM Timer  
Rev. 3.0, 09/98, page 180 of 361  
9.1.3  
Input and Output Pins  
Table 9.1 lists the output pins of the PWM timer module. There are no input pins.  
Table 9.1 Output Pins of PWM Timer Module  
Name  
Abbreviation  
PW0  
I/O  
Function  
PWM0 output  
PWM1 output  
Output  
Output  
Pulse output from PWM timer channel 0.  
Pulse output from PWM timer channel 1.  
PW1  
9.1.4  
Register Configuration  
The PWM timer module has three registers for each channel as listed in table 9.2.  
Table 9.2 PWM Timer Registers  
Address  
Initial Value PWM0 PWM1  
Name  
Abbreviation  
TCR  
R/W  
R/W  
R/W  
R/W  
Timer control register  
Duty register  
Timer counter  
H’38  
H’FF  
H’00  
H’FFA0  
H’FFA1  
H’FFA2  
H’FFA4  
H’FFA5  
H’FFA6  
DTR  
TCNT  
9.2  
Register Descriptions  
9.2.1  
Timer Counter (TCNT) H’FFA2 (PWM0), H’FFA6 (PWM1)  
Bit:  
7
6
5
4
3
2
1
0
Initial value:  
Read/Write:  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The PWM timer counters (TCNT) are 8-bit up-counters. When the output enable bit (OE) in the  
timer control register (TCR) is set to “1,” the timer counter starts counting pulses of an internal  
clock source selected by clock select bits 2 to 0 (CKS2 to CKS0). After counting from H'00 to  
H'F9, the timer counter repeats from H'00.  
The PWM timer counters are initialized to H'00 at a reset and in the standby modes, and when the  
OE bit is cleared to “0.”  
Rev. 3.0, 09/98, page 181 of 361  
9.2.2  
Duty Register (DTR) H’FFA1 (PWM0), H’FFA5 (PWM1)  
Bit:  
7
6
5
4
3
2
1
0
Initial value:  
Read/Write:  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The duty registers (DTR) are 8-bit readable/writable registers that specify the duty cycle of the  
output pulse. Any duty cycle from 0 to 100% can be selected, with a resolution of 1/250. Writing  
0 (H00) in a DTR gives a 0% duty cycle; writing 125 (H7D) gives a 50% duty cycle; writing 250  
(HFA) gives a 100% duty cycle.  
The timer count is continually compared with the DTR contents. If the DTR value is not 0, when  
the count increments from H'00 to H'01 the PWM output signal is set to “1.” When the count  
increments past the DTR value, the PWM output returns to “0.” If the DTR value is 0 (0% duty),  
the PWM output remains constant at “0.”  
The DTRs are double-buffered. A new value written in a DTR while the timer counter is running  
does not become valid until after the count changes from H'F9 to H'00. When the timer counter is  
stopped (while the OE bit is “0”), new values become valid as soon as written. When a DTR is  
read, the value read is the currently valid value.  
The DTRs are initialized to H'FF at a reset and in the standby modes.  
9.2.3  
Timer Control Register (TCR) H’FFA0 (PWM0), H’FFA4 (PWM1)  
Bit:  
7
OE  
0
6
OS  
0
5
1
4
1
3
1
2
CKS2  
0
1
CKS1  
0
0
CKS0  
0
Initial value:  
Read/Write:  
R/W  
R/W  
R/W  
R/W  
R/W  
The TCRs are 8-bit readable/writable registers that select the clock source and control the PWM  
outputs.  
The TCRs are initialized to H'38 at a reset and in the standby modes.  
Rev. 3.0, 09/98, page 182 of 361  
Bit 7 Output Enable (OE): This bit enables the timer counter and the PWM output.  
Bit 7  
OE  
Description  
0
PWM output is disabled. TCNT is cleared to H’00 and stopped.  
PWM output is enabled. TCNT runs.  
(Initial value)  
1
Bit 6 Output Select (OS): This bit selects positive or negative logic for the PWM output.  
Bit 6  
OS  
Description  
0
Positive logic; positive-going PWM pulse, “1” = High  
Negative logic; negative-going PWM pulse, “1” = Low  
(Initial value)  
1
Bits 5 to 3 Reserved: These bits cannot be modified and are always read as “1.”  
Bits 2, 1, and 0 Clock Select (CKS2, CKS1, and CKS0): These bits select one of eight  
internal clock sources obtained by dividing the system clock (φ).  
Bit 2  
Bit 1  
Bit 0  
CKS2  
CKS1  
CKS0  
Description  
φ/2  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
(Initial value)  
φ/8  
φ/32  
φ/128  
φ/256  
φ/1024  
φ/2048  
φ/4096  
From the clock source frequency, the resolution, period, and frequency of the PWM output can be  
calculated as follows.  
Resolution = 1/clock source frequency  
PWM period = resolution × 250  
PWM frequency = 1/PWM period  
If the system clock frequency is 10MHz, then the resolution, period, and frequency of the PWM  
output for each clock source are given in table 9.3.  
Rev. 3.0, 09/98, page 183 of 361  
Table 9.3 PWM Timer Parameters for 10MHz System Clock  
Internal Clock Frequency  
Resolution  
200ns  
PWM Period  
50µs  
PWM Frequency  
20kHz  
φ/2  
φ/8  
800ns  
200µs  
5kHz  
φ/32  
3.2µs  
800µs  
1.25kHz  
312.5Hz  
156.3Hz  
39.1Hz  
φ/128  
φ/256  
φ/1024  
φ/2048  
φ/4096  
12.8µs  
3.2ms  
25.6µs  
6.4ms  
102.4µs  
204.8µs  
409.6µs  
25.6ms  
51.2ms  
102.4ms  
19.5Hz  
9.8Hz  
9.3  
Operation  
9.3.1  
Timer Incrementation  
The PWM clock source is created from the system clock (φ) by a prescaler. The timer counter  
increments on a TCNT clock pulse generated from the falling edge of the prescaler output as  
shown in figure 9.2.  
Ø
Prescaler  
output  
TCNT clock  
pulse  
N
N + 1  
N - 1  
TCNT  
Figure 9.2 TCNT Increment Timing  
Rev. 3.0, 09/98, page 184 of 361  
9.3.2  
PWM Operation  
Figure 9.3 is a timing chart of the PWM operation.  
Ø
TCNT  
clock pulses  
OE  
N – 1  
N + 1  
H' F9  
(a) H' 00  
(b) H' 01  
H' 02  
N
N
(d) H' 00  
H' 01  
TCNT  
DTR  
(C)  
(d) M  
H' FF  
N written in DTR  
(a)  
M written in DTR  
(b)  
(C)  
( OS = 0)  
PWM output  
( OS = 1)  
(e)  
PWM 1 cycle  
Note: * Used for port 4 input/output: state depends on values in data register and data direction register.  
Figure 9.3 PWM Timing  
(1) Positive Logic (OS = “0”)  
When (OE = “0”) (a) in Figure 9.3: The timer count is held at H00 and PWM output is  
inhibited. [Pin 46 (for PW0) or pin 47 (for PW1) is used for port 4 input/output, and its state  
depends on the corresponding port 4 data register and data direction register.] Any value (such as  
N in figure 9.3) written in the DTR becomes valid immediately.  
When (OE = “1”)  
i) The timer counter begins incrementing. The PWM output goes High when TCNT changes  
from H00 to H01, unless DTR = H00. [(b) in figure 9.3]  
ii) When the count passes the DTR value, the PWM output goes Low. [(c) in figure 9.3]  
Rev. 3.0, 09/98, page 185 of 361  
iii) If the DTR value is changed (by writing the data “M” in figure 9.3), the new value  
becomes valid after the timer count changes from H'F9 to H'00. [(d) in figure 9.3]  
(2) Negative Logic (OS = “1”) - (e) in Figure 9.3: The operation is the same except that High  
and Low are reversed in the PWM output. [(e) in figure 9.3]  
9.4  
Application Notes  
Some notes on the use of the PWM timer module are given below.  
(1) Any necessary changes to the clock select bits (CKS2 to CKS0) and output select bit (OS)  
should be made before the output enable bit (OE) is set to “1.”  
(2) If the DTR value is H'00, the duty cycle is 0% and PWM output remains constant at “0.”  
If the DTR value is H'FA to H'FF, the duty cycle is 100% and PWM output remains constant  
at “1.”  
(For positive logic, “0” is Low and “1” is High. For negative logic, “0” is High and “1” is  
Low.)  
Rev. 3.0, 09/98, page 186 of 361  
Section 10 Serial Communication Interface  
10.1  
Overview  
The H8/338 Series includes two serial communication interface channels (SCI0 and SCI1) for  
transferring serial data to and from other chips. Either synchronous or asynchronous  
communication can be selected.  
10.1.1  
Features  
The features of the on-chip serial communication interface are:  
Asynchronous mode  
The H8/338 Series can communicate with a UART (Universal Asynchronous  
Receiver/Transmitter), ACIA (Asynchronous Communication Interface Adapter), or other chip  
that employs standard asynchronous serial communication. It also has a multiprocessor  
communication function for communication with other processors. Twelve data formats are  
available.  
Data length: 7 or 8 bits  
Stop bit length: 1 or 2 bits  
Parity: Even, odd, or none  
Multiprocessor bit: “1” or “0”  
Error detection: Parity, overrun, and framing errors  
Break detection: When a framing error occurs, the break condition can be detected by  
reading the level of the RxD line directly.  
Synchronous mode  
The SCI can communicate with chips able to perform clocked synchronous data transfer.  
Data length: 8 bits  
Error detection: Overrun errors  
Full duplex communication  
The transmitting and receiving sections are independent, so each channel can transmit and  
receive simultaneously. Both the transmit and receive sections use double buffering, so  
continuous data transfer is possible in either direction.  
Built-in baud rate generator  
Any specified baud rate can be generated.  
Internal or external clock source  
The SCI can operate on an internal clock signal from the baud rate generator, or an external  
clock signal input at the SCK0 or SCK1 pin.  
Four interrupts  
Rev. 3.0, 09/98, page 187 of 361  
TDR-empty, TSR-empty, receive-end, and receive-error interrupts are requested  
independently.  
10.1.2  
Block Diagram  
Figure 10.1 shows a block diagram of one serial communication interface channel.  
Internal  
data bus  
Module data bus  
RDR  
RSR  
TDR  
TSR  
SSR  
SCR  
SMR  
BRR  
Ø
Internal  
clock  
Ø/4  
Ø/16  
Ø/64  
R
X
D
D
Communication  
control  
Baud rate  
generator  
T
X
Parity  
generate  
Clock  
Parity check  
External clock source  
SCK  
TEI  
TXI  
RXI  
ERI  
Interrupt signals  
Legend:  
RDR : Receive Shift Register (8 bits)  
RSR : Receive Data Register (8 bits)  
TDR : Transmit Shift Register (8 bits)  
TSR : Transmit Data Register (8 bits)  
SSR : Serial Mode Register (8 bits)  
SCR : Serial Control Register (8 bits)  
SMR : Serial Status Register (8 bits)  
BRR : Bit Rate Register (8 bits)  
Figure 10.1 Block Diagram of Serial Communication Interface  
Input and Output Pins  
10.1.3  
Table 10.1 lists the input and output pins used by the SCI module.  
Rev. 3.0, 09/98, page 188 of 361  
Table 10.1 SCI Input/Output Pins  
Channel Name  
Abbr.  
SCK0  
RxD0  
TxD0  
SCK1  
RxD1  
TxD1  
I/O  
Function  
0
Serial clock  
Input/output  
Input  
Serial clock input and output.  
Receive data input.  
Transmit data output.  
Serial clock input and output.  
Receive data input.  
Transmit data output.  
Receive data  
Transmit data  
Serial clock  
Output  
Input/output  
Input  
1
Receive data  
Transmit data  
Output  
10.1.4  
Register Configuration  
Table 10.2 lists the SCI registers. These registers specify the operating mode (synchronous or  
asynchronous), data format and bit rate, and control the transmit and receive sections.  
Table 10.2 SCI Registers  
Channel Name  
Abbr.  
RSR  
RDR  
TSR  
TDR  
SMR  
SCR  
SSR  
BRR  
RSR  
RDR  
TSR  
TDR  
SMR  
SCR  
SSR  
BRR  
STCR  
R/W  
Value  
Address  
0
Receive shift register  
Receive data register  
Transmit shift register  
Transmit data register  
Serial mode register  
Serial control register  
Serial status register  
Bit rate register  
R
H’00  
H’FFDD  
R/W  
H’FF  
H’00  
H’00  
H’84  
H’FF  
H’FFDB  
H’FFD8  
H’FFDA  
H’FFDC  
H’FFD9  
R/W  
R/W  
R/(W)*  
R/W  
1
Receive shift register  
Receive data register  
Transmit shift register  
Transmit data register  
Serial mode register  
Serial control register  
Serial status register  
Bit rate register  
R
H’00  
H’FF8D  
R/W  
R/W  
H’FF  
H’00  
H’00  
H’84  
H’FF  
H’F8  
H’FF8B  
H’FF88  
H’FF8A  
H’FF8C  
H’FF89  
H’FFC3  
R/W  
R/(W)*  
R/W  
0 and 1  
Serial/timer control register  
R/W  
Note: Software can write a “0” to clear the flags in bits 7 to 3, but cannot write “1” in these bits.  
Rev. 3.0, 09/98, page 189 of 361  
10.2  
Register Descriptions  
10.2.1  
Receive Shift Register (RSR)  
Bit:  
7
6
5
4
3
2
1
0
Read/Write:  
The RSR is a shift register that converts incoming serial data to parallel data. When one data  
character has been received, it is transferred to the receive data register (RDR).  
The CPU cannot read or write the RSR directly.  
10.2.2  
Receive Data Register (RDR) H’FFDD, H’FF8D  
Bit:  
7
6
5
4
3
2
1
0
Initial value:  
Read/Write:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
The RDR stores received data. As each character is received, it is transferred from the RSR to the  
RDR, enabling the RSR to receive the next character. This double-buffering allows the SCI to  
receive data continuously.  
The CPU can read but not write the RDR. The RDR is initialized to H00 at a reset and in the  
standby modes.  
10.2.3  
Transmit Shift Register (TSR)  
Bit:  
7
6
5
4
3
2
1
0
Read/Write:  
The TSR is a shift register that converts parallel data to serial transmit data. When transmission of  
this character is completed, the next character is moved from the transmit data register (TDR) to  
the TSR and transmission of that character begins. If the TDRE bit is still set to “1”, however,  
nothing is transferred to the TSR.  
The CPU cannot read or write the TSR directly.  
Rev. 3.0, 09/98, page 190 of 361  
10.2.4  
Transmit Data Register (TDR) H’FFDB, H’FF8B  
Bit:  
7
6
5
4
3
2
1
0
Initial value:  
Read/Write:  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The TDR is an 8-bit readable/writable register that holds the next character to be transmitted.  
When the TSR becomes empty, the character written in the TDR is transferred to the TSR.  
Continuous data transmission is possible by writing the next byte in the TDR while the current  
byte is being transmitted from the TSR.  
The TDR is initialized to HFF at a reset and in the standby modes.  
10.2.5  
Serial Mode Register (SMR) H’FFD8, H’FF88  
Bit:  
7
C/A  
1
6
5
PE  
0
4
O/E  
0
3
STOP  
0
2
MP  
0
1
CKS1  
0
0
CKS0  
0
CHR  
0
Initial value:  
Read/Write:  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The SMR is an 8-bit readable/writable register that controls the communication format and selects  
the clock rate for the internal clock source. It is initialized to H00 at a reset and in the standby  
modes. For further information on the SMR settings and communication formats, see tables 10.5  
and 10.7 in section 10.3, “Operation.”  
Bit 7 Communication Mode (C/A): This bit selects the asynchronous or clocked synchronous  
communication mode.  
Bit 7  
C/A  
Description  
0
Asynchronous communication.  
Clocked synchronous communication.  
(Initial value)  
1
Rev. 3.0, 09/98, page 191 of 361  
Bit 6 Character Length (CHR): This bit selects the character length in asynchronous mode. It  
is ignored in synchronous mode.  
Bit 6  
CHR  
Description  
0
1
8 bits per character.  
(Initial value)  
7 bits per character. (Bits 0 to 6 of TDR and RDR are used for transmitting and  
receiving, respectively.)  
Bit 5 Parity Enable (PE): This bit selects whether to add a parity bit in asynchronous mode. It  
is ignored in synchronous mode, and when a multiprocessor format is used.  
Bit 5  
PE  
Description  
0
Transmit: No parity bit is added.  
Receive: Parity is not checked.  
(Initial value)  
1
Transmit: A parity bit is added.  
Receive: Parity is checked.  
Bit 4 Parity Mode (O/E ): In asynchronous mode, when parity is enabled (PE = “1”), this bit  
selects even or odd parity.  
Even parity means that a parity bit is added to the data bits for each character to make the total  
number of 1’s even. Odd parity means that the total number of 1’s is made odd.  
This bit is ignored when PE = “0,” or when a multiprocessor format is used. It is also ignored in  
the synchronous mode.  
Bit 4  
O/E  
Description  
Even parity.  
Odd parity.  
0
(Initial value)  
1
Rev. 3.0, 09/98, page 192 of 361  
Bit 3 Stop Bit Length (STOP): This bit selects the number of stop bits. It is ignored in the  
synchronous mode.  
Bit 3  
STOP  
Description  
0
One stop bit.  
(Initial value)  
Transmit: One stop bit is added.  
Receive: One stop bit is checked to detect framing errors.  
1
Two stop bits.  
Transmit: Two stop bits are added.  
Receive: The first stop bit is checked to detect framing errors. If the second stop bit is  
a space (0), it is regarded as the next start bit.  
Bit 2 Multiprocessor Mode (MP): This bit selects the multiprocessor format in asynchronous  
communication. When multiprocessor format is selected, the parity settings of the parity enable  
bit (PE) and parity mode bit (O/E) are ignored. The MP bit is ignored in synchronous  
communication.  
The MP bit is valid only when the MPE bit in the serial/timer control register (STCR) is set to “1.”  
When the MPE bit is cleared to “0,” the multiprocessor communication function is disabled  
regardless of the setting of the MP bit.  
Bit 2  
MP  
Description  
0
Multiprocessor communication function is disabled.  
Multiprocessor communication function is enabled.  
(Initial value)  
1
Bits 1 and 0 Clock Select 1 and 0 (CKS1 and CKS0): These bits select the internal clock  
source when the baud rate generator is clocked from within the chip.  
Bit 1  
Bit 0  
CKS1  
CKS0  
Description  
φ clock  
0
0
1
1
0
1
0
1
(Initial value)  
φ/4 clock  
φ/16 clock  
φ/64 clock  
Rev. 3.0, 09/98, page 193 of 361  
10.2.6  
Serial Control Register (SCR) H’FFDA, H’FF8A  
Bit:  
7
TIE  
0
6
RIE  
0
5
TE  
0
4
RE  
0
3
MPIE  
0
2
TEIE  
0
1
CKE1  
0
0
CKE0  
0
Initial value:  
Read/Write:  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The SCR is an 8-bit readable/writable register that enables or disables various SCI functions. It is  
initialized to H00 at a reset and in the standby modes.  
Bit 7 Transmit Interrupt Enable (TIE): This bit enables or disables the TDR-empty interrupt  
(TxI) requested when the transmit data register empty (TDRE) bit in the serial status register  
(SSR) is set to “1.”  
Bit 7  
TIE  
Description  
0
The TDR-empty interrupt request (TxI) is disabled.  
The TDR-empty interrupt request (TxI) is enabled.  
(Initial value)  
1
Bit 6 Receive Interrupt Enable (RIE): This bit enables or disables the receive-end interrupt  
(RXI) requested when the receive data register full (RDRF) bit in the serial status register (SSR) is  
set to “1,” and the receive error interrupt (ERI) requested when the overrun error (ORER), framing  
error (FER), or parity error (PER) bit in the serial status register (SSR) is set to “1.”  
Bit 6  
RIE  
Description  
0
The receive-end interrupt (RXI) and receive-error (ERI) requests are  
disabled.  
(Initial value)  
1
The receive-end interrupt (RXI) and receive-error (ERI) requests are enabled.  
Bit 5 Transmit Enable (TE): This bit enables or disables the transmit function. When the  
transmit function is enabled, the TxD pin is automatically used for output. When the transmit  
function is disabled, the TxD pin can be used as a general-purpose I/O port.  
Bit 5  
TE  
Description  
0
The transmit function is disabled.  
(Initial value)  
The TxD pin can be used for general-purpose I/O.  
1
The transmit function is enabled. The TxD pin is used for output.  
Rev. 3.0, 09/98, page 194 of 361  
Bit 4 Receive Enable (RE): This bit enables or disables the receive function. When the receive  
function is enabled, the RxD pin is automatically used for input. When the receive function is  
disabled, the RxD pin is available as a general-purpose I/O port.  
Bit 4  
RE  
Description  
0
The receive function is disabled. The RxD pin can be  
used for general-purpose I/O.  
(Initial value)  
1
The receive function is enabled. The RxD pin is used for input.  
Bit 3 Multiprocessor Interrupt Enable (MPIE): When serial data are received in a  
multiprocessor format, this bit enables or disables the receive-end interrupt (RxI) and receive-error  
interrupt (ERI) until data with the multiprocessor bit set to “1” are received. It also enables or  
disables the transfer of received data from the RSR to the RDR, and enables or disables setting of  
the RDRF, FER, PER, and ORER bits in the serial status register (SSR).  
The MPIE bit is ignored when the MP bit is cleared to “0,” and in synchronous mode.  
Clearing the MPIE bit to “0” disables the multiprocessor receive interrupt function. In this  
condition data are received regardless of the value of the multiprocessor bit in the receive data.  
Setting the MPIE bit to “1” enables the multiprocessor receive interrupt function. In this  
condition, if the multiprocessor bit in the receive data is “0,” the receive-end interrupt (RxI) and  
receive-error interrupt (ERI) are disabled, the receive data are not transferred from the RSR to the  
RDR, and the RDRF, FER, PER, and ORER bits in the serial status register (SSR) are not set. If  
the multiprocessor bit is “1,” however, the MPB bit in the SSR is set to “1,” the MPIE bit is  
cleared to “0,” the receive data are transferred from the RSR to the RDR, the FER, PER, and  
ORER bits can be set, and the receive-end and receive-error interrupts are enabled.  
Bit 3  
MPIE  
Description  
0
The multiprocessor receive interrupt function is disabled.  
(Normal receive operation)  
(Initial value)  
1
The multiprocessor receive interrupt function is enabled. During the interval before  
data with the multiprocessor bit set to “1” are received, the receive interrupt request  
(RxI) and receive-error interrupt request (ERI) are disabled, the RDRF, FER, PER, and  
ORER bits are not set in the serial status register (SSR), and no data are transferred  
from the RSR to the RDR. The MPIE bit is cleared at the following times:  
(1) When “0” is written in MPIE.  
(2) When data with the multiprocessor bit set to “1” are received.  
Rev. 3.0, 09/98, page 195 of 361  
Bit 2 Transmit-End Interrupt Enable (TEIE): This bit enables or disables the TSR-empty  
interrupt (TEI) requested when the transmit-end bit (TEND) in the serial status register (SSR) is  
set to “1.”  
Bit 2  
TEIE  
Description  
0
1
The TSR-empty interrupt request (TEI) is disabled.  
The TSR-empty interrupt request (TEI) is enabled.  
(Initial value)  
Bit 1 Clock Enable 1 (CKE1): This bit selects the internal or external clock source for the  
baud rate generator. When the external clock source is selected, the SCK pin is automatically used  
for input of the external clock signal.  
Bit 1  
CKE1  
Description  
0
Internal clock source.  
(Initial value)  
When C/A = “1,” the serial clock signal is output at the SCK pin.  
When C/A = “0,” output depends on the CKE0 bit.  
1
External clock source. The SCK pin is used for input.  
Bit 0 Clock Enable 0 (CKE0): When an internal clock source is used in asynchronous mode,  
this bit enables or disables serial clock output at the SCK pin.  
This bit is ignored when the external clock is selected, or when synchronous mode is selected.  
For further information on the communication format and clock source selection, see table 10.7 in  
section 10.3, “Operation.”  
Bit 0  
CKE0  
Description  
0
The SCK pin is not used by the SCI (and is available as a  
general-purpose I/O port).  
(Initial value)  
1
The SCK pin is used for serial clock output.  
Rev. 3.0, 09/98, page 196 of 361  
10.2.7  
Serial Status Register (SSR) H’FFDC, H’FF8C  
Bit:  
7
TDRE  
1
6
5
4
FER  
0
3
PER  
0
2
TEND  
1
1
MPB  
0
0
MPBT  
0
RDRF  
0
ORER  
0
Initial value:  
Read/Write: R/(W)*  
R/(W)*  
R/(W)*  
R/(W)*  
R/(W)*  
R
R
R/W  
Note: Software can write a “0” to clear the flags, but cannot write a “1” in these bits.  
The SSR is an 8-bit register that indicates transmit and receive status. It is initialized to H84 at a  
reset and in the standby modes.  
Bit 7 Transmit Data Register Empty (TDRE): This bit indicates when the TDR contents have  
been transferred to the TSR and the next character can safely be written in the TDR.  
Bit 7  
TDRE  
Description  
0
To clear TDRE, the CPU must read TDRE after it has been set to “1,”  
then write a “0” in this bit.  
1
This bit is set to 1 at the following times:  
(Initial value)  
(1) When TDR contents are transferred to the TSR.  
(2) When the TE bit in the SCR is cleared to “0.”  
Bit 6 Receive Data Register Full (RDRF): This bit indicates when one character has been  
received and transferred to the RDR.  
Bit 6  
RDRF  
Description  
0
To clear RDRF, the CPU must read RDRF after it has been set to “1,” (Initial value)  
then write a “0” in this bit.  
1
This bit is set to 1 when one character is received without error and  
transferred from the RSR to the RDR.  
Bit 5 Overrun Error (ORER): This bit indicates an overrun error during reception.  
Bit 5  
ORER  
Description  
0
To clear ORER, the CPU must read ORER after it has been set to “1,” (Initial value)  
then write a “0” in this bit.  
1
This bit is set to “1” if reception of the next character ends while  
the receive data register is still full (RDRF = “1”).  
Rev. 3.0, 09/98, page 197 of 361  
Bit 4 Framing Error (FER): This bit indicates a framing error during data reception in  
asynchronous mode. It has no meaning in synchronous mode.  
Bit 4  
FER  
Description  
0
To clear FER, the CPU must read FER after it has been set to “1,”  
then write a “0” in this bit.  
(Initial value)  
1
This bit is set to “1” if a framing error occurs (stop bit = “0”).  
Bit 3 Parity Error (PER): This bit indicates a parity error during data reception in the  
asynchronous mode, when a communication format with parity bits is used.  
This bit has no meaning in the synchronous mode, or when a communication format without  
parity bits is used.  
Bit 3  
PER  
Description  
0
To clear PER, the CPU must read PER after it has been set to “1,”  
then write a “0” in this bit.  
(Initial value)  
1
This bit is set to “1” when a parity error occurs (the parity of the received data does not  
match the parity selected by the O/E bit in SMR).  
Bit 2 Transmit End (TEND): This bit indicates that the serial communication interface has  
stopped transmitting because there was no valid data in the TDR when the last bit of the current  
character was transmitted. The TEND bit is also set to “1” when the TE bit in the serial control  
register (SCR) is cleared to “0.”  
The TEND bit can be read but not written. To clear TEND to “0,” software must read the serial  
status register while TDRE = “1,” then write “0” in TDRE.  
Bit 2  
TEND  
Description  
0
To clear TEND, the CPU must read TDRE after it has been set to “1,” (Initial value)  
then write a “0” in TDRE.  
1
This bit is set to “1” when:  
(1) TE = “0”  
(2) TDRE = “1” at the end of transmission of a character  
Rev. 3.0, 09/98, page 198 of 361  
Bit 1 Multiprocessor Bit (MPB): Stores the value of the multiprocessor bit in data received in  
a multiprocessor format in asynchronous communication mode. This bit is cleared to “0” in  
synchronous mode, or when a multiprocessor format is not used. If the RE bit is cleared to “0”  
when a multiprocessor format is used, the MPB bit retains its previous value.  
MPB can be read but not written.  
Bit 1  
MPB  
Description  
0
Multiprocessor bit = “0” in receive data.  
Multiprocessor bit = “1” in receive data.  
(Initial value)  
1
Bit 0 Multiprocessor Bit Transfer (MPBT): Stores the value of the multiprocessor bit inserted  
in transmit data when a multiprocessor format is used in asynchronous communication mode. The  
MPBT bit has no effect in synchronous mode, or when a multiprocessor format is not used. It is  
not used in receiving data.  
Bit 0  
MPBT  
Description  
0
1
Multiprocessor bit = “0” in transmit data.  
Multiprocessor bit = “1” in transmit data.  
(Initial value)  
Rev. 3.0, 09/98, page 199 of 361  
10.2.8  
Bit Rate Register (BRR) H’FFD9, H’FF89  
Bit:  
7
6
5
4
3
2
1
0
Initial value:  
Read/Write:  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The BRR is an 8-bit register that, together with the CKS1 and CKS0 bits in the SMR, determines  
the baud rate output by the baud rate generator.  
The BRR is initialized to HFF (the slowest rate) at a reset and in the standby modes.  
Tables 10.3 and 10.4 show examples of BRR (N) and CKS (n) settings for commonly used bit  
rates. Table 10.5 lists the maximum bit rates in asynchronous mode.  
Table 10.3 Examples of BRR Settings in Asynchronous Mode (1)  
XTAL Frequency (MHz)  
2
2.4576  
4
4.194304  
Error  
Bit  
Error  
(%)  
Error  
(%)  
Error  
(%)  
Rate  
n
1
0
0
0
0
0
N
n
N
n
N
n
N
(%)  
110  
70  
+0.03 1  
86  
255  
127  
63  
31  
15  
7
+0.31 1  
141  
103  
207  
103  
51  
+0.03 1  
+0.16 1  
+0.16 0  
+0.16 0  
+0.16 0  
+0.16 0  
+0.16 0  
0
148  
108  
217  
108  
54  
0.04  
+0.21  
+0.21  
+0.21  
0.70  
+1.14  
2.48  
2.48  
150  
207  
103  
51  
+0.16 0  
0
0
0
0
0
0
0
0
1
0
0
0
0
0
300  
+0.16 0  
600  
+0.16 0  
1200  
2400  
4800  
9600  
19200  
31250  
38400  
25  
+0.16 0  
12  
+0.16 0  
25  
26  
0
12  
13  
0
3
6
0
1
0
0
0
0
1
0
0
0
0
Rev. 3.0, 09/98, page 200 of 361  
Table 10.3 Examples of BRR Settings in Asynchronous Mode (2)  
XTAL Frequency (MHz)  
4.9152  
6
7.3728  
8
Bit  
Rate  
Error  
(%)  
Error  
(%)  
Error  
(%)  
Error  
(%)  
n
1
1
0
0
0
0
0
0
0
N
n
N
n
N
n
N
110  
174  
127  
255  
127  
63  
31  
15  
7
0.26 2  
52  
+0.50 2  
+0.16 1  
+0.16 1  
+0.16 0  
+0.16 0  
+0.16 0  
2.34 0  
2.34 0  
2.34 0  
0
64  
191  
95  
191  
95  
47  
23  
11  
5
+0.70 2  
70  
+0.03  
+0.16  
+0.16  
+0.16  
+0.16  
+0.16  
+0.16  
+0.16  
150  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
155  
77  
155  
77  
38  
19  
9
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
207  
103  
207  
103  
51  
300  
600  
1200  
2400  
4800  
9600  
19200  
31250  
38400  
25  
12  
3
4
2
0
3
0
0
1
0
0
2
0
Table 10.3 Examples of BRR Settings in Asynchronous Mode (3)  
XTAL Frequency (MHz)  
9.8304  
10  
12  
12.288  
Bit  
Rate  
Error  
(%)  
Error  
(%)  
Error  
(%)  
Error  
(%)  
n
2
1
1
0
0
0
0
0
0
0
0
N
n
N
n
N
n
N
110  
86  
255  
127  
255  
127  
63  
31  
15  
7
+0.31 2  
88  
64  
129  
64  
129  
64  
32  
15  
7
0.25 2  
+0.16 2  
+0.16 1  
+0.16 1  
+0.16 0  
+0.16 0  
1.36 0  
+1.73 0  
+1.73 0  
106  
77  
155  
77  
155  
77  
38  
19  
9
0.44 2  
+0.16 2  
+0.16 1  
+0.16 1  
+0.16 0  
+0.16 0  
+0.16 0  
2.34 0  
2.34 0  
108  
79  
159  
79  
159  
79  
39  
19  
9
+0.08  
150  
0
0
0
0
0
0
0
0
2
1
1
0
0
0
0
0
0
300  
0
600  
0
1200  
2400  
4800  
9600  
19200  
31250  
38400  
0
0
0
0
0
4
1.70 0  
4
0
0
5
0
0
5
+2.40  
0
3
0
0
3
+1.73 0  
4
2.34 0  
4
Rev. 3.0, 09/98, page 201 of 361  
Table 10.3 Examples of BRR Settings in Asynchronous Mode (4)  
XTAL Frequency (MHz)  
14.7456  
16  
19.6608  
20  
Bit  
Rate  
Error  
(%)  
Error  
(%)  
Error  
(%)  
Error  
(%)  
n
2
2
1
1
0
0
0
0
0
N
n
N
n
N
n
N
110  
130  
95  
0.07 2  
141  
103  
207  
103  
207  
103  
51  
+0.03 2  
+0.16 2  
+0.16 1  
+0.16 1  
+0.16 0  
+0.16 0  
+0.16 0  
+0.16 0  
+0.16 0  
174  
127  
255  
127  
255  
127  
63  
0.26 2  
177  
129  
64  
129  
64  
129  
64  
32  
15  
9
0.25  
+0.16  
+0.16  
+0.16  
+0.16  
+0.16  
+0.16  
1.36  
+1.73  
0
150  
0
0
0
0
0
0
0
0
2
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
1
1
0
0
0
0
300  
191  
95  
600  
1200  
2400  
4800  
9600  
19200  
31250  
38400  
191  
95  
47  
23  
25  
31  
11  
12  
15  
7
0
0
0
9
1.70 0  
0
5
0
7
0
0
7
+1.73  
Note: If possible, the error should be within 1%.  
OSC  
B =  
N =  
× 106  
1  
64 × 22n × (N + 1)  
OSC × 106  
64 × 22n × B  
N: BRR value (0 N 255)  
OSC: Crystal oscillator frequency in MHz  
B: Baud rate (bits/second)  
n:  
Internal clock source (0, 1, 2, or 3)  
The meaning of n is given by the table below:  
n
0
1
2
3
CKS1  
CKS0  
Clock  
φ
0
0
1
1
0
1
0
1
φ/4  
φ/16  
φ/64  
Rev. 3.0, 09/98, page 202 of 361  
Table 10.4 Examples of BRR Settings in Synchronous Mode  
XTAL Frequency (MHz)  
2
4
8
10  
16  
20  
Bit  
n
N
n
N
n
N
n
N
n
N
n
N
Rate  
100  
250  
500  
1k  
1
1
0
0
0
0
0
0
249  
124  
249  
99  
49  
24  
9
2
1
1
0
0
0
0
0
0
0
0
124  
249  
124  
199  
99  
49  
19  
9
2
2
1
1
0
0
0
0
0
0
0
0
249  
124  
249  
99  
199  
99  
39  
19  
9
3
2
2
1
1
0
0
0
0
0
0
0
124  
249  
124  
199  
99  
199  
79  
39  
19  
7
2.5k  
5k  
1
0
0
0
0
124  
249  
124  
49  
1
1
0
0
0
0
0
0
249  
124  
249  
99  
49  
24  
9
10k  
25k  
50k  
100k  
250k  
500k  
1M  
4
24  
4
0
0*  
1
3
0
4
0*  
1
3
4
0*  
1
2.5M  
0
0*  
Notes: Blank: No setting is available.  
: A setting is available, but the bit rate is inaccurate.  
*: Continuous transfer is not possible.  
B = OSC × 106/[8 × 22n × (N + 1)]  
N: BRR value (0 N 255)  
OSC: Crystal oscillator frequency in MHz  
B: Baud rate (bits per second)  
n:  
Internal clock source (0, 1, 2, or 3)  
The meaning of n is given by the table below:  
n
0
1
2
3
CKS1  
CKS0  
Clock  
φ
0
0
1
1
0
1
0
1
φ/4  
φ/16  
φ/64  
Rev. 3.0, 09/98, page 203 of 361  
10.2.9  
Serial/Timer Control Register (STCR) H’FFC3  
Bit:  
7
1
6
1
5
1
4
1
3
1
2
1
ICKS1  
0
0
ICKS0  
0
MPE  
0
Initial value:  
Read/Write:  
R/W  
R/W  
R/W  
The STCR is an 8-bit readable/writable register that controls the operating mode of the serial  
communication interface and selects input clock sources for the 8-bit timer counters (TCNT).  
The STCR is initialized to HF8 by a reset.  
Bits 7 to 3 Reserved: These bits cannot be modified and are always read as “1.”  
Bit 2 Multiprocessor Enable (MPE): Enables or disables the multiprocessor communication  
function on channels SCI0 and SCI1.  
Bit 2  
MPE  
Description  
0
The multiprocessor communication function is disabled,  
regardless of the setting of the MP bit in SMR.  
(Initial value)  
1
The multiprocessor communication function is enabled. The multi-  
processor format can be selected by setting the MP bit in SMR to “1.”  
Bits 1 and 0 Internal Clock Source Select 1 and 0 (ICKS1, ICKS0): These bits select the  
clock input to the timer counters (TCNT) in the 8-bit timers. For further information see section 7,  
“8-Bit Timers.”  
Rev. 3.0, 09/98, page 204 of 361  
10.3  
Operation  
10.3.1  
Overview  
The SCI supports serial data transfer in two modes. In asynchronous mode each character is  
synchronized individually. In synchronous mode communication is synchronized with a clock  
signal.  
The selection of asynchronous or synchronous mode and the communication format depend on  
settings in the SMR as indicated in table 10.5. The clock source depends on the settings of the  
C/A bit in the SMR and the CKE1 and CKE0 bits in the SCR as indicated in table 10.6.  
(1) Asynchronous Mode: Data lengths of seven or eight bits can be selected. A parity bit or  
multiprocessor bit can be added, and stop bit lengths of one or two bits can be selected. These  
selections determine the communication format and character length. Framing errors (FER),  
parity errors (PER) and overrun errors (ORER) can be detected in receive data, and the line-break  
condition can be detected.  
An internal or external clock source can be selected for the serial clock. When an internal clock  
source is selected, the SCI is clocked by the on-chip baud rate generator and can output a clock  
signal at the bit-rate frequency. When the external clock source is selected, the on-chip baud rate  
generator is not used. The external clock frequency must be 16 times the bit rate.  
(2) Synchronous Mode: The transmit data length is eight bits. Overrun errors (ORER) can be  
detected in receive data.  
An internal or external clock source can be selected for the serial clock. When an internal clock  
source is selected, the SCI is clocked by the on-chip baud rate generator and outputs a serial clock  
signal. When the external clock source is selected, the on-chip baud rate generator is not used and  
the SCI operates on the input serial clock.  
Rev. 3.0, 09/98, page 205 of 361  
Table 10.5 Communication Formats Used by SCI  
SMR settings  
Communication Format  
Bit 7 Bit 6 Bit 2 Bit 5 Bit 3  
Data  
Multipro- Parity Stop-Bit  
C/A  
CHR MP  
PE  
STOP Mode  
Length cessor Bit Bit  
Length  
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
Asynchronous mode 8 bits None None  
1 bit  
2 bits  
1
0
1
Present 1 bit  
2 bits  
1
7 bits  
None  
1 bit  
2 bits  
Present 1 bit  
2 bits  
0
1
1
Asynchronous mode 8 bits Present  
(multiprocessor  
None  
1 bit  
2 bits  
1 bit  
format)  
7 bits  
2 bits  
None  
1
Synchronous mode 8 bits None  
Table 10.6 SCI Clock Source Selection  
SMR SCR  
Bit 7 Bit 0  
Serial Transmit/Receive Clock  
Bit 1  
Clock Source SCK Pin Function  
C/A  
CKE1  
CKE0  
Mode  
0
0
1
0
1
0
1
0
1
0
1
0
1
Async  
Internal  
External  
Internal  
External  
Input/output port (not used by SCI)  
Serial clock output at bit rate  
Serial clock input at 16 × bit rate  
1
Sync  
Serial clock output  
Serial clock input  
Rev. 3.0, 09/98, page 206 of 361  
10.3.2  
Asynchronous Mode  
In asynchronous mode, each transmitted or received character is individually synchronized by  
framing it with a start bit and stop bit.  
Full duplex data transfer is possible because the SCI has independent transmit and receive  
sections. Double buffering in both sections enables the SCI to be programmed for continuous data  
transfer.  
Figure 10.2 shows the general format of one character sent or received in asynchronous mode.  
The communication channel is normally held in the mark state (High). Character transmission or  
reception starts with a transition to the space state (Low).  
The first bit transmitted or received is the start bit (Low). It is followed by the data bits, in which  
the least significant bit (LSB) comes first. The data bits are followed by the parity or  
multiprocessor bit, if present, then the stop bit or bits (High) confirming the end of the frame.  
In receiving, the SCI synchronizes on the falling edge of the start bit, and samples each bit at the  
center of the bit (at the 8th cycle of the internal serial clock, which runs at 16 times the bit rate).  
Parity or  
multipro-  
Idle state (mark)  
cessor bit  
“0”  
(LSB)  
D0  
(MSB)  
D7  
“1”  
“0”  
D1  
D2  
D3  
D4  
D5  
D6  
0/1  
“1”  
“1”  
Start  
bit  
Stop bit  
7 or 8 bits  
1 bit  
0 or 1 bit 1 or 2 bits  
One unit of data (one character or frame)  
Figure 10.2 Data Format in Asynchronous Mode  
(1) Data Format: Table 10.7 lists the data formats that can be sent and received in asynchronous  
mode. Twelve formats can be selected by bits in the SMR.  
Rev. 3.0, 09/98, page 207 of 361  
Table 10.7 Data Formats in Asynchronous Mode  
SMR Bits  
CHR PE  
MP  
STOP  
1
S
S
S
S
S
S
S
S
S
S
S
S
2
3
4
5
6
7
8
9
10  
11  
12  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
0
8-Bit data  
STOP  
0
0
0
0
0
0
0
0
1
1
1
1
1
0
1
0
1
0
1
0
1
0
1
8-Bit data  
8-Bit data  
8-Bit data  
7-Bit data  
7-Bit data  
7-Bit data  
7-Bit data  
8-Bit data  
8-Bit data  
7-Bit data  
7-Bit data  
STOP STOP  
1
P
P
STOP  
STOP STOP  
1
0
STOP  
0
STOP STOP  
1
P
P
STOP  
1
STOP STOP  
MPB STOP  
MPB STOP STOP  
MPB STOP  
MPB STOP STOP  
Notes: SMR: Serial mode register  
S: Start bit  
STOP: Stop bit  
P: Parity bit  
MPB: Multiprocessor bit  
(2) Clock: In asynchronous mode it is possible to select either an internal clock created by the  
on-chip baud rate generator, or an external clock input at the SCK pin. The selection is made by  
the C/A bit in the serial mode register (SMR) and the CKE1 and CKE0 bits in the serial control  
register (SCR). Refer to table 10.7.  
If an external clock is input at the SCK pin, its frequency should be 16 times the desired bit rate.  
If the internal clock provided by the on-chip baud rate generator is selected and the SCK pin is  
used for clock output, the output clock frequency is equal to the bit rate, and the clock pulse rises  
at the center of the transmit data bits. Figure 10.3 shows the phase relationship between the output  
clock and transmit data.  
“0”  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
0/1  
“1”  
“1”  
One frame  
Figure 10.3 Phase Relationship between Clock Output and Transmit Data  
(Asynchronous Mode)  
Rev. 3.0, 09/98, page 208 of 361  
(3) Transmitting and Receiving Data  
SCI Initialization: Before transmitting or receiving, software must clear the TE and RE bits  
to “0” in the serial control register (SCR), then initialize the SCI as follows.  
Note: When changing the communication mode or format, always clear the TE and RE bits to  
“0” before following the procedure given below. Clearing TE to “0” sets TDRE to “1”  
and initializes the transmit shift register (TSR). Clearing RE to “0,” however, does not  
initialize the RDRF, PER, FER, and ORER flags and receive data register (RDR), which  
retain their previous contents.  
When an external clock is used, the clock should not be stopped during initialization or  
subsequent operation. SCI operation becomes unreliable if the clock is stopped.  
Initialization  
1. Select the communication format in the serial mode register (SMR).  
2. Write the value corresponding to the bit rate in the bit rate register  
(BRR). This step is not necessary when an external clock is used.  
Clear TE and RE bits to  
"0" in SCR  
3. Select interrupts and the clock source in the serial control register  
(SCR). Leave TE and RE cleared to "0." If clock output is selected,  
in asynchronous mode, clock output starts immediately after the  
setting is made in SCR.  
1
2
3
Select communication  
format in SMR  
4. Wait for at least the interval required to transmit or receive one bit,  
then set TE or RE in the serial control register (SCR).  
Set value in BRR  
Setting TE or RE enables the SCI to use the TxD or RxD pin.  
Also set the RIE, TIE, TEIE, and MPIE bits as necessary to enable  
interrupts. The initial states are the mark transmit state, and the  
idle receive state (waiting for a start bit).  
Set CKE1 and CKE0 bits in  
SCR (leaving TE and RE  
cleared to "0")  
No  
1 bit interval  
elapsed?  
Yes  
4
Set TE or RE to "1" in SCR,  
and set RIE, TIE, TEIE, and  
MPIE as necessary  
Start transmitting or receiving  
Figure 10.4 Sample Flowchart for SCI Initialization  
Rev. 3.0, 09/98, page 209 of 361  
Transmitting Serial Data: Follow the procedure below for transmitting serial data.  
1.  
2.  
SCI initialization: the transmit data output function of the TxD pin is  
selected automatically.  
1
2
Initialize  
SCI status check and transmit data write: read the serial status  
register (SSR), check that the TDRE bit is "1," then write transmit  
data in the transmit data register (TDR) and clear TDRE to "0."  
If a multiprocessor format is selected, after writing the transmit  
data write "0" or "1" in the multiprocessor bit transfer (MPBT) in  
SSR. Transition of the TDRE bit from "0" to "1" can be reported  
by an interrupt.  
Start transmitting  
Read TDRE bit in SSR  
No  
3. (a) To continue transmitting serial data: read the TDRE bit to check  
whether it is safe to write; if TDRE = "1," write data in TDR, then  
clear TDRE to "0."  
(b) To end serial transmission: end of transmission can be  
confirmed by checking transition of the TEND bit from "0" to "1."  
This can be reported by a TEI interrupt.  
TDRE = "1"?  
Yes  
Write transmit data in TDR  
If using multiprocessor format,  
select MPBT value in SSR  
4.  
To output a break signal at the end of serial transmission: set the  
DDR bit to "1" and clear the DR bit to "0" (DDR and DR are I/O  
port registers), then clear TE to "0" in SCR.  
Clear TDRE bit to "0" in SSR  
Serial transmission  
End of  
transmission?  
No  
3
Yes  
Read TEND bit in SSR  
No  
No  
TEND = "1"?  
Yes  
Output break  
signal?  
4
Yes  
Set DR = "0," DDR = "1"  
Clear TE bit in SCR to "0"  
End  
Figure 10.5 Sample Flowchart for Transmitting Serial Data  
Rev. 3.0, 09/98, page 210 of 361  
In transmitting serial data, the SCI operates as follows.  
1. The SCI monitors the TDRE bit in SSR. When TDRE is cleared to “0” the SCI recognizes that  
the transmit data register (TDR) contains new data, and loads this data from TDR into the  
transmit shift register (TSR).  
2. After loading the data from TDR into TSR, the SCI sets the TDRE bit to “1” and starts  
transmitting. If the TIE bit (TDR-empty interrupt enable) is set to “1” in SCR, the SCI  
requests a TXI interrupt (TDR-empty interrupt) at this time.  
Serial transmit data are transmitted in the following order from the TxD pin:  
(a) Start bit: one “0” bit is output.  
(b) Transmit data: seven or eight bits are output, LSB first.  
(c) Parity bit or multiprocessor bit: one parity bit (even or odd parity) or one multiprocessor bit  
is output. Formats in which neither a parity bit nor a multiprocessor bit is output can also  
be selected.  
(d) Stop bit: one or two “1” bits (stop bits) are output.  
(e) Mark state: output of “1” bits continues until the start bit of the next transmit data.  
3. The SCI checks the TDRE bit when it outputs the stop bit. If TDRE is “0,” the SCI loads new  
data from TDR into TSR, outputs the stop bit, then begins serial transmission of the next  
frame. If TDRE is “1,” the SCI sets the TEND bit to “1” in SSR, outputs the stop bit, then  
continues output of “1” bits in the mark state. If the TEIE bit (TSR-empty interrupt enable) in  
SCR is set to “1,” a TEI interrupt (TSR-empty interrupt) is requested.  
Figure 10.6 shows an example of SCI transmit operation in asynchronous mode.  
Start  
bit  
Parity  
bit  
Stop  
bit  
Start  
bit  
Parity  
bit  
Stop  
bit  
Data  
Data  
"1"  
"1"  
"0"  
D0  
D1  
D7  
0/1  
"1"  
"0"  
D0  
D1  
D7  
0/1  
"1"  
Mark (idle)  
state  
TDRE  
TEND  
TXI  
request  
TXI interrupt handler  
writes data in TDR and  
clears TDRE to "0"  
TXI  
request  
TEI request  
1 frame  
Figure 10.6 Example of SCI Transmit Operation  
(8-bit data with parity and one stop bit)  
Rev. 3.0, 09/98, page 211 of 361  
Receiving Serial Data: Follow the procedure below for receiving serial data.  
1
2
Initialize  
1. SCI initialization: the receive data function of the RxD pin is  
selected automatically.  
Start receiving  
2. SCI status check and receive data read: read the serial status  
register (SSR), check that RDRF is set to "1," then read receive  
data from the receive data register (RDR) and clear RDRF to "0."  
Transition of the RDRF bit from "0" to "1" can be reported by an  
RXI interrupt.  
Read RDRF bit in SSR  
No  
RDRF = "1"?  
Yes  
3. To continue receiving serial data: read RDR and clear RDRF to  
"0" before the stop bit of the current frame is received.  
Read receive data from  
RDR, and clear RDRF bit  
to "0" in SSR  
4. Receive error handling and break detection: if a receive error  
occurs, read the ORER, PER, and FER bits in SSR to identify  
the error. After executing the necessary error handling, clear  
ORER, PER, and FER all to "0." Transmitting and receiving  
cannot resume if ORER, PER, or FER remains set to "1."  
When a framing error occurs, the RxD pin can be read to detect  
the break state.  
Read ORER, PER, and  
FER in SSR  
3
^
^
Yes  
No  
PER RER  
ORER= "1"?  
No  
4
Finished  
receiving?  
Error handling  
Yes  
Clear RE to "0" in SCR  
End  
Start error handling  
Yes  
Yes  
FER = "1"?  
No  
Break?  
No  
Clear RE to "0"  
in SCR  
Clear error flags  
to "0" in SCR  
End  
Return  
Figure 10.7 Sample Flowchart for Receiving Serial Data  
Rev. 3.0, 09/98, page 212 of 361  
In receiving, the SCI operates as follows.  
1. The SCI monitors the receive data line and synchronizes internally when it detects a start bit.  
2. Receive data are shifted into RSR in order from LSB to MSB.  
3. The parity bit and stop bit are received.  
After receiving these bits, the SCI makes the following checks:  
(a) Parity check: the number of 1s in the receive data must match the even or odd parity setting  
of the O/E bit in SMR.  
(b) Stop bit check: the stop bit value must be “1.” If there are two stop bits, only the first stop  
bit is checked.  
(c) Status check: RDRF must be “0” so that receive data can be loaded from RSR into RDR.  
If these checks all pass, the SCI sets RDRF to “1” and stores the received data in RDR. If one of  
the checks fails (receive error), the SCI operates as indicated in table 10.8.  
Note: When a receive error flag is set, further receiving is disabled. The RDRF bit is not set to  
“1.” Be sure to clear the error flags.  
4. After setting RDRF to “1,” if the RIE bit (receive-end interrupt enable) is set to “1” in SCR,  
the SCI requests an RXI (receive-end) interrupt. If one of the error flags (ORER, PER, or  
FER) is set to “1” and the RIE bit in SCR is also set to “1,” the SCI requests an ERI (receive-  
error) interrupt.  
Figure 10.8 shows an example of SCI receive operation in asynchronous mode.  
Table 10.8 Receive Error Conditions and SCI Operation  
Receive Error Abbreviation  
Condition  
Data Transfer  
Overrun error  
ORER  
Receiving of next data ends  
Receive data not loaded from  
while RDRF is still set to “1” in RSR into RDR  
SSR  
Framing error  
Parity error  
FER  
PER  
Stop bit is “0”  
Receive data loaded from RSR  
into RDR  
Parity of receive data differs  
Receive data loaded from RSR  
from even/odd parity setting in into RDR  
SMR  
Rev. 3.0, 09/98, page 213 of 361  
Start  
bit  
Parity Stop  
Start  
bit  
Parity Stop  
Data  
bit  
bit  
Data  
bit  
bit  
"1"  
"1"  
"0"  
D0  
D1  
D7  
0/1  
"1"  
"0"  
D0  
D1  
D7  
0/1  
"0"  
Mark (idle)  
state  
RDRF  
FER  
RXI  
request  
RXI interrupt handler  
reads data in RDR and  
clears RDRF to "0"  
Framing error,  
ERI request  
1 frame  
Figure 10.8 Example of SCI Receive Operation (8-bit data with parity and one stop bit)  
(4) Multiprocessor Communication  
The multiprocessor communication function enables several processors to share a single serial  
communication line. The processors communicate in asynchronous mode using a format with an  
additional multiprocessor bit (multiprocessor format).  
In multiprocessor communication, each receiving processor is addressed by an ID.  
A serial communication cycle consists of two cycles: an ID-sending cycle that identifies the  
receiving processor, and a data-sending cycle. The multiprocessor bit distinguishes ID-sending  
cycles from data-sending cycles.  
The transmitting processor starts by sending the ID of the receiving processor with which it wants  
to communicate as data with the multiprocessor bit set to “1.” Next the transmitting processor  
sends transmit data with the multiprocessor bit cleared to “0.”  
Receiving processors skip incoming data until they receive data with the multiprocessor bit set to  
“1.”  
After receiving data with the multiprocessor bit set to “1,” the receiving processor with an ID  
matching the received data continues to receive further incoming data. Multiple processors can  
send and receive data in this way.  
Four formats are available. Parity-bit settings are ignored when a multiprocessor format is  
selected. For details see table 10.7.  
Rev. 3.0, 09/98, page 214 of 361  
Transmitting  
processor  
Serial communication line  
Receiving  
processor A  
Receiving  
processor B  
Receiving  
processor C  
Receiving  
processor D  
(ID = 01)  
(ID = 02)  
(ID = 03)  
(ID = 04)  
Serial  
data  
H'01  
H'AA  
(MPB = 0)  
(MPB = 1)  
ID-sending cycle:  
receiving processor  
address  
Data-sending cycle:  
data sent to receiving  
processor specified by ID  
MPB: multiprocessor bit  
Figure 10.9 Example of Communication among Processors using Multiprocessor Format  
(sending data H’AA to receiving processor A)  
Transmitting Multiprocessor Serial Data: See figures 10.5 and 10.6.  
Receiving Multiprocessor Serial Data: Follow the procedure below for receiving  
multiprocessor serial data.  
Rev. 3.0, 09/98, page 215 of 361  
1
Initialize  
1. SCI initialization: the receive data function of the RxD pin is  
selected automatically.  
Start receiving  
2. ID receive cycle: Set the MPIE bit in the serial control register  
(SCR) to "1."  
3. SCI status check and ID check: read the serial status register  
(SSR), check that RDRF is set to "1," then read receive data  
from the receive data register (RDR) and compare with the  
processor's own ID. Transition of the RDRF bit from "0" to  
"1" can be reported by an RXI interrupt. If the ID does not match  
the receive data, set MPIE to "1" again and clear RDRF to "0."  
If the ID matches the receive data, clear RDRF to "0."  
2
3
Set MPIE bit to "1" in SCR  
Read RDRF bit in SSR  
No  
RDRF = "1"?  
Yes  
4. SCI status check and data receiving: read SSR, check that  
RDRF is set to "1," then read data from the receive data register  
(RDR) and write "0" in the RDRF bit. Transition of the RDRF bit  
from "0" to "1" can be reported by an RXI interrupt.  
Read receive data from RDR  
5. Receive error handling and break detection: if a receive error  
occurs, read the ORER and FER bits in SSR to identify the error.  
After executing the necessary error handling, clear both ORER  
and FER to "0." Receiving cannot resume while ORER or FER  
remains set to "1." When a framing error occurs, the RxD pin  
can be read to detect the break state.  
No  
Own ID?  
Yes  
Read ORER and FER  
bits in SSR  
FER v  
Yes  
ORER = "1"?  
No  
4
Read RDRF bit in SSR  
No  
RDRF = "1"?  
Yes  
Read ORER and FER  
bits in SSR  
Read receive data from RDR  
Start error handling  
Yes  
FER  
ORER = "1"?  
5
No  
Error handling  
Yes  
Yes  
FER = "1"?  
No  
Break?  
No  
No  
Finished  
receiving?  
Yes  
Clear RE bit to  
"0" in SCR  
Clear error flags  
Return  
Clear RE to "0" in SCR  
End  
End  
Figure 10.10 Sample Flowchart for Receiving Multiprocessor Serial Data  
Rev. 3.0, 09/98, page 216 of 361  
Figure 10.11 shows an example of SCI receive operation using a multiprocessor format.  
Start  
bit  
Stop  
MPB bit  
Start  
bit  
Stop  
MPB bit  
Data (ID1)  
D1  
Data (Data1)  
D1  
"1"  
"1"  
"0"  
D0  
D7  
"1"  
"1"  
"0"  
D0  
D7  
"0"  
"1"  
Mark (idle)  
state  
MPIE  
RDRF  
RDR value  
ID1  
MPB detection, RXI request RXI handler reads  
Not own ID, so  
MPIE is set to  
"1" again  
No RXI request,  
RDR not updated  
MPIE = "0"  
RDR data and clears  
RDRF to "0"  
(Multiprocessor interrupt)  
(a) Own ID does not match data  
Stop Start  
Start  
bit  
Stop  
MPB bit  
Data (ID2)  
D1  
MPB bit  
bit  
Data (Data2)  
D1  
"1"  
"1"  
"0"  
D0  
D7  
"1" "1"  
"0"  
D0  
D7  
"0" "1"  
Mark (idle)  
state  
MPIE  
RDRF  
RDR value  
ID1  
ID2  
Data 2  
MPB detection, RXI request  
MPIE = "0"  
RXI handler reads  
RDR data and clears continues, with data  
RDRF to "0" received at each RXI  
Own ID, so receiving  
MPIE set to  
"1" again  
(Multiprocessor interrupt)  
(a) Own ID does not match data  
Figure 10.11 Example of SCI Receive Operation  
(eight-bit data with multiprocessor bit and one stop bit)  
Rev. 3.0, 09/98, page 217 of 361  
10.3.3  
Synchronous Mode  
(1) Overview: In clocked synchronous mode, the SCI transmits and receives data in  
synchronization with clock pulses. This mode is suitable for high-speed serial communication.  
The SCI transmitter and receiver share the same clock but are otherwise independent, so full  
duplex communication is possible. The transmitter and receiver are also double buffered, so  
continuous transmitting or receiving is possible by reading or writing data while transmitting or  
receiving is in progress.  
Figure 10.12 shows the general format in clocked synchronous serial communication.  
One unit (character or frame) of serial data  
*
*
Serial clock  
Serial data  
LSB  
Bit 0  
MSB  
Bit 7  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Don't care  
Don't care  
Note: * High except in continuous transmitting or receiving  
Figure 10.12 Data Format in Clocked Synchronous Communication  
In clocked synchronous serial communication, each data bit is sent on the communication line  
from one falling edge of the serial clock to the next. Data are received in synchronization with the  
rising edge of the serial clock.  
In each character, the serial data bits are transmitted in order from LSB (first) to MSB (last). After  
output of the MSB, the communication line remains in the state of the MSB.  
Communication Format: The data length is fixed at eight bits. No parity bit or  
multiprocessor bit can be added.  
Clock: An internal clock generated by the on-chip baud rate generator or an external clock  
input from the SCK pin can be selected by clearing or setting the CKE1 bit in the serial control  
register (SCR). See table 10.6.  
When the SCI operates on an internal clock, it outputs the clock signal at the SCK pin. Eight  
clock pulses are output per transmitted or received character. When the SCI is not transmitting or  
receiving, the clock signal remains at the high level.  
Rev. 3.0, 09/98, page 218 of 361  
(2) Transmitting and Receiving Data  
SCI Initialization: The SCI must be initialized in the same way as in asynchronous mode.  
See figure 10.4. When switching from asynchronous mode to clocked synchronous mode,  
check that the ORER, FER, and PER bits are cleared to “0.” Transmitting and receiving  
cannot begin if ORER, FER, or PER is set to “1.”  
Transmitting Serial Data: Follow the procedure below for transmitting serial data.  
1.  
2.  
SCI initialization: the transmit data output function of the TxD pin is  
selected automatically.  
1
2
Initialize  
SCI status check and transmit data write: read the serial status  
register (SSR), check that the TDRE bit is "1," then write transmit  
data in the transmit data register (TDR) and clear TDRE to "0."  
Transition of the TDRE bit from "0" to "1" can be reported by a  
TXI interrupt.  
Start transmitting  
Read TDRE bit in SSR  
3.  
To continue transmitting serial data: read the TDRE bit to check  
whether it is safe to write; if TDRE = "1," write data in TDR, then  
clear TDRE to "0."  
To end serial transmission: end of transmission can be confirmed  
by checking transition of the TEND bit from "0" to "1." This can be  
reported by a TEI interrupt.  
(a)  
(b)  
No  
TDRE = "1"?  
Yes  
Write transmit data in  
TDR and clear TDRE bit to  
"0" in SSR  
Serial transmission  
End of  
transmission?  
No  
3
Yes  
Read TEND bit in SSR  
No  
TEND = "1"?  
Yes  
Clear TE bit to "0" in SCR  
End  
Figure 10.13 Sample Flowchart for Serial Transmitting  
In transmitting serial data, the SCI operates as follows.  
1. The SCI monitors the TDRE bit in SSR. When TDRE is cleared to “0” the SCI recognizes that  
the transmit data register (TDR) contains new data, and loads this data from TDR into the  
transmit shift register (TSR).  
Rev. 3.0, 09/98, page 219 of 361  
2. After loading the data from TDR into TSR, the SCI sets the TDRE bit to “1” and starts  
transmitting. If the TIE bit (TDR-empty interrupt enable) in SCR is set to “1,” the SCI  
requests a TXI interrupt (TDR-empty interrupt) at this time.  
If clock output is selected the SCI outputs eight serial clock pulses, triggered by the clearing of  
the TDRE bit to “0.” If an external clock source is selected, the SCI outputs data in  
synchronization with the input clock.  
Data are output from the TxD pin in order from LSB (bit 0) to MSB (bit 7).  
3. The SCI checks the TDRE bit when it outputs the MSB (bit 7). If TDRE is “0,” the SCI loads  
data from TDR into TSR, then begins serial transmission of the next frame. If TDRE is “1,”  
the SCI sets the TEND bit in SSR to “1,” transmits the MSB, then holds the output in the MSB  
state. If the TEIE bit (transmit-end interrupt enable) in SCR is set to “1,” a TEI interrupt  
(TSR-empty interrupt) is requested at this time.  
4. After the end of serial transmission, the SCK pin is held at the high level.  
Figure 10.14 shows an example of SCI transmit operation.  
Serial  
clock  
Serial  
data  
Bit 0  
Bit 1  
Bit 7  
Bit 0  
Bit 1  
Bit 6  
Bit 7  
TDRE  
TEND  
TXI  
request  
TXI interrupt  
handler writes  
TXI  
request  
TXI  
request  
data in TDR and  
clears TDRE to "0"  
1 frame  
Figure 10.14 Example of SCI Transmit Operation  
Receiving Serial Data: Follow the procedure below for receiving serial data. When  
switching from asynchronous mode to clocked synchronous mode, be sure to check that PER  
and FER are cleared to “0.” If PER or FER is set to “1” the RDRF bit will not be set and both  
transmitting and receiving will be disabled.  
Rev. 3.0, 09/98, page 220 of 361  
1
2
Initialize  
1. SCI initialization: the receive data function of the RxD pin is  
selected automatically.  
Start receiving  
2. SCI status check and receive data read: read the serial status  
register (SSR), check that RDRF is set to "1," then read receive  
data from the receive data register (RDR) and clear RDRF to "0."  
Transition of the RDRF bit from "0" to "1" can be reported by an  
RXI interrupt.  
Read RDRF bit in SSR  
3. To continue receiving serial data: read RDR and clear RDRF to  
"0" before the MSB (bit 7) of the current frame is received.  
No  
RDRF = "1"?  
Yes  
4. Receive error handling: if a receive error occurs, read the ORER  
bit in SSR then, after executing the necessary error handling,  
clear ORER to "0." Neither transmitting nor receiving can  
resume while ORER remains set to "1." When clock output  
mode is selected, receiving can be halted temporarily by  
receiving one dummy byte and causing an overrun error.  
When preparations to receive the next data are completed, clear  
the ORER bit to "0." This causes receiving to resume, so  
return to the step marked 2 in the flowchart.  
3
Read receive data  
from RDR, and clear  
RDRF bit to "0" in SSR  
Read ORER in SSR  
Yes  
No  
ORER = "1"?  
No  
4
Error handling  
Finished  
receiving?  
Yes  
Clear RE to "0" in SCR  
End  
Start error handling  
Overrun error handling  
Clear ORER to "0" in SSR  
Return  
Figure 10.15 Sample Flowchart for Serial Receiving  
In receiving, the SCI operates as follows.  
1. If an external clock is selected, data are input in synchronization with the input clock. If clock  
output is selected, as soon as the RE bit is set to “1” the SCI begins outputting the serial clock  
and inputting data. If clock output is stopped because the ORER bit is set to “1,” output of the  
serial clock and input of data resume as soon as the ORER bit is cleared to “0.”  
2. Receive data are shifted into RSR in order from LSB to MSB.  
Rev. 3.0, 09/98, page 221 of 361  
After receiving the data, the SCI checks that RDRF is “0” so that receive data can be loaded  
from RSR into RDR. If this check passes, the SCI sets RDRF to “1” and stores the received  
data in RDR. If the check does not pass (receive error), the SCI operates as indicated in  
table 10.8.  
Note: Both transmitting and receiving are disabled while a receive error flag is set. The  
RDRF bit is not set to “1.” Be sure to clear the error flag.  
3. After setting RDRF to “1,” if the RIE bit (receive-end interrupt enable) is set to “1” in SCR,  
the SCI requests an RXI (receive-end) interrupt. If the ORER bit is set to “1” and the RIE bit  
in SCR is set to “1,” the SCI requests an ERI (receive-error) interrupt.  
When clock output mode is selected, clock output stops when the RE bit is cleared to “0” or  
the ORER bit is set to “1.” To prevent clock count errors, it is safest to receive one dummy  
byte and generate an overrun error.  
Figure 10.16 shows an example of SCI receive operation.  
Serial  
clock  
Serial  
data  
Bit 0  
Bit 1  
Bit 7  
Bit 0  
Bit 1  
Bit 6  
Bit 7  
RDRF  
ORER  
RXI  
request  
RXI interrupt  
RXI  
request  
handler reads  
data in RDR and  
clears RDRF to "0"  
Overrun error,  
ERI request  
1 frame  
Figure 10.16 Example of SCI Receive Operation  
Transmitting and Receiving Serial Data Simultaneously: Follow the procedure below for  
transmitting and receiving serial data simultaneously. If clock output mode is selected, output  
of the serial clock begins simultaneously with serial transmission.  
Rev. 3.0, 09/98, page 222 of 361  
1
2
Initialize  
Start  
1. SCI initialization: the transmit data output function of the  
TxD pin and receive data input function of the RxD pin are  
selected, enabling simultaneous transmitting and receiving.  
2. SCI status check and transmit data write: read the serial status  
register (SSR), check that the TDRE bit is "1," then write transmit  
data in the transmit data register (TDR) and clear TDRE to "0."  
Transition of the TDRE bit from "0" to "1" can be reported by a  
TXI interrupt.  
Read TDRE bit in SSR  
No  
TDRE = "1"?  
Yes  
3. SCI status check and receive data read: read the serial status  
register (SSR), check that the RDRF bit is "1," then read receive  
data from the receive data register (RDR) and clear RDRF to "0."  
Transition of the RDRF bit from "0" to "1" can be reported by an  
RXI interrupt.  
3
Write transmit data  
in TDR and clear TDRE  
bit to "0" in SSR  
4. To continue transmitting and receiving serial data: read RDR  
and clear RDRF to "0" before the MSB (bit 7) of the current  
frame is received. Also read the TDRE bit and check that it is  
set to "1," indicating that it is safe to write; then write data  
in TDR and clear TDRE to "0" before the MSB (bit 7) of the current  
frame is transmitted.  
Read RDRF bit in SSR  
No  
RDRF= "1"?  
Yes  
5. Receive error handling: if a receive error occurs, read the ORER  
bit in SSR then, after executing the necessary error handling,  
clear ORER to "0." Neither transmitting nor receiving can resume  
while ORER remains set to "1."  
4
Read receive data  
from RDR and clear  
RDRF bit to "0" in SSR  
Read RDRF bit in SSR  
Yes  
No  
RDRF = "1"?  
No  
5
Error handling  
End of  
transmitting and receiv-  
ing?  
Yes  
Clear TE and RE bits  
to "0" in SCR  
End  
Figure 10.17 Sample Flowchart for Serial Transmitting and Receiving  
Note: In switching from transmitting or receiving to simultaneous transmitting and receiving,  
clear both TE and RE to “0,” then set both TE and RE to “1.”  
Rev. 3.0, 09/98, page 223 of 361  
10.4  
Interrupts  
The SCI can request four types of interrupts: ERI, RxI, TxI, and TEI. Table 10.9 indicates the  
source and priority of these interrupts. The interrupt sources can be enabled or disabled by the  
TIE, RIE, and TEIE bits in the SCR. Independent signals are sent to the interrupt controller for  
each interrupt source, except that the receive-error interrupt (ERI) is the logical OR of three  
sources: overrun error, framing error, and parity error.  
The TxI interrupt indicates that the next transmit data can be written. The TEI interrupt indicates  
that the SCI has stopped transmitting data.  
Table 10.9 SCI Interrupt Sources  
Interrupt Description  
Priority  
ERI  
RxI  
TxI  
Receive-error interrupt (ORER, FER, or PER)  
High  
Receive-end interrupt (RDRF)  
TDR-empty interrupt (TDRE)  
TSR-empty interrupt (TEND)  
TEI  
Low  
10.5  
Application Notes  
Application programmers should note the following features of the SCI.  
(1) TDR Write: The TDRE bit in the SSR is simply a flag that indicates that the TDR contents  
have been transferred to the TSR. The TDR contents can be rewritten regardless of the TDRE  
value. If a new byte is written in the TDR while the TDRE bit is “0,” before the old TDR contents  
have been moved into the TSR, the old byte will be lost. Software should check that the TDRE bit  
is set to “1” before writing to the TDR.  
(2) Multiple Receive Errors: Table 10.10 lists the values of flag bits in the SSR when multiple  
receive errors occur, and indicates whether the RSR contents are transferred to the RDR.  
Rev. 3.0, 09/98, page 224 of 361  
Table 10.10 SSR Bit States and Data Transfer when Multiple Receive Errors Occur  
SSR Bits  
RSR →  
RDR*2  
Receive Error  
RDRF  
1*1  
0
ORER  
FER  
PER  
Overrun error  
1
0
0
1
1
0
1
0
1
0
1
0
1
1
0
0
1
0
1
1
1
No  
Framing error  
Yes  
Yes  
No  
Parity error  
0
Overrun and framing errors  
Overrun and parity errors  
Framing and parity errors  
Overrun, framing, and parity errors  
1*1  
1*1  
0
No  
Yes  
No  
1*1  
Notes: 1. Set to “1” before the overrun error occurs.  
2. Yes: The RSR contents are transferred to the RDR.  
No: The RSR contents are not transferred to the RDR.  
(3) Line Break Detection: When the RxD pin receives a continuous stream of 0’s in  
asynchronous mode (line-break state), a framing error occurs because the SCI detects a “0” stop  
bit. The value H'00 is transferred from the RSR to the RDR. Software can detect the line-break  
state as a framing error accompanied by H'00 data in the RDR.  
The SCI continues to receive data, so if the FER bit is cleared to “0” another framing error will  
occur.  
(4) Sampling Timing and Receive Margin in Asynchronous Mode: The serial clock used by  
the SCI in asynchronous mode runs at 16 times the baud rate. The falling edge of the start bit is  
detected by sampling the RxD input on the falling edge of this clock. After the start bit is  
detected, each bit of receive data in the frame (including the start bit, parity bit, and stop bit or  
bits) is sampled on the rising edge of the serial clock pulse at the center of the bit. See figure  
10.18.  
It follows that the receive margin can be calculated as in equation (1).  
When the absolute frequency deviation of the clock signal is 0 and the clock duty factor is 0.5,  
data can theoretically be received with distortion up to the margin given by equation (2). This is a  
theoretical limit, however. In practice, system designers should allow a margin of 20% to 30%.  
Rev. 3.0, 09/98, page 225 of 361  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
1
2
3
4 5  
Basic clock  
–7.5 pulses  
+7.5 pulses  
Receive data  
Sync sampling  
Data sampling  
D0  
D1  
Start bit  
Figure 10.18 Sampling Timing (Asynchronous mode)  
M = {(0.5 1/2N) (D 0.5)/N - (L 0.5) F} × 100 [%]  
(1)  
M: Receive margin  
N: Ratio of basic clock to baud rate (N=16)  
D: Duty factor of clock-ratio of High pulse width to Low width (0.5 to 1.0)  
L: Frame length (9 to 12)  
F: Absolute clock frequency deviation  
When D = 0.5 and F = 0  
M = (0.5 1/2 × 16) × 100 [%] = 46.875%  
(2)  
Rev. 3.0, 09/98, page 226 of 361  
Section 11 A/D Converter  
11.1  
Overview  
The H8/338 Series includes an analog-to-digital converter module with eight input channels. A/D  
conversion is performed by the successive approximations method with 8-bit resolution.  
11.1.1  
Features  
The features of the on-chip A/D module are:  
8-bit resolution  
Eight analog input channels  
Rapid conversion  
Conversion time is 12.2µs per channel (minimum) with a 10MHz system clock  
Single and scan modes  
Single mode: A/D conversion is performed once.  
Scan mode: A/D conversion is performed in a repeated cycle on one to four channels.  
Four 8-bit data registers  
These registers store A/D conversion results for up to four channels.  
Sample-and-hold function  
External triggering can be selected  
A CPU interrupt (ADI) can be requested at the completion of each A/D conversion cycle.  
Rev. 3.0, 09/98, page 227 of 361  
11.1.2  
Block Diagram  
Internal  
data bus  
Module data bus  
AVCC  
A
D
D
R
A
A
D
D
R
B
A
D
D
R
C
A
D
D
R
D
A
D
C
S
R
A
D
C
R
8 Bit  
D/A  
AVSS  
AN  
AN  
AN  
AN  
AN  
AN  
AN  
AN  
0
1
2
3
4
5
6
7
+
-
Ø/8  
Analog  
multi-  
plexer  
Comparator  
Control circuit  
Ø/16  
Sample and  
hold circuit  
ADI  
Interrupt signal  
ADTRG  
Legend:  
ADCR  
: A/D Control Register (8 bits)  
ADCSR : A/D Control/Status Register (8 bits)  
ADDRA : A/D Data Register A (8 bits)  
ADDRB : A/D Data Register B (8 bits)  
ADDRC : A/D Data Register C (8 bits)  
ADDRD : A/D Data Register D (8 bits)  
Figure 11.1 Block Diagram of A/D Converter  
Rev. 3.0, 09/98, page 228 of 361  
11.1.3  
Input Pins  
Table 11.1 lists the input pins used by the A/D converter module.  
The eight analog input pins are divided into two groups, consisting of analog inputs 0 to 3 (AN0 to  
AN3) and analog inputs 4 to 7 (AN4 to AN7), respectively.  
Table 11.1 A/D Input Pins  
Name  
Abbreviation  
I/O  
Function  
Analog supply voltage  
AVCC  
Input  
Power supply and reference voltage for the  
analog circuits.  
Analog ground  
AVSS  
Input  
Ground and reference voltage for the analog  
circuits.  
Analog input 0  
Analog input 1  
Analog input 2  
Analog input 3  
Analog input 4  
Analog input 5  
Analog input 6  
Analog input 7  
A/D external trigger  
AN0  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Analog input pins, group 0  
AN1  
AN2  
AN3  
AN4  
AN5  
Analog input pins, group 1  
AN6  
AN7  
ADTRG  
External trigger for starting A/D conversion  
11.1.4  
Register Configuration  
Table 11.2 lists the registers of the A/D converter module.  
Table 11.2 A/D Registers  
Name  
Abbreviation  
ADDRA  
ADDRB  
ADDRC  
ADDRD  
ADCSR  
ADCR  
R/W  
R
Initial Value  
H’00  
Address  
H’FFE0  
H’FFE2  
H’FFE4  
H’FFE6  
H’FFE8  
H’FFEA  
A/D data register A  
A/D data register B  
A/D data register C  
A/D data register D  
A/D control/status register  
A/D control register  
R
H’00  
R
H’00  
R
H’00  
R/(W)* H’00  
R/W H’7E  
Note: Software can write a “0” to clear bit 7, but cannot write a “1” in this bit.  
Rev. 3.0, 09/98, page 229 of 361  
11.2  
Register Descriptions  
11.2.1  
A/D Data Registers (ADDR) H’FFE0 to H’FFE6  
Bit:  
7
6
5
4
3
2
1
0
ADDRn:  
Initial value:  
Read/Write:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
(n = A to D)  
The four A/D data registers (ADDRA to ADDRD) are 8-bit read-only registers that store the  
results of A/D conversion. Each data register is assigned to two analog input channels as indicated  
in table 11.3.  
The A/D data registers are always readable by the CPU.  
The A/D data registers are initialized to H00 at a reset and in the standby modes.  
Table 11.3 Assignment of Data Registers to Analog Input Channels  
Analog Input Channel  
Group 0  
AN0  
Group 1  
AN4  
A/D Data Register  
ADDRA  
AN1  
AN5  
ADDRB  
AN2  
AN6  
ADDRC  
AN3  
AN7  
ADDRD  
11.2.2  
A/D Control/Status Register (ADCSR) H’FFE8  
Bit:  
7
ADF  
0
6
ADIE  
0
5
ADST  
0
4
SCAN  
0
3
2
1
0
CKS  
0
CH2  
0
CH1  
0
CH0  
0
Initial value:  
Read/Write: R/(W)*  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Note: Software can write a “0” in bit 7 to clear the flag, but cannot write a “1” in this bit.  
The A/D control/status register (ADCSR) is an 8-bit readable/writable register that controls the  
operation of the A/D converter module.  
The ADCSR is initialized to H00 at a reset and in the standby modes.  
Rev. 3.0, 09/98, page 230 of 361  
Bit 7 A/D End Flag (ADF): This status flag indicates the end of one cycle of A/D conversion.  
Bit 7  
ADF  
Description  
0
To clear ADF, the CPU must read ADF after it has been set to “1,”  
then write a “0” in this bit.  
(Initial value)  
1
This bit is set to 1 at the following times:  
(1) Single mode: when one A/D conversion is completed.  
(2) Scan mode: when inputs on all selected channels have been converted.  
Bit 6 A/D Interrupt Enable (ADIE): This bit selects whether to request an A/D interrupt  
(ADI) when A/D conversion is completed.  
Bit 6  
ADIE  
Description  
0
1
The A/D interrupt request (ADI) is disabled.  
The A/D interrupt request (ADI) is enabled.  
(Initial value)  
Bit 5 A/D Start (ADST): The A/D converter operates while this bit is set to “1.” This bit can  
be set to “1” by the external trigger signal ADTRG.  
Bit 5  
ADST  
Description  
0
1
A/D conversion is halted. (Initial value)  
(1) Single mode: One A/D conversion is performed. The ADST bit is automatically  
cleared to “0” at the end of the conversion.  
(2) Scan mode: A/D conversion starts and continues cyclically on the selected  
channels until the ADST bit is cleared to “0” by software (or a reset, or by entry to a  
standby mode).  
Bit 4 Scan Mode (SCAN): This bit selects the scan mode or single mode of operation.  
See section 11.3, “Operation” for descriptions of these modes.  
The mode should be changed only when the ADST bit is cleared to “0.”  
Bit 4  
SCAN  
Description  
Single mode  
Scan mode  
0
1
(Initial value)  
Rev. 3.0, 09/98, page 231 of 361  
Bit 3 Clock Select (CKS): This bit controls the A/D conversion time.  
The conversion time should be changed only when the ADST bit is cleared to “0.”  
Bit 3  
CKS  
Description  
0
1
Conversion time = 242 states (max)  
Conversion time = 122 states (max)  
(Initial value)  
Bits 2 to 0 Channel Select 2 to 0 (CH2 to CH0): These bits and the SCAN bit combine to  
select one or more analog input channels.  
The channel selection should be changed only when the ADST bit is cleared to “0.”  
Group  
Select  
CH2  
Channel Select  
Selected Channels  
Scan Mode  
AN0  
CH1  
CH0  
0
Single Mode  
0
1
0
0
1
1
0
0
1
1
AN0 (Initial value)  
1
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
AN0, AN1  
0
AN0 to AN2  
AN0 to AN3  
AN4  
1
0
1
AN4, AN5  
0
AN4 to AN6  
AN4 to AN7  
1
Rev. 3.0, 09/98, page 232 of 361  
11.2.3  
A/D Control Register (ADCR) H’FFEA  
Bit:  
7
TRGE  
0
6
1
5
1
4
1
3
1
2
1
1
1
0
CHS  
0
Initial value:  
Read/Write:  
R/W  
R/W  
The A/D control register (ADCR) is an 8-bit readable/writable register that enables or disables the  
A/D external trigger signal.  
The ADCR is initialized to H7E at a reset and in the standby modes.  
Bit 7 Trigger Enable (TRGE): This bit enables the ADTRG (A/D external trigger) signal to  
set the ADST bit and start A/D conversion.  
Bit 7  
TRGE  
Description  
0
1
A/D external trigger is disabled. ADTRG does not set the ADST bit.  
(Initial value)  
A/D external trigger is enabled. ADTRG sets the ADST bit.  
(The ADST bit can also be set by software.)  
Bits 6 to 1 Reserved: These bits cannot be modified and are always read as “1.”  
Bit 0 Channel Set Select (CHS): This bit is reserved. It does not affect any operation in the  
H8/338 Series.  
Rev. 3.0, 09/98, page 233 of 361  
11.3  
Operation  
The A/D converter performs 8 successive approximations to obtain a result ranging from H00  
(corresponding to AVSS) to HFF (corresponding to AVCC).  
The A/D converter module can be programmed to operate in single mode or scan mode as  
explained below.  
11.3.1  
Single Mode (SCAN = 0)  
The single mode is suitable for obtaining a single data value from a single channel. A/D  
conversion starts when the ADST bit is set to “1,” either by software or by a High-to-Low  
transition of the ADTRG signal (if enabled). During the conversion process the ADST bit  
remains set to “1.” When conversion is completed, the ADST bit is automatically cleared to “0.”  
When the conversion is completed, the ADF bit is set to “1.” If the interrupt enable bit (ADIE) is  
also set to “1,” an A/D conversion end interrupt (ADI) is requested, so that the converted data can  
be processed by an interrupt-handling routine. The ADF bit is cleared when software reads the  
A/D control/status register (ADCSR), then writes a “0” in this bit.  
Before selecting the single mode, clock, and analog input channel, software should clear the  
ADST bit to “0” to make sure the A/D converter is stopped. Changing the mode, clock, or  
channel selection while A/D conversion is in progress can lead to conversion errors. A/D  
conversion begins when the ADST bit is set to “1” again. The same instruction can be used to  
alter the mode and channel selection and set ADST to “1.”  
The following example explains the A/D conversion process in single mode when channel 1  
(AN1) is selected and the external trigger is disabled. Figure 11.2 shows the corresponding timing  
chart.  
(1) Software clears the ADST bit to “0,” then selects the single mode (SCAN = “0”) and channel 1  
(CH2 to CH0 = “001”), enables the A/D interrupt request (ADIE = “1”), and sets the ADST bit  
to “1” to start A/D conversion.  
Coding Example: (when using the slow clock, CKS = “0”)  
BCLR #5, @H’FFE8  
MOV.B #H’7F, ROL  
MOV.B ROL, @H’FFEA  
MOV.B #H’61, ROL  
MOV.B ROL, @H’FFE8  
;Clear ADST  
;Disable external trigger  
;Select mode and channel and set ADST to “1”  
Rev. 3.0, 09/98, page 234 of 361  
Value set in ADCSR  
ADF  
0
ADIE  
1
ADST  
1
SCAN  
0
CKS  
0
CH2  
0
CH1  
0
CH0  
1
(2) The A/D converter converts the voltage level at the AN1 input pin to a digital value. At the  
end of the conversion process the A/D converter transfers the result to register ADDRB, sets  
the ADF bit to “1,” clears the ADST bit to “0,” and halts.  
(3) ADF = “1” and ADIE = “1,” so an A/D interrupt is requested.  
(4) The user-coded A/D interrupt-handling routine is started.  
(5) The interrupt-handling routine reads the ADCSR value, then writes a “0” in the ADF bit to  
clear this bit to “0.”  
(6) The interrupt-handling routine reads and processes the A/D conversion result (ADDRB).  
(7) The routine ends.  
Steps (2) to (7) can now be repeated by setting the ADST bit to “1” again.  
Rev. 3.0, 09/98, page 235 of 361  
Interrupt (ADI)  
ADIE  
Set*  
Set*  
Set*  
A/D conversion starts  
ADST  
Clear*  
Clear*  
ADF  
Channel 0 (AN0)  
Channel 1 (AN1)  
Channel 2 (AN2)  
Waiting  
Waiting  
Waiting  
Waiting  
Waiting  
Waiting  
A/D conver-  
sion (1)  
A/D conver-  
sion (2)  
Channel 3 (AN3)  
ADDRA  
Read result  
A/D conversion result (1)  
Read result  
ADDRB  
ADDRC  
ADDRD  
A/D conversion result (2)  
Note:  
* indicates execution of a software instruction  
Figure 11.2 A/D Operation in Single Mode (when Channel 1 is Selected)  
Rev. 3.0, 09/98, page 236 of 361  
11.3.2  
Scan Mode (SCAN = 1)  
The scan mode can be used to monitor analog inputs on one or more channels. When the ADST  
bit is set to “1,” either by software or by a High-to-Low transition of the ADTRG signal (if  
enabled), A/D conversion starts from the first channel selected by the CH bits. When CH2 = “0”  
the first channel is AN0. When CH2 = “1” the first channel is AN4.  
If the scan group includes more than one channel (i.e., if bit CH1 or CH0 is set), conversion of the  
next channel (AN1 or AN5) begins as soon as conversion of the first channel ends.  
Conversion of the selected channels continues cyclically until the ADST bit is cleared to “0.” The  
conversion results are placed in the data registers corresponding to the selected channels. The A/D  
data registers are readable by the CPU.  
Before selecting the scan mode, clock, and analog input channels, software should clear the ADST  
bit to “0” to make sure the A/D converter is stopped. Changing the mode, clock, or channel  
selection while A/D conversion is in progress can lead to conversion errors. A/D conversion  
begins from the first selected channel when the ADST bit is set to “1” again. The same instruction  
can be used to alter the mode and channel selection and set ADST to “1.”  
The following example explains the A/D conversion process when three channels in group 0 are  
selected (AN0, AN1, and AN2) and the external trigger is disabled. Figure 11.3 shows the  
corresponding timing chart.  
(1) Software clears the ADST bit to “0,” then selects the scan mode (SCAN = “1”), scan group 0  
(CH2 = “0”), and analog input channels AN0 to AN2 (CH1 = “1” and CH0 = “0”) and sets the  
ADST bit to “1” to start A/D conversion.  
Coding Example: (with slow clock and ADI interrupt enabled)  
BCLR #5, @H’FFE8  
MOV.B #H’7F, ROL  
MOV.B ROL, @H’FFEA  
MOV.B #H’72, ROL  
MOV.B ROL, @H’FFE8  
Value set in ADCSR  
;Clear ADST  
;Disable external trigger  
;Select mode and channels and set ADST to “1”  
ADF  
0
ADIE  
1
ADST  
1
SCAN  
1
CKS  
0
CH2  
0
CH1  
1
CH0  
0
(2) The A/D converter converts the voltage level at the AN0 input pin to a digital value, and  
transfers the result to register ADDRA.  
(3) Next the A/D converter converts AN1 and transfers the result to ADDRB. Then it converts  
AN2 and transfers the result to ADDRC.  
Rev. 3.0, 09/98, page 237 of 361  
(4) After all selected channels (AN0 to AN2) have been converted, the AD converter sets the ADF  
bit to “1.” If the ADIE bit is set to “1,” an A/D interrupt (ADI) is requested. Then the A/D  
converter begins converting AN0 again.  
(5) Steps (2) to (4) are repeated cyclically as long as the ADST bit remains set to “1.”  
To stop the A/D converter, software must clear the ADST bit to “0.”  
Regardless of which channel is being converted when the ADST bit is cleared to “0,” when the  
ADST bit is set to “1” again, conversion begins from the the first selected channel (AN0).  
Continuous A/D conversion  
Set*  
Clear*1  
ADST  
ADF  
Clear*1  
A/D conversion  
time  
Channel 0  
Waiting  
Waiting  
Waiting  
A/D conver-  
sion (4)  
A/D conver-  
sion (1)  
(AN0)  
Channel 1  
(AN  
2
*
Waiting  
Waiting  
Waiting  
A/D conver-  
sion (2)  
A/D conver-  
sion (5)  
1
)
Channel 2  
(AN  
Waiting  
Waiting  
A/D conver-  
sion (3)  
2
)
Channel 3  
(AN  
Waiting  
3
)
Transfer  
ADDRA  
A/D conversion result (4)  
A/D conver-  
sion result (1)  
ADDRB  
ADDRC  
ADDRD  
A/D conversion result (2)  
A/D conversion result (3)  
Notes: 1. indicates execution of a software instruction  
2. Data undergoing conversion when ADST bit is cleared are ignored.  
Figure 11.3 A/D Operation in Scan Mode (when Channels 0 to 2 are Selected)  
Rev. 3.0, 09/98, page 238 of 361  
11.3.3  
Input Sampling Time and A/D Conversion Time  
The A/D converter includes a built-in sample-and-hold circuit. Sampling of the input starts at a  
time tD after the ADST bit is set to “1.” The sampling process lasts for a time tSPL. The actual  
A/D conversion begins after sampling is completed. Figure 11.4 shows the timing of these steps.  
Table 11.4 (a) lists the conversion times for the single mode. Table 11.4 (b) lists the conversion  
times for the scan mode.  
The total conversion time (tCONV) includes tD and tSPL. The purpose of tD is to synchronize the  
ADCSR write time with the A/D conversion process, so the length of tD is variable. The total  
conversion time therefore varies within the minimum to maximum ranges indicated in table 11.4  
(a) and (b).  
In the scan mode, the ranges given in table 11.4 (b) apply to the first conversion. The length of the  
second and subsequent conversion processes is fixed at 256 states (when CKS = “0”) or 128 states  
(when CKS = “1”).  
Rev. 3.0, 09/98, page 239 of 361  
(1)  
(2)  
Ø
Internal  
address bus  
Write signal  
Input sampling  
timing  
ADF  
t
D
tSPL  
t
CONV  
Legend:  
(1)  
(2)  
: ADCSR write cycle  
: ADCSR address  
t
t
t
D
: Synchronization delay  
: Input sampling time  
SPL  
CONV : Total A/D conversion time  
Figure 11.4 A/D Conversion Timing  
Table 11.4 (a) A/D Conversion Time (Single mode)  
CKS = “0”  
CKS = “1”  
Item  
Symbol  
tD  
Min  
Typ  
Max  
Min  
Typ  
Max  
Synchronization delay  
Input sampling time  
Total A/D conversion time  
18  
33  
10  
17  
tSPL  
63  
31  
tCONV  
227  
242  
115  
122  
Rev. 3.0, 09/98, page 240 of 361  
Table 11.4 (b) A/D Conversion Time (Scan mode)  
CKS = “0”  
CKS = “1”  
Item  
Symbol  
tD  
Min  
Typ  
Max  
Min  
Typ  
Max  
Synchronization delay  
Input sampling time  
Total A/D conversion time  
18  
33  
10  
17  
tSPL  
63  
31  
tCONV  
259  
274  
131  
138  
Note: Values in the tables above are numbers of states.  
11.3.4  
External Trigger Input Timing  
A/D conversion can be started by external trigger input at the ADTRG pin. This input is enabled  
or disabled by the TRGE bit in the A/D control register (ADCR). If the TRGE bit is set to “1,”  
when a falling edge of ADTRG is detected the ADST bit is set to “1” and A/D conversion begins.  
Subsequent operation in both single and scan modes is the same as when the ADST bit is set to  
“1” by software.  
Figure 11.5 shows the trigger timing.  
Ø
ADTRG  
Internal  
trigger signal  
ADST  
A/D conversion  
Figure 11.5 External Trigger Input Timing  
Rev. 3.0, 09/98, page 241 of 361  
11.4  
Interrupts  
The A/D conversion module generates an A/D-end interrupt request (ADI) at the end of A/D  
conversion.  
The ADI interrupt request can be enabled or disabled by the ADIE bit in the A/D control/status  
register (ADCSR).  
Rev. 3.0, 09/98, page 242 of 361  
Section 12 D/A Converter  
12.1  
Overview  
The H8/338 Series has an on-chip D/A converter module with two channels.  
12.1.1 Features  
Features of the D/A converter module are listed below.  
Eight-bit resolution  
Two-channel output  
Maximum conversion time: 10µs (with 30pF load capacitance)  
Output voltage: 0V to AVCC  
Rev. 3.0, 09/98, page 243 of 361  
12.1.2  
Block Diagram  
Figure 12.1 shows a block diagram of the D/A converter.  
Module data bus  
Internal data bus  
AVCC  
DA  
DA  
0
1
8 Bit  
D/A  
AVSS  
Control  
circuit  
Legend:  
DACR : D/A control register  
DADR0 : D/A data register 0  
DADR1 : D/A data register 1  
Figure 12.1 D/A Converter Block Diagram  
Rev. 3.0, 09/98, page 244 of 361  
12.1.3  
Input and Output Pins  
Table 12.1 lists the input and output pins used by the D/A converter module.  
Table 12.1 Input and Output Pins of D/A Converter Module  
Name  
Abbreviation  
I/O  
Function  
Analog supply voltage AVCC  
Input  
Power supply and reference voltage for analog  
circuits  
Analog ground  
AVSS  
Input  
Ground and reference voltage for analog  
circuits  
Analog output 0  
Analog output 1  
DA0  
DA1  
Output Analog output channel 0  
Output Analog output channel 1  
12.1.4  
Register Configuration  
Table 12.2 lists the three registers of the D/A converter module.  
Table 12.2 D/A Converter Registers  
Name  
Abbreviation  
DADR0  
R/W  
R/W  
R/W  
R/W  
Initial Value  
H’00  
Address  
H’FFA8  
H’FFA9  
H’FFAA  
D/A data register 0  
D/A data register 1  
D/A control register  
DADR1  
H’00  
DACR  
H’1F  
Rev. 3.0, 09/98, page 245 of 361  
12.2  
Register Descriptions  
12.2.1  
D/A Data Registers 0 and 1 (DADR0, DADR1) H’FFA8, H’FFA9  
Bit:  
7
6
5
4
3
2
1
0
Initial value:  
Read/Write:  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
D/A data registers 0 and 1 (DADR0 and DADR1) are 8-bit readable and writable registers that  
store data to be converted. When analog output is enabled, the value in the D/A data register is  
converted and output continuously at the analog output pin.  
The D/A data registers are initialized to H00 at a reset and in the standby modes.  
12.2.2  
D/A Control Register (DACR) H’FFAA  
Bit:  
7
6
5
4
1
3
1
2
1
1
1
0
1
DAOE1 DAOE0  
DAE  
0
Initial value:  
Read/Write:  
0
0
R/W  
R/W  
R/W  
The D/A control register is an 8-bit readable and writable register that controls the operation of the  
D/A converter module.  
The D/A control register is initialized to H1F at a reset and in the standby modes.  
Bit 7 D/A Output Enable 1 (DAOE1): Controls analog output from the D/A converter.  
Bit 7  
DAOE1  
Description  
0
1
Analog output at DA1 is disabled.  
D/A conversion is enabled on channel 1. Analog output is enabled at DA1.  
Rev. 3.0, 09/98, page 246 of 361  
Bit 6 D/A Output Enable 0 (DAOE0): Controls analog output from the D/A converter.  
Bit 6  
DAOE0  
Description  
0
1
Analog output at DA0 is disabled.  
D/A conversion is enabled on channel 0. Analog output is enabled at DA0.  
Bit 5 D/A Enable (DAE): Controls analog output from the D/A converter, in combination with  
bits DAOE0 and DAOE1. D/A conversion is controlled independently on channels 0 and 1 when  
DAE = 0. Channels 0 and 1 are controlled together when DAE = 1.  
Whether or not to output the converted results is always controlled independently by DAOE0 and  
DAOE1.  
Bit 7  
DAOE1  
Bit 6  
DAOE0  
Bit 5  
DAE  
D/A conversion  
0
0
0
1
Disabled on channels 0 and 1.  
0
Enabled on channel 0.  
Disabled on channel 1.  
0
1
1
0
1
0
Enabled on channels 0 and 1.  
Disabled on channel 0.  
Enabled on channel 1.  
1
1
0
1
1
Enabled on channels 0 and 1.  
Enabled on channels 0 and 1.  
When the DAE bit is set to “1,” analog power supply current drain is the same as during A/D and  
D/A conversion, even if the DAOE0 and DAOE1 bits in DACR and the ADST bit in ADSCR are  
cleared to “0.”  
Bits 4 to 0 Reserved: These bits cannot be modified and are always read as “1.”  
Rev. 3.0, 09/98, page 247 of 361  
12.3  
Operation  
The D/A converter module has two built-in D/A converter circuits that can operate independently.  
D/A conversion is performed continuously whenever enabled by the D/A control register. When a  
new value is written in DADR0 or DADR1, conversion of the new value begins immediately. The  
converted result is output by setting the DAOE0 or DAOE1 bit to “1.”  
An example of conversion on channel 0 is given next. Figure 12.2 shows the timing.  
(1) Software writes the data to be converted in DADR0.  
(2) D/A conversion begins when the DAOE0 bit in DACR is set to “1.” After a conversion delay,  
analog output appears at the DA0 pin. The output value is AVCC × (DADR0 value)/256.  
This output continues until a new value is written in DADR0 or the DAOE0 bit is cleared to 0.  
(3) If a new value is written in DADR0, conversion begins immediately. Output of the converted  
result begins after the conversion delay time.  
(4) When the DAOE0 bit is cleared to 0, DA0 becomes an input pin.  
DADR0  
DADR  
DADR0  
DADR  
write cycle  
write cycle  
write cycle  
write cycle  
Ø
Address  
DADR0  
DAOE0  
DA0  
Conversion data (1)  
Conversion data (2)  
Conversion data (2)  
Conversion data (1)  
High-impedance state  
t
DCONV  
tDCONV  
Legend:  
t
DCONV : D/A conversion time  
Figure 12.2 D/A Conversion (Example)  
Rev. 3.0, 09/98, page 248 of 361  
Section 13 RAM  
13.1  
Overview  
The H8/338 includes 2k bytes of on-chip static RAM. The H8/337 and H8/336 have 1k byte. The  
RAM is connected to the CPU by a 16-bit data bus. Both byte and word access to the on-chip  
RAM are performed in two states, enabling rapid data transfer and instruction execution.  
The on-chip RAM is assigned to addresses HF780 to HFF7F in the address space of the H8/338,  
and addresses HFB80 to HFF7F in the address space of the H8/337 and H8/336. The RAME bit  
in the system control register (SYSCR) can enable or disable the on-chip RAM, permitting these  
addresses to be allocated to external memory instead, if so desired.  
13.2  
Block Diagram  
Figure 13.1 is a block diagram of the on-chip RAM.  
Internal data bus (upper 8 bits)  
Internal data bus (lower 8 bits)  
H'F780  
H'F781  
H'F783  
H'F782  
On-chip RAM  
H'FF7E  
H'FF7F  
Even address  
Odd address  
Figure 13.1 Block Diagram of On-Chip RAM (H8/338)  
Rev. 3.0, 09/98, page 249 of 361  
13.3  
RAM Enable Bit (RAME) in System Control Register (SYSCR)  
The on-chip RAM is enabled or disabled by the RAME (RAM Enable) bit in the system control  
register (SYSCR).  
Bit:  
7
SSBY  
0
6
STS2  
0
5
STS1  
0
4
STS0  
0
3
1
2
NMIEG  
0
1
DPME  
0
0
RAME  
1
Initial value:  
Read/Write:  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The only bit in the system control register that concerns the on-chip RAM is the RAME bit. See  
section 2.2, "System Control Register," for the other bits.  
Bit 0 RAM Enable (RAME): This bit enables or disables the on-chip RAM.  
The RAME bit is initialized to "1" on the rising edge of the RES signal, so a reset enables the on-  
chip RAM. The RAME bit is not initialized in the software standby mode.  
Bit 7  
RAME  
Description  
0
1
On-chip RAM is disabled.  
On-chip RAM is enabled.  
(Initial value)  
13.4  
Operation  
13.4.1  
Expanded Modes (Modes 1 and 2)  
If the RAME bit is set to "1," accesses to addresses HF780 to HFF7F in the H8/338 and addresses  
HFB80 to HFF7F in the H8/337 and H8/336 are directed to the on-chip RAM. If the RAME bit  
is cleared to "0," accesses to these addresses are directed to the external data bus.  
13.4.2  
Single-Chip Mode (Mode 3)  
If the RAME bit is set to "1," accesses to addresses HF780 to HFF7F in the H8/338 and addresses  
HFB80 to HFF7F in the H8/337 and H8/336 are directed to the on-chip RAM.  
If the RAME bit is cleared to "0," the on-chip RAM data cannot be accessed. Attempted write  
access has no effect. Attempted read access always results in HFF data being read.  
Rev. 3.0, 09/98, page 250 of 361  
Section 14 ROM  
14.1  
Overview  
The H8/338 includes 48k bytes of high-speed, on-chip ROM. The H8/337 has 32k bytes. The  
H8/336 has 24k bytes. The on-chip ROM is connected to the CPU via a 16-bit data bus. Both  
byte data and word data are accessed in two states, enabling rapid data transfer and instruction  
fetching.  
The on-chip ROM is enabled or disabled depending on the MCU operating mode, which is  
determined by the inputs at the mode pins (MD1 and MD0). See table 14.1.  
Table 14.1 On-Chip ROM Usage in Each MCU Mode  
Mode Pins  
Mode  
MD1  
MD0  
On-chip ROM  
Disabled (external addresses)  
Enabled  
Mode 1 (expanded mode)  
Mode 2 (expanded mode)  
Mode 3 (single-chip mode)  
0
1
1
1
0
1
Enabled  
The H8/338 and H8/337 are available with electrically programmable ROM (PROM), or with  
masked ROM. The PROM version has a PROM mode in which the chip can be programmed with  
a standard PROM writer.  
Rev. 3.0, 09/98, page 251 of 361  
14.1.1  
Block Diagram  
Figure 14.1 is a block diagram of the on-chip ROM.  
Internal data bus (upper 8 bits)  
Internal data bus (lower 8 bits)  
H'0000  
H'0001  
H'0003  
H'0002  
On-chip ROM  
H'BFFE  
H'BFFF  
Even addresses  
Odd addresses  
Figure 14.1 Block Diagram of On-Chip ROM (H8/338)  
PROM Mode (H8/338, H8/337)  
PROM Mode Setup  
14.2  
14.2.1  
In the PROM mode of the PROM version of the H8/338 and H8/337, the usual microcomputer  
functions are halted to allow the on-chip PROM to be programmed. The programming method is  
the same as for the HN27C101.  
To select the PROM mode, apply the signal inputs listed in table 14.2.  
Table 14.2 Selection of PROM Mode  
Pin  
Input  
Low  
Low  
Low  
High  
Mode pin MD1  
Mode pin MD0  
STBY pin  
Pins P63 and P64  
Rev. 3.0, 09/98, page 252 of 361  
14.2.2  
Socket Adapter Pin Assignments and Memory Map  
The H8/338 and H8/337 can be programmed with a general-purpose PROM writer by using a  
socket adapter to change the pin-out to 32 pins. There are different socket adapters for different  
packages as listed in table 14.3. The same socket adapters can be used for both the H8/338 and  
H8/337. Figure 14.2 shows the socket adapter pin assignments.  
Table 14.3 Socket Adapters  
Package  
Socket Adapter  
HS338ESC02H  
HS338ESG02H  
HS338ESH02H  
84-pin PLCC  
84-pin windowed LCC  
80-pin QFP  
The PROM size is 48k bytes for the H8/338 and 32k bytes for the H8/337. Figures 14.3 and 14.4  
show memory maps of the H8/338 and H8/337 in PROM mode. HFF data should be specified for  
unused address areas in the on-chip PROM.  
When programming with a PROM writer, limit the program address range to H0000 to HBFFF  
for the H8/338 and H0000 to H7FFF for the H8/337. Specify HFF data for addresses HC000  
and above (H8/338) or H8000 and above (H8/337). If these addresses are programmed by  
mistake, it may become impossible to program or verify the PROM data. The same problem may  
occur if an attempt is made to program the chip in page programming mode. Particular care is  
required with a plastic package, since the programmed data cannot be erased.  
Rev. 3.0, 09/98, page 253 of 361  
H8/337, H8/338  
CG-84,  
EPROM Socket  
HN27C101  
FP-80A  
CP-84  
12  
17  
79  
80  
81  
82  
83  
84  
1
Pin  
Pin  
(32 pins)  
1
6
RES  
NMI  
VPP  
1
EA  
EO  
EO  
EO  
EO  
EO  
EO  
EO  
EO  
EA  
EA  
EA  
EA  
EA  
EA  
EA  
EA  
EA  
OE  
9
26  
13  
14  
15  
17  
18  
19  
20  
21  
12  
11  
10  
9
65  
66  
67  
68  
69  
70  
71  
72  
64  
63  
62  
61  
60  
59  
58  
57  
55  
54  
53  
52  
51  
50  
49  
48  
20  
19  
18  
24  
25  
29  
8
P3  
P3  
P3  
P3  
P3  
P3  
P3  
P3  
P1  
P1  
P1  
P1  
P1  
P1  
P1  
P1  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P9  
P9  
P9  
P6  
P6  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
8
3
78  
77  
76  
75  
74  
73  
72  
71  
69  
68  
67  
66  
65  
63  
62  
61  
32  
31  
30  
36  
37  
42  
19  
60  
16  
15  
18  
51  
2
8
7
6
5
27  
24  
23  
25  
4
EA10  
EA11  
EA12  
EA13  
EA14  
CE  
28  
29  
22  
2
EA16  
EA15  
PGM  
VCC  
3
31  
32  
AVCC  
VCC  
47  
5
VCC  
MD  
0
V
SS  
16  
4
MD  
1
7
STBY  
AVSS  
38  
12  
56  
73  
V
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
SS  
4
23  
24  
41  
64  
70  
PP  
V
:
: Program voltage (12.5 V)  
EO 7 to EO0 : Data input/output  
0
EA16 to EA  
OE:  
: Address input  
: Output enable  
: Chip enable  
CE:  
PGM:  
: Program enable  
Note: All pins not listed in this figure should be left open.  
Figure 14.2 Socket Adapter Pin Assignments  
Rev. 3.0, 09/98, page 254 of 361  
Address in MCU mode  
H'0000  
Address in PROM mode  
H'0000  
On-chip  
PROM  
H'BFFF  
H'BFFF  
Undetermined  
output*  
H'1FFFF  
Note: * If this address area is read in PROM mode, the output data are undetermined.  
Figure 14.3 H8/338 Memory Map in PROM Mode  
Rev. 3.0, 09/98, page 255 of 361  
Address in MCU mode  
H'0000  
Address in PROM mode  
H'0000  
On-chip  
PROM  
H'7FFF  
H'7FFF  
Undetermined  
output*  
H'1FFFF  
Note: * If this address area is read in PROM mode, the output data are undetermined.  
Figure 14.4 H8/337 Memory Map in PROM Mode  
Rev. 3.0, 09/98, page 256 of 361  
14.3  
Programming  
The write, verify, and other sub-modes of the PROM mode are selected as shown in table 14.4.  
Table 14.4 Selection of Sub-Modes in PROM Mode  
Sub-Mode  
Write  
CE  
OE  
PGM  
Low  
High  
Low  
High  
Low  
High  
VPP  
VPP  
VPP  
VPP  
VCC  
VCC  
VCC  
VCC  
EO7 to EO0  
Data input  
Data output  
EA16 to EA0  
Address input  
Address input  
Low  
Low  
Low  
Low  
High  
High  
High  
Low  
Low  
High  
Low  
High  
Verify  
Programming  
inhibited  
High impedance Address input  
Note: The VPP and VCC pins must be held at the VPP and VCC voltage levels.  
The H8/338 or H8/337 PROM has the same standard read/write specifications as the HN27C101  
EPROM. Page programming is not supported, however, so do not select page programming  
mode. PROM writers that provide only page programming cannot be used. When selecting a  
PROM writer, check that it supports the byte-at-a-time high-speed programming mode. Be sure to  
set the address range to H0000 to HBFFF for the H8/338, and to H0000 to H7FFF for the  
H8/337.  
14.3.1  
Writing and Verifying  
An efficient, high-speed programming procedure can be used to write and verify PROM data.  
This procedure writes data quickly without subjecting the chip to voltage stress and without  
sacrificing data reliability. It leaves the data HFF written in unused addresses.  
Figure 14.5 shows the basic high-speed programming flowchart.  
Tables 14.5 and 14.6 list the electrical characteristics of the chip in the PROM mode. Figure 14.6  
shows a write/verify timing chart.  
Rev. 3.0, 09/98, page 257 of 361  
START  
Set program/verify mode  
VCC = 6.0V ±0.25V, VPP = 12.5V ±0.3V  
Address = 0  
n = 1  
n + 1  
n
Yes  
n < 25?  
No  
Program tPW = 0.2 ms ±5%  
No  
Address + 1 Address  
Verify OK?  
Yes  
Program tOPW = 0.2n ms  
No  
Last address?  
Yes  
Set read mode  
VCC = 5.0V ±0.25V, VPP = VCC  
NoGo  
All addresses  
read?  
Error  
Go  
END  
Figure 14.5 High-Speed Programming Flowchart  
Rev. 3.0, 09/98, page 258 of 361  
Table 14.5 DC Characteristics  
(when VCC = 6.0V ±0.25V, VPP = 12.5V ±0.3V, VSS = 0V, Ta = 25°C ±5°C)  
Measurement  
Unit Conditions  
Item  
Symbol Min  
Typ  
Max  
VCC + 0.3 V  
Input High voltage  
EO7 EO0,  
16 A0,  
VIH  
2.4  
A
OE, CE, PGM  
Input Low voltage  
EO7 EO0,  
VIL  
0.3  
2.4  
0.8  
V
A16 A0,  
OE, CE, PGM  
Output High voltage EO7 EO0  
Output Low voltage EO7 EO0  
VOH  
VOL  
|ILI|  
V
IOH = 200µA  
0.45  
2
V
IOL = 1.6mA  
Input leakage current EO7 EO0,  
EA16 EA0,  
µA  
Vin = 5.25V/  
0.5V  
OE, CE, PGM  
VCC current  
VPP current  
ICC  
IPP  
40  
40  
mA  
mA  
Table 14.6 AC Characteristics  
(when VCC = 6.0V ±0.25V, VPP = 12.5V ±0.3V, Ta = 25°C ±5°C)  
Measurement  
Conditions  
Item  
Symbol  
tAS  
Min  
2
Typ  
Max  
Unit  
µs  
Address setup time  
OE setup time  
See figure 14.6*  
tOES  
tDS  
2
µs  
Data setup time  
Address hold time  
Data hold time  
2
µs  
tAH  
0
µs  
tDH  
2
µs  
Data output disable time  
Vpp setup time  
tDF  
130  
ns  
tVPS  
tPW  
2
µs  
Program pulse width  
0.19  
0.20  
0.21  
ms  
Note: Input pulse level: 0.8V to 2.2V  
Input rise/fall time 20ns  
Timing reference levels: input 1.0V, 2.0V; output 0.8V, 2.0V  
Rev. 3.0, 09/98, page 259 of 361  
Table 14.6. AC Characteristics (cont)  
(when VCC = 6.0V ±0.25V, VPP = 12.5V ±0.3V, Ta = 25°C ±5°C)  
Measurement  
Conditions  
Item  
Symbol  
Min  
Typ  
Max  
Unit  
OE pulse width for overwrite-  
programming  
tOPW  
0.19  
5.25  
ms  
See figure 14.6*  
VCC setup time  
tVCS  
tCES  
tOE  
2
2
0
µs  
µs  
ns  
CE setup time  
Data output delay time  
150  
Note: Input pulse level: 0.8V to 2.2V  
Input rise/fall time 20ns  
Timing reference levels: input 1.0V, 2.0V; output 0.8V, 2.0V  
Write  
Verify  
Address  
Data  
t
AS  
t
AH  
Input data  
Output data  
t
DS  
t
DH  
tDF  
V
PP  
CC  
V
V
PP  
CC  
V
t
VPS  
V
CC + 1  
CC  
V
t
VCS  
CE  
t
CES  
PGM  
OE  
t
PW  
t
OES  
tOE  
t
OPW  
Figure 14.6 PROM Write/Verify Timing  
Rev. 3.0, 09/98, page 260 of 361  
14.3.2  
Notes on Writing  
(1) Write with the specified voltages and timing. The programming voltage (VPP) is 12.5V.  
Caution: Applied voltages in excess of the specified values can permanently destroy the chip. Be  
particularly careful about the PROM writer’s overshoot characteristics.  
If the PROM writer is set to HN27C101 specifications, VPP will be 12.5V.  
(2) Before writing data, check that the socket adapter and chip are correctly mounted in the  
PROM writer. Overcurrent damage to the chip can result if the index marks on the PROM  
writer, socket adapter, and chip are not correctly aligned.  
(3) Don’t touch the socket adapter or chip while writing. Touching either of these can cause  
contact faults and write errors.  
(4) Page programming is not supported. Do not select page programming mode.  
(5) The H8/338 PROM size is 48K bytes. The H8/337 PROM size is 32K bytes. Set the  
address range to H0000 to HBFFF for the H8/338, and to H0000 to H7FFF for the H8/337.  
When programming, specify HFF data for unused address areas (HC000 to H1FFFF in the  
H8/338, H8000 to H1FFFF in the H8/337).  
Rev. 3.0, 09/98, page 261 of 361  
14.3.3  
Reliability of Written Data  
An effective way to assure the data holding characteristics of the programmed chips is to bake  
them at 150°C, then screen them for data errors. This procedure quickly eliminates chips with  
PROM memory cells prone to early failure.  
Figure 14.7 shows the recommended screening procedure.  
Write and verify program  
Bake with power off  
+ 8Hr*  
150C+10C, 48Hr  
– 0Hr  
Read and check program  
V
CC= 5.0V  
Install  
Note: * Baking time should be measured from the point when the baking oven reaches 150C.  
Figure 14.7 Recommended Screening Procedure  
If a series of write errors occurs while the same PROM writer is in use, stop programming and  
check the PROM writer and socket adapter for defects, using a microcomputer chip with a  
windowed package and on-chip EPROM.  
Please inform Hitachi of any abnormal conditions noted during programming or in screening of  
program data after high-temperature baking.  
Rev. 3.0, 09/98, page 262 of 361  
14.3.4  
Erasing of Data  
The windowed package enables data to be erased by illuminating the window with ultraviolet  
light. Table 14.7 lists the erasing conditions.  
Table 14.7 Erasing Conditions  
Item  
Value  
Ultraviolet wavelength  
Minimum illumination  
253.7 nm  
15W s/cm2  
The conditions in table 14.7 can be satisfied by placing a 12000µW/cm2 ultraviolet lamp 2 or 3  
centimeters directly above the chip and leaving it on for about 20 minutes.  
14.4  
Handling of Windowed Packages  
(1) Glass Erasing Window: Rubbing the glass erasing window of a windowed package with a  
plastic material or touching it with an electrically charged object can create a static charge on the  
window surface which may cause the chip to malfunction.  
If the erasing window becomes charged, the charge can be neutralized by a short exposure to  
ultraviolet light. This returns the chip to its normal condition, but it also reduces the charge stored  
in the floating gates of the PROM, so it is recommended that the chip be reprogrammed afterward.  
Accumulation of static charge on the window surface can be prevented by the following  
precautions:  
When handling the package, ground yourself. Don’t wear gloves. Avoid other possible  
sources of static charge.  
Avoid friction between the glass window and plastic or other materials that tend to accumulate  
static charge.  
Be careful when using cooling sprays, since they may have a slight ion content.  
Cover the window with an ultraviolet-shield label, preferably a label including a conductive  
material. Besides protecting the PROM contents from ultraviolet light, the label protects the  
chip by distributing static charge uniformly.  
(2) Handling after Programming: Fluorescent light and sunlight contain small amounts of  
ultraviolet, so prolonged exposure to these types of light can cause programmed data to invert. In  
addition, exposure to any type of intense light can induce photoelectric effects that may lead to  
chip malfunction. It is recommended that after programming the chip, you cover the erasing  
window with a light-proof label (such as an ultraviolet-shield label).  
Rev. 3.0, 09/98, page 263 of 361  
(3) Note on 84-Pin LCC Package: A socket should always be used when the 84-pin LCC  
package is mounted on a printed-circuit board. Table 14.8 lists the recommended socket.  
Table 14.8 Recommended Socket for Mounting 84-Pin LCC Package  
Manufacturer  
Code  
Sumitomo 3-M  
284-1273-00-1102J  
Rev. 3.0, 09/98, page 264 of 361  
Section 15 Power-Down State  
15.1  
Overview  
The H8/338 Series has a power-down state that greatly reduces power consumption by stopping  
some or all of the chip functions. The power-down state includes three modes:  
(1) Sleep mode a software-triggered mode in which the CPU halts but the rest of the chip  
remains active  
(2) Software standby mode a software-triggered mode in which the entire chip is inactive  
(3) Hardware standby mode a hardware-triggered mode in which the entire chip is inactive  
Table 15.1 lists the conditions for entering and leaving the power-down modes. It also indicates  
the status of the CPU, on-chip supporting modules, etc. in each power-down mode.  
Table 15.1 Power-Down State  
Entering  
CPU  
Sup.  
Exiting  
Mode  
Procedure  
Clock CPU Reg’s. Mod.  
RAM I/O Ports Methods  
Sleep  
mode  
Execute  
SLEEP  
instruction  
Run  
Halt Held  
Run  
Held Held  
Interrupt  
RES  
STBY  
Software Set SSBY bit Halt  
standby in SYSCR to  
mode  
Halt Held  
Halt and Held Held  
initialized  
NMI  
IRQ0 IRQ2  
RES  
“1,” then  
execute  
SLEEP  
STBY  
instruction  
Hardware Set STBY pin Halt  
standby to Low level  
mode  
Halt Not held Halt and Held High  
initialized impedance  
state  
STBY High,  
then RES  
Low High  
Notes: 1. SYSCR: System control register  
2. SSBY:  
Software standby bit  
Rev. 3.0, 09/98, page 265 of 361  
15.2  
System Control Register: Power-Down Control Bits  
Bits 7 to 4 of the system control register (SYSCR) concern the power-down state. Specifically,  
they concern the software standby mode.  
Table 15.2 lists the attributes of the system control register.  
Table 15.2 System Control Register  
Name  
Abbreviation  
R/W  
Initial Value  
Address  
System control register  
SYSCR  
R/W  
H’09  
H’FFC4  
Bit:  
7
SSBY  
0
6
STS2  
0
5
STS1  
0
4
STS0  
0
3
2
1
0
NMIEG  
0
DPME  
0
RAME  
1
Initial value:  
Read/Write:  
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Bit 7 Software Standby (SSBY): This bit enables or disables the transition to the software  
standby mode.  
On recovery from the software standby mode by an external interrupt, SSBY remains set to “1.”  
To clear this bit, software must write a “0.”  
Bit 7  
SSBY  
Description  
0
1
The SLEEP instruction causes a transition to the sleep mode.  
(Initial value)  
The SLEEP instruction causes a transition to the software standby mode.  
Bits 6 to 4 Standby Timer Select 2 to 0 (STS2 to STS0): These bits select the clock settling  
time when the chip recovers from the software standby mode by an external interrupt. During the  
selected time, the clock oscillator runs but clock pulses are not supplied to the CPU or the on-chip  
supporting modules.  
Bit 6  
Bit 5  
Bit 4  
STS2  
STS1  
STS0  
Description  
0
0
0
0
1
0
0
1
1
0
1
0
1
Settling time = 8192 states  
Settling time = 16384 states  
Settling time = 32768 states  
Settling time = 65536 states  
Settling time = 131072 states  
(Initial value)  
Rev. 3.0, 09/98, page 266 of 361  
When the on-chip clock pulse generator is used, the STS bits should be set to allow a settling time  
of at least 10ms. Table 15.3 lists the settling times selected by these bits at several clock  
frequencies and indicates the recommended settings.  
When the chip is externally clocked, the STS bits can be set to any value. The minimum value  
(STS2 = STS1 = STS0 = “0”) is recommended.  
Table 15.3 Times Set by Standby Timer Select Bits (Unit: ms)  
Settling  
Time  
System Clock Frequency (MHz)  
STS2 STS1 STS0 (states)  
10  
8
6
4
2
1
0.5  
0
0
0
0
1
0
0
1
1
0
1
0
1
8192  
0.8  
1.6  
3.3  
6.6  
13.1  
1.0  
2.0  
4.1  
8.2  
16.4  
1.3  
2.7  
5.5  
10.9  
21.8  
2.0  
4.1  
8.2  
16.4  
32.8  
4.1  
8.2  
16.4  
32.8  
65.5  
131.1  
16384  
32768  
65536  
131072  
8.2  
16.4  
32.8  
65.5  
16.4  
32.8  
65.5  
131.1 262.1  
Notes: 1. All times are in milliseconds.  
2. Recommended values are printed in boldface.  
Rev. 3.0, 09/98, page 267 of 361  
15.3  
Sleep Mode  
The sleep mode provides an effective way to conserve power while the CPU is waiting for an  
external interrupt or an interrupt from an on-chip supporting module.  
15.3.1  
Transition to Sleep Mode  
When the SSBY bit in the system control register is cleared to “0,” execution of the SLEEP  
instruction causes a transition from the program execution state to the sleep mode. After  
executing the SLEEP instruction, the CPU halts, but the contents of its internal registers remain  
unchanged. The on-chip supporting modules continue to operate normally.  
15.3.2  
Exit from Sleep Mode  
The chip wakes up from the sleep mode when it receives an internal or external interrupt request,  
or a Low input at the RES or STBY pin.  
(1) Wake-Up by Interrupt: An interrupt releases the sleep mode and starts the CPU’s interrupt-  
handling sequence.  
If an interrupt from an on-chip supporting module is disabled by the corresponding enable/disable  
bit in the module’s control register, the interrupt cannot be requested, so it cannot wake the chip  
up. Similarly, the CPU cannot be awoken by an interrupt other than NMI if the I (interrupt mask)  
bit in the CCR (condition code register) is set when the SLEEP instruction is executed.  
(2) Wake-Up by RES pin: When the RES pin goes Low, the chip exits from the sleep mode to  
the reset state.  
(3) Wake-Up by STBY pin: When the STBY pin goes Low, the chip exits from the sleep mode  
to the hardware standby mode.  
Rev. 3.0, 09/98, page 268 of 361  
15.4  
Software Standby Mode  
In the software standby mode, the system clock stops and chip functions halt, including both CPU  
functions and the functions of the on-chip supporting modules. Power consumption is reduced to  
an extremely low level. The on-chip supporting modules and their registers are reset to their  
initial states, but as long as a minimum necessary voltage supply is maintained (at least 2V), the  
contents of the CPU registers and on-chip RAM remain unchanged.  
15.4.1  
Transition to Software Standby Mode  
To enter the software standby mode, set the standby bit (SSBY) in the system control register  
(SYSCR) to “1,” then execute the SLEEP instruction.  
15.4.2  
Exit from Software Standby Mode  
The chip can be brought out of the software standby mode by an input at one of six pins: NMI,  
IRQ0, IRQ1, IRQ2, RES, or STBY.  
(1) Recovery by External Interrupt: When an NMI, IRQ0, IRQ1, or IRQ2 request signal is  
received, the clock oscillator begins operating. After the waiting time set in the system control  
register (bits STS2 to STS0), clock pulses are supplied to the CPU and on-chip supporting  
modules. The CPU executes the interrupt-handling sequence for the requested interrupt, then  
returns to the instruction after the SLEEP instruction. The SSBY bit is not cleared.  
See section 15.2, “System Control Register: Power-Down Control Bits,” for information about  
the STS bits.  
Interrupts IRQ3 to IRQ7 should be disabled before entry to the software standby mode. Clear  
IRQ3E to IRQ7E to “0” in the interrupt enable register (IER).  
(2) Recovery by RES Pin: When the RES pin goes Low, the clock oscillator starts and clock  
pulses are supplied to the entire chip. Next, when the RES pin goes High, the CPU begins  
executing the reset sequence. The SSBY bit is cleared to “0.”  
The RES pin must be held Low long enough for the clock to stabilize.  
(3) Recovery by STBY Pin: When the STBY pin goes Low, the chip exits from the software  
standby mode to the hardware standby mode.  
Rev. 3.0, 09/98, page 269 of 361  
15.4.3  
Sample Application of Software Standby Mode  
In this example the chip enters the software standby mode when NMI goes Low and exits when  
NMI goes High, as shown in figure 15.1.  
The NMI edge bit (NMIEG) in the system control register is originally cleared to “0,” selecting  
the falling edge. When NMI goes Low, the NMI interrupt handling routine sets NMIEG to “1,”  
sets SSBY to “1” (selecting the rising edge), then executes the SLEEP instruction. The chip enters  
the software standby mode. It recovers from the software standby mode on the next rising edge of  
NMI.  
Clock  
generator  
Ø
NMI  
NMIEG  
SSBY  
NMI interrupt handler  
NMIEG = "1"  
Software standby mode  
(power-down state)  
Settling time  
NMI interrupt  
handler  
SSBY = "1"  
SLEEP  
Figure 15.1 NMI Timing in Software Standby Mode  
Rev. 3.0, 09/98, page 270 of 361  
15.4.4  
Application Note  
1. The I/O ports retain their current states in the software standby mode. If a port is in the High  
output state, the current dissipation caused by the High output current is not reduced.  
2. When software standby mode is entered under condition (a) or (b) below, current dissipation is  
higher (ICC = 100 to 300 µA) than normal in standby mode.  
(a) In single-chip mode (mode 3): when software standby mode is entered by executing an  
instruction stored in on-chip ROM, after even one instruction not stored in on-chip ROM  
has been fetched (e.g. from on-chip RAM).  
(b) In expanded mode with on-chip ROM enabled (mode 2): when software standby mode is  
entered by executing an instruction stored in on-chip ROM, after even one instruction not  
stored in on-chip ROM has been fetched (e.g. from external memory or on-chip RAM).  
Note that the H8/300 CPU pre-fetches instructions. If an instruction stored in the last two bytes  
of on-chip ROM is executed, the contents of the next two bytes, not in on-chip ROM, will be  
fetched as the next instruction.  
This problem does not occur in expanded mode when on-chip ROM is disabled (mode 1).  
In hardware standby mode there is no additional current dissipation, regardless of the conditions  
when hardware standby mode is entered.  
Rev. 3.0, 09/98, page 271 of 361  
15.5  
Hardware Standby Mode  
15.5.1  
Transition to Hardware Standby Mode  
Regardless of its current state, the chip enters the hardware standby mode whenever the STBY pin  
goes Low.  
The hardware standby mode reduces power consumption drastically by halting the CPU, stopping  
all the functions of the on-chip supporting modules, and placing I/O ports in the high-impedance  
state. The registers of the on-chip supporting modules are reset to their initial values. Only the  
on-chip RAM is held unchanged, provided the minimum necessary voltage supply is maintained  
(at least 2V).  
Notes: 1. The RAME bit in the system control register should be cleared to “0” before the STBY  
pin goes Low, to disable the on-chip RAM during the hardware standby mode.  
2. Do not change the inputs at the mode pins (MD1, MD0) during hardware standby  
mode. Be particularly careful not to let both mode pins go Low in hardware standby  
mode, since that places the chip in PROM mode and increases current dissipation.  
15.5.2  
Recovery from Hardware Standby Mode  
Recovery from the hardware standby mode requires inputs at both the STBY and RES pins.  
When the STBY pin goes High, the clock oscillator begins running. The RES pin should be Low  
at this time and should be held Low long enough for the clock to stabilize. When the RES pin  
changes from Low to High, the reset sequence is executed and the chip returns to the program  
execution state.  
15.5.3  
Timing Relationships  
Figure 15.2 shows the timing relationships in the hardware standby mode.  
In the sequence shown, first RES goes Low, then STBY goes Low, at which point the chip enters  
the hardware standby mode. To recover, first STBY goes High, then after the clock settling time,  
RES goes High.  
Rev. 3.0, 09/98, page 272 of 361  
Clock pulse  
generator  
RES  
STBY  
Clock settling  
time  
Restart  
Figure 15.2 Hardware Standby Mode Timing  
Rev. 3.0, 09/98, page 273 of 361  
Rev. 3.0, 09/98, page 274 of 361  
Section 16 Electrical Specifications  
16.1  
Absolute Maximum Ratings  
Table 16.1 lists the absolute maximum ratings.  
Table 16.1 Absolute Maximum Ratings  
Item  
Symbol  
VCC  
Rating  
Unit  
V
Supply voltage  
0.3 to +7.0  
Programming voltage  
Input voltage Ports 1 6, 8, 9  
Port 7  
VPP  
0.3 to +13.5  
V
Vin  
0.3 to VCC + 0.3  
0.3 to AVCC + 0.3  
0.3 to +7.0  
V
Vin  
V
Analog supply voltage  
Analog input voltage  
Operating temperature  
AVCC  
VAN  
V
0.3 to AVCC + 0.3  
Regular specifications: 20 to +75  
Wide-range specifications: 40 to +85  
55 to +125  
V
Topr  
°C  
°C  
°C  
Storage temperature  
Tstg  
Note: Exceeding the absolute maximum ratings shown in table 16.1 can permanently destroy the  
chip.  
16.2  
Electrical Characteristics  
16.2.1  
DC Characteristics  
Table 16.2 lists the DC characteristics of the 5V version. Table 16.3 lists the DC characteristics of  
the 3V version. Table 16.4 gives the allowable current output values of the 5V version.  
Table 16.5 gives the allowable current output values of the 3V version.  
Rev. 3.0, 09/98, page 275 of 361  
Table 16.2 DC Characteristics (5V version)  
Conditions: VCC = 5.0V ±10%, AVCC = 5.0V ±10%*, VSS = AVSS = 0V,  
Ta = 20 to 75°C (regular specifications),  
Ta = 40 to 85°C (wide-range specifications)  
Measurement  
Item  
Symbol Min  
Typ Max  
Unit Conditions  
Schmitt trigger  
input voltage (1) P86 P80,  
P97, P94 P90  
P67 P62, P60,  
VT  
VT  
1.0  
V
+
V
CC × 0.7 V  
VT+ VT  
0.4  
V
Input High voltage RES, STBY, NMI VIH  
VCC 0.7  
VCC + 0.3 V  
(2)  
MD1, MD0  
EXTAL  
P77 P70  
2.0  
2.0  
AVCC + 0.3V  
VCC + 0.3 V  
Input High voltage Input pins other VIH  
than (1) and (2)  
Input Low voltage RES, STBY  
(3) MD1, MD0  
VIL  
0.3  
0.3  
0.5  
0.8  
V
V
Input Low voltage Input pins other VIL  
than (1) and (3)  
above  
Output High  
voltage  
All output pins  
VOH  
VOL  
|Iin|  
V
CC 0.5  
V
IOH = 200µA  
IOH = 1.0mA  
IOL = 1.6mA  
IOL = 10.0mA  
Vin = 0.5V to  
3.5  
V
Output Low  
voltage  
All output pins  
Ports 1 and 2  
RES  
0.4  
V
1.0  
V
Input leakage  
current  
10.0  
1.0  
µA  
µA  
VCC 0.5V  
STBY, NMI,  
MD1, MD0  
P77 P70  
1.0  
1.0  
250  
µA  
µA  
µA  
Vin = 0.5V to  
AVCC 0.5V  
Leakage current in Ports 1, 2, 3, 4, 5, |ITSI  
3-state (off state) 6, 8, 9  
|
Vin = 0.5V to  
VCC 0.5V  
Input pull-up MOS Ports 1, 2, 3  
current  
Ip  
30  
Vin = 0V  
Note: Connect AVCC to the power supply (VCC) even when the A/D and D/A converters are not  
used.  
Rev. 3.0, 09/98, page 276 of 361  
Table 16.2 DC Characteristics (5V version) (cont)  
Conditions: VCC = AVCC = 5.0V ±10%, VSS = AVSS = 0V,  
Ta = 20 to 75°C (regular specifications),  
Ta = 40 to 85°C (wide-range specifications)  
Measurement  
Conditions  
Item  
Symbol Min  
Typ  
Max  
60  
Unit  
pF  
Input capacitance RES (VPP  
)
Cin  
Vin = 0V  
f = 1MHz  
Ta = 25°C  
NMI  
30  
pF  
All input pins  
except RES  
and NMI  
15  
pF  
Current  
Normal operation ICC  
12  
16  
20  
8
25  
30  
40  
15  
20  
25  
5.0  
5.0  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
f = 6MHz  
f = 8MHz  
f = 10MHz  
f = 6MHz  
f = 8MHz  
f = 10MHz  
dissipation*1  
Sleep mode  
10  
12  
0.01  
2.0  
Standby modes*2  
Analog supply  
current  
During A/D or  
AICC  
mA  
D/A conversion  
Waiting  
0.01  
5.0  
µA  
V
RAM standby  
voltage  
VRAM  
2.0  
Notes: 1. Current dissipation values assume that VIH min = VCC 0.5V, VIL max = 0.5V, all output  
pins are in the no-load state, and all input pull-up transistors are off.  
2. For these values it is assumed that VRAM VCC < 4.5V and VIH min = VCC × 0.9, VIL max  
=
0.3V.  
Rev. 3.0, 09/98, page 277 of 361  
Table 16.3 DC Characteristics (3V version)  
Conditions: VCC = 3.0V ±10%, AVCC = 5.0V ±10%*1, VSS = AVSS = 0V, Ta = 20 to 70°C  
Measurement  
Unit Conditions  
Item  
Symbol Min  
Typ Max  
Schmitt trigger  
input voltage*2  
(1)  
P67 P62, P60,  
P86 P80,  
P97, P94 P90  
VT  
V
CC × 0.15  
V
+
VT  
V
CC × 0.7 V  
VT+ VT 0.2  
V
Input High  
voltage*2  
(2)  
RES, STBY  
MD1, MD0  
VIH  
V
CC × 0.9  
VCC + 0.3 V  
EXTAL, NMI  
P77 P70  
V
CC × 0.7  
CC × 0.7  
AVCC + 0.3V  
VCC + 0.3 V  
Input pins other  
than (1) and (2)  
above  
V
Input Low  
voltage*2  
(3)  
RES, STBY  
VIL  
0.3  
0.3  
V
CC × 0.1 V  
CC × 0.15 V  
MD1, MD0  
Input pins other  
than (1) and (3)  
above  
V
Output High  
voltage  
All output pins  
VOH  
VOL  
|Iin|  
V
CC 0.4  
V
IOH = 200µA  
IOH = 1.0mA  
IOL = 0.8mA  
IOL = 1.6mA  
Vin = 0.5 to  
VCC 0.9  
V
Output Low  
voltage  
All output pins  
Ports 1 and 2  
RES  
0.4  
V
0.4  
V
Input leakage  
current  
10.0  
1.0  
µA  
µA  
VCC 0.5V  
STBY, NMI,  
MD1, MD0  
P77 P70  
1.0  
1.0  
µA  
µA  
Vin = 0.5 to  
AVCC 0.5V  
Leakage current Ports 1, 2, 3, 4, 5, |ITSI  
|
Vin = 0.5 to  
in 3-state  
(off state)  
6, 8, 9  
VCC 0.5V  
Input pull-up MOS Ports 1, 2, 3  
current  
Ip  
3
120  
µA  
Vin = 5.0V  
Notes: 1. Connect AVCC to the power supply (VCC) even when the A/D and D/A converters are not  
used.  
+
2. In the range 3.3V < VCC < 4.5V, for the input levels of VIH and VT , apply the higher of  
the values given for the 5V and 3V versions. For VIL and VT , apply the lower of the  
values given for the 5V and 3V versions.  
Rev. 3.0, 09/98, page 278 of 361  
Table 16.3 DC Characteristics (3V version) (cont)  
Conditions: VCC = 3.0V ±10%, AVCC = 5.0V ±10%*1, VSS = AVSS = 0V, Ta = 20 to 70°C  
Measurement  
Item  
Symbol Min  
Typ  
Max  
60  
Unit  
pF  
Conditions  
Input capacitance RES  
Cin  
Vin = 0V  
NMI  
30  
pF  
f = 1MHz  
Ta = 25°C  
All input pins  
15  
pF  
except RES and  
NMI  
Current  
Normal operation ICC  
Sleep mode  
6
mA  
mA  
mA  
mA  
µA  
f = 3MHz  
f = 5MHz  
f = 3MHz  
f = 5MHz  
dissipation*1  
10  
4
20  
Standby modes*2  
6
12  
0.01  
2.0  
5.0  
5.0  
Analog supply  
current  
During A/D or  
AICC  
mA  
D/A conversion  
Waiting  
0.01  
5.0  
µA  
V
RAM backup voltage  
(in standby modes)  
VRAM  
2.0  
Notes: 1. Current dissipation values assume that VIH min = VCC 0.5V, VIL max = 0.5V, all output  
pins are in the no-load state, and all input pull-up transistors are off.  
2. For these values it is assumed that VRAM VCC < 2.7V and VIH min = VCC × 0.9, VIL max  
=
0.3V.  
Rev. 3.0, 09/98, page 279 of 361  
Table 16.4 Allowable Output Current Values (5V version)  
Conditions: VCC = AVCC = 5.0V ±10%, VSS = AVSS = 0V,  
Ta = 20 to 75°C (regular specifications),  
Ta = 40 to 85°C (wide-range specifications)  
Item  
Symbol Min Typ Max Unit  
Allowable output Low current (per pin)  
Ports 1 and 2  
IOL  
10  
2.0 mA  
80 mA  
mA  
Other output pins  
Ports 1 and 2, total  
Total of all output  
Allowable output Low current (total)  
ΣIOL  
120 mA  
2.0 mA  
Allowable output High current (per pin) All output pins  
Allowable output High current (total) Total of all output  
IOH  
Σ−IOH  
40  
mA  
Table 16.5 Allowable Output Current Values (3V version)  
Conditions: VCC = 3.0V ±10%, AVCC = 5.0V ±10%, VSS = AVSS = 0V, Ta = 20 to 75°C  
Item  
Symbol Min Typ Max Unit  
Allowable output Low current (per pin)  
Ports 1 and 2  
IOL  
2
mA  
mA  
mA  
mA  
mA  
mA  
Other output pins  
Ports 1 and 2, total  
Total of all output  
1
Allowable output Low current (total)  
ΣIOL  
40  
60  
2
Allowable output High current (per pin) All output pins  
Allowable output High current (total) Total of all output  
IOH  
Σ−IOH  
30  
Note: To avoid degrading the reliability of the chip, be careful not to exceed the output current  
values in tables 16.4 and 16.5. In particular, when driving a Darlington transistor pair or  
LED directly, be sure to insert a current-limiting resistor in the output path. See figures 16.1  
and 16.2.  
Rev. 3.0, 09/98, page 280 of 361  
H8/338  
2 k  
Port  
Darlington  
pair  
Figure 16.1 Example of Circuit for Driving a Darlington Pair (5V Version)  
H8/338  
VCC  
600  
Port 1 or 2  
LED  
Figure 16.2 Example of Circuit for Driving an LED (5V Version)  
AC Characteristics  
16.2.2  
The AC characteristics are listed in three tables. Bus timing parameters are given in table 16.6,  
control signal timing parameters in table 16.7, and timing parameters of the on-chip supporting  
modules in table 16.8.  
Rev. 3.0, 09/98, page 281 of 361  
Table 16.6 Bus Timing  
Condition A: VCC = 5.0V ±10%, VSS = 0V, φ = 0.5MHz to maximum operating frequency,  
Ta = 20 to 75°C (regular specifications),  
Ta = 40 to 85°C (wide-range specifications)  
Condition B: VCC = 3.0V ±10%, VSS = 0V, φ = 0.5MHz to maximum operating frequency,  
Ta = 20 to 75°C  
Condition  
B
Condition A  
8MHz  
5MHz  
6MHz  
10MHz  
Measurement  
Conditions  
Item  
Symbol Min Max Min Max Min Max Min Max Unit  
tcyc 200 2000 166.7 2000 125 2000 100 2000 ns  
Clock cycle time  
Fig. 16.4  
Fig. 16.4  
Fig. 16.4  
Fig. 16.4  
Fig. 16.4  
Fig. 16.4  
Fig. 16.4  
Fig. 16.4  
Clock pulse width Low tCL  
Clock pulse width High tCH  
70  
70  
65  
65  
45  
45  
35  
35  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock rise time  
tCr  
25  
25  
90  
15  
15  
70  
15  
15  
60  
15  
15  
50  
Clock fall time  
tCf  
Address delay time  
Address hold time  
tAD  
tAH  
tASD  
30  
30  
25  
20  
Address strobe delay  
time  
80  
70  
60  
40  
Write strobe delay time tWSD  
80  
90  
70  
70  
60  
60  
50  
50  
ns  
ns  
ns  
Fig. 16.4  
Fig. 16.4  
Fig. 16.4  
Strobe delay time  
tSD  
Write strobe pulse  
tWSW  
200  
200  
150  
120  
width*  
Address setup time 1* tAS1  
Address setup time 2* tAS2  
25  
105  
90  
0
25  
105  
70  
0
20  
80  
50  
0
15  
65  
35  
0
ns  
ns  
ns  
ns  
Fig. 16.4  
Fig. 16.4  
Fig. 16.4  
Fig. 16.4  
Fig. 16.4  
Fig. 16.4  
Fig. 16.4  
Fig. 16.4  
Fig. 16.5  
Fig. 16.5  
Read data setup time  
tRDS  
tRDH  
Read data hold time*  
Read data access time* tACC  
300  
125  
270  
85  
210  
75  
170 ns  
Write data delay time  
Write data setup time  
Write data hold time  
Wait setup time  
tWDD  
tWDS  
tWDH  
tWTS  
tWTH  
75  
ns  
ns  
ns  
ns  
ns  
10  
30  
60  
20  
20  
30  
40  
10  
10  
25  
40  
10  
5
20  
40  
10  
Wait hold time  
Note: Values at maximum operating frequency  
Rev. 3.0, 09/98, page 282 of 361  
Table 16.7 Control Signal Timing  
Condition A: VCC = 5.0V ±10%, VSS = 0V, φ = 0.5MHz to maximum operating frequency,  
Ta = 20 to 75°C (regular specifications),  
Ta = 40 to 85°C (wide-range specifications)  
Condition B: VCC = 3.0V ±10%, VSS = 0V, φ = 0.5MHz to maximum operating frequency,  
Ta = 20 to 75°C  
Condition  
B
Condition A  
8MHz  
5MHz  
6MHz  
10MHz  
Measurement  
Conditions  
Item  
Symbol Min Max Min Max Min Max Min Max Unit  
RES setup time  
RES pulse width  
tRESS  
tRESW  
tNMIS  
300  
10  
200  
10  
200  
10  
200  
10  
ns  
Fig. 16.6  
tcyc Fig. 16.6  
NMI setup time (NMI,  
IRQ0 to IRQ7)  
300  
150  
150  
150  
ns  
ns  
ns  
Fig. 16.7  
Fig. 16.7  
Fig. 16.7  
NMI hold time (NMI,  
IRQ0 to IRQ7)  
tNMIH  
10  
10  
10  
10  
Interrupt pulse width for tNMIW  
recovery from software  
standby mode (NMI,  
IRQ0 to IRQ2)  
300  
200  
200  
200  
Crystal oscillator settling tOSC1  
time (reset)  
20  
10  
20  
10  
20  
10  
20  
10  
ms  
ms  
Fig. 16.8  
Fig. 16.9  
Crystal oscillator settling tOSC2  
time (software standby)  
Rev. 3.0, 09/98, page 283 of 361  
Table 16.8 Timing Conditions of On-Chip Supporting Modules  
Condition A: VCC = 5.0V ±10%, VSS = 0V, φ = 0.5MHz to maximum operating frequency,  
Ta = 20 to 75°C (regular specifications),  
Ta = 40 to 85°C (wide-range specifications)  
Condition B: VCC = 3.0V ±10%, VSS = 0V, φ = 0.5MHz to maximum operating frequency,  
Ta = 20 to 75°C  
Condition  
B
Condition A  
8MHz  
5MHz  
6MHz  
10MHz  
Measurement  
Conditions  
Item  
Symbol Min Max Min Max Min Max Min Max Unit  
FRT Timer output  
delay time  
tFTOD  
150  
100  
100  
100 ns  
Fig. 16.10  
Fig. 16.10  
Fig. 16.11  
Timer input setup tFTIS  
time  
80  
80  
1.5  
50  
50  
1.5  
50  
50  
1.5  
50  
50  
1.5  
ns  
ns  
Timer clock input tFTCS  
setup time  
Timer clock pulse tFTCWH  
tcyc Fig. 16.11  
width  
tFTCWL  
TMR Timer output  
delay time  
tTMOD  
150  
100  
100  
100 ns  
Fig. 16.12  
Fig. 16.14  
Fig. 16.13  
Timer reset input tTMRS  
setup time  
80  
80  
1.5  
50  
50  
1.5  
50  
50  
1.5  
50  
50  
1.5  
ns  
ns  
Timer clock input tTMCS  
setup time  
Timer clock pulse tTMCWH  
width (single  
edge)  
tcyc Fig. 16.13  
tcyc Fig. 16.13  
Timer clock pulse tTMCWL  
width (both  
2.5  
2.5  
2.5  
2.5  
edges)  
PWM Timer output  
delay time  
tPWOD  
150  
200  
100  
100  
100  
100  
100 ns  
Fig. 16.15  
SCI Input (Async) tscyc  
(Sync) tscyc  
4
6
4
6
4
6
4
6
tcyc Fig. 16.16  
tcyc Fig. 16.16  
clock  
cycle  
Transmit data  
delay time (Sync)  
tTXD  
100 ns  
Fig. 16.16  
Fig. 16.16  
Fig. 16.16  
Receive data  
setup time (Sync)  
tRXS  
150  
150  
0.4  
100  
100  
0.4  
100  
100  
0.4  
100  
100  
0.4  
ns  
ns  
Receive data hold tRXH  
time (Sync)  
Input clock pulse tSCKW  
width  
0.6  
0.6  
0.6  
0.6  
tscyc Fig. 16.17  
Rev. 3.0, 09/98, page 284 of 361  
Table 16.8 Timing Conditions of On-Chip Supporting Modules (cont)  
Condition A: VCC = 5.0V ±10%, VSS = 0V, φ = 0.5MHz to maximum operating frequency,  
Ta = 20 to 75°C (regular specifications),  
Ta = 40 to 85°C (wide-range specifications)  
Condition B: VCC = 3.0V ±10%, VSS = 0V, φ = 0.5MHz to maximum operating frequency,  
Ta = 20 to 75°C  
Condition  
B
Condition A  
8MHz  
5MHz  
6MHz  
10MHz  
Measurement  
Conditions  
Item  
Symbol Min Max Min Max Min Max Min Max Unit  
Ports Output data delay tPWD  
time  
150  
100  
100  
100 ns  
Fig. 16.18  
Fig. 16.18  
Fig. 16.18  
Input data setup tPRS  
time  
80  
80  
50  
50  
50  
50  
50  
50  
ns  
ns  
Input data hold  
time  
tPRH  
Measurement Conditions for AC Characteristics  
5V  
RL  
LSI  
output pin  
C= 90pF: Ports1-4, 6, 9  
30pF: Ports5, 8  
RH  
RL=  
2.4 k  
C
RH= 12 k  
Input/output timing reference levels  
Low: 0.8V  
High: 2.0V  
Figure 16.3 Output Load Circuit  
Rev. 3.0, 09/98, page 285 of 361  
16.2.3  
A/D Converter Characteristics  
Table 16.9 lists the characteristics of the on-chip A/D converter.  
Table 16.9 A/D Converter Characteristics  
Condition A: VCC = 5.0V ±10%, AVCC = 5.0V ±10%, VSS = AVSS = 0V, φ = 0.5MHz to  
maximum  
operating frequency, Ta = 20 to 75°C (regular specifications),  
Ta = 40 to 85°C (wide-range specifications)  
Condition B: VCC = 3.0V ±10%, AVCC = 5.0V ±10%, VSS = AVSS = 0V, φ = 0.5MHz to  
maximum operating frequency, Ta = 20 to 75°C  
Condition B  
5MHz  
Condition A  
8MHz  
6MHz  
10MHz  
Item  
Min Typ Max Min Typ Max Min Typ Max Min Typ Max Unit  
Resolution  
8
8
8
8
8
8
8
8
8
8
8
8
Bits  
Conversion time (single  
24.4  
20.4  
15.25  
12.2 µs  
mode)*  
Analog input capacitance  
20  
10  
20  
10  
20  
10  
20  
10  
pF  
Allowable signal source  
impedance  
kΩ  
Nonlinearity error  
Offset error  
±1  
±1  
±1  
±1  
±1  
±1  
LSB  
LSB  
LSB  
±1  
±1  
±1  
Full-scale error  
Quantizing error  
Absolute accuracy  
±1  
±1  
±1  
±0.5  
±1.5  
±0.5  
±1.5  
±0.5  
±1.5  
±0.5 LSB  
±1.5 LSB  
Note: Values at maximum operating frequency  
Rev. 3.0, 09/98, page 286 of 361  
16.2.4  
D/A Converter Characteristics  
Table 16.10 lists the characteristics of the on-chip D/A converter.  
Table 16.10 D/A Converter Characteristics  
Condition A: VCC = 5.0V ±10%, AVCC = 5.0V ±10%, VSS = AVSS = 0V, φ = 0.5MHz to  
maximum  
operating frequency, Ta = 20 to 75°C (regular specifications),  
Ta = 40 to 85°C (wide-range specifications)  
Condition B: VCC = 3.0V ±10%, AVCC = 5.0V ±10%, VSS = AVSS = 0V, φ = 0.5MHz to  
maximum  
operating frequency, Ta = 20 to 75°C  
Condition B  
5MHz  
Condition A  
8MHz  
6MHz  
10MHz  
Measurement  
Conditions  
Min Typ Max Min Typ Max Min Typ Max Min Typ Max Unit  
Item  
Resolution  
Conversion time  
8
8
8
8
8
8
8
8
8
8
8
8
Bits  
10.0  
10.0  
10.0  
10.0 µs 30pF load  
capacitance  
Absolute accuracy  
±1 ±1.5  
±1  
±1 ±1.5  
±1  
±1 ±1.5  
±1  
±1 ±1.5 LSB 2Mload  
resistance  
±1 LSB 4Mload  
resistance  
16.3  
MCU Operational Timing  
This section provides the following timing charts:  
16.3.1 Bus Timing  
Figures 16.4 to 16.5  
Figures 16.6 to 16.9  
Figures 16.10 to 16.11  
Figures 16.12 to 16.14  
Figure 16.15  
16.3.2 Control Signal Timing  
16.3.3 16-Bit Free-Running Timer Timing  
16.3.4 8-Bit Timer Timing  
16.3.5 PWM Timer Timing  
16.3.6 SCI Timing  
Figures 16.16 to 16.17  
Figure 16.18  
16.3.7 I/O Port Timing  
Rev. 3.0, 09/98, page 287 of 361  
16.3.1  
Bus Timing  
(1) Basic Bus Cycle (without Wait States) in Expanded Modes  
T
1
T
2
T3  
t
cyc  
tCH  
tCL  
Ø
t
cf  
t
AD  
t
cr  
A15 + A0  
t
ASD  
t
SC  
t
ASI  
tAH  
AS, RD  
t
ACC  
t
RDS  
tRDH  
D7 to D0  
(Read)  
t
WSD  
tSD  
t
AS2  
t
WSW  
tAH  
WR  
t
WDD  
t
WDS  
tWDH  
D7  
to D  
0
(Write)  
Figure 16.4 Basic Bus Cycle (without wait states) in Expanded Modes  
Rev. 3.0, 09/98, page 288 of 361  
(2) Basic Bus Cycle (with 1 Wait State) in Expanded Modes  
T
1
T
2
T
W
T3  
Ø
A15 + A0  
AS, RD  
D7 to D0  
(Read)  
WR  
D7 to D0  
(Write)  
t
WTS  
t
WTH  
tWTS tWTH  
WAIT  
Figure 16.5 Basic Bus Cycle (with 1 wait state) in Expanded Modes  
Rev. 3.0, 09/98, page 289 of 361  
16.3.2  
Control Signal Timing  
(1) Reset Input Timing  
Ø
t
RESS  
tRESS  
RES  
t
RESW  
Figure 16.6 Reset Input Timing  
(2) Interrupt Input Timing  
Ø
t
t
NMIS  
NMIS  
tNMIH  
NMI  
IRQ  
E
(Edge)  
(Level)  
IRQ  
L
t
NMIW  
NMI  
IRQ  
I
Note: i = 0 to 7; IRQE: IRQi when edge-sensed; IRQL: IRQi when level-sensed¶  
Figure 16.7 Interrupt Input Timing  
Rev. 3.0, 09/98, page 290 of 361  
(3) Clock Settling Timing  
Ø
VCC  
STBY  
t
OSC1  
tOSC1  
RES  
Figure 16.8 Clock Settling Timing  
(4) Clock Settling Timing for Recovery from Software Standby Mode  
Ø
NMI  
IRQ  
t
OSC2  
( i = 0, 1, 2)  
Figure 16.9 Clock Settling Timing for Recovery from Software Standby Mode  
Rev. 3.0, 09/98, page 291 of 361  
16.3.3  
16-Bit Free-Running Timer Timing  
(1) Free-Running Timer Input/Output Timing  
Ø
Free-running  
Compare-match  
timer counter  
t
FTOD  
FTOA, FTOB  
t
FTIS  
FTIA  
, FTIB,  
FTIC, FTID  
Figure 16.10 Free-Running Timer Input/Output Timing  
(2) External Clock Input Timing for Free-Running Timer  
Ø
t
FTCS  
FTCI  
t
FTCWL  
tFTCWH  
Figure 16.11 External Clock Input Timing for Free-Running Timer  
Rev. 3.0, 09/98, page 292 of 361  
16.3.4  
8-Bit Timer Timing  
(1) 8-Bit Timer Output Timing  
Ø
Timer  
Compare-match  
counter  
t
TMOD  
TMC0,  
TMC  
1
Figure 16.12 8-Bit Timer Output Timing  
(2) 8-Bit Timer Clock Input Timing  
Ø
t
TMCS  
tTMCS  
TMCI  
TMCI  
0
1
t
TMCWL  
tTMCWH  
Figure 16.13 8-Bit Timer Clock Input Timing  
(3) 8-Bit Timer Reset Input Timing  
Ø
t
TMRS  
TMRI  
TMRI  
0
,
1
Timer  
counter  
N
N' 00  
Figure 16.14 8-Bit Timer Reset Input Timing  
Rev. 3.0, 09/98, page 293 of 361  
16.3.5  
Pulse Width Modulation Timer Timing  
Ø
Timer  
Compare-match  
counter  
t
PWOD  
PW0, PW  
1
Figure 16.15 PWM Timer Output Timing  
Serial Communication Interface Timing  
16.3.6  
(1) SCI Input/Output Timing  
tScyc  
Serial clock  
(SCK0, SCK1)  
tTXD  
Transmit data  
(TXD0, TXD1)  
tRXS tRXH  
Receive data  
(RXD0, RXD1)  
Figure 16.16 SCI Input/Output Timing (Synchronous mode)  
(2) SCI Input Clock Timing  
t
SCKW  
SCK0, SCK1  
t
Scyc  
Figure 16.17 SCI Input Clock Timing  
Rev. 3.0, 09/98, page 294 of 361  
16.3.7  
I/O Port Timing  
T
1
T
2
T3  
Ø
t
PRS  
tPRH  
Port 1 to Port 9  
(Input)  
t
PWD  
Port 1* to Port 9  
(Output)  
Note: * Except P96 and P77 to P70  
Figure 16.18 I/O Port Input/Output Timing  
Rev. 3.0, 09/98, page 295 of 361  
Rev. 3.0, 09/98, page 296 of 361  
Appendix A CPU Instruction Set  
A.1  
Instruction Set List  
Operation Notation  
Rd8/16  
General register (destination) (8 or 16 bits)  
General register (source) (8 or 16 bits)  
General register (8 or 16 bits)  
Condition code register  
N (negative) flag in CCR  
Z (zero) flag in CCR  
V (overflow) flag in CCR  
C (carry) flag in CCR  
Program counter  
Rs8/16  
Rn8/16  
CCR  
N
Z
V
C
PC  
SP  
Stack pointer  
#xx:3/8/16  
Immediate data (3, 8, or 16 bits)  
Displacement (8 or 16 bits)  
Absolute address (8 or 16 bits)  
Addition  
d:8/16  
@aa:8/16  
+
×
÷
Subtraction  
Multiplication  
Division  
AND logical  
OR logical  
Exclusive OR logical  
Move  
Not  
Condition Code Notation  
b
*
Modified according to the instruction result  
Undetermined (unpredictable)  
Always cleared to “0”  
0
Not affected by the instruction result  
Rev. 3.0, 09/98, page 297 of 361  
Table A.1 Instruction Set  
Addressing Mode/  
Instruction Length  
Condition Code  
Mnemonic  
Operation  
I
H N Z V C  
2
2
4
6
6
MOV.B #xx:8, Rd  
MOV.B Rs, Rd  
B #xx:8 Rd8  
B Rs8 Rd8  
B @Rs16 Rd8  
2
— —  
— —  
— —  
— —  
— —  
0 —  
0 —  
0 —  
0 —  
0 —  
2
MOV.B @Rs, Rd  
2
2
MOV.B @(d:16, Rs), Rd B @(d:16, Rs16) Rd8  
4
4
MOV.B @Rs+, Rd  
B @Rs16 Rd8  
Rs16+1 Rs16  
2
2
4
6
4
6
6
MOV.B @aa:8, Rd  
MOV.B @aa:16, Rd  
MOV.B Rs, @Rd  
B @aa:8 Rd8  
B @aa:16 Rd8  
B Rs8 @Rd16  
2
4
— —  
— —  
— —  
— —  
— —  
0 —  
0 —  
0 —  
0 —  
0 —  
MOV.B Rs, @(d:16, Rd) B Rs8 @(d:16, Rd16)  
MOV.B Rs, @–Rd  
B Rd16–1 Rd16  
Rs8 @Rd16  
4
6
4
2
4
6
6
MOV.B Rs, @aa:8  
MOV.B Rs, @aa:16  
MOV.W #xx:16, Rd  
MOV.W Rs, Rd  
B Rs8 @aa:8  
B Rs8 @aa:16  
W #xx:16 Rd  
W Rs16 Rd16  
W @Rs16 Rd16  
2
4
— —  
— —  
— —  
— —  
— —  
— —  
— —  
0 —  
0 —  
0 —  
0 —  
0 —  
0 —  
0 —  
4
2
MOV.W @Rs, Rd  
2
2
MOV.W @(d:16, Rs), Rd W @(d:16, Rs16) Rd16  
4
4
MOV.W @Rs+, Rd  
W @Rs16 Rd16  
Rs16+2 Rs16  
2
2
6
4
6
6
MOV.W @aa:16, Rd  
MOV.W Rs, @Rd  
W @aa:16 Rd16  
W Rs16 @Rd16  
4
4
— —  
— —  
— —  
— —  
0 —  
0 —  
0 —  
0 —  
MOV.W Rs, @(d:16, Rd) W Rs16 @(d:16, Rd16)  
MOV.W Rs, @–Rd  
W Rd16–2 Rd16  
Rs16 @Rd16  
6
6
MOV.W Rs, @aa:16  
POP Rd  
W Rs16 @aa:16  
— —  
— —  
0 —  
0 —  
W @SP Rd16  
SP+2 SP  
2
2
PUSH Rs  
SP–2 SP  
— —  
0 —  
6
W
Rs16 @SP  
Rev. 3.0, 09/98, page 298 of 361  
Table A.1 Instruction Set (cont)  
Addressing Mode/  
Instruction Length  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V C  
MOVFPE@aa:16, Rd  
MOVTPE Rs, @aa:16  
EEPMOV  
(4)  
— —  
if R4L0 then  
Repeat @R5 @R6  
R5+1 R5  
4
R6+1 R6  
R4L–1 R4L  
Until R4L=0  
else next;  
B
B
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
14  
ADD.B #xx:8, Rd  
ADD.B Rs, Rd  
ADD.W Rs, Rd  
ADDX.B #xx:8, Rd  
ADDX.B Rs, Rd  
ADDS.W #1, Rd  
ADDS.W #2, Rd  
INC.B Rd  
Rd8+#xx:8 Rd8  
Rd8+Rs8 Rd8  
Rd16+Rs16 Rd16  
Rd8+#xx:8 +C Rd8  
Rd8+Rs8 +C Rd8  
Rd16+1 Rd16  
Rd16+2 Rd16  
Rd8+1 Rd8  
2
2
2
W
B
2
— (1)  
(2)  
(2)  
B
2
2
2
2
2
2
2
W
W
B
— — — — — —  
— — — — — —  
— —  
B
DAA.B Rd  
Rd8 decimal adjust Rd8  
Rd8–Rs8 Rd8  
Rd16–Rs16 Rd16  
Rd8–#xx:8 –C Rd8  
Rd8–Rs8 –C Rd8  
Rd16–1 Rd16  
Rd16–2 Rd16  
Rd8–1 Rd8  
*
* (3)  
B
SUB.B Rs, Rd  
SUB.W Rs, Rd  
SUBX.B #xx:8, Rd  
SUBX.B Rs, Rd  
SUBS.W #1, Rd  
SUBS.W #2, Rd  
DEC.B Rd  
W
B
— (1)  
2
(2)  
(2)  
B
2
2
2
2
2
2
W
W
B
— — — — — —  
— — — — — —  
— —  
B
DAS.B Rd  
Rd8 decimal adjust Rd8  
0–Rd Rd  
*
*
B
NEG.B Rd  
B
CMP.B #xx:8, Rd  
CMP.B Rs, Rd  
CMP.W Rs, Rd  
MULXU.B Rs, Rd  
Rd8–#xx:8  
2
B
Rd8–Rs8  
2
2
2
W
B
Rd16–Rs16  
— (1)  
— — — — — —  
Rd8 × Rs8 Rd16  
Rev. 3.0, 09/98, page 299 of 361  
Table A.1 Instruction Set (cont)  
Addressing Mode/  
Instruction Length  
Condition Code  
Mnemonic  
Operation  
I
H N Z V C  
DIVXU.B Rs, Rd  
B Rd16÷Rs8 Rd16 (RdH:  
2
— — (6) 7) — — 14  
remainder, RdL: quotient)  
AND.B #xx:8, Rd  
AND.B Rs, Rd  
OR.B #xx:8, Rd  
OR.B Rs, Rd  
XOR.B #xx:8, Rd  
XOR.B Rs, Rd  
NOT.B Rd  
B Rd8 #xx:8 Rd8  
B Rd8 Rs8 Rd8  
B Rd8#xx:8 Rd8  
B Rd8Rs8 Rd8  
B Rd8 #xx:8 Rd8  
B Rd8 Rs8 Rd8  
B Rd Rd  
2
2
2
— —  
— —  
— —  
— —  
— —  
— —  
— —  
— —  
0 — 2  
0 — 2  
0 — 2  
0 — 2  
0 — 2  
0 — 2  
0 — 2  
2
2
2
2
2
2
SHAL.B Rd  
B
C
0
b7  
b0  
SHAR.B Rd  
SHLL.B Rd  
SHLR.B Rd  
ROTXL.B Rd  
ROTXR.B Rd  
ROTL.B Rd  
ROTR.B Rd  
B
B
B
B
B
B
B
2
2
2
2
2
2
2
— —  
— —  
— —  
— —  
— —  
— —  
— —  
0
0
0
0
0
0
0
2
2
2
2
2
2
2
C
b7  
b0  
C
0
b7  
b0  
0
C
b7  
b0  
C
b7  
b0  
b7  
b0  
C
C
C
b7  
b0  
b7  
b0  
Rev. 3.0, 09/98, page 300 of 361  
Table A.1 Instruction Set (cont)  
Addressing Mode/  
Instruction Length  
Condition Code  
Mnemonic  
Operation  
I
H N Z V C  
BSET #xx:3, Rd  
BSET #xx:3, @Rd  
BSET #xx:3, @aa:8  
BSET Rn, Rd  
B (#xx:3 of Rd8) 1  
B (#xx:3 of @Rd16) 1  
B (#xx:3 of @aa:8) 1  
B (Rn8 of Rd8) 1  
2
— — — — — — 2  
— — — — — — 8  
— — — — — — 8  
— — — — — — 2  
— — — — — — 8  
— — — — — — 8  
— — — — — — 2  
— — — — — — 8  
— — — — — — 8  
— — — — — — 2  
— — — — — — 8  
— — — — — — 8  
— — — — — — 2  
4
4
4
4
4
4
4
4
2
2
2
2
BSET Rn, @Rd  
BSET Rn, @aa:8  
BCLR #xx:3, Rd  
BCLR #xx:3, @Rd  
BCLR #xx:3, @aa:8  
BCLR Rn, Rd  
B (Rn8 of @Rd16) 1  
B (Rn8 of @aa:8) 1  
B (#xx:3 of Rd8) 0  
B (#xx:3 of @Rd16) 0  
B (#xx:3 of @aa:8) 0  
B (Rn8 of Rd8) 0  
BCLR Rn, @Rd  
BCLR Rn, @aa:8  
BNOT #xx:3, Rd  
B (Rn8 of @Rd16) 0  
B (Rn8 of @aa:8) 0  
B (#xx:3 of Rd8) ←  
(#xx:3 of Rd8)  
BNOT #xx:3, @Rd  
BNOT #xx:3, @aa:8  
BNOT Rn, Rd  
B (#xx:3 of @Rd16) ←  
4
4
— — — — — — 8  
— — — — — — 8  
— — — — — — 2  
— — — — — — 8  
— — — — — — 8  
(#xx:3 of @Rd16)  
B (#xx:3 of @aa:8) ←  
4
4
(#xx:3 of @aa:8)  
B (Rn8 of Rd8) ←  
2
(Rn8 of Rd8)  
BNOT Rn, @Rd  
BNOT Rn, @aa:8  
B (Rn8 of @Rd16) ←  
(Rn8 of @Rd16)  
B (Rn8 of @aa:8) ←  
(Rn8 of @aa:8)  
BTST #xx:3, Rd  
BTST #xx:3, @Rd  
BTST #xx:3, @aa:8  
BTST Rn, Rd  
B (#xx:3 of Rd8) Z  
B (#xx:3 of @Rd16) Z  
B (#xx:3 of @aa:8) Z  
B (Rn8 of Rd8) Z  
2
2
— — —  
— — —  
— — —  
— — —  
— — —  
— — —  
— — 2  
— — 6  
— — 6  
— — 2  
— — 6  
— — 6  
4
4
4
4
BTST Rn, @Rd  
BTST Rn, @aa:8  
B (Rn8 of @Rd16) Z  
B (Rn8 of @aa:8) Z  
Rev. 3.0, 09/98, page 301 of 361  
Table A.1 Instruction Set (cont)  
Addressing Mode/  
Instruction Length  
Condition Code  
Mnemonic  
Operation  
I
H N Z V C  
BLD #xx:3, Rd  
B (#xx:3 of Rd8) C  
2
— — — — —  
— — — — —  
— — — — —  
— — — — —  
— — — — —  
— — — — —  
2
6
6
2
6
6
BLD #xx:3, @Rd  
BLD #xx:3, @aa:8  
BILD #xx:3, Rd  
B (#xx:3 of @Rd16) C  
B (#xx:3 of @aa:8) C  
B (#xx:3 of Rd8) C  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
2
2
2
2
2
2
2
2
2
BILD #xx:3, @Rd  
BILD #xx:3, @aa:8  
BST #xx:3, Rd  
B (#xx:3 of @Rd16) C  
B (#xx:3 of @aa:8) C  
B C (#xx:3 of Rd8)  
— — — — — — 2  
— — — — — — 8  
— — — — — — 8  
— — — — — — 2  
— — — — — — 8  
— — — — — — 8  
BST #xx:3, @Rd  
BST #xx:3, @aa:8  
BIST #xx:3, Rd  
B C (#xx:3 of @Rd16)  
B C (#xx:3 of @aa:8)  
B C (#xx:3 of Rd8)  
BIST #xx:3, @Rd  
BIST #xx:3, @aa:8  
BAND #xx:3, Rd  
BAND #xx:3, @Rd  
BAND #xx:3, @aa:8  
BIAND #xx:3, Rd  
BIAND #xx:3, @Rd  
BIAND #xx:3, @aa:8  
BOR #xx:3, Rd  
B C (#xx:3 of @Rd16)  
B C (#xx:3 of @aa:8)  
B C (#xx:3 of Rd8) C  
B C (#xx:3 of @Rd16) C  
B C (#xx:3 of @aa:8) C  
B C (#xx:3 of Rd8) C  
B C (#xx:3 of @Rd16) C  
B C (#xx:3 of @aa:8) C  
— — — — —  
— — — — —  
— — — — —  
— — — — —  
— — — — —  
— — — — —  
— — — — —  
— — — — —  
— — — — —  
— — — — —  
— — — — —  
— — — — —  
— — — — —  
— — — — —  
— — — — —  
— — — — —  
2
6
6
2
6
6
2
6
6
2
6
6
2
6
6
2
^
B C (#xx:3 of Rd8) C  
^
BOR #xx:3, @Rd  
BOR #xx:3, @aa:8  
BIOR #xx:3, Rd  
B C (#xx:3 of @Rd16) C  
^
B C (#xx:3 of @aa:8) C  
^
B C (#xx:3 of Rd8) C  
^
BIOR #xx:3, @Rd  
BIOR #xx:3, @aa:8  
BXOR #xx:3, Rd  
BXOR #xx:3, @Rd  
BXOR #xx:3, @aa:8  
BIXOR #xx:3, Rd  
B C (#xx:3 of @Rd16) C  
^
B C (#xx:3 of @aa:8) C  
B C (#xx:3 of Rd8) C  
B C (#xx:3 of @Rd16) C  
B C (#xx:3 of @aa:8) C  
B C (#xx:3 of Rd8) C  
Rev. 3.0, 09/98, page 302 of 361  
Table A.1 Instruction Set (cont)  
Addressing Mode/  
Instruction Length  
Condition Code  
Mnemonic  
Operation  
Branching  
Condition  
I
H N Z V C  
BIXOR #xx:3, @Rd  
BIXOR #xx:3, @aa:8  
BRA d:8 (BT d:8)  
BRN d:8 (BF d:8)  
BHI d:8  
B C (#xx:3 of @Rd16) C  
B C (#xx:3 of @aa:8) C  
— PC PC+d:8  
4
4
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
4
— — — — —  
— — — — —  
6
6
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 6  
— — — — — — 8  
— — — — — — 6  
— PC PC+2  
— If  
condition  
C Z = 0  
C Z = 1  
C = 0  
C = 1  
Z = 0  
BLS d:8  
is true  
then  
PC ←  
PC+d:8  
else next;  
BCC d:8 (BHS d:8)  
BCS d:8 (BLO d:8)  
BNE d:8  
BEQ d:8  
Z = 1  
BVC d:8  
V = 0  
BVS d:8  
V = 1  
BPL d:8  
N = 0  
N = 1  
BMI d:8  
BGE d:8  
N
N
V = 0  
V = 1  
BLT d:8  
BGT d:8  
Z (N V) = 0  
Z (N V) = 1  
BLE d:8  
JMP @Rn  
— PC Rn16  
— PC aa:16  
JMP @aa:16  
JMP @@aa:8  
BSR d:8  
— PC @aa:8  
2
— SP–2 SP  
PC @SP  
2
PC PC+d:8  
JSR @Rn  
— SP–2 SP  
PC @SP  
2
— — — — — — 6  
— — — — — — 8  
PC Rn16  
JSR @aa:16  
— SP–2 SP  
PC @SP  
4
PC aa:16  
Rev. 3.0, 09/98, page 303 of 361  
Table A.1 Instruction Set (cont)  
Addressing Mode/  
Instruction Length (Bytes)  
Condition Code  
Mnemonic  
Operation  
I
H N Z V C  
JSR @@aa:8  
SP–2 SP  
PC @SP  
PC @aa:8  
2
— — — — — — 8  
RTS  
RTE  
— PC @SP  
SP+2 SP  
2 — — — — — — 8  
— CCR @SP  
SP+2 SP  
2
10  
PC @SP  
SP+2 SP  
SLEEP  
— Transit to sleep mode.  
B #xx:8 CCR  
2 — — — — — — 2  
LDC #xx:8, CCR  
LDC Rs, CCR  
STC CCR, Rd  
ANDC #xx:8, CCR  
ORC #xx:8, CCR  
XORC #xx:8, CCR  
NOP  
2
2
B Rs8 CCR  
2
2
2
B CCR Rd8  
— — — — — — 2  
B CCR #xx:8 CCR  
B CCR#xx:8 CCR  
B CCR #xx:8 CCR  
— PC PC+2  
2
2
2
2
2
2
2 — — — — — — 2  
Notes: The number of states is the number of states required for execution when the instruction and its  
operands are located in on-chip memory.  
(1) Set to "1" when there is a carry or borrow from bit 11; otherwise cleared to "0."  
(2) If the result is zero, the previous value of the flag is retained; otherwise the flag is cleared to "0."  
(3) Set to "1" if decimal adjustment produces a carry; otherwise cleared to "0."  
(4) The number of states required for execution is 4n+8 (n = value of R4L)  
(5) These instructions are not supported by the H8/338 Series.  
(6) Set to "1" if the divisor is negative; otherwise cleared to "0."  
(7) Cleared to "0" if the divisor is not zero; undetermined when the divisor is zero.  
Rev. 3.0, 09/98, page 304 of 361  
A.2  
Operation Code Map  
Table A.2 is a map of the operation codes contained in the first byte of the instruction code (bits  
15 to 8 of the first instruction word).  
Some pairs of instructions have identical first bytes. These instructions are differentiated by the  
first bit of the second byte (bit 7 of the first instruction word).  
Instruction when first bit of byte 2 (bit 7 of first instruction word) is “0.”  
Instruction when first bit of byte 2 (bit 7 of first instruction word) is “1.”  
Rev. 3.0, 09/98, page 305 of 361  
Table A.2 Operation Code Map  
Rev. 3.0, 09/98, page 306 of 361  
A.3  
Number of States Required for Execution  
The tables below can be used to calculate the number of states required for instruction execution.  
Table A.3 indicates the number of states required for each cycle (instruction fetch, branch address  
read, stack operation, byte data access, word data access, internal operation). Table A.4 indicates  
the number of cycles of each type occurring in each instruction. The total number of states  
required for execution of an instruction can be calculated from these two tables as follows:  
Execution states = I × SI + J × SJ + K × SK + L × SL + M × SM + N × SN  
Examples: Mode 1 (on-chip ROM disabled), stack located in external memory, 1 wait state  
inserted in external memory access.  
1. BSET #0, @FFC7  
From table A.4: I = L = 2, J = K = M = N= 0  
From table A.3: SI = 8, SL = 3  
Number of states required for execution: 2 × 8 + 2 × 3 =22  
2. JSR @@30  
From table A.4: I = 2, J = K = 1, L = M = N = 0  
From table A.3: SI = SJ = SK = 8  
Number of states required for execution: 2 × 8 + 1 × 8 + 1 × 8 = 32  
Table A.3 Number of States Taken by Each Cycle in Instruction Execution  
Access Location  
Execution Status  
(instruction cycle)  
On-chip Memory  
On-chip Reg. Field External Memory  
Instruction fetch  
SI  
2
6
6 + 2m  
Branch address read  
Stack operation  
SJ  
SK  
SL  
SM  
SN  
Byte data access  
Word data access  
Internal operation  
3
6
1
3 + m  
6 + 2m  
Notes: m: Number of wait states inserted in access to external device.  
Rev. 3.0, 09/98, page 307 of 361  
Table A.4 Number of Cycles in Each Instruction  
Instruction Branch  
Stack  
Byte Data Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
ADD  
ADD.B #xx:8, Rd  
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
1
2
2
ADD.B Rs, Rd  
ADD.W Rs, Rd  
ADDS.W #1/2, Rd  
ADDX.B #xx:8, Rd  
ADDX.B Rs, Rd  
AND.B #xx:8, Rd  
AND.B Rs, Rd  
ANDC #xx:8, CCR  
BAND #xx:3, Rd  
BAND #xx:3, @Rd  
BAND #xx:3, @aa:8  
BRA d:8 (BT d:8)  
BRN d:8 (BF d:8)  
BHI d:8  
ADDS  
ADDX  
AND  
ANDC  
BAND  
1
1
Bcc  
BLS d:8  
BCC d:8 (BHS d:8)  
BCS d:8 (BLO d:8)  
BNE d:8  
BEQ d:8  
BVC d:8  
BVS d:8  
BPL d:8  
BMI d:8  
BGE d:8  
BLT d:8  
BGT d:8  
BLE d:8  
BCLR  
BCLR #xx:3, Rd  
BCLR #xx:3, @Rd  
BCLR #xx:3, @aa:8  
BCLR Rn, Rd  
BCLR Rn, @Rd  
BCLR Rn, @aa:8  
2
2
2
2
Note: All values left blank are zero.  
Rev. 3.0, 09/98, page 308 of 361  
Table A.4 Number of Cycles in Each Instruction (cont)  
Instruction Branch  
Stack  
Byte Data Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
BIAND  
BIAND #xx:3, Rd  
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
BIAND #xx:3, @Rd  
BIAND #xx:3, @aa:8  
BILD #xx:3, Rd  
1
1
BILD  
BILD #xx:3, @Rd  
BILD #xx:3, @aa:8  
BIOR #xx:3, Rd  
1
1
BIOR  
BIST  
BIOR #xx:3, @Rd  
BIOR #xx:3, @aa:8  
BIST #xx:3, Rd  
1
1
BIST #xx:3, @Rd  
BIST #xx:3, @aa:8  
BIXOR #xx:3, Rd  
BIXOR #xx:3, @Rd  
BIXOR #xx:3, @aa:8  
BLD #xx:3, Rd  
2
2
BIXOR  
BLD  
1
1
BLD #xx:3, @Rd  
BLD #xx:3, @aa:8  
BNOT #xx:3, Rd  
BNOT #xx:3, @Rd  
BNOT #xx:3, @aa:8  
BNOT Rn, Rd  
1
1
BNOT  
2
2
BNOT Rn, @Rd  
BNOT Rn, @aa:8  
BOR #xx:3, Rd  
2
2
BOR  
BOR #xx:3, @Rd  
BOR #xx:3, @aa:8  
BSET #xx:3, Rd  
BSET #xx:3, @Rd  
BSET #xx:3, @aa:8  
BSET Rn, Rd  
1
1
BSET  
2
2
BSET Rn, @Rd  
2
2
BSET Rn, @aa:8  
Note: All values left blank are zero.  
Rev. 3.0, 09/98, page 309 of 361  
Table A.4 Number of Cycles in Each Instruction (cont)  
Instruction Branch  
Stack  
Byte Data Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
BSR  
BST  
BSR d:8  
2
1
2
2
1
2
2
1
2
2
1
2
2
1
1
1
1
1
1
1
2
1
2
2
2
2
2
2
1
1
1
1
1
2
1
BST #xx:3, Rd  
BST #xx:3, @Rd  
BST #xx:3, @aa:8  
BTST #xx:3, Rd  
BTST #xx:3, @Rd  
BTST #xx:3, @aa:8  
BTST Rn, Rd  
BTST Rn, @Rd  
BTST Rn, @aa:8  
BXOR #xx:3, Rd  
BXOR #xx:3, @Rd  
BXOR #xx:3, @aa:8  
CMP.B #xx:8, Rd  
CMP.B Rs, Rd  
CMP.W Rs, Rd  
DAA.B Rd  
2
2
BTST  
1
1
1
1
BXOR  
CMP  
1
1
DAA  
DAS  
DAS.B Rd  
DEC  
DEC.B Rd  
DIVXU  
EEPMOV  
INC  
DIVXU.B Rs, Rd  
EEPMOV  
12  
1
2n+2*  
INC.B Rd  
JMP  
JMP @Rn  
JMP @aa:16  
2
2
JMP @@aa:8  
JSR @Rn  
1
1
JSR  
1
1
1
JSR @aa:16  
2
JSR @@aa:8  
LDC #xx:8, CCR  
LDC Rs, CCR  
MOV.B #xx:8, Rd  
MOV.B Rs, Rd  
MOV.B @Rs, Rd  
LDC  
MOV  
1
1
MOV.B @(d:16,Rs),  
Rd  
Notes: All values left blank are zero.  
* n: Initial value in R4L. Source and destination are accessed n + 1 times each.  
Rev. 3.0, 09/98, page 310 of 361  
Table A.4 Number of Cycles in Each Instruction (cont)  
Instruction Branch  
Stack  
Byte Data Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
MOV  
MOV.B @Rs+, Rd  
1
1
2
1
2
1
1
1
1
1
2
MOV.B @aa:8, Rd  
MOV.B @aa:16, Rd  
MOV.B Rs, @Rd  
MOV.B Rs, @(d:16,  
Rd)  
MOV.B Rs, @-Rd  
MOV.B Rs, @aa:8  
MOV.B Rs, @aa:16  
MOV.W #xx:16, Rd  
MOV.W Rs, Rd  
1
1
2
2
1
1
2
1
1
1
2
MOV.W @Rs, Rd  
1
1
MOV.W @(d:16, Rs),  
Rd  
MOV.W @Rs+, Rd  
MOV.W @aa:16, Rd  
MOV.W Rs, @Rd  
1
2
1
2
1
1
1
1
2
MOV.W Rs, @(d:16,  
Rd)  
MOV.W Rs, @-Rd  
1
2
1
1
2
MOV.W Rs, @aa:16  
MOVFPE  
MOVTPE  
MULXU  
NEG  
MOVFPE @aa:16, Rd Not supported  
MOVTPE.Rs, @aa:16 Not supported  
MULXU.Rs, Rd  
NEG.B Rd  
NOP  
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
12  
NOP  
NOT  
NOT.B Rd  
OR.B #xx:8, Rd  
OR.B Rs, Rd  
ORC #xx:8, CCR  
POP Rd  
OR  
ORC  
POP  
1
1
2
2
PUSH  
ROTL  
ROTR  
ROTXL  
ROTXR  
RTE  
PUSH Rs  
ROTL.B Rd  
ROTR.B Rd  
ROTXL.B Rd  
ROTXR.B Rd  
RTE  
2
1
2
2
RTS  
RTS  
Note: All values left blank are zero.  
Rev. 3.0, 09/98, page 311 of 361  
Table A.4 Number of Cycles in Each Instruction (cont)  
Instruction Branch  
Stack  
Byte Data Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
SHAL  
SHAR  
SHLL  
SHLR  
SLEEP  
STC  
SHAL.B Rd  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
SHAR.B Rd  
SHLL.B Rd  
SHLR.B Rd  
SLEEP  
STC CCR, Rd  
SUB.B Rs, Rd  
SUB.W Rs, Rd  
SUBS.W #1/2, Rd  
SUBX.B #xx:8, Rd  
SUBX.B Rs, Rd  
XOR.B #xx:8, Rd  
XOR.B Rs, Rd  
XORC #xx:8, CCR  
SUB  
SUBS  
SUBX  
XOR  
XORC  
Note: All values left blank are zero.  
Rev. 3.0, 09/98, page 312 of 361  
Appendix B Register Field  
B.1  
Register Addresses and Bit Names  
Addr.  
(last Register  
byte) Name  
Bit Names  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Module  
H’80  
External  
addresses  
(in  
expanded  
modes)  
H’81  
H’82  
H’83  
H’84  
H’85  
H’86  
H’87  
H’88 SMR  
H’89 BRR  
H’8A SCR  
H’8B TDR  
H’8C SSR  
H’8D RDR  
H’8E  
C/A  
CHR  
RIE  
PE  
O/E  
RE  
STOP  
MPIE  
PER  
MP  
CKS1  
CKE1  
MPB  
CKS0  
CKE0  
MPBT  
SCI1  
TIE  
TE  
TEIE  
TEND  
TDRE  
RDRF  
ORER  
FER  
H’8F  
H’90 TIER  
H’91 TCSR  
H’92 FRC (H)  
H’93 FRC (L)  
H’94 OCRA (H)  
OCRB (H)  
ICIAE  
ICFA  
ICIBE  
ICFB  
ICICE  
ICFC  
ICIDE  
ICFD  
OCIAE OCIBE OVIE  
OCFA OCFB OVF  
FRT  
CCLRA  
H’95 OCRA (L)  
OCRB (L)  
H’96 TCR  
H’97 TOCR  
H’98 ICRA (H)  
H’99 ICRA (L)  
H’9A ICRB (H)  
H’9B ICRB (L)  
H’9C ICRC (H)  
H’9D ICRC (L)  
H’9E ICRD (H)  
H’9F ICRD (L)  
Notes: FRT: Free-Running Timer  
IEDGA IEDGB IEDGC IEDGD BUFEA BUFEB CKS1  
CKS0  
OCRS  
OEA  
OEB  
OLVLA OLVLB  
SCI1: Serial Communication Interface 1  
Rev. 3.0, 09/98, page 313 of 361  
Addr.  
(last Register  
byte) Name  
Bit Names  
Bit 4 Bit 3  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
Module  
H’A0 TCR  
H’A1 DTR  
H’A2 TCNT  
H’A3  
OE  
OS  
CKS2  
CKS1  
CKS0  
PWM0  
H’A4 TCR  
H’A5 DTR  
H’A6 TCNT  
H’A7  
OE  
OS  
CKS2  
CKS1  
CKS0  
PWM1  
D/A  
H’A8 DADR0  
H’A9 DADR1  
H’AA DACR  
H’AB  
DAOE1 DAOE0 DAE  
H’AC P1PCR  
H’AD P2PCR  
H’AE P3PCR  
H’AF  
P17PCR P16PCR P15PCR P14PCR P13PCR P12PCR P11PCR P10PCR Port 1  
P27PCR P26PCR P25PCR P24PCR P23PCR P22PCR P21PCR P20PCR Port 2  
P37PCR P36PCR P35PCR P34PCR P33PCR P32PCR P31PCR P30PCR Port 3  
H’B0 P1DDR  
H’B1 P2DDR  
H’B2 P1DR  
H’B3 P2DR  
H’B4 P3DDR  
H’B5 P4DDR  
H’B6 P3DR  
H’B7 P4DR  
H’B8 P5DDR  
H’B9 P6DDR  
H’BA P5DR  
H’BB P6DR  
H’BC  
P17DDR P16DDR P15DDR P14DDR P13DDR P12DDR P11DDR P10DDR Port 1  
P27DDR P26DDR P25DDR P24DDR P23DDR P22DDR P21DDR P20DDR Port 2  
P17  
P27  
P16  
P26  
P15  
P25  
P14  
P24  
P13  
P23  
P12  
P22  
P11  
P21  
P10  
P20  
Port 1  
Port 2  
P37DDR P36DDR P35DDR P34DDR P33DDR P32DDR P31DDR P30DDR Port 3  
P47DDR P46DDR P45DDR P44DDR P43DDR P42DDR P41DDR P40DDR Port 4  
P37  
P47  
P36  
P46  
P35  
P45  
P34  
P44  
P33  
P43  
P32  
P42  
P31  
P41  
P30  
P40  
Port 3  
Port 4  
P52DDR P51DDR P50DDR Port 5  
P67DDR P66DDR P65DDR P64DDR P63DDR P62DDR P61DDR P60DDR Port 6  
P52  
P62  
P51  
P61  
P50  
P60  
Port 5  
Port 6  
P67  
P77  
P66  
P65  
P64  
P63  
H’BD P8DDR  
H’BE P7DR  
H’BF P8DR  
P86DDR P85DDR P84DDR P83DDR P82DDR P81DDR P80DDR Port 8  
P76  
P86  
P75  
P85  
P74  
P84  
P73  
P83  
P72  
P82  
P71  
P81  
P70  
P80  
Port 7  
Port 8  
Notes: PWM0: Pulse-Width Modulation timer channel 0  
PWM1: Pulse-Width Modulation timer channel 1  
D/A: D/A converter  
Rev. 3.0, 09/98, page 314 of 361  
Addr.  
(last Register  
byte) Name  
Bit Names  
Bit 4 Bit 3  
P97DDR P96DDR P95DDR P94DDR P93DDR P92DDR P91DDR P90DDR Port 9  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
Module  
H’C0 P9DDR  
H’C1 P9DR  
H’C2  
P97  
P96  
P95  
P94  
P93  
P92  
P91  
P90  
H’C3 STCR  
H’C4 SYSCR  
H’C5 MDCR  
H’C6 ISCR  
H’C7 IER  
H’C8 TCR  
H’C9 TCSR  
H’CA TCORA  
H’CB TCORB  
H’CC TCNT  
H’CD  
MPE  
ICKS1  
ICKS0  
RAME  
MDS0  
SSBY  
STS2  
STS1  
STS0  
NMIEG DPME  
MDS1  
System  
control  
IRQ7SC IRQ6SC IRQ5SC IRQ4SC IRQ3SC IRQ2SC IRQ1SC IRQ0SC  
IRQ7E  
CMIEB CMIEA OVIE  
CMFB CMFA OVF  
IRQ6E  
IRQ5E  
IRQ4E  
CCLR1 CCLR0 CKS2  
OS3 OS2  
IRQ3E  
IRQ2E  
IRQ1E  
CKS1  
OS1  
IRQ0E  
CKS0  
OS0  
TMR0  
TMR1  
SCI0  
H’CE  
H’CF  
H’D0 TCR  
H’D1 TCSR  
H’D2 TCORA  
H’D3 TCORB  
H’D4 TCNT  
H’D5  
CMIEB CMIEA OVIE  
CCLR1 CCLR0 CKS2  
CKS1  
OS1  
CKS0  
OS0  
CMFB  
CMFA  
OVF  
OS3  
OS2  
H’D6  
H’D7  
H’D8 SMR  
H’D9 BRR  
H’DA SCR  
H’DB TDR  
H’DC SSR  
H’DD RDR  
H’DE  
C/A  
CHR  
RIE  
PE  
O/E  
RE  
STOP  
MPIE  
PER  
MP  
CKS1  
CKE1  
MPB  
CKS0  
CKE0  
MPBT  
TIE  
TE  
TEIE  
TEND  
TDRE  
RDRF  
ORER  
FER  
H’DF  
Notes: TMR0: 8-Bit Timer channel 0  
TMR1: 8-Bit Timer channel 1  
SCI0: Serial Communication Interface 0  
Rev. 3.0, 09/98, page 315 of 361  
Addr.  
(last Register  
byte) Name  
Bit Names  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Module  
H’E0 ADDRA  
H’E1  
A/D  
H’E2 ADDRB  
H’E3  
H’E4 ADDRC  
H’E5  
H’E6 ADDRD  
H’E7  
H’E8 ADCSR  
H’E9  
ADF  
ADIE  
ADST  
SCAN  
CKS  
CH2  
CH1  
CH0  
CHS  
H’EA ADCR  
H’EB  
TRGE  
H’EC  
H’ED  
H’EE  
H’EF  
H’F0  
H’F1  
H’F2  
H’F3  
H’F4  
H’F5  
H’F6  
H’F7  
H’F8  
H’F9  
H’FA  
H’FB  
H’FC  
H’FD  
H’FE  
H’FF  
Note: A/D: Analog-to-Digital converter  
Rev. 3.0, 09/98, page 316 of 361  
B.2  
Register Descriptions  
Register name  
Address onto which  
register is mapped  
Abbreviation of  
register name  
TIER—Timer Interrupt Enable Register  
H'FF90  
FRT  
Bit No.  
Bit  
7
6
5
4
3
2
1
0
1
Name of on-chip  
supporting module  
ICIAE ICIBE ICICE ICIDE OCIAE OCIBE OVIE  
Initial value  
Initial value  
Read/Write  
0
0
0
0
0
0
0
Bit names (abbreviations).  
Bits marked “—”  
are reserved.  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Overflow Interrupt Enable  
Type of access permitted  
0
1
Overflow interrupt request is disabled.  
Overflow interrupt request is enabled.  
R
Read only  
Write only  
W
R/W Read or write  
Output Compare Interrupt B Enable  
0
1
Output compare interrupt request B is disabled.  
Output compare interrupt request B is enabled.  
Full name of bit  
Output Compare Interrupt A Enable  
0
1
Output compare interrupt request A is disabled.  
Output compare interrupt request A is enabled.  
Description of  
bit function  
Input Capture Interrupt D Enable  
0
1
Input capture interrupt request D is disabled.  
Input capture interrupt request D is enabled.  
Rev. 3.0, 09/98, page 317 of 361  
SMR Serial Mode Register  
H’FF88  
SCI1  
Bit  
7
C/A  
0
6
5
PE  
0
4
O/E  
0
3
2
1
CKS1  
0
0
CKS0  
0
CHR  
0
STOP  
0
MP  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock select  
0
0
1
0
1
ø clock  
ø/4 clock  
ø/16 clock  
ø/64 clock  
1
Multiprocessor mode  
0
Multiprocessor function  
disabled  
1
Multiprocessor format selected  
Stop bit length  
0
1
One stop bit  
Two stop bits  
Parity mode  
0
1
Even parity  
Odd parity  
Parity enable  
0
Transmit: No parity bit added.  
Receive: Parity bit not checked.  
1
Transmit: No parity bit added.  
Receive: Parity bit not checked.  
Character length  
0
1
8-bit data length  
7-bit data length  
Communication mode  
0
1
Asynchronous  
Synchronous  
Rev. 3.0, 09/98, page 318 of 361  
BRR Bit Rate Register  
H’FF89  
SCI1  
Bit  
7
6
5
4
3
1
2
1
0
1
Initial value  
Read/Write  
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Constant that determines the bit rate  
Rev. 3.0, 09/98, page 319 of 361  
SCR Serial Control Register  
H’FF8A  
SCI1  
Bit  
7
TIE  
0
6
RIE  
0
5
TE  
0
4
RE  
0
3
MPIE  
0
2
TEIE  
0
1
CKE1  
0
0
CKE0  
1
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock Enable  
0
1
Internal clock  
External clock  
Clock enable 0  
0
1
Asynchronous serial clock not output  
Asynchronous serial clock output at  
SCK pin  
Transmit End Interrupt Enable  
0
1
TSR-empty interrupt request is disabled.  
TSR-empty interrupt request is enabled.  
Multiprocessor Interrupt Enable  
0
1
Multiprocessor receive interrupt function is disabled.  
Multiprocessor receive interrupt function is enabled.  
Receive Enable  
0
1
Receive disabled  
Receive enabled  
Transmit Enable  
0
1
Transmit disabled  
Transmit enabled  
Receive Interrupt Enable  
0
1
Receive interrupt and receive error interrupt requests are disabled.  
Receive interrupt and receive error interrupt requests are enabled.  
Transmit Interrupt Enable  
0
1
TDR-empty interrupt request is disabled.  
TDR-empty interrupt request is enabled.  
Rev. 3.0, 09/98, page 320 of 361  
TDR Transmit Data Register  
H’FF8B  
SCI1  
Bit  
7
6
5
4
3
2
1
0
1
Initial value  
Read/Write  
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Transmit data  
Rev. 3.0, 09/98, page 321 of 361  
SSR Serial Status Register  
H’FF8C  
SCI1  
Bit  
7
6
RDRF  
0
5
4
3
2
TEND  
1
1
MPB  
0
0
TDRE  
1
R/(W)*  
ORER  
0
R/(W)*  
FER  
0
R/(W)*  
PER  
0
R/(W)*  
MPBT  
0
Initial value  
Read/Write  
*
R/(W)  
R
R
R/W  
Multiprocessor Bit transfer  
0
1
Multiprocessor bit = “0” in transmit data.  
Multiprocessor bit = “1” in transmit data.  
Multiprocessor Bit  
0
1
Multiprocessor bit = “0” in receive data.  
Multiprocessor bit = “1” in receive data.  
Transmit End  
0
Cleared when CPU reads TDRE = “1,” then writes “0” in TDRE.  
Set to “1” when TE = “0,” or when TDRE = “1” at the end of character transmission.  
1
Parity Error  
0
Cleared when CPU reads PER = “1,” then writes “0” in PER.  
Set when a parity error occurs (parity of receive data does not match parity selected by O/E bit in SMR).  
1
Framing Error  
0
Cleared when CPU reads FER = “1,” then writes “0” in FER.  
Set when a framing error occurs (stop bit is “0”).  
1
Overrun Error  
Cleared when CPU reads ORER = “1,” then writes “0” in ORER.  
0
1
Set when an overrun error occurs (next data is completely received while  
RDRF bit is set to “1”).  
Receive Data Register Full  
0
1
Cleared when CPU reads RDRF = “1,” then writes “0” in RDRF.  
Set when one character is received normally and transferred from RSR to RDR.  
Transmit Data Register Empty  
0
1
Cleared when CPU reads TDRE = “1,” then writes “0” in TDRE.  
Set when:  
1. Data is transferred from TDR to TSR.  
2. TE is cleared while TDRE = “0.”  
Note:  
* Software can write a “0” in bits 7 to 3 to clear the flags, but cannot write a “1” in these bits.  
Rev. 3.0, 09/98, page 322 of 361  
RDR Receive Data Register  
H’FF8D  
SCI1  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
Receive data  
Rev. 3.0, 09/98, page 323 of 361  
TIER Timer Interrupt Enable Register  
H’FF90  
FRT  
Bit  
7
ICIAE  
0
6
ICIBE  
0
5
ICICE  
0
4
3
2
1
OVIE  
0
0
1
ICIDE OCIAE OCIBE  
Initial value  
Read/Write  
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Overflow Interrupt Enable  
0
1
Overflow interrupt request is disabled.  
Overflow interrupt request is enabled.  
Output Compare Interrupt B Enable  
0
1
Output compare interrupt request B is disabled.  
Output compare interrupt request B is enabled.  
Output Compare Interrupt A Enable  
0
1
Output compare interrupt request A is disabled.  
Output compare interrupt request A is enabled.  
Input Capture Interrupt D Enable  
0
1
Input capture interrupt request D is disabled.  
Input capture interrupt request D is enabled.  
Input Capture Interrupt C Enable  
0
1
Input capture interrupt request C is disabled.  
Input capture interrupt request C is enabled.  
Input Capture Interrupt B Enable  
0
1
Input capture interrupt request B is disabled.  
Input capture interrupt request B is enabled.  
Input Capture Interrupt A Enable  
0
1
Input capture interrupt request A is disabled.  
Input capture interrupt request A is enabled.  
Rev. 3.0, 09/98, page 324 of 361  
TCSR Timer Control/Status Register  
H’FF91  
FRT  
Bit  
7
ICFA  
0
6
ICFB  
0
5
ICFC  
0
4
ICFD  
0
3
2
OCFB  
0
1
OVF  
0
0
OCFA  
0
CCLRA  
0
Initial value  
Read/Write  
*
*
*
*
*
*
*
R/(W)  
R/(W)  
R/(W)  
R/(W)  
R/(W)  
R/(W)  
R/(W)  
R/W  
Counter Clear A  
0
1
FRC count is not cleared.  
FRC count is cleared by compare-match A.  
Timer Overflow  
0
0 Cleared when CPU reads OVF = "1," then writes  
"0" in OVF.  
1
Set when FRC changes from H'FFFF to H'0000.  
Output Compare Flag B  
0
Cleared when CPU reads OCFB = "1", then writes  
"0" in OCFB.  
1
Set when FRC = OCRB.  
Output Compare Flag A  
0
Cleared when CPU reads OCFA = "1", then writes  
"0" in OCFA.  
1
Set when FRC = OCRA.  
Input Capture Flag D  
0
Cleared when CPU reads ICFD = "1", then writes  
"0" in ICFD.  
1
Set by FTID input.  
Input Capture Flag C  
0
Cleared when CPU reads ICFC = "1", then writes  
"0" in ICFC.  
1
Set by FTID input.  
Input Capture Flag B  
0
0 Cleared when CPU reads ICFB = "1", then writes  
"0" in ICFB.  
1
Set when FTIB input causes FRC to be copied to ICRB.  
Input Capture Flag A  
0
Cleared when CPU reads ICFA = "1", then writes  
"0" in ICFA.  
1
Set when FTIA input causes FRC to be copied to ICRA.  
Note: * Software can write a "0" in bits 7 to 1 to clear the flags, but cannot  
write a "1" in these bits.  
Rev. 3.0, 09/98, page 325 of 361  
FRC (H and L) Free-Running Counter  
H’FF92, H’FF93  
FRT  
FRT  
FRT  
Bit  
7
6
5
4
3
0
2
1
0
Initial value  
Read/Write  
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Count value  
OCRA (H and L) Output Compare Register A  
H’FF94, H’FF95  
Bit  
7
6
5
4
3
1
2
1
0
Initial value  
Read/Write  
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Continually compared with FRC. OCFA is set to “1” when OCRA=FRC.  
OCRB (H and L) Output Compare Register B  
H’FF94, H’FF95  
Bit  
7
6
5
4
3
1
2
1
0
Initial value  
Read/Write  
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Continually compared with FRC. OCFB is set to “1” when OCRB=FRC.  
Rev. 3.0, 09/98, page 326 of 361  
TCR Timer Control Register  
H’FF96  
FRT  
Bit  
7
6
5
4
3
2
1
CKS1  
0
0
CKS0  
0
IEDGA IEDGB IEDGC IEDGD BUFEA BUFEB  
Initial value  
Read/Write  
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock enable 0  
0
1
1
1
0
1
0
1
Internal clock source: Ø/2  
Internal clock source: Ø/8  
Internal clock source: Ø/32  
External clock source: counted on rising edge  
Buffer Enable B  
0
1
ICRD is used for input capture D.  
ICRD is buffer register for input capture B.  
Buffer Enable A  
0
1
ICRC is used for input capture C.  
ICRC is buffer register for input capture A.  
Input Edge Select D  
0
1
Falling edge of FTID is valid.  
Rising edge of FTID is valid.  
Input Edge Select C  
0
1
Falling edge of FTIC is valid.  
Rising edge of FTIC is valid.  
Input Edge Select B  
0
1
Falling edge of FTIB is valid.  
Rising edge of FTIB is valid.  
Input Edge Select A  
0
1
Falling edge of FTIA is valid.  
Rising edge of FTIA is valid.  
Rev. 3.0, 09/98, page 327 of 361  
TOCR Timer Output Compare Control Register  
H’FF97  
FRT  
Bit  
7
1
6
1
5
1
4
OCRS  
0
3
2
1
0
OEA  
0
OEB  
0
OLVLA OLVLB  
Initial value  
Read/Write  
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
Output Level B  
0
1
Compare-match B causes “0” output.  
Compare-match B causes “1” output.  
Output Level A  
0
1
Compare-match A causes “0” output.  
Compare-match A causes “1” output.  
Output Enable B  
0
1
Output compare B output is disabled.  
Output compare B output is enabled.  
Output Enable A  
0
1
Output compare A output is disabled.  
Output compare A output is enabled.  
Output Compare Register Select  
0
1
The CPU can access OCRA.  
The CPU can access OCRB.  
ICRA (H and L) Input Capture Register A  
H’FF98, H’FF99  
FRT  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
Contains FRC count captured on FTIA input.  
Rev. 3.0, 09/98, page 328 of 361  
ICRB (H and L) Input Capture Register B  
H’FF9A, H’FF9B  
FRT  
Bit  
7
6
5
4
3
2
1
0
0
Initial value  
Read/Write  
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
Contains FRC count captured on FTIB input.  
ICRC (H and L) Input Capture Register C  
H’FF9C, H’FF9D  
FRT  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
Contains FRC count captured on FTIC input, or old ICRA value in buffer mode.  
ICRD (H and L) Input Capture Register D  
H’FF9E, H’FF9F  
FRT  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
Contains FRC count captured on FTID input, or old ICRB value in buffer mode.  
Rev. 3.0, 09/98, page 329 of 361  
TCR Timer Control Register  
H’FFA0  
PWM0  
Bit  
7
OE  
0
6
OS  
0
5
1
4
1
3
2
CKS2  
0
1
CKS1  
0
0
1
CKS0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock Select  
Internal  
(Values When Ø= 10 MHz)  
Reso-  
clock Freq. lution  
PWM  
period  
PWM  
frequency  
Ø/2  
Ø/8  
200ns  
50µs  
200µs  
20kHz  
5kHz  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
800ns  
3.2µs  
Ø/32  
800µs 1.25kHz  
3.2ms 312.5Hz  
6.4ms 156.3Hz  
Ø/128  
Ø/256  
Ø/1024  
Ø/2048  
Ø/4096  
12.8µs  
25.6µs  
102.4µs 25.6ms  
204.8µs 51.2ms  
409.6µs 102.4ms  
39.1Hz  
19.5Hz  
9.8Hz  
Output Select  
0
1
Positive logic  
Negative logic  
Output Enable  
0
1
PWM output disabled; TCNT cleared to H'00 and stops.  
PWM output enabled; TCNT runs.  
DTR Duty Register  
H’FFA1  
PWM0  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Pulse duty cycle  
Rev. 3.0, 09/98, page 330 of 361  
TCNT Timer Counter  
H’FFA2  
PWM0  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Count value (runs from H'00 to H'F9, then repeats from H'00)  
TCR Timer Control Register  
H’FFA4  
PWM1  
Bit  
7
OE  
0
6
OW  
0
5
1
4
1
3
2
CKS2  
0
1
CKS1  
0
0
1
CKS0  
Initial value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
R/W  
Note: Bit functions are the same as for PWM0.  
DTR Duty Register  
H’FFA5  
PWM1  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Note: Bit functions are the same as for PWM0.  
Rev. 3.0, 09/98, page 331 of 361  
TCNT Timer Counter  
H’FFA6  
PWM1  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Note: Bit functions are the same as for PWM0.  
DADR0 D/A Data Register 0  
H’FFA8  
D/A  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Data to be converted  
DADR1 D/A Data Register 1  
H’FFA9  
D/A  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Data to be converted  
Rev. 3.0, 09/98, page 332 of 361  
DACR D/A Control Register  
H’FFAA  
D/A  
Bit  
7
6
5
4
1
3
2
1
1
1
0
1
DAOE1 DAOE0  
DAE  
0
1
Initial value  
Read/Write  
0
0
R/W  
R/W  
R/W  
DAOE1 DAOE0 DAE D/A Analog Output  
0
0
0
1
1
1
0
1
1
0
0
1
0
Channels 0 and 1 disabled.  
0
Channel 0 disabled, channel 1 enabled.  
Channels 0 and 1 enabled.  
1
0
Channel 0 enabled, channel 1 disabled.  
Channels 0 and 1 enabled.  
1
Channels 0 and 1 enabled.  
P1PCR Port 1 Input Pull-Up Control Register  
H’FFAC  
Port 1  
Bit  
7
6
5
4
3
2
1
0
P1  
7PCR P1  
6
PCR P1  
5
PCR P1  
4
PCR P13PCR P12PCR P1  
1PCR P1  
0PCR  
Initial value  
Read/Write  
0
0
0
0
0
0
0 0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Port 1 Input Pull-Up Control  
1
2
Input pull-up transistor is off.  
Input pull-up transistor is on.  
Rev. 3.0, 09/98, page 333 of 361  
P2PCR Port 2 Input Pull-Up Control Register  
H’FFAD  
Port 2  
Bit  
7
6
5
4
3
2
1
0
P2  
7PCR P2  
6
PCR P2  
5
PCR P2  
4
PCR P23PCR P22PCR P2  
1PCR P2  
0PCR  
Initial value  
Read/Write  
0
0
0
0
0
0
0 0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Port 2 Input Pull-Up Control  
0
1
Input pull-up transistor is off.  
Input pull-up transistor is on.  
P3PCR Port 3 Input Pull-Up Control Register  
H’FFAE  
Port 3  
Bit  
7
6
5
4
3
2
1
PCR P3  
0
P3  
7PCR P3  
6PCR P3  
5PCR P3  
4
PCR P3  
3PCR P3  
2PCR P3  
1
0PCR  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Port 3 Input Pull-Up Control  
0
1
Input pull-up transistor is off.  
Input pull-up transistor is on.  
Rev. 3.0, 09/98, page 334 of 361  
P1DDR Port 1 Data Direction Register  
H’FFB0  
Port 1  
Bit  
7
6
5
4
3
2
1
0
P1  
7DDR P1  
6DDR P1  
5DDR P1  
4DDR P1  
3DDR P12DDR P1  
1DDR P10DDR  
Mode 1  
Initial value  
Read/Write  
Modes 2 and 3  
Initial value  
Read/Write  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Port 4 Input/Output Control  
0
1
Input port  
Output port  
P1DR Port 1 Data Register  
H’FFB2  
Port 1  
Bit  
7
P1  
0
6
P1  
0
5
4
3
P1  
0
2
P1  
0
1
0
7
6
P1  
5
P1  
4
3
2
P1  
1
P1  
0
0
Initial value  
Read/Write  
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Rev. 3.0, 09/98, page 335 of 361  
P2DDR Port 2 Data Direction Register  
H’FFB1  
Port 2  
Bit  
7
6
5
4
3
2
1
0
P2  
7DDR P2  
6DDR P2  
5DDR P2  
4DDR P2  
3DDR P22DDR P2  
1DDR P20DDR  
Mode 1  
Initial value  
Read/Write  
Modes 2 and 3  
Initial value  
Read/Write  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Port 2 Input/Output Control  
0
1
Input port  
Output port  
P2DR Port 2 Data Register  
H’FFB3  
Port 2  
Bit  
7
P2  
0
6
P2  
0
5
4
3
P2  
0
2
P2  
0
1
0
7
6
P2  
5
P2  
4
3
2
P2  
1
P2  
0
0
Initial value  
Read/Write  
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P3DDR Port 3 Data Direction Register  
H’FFB4  
Port 3  
Bit  
7
6
5
4
DDR P3  
3
2
DDR P3  
1
DDR P3  
0
P3  
7DDR P3  
6DDR P3  
5DDR P3  
4
3DDR P3  
2
1
0DDR  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Port 3 Input/Output Control  
0
1
Input port  
Output port  
Rev. 3.0, 09/98, page 336 of 361  
P3DR Port 3 Data Register  
H’FFB6  
Port 3  
Bit  
7
P3  
0
6
P3  
0
5
P3  
0
4
P3  
0
3
2
P3  
0
1
P3  
0
0
7
6
5
4
P3  
0
3
2
1
P3  
0
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P4DDR Port 4 Data Direction Register  
H’FFB5  
Port 4  
Bit  
7
6
5
4
DDR P4  
3
2
DDR P4  
1
DDR P4  
0
P4  
7DDR P4  
6DDR P4  
5DDR P4  
4
3DDR P4  
2
1
0DDR  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Port 4 Input/Output Control  
0
1
Input port  
Output port  
P4DR Port 4 Data Register  
H’FFB7  
Port 4  
Bit  
7
P4  
0
6
P4  
0
5
4
3
P4  
0
2
P4  
0
1
0
P4  
0
7
6
P4  
5
P4  
4
3
2
P4  
1
0
Initial value  
Read/Write  
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P5DDR Port 5 Data Direction Register  
H’FFB8  
Port 5  
Bit  
7
1
6
1
5
1
4
1
3
1
2
DDR P5  
1
0
P52  
1DDR P5  
0DDR  
Initial value  
Read/Write  
0
0
0
W
W
W
Port 5 Input/Output Control  
0
1
Input port  
Output port  
Rev. 3.0, 09/98, page 337 of 361  
P5DR Port 5 Data Register  
H’FFBA  
Port 5  
Bit  
7
1
6
1
5
1
4
1
3
2
P5  
0
1
P5  
0
0
1
2
1
P5  
0
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
P6DDR Port 6 Data Direction Register  
H’FFB9  
Port 6  
Bit  
7
6
5
4
3
2
DDR P6  
1
DDR P6  
0
P6  
7DDR P6  
6DDR P6  
5DDR P6  
4DDR P6  
3DDR P6  
2
1
0DDR  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Port 6 Input/Output Control  
0
1
Input port  
Output port  
P6DR Port 6 Data Register  
H’FFBB  
Port 6  
Bit  
7
P6  
0
6
P6  
0
5
4
3
P6  
0
2
P6  
0
1
0
P6  
0
7
6
P6  
5
P6  
4
3
2
P6  
1
0
Initial value  
Read/Write  
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P7DR Port 7 Data Register  
H’FFBE  
2
Port 7  
Bit  
7
P7  
*
6
P7  
*
5
4
3
P7  
*
1
0
P7  
*
7
6
P7  
5
7
P7  
4
3
P7  
2
P7  
*
1
0
Initial value  
Read/Write  
*
*
*
R
R
R
R
R
R
R
R
Note: * Depends on the levels of pins P7  
to P70.  
Rev. 3.0, 09/98, page 338 of 361  
P8DDR Port 8 Data Direction Register  
H’FFBD  
Port 8  
Bit  
7
1
6
5
4
3
2
1
0
P8  
6DDR P8  
5DDR P8  
4DDR P8  
3DDR P8  
2DDR P8  
1DDR P80DDR  
Initial value  
Read/Write  
0
0
0
0
0
0
0
W
W
W
W
W
W
W
Port 8 Input/Output Control  
0
1
Input port  
Output port  
P8DR Port 8 Data Register  
H’FFBF  
Port 8  
Bit  
7
1
6
P8  
0
5
4
3
P8  
0
2
P8  
0
1
0
6
P8  
5
P8  
4
3
2
P8  
1
P8  
0
0
Initial value  
Read/Write  
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P9DDR Port 9 Data Direction Register  
H’FFC0  
Port 9  
Bit  
7
6
5
4
DDR P9  
3
2
DDR P9  
1
DDR P9  
0
P9  
7DDR P9  
6DDR P9  
5DDR P9  
4
3DDR P9  
2
1
0DDR  
Mode 1 and 2  
Initial value  
Read/Write  
Mode 3  
0
1
0
0
0
0
0
0
W
W
W
W
W
W
W
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Port 9 Input/Output Control  
0
1
Input port  
Output port  
Rev. 3.0, 09/98, page 339 of 361  
P9DR Port 9 Data Register  
H’FFC1  
Port 9  
Bit  
7
P9  
0
6
P9  
*
5
P9  
0
4
P9  
0
3
P9  
0
2
1
P9  
0
0
6
6
5
4
3
P9  
2
1
P9  
0
0
Initial value  
Read/Write  
0
R/W  
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Notes: * Depends on the level of pin P96.  
STCR Serial/Timer Control Register  
H’FFC3  
TMR0/1  
Bit  
7
1
6
1
5
4
1
3
1
2
MPE  
1
0
1
ICKS1 ICKS0  
Initial value  
Read/Write  
0
0
0
R/W  
R/W  
R/W  
Multiprocessor Enable  
0
1
Multiprocessor communication function is disabled.  
Multiprocessor communication function is enabled.  
Internal Clock Source Select  
See TCR under TMR0 and TMR1.  
Rev. 3.0, 09/98, page 340 of 361  
SYSCR System Control Register  
H’FFC4  
System Control  
Bit  
7
SSBY  
0
6
STS2  
0
5
STS1  
0
4
STS0  
0
3
1
2
1
0
NMIEG DPME RAME  
Initial value  
Read/Write  
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W*  
R/W  
RAM Enable  
0
1
On-chip RAM is disabled.  
On-chip RAM is enabled.  
Dual-Port RAM Enable  
Not supported. (Do not set to “1.”)  
NMI Edge  
0
Falling edge of NMI is detected.  
Rising edge of NMI is detected.  
1
Standby Timer Select  
0
0
0
0
1
0
0
1
1
0
1
0
1
Clock settling time = 8192 states  
Clock settling time = 16384 states  
Clock settling time = 32768 states  
Clock settling time = 65536 states  
Clock settling time = 131072 states  
Software Standby  
0
1
SLEEP instruction causes transition to sleep mode.  
SLEEP instruction causes transition to software standby mode.  
Note: * Do not set DPME to 1.  
Rev. 3.0, 09/98, page 341 of 361  
MDCR Mode Control Register  
H’FFC5  
System Control  
Bit  
7
1
6
1
5
1
4
0
3
2
1
1
0
MDS  
*
0
MDS  
1
0
Initial value  
Read/Write  
*
R/W  
R/W  
Mode Select Bits  
Value at mode pins.  
Note: * Determined by inputs at pins MD1 and MD0  
ISCR IRQ Sense Control Register  
H’FFC6  
System Control  
Bit  
7
6
5
4
3
2
1
0
IRQ7SC IRQ6SC IRQ5SC IRQ4SC IRQ3SC IRQ2SC IRQ1SC IRQ0SC  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
IRQ0 to IRQ7 Sense Control  
0
1
IRQi is level-sensed (active low).  
IRQi is edge-sensed (falling edge).  
IER IRQ Enable Register  
H’FFC7  
System Control  
Bit  
7
IRQ  
0
6
5
4
IRQ  
0
3
IRQ  
0
2
IRQ  
0
1
0
IRQ  
0
7E  
IRQ  
6E  
IRQ  
0
5E  
4E  
3E  
2E  
IRQ  
0
1E  
0E  
Initial value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
IRQ0 to IRQ7 Enable  
0
1
IRQi is disabled.  
IRQi is enabled.  
Rev. 3.0, 09/98, page 342 of 361  
TCR Timer Control Register  
H’FFC8  
TMR0  
Bit  
7
6
5
OVIE  
0
4
3
2
1
CKS1  
0
0
CKS0  
0
CMIEB CMIEA  
CCLR1 CCLR0 CKS2  
Initial value  
Read/Write  
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock Select  
TCR  
STCR  
CKS0 ICKS1 ICKS0 Description  
CKS2  
CKS1  
0
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
1
1
0
0
1
1
0
1
1
0
0
1
1
0
1
0
1
0
Timer stopped  
Ø/8 internal clock, falling edge  
Ø/2 internal clock, falling edge  
Ø/64 internal clock, falling edge  
Ø/32 internal clock, falling edge  
Ø/1024 internal clock, falling edge  
Ø/256 internal clock, falling edge  
Timer stopped  
1
0
1
0
1
External clock, rising edge  
External clock, falling edge  
External clock, rising and falling  
edges  
Counter Clear  
0
0
1
1
0
1
0
1
Counter is not cleared.  
Cleared by compare-match A.  
Cleared by compare-match B.  
Cleared on rising edge of external reset input.  
Timer Overflow Interrupt Enable  
0
1
Overflow interrupt request is disabled.  
Overflow interrupt request is enabled.  
Compare-Match Interrupt Enable A  
0
1
Compare-match A interrupt request is disabled.  
Compare-match A interrupt request is enabled.  
Compare-Match Interrupt Enable B  
0
1
Compare-match B interrupt request is disabled.  
Compare-match B interrupt request is enabled.  
Rev. 3.0, 09/98, page 343 of 361  
TCSR Timer Control/Status Register  
H’FFC9  
TMR0  
Bit  
7
CMFB  
0
6
CMFA  
0
5
OVF  
0
4
1
3
2
1
0
OS3*2 OS2*2  
OS1*2 OS0*2  
Initial value  
Read/Write  
0
0
0
0
R/(W)*1 R/(W)*1 R/(W)*1  
R/W  
R/W  
R/W  
R/W  
Output Select  
0
0
1
1
0
1
0
1
No change on compare-match A.  
Output “0” on compare-match A.  
Output “1” on compare-match A.  
Invert (toggle) output on compare-match A.  
Output Select  
0
0
1
1
0
1
0
1
No change on compare-match B.  
Output “0” on compare-match B.  
Output “1” on compare-match B.  
Invert (toggle) output on compare-match B.  
Timer Overflow Flag  
0
1
Cleared when CPU reads OVF = “1,” then writes “0” in OVF.  
Set when TCNT changes from H'FF to H'00.  
Compare-Match Flag A  
0
1
Cleared when CPU reads CMFA = “1,” then writes “0” in CMFA.  
Set when TCNT = TCORA.  
Compare-Match Flag B  
0
1
Cleared from when CPU reads CMFB = “1,” then writes “0” in CMFB.  
Set when TCNT = TCORB.  
Notes: 1. Software can write a “0” in bits 7 to 5 to clear the flags, but cannot write a “1” in these bits.  
2. When all four bits (OS3 to OS0) are cleared to “0,” output is disabled.  
Rev. 3.0, 09/98, page 344 of 361  
TCORA Time Constant Register A  
H’FFCA  
TMR0  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The CMFA bit is set to “1” when TCORA= TCNT.  
TCORB Time Constant Register B  
H’FFCB  
TMR0  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The CMFB bit is set to “1” when TCORB= TCNT.  
TCNT Timer Counter  
H’FFCC  
TMR0  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Count value  
Rev. 3.0, 09/98, page 345 of 361  
TCR Timer Conrol Register  
H’FFD0  
TMR1  
Bit  
7
6
5
OVIE  
0
4
3
2
1
CKS1  
0
0
CKS0  
0
CMIEB CMIEA  
CCLR1 CCLR0 CKS2  
Initial value  
Read/Write  
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock Select  
TCR  
STCR  
CKS2  
CKS1  
CKS0 ICKS1 ICKS0 Description  
0
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
1
1
0
0
1
1
0
1
1
0
0
1
1
0
1
0
1
0
Timer stopped  
Ø/8 internal clock, falling edge  
Ø/2 internal clock, falling edge  
Ø/64 internal clock, falling edge  
Ø/128 internal clock, falling edge  
1
0
1
0
Ø/1024 internal clock, falling edge  
Ø/2048 internal clock, falling edge  
Timer stopped  
1
External clock, rising edge  
External clock, falling edge  
External clock, rising and falling  
edges  
Counter Clear  
0
0
1
1
0
1
0
1
Counter is not cleared.  
Cleared by compare-match A.  
Cleared by compare-match B.  
Cleared on rising edge of external reset input.  
Timer Overflow Interrupt Enable  
0
1
Overflow interrupt request is disabled.  
Overflow interrupt request is enabled.  
Compare-Match Interrupt Enable A  
0
1
Compare-match A interrupt request is disabled.  
Compare-match A interrupt request is enabled.  
Compare-Match Interrupt Enable B  
0
1
Compare-match B interrupt request is disabled.  
Compare-match B interrupt request is enabled.  
Rev. 3.0, 09/98, page 346 of 361  
TCSR Timer Control/Status Register  
H’FFD1  
TMR1  
Bit  
7
CMFB  
0
6
CMFA  
0
5
OVF  
0
4
1
3
2
1
0
OS3*2 OS2*2  
OS1*2 OS0*2  
Initial value  
Read/Write  
0
0
0
0
R/(W)*1 R/(W)*1 R/(W)*1  
R/W  
R/W  
R/W  
R/W  
Note: Bit functions are the same as for TMR0.  
*1 Software can write a “0” in bits 7 to 5 to clear the flags, but cannot write a “1” in these bits.  
*2 When all four bits (OS3 to OS0) are cleared to “0,” output is disabled.  
TCORA Time Constant Register A  
H’FFD2  
TMR1  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Note: Bit functions are the same as for TMR0.  
TCORB Time Constant Register B  
H’FFD3  
TMR1  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Note: Bit functions are the same as for TMR0.  
TCNT Timer Counter  
H’FFD4  
TMR1  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Note: Bit functions are the same as for TMR0.  
Rev. 3.0, 09/98, page 347 of 361  
SMR Serial Mode Register  
H’FFD8  
SCI0  
Bit  
7
C/A  
0
6
5
PE  
0
4
O/E  
0
3
2
1
CKS1  
0
0
CKS0  
0
CHR  
0
STOP  
0
MP  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock select  
0
0
1
0
1
ø clock  
ø/4 clock  
ø/16 clock  
ø/64 clock  
1
Multiprocessor mode  
0
Multiprocessor function  
disabled  
1
Multiprocessor format selected  
Stop bit length  
0
1
One stop bit  
Two stop bits  
Parity mode  
0
1
Even parity  
Odd parity  
Parity enable  
0
Transmit: No parity bit added.  
Receive: Parity bit not checked.  
1
Transmit: No parity bit added.  
Receive: Parity bit not checked.  
Character length  
0
1
8-bit data length  
7-bit data length  
Communication mode  
0
1
Asynchronous  
Synchronous  
Rev. 3.0, 09/98, page 348 of 361  
BRR Bit Rate Register  
H’FFD9  
SCI0  
Bit  
7
6
5
4
3
2
1
0
1
Initial value  
Read/Write  
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Constant that determines the bit rate  
Note: Bit functions are the same as for SCI1.  
Rev. 3.0, 09/98, page 349 of 361  
SCR Serial Control Register  
H’FFDA  
SCI0  
Bit  
7
TIE  
0
6
RIE  
0
5
TE  
0
4
RE  
0
3
MPIE  
0
2
TEIE  
0
1
CKE1  
0
0
CKE0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock Enable 1  
0
1
Internal clock  
External clock  
Clock enable 0  
0
1
Asynchronous serial clock not output  
Asynchronous serial clock output at  
SCK pin  
Transmit End Interrupt Enable  
0
1
TSR-empty interrupt request is disabled.  
TSR-empty interrupt request is enabled.  
Multiprocessor Interrupt Enable  
0
1
Multiprocessor receive interrupt function is disabled.  
Multiprocessor receive interrupt function is enabled.  
Receive Enable  
0
1
Receive disabled  
Receive enabled  
Transmit Enable  
0
1
Transmit disabled  
Transmit enabled  
Receive Interrupt Enable  
0
1
Receive interrupt and receive error interrupt requests are disabled.  
Receive interrupt and receive error interrupt requests are enabled.  
Transmit Interrupt Enable  
0
1
TDR-empty interrupt request is disabled.  
TDR-empty interrupt request is enabled.  
Note: Bit functions are the same as for SCI1.  
Rev. 3.0, 09/98, page 350 of 361  
TDR Transmit Data Register  
H’FFDB  
SCI0  
Bit  
7
6
5
4
3
2
1
0
1
Initial value  
Read/Write  
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Transmit data  
Note: Bit functions are the same as for SCI1.  
Rev. 3.0, 09/98, page 351 of 361  
SSR Serial Status Register  
H’FFDC  
SCI0  
Bit  
7
6
RDRF  
0
5
4
3
2
TEND  
1
1
MPB  
0
0
TDRE  
1
R/(W)*  
ORER  
0
R/(W)*  
FER  
0
R/(W)*  
PER  
0
R/(W)*  
MPBT  
0
Initial value  
Read/Write  
*
R/(W)  
R
R
R/W  
Multiprocessor Bit transfer  
0
1
Multiprocessor bit = “0” in transmit data.  
Multiprocessor bit = “1” in transmit data.  
Multiprocessor Bit  
0
1
Multiprocessor bit = “0” in receive data.  
Multiprocessor bit = “1” in receive data.  
Transmit End  
0
Cleared when CPU reads TDRE = “1,” then writes “0” in TDRE.  
Set to “1” when TE = “0,” or when TDRE = “1” at the end of character transmission.  
1
Parity Error  
0
Cleared when CPU reads PER = “1,” then writes “0” in PER.  
Set when a parity error occurs (parity of receive data does not match parity selected by O/E bit in SMR).  
1
Framing Error  
0
Cleared when CPU reads FER = “1,” then writes “0” in FER.  
Set when a framing error occurs (stop bit is “0”).  
1
Overrun Error  
Cleared when CPU reads ORER = “1,” then writes “0” in ORER.  
0
1
Set when an overrun error occurs (next data is completely received while  
RDRF bit is set to “1”).  
Receive Data Register Full  
0
1
Cleared when CPU reads RDRF = “1,” then writes “0” in RDRF.  
Set when one character is received normally and transferred from RSR to RDR.  
Transmit Data Register Empty  
0
1
Cleared when CPU reads TDRE = “1,” then writes “0” in TDRE.  
Set when:  
1. Data is transferred from TDR to TSR.  
2. TE is cleared while TDRE = “0.”  
Note: Software can write a “0” in bits 7 to 3 to clear the flags, but cannot write a “1” in these bits.  
Bit functions are the same as for SCI1.  
Rev. 3.0, 09/98, page 352 of 361  
RDR Receive Data Register  
H’FFDD  
SCI0  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
Receive data  
Note: Bit functions are the same as for SCI1.  
ADDRn A/D Data Register n (n = A, B, C, D)  
H’FFE0, H’FFE2,  
H’FFE4, H’FFE6  
A/D  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
A/D conversion result  
Rev. 3.0, 09/98, page 353 of 361  
ADCSR A/D Control/Status Register  
H’FFE8  
A/D  
Bit  
7
ADF  
0
6
ADIE  
0
5
ADST  
0
4
SCAN  
0
3
2
1
0
CKS  
0
CH2  
0
CH1  
0
CH0  
0
Initial value  
Read/Write  
R/(W)*  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock Select  
CH2  
0
CH1  
CH0  
Single mode Scan mode  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
AN0  
AN0, AN1  
AN0 to AN2  
AN0 to AN3  
AN4  
1
AN4, AN5  
AN4 to AN6  
AN4 to AN7  
Clock Select  
0
Conversion time = 242 states (max)  
Conversion time = 122 states (max)  
1
Scan Mode  
0
1
Single mode  
Scan mode  
A/D Start  
0
1
A/D conversion is halted.  
1.  
2.  
Single mode: One A/D conversion is performed, then this bit is  
automatically cleared to “0.”  
Scan mode: A/D conversion starts and continues cyclically on  
all selected channels until “0” is written in this bit.  
A/D Interrupt Enable  
0
1
The A/D interrupt request (ADI) is disabled.  
The A/D interrupt request (ADI) is enabled.  
A/D End Flag  
0
1
Cleared from "1" to "0" when CPU reads ADF = "1," then writes "0" in ADF.  
Set to "1" at the following times:  
1.  
2.  
Single mode: at the completion of A/D conversion  
Scan mode: when all selected channels have been converted.  
Note: Software can write a “0” in bit 7 to clear the flag, but cannot write a “1” in this bit.  
Rev. 3.0, 09/98, page 354 of 361  
ADCR A/D Control Register  
H’FFEA  
A/D  
Bit  
7
TRGE  
0
6
1
5
1
4
1
3
1
2
1
1
1
0
CHS  
0
Initial value  
Read/Write  
R/W  
R/W  
Reserved bit.  
Trigger Enable  
0
1
ADTRG is disabled.  
ADTRG is enabled. A/D conversion can be started by  
external trigger, or by software.  
Rev. 3.0, 09/98, page 355 of 361  
Appendix C Pin States  
C.1  
Pin States in Each Mode  
Table C.1 Pin States  
MCU  
Hardware Software  
Normal  
Pin Name Mode Reset  
Standby  
Standby  
Sleep Mode  
Operation  
P17 P10  
A7 A0  
1
2
Low  
3-State  
Low  
Prev. state  
A7 A0  
(Addr. output  
pins: last address  
accessed)  
3-State  
Low if DDR = 1,  
Prev. state  
if DDR = 0  
Addr. output or  
input port  
3
1
2
Prev. state  
Low  
I/O port  
P27 P20  
A15 A8  
Low  
3-State  
Prev. state  
A15 A8  
(Addr. output  
pins: last address  
accessed)  
3-State  
Low if DDR = 1,  
Prev. state  
if DDR = 0  
Addr. output or  
input port  
3
1
2
3
1
2
3
1
2
3
Prev. state  
3-state  
I/O port  
P37 P30  
D7 D0  
3-State 3-State  
3-State  
D7 D0  
Prev. state  
Prev. state  
Prev. state  
I/O port  
I/O port  
P47 P40  
P52 P50  
3-State 3-State  
3-State 3-State  
Prev. state*  
Prev. state*  
Prev. state  
I/O port  
Notes: 1. 3-State: High-impedance state  
2. Prev. state: Previous state. Input ports are in the high-impedance state (with the MOS  
pull-up on if PCR = 1). Output ports hold their previous output level.  
3. I/O port: Direction depends on the data direction (DDR) bit. Note that these pins may  
also be used by the on-chip supporting modules.  
See section 5, “I/O Ports,” for further information.  
*
On-chip supporting modules are initialized, so these pins revert to I/O ports according to  
the DDR and DR bits.  
Rev. 3.0, 09/98, page 356 of 361  
Table C.1 Pin States (cont)  
MCU  
Hardware Software  
Normal  
Pin Name Mode Reset  
Standby  
Standby  
Sleep Mode  
Operation  
P67 P60  
P77 P70  
P86 P80  
P97/WAIT  
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
3-State 3-State  
3-State 3-State  
3-State 3-State  
3-State 3-State  
Prev. state*  
Prev. state  
I/O port  
Input port  
I/O port  
WAIT  
3-State  
3-State  
Prev. state*  
3-State  
Prev. state  
3-State  
Prev. state  
High  
Prev. state  
I/O port  
P96/φ  
Clock  
output  
3-State  
3-State  
Clock output  
Clock output  
3-State  
High if DDR = 1, Clock output if  
3-state if  
DDR = 0  
Clock output if  
DDR = 1, 3-state DDR = 1, input  
if DDR = 0  
port if DDR = 0  
P95 P93,  
AS, WR, RD  
1
2
3
1
2
3
High  
High  
High  
AS, WR, RD  
3-State  
Prev. state  
Prev. state  
Prev. state  
Prev. state  
I/O port  
I/O port  
P92 P90  
3-State 3-State  
Notes: 1. 3-State: High-impedance state  
2. Prev. state: Previous state. Input ports are in the high-impedance state (with the MOS  
pull-up on if PCR = 1). Output ports hold their previous output level.  
3. I/O port: Direction depends on the data direction (DDR) bit. Note that these pins may  
also be used by the on-chip supporting modules.  
See section 5, “I/O Ports,” for further information.  
*
On-chip supporting modules are initialized, so these pins revert to I/O ports according to  
the DDR and DR bits.  
Rev. 3.0, 09/98, page 357 of 361  
Appendix D Timing of Transition to and Recovery from  
Hardware Standby Mode  
Timing of Transition to Hardware Standby Mode  
(1) To retain RAM contents when the RAME bit in SYSCR is cleared to 0, drive the RES signal  
low 10 system clock cycles before the STBY signal goes low, as shown below. RES must  
remain low until STBY goes low (minimum delay from STBY low to RES high: 0 ns).  
STBY  
t1 10 tcyc  
t2 0 ns  
RES  
(2) When the RAME bit in SYSCR is set to “1” or when it is not necessary to retain RAM  
contents, RES does not have to be driven low as in (1).  
Timing of Recovery From Hardware Standby Mode: Drive the RES signal low approximately  
100 ns before STBY goes high.  
STBY  
t
100 ns  
tOSC  
RES  
Rev. 3.0, 09/98, page 358 of 361  
Appendix E Package Dimensions  
Figure E.1 shows the dimensions of the CG-84 package. Figure E.2 shows the dimensions of the  
CP-84 package. Figure E.3 shows the dimensions of the FP-80A package.  
Unit: mm  
29.21 ± 0.38  
φ 8.89  
12  
32  
33  
53  
11  
1
84  
75  
74  
54  
Hitachi Code  
JEDEC  
EIAJ  
CG-84  
1.27  
2.16  
1.27  
Weight (reference value) 8.96 g  
Figure E.1 Package Dimensions (CG-84)  
Rev. 3.0, 09/98, page 359 of 361  
Unit: mm  
+0.12  
30.23  
–0.13  
29.28  
74  
54  
75  
53  
84  
1
11  
33  
32  
12  
0.75  
1.94  
1.27  
28.20 ± 0.50  
*0.42 ± 0.10  
0.38 ± 0.08  
28.20 ± 0.50  
M
0.20  
0.10  
Hitachi Code  
JEDEC  
EIAJ  
CP-84  
Conforms  
Conforms  
*Dimension including the plating thickness  
Base material dimension  
Weight (reference value) 6.4 g  
Figure E.2 Package Dimensions (CP-84)  
Rev. 3.0, 09/98, page 360 of 361  
17.2 ± 0.3  
Unit: mm  
14  
60  
41  
61  
80  
40  
21  
1
20  
*0.32 ± 0.08  
0.30 ± 0.06  
M
0.12  
0.83  
1.6  
0° – 8°  
0.8 ± 0.3  
0.10  
Hitachi Code  
JEDEC  
FP-80A  
EIAJ  
Conforms  
*Dimension including the plating thickness  
Base material dimension  
Weight (reference value) 1.2 g  
Figure E.3 Package Dimensions (FP-80A)  
Rev. 3.0, 09/98, page 361 of 361  
H8/338 Series Hardware Manual  
Publication Date: 1st Edition, July 1992  
3rd Edition, September 1998  
Published by:  
Electronic Devices Sales & Marketing Group  
Semiconductor & Integrated Circuits  
Hitachi, Ltd.  
Edited by:  
Technical Documentation Group  
UL Media Co., Ltd.  
Copyright © Hitachi, Ltd., 1992. All rights reserved. Printed in Japan.  
Filename:  
COLOPHON.DOC  
Directory:  
Template:  
Title:  
C:\WINNT\Profiles\aschwerm.001\Desktop\H33TH025D1  
C:\Program Files\Microsoft Office\Templates\UMTMP5C.DOT  
SuperH‘ (SH) 32-bit RISC MCU/MPU Series  
Subject:  
Author:  
M. Toyohashi  
Keywords:  
Comments:  
Creation Date:  
Change Number:  
Last Saved On:  
Last Saved By:  
Total Editing Time:  
Last Printed On:  
07/03/98 10:10 AM  
10  
06/17/99 4:34 PM  
kashi  
11 Minutes  
01/10/00 1:10 PM  
As of Last Complete Printing  
Number of Pages:  
Number of Words: 8 (approx.)  
Number of Characters: 46 (approx.)  
1

相关型号:

HD6413378F10

Microcontroller, 16-Bit, CMOS, PQFP80, QFP-80
HITACHI

HD6413378F10V

16-BIT, MICROCONTROLLER, PQFP80, QFP-80
HITACHI

HD6413378F6

Microcontroller, 16-Bit, CMOS, PQFP80, QFP-80
HITACHI

HD6413378F8

Microcontroller, 16-Bit, CMOS, PQFP80, QFP-80
HITACHI

HD6413378VCP5

16-BIT, MICROCONTROLLER, PQCC84, PLASTIC, LCC-84
HITACHI

HD6413378VF

16-BIT, 10MHz, MICROCONTROLLER, PQFP80, QFP-80
RENESAS

HD6413378VF5

Microcontroller, 16-Bit, CMOS, PQFP80, QFP-80
HITACHI

HD6413388CP10

16-BIT, MICROCONTROLLER, PQCC84, PLASTIC, LCC-84
HITACHI

HD6413388CP8

16-BIT, MICROCONTROLLER, PQCC84, PLASTIC, LCC-84
HITACHI

HD6413388F10

16-BIT, MICROCONTROLLER, PQFP80, QFP-80
HITACHI

HD6413388F10V

16-BIT, MICROCONTROLLER, PQFP80, QFP-80
HITACHI

HD6413388F6

16-BIT, MICROCONTROLLER, PQFP80, QFP-80
HITACHI