HD6433662FY [RENESAS]

Renesas 16-Bit Single-Chip Microcomputer H8 Family/H8/300H Tiny Series; 瑞萨16位单片机H8族/ H8 / 300H Tiny系列
HD6433662FY
型号: HD6433662FY
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Renesas 16-Bit Single-Chip Microcomputer H8 Family/H8/300H Tiny Series
瑞萨16位单片机H8族/ H8 / 300H Tiny系列

文件: 总444页 (文件大小:3075K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
REJ09B0142-0600  
The revision list can be viewed directly by  
clicking the title page.  
The revision list summarizes the locations of  
revisions and additions. Details should  
always  
be checked by referring to the relevant text.  
H8/3664Group  
16  
Hardware Manual  
Renesas 16-Bit Single-Chip Microcomputer  
H8 Family/H8/300H Tiny Series  
H8/3664N  
H8/3664F  
H8/3664  
H8/3663  
H8/3662  
H8/3661  
H8/3660  
HD64N3664  
HD64F3664  
HD6433664  
HD6433663  
HD6433662  
HD6433661  
HD6433660  
Rev.6.00  
Revision Date: Mar. 24, 2006  
Rev. 6.00 Mar. 24, 2006 Page ii of xxviii  
Keep safety first in your circuit designs!  
1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and  
more reliable, but there is always the possibility that trouble may occur with them. Trouble with  
semiconductors may lead to personal injury, fire or property damage.  
Remember to give due consideration to safety when making your circuit designs, with appropriate  
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or  
(iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
1. These materials are intended as a reference to assist our customers in the selection of the Renesas  
Technology Corp. product best suited to the customer's application; they do not convey any license  
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or  
a third party.  
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-  
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or  
circuit application examples contained in these materials.  
3. All information contained in these materials, including product data, diagrams, charts, programs and  
algorithms represents information on products at the time of publication of these materials, and are  
subject to change by Renesas Technology Corp. without notice due to product improvements or  
other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or  
an authorized Renesas Technology Corp. product distributor for the latest product information  
before purchasing a product listed herein.  
The information described here may contain technical inaccuracies or typographical errors.  
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising  
from these inaccuracies or errors.  
Please also pay attention to information published by Renesas Technology Corp. by various means,  
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).  
4. When using any or all of the information contained in these materials, including product data,  
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total  
system before making a final decision on the applicability of the information and products. Renesas  
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the  
information contained herein.  
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or  
system that is used under circumstances in which human life is potentially at stake. Please contact  
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when  
considering the use of a product contained herein for any specific purposes, such as apparatus or  
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.  
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in  
whole or in part these materials.  
7. If these products or technologies are subject to the Japanese export control restrictions, they must  
be exported under a license from the Japanese government and cannot be imported into a country  
other than the approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the  
country of destination is prohibited.  
8. Please contact Renesas Technology Corp. for further details on these materials or the products  
contained therein.  
Rev. 6.00 Mar. 24, 2006 Page iii of xxviii  
General Precautions on Handling of Product  
1. Treatment of NC Pins  
Note: Do not connect anything to the NC pins.  
The NC (not connected) pins are either not connected to any of the internal circuitry or are  
used as test pins or to reduce noise. If something is connected to the NC pins, the  
operation of the LSI is not guaranteed.  
2. Treatment of Unused Input Pins  
Note: Fix all unused input pins to high or low level.  
Generally, the input pins of CMOS products are high-impedance input pins. If unused pins  
are in their open states, intermediate levels are induced by noise in the vicinity, a pass-  
through current flows internally, and a malfunction may occur.  
3. Processing before Initialization  
Note: When power is first supplied, the product's state is undefined.  
The states of internal circuits are undefined until full power is supplied throughout the  
chip and a low level is input on the reset pin. During the period where the states are  
undefined, the register settings and the output state of each pin are also undefined. Design  
your system so that it does not malfunction because of processing while it is in this  
undefined state. For those products which have a reset function, reset the LSI immediately  
after the power supply has been turned on.  
4. Prohibition of Access to Undefined or Reserved Addresses  
Note: Access to undefined or reserved addresses is prohibited.  
The undefined or reserved addresses may be used to expand functions, or test registers  
may have been be allocated to these addresses. Do not access these registers; the system's  
operation is not guaranteed if they are accessed.  
Rev. 6.00 Mar. 24, 2006 Page iv of xxviii  
Configuration of This Manual  
This manual comprises the following items:  
1. General Precautions on Handling of Product  
2. Configuration of This Manual  
3. Preface  
4. Contents  
5. Overview  
6. Description of Functional Modules  
CPU and System-Control Modules  
On-Chip Peripheral Modules  
The configuration of the functional description of each module differs according to the  
module. However, the generic style includes the following items:  
i) Feature  
ii) Input/Output Pin  
iii) Register Description  
iv) Operation  
v) Usage Note  
When designing an application system that includes this LSI, take notes into account. Each section  
includes notes in relation to the descriptions given, and usage notes are given, as required, as the  
final part of each section.  
7. List of Registers  
8. Electrical Characteristics  
9. Appendix  
10. Main Revisions and Additions in this Edition (only for revised versions)  
The list of revisions is a summary of points that have been revised or added to earlier versions.  
This does not include all of the revised contents. For details, see the actual locations in this  
manual.  
11. Index  
Rev. 6.00 Mar. 24, 2006 Page v of xxviii  
Preface  
The H8/3664 Group are single-chip microcomputers made up of the high-speed H8/300H CPU  
employing Renesas Technology original architecture as their cores, and the peripheral functions  
required to configure a system. The H8/300H CPU has an instruction set that is compatible with  
the H8/300 CPU.  
Target Users: This manual was written for users who will be using the H8/3664 Group in the  
design of application systems. Target users are expected to understand the  
fundamentals of electrical circuits, logical circuits, and microcomputers.  
Objective:  
This manual was written to explain the hardware functions and electrical  
characteristics of the H8/3664 Group to the target users.  
Refer to the H8/300H Series Software Manual for a detailed description of the  
instruction set.  
Notes on reading this manual:  
In order to understand the overall functions of the chip  
Read the manual according to the contents. This manual can be roughly categorized into parts  
on the CPU, system control functions, peripheral functions and electrical characteristics.  
In order to understand the details of the CPU's functions  
Read the H8/300H Series Software Manual.  
In order to understand the details of a register when its name is known  
Read the index that is the final part of the manual to find the page number of the entry on the  
register. The addresses, bits, and initial values of the registers are summarized in section 19,  
List of Registers.  
Example:  
Bit order:  
The MSB is on the left and the LSB is on the right.  
Notes:  
When using the on-chip emulator (E7, E8) for H8/3664 program development and debugging, the  
following restrictions must be noted.  
1. The NMI pin is reserved for the E7 or E8, and cannot be used.  
2. Pins P85, P86, and P87 cannot be used. In order to use these pins, additional hardware must be  
provided on the user board.  
3. Area H'7000 to H'7FFF is used by the E7 or E8, and is not available to the user.  
4. Area H'F780 to H'FB7F must on no account be accessed.  
Rev. 6.00 Mar. 24, 2006 Page vi of xxviii  
5. When the E7 or E8 is used, address breaks can be set as either available to the user or for use  
by the E7 or E8. If address breaks are set as being used by the E7 or E8, the address break  
control registers must not be accessed.  
6. When the E7 or E8 is used, NMI is an input/output pin (open-drain in output mode), P85 and  
P87 are input pins, and P86 is an output pin.  
Related Manuals: The latest versions of all related manuals are available from our web site.  
Please ensure you have the latest versions of all documents you require.  
http://www.renesas.com/  
H8/3664 Group manuals:  
Document Title  
Document No.  
This manual  
H8/3664 Group Hardware Manual  
H8/300H Series Software Manual  
REJ09B0213  
User's manuals for development tools:  
Document Title  
Document No.  
H8S, H8/300 Series C/C++ Compiler, Assembler, Optimizing Linkage Editor  
User's Manual  
REJ10B0058  
H8S, H8/300 Series Simulator/Debugger User's Manual  
REJ10B0211  
REJ10B0024  
H8S, H8/300 Series High-Performance Embedded Workshop 3 Tutorial  
H8S, H8/300 Series High-performance Embedded Workshop 3 User's Manual REJ10B0026  
Application notes:  
Document Title  
Document No.  
REJ05B0464  
REJ05B0520  
H8S, H8/300 Series C/C++ Compiler Package Application Note  
Single Power Supply F-ZTATTM On-Board Programming  
Rev. 6.00 Mar. 24, 2006 Page vii of xxviii  
Rev. 6.00 Mar. 24, 2006 Page viii of xxviii  
Contents  
Section 1 Overview................................................................................................1  
1.1  
1.2  
1.3  
1.4  
Features................................................................................................................................. 1  
Internal Block Diagram......................................................................................................... 3  
Pin Arrangement................................................................................................................... 5  
Pin Functions ........................................................................................................................ 9  
Section 2 CPU......................................................................................................13  
2.1  
Address Space and Memory Map....................................................................................... 14  
2.2  
Register Configuration........................................................................................................ 17  
2.2.1  
2.2.2  
2.2.3  
General Registers................................................................................................ 18  
Program Counter (PC) ........................................................................................ 19  
Condition-Code Register (CCR)......................................................................... 19  
2.3  
2.4  
2.5  
2.6  
Data Formats....................................................................................................................... 21  
2.3.1  
2.3.2  
General Register Data Formats........................................................................... 21  
Memory Data Formats........................................................................................ 23  
Instruction Set..................................................................................................................... 24  
2.4.1  
2.4.2  
Table of Instructions Classified by Function ...................................................... 24  
Basic Instruction Formats ................................................................................... 34  
Addressing Modes and Effective Address Calculation....................................................... 35  
2.5.1  
2.5.2  
Addressing Modes .............................................................................................. 35  
Effective Address Calculation ............................................................................ 39  
Basic Bus Cycle.................................................................................................................. 41  
2.6.1  
2.6.2  
Access to On-Chip Memory (RAM, ROM)........................................................ 41  
On-Chip Peripheral Modules .............................................................................. 42  
2.7  
2.8  
CPU States.......................................................................................................................... 43  
Usage Notes........................................................................................................................ 44  
2.8.1  
2.8.2  
2.8.3  
Notes on Data Access to Empty Areas ............................................................... 44  
EEPMOV Instruction.......................................................................................... 44  
Bit Manipulation Instruction............................................................................... 45  
Section 3 Exception Handling .............................................................................51  
3.1  
Exception Sources and Vector Address.............................................................................. 51  
3.2  
Register Descriptions.......................................................................................................... 53  
3.2.1  
3.2.2  
3.2.3  
Interrupt Edge Select Register 1 (IEGR1) .......................................................... 53  
Interrupt Edge Select Register 2 (IEGR2) .......................................................... 54  
Interrupt Enable Register 1 (IENR1) .................................................................. 55  
Rev. 6.00 Mar. 24, 2006 Page ix of xxviii  
3.2.4  
3.2.5  
Interrupt Flag Register 1 (IRR1)......................................................................... 56  
Wakeup Interrupt Flag Register (IWPR) ............................................................ 57  
3.3  
3.4  
Reset Exception Handling .................................................................................................. 59  
Interrupt Exception Handling ............................................................................................. 59  
3.4.1  
3.4.2  
3.4.3  
3.4.4  
External Interrupts .............................................................................................. 59  
Internal Interrupts ............................................................................................... 61  
Interrupt Handling Sequence..................................................................... 61  
Interrupt Response Time..................................................................................... 62  
3.5  
Usage Notes........................................................................................................................ 64  
3.5.1  
3.5.2  
3.5.3  
Interrupts after Reset........................................................................................... 64  
Notes on Stack Area Use .................................................................................... 64  
Notes on Rewriting Port Mode Registers ........................................................... 64  
Section 4 Address Break .....................................................................................67  
4.1  
Register Descriptions.......................................................................................................... 68  
4.1.1  
4.1.2  
4.1.3  
4.1.4  
Address Break Control Register (ABRKCR) ..................................................... 68  
Address Break Status Register (ABRKSR) ........................................................ 70  
Break Address Registers (BARH, BARL).......................................................... 70  
Break Data Registers (BDRH, BDRL) ............................................................... 70  
4.2  
4.3  
Operation ............................................................................................................................ 71  
Usage Notes........................................................................................................................ 73  
Section 5 Clock Pulse Generators .......................................................................77  
5.1  
System Clock Generator..................................................................................................... 78  
5.1.1  
5.1.2  
5.1.3  
Connecting Crystal Resonator ............................................................................ 78  
Connecting Ceramic Resonator .......................................................................... 79  
External Clock Input Method.............................................................................. 79  
5.2  
5.3  
5.4  
Subclock Generator ............................................................................................................ 80  
5.2.1  
5.2.2  
Connecting 32.768-kHz Crystal Resonator ........................................................ 80  
Pin Connection when Not Using Subclock......................................................... 81  
Prescalers............................................................................................................................ 81  
5.3.1  
5.3.2  
Prescaler S .......................................................................................................... 81  
Prescaler W......................................................................................................... 81  
Usage Notes........................................................................................................................ 82  
5.4.1  
5.4.2  
Note on Resonators............................................................................................. 82  
Notes on Board Design....................................................................................... 82  
Section 6 Power-Down Modes............................................................................83  
6.1  
Register Descriptions.......................................................................................................... 84  
6.1.1 System Control Register 1 (SYSCR1)................................................................ 84  
Rev. 6.00 Mar. 24, 2006 Page x of xxviii  
6.1.2  
6.1.3  
System Control Register 2 (SYSCR2)................................................................ 86  
Module Standby Control Register 1 (MSTCR1) ................................................ 87  
6.2  
Mode Transitions and States of LSI.................................................................................... 88  
6.2.1  
6.2.2  
6.2.3  
6.2.4  
Sleep Mode ......................................................................................................... 91  
Standby Mode..................................................................................................... 91  
Subsleep Mode.................................................................................................... 92  
Subactive Mode .................................................................................................. 92  
6.3  
6.4  
Operating Frequency in Active Mode................................................................................. 93  
Direct Transition................................................................................................................. 93  
6.4.1  
6.4.2  
Direct Transition from Active Mode to Subactive Mode.................................... 93  
Direct Transition from Subactive Mode to Active Mode.................................... 94  
6.5  
6.6  
Module Standby Function................................................................................................... 94  
Usage Note.......................................................................................................................... 94  
Section 7 ROM ....................................................................................................95  
7.1  
Block Configuration ........................................................................................................... 96  
7.2  
Register Descriptions.......................................................................................................... 97  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.2.5  
Flash Memory Control Register 1 (FLMCR1).................................................... 97  
Flash Memory Control Register 2 (FLMCR2).................................................... 98  
Erase Block Register 1 (EBR1) .......................................................................... 99  
Flash Memory Power Control Register (FLPWCR)........................................... 99  
Flash Memory Enable Register (FENR)........................................................... 100  
7.3  
7.4  
On-Board Programming Modes........................................................................................ 100  
7.3.1  
7.3.2  
Boot Mode ........................................................................................................ 101  
Programming/Erasing in User Program Mode.................................................. 103  
Flash Memory Programming/Erasing............................................................................... 104  
7.4.1  
7.4.2  
7.4.3  
Program/Program-Verify.................................................................................. 104  
Erase/Erase-Verify............................................................................................ 107  
Interrupt Handling when Programming/Erasing Flash Memory....................... 107  
7.5  
Program/Erase Protection ................................................................................................. 109  
7.5.1  
7.5.2  
7.5.3  
Hardware Protection ......................................................................................... 109  
Software Protection........................................................................................... 109  
Error Protection................................................................................................. 109  
7.6  
7.7  
Programmer Mode............................................................................................................ 110  
Power-Down States for Flash Memory............................................................................. 110  
Section 8 RAM ..................................................................................................113  
Section 9 I/O Ports.............................................................................................115  
9.1  
Port 1................................................................................................................................. 115  
Rev. 6.00 Mar. 24, 2006 Page xi of xxviii  
9.1.1  
9.1.2  
9.1.3  
9.1.4  
9.1.5  
Port Mode Register 1 (PMR1).......................................................................... 116  
Port Control Register 1 (PCR1)........................................................................ 117  
Port Data Register 1 (PDR1) ............................................................................ 118  
Port Pull-Up Control Register 1 (PUCR1)........................................................ 118  
Pin Functions .................................................................................................... 119  
9.2  
9.3  
Port 2................................................................................................................................. 121  
9.2.1  
9.2.2  
9.2.3  
Port Control Register 2 (PCR2)........................................................................ 121  
Port Data Register 2 (PDR2) ............................................................................ 122  
Pin Functions .................................................................................................... 122  
Port 5................................................................................................................................. 124  
9.3.1  
9.3.2  
9.3.3  
9.3.4  
9.3.5  
Port Mode Register 5 (PMR5).......................................................................... 125  
Port Control Register 5 (PCR5)........................................................................ 126  
Port Data Register 5 (PDR5) ............................................................................ 127  
Port Pull-Up Control Register 5 (PUCR5)........................................................ 127  
Pin Functions .................................................................................................... 128  
9.4  
9.5  
9.6  
Port 7................................................................................................................................. 130  
9.4.1  
9.4.2  
9.4.3  
Port Control Register 7 (PCR7)........................................................................ 131  
Port Data Register 7 (PDR7) ............................................................................ 131  
Pin Functions .................................................................................................... 132  
Port 8................................................................................................................................. 133  
9.5.1  
9.5.2  
9.5.3  
Port Control Register 8 (PCR8)........................................................................ 134  
Port Data Register 8 (PDR8) ............................................................................ 134  
Pin Functions .................................................................................................... 135  
Port B................................................................................................................................ 138  
9.6.1 Port Data Register B (PDRB) ........................................................................... 138  
Section 10 Timer A ...........................................................................................139  
10.1 Features............................................................................................................................. 139  
10.2 Input/Output Pins.............................................................................................................. 140  
10.3 Register Descriptions........................................................................................................ 141  
10.3.1  
10.3.2  
Timer Mode Register A (TMA)........................................................................ 141  
Timer Counter A (TCA) ................................................................................... 142  
10.4 Operation .......................................................................................................................... 143  
10.4.1  
10.4.2  
10.4.3  
Interval Timer Operation .................................................................................. 143  
Clock Time Base Operation.............................................................................. 143  
Clock Output..................................................................................................... 143  
10.5 Usage Note ....................................................................................................................... 144  
Section 11 Timer V ...........................................................................................145  
11.1 Features............................................................................................................................. 145  
Rev. 6.00 Mar. 24, 2006 Page xii of xxviii  
11.2 Input/Output Pins.............................................................................................................. 147  
11.3 Register Descriptions........................................................................................................ 147  
11.3.1  
11.3.2  
11.3.3  
11.3.4  
11.3.5  
Timer Counter V (TCNTV).............................................................................. 147  
Time Constant Registers A and B (TCORA, TCORB) .................................... 148  
Timer Control Register V0 (TCRV0) ............................................................... 148  
Timer Control/Status Register V (TCSRV)...................................................... 150  
Timer Control Register V1 (TCRV1) ............................................................... 151  
11.4 Operation .......................................................................................................................... 152  
11.4.1 Timer V Operation............................................................................................ 152  
11.5 Timer V Application Examples ........................................................................................ 155  
11.5.1  
11.5.2  
Pulse Output with Arbitrary Duty Cycle........................................................... 155  
Pulse Output with Arbitrary Pulse Width and Delay from TRGV Input .......... 156  
11.6 Usage Notes...................................................................................................................... 157  
Section 12 Timer W...........................................................................................159  
12.1 Features............................................................................................................................. 159  
12.2 Input/Output Pins.............................................................................................................. 162  
12.3 Register Descriptions........................................................................................................ 162  
12.3.1  
12.3.2  
12.3.3  
12.3.4  
12.3.5  
12.3.6  
12.3.7  
12.3.8  
Timer Mode Register W (TMRW) ................................................................... 163  
Timer Control Register W (TCRW) ................................................................. 164  
Timer Interrupt Enable Register W (TIERW) .................................................. 165  
Timer Status Register W (TSRW) .................................................................... 166  
Timer I/O Control Register 0 (TIOR0)............................................................. 167  
Timer I/O Control Register 1 (TIOR1)............................................................. 169  
Timer Counter (TCNT)..................................................................................... 170  
General Registers A to D (GRA to GRD)......................................................... 171  
12.4 Operation .......................................................................................................................... 172  
12.4.1  
12.4.2  
Normal Operation ............................................................................................. 172  
PWM Operation................................................................................................ 176  
12.5 Operation Timing.............................................................................................................. 181  
12.5.1  
12.5.2  
12.5.3  
12.5.4  
12.5.5  
12.5.6  
12.5.7  
12.5.8  
TCNT Count Timing ........................................................................................ 181  
Output Compare Output Timing....................................................................... 182  
Input Capture Timing........................................................................................ 183  
Timing of Counter Clearing by Compare Match .............................................. 183  
Buffer Operation Timing .................................................................................. 184  
Timing of IMFA to IMFD Flag Setting at Compare Match.............................. 185  
Timing of IMFA to IMFD Setting at Input Capture ......................................... 186  
Timing of Status Flag Clearing......................................................................... 186  
12.6 Usage Notes...................................................................................................................... 187  
Rev. 6.00 Mar. 24, 2006 Page xiii of xxviii  
Section 13 Watchdog Timer..............................................................................191  
13.1 Features............................................................................................................................. 191  
13.2 Register Descriptions........................................................................................................ 191  
13.2.1  
13.2.2  
13.2.3  
Timer Control/Status Register WD (TCSRWD) .............................................. 192  
Timer Counter WD (TCWD)............................................................................ 193  
Timer Mode Register WD (TMWD) ................................................................ 194  
13.3 Operation .......................................................................................................................... 195  
Section 14 Serial Communication Interface 3 (SCI3).......................................197  
14.1 Features............................................................................................................................. 197  
14.2 Input/Output Pins.............................................................................................................. 198  
14.3 Register Descriptions........................................................................................................ 199  
14.3.1  
14.3.2  
14.3.3  
14.3.4  
14.3.5  
14.3.6  
14.3.7  
14.3.8  
Receive Shift Register (RSR) ........................................................................... 199  
Receive Data Register (RDR)........................................................................... 199  
Transmit Shift Register (TSR).......................................................................... 199  
Transmit Data Register (TDR).......................................................................... 200  
Serial Mode Register (SMR) ............................................................................ 200  
Serial Control Register 3 (SCR3) ..................................................................... 201  
Serial Status Register (SSR) ............................................................................. 203  
Bit Rate Register (BRR) ................................................................................... 205  
14.4 Operation in Asynchronous Mode.................................................................................... 210  
14.4.1  
14.4.2  
14.4.3  
14.4.4  
Clock................................................................................................................. 210  
SCI3 Initialization............................................................................................. 211  
Data Transmission ............................................................................................ 212  
Serial Data Reception ....................................................................................... 214  
14.5 Operation in Clocked Synchronous Mode........................................................................ 218  
14.5.1  
14.5.2  
14.5.3  
14.5.4  
14.5.5  
Clock................................................................................................................. 218  
SCI3 Initialization............................................................................................. 218  
Serial Data Transmission.................................................................................. 219  
Serial Data Reception (Clocked Synchronous Mode) ...................................... 221  
Simultaneous Serial Data Transmission and Reception.................................... 223  
14.6 Multiprocessor Communication Function ........................................................................ 224  
14.6.1  
14.6.2  
Multiprocessor Serial Data Transmission......................................................... 226  
Multiprocessor Serial Data Reception .............................................................. 227  
14.7 Interrupts........................................................................................................................... 230  
14.8 Usage Notes...................................................................................................................... 230  
14.8.1  
14.8.2  
14.8.3  
Break Detection and Processing ....................................................................... 230  
Mark State and Break Sending ......................................................................... 231  
Receive Error Flags and Transmit Operations  
(Clocked Synchronous Mode Only) ................................................................. 231  
Rev. 6.00 Mar. 24, 2006 Page xiv of xxviii  
14.8.4  
Receive Data Sampling Timing and Reception Margin  
in Asynchronous Mode..................................................................................... 231  
Section 15 I2C Bus Interface (IIC).....................................................................233  
15.1 Features............................................................................................................................. 233  
15.2 Input/Output Pins.............................................................................................................. 235  
15.3 Register Descriptions........................................................................................................ 236  
15.3.1  
15.3.2  
15.3.3  
15.3.4  
15.3.5  
15.3.6  
15.3.7  
I2C Bus Data Register (ICDR) .......................................................................... 236  
Slave Address Register (SAR).......................................................................... 238  
Second Slave Address Register (SARX) .......................................................... 238  
I2C Bus Mode Register (ICMR)........................................................................ 239  
I2C Bus Control Register (ICCR)...................................................................... 242  
I2C Bus Status Register (ICSR)......................................................................... 245  
Timer Serial Control Register (TSCR) ............................................................. 248  
15.4 Operation .......................................................................................................................... 249  
15.4.1  
15.4.2  
15.4.3  
15.4.4  
15.4.5  
15.4.6  
15.4.7  
15.4.8  
15.4.9  
I2C Bus Data Format ......................................................................................... 249  
Master Transmit Operation............................................................................... 251  
Master Receive Operation................................................................................. 253  
Slave Receive Operation................................................................................... 255  
Slave Transmit Operation ................................................................................. 258  
Clock Synchronous Serial Format .................................................................... 259  
IRIC Setting Timing and SCL Control ............................................................. 260  
Noise Canceler.................................................................................................. 261  
Sample Flowcharts............................................................................................ 262  
15.5 Usage Notes...................................................................................................................... 266  
Section 16 A/D Converter..................................................................................275  
16.1 Features............................................................................................................................. 275  
16.2 Input/Output Pins.............................................................................................................. 277  
16.3 Register Description ......................................................................................................... 278  
16.3.1  
16.3.2  
16.3.3  
A/D Data Registers A to D (ADDRA to ADDRD) .......................................... 278  
A/D Control/Status Register (ADCSR) ............................................................ 279  
A/D Control Register (ADCR) ......................................................................... 280  
16.4 Operation .......................................................................................................................... 281  
16.4.1  
16.4.2  
16.4.3  
16.4.4  
Single Mode...................................................................................................... 281  
Scan Mode ........................................................................................................ 281  
Input Sampling and A/D Conversion Time ...................................................... 282  
External Trigger Input Timing.......................................................................... 283  
16.5 A/D Conversion Accuracy Definitions............................................................................. 284  
16.6 Usage Notes...................................................................................................................... 286  
Rev. 6.00 Mar. 24, 2006 Page xv of xxviii  
16.6.1  
16.6.2  
Permissible Signal Source Impedance.............................................................. 286  
Influences on Absolute Accuracy ..................................................................... 286  
Section 17 EEPROM.........................................................................................287  
17.1 Features............................................................................................................................. 287  
17.2 Input/Output Pins.............................................................................................................. 289  
17.3 Register Description ......................................................................................................... 289  
17.3.1  
EEPROM Key Register (EKR)......................................................................... 289  
17.4 Operation .......................................................................................................................... 290  
17.4.1  
17.4.2  
17.4.3  
17.4.4  
17.4.5  
17.4.6  
17.4.7  
17.4.8  
17.4.9  
EEPROM Interface........................................................................................... 290  
Bus Format and Timing.................................................................................... 290  
Start Condition.................................................................................................. 291  
Stop Condition.................................................................................................. 291  
Acknowledge.................................................................................................... 291  
Slave Addressing .............................................................................................. 292  
Write Operations............................................................................................... 293  
Acknowledge Polling........................................................................................ 294  
Read Operation ................................................................................................. 295  
17.5 Usage Notes...................................................................................................................... 297  
17.5.1  
17.5.2  
17.5.3  
Data Protection at VCC On/Off........................................................................... 297  
Write/Erase Endurance ..................................................................................... 297  
Noise Suppression Time................................................................................... 298  
Section 18 Power Supply Circuit ......................................................................299  
18.1 When Using Internal Power Supply Step-Down Circuit .................................................. 299  
18.2 When Not Using Internal Power Supply Step-Down Circuit ........................................... 300  
Section 19 List of Registers...............................................................................301  
19.1 Register Addresses (Address Order)................................................................................. 302  
19.2 Register Bits ..................................................................................................................... 305  
19.3 Register States in Each Operating Mode .......................................................................... 308  
Section 20 Electrical Characteristics.................................................................311  
20.1 Absolute Maximum Ratings ............................................................................................. 311  
20.2 Electrical Characteristics (F-ZTAT™ Version, F-ZTAT™ Version with EEPROM) ..... 311  
20.2.1  
20.2.2  
20.2.3  
20.2.4  
20.2.5  
Power Supply Voltage and Operating Ranges.................................................. 311  
DC Characteristics............................................................................................ 314  
AC Characteristics............................................................................................ 320  
A/D Converter Characteristics.......................................................................... 324  
Watchdog Timer Characteristics....................................................................... 325  
Rev. 6.00 Mar. 24, 2006 Page xvi of xxviii  
20.2.6  
20.2.7  
Memory Characteristics.................................................................................... 326  
EEPROM Characteristics.................................................................................. 328  
20.3 Electrical Characteristics (Mask ROM Version) .............................................................. 329  
20.3.1  
20.3.2  
20.3.3  
20.3.4  
20.3.5  
Power Supply Voltage and Operating Ranges.................................................. 329  
DC Characteristics ............................................................................................ 331  
AC Characteristics ............................................................................................ 337  
A/D Converter Characteristics.......................................................................... 341  
Watchdog Timer Characteristics....................................................................... 342  
20.4 Operation Timing.............................................................................................................. 343  
20.5 Output Load Condition ..................................................................................................... 346  
Appendix A Instruction Set ...............................................................................347  
A.1 Instruction List.................................................................................................................. 347  
A.2 Operation Code Map......................................................................................................... 362  
A.3 Number of Execution States ............................................................................................. 365  
A.4 Combinations of Instructions and Addressing Modes ...................................................... 376  
Appendix B I/O Port Block Diagrams...............................................................377  
B.1  
I/O Port Block................................................................................................................... 377  
B.2  
Port States in Each Operating State .................................................................................. 394  
Appendix C Product Code Lineup.....................................................................395  
Appendix D Package Dimensions .....................................................................397  
Appendix E EEPROM Stacked-Structure Cross-Sectional View .....................401  
Main Revisions and Additions in this Edition.....................................................403  
Index ....................................................................................................................409  
Rev. 6.00 Mar. 24, 2006 Page xvii of xxviii  
Rev. 6.00 Mar. 24, 2006 Page xviii of xxviii  
Figures  
Section 1 Overview  
Figure 1.1 Internal Block Diagram of H8/3664 of F-ZTATTM and Mask-ROM Versions.............3  
Figure 1.2 Internal Block Diagram of H8/3664N of F-ZTATTM Version with EEPROM .............4  
Figure 1.3 Pin Arrangement of H8/3664 of F-ZTATTM and Mask-ROM Versions  
(FP-64E, FP-64A).........................................................................................................5  
Figure 1.4 Pin Arrangement of H8/3664 of F-ZTATTM and Mask-ROM Versions  
(FP-48F, FP-48B) .........................................................................................................6  
Figure 1.5 Pin Arrangement of H8/3664 of F-ZTATTM and Mask-ROM Versions  
(DS-42S).......................................................................................................................7  
Figure 1.6 Pin Arrangement of H8/3664N of F-ZTATTM Version with EEPROM  
(FP-64E) .......................................................................................................................8  
Section 2 CPU  
Figure 2.1 Memory Map (1) .........................................................................................................14  
Figure 2.1 Memory Map (2) .........................................................................................................15  
Figure 2.1 Memory Map (3) .........................................................................................................16  
Figure 2.2 CPU Registers .............................................................................................................17  
Figure 2.3 Usage of General Registers .........................................................................................18  
Figure 2.4 Relationship between Stack Pointer and Stack Area...................................................19  
Figure 2.5 General Register Data Formats (1)..............................................................................21  
Figure 2.5 General Register Data Formats (2)..............................................................................22  
Figure 2.6 Memory Data Formats.................................................................................................23  
Figure 2.7 Instruction Formats......................................................................................................34  
Figure 2.8 Branch Address Specification in Memory Indirect Mode...........................................38  
Figure 2.9 On-Chip Memory Access Cycle..................................................................................41  
Figure 2.10 On-Chip Peripheral Module Access Cycle (3-State Access).....................................42  
Figure 2.11 CPU Operation States................................................................................................43  
Figure 2.12 State Transitions........................................................................................................44  
Figure 2.13 Example of Timer Configuration with Two Registers Allocated to  
Same Address ...........................................................................................................45  
Section 3 Exception Handling  
Figure 3.1 Reset Sequence............................................................................................................60  
Figure 3.2 Stack Status after Exception Handling........................................................................62  
Figure 3.3 Interrupt Sequence.......................................................................................................63  
Figure 3.4 Port Mode Register Setting and Interrupt Request Flag Clearing Procedure ..............65  
Section 4 Address Break  
Figure 4.1 Block Diagram of Address Break................................................................................67  
Rev. 6.00 Mar. 24, 2006 Page xix of xxviii  
Figure 4.2 Address Break Interrupt Operation Example (1)......................................................... 71  
Figure 4.2 Address Break Interrupt Operation Example (2)......................................................... 72  
Figure 4.3 Operation when Condition is not Satisfied in Branch Instruction............................... 73  
Figure 4.4 Operation when Another Interrupt is Accepted at  
Address Break Setting Instruction ............................................................................... 74  
Figure 4.5 Operation when the Instruction Set is not Executed  
and does not Branch due to Conditions not Being Satisfied........................................ 75  
Section 5 Clock Pulse Generators  
Figure 5.1 Block Diagram of Clock Pulse Generators.................................................................. 77  
Figure 5.2 Block Diagram of System Clock Generator................................................................ 78  
Figure 5.3 Typical Connection to Crystal Resonator.................................................................... 78  
Figure 5.4 Equivalent Circuit of Crystal Resonator...................................................................... 78  
Figure 5.5 Typical Connection to Ceramic Resonator.................................................................. 79  
Figure 5.6 Example of External Clock Input................................................................................ 79  
Figure 5.7 Block Diagram of Subclock Generator ....................................................................... 80  
Figure 5.8 Typical Connection to 32.768-kHz Crystal Resonator................................................ 80  
Figure 5.9 Equivalent Circuit of 32.768-kHz Crystal Resonator.................................................. 80  
Figure 5.10 Pin Connection when not Using Subclock ................................................................ 81  
Figure 5.11 Example of Incorrect Board Design.......................................................................... 82  
Section 6 Power-Down Modes  
Figure 6.1 Mode Transition Diagram ...........................................................................................88  
Section 7 ROM  
Figure 7.1 Flash Memory Block Configuration............................................................................ 96  
Figure 7.2 Programming/Erasing Flowchart Example in User Program Mode.......................... 103  
Figure 7.3 Program/Program-Verify Flowchart ......................................................................... 105  
Figure 7.4 Erase/Erase-Verify Flowchart ................................................................................... 108  
Section 9 I/O Ports  
Figure 9.1 Port 1 Pin Configuration............................................................................................ 115  
Figure 9.2 Port 2 Pin Configuration............................................................................................ 121  
Figure 9.3 Port 5 Pin Configuration............................................................................................ 124  
Figure 9.4 Port 7 Pin Configuration............................................................................................ 130  
Figure 9.5 Port 8 Pin Configuration............................................................................................ 133  
Figure 9.6 Port B Pin Configuration........................................................................................... 138  
Section 10 Timer A  
Figure 10.1 Block Diagram of Timer A ..................................................................................... 140  
Section 11 Timer V  
Figure 11.1 Block Diagram of Timer V ..................................................................................... 146  
Rev. 6.00 Mar. 24, 2006 Page xx of xxviii  
Figure 11.2 Increment Timing with Internal Clock ....................................................................153  
Figure 11.3 Increment Timing with External Clock...................................................................153  
Figure 11.4 OVF Set Timing......................................................................................................153  
Figure 11.5 CMFA and CMFB Set Timing................................................................................154  
Figure 11.6 TMOV Output Timing ............................................................................................154  
Figure 11.7 Clear Timing by Compare Match............................................................................154  
Figure 11.8 Clear Timing by TMRIV Input ...............................................................................155  
Figure 11.9 Pulse Output Example.............................................................................................155  
Figure 11.10 Example of Pulse Output Synchronized to TRGV Input.......................................156  
Figure 11.11 Contention between TCNTV Write and Clear ......................................................157  
Figure 11.12 Contention between TCORA Write and Compare Match.....................................158  
Figure 11.13 Internal Clock Switching and TCNTV Operation.................................................158  
Section 12 Timer W  
Figure 12.1 Timer W Block Diagram.........................................................................................161  
Figure 12.2 Free-Running Counter Operation............................................................................172  
Figure 12.3 Periodic Counter Operation.....................................................................................173  
Figure 12.4 0 and 1 Output Example (TOA = 0, TOB = 1)........................................................173  
Figure 12.5 Toggle Output Example (TOA = 0, TOB = 1) ........................................................174  
Figure 12.6 Toggle Output Example (TOA = 0, TOB = 1) ........................................................174  
Figure 12.7 Input Capture Operating Example...........................................................................175  
Figure 12.8 Buffer Operation Example (Input Capture).............................................................176  
Figure 12.9 PWM Mode Example (1) ........................................................................................177  
Figure 12.10 PWM Mode Example (2) ......................................................................................177  
Figure 12.11 Buffer Operation Example (Output Compare) ......................................................178  
Figure 12.12 PWM Mode Example  
(TOB, TOC, and TOD = 0: initial output values are set to 0)...............................179  
Figure 12.13 PWM Mode Example  
(TOB, TOC, and TOD = 1: initial output values are set to 1)...............................180  
Figure 12.14 Count Timing for Internal Clock Source...............................................................181  
Figure 12.15 Count Timing for External Clock Source..............................................................181  
Figure 12.16 Output Compare Output Timing ...........................................................................182  
Figure 12.17 Input Capture Input Signal Timing........................................................................183  
Figure 12.18 Timing of Counter Clearing by Compare Match...................................................183  
Figure 12.19 Buffer Operation Timing (Compare Match)..........................................................184  
Figure 12.20 Buffer Operation Timing (Input Capture) .............................................................184  
Figure 12.21 Timing of IMFA to IMFD Flag Setting at Compare Match..................................185  
Figure 12.22 Timing of IMFA to IMFD Flag Setting at Input Capture......................................186  
Figure 12.23 Timing of Status Flag Clearing by CPU................................................................186  
Figure 12.24 Contention between TCNT Write and Clear .........................................................187  
Figure 12.25 Internal Clock Switching and TCNT Operation....................................................188  
Rev. 6.00 Mar. 24, 2006 Page xxi of xxviii  
Figure 12.26 When Compare Match and Bit Manipulation Instruction to TCRW  
Occur at the Same Timing .................................................................................... 189  
Section 13 Watchdog Timer  
Figure 13.1 Block Diagram of Watchdog Timer........................................................................ 191  
Figure 13.2 Watchdog Timer Operation Example...................................................................... 195  
Section 14 Serial Communication Interface 3 (SCI3)  
Figure 14.1 Block Diagram of SCI3........................................................................................... 198  
Figure 14.2 Data Format in Asynchronous Communication ...................................................... 210  
Figure 14.3 Relationship between Output Clock and Transfer Data Phase  
(Asynchronous Mode) (Example with 8-Bit Data, Parity, Two Stop Bits) ............ 210  
Figure 14.4 Sample SCI3 Initialization Flowchart ..................................................................... 211  
Figure 14.5 Example SCI3 Operation in Transmission in Asynchronous Mode  
(8-Bit Data, Parity, One Stop Bit).......................................................................... 212  
Figure 14.6 Sample Serial Transmission Flowchart (Asynchronous Mode) .............................. 213  
Figure 14.7 Example SCI3 Operation in Reception in Asynchronous Mode  
(8-Bit Data, Parity, One Stop Bit).......................................................................... 214  
Figure 14.8 Sample Serial Data Reception Flowchart (Asynchronous mode) (1)...................... 216  
Figure 14.8 Sample Serial Reception Data Flowchart (2) .......................................................... 217  
Figure 14.9 Data Format in Clocked Synchronous Communication .......................................... 218  
Figure 14.10 Example of SCI3 Operation in Transmission in Clocked Synchronous Mode...... 219  
Figure 14.11 Sample Serial Transmission Flowchart (Clocked Synchronous Mode) ................ 220  
Figure 14.12 Example of SCI3 Reception Operation in Clocked Synchronous Mode............... 221  
Figure 14.13 Sample Serial Reception Flowchart (Clocked Synchronous Mode)...................... 222  
Figure 14.14 Sample Flowchart of Simultaneous Serial Transmit and Receive Operations  
(Clocked Synchronous Mode) .............................................................................. 223  
Figure 14.15 Example of Communication Using Multiprocessor Format  
(Transmission of Data H'AA to Receiving Station A).......................................... 225  
Figure 14.16 Sample Multiprocessor Serial Transmission Flowchart........................................ 226  
Figure 14.17 Sample Multiprocessor Serial Reception Flowchart (1)........................................ 227  
Figure 14.17 Sample Multiprocessor Serial Reception Flowchart (2)........................................ 228  
Figure 14.18 Example of SCI3 Operation in Reception Using Multiprocessor Format  
(Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit) ............................. 229  
Figure 14.19 Receive Data Sampling Timing in Asynchronous Mode ...................................... 232  
Section 15 I2C Bus Interface (IIC)  
Figure 15.1 Block Diagram of I2C Bus Interface ....................................................................... 234  
Figure 15.2 I2C Bus Interface Connections (Example: This LSI as Master) .............................. 235  
Figure 15.3 I2C Bus Data Formats (I2C Bus Formats)................................................................ 250  
Figure 15.4 I2C Bus Timing........................................................................................................ 250  
Figure 15.5 Master Transmit Mode Operation Timing Example (MLS = WAIT = 0).............. 252  
Rev. 6.00 Mar. 24, 2006 Page xxii of xxviii  
Figure 15.6 Master Receive Mode Operation Timing Example (1)  
(MLS = ACKB = 0, WAIT = 1) .............................................................................254  
Figure 15.6 Master Receive Mode Operation Timing Example (2)  
(MLS = ACKB = 0, WAIT = 1) .............................................................................255  
Figure 15.7 Example of Slave Receive Mode Operation Timing (1) (MLS = ACKB = 0) .......256  
Figure 15.8 Example of Slave Receive Mode Operation Timing (2) (MLS = ACKB = 0) .......257  
Figure 15.9 Example of Slave Transmit Mode Operation Timing (MLS = 0) ..........................259  
Figure 15.10 I2C Bus Data Format (Serial Format)....................................................................259  
Figure 15.11 IRIC Setting Timing and SCL Control..................................................................260  
Figure 15.12 Block Diagram of Noise Canceler.........................................................................261  
Figure 15.13 Sample Flowchart for Master Transmit Mode.......................................................262  
Figure 15.14 Sample Flowchart for Master Receive Mode........................................................263  
Figure 15.15 Sample Flowchart for Slave Receive Mode ..........................................................264  
Figure 15.16 Sample Flowchart for Slave Transmit Mode.........................................................265  
Figure 15.17 Flowchart and Timing of Start Condition Instruction Issuance  
for Retransmission ................................................................................................270  
Figure 15.18 IRIC Flag Clear Timing on WAIT Operation .......................................................271  
Figure 15.19 Notes on ICDR Reading with TRS = 1 Setting in Master Mode...........................272  
Figure 15.20 Notes on ICDR Writing with TRS = 0 Setting in Slave Mode..............................273  
Section 16 A/D Converter  
Figure 16.1 Block Diagram of A/D Converter ...........................................................................276  
Figure 16.2 A/D Conversion Timing..........................................................................................282  
Figure 16.3 External Trigger Input Timing ................................................................................283  
Figure 16.4 A/D Conversion Accuracy Definitions (1)..............................................................285  
Figure 16.5 A/D Conversion Accuracy Definitions (2)..............................................................285  
Figure 16.6 Analog Input Circuit Example.................................................................................286  
Section 17 EEPROM  
Figure 17.1 Block Diagram of EEPROM...................................................................................288  
Figure 17.2 EEPROM Bus Format and Bus Timing ..................................................................290  
Figure 17.3 Byte Write Operation ..............................................................................................293  
Figure 17.4 Page Write Operation ..............................................................................................294  
Figure 17.5 Current Address Read Operation.............................................................................295  
Figure 17.6 Random Address Read Operation ...........................................................................296  
Figure 17.7 Sequential Read Operation (when current address read is used).............................297  
Section 18 Power Supply Circuit  
Figure 18.1 Power Supply Connection when Internal Step-Down Circuit is Used ....................299  
Figure 18.2 Power Supply Connection when Internal Step-Down Circuit is Not Used .............300  
Rev. 6.00 Mar. 24, 2006 Page xxiii of xxviii  
Section 20 Electrical Characteristics  
Figure 20.1 System Clock Input Timing .................................................................................... 343  
Figure 20.2 RES Low Width Timing.......................................................................................... 343  
Figure 20.3 Input Timing............................................................................................................ 343  
Figure 20.4 I2C Bus Interface Input/Output Timing................................................................... 344  
Figure 20.5 SCK3 Input Clock Timing ...................................................................................... 344  
Figure 20.6 SCI3 Input/Output Timing in Clocked Synchronous Mode.................................... 345  
Figure 20.7 EEPROM Bus Timing............................................................................................. 345  
Figure 20.8 Output Load Circuit ................................................................................................ 346  
Appendix B I/O Port Block Diagrams  
Figure B.1 Port 1 Block Diagram (P17) ..................................................................................... 377  
Figure B.2 Port 1 Block Diagram (P16 to P14).......................................................................... 378  
Figure B.3 Port 1 Block Diagram (P12, P11)............................................................................. 379  
Figure B.4 Port 1 Block Diagram (P10) ..................................................................................... 380  
Figure B.5 Port 2 Block Diagram (P22) ..................................................................................... 381  
Figure B.6 Port 2 Block Diagram (P21) ..................................................................................... 382  
Figure B.7 Port 2 Block Diagram (P20) ..................................................................................... 383  
Figure B.8 Port 5 Block Diagram (P57, P56)............................................................................. 384  
Figure B.9 Port 5 Block Diagram (P55) ..................................................................................... 385  
Figure B.10 Port 5 Block Diagram (P54 to P50)........................................................................ 386  
Figure B.11 Port 7 Block Diagram (P76) ................................................................................... 387  
Figure B.12 Port 7 Block Diagram (P75) ................................................................................... 388  
Figure B.13 Port 7 Block Diagram (P74) ................................................................................... 389  
Figure B.14 Port 8 Block Diagram (P87 to P85)........................................................................ 390  
Figure B.15 Port 8 Block Diagram (P84 to P81)........................................................................ 391  
Figure B.16 Port 8 Block Diagram (P80) ................................................................................... 392  
Figure B.17 Port B Block Diagram (PB7 to PB0)...................................................................... 393  
Appendix D Package Dimensions  
Figure D.1 FP-64E Package Dimensions ................................................................................... 397  
Figure D.2 FP-64A Package Dimensions................................................................................... 398  
Figure D.3 FP-48F Package Dimensions.................................................................................... 399  
Figure D.4 FP-48B Package Dimensions ................................................................................... 400  
Figure D.5 DP-42S Package Dimensions................................................................................... 400  
Appendix E EEPROM Stacked-Structure Cross-Sectional View  
Figure E.1 EEPROM Stacked-Structure Cross-Sectional View................................................. 401  
Rev. 6.00 Mar. 24, 2006 Page xxiv of xxviii  
Tables  
Section 1 Overview  
Table 1.1 Pin Functions ............................................................................................................9  
Section 2 CPU  
Table 2.1  
Table 2.2  
Table 2.3  
Table 2.3  
Table 2.4  
Table 2.5  
Table 2.6  
Table 2.6  
Table 2.7  
Table 2.8  
Table 2.9  
Table 2.10  
Table 2.11  
Table 2.12  
Table 2.12  
Operation Notation .................................................................................................24  
Data Transfer Instructions.......................................................................................25  
Arithmetic Operations Instructions (1) ...................................................................26  
Arithmetic Operations Instructions (2) ...................................................................27  
Logic Operations Instructions.................................................................................28  
Shift Instructions.....................................................................................................28  
Bit Manipulation Instructions (1)............................................................................29  
Bit Manipulation Instructions (2)............................................................................30  
Branch Instructions.................................................................................................31  
System Control Instructions....................................................................................32  
Block Data Transfer Instructions............................................................................33  
Addressing Modes ..................................................................................................35  
Absolute Address Access Ranges...........................................................................37  
Effective Address Calculation (1)...........................................................................39  
Effective Address Calculation (2)...........................................................................40  
Section 3 Exception Handling  
Table 3.1  
Table 3.2  
Exception Sources and Vector Address..................................................................52  
Interrupt Wait States ...............................................................................................62  
Section 4 Address Break  
Table 4.1  
Access and Data Bus Used .....................................................................................69  
Section 5 Clock Pulse Generators  
Table 5.1  
Crystal Resonator Parameters.................................................................................79  
Section 6 Power-Down Modes  
Table 6.1  
Table 6.2  
Table 6.3  
Operating Frequency and Waiting Time.................................................................85  
Transition Mode after SLEEP Instruction Execution and Interrupt Handling........89  
Internal State in Each Operating Mode...................................................................90  
Section 7 ROM  
Table 7.1  
Table 7.2  
Table 7.3  
Setting Programming Modes ................................................................................100  
Boot Mode Operation ...........................................................................................102  
System Clock Frequencies for which Automatic Adjustment of  
LSI Bit Rate is Possible ........................................................................................103  
Rev. 6.00 Mar. 24, 2006 Page xxv of xxviii  
Table 7.4  
Table 7.5  
Table 7.6  
Table 7.7  
Reprogram Data Computation Table.................................................................... 106  
Additional-Program Data Computation Table...................................................... 106  
Programming Time............................................................................................... 106  
Flash Memory Operating States............................................................................ 111  
Section 10 Timer A  
Table 10.1  
Pin Configuration.................................................................................................. 140  
Section 11 Timer V  
Table 11.1  
Table 11.2  
Pin Configuration.................................................................................................. 147  
Clock Signals to Input to TCNTV and Counting Conditions ............................... 149  
Section 12 Timer W  
Table 12.1  
Table 12.2  
Timer W Functions............................................................................................... 160  
Pin Configuration.................................................................................................. 162  
Section 14 Serial Communication Interface 3 (SCI3)  
Table 14.1  
Table 14.2  
Table 14.2  
Table 14.2  
Table 14.3  
Table 14.4  
Table 14.5  
Table 14.6  
Pin Configuration.................................................................................................. 198  
Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (1) ...... 206  
Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (2) ...... 207  
Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (3) ...... 208  
Maximum Bit Rate for Each Frequency (Asynchronous Mode) .......................... 208  
BRR Settings for Various Bit Rates (Clocked Synchronous Mode)..................... 209  
SSR Status Flags and Receive Data Handling...................................................... 215  
SCI3 Interrupt Requests........................................................................................ 230  
Section 15 I2C Bus Interface (IIC)  
Table 15.1  
Table 15.2  
Table 15.3  
Table 15.4  
Table 15.5  
Table 15.6  
Table 15.7  
I2C Bus Interface Pins........................................................................................... 235  
Communication Format........................................................................................ 239  
I2C Transfer Rate .................................................................................................. 241  
Flags and Transfer States...................................................................................... 249  
I2C Bus Timing (SCL and SDA Output) .............................................................. 266  
Permissible SCL Rise Time (tsr) Values ............................................................... 267  
I2C Bus Timing (with Maximum Influence of tsr/tsf) ............................................ 268  
Section 16 A/D Converter  
Table 16.1  
Table 16.2  
Table 16.3  
Pin Configuration.................................................................................................. 277  
Analog Input Channels and Corresponding ADDR Registers.............................. 278  
A/D Conversion Time (Single Mode)................................................................... 283  
Section 17 EEPROM  
Table 17.1  
Table 17.2  
Pin Configuration.................................................................................................. 289  
Slave Addresses.................................................................................................... 292  
Rev. 6.00 Mar. 24, 2006 Page xxvi of xxviii  
Section 20 Electrical Characteristics  
Table 20.1  
Table 20.2  
Table 20.2  
Table 20.2  
Table 20.3  
Table 20.4  
Table 20.5  
Table 20.6  
Table 20.7  
Table 20.8  
Table 20.9  
Table 20.10  
Table 20.10  
Table 20.11  
Table 20.12  
Table 20.13  
Table 20.14  
Table 20.15  
Absolute Maximum Ratings .................................................................................311  
DC Characteristics (1)...........................................................................................314  
DC Characteristics (2)...........................................................................................318  
DC Characteristics (3)...........................................................................................319  
AC Characteristics ................................................................................................320  
I2C Bus Interface Timing......................................................................................322  
Serial Interface (SCI3) Timing .............................................................................323  
A/D Converter Characteristics..............................................................................324  
Watchdog Timer Characteristics...........................................................................325  
Flash Memory Characteristics ..............................................................................326  
EEPROM Characteristics......................................................................................328  
DC Characteristics (1).......................................................................................331  
DC Characteristics (2).......................................................................................336  
AC Characteristics ............................................................................................337  
I2C Bus Interface Timing..................................................................................339  
Serial Interface (SCI3) Timing .........................................................................340  
A/D Converter Characteristics..........................................................................341  
Watchdog Timer Characteristics.......................................................................342  
Appendix A Instruction Set  
Table A.1  
Table A.2  
Table A.2  
Table A.2  
Table A.3  
Table A.4  
Table A.5  
Instruction Set.......................................................................................................349  
Operation Code Map (1).......................................................................................362  
Operation Code Map (2).......................................................................................363  
Operation Code Map (3).......................................................................................364  
Number of Cycles in Each Instruction..................................................................366  
Number of Cycles in Each Instruction..................................................................367  
Combinations of Instructions and Addressing Modes ..........................................376  
Rev. 6.00 Mar. 24, 2006 Page xxvii of xxviii  
Rev. 6.00 Mar. 24, 2006 Page xxviii of xxviii  
Section 1 Overview  
Section 1 Overview  
1.1  
Features  
High-speed H8/300H central processing unit with an internal 16-bit architecture  
Upward-compatible with H8/300 CPU on an object level  
Sixteen 16-bit general registers  
62 basic instructions  
Various peripheral functions  
Timer A (can be used as a time base for a clock)  
Timer V (8-bit timer)  
Timer W (16-bit timer)  
Watchdog timer  
SCI3 (Asynchronous or clocked synchronous serial communication interface)  
I2C Bus Interface (conforms to the I2C bus interface format that is advocated by Philips  
Electronics)  
10-bit A/D converter  
On-chip memory  
Product Classification  
Flash memory version  
(F-ZTATTM version)  
Model  
EEPROM  
ROM  
RAM  
H8/3664N  
H8/3664F  
H8/3664  
H8/3663  
H8/3662  
H8/3661  
H8/3660  
HD64N3664  
HD64F3664  
HD6433664  
HD6433663  
HD6433662  
HD6433661  
HD6433660  
512 bytes  
32 kbytes 2,048 bytes  
32 kbytes 2,048 bytes  
32 kbytes 1,024 bytes  
24 kbytes 1,024 bytes  
16 kbytes 512 bytes  
12 kbytes 512 bytes  
Mask ROM version  
8 kbytes  
512 bytes  
General I/O ports  
I/O pins: 29 I/O pins (H8/3664N has 27 I/O pins), including 8 large current ports (IOL = 20  
mA, @VOL = 1.5 V)  
Input-only pins: 8 input pins (also used for analog input)  
EEPROM interface (only for H8/3664N)  
I2C Bus Interface (conforms to the I2C bus interface format that is advocated by Philips  
Electronics)  
Rev. 6.00 Mar. 24, 2006 Page 1 of 412  
REJ09B0142-0600  
Section 1 Overview  
Supports various power-down modes  
Note: F-ZTATTM is a trademark of Renesas Technology Corp.  
Compact package  
Package  
Code  
Body Size  
Pin Pitch  
0.5 mm  
LQFP-64  
QFP-64  
FP-64E  
FP-64A  
FP-48F  
FP-48B  
DP-42S  
10.0 × 10.0 mm  
14.0 × 14.0 mm  
10.0 × 10.0 mm  
7.0 × 7.0 mm  
14.0 × 37.3 mm  
0.8 mm  
LQFP-48  
LQFP-48  
SDIP-42  
0.65 mm  
0.5 mm  
1.78 mm  
Only LQFP-64 (FP-64E) for H8/3664N package  
Rev. 6.00 Mar. 24, 2006 Page 2 of 412  
REJ09B0142-0600  
Section 1 Overview  
1.2  
Internal Block Diagram  
P80/FTCI  
P81/FTIOA  
P82/FTIOB  
P83/FTIOC  
P84/FTIOD  
P85  
System  
Subclock  
CPU  
H8/300H  
clock  
generator  
generator  
P86  
Data bus (lower)  
P10/TMOW  
P87  
P11  
P12  
P14/IRQ0  
P15/IRQ1  
P16/IRQ2  
P74/TMRIV  
P75/TMCIV  
P76/TMOV  
RAM  
SCI3  
ROM  
P17/IRQ3/TRGV  
Timer W  
Timer A  
Timer V  
P50/WKP0  
P51/WKP1  
P52/WKP2  
P53/WKP3  
P54/WKP4  
P55/WKP5/ADTRG  
P56/SDA  
P20/SCK3  
P21/RXD  
P22/TXD  
Watchdog  
timer  
A/D  
converter  
P57/SCL  
PB0/AN0  
PB1/AN1  
PB2/AN2  
PB3/AN3  
PB4/AN4  
PB5/AN5  
PB6/AN6  
PB7/AN7  
I2C bus  
interface  
Data bus (upper)  
Address bus  
AVCC  
Figure 1.1 Internal Block Diagram of H8/3664 of F-ZTATTM and Mask-ROM Versions  
Rev. 6.00 Mar. 24, 2006 Page 3 of 412  
REJ09B0142-0600  
Section 1 Overview  
P80/FTCI  
P81/FTIOA  
P82/FTIOB  
P83/FTIOC  
P84/FTIOD  
P85  
System  
clock  
generator  
CPU  
H8/300H  
Subclock  
generator  
P86  
Data bus (lower)  
P10/TMOW  
P11  
P87  
P12  
P14/IRQ0  
P15/IRQ1  
P16/IRQ2  
P17/IRQ3/TRGV  
P74/TMRIV  
P75/TMCIV  
P76/TMOV  
RAM  
ROM  
Timer W  
SCI3  
P50/WKP0  
P20/SCK3  
P21/RXD  
P22/TXD  
P51/WKP1  
Watchdog  
timer  
Timer A  
Timer V  
P52/WKP2  
P53/WKP3  
P54/WKP4  
P55/WKP5/ADTRG  
A/D  
converter  
PB0/AN0  
PB1/AN1  
PB2/AN2  
PB3/AN3  
PB4/AN4  
PB5/AN5  
PB6/AN6  
PB7/AN7  
SDA  
SCL  
I2C bus  
interface  
Data bus (upper)  
Address bus  
AVCC  
EEPROM  
Note : The H8/3664N is a stacked-structure product in which an EEPROM chip is mounted on the  
H8/3664F-ZTATTM version.  
Figure 1.2 Internal Block Diagram of H8/3664N of F-ZTATTM Version with EEPROM  
Rev. 6.00 Mar. 24, 2006 Page 4 of 412  
REJ09B0142-0600  
Section 1 Overview  
1.3  
Pin Arrangement  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
NC  
NC  
NC  
NC  
P76/TMOV  
P75/TMCIV  
P74/TMRIV  
P57/SCL  
P56/SDA  
P12  
P14/IRQ0  
P15/IRQ1  
P16/IRQ2  
P17/IRQ3/TRGV  
PB4/AN4  
PB5/AN5  
PB6/AN6  
PB7/AN7  
PB3/AN3  
PB2/AN2  
PB1/AN1  
PB0/AN0  
NC  
H8/3664  
Top view  
P11  
P10/TMOW  
P55/WKP5/ADTRG  
P54/WKP4  
P53/WKP3  
P52/WKP2  
NC  
NC  
NC  
1
2
3
4
5
6
7
8 9 10 11 12 13 14 15 16  
Note: Do not connect NC pins (* these pins are not connected to the internal circuitry).  
Figure 1.3 Pin Arrangement of H8/3664 of F-ZTATTM and Mask-ROM Versions  
(FP-64E, FP-64A)  
Rev. 6.00 Mar. 24, 2006 Page 5 of 412  
REJ09B0142-0600  
Section 1 Overview  
36 35 34 33 32 31 30 29 28 27 26 25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
P14/IRQ0  
P76/TMOV  
P75/TMCIV  
P74/TMRIV  
P57/SCL  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
P15/IRQ1  
P16/IRQ2  
P17/IRQ3/TRGV  
PB4/AN4  
P56/SDA  
PB5/AN5  
P12  
H8/3664  
PB6/AN6  
P11  
Top View  
PB7/AN7  
P10/TMOW  
P55/WKP5/ADTRG  
P54/WKP4  
P53/WKP3  
P52/WKP2  
PB3/AN3  
PB2/AN2  
PB1/AN1  
PB0/AN0  
1
2
3
4
5
6
7
8
9 10 11 12  
Figure 1.4 Pin Arrangement of H8/3664 of F-ZTATTM and Mask-ROM Versions  
(FP-48F, FP-48B)  
Rev. 6.00 Mar. 24, 2006 Page 6 of 412  
REJ09B0142-0600  
Section 1 Overview  
PB3/AN3  
PB2/AN2  
PB1/AN1  
PB0/AN0  
AVCC  
P17/IRQ3/TRGV  
1
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
P16/IRQ2  
P15/IRQ1  
P14/IRQ0  
P22/TXD  
P21/RXD  
P20/SCK3  
P87  
2
3
4
5
X2  
6
X1  
7
VCL  
8
RES  
P86  
9
H8/3664  
Top view  
TEST  
P85  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
VSS  
P84/FTIOD  
P83/FTIOC  
P82/FTIOB  
P81/FTIOA  
P80/FTCI  
NMI  
OSC2  
OSC1  
VCC  
P50/WKP0  
P51/WKP1  
P52/WKP2  
P53/WKP3  
P54/WKP4  
P55/WKP5/ADTRG  
P10/TMOW  
P76/TMOV  
P75/TMCIV  
P74/TMRIV  
P57/SCL  
P56/SDA  
Note: DP-42S has no P11, P12, PB4/AN4, PB5/AN5, PB6/AN6, and PB7/AN7 pins.  
Figure 1.5 Pin Arrangement of H8/3664 of F-ZTATTM and Mask-ROM Versions  
(DS-42S)  
Rev. 6.00 Mar. 24, 2006 Page 7 of 412  
REJ09B0142-0600  
Section 1 Overview  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
NC  
NC  
NC  
NC  
P14/IRQ0  
P15/IRQ1  
P16/IRQ2  
P17/IRQ3/TRGV  
PB4/AN4  
PB5/AN5  
PB6/AN6  
PB7/AN7  
PB3/AN3  
PB2/AN2  
PB1/AN1  
PB0/AN0  
NC  
P76/TMOV  
P75/TMCIV  
P74/TMRIV  
SCL*  
SDA*  
P12  
H8/3664N  
Top View  
P11  
P10/TMOW  
P55/WKP5/ADTRG  
P54/WKP4  
P53/WKP3  
P52/WKP2  
NC  
NC  
NC  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16  
Note: Do not connect NC pins.  
* These pins are only available for the I2C bus interface in the F-ZATTM version with EEPROM.  
Figure 1.6 Pin Arrangement of H8/3664N of F-ZTATTM Version with EEPROM  
(FP-64E)  
Rev. 6.00 Mar. 24, 2006 Page 8 of 412  
REJ09B0142-0600  
Section 1 Overview  
1.4  
Pin Functions  
Table 1.1 Pin Functions  
Pin No.  
H8/3664  
H8/3664N  
FP-64E, FP-48F,  
Symbol FP-64A FP-48B DP-42S FP-64E  
Type  
I/O  
Functions  
Power source VCC  
pins  
12  
10  
14  
11  
5
12  
Input  
Power supply pin. Connect this pin to the  
system power supply.  
VSS  
9
7
9
Input  
Input  
Ground pin. Connect all these pins to the  
system power supply (0V).  
AVCC  
3
1
3
Analog power supply pin for the A/D  
converter. When the A/D converter is not  
used, connect this pin to the system  
power supply.  
VCL  
6
4
8
6
Input  
Internal step-down power supply pin.  
Connect a capacitor of around 0.1 µF  
between this pin and the Vss pin for  
stabilization.  
Clock pins  
OSC1  
OSC2  
11  
10  
9
8
13  
12  
11  
10  
Input  
These pins connect to a crystal or ceramic  
resonator for system clocks, or can be  
used to input an external clock.  
Output  
These pins can be used to input an  
external clock.  
See section 5, Clock Pulse Generators,  
for a typical connection.  
X1  
X2  
5
3
7
5
Input  
For connection to a 32.768 kHz crystal  
resonator for subclocks.  
See section 5, Clock Pulse Generators,  
for a typical connection.  
4
7
2
5
6
9
4
7
Output  
Input  
System control RES  
Reset pin. When this driven low, the chip  
is reset.  
TEST  
8
6
10  
8
Input  
Test pin. Connect this pin to Vss.  
Rev. 6.00 Mar. 24, 2006 Page 9 of 412  
REJ09B0142-0600  
Section 1 Overview  
Pin No.  
H8/3664  
H8/3664N  
FP-64E, FP-48F,  
Symbol FP-64A FP-48B DP-42S FP-64E  
Type  
Interrupt pins NMI  
I/O  
Functions  
35  
25  
27  
35  
Input  
Non-maskable interrupt request input pin.  
Be sure to pull-up by a pull-up resistor.  
IRQ0 to  
IRQ3  
51 to 54 37 to 40 39 to 42 51 to 54 Input  
External interrupt request input pins. Can  
select the rising or falling edge.  
WKP0 to 13, 14,  
11 to 16 15 to 20 13, 14,  
19 to 22  
Input  
External interrupt request input pins. Can  
select the rising or falling edge.  
WKP5  
19 to 22  
Timer A  
Timer V  
TMOW  
TMOV  
23  
30  
17  
24  
21  
26  
23  
30  
Output  
Output  
This is an output pin for divided clocks  
This is an output pin for waveforms  
generated by the output compare function  
TMCIV  
TMRIV  
TRGV  
FTCI  
29  
28  
54  
36  
23  
22  
40  
26  
25  
24  
42  
28  
29  
28  
54  
36  
Input  
Input  
Input  
Input  
External event input pin  
Counter reset input pin  
Counter start trigger input pin  
External event input pin  
Timer W  
FTIOA to 37 to 40 27 to 30 29 to 32 37 to 40 I/O  
FTIOD  
Output compare output/ input capture  
input/ PWM output pin  
I2C bus  
SDA  
SCL  
26*2  
27*2  
46  
20  
21  
36  
22  
23  
38  
26*1  
27*1  
46  
I/O  
IIC data I/O pin. Can directly drive a bus  
by NMOS open-drain output. When using  
this pin, external pull-up resistance is  
required.  
inerface  
I/O  
IIC clock I/O pin. Can directly drive a bus  
(EEPROM: by NMOS open-drain output. When using  
input)  
this pin, external pull-up resistance is  
required.  
Serial commu- TXD  
nication  
Output  
Transmit data output pin  
interface (SCI)  
RXD  
45  
44  
35  
34  
37  
36  
45  
44  
Input  
I/O  
Receive data input pin  
Clock I/O pin  
SCK3  
A/D converter AN7 to  
AN0  
55 to 62 41 to 48 1 to 4*2  
55 to 62 Input  
Analog input pin  
ADTRG  
22  
16  
20  
22  
Input  
A/D converter trigger input pin  
Rev. 6.00 Mar. 24, 2006 Page 10 of 412  
REJ09B0142-0600  
Section 1 Overview  
Pin No.  
H8/3664  
H8/3664N  
FP-64E, FP-48F,  
FP-64A FP-48B DP-42S FP-64E  
Type  
Symbol  
PB7 to PB0 55 to 62 41 to 48 1 to 4*2  
I/O  
Functions  
I/O ports  
55 to 62 Input  
8-bit input port  
7-bit I/O port  
P17 to P14, 51 to 54 37 to 40 39 to 42, 51 to 54, I/O  
P12 to P10 23 to 25  
21*2  
23 to 25 17 to 19  
P22 to P20 44 to 46 34 to 36 36 to 38 44 to 46 I/O  
3-bit I/O port  
8-bit I/O port  
P57 to P50 13,14,  
21, 20,  
15 to 20, 13, 14,  
19 to 22  
I/O  
(P55 to P50  
16 to 11 22, 23  
19 to 22  
(6-bit I/O port for H8/3664N)  
for  
26, 27  
H8/3664N)  
P76 to P74 28 to 30 22 to 24 24 to 26 28 to 30 I/O  
3-bit I/O port  
8-bit I/O port  
P87 to P80 36 to 43 26 to 33 28 to 35 36 to 43 I/O  
Notes: 1. These pins are only available for the I2C bus interface in the F-ZATTM version with EEPROM. Since  
the I2C bus is disabled after canceling a reset, the ICE bit in ICCR must be set to 1 by using the  
program.  
2. The DP-42S does not have the P11, P12, PB4/AN4, PB5/AN5, PB6/AN6, and PB7/AN7 pins.  
Rev. 6.00 Mar. 24, 2006 Page 11 of 412  
REJ09B0142-0600  
Section 1 Overview  
Rev. 6.00 Mar. 24, 2006 Page 12 of 412  
REJ09B0142-0600  
Section 2 CPU  
Section 2 CPU  
This LSI has an H8/300H CPU with an internal 32-bit architecture that is upward-compatible with  
the H8/300CPU, and supports only normal mode, which has a 64-kbyte address space.  
Upward-compatible with H8/300 CPUs  
Can execute H8/300 CPUs object programs  
Additional eight 16-bit extended registers  
32-bit transfer and arithmetic and logic instructions are added  
Signed multiply and divide instructions are added.  
General-register architecture  
Sixteen 16-bit general registers also usable as sixteen 8-bit registers or eight 32-bit registers  
Sixty-two basic instructions  
8/16/32-bit data transfer and arithmetic and logic instructions  
Multiply and divide instructions  
Powerful bit-manipulation instructions  
Eight addressing modes  
Register direct [Rn]  
Register indirect [@ERn]  
Register indirect with displacement [@(d:16,ERn) or @(d:24,ERn)]  
Register indirect with post-increment or pre-decrement [@ERn+ or @–ERn]  
Absolute address [@aa:8, @aa:16, @aa:24]  
Immediate [#xx:8, #xx:16, or #xx:32]  
Program-counter relative [@(d:8,PC) or @(d:16,PC)]  
Memory indirect [@@aa:8]  
64-kbyte address space  
High-speed operation  
All frequently-used instructions execute in one or two states  
8/16/32-bit register-register add/subtract : 2 state  
8 × 8-bit register-register multiply  
16 ÷ 8-bit register-register divide  
16 × 16-bit register-register multiply  
32 ÷ 16-bit register-register divide  
Power-down state  
: 14 states  
: 14 states  
: 22 states  
: 22 states  
Transition to power-down state by SLEEP instruction  
Rev. 6.00 Mar. 24, 2006 Page 13 of 412  
REJ09B0142-0600  
Section 2 CPU  
2.1  
Address Space and Memory Map  
The address space of this LSI is 64 kbytes, which includes the program area and the data area.  
Figures 2.1 show the memory map.  
HD6433660  
(Mask ROM version)  
HD64F3664  
(Flash memory version)  
HD6433661  
(Mask ROM version)  
H'0000  
H'0000  
H'0033  
H'0034  
H'0000  
H'0033  
H'0034  
Interrupt vector  
Interrupt vector  
Interrupt vector  
H'0033  
H'0034  
On-chip ROM  
(8 kbytes)  
On-chip ROM  
(12 kbytes)  
H'1FFF  
H'2FFF  
On-chip ROM  
(32 kbytes)  
H'7FFF  
Not used  
Not used  
Not used  
H'F780  
(1-kbyte work area  
for flash memory  
programming)  
H'FB7F  
H'FB80  
On-chip RAM  
(2 kbytes)  
(1-kbyte user area)  
H'FD80  
H'FD80  
On-chip RAM  
(512 bytes)  
On-chip RAM  
(512 bytes)  
H'FF7F  
H'FF80  
H'FF7F  
H'FF80  
H'FF7F  
H'FF80  
Internal I/O register  
Internal I/O register  
Internal I/O register  
H'FFFF  
H'FFFF  
H'FFFF  
Figure 2.1 Memory Map (1)  
Rev. 6.00 Mar. 24, 2006 Page 14 of 412  
REJ09B0142-0600  
Section 2 CPU  
HD6433662  
(Mask ROM version)  
HD6433663  
(Mask ROM version)  
HD6433664  
(Mask ROM version)  
H'0000  
H'0033  
H'0034  
H'0000  
H'0033  
H'0034  
H'0000  
H'0033  
H'0034  
Interrupt vector  
Interrupt vector  
Interrupt vector  
On-chip ROM  
(16 kbytes)  
On-chip ROM  
(24 kbytes)  
H'3FFF  
On-chip ROM  
(32 kbytes)  
H'5FFF  
H'7FFF  
Not used  
Not used  
Not used  
H'FB80  
H'FB80  
On-chip RAM  
(1 kbyte)  
On-chip RAM  
(1 kbyte)  
H'FD80  
On-chip RAM  
(512 bytes)  
H'FF7F  
H'FF80  
H'FF7F  
H'FF80  
H'FF7F  
H'FF80  
Internal I/O register  
Internal I/O register  
Internal I/O register  
H'FFFF  
H'FFFF  
H'FFFF  
Figure 2.1 Memory Map (2)  
Rev. 6.00 Mar. 24, 2006 Page 15 of 412  
REJ09B0142-0600  
Section 2 CPU  
HD64N3664  
(On-chip EEPROM module)  
H'0000  
H'01FF  
User area  
(512 bytes)  
Not used  
H'FF09  
Slave address  
register  
Not used  
Figure 2.1 Memory Map (3)  
Rev. 6.00 Mar. 24, 2006 Page 16 of 412  
REJ09B0142-0600  
Section 2 CPU  
2.2  
Register Configuration  
The H8/300H CPU has the internal registers shown in figure 2.2. There are two types of registers;  
general registers and control registers. The control registers are a 24-bit program counter (PC), and  
an 8-bit condition code register (CCR).  
General Registers  
15  
0 7  
0 7  
0
ER0  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
R0H  
R1H  
R2H  
R3H  
R4H  
R5H  
R6H  
R7H  
R0L  
R1L  
R2L  
R3L  
R4L  
R5L  
R6L  
R7L  
ER1  
ER2  
ER3  
ER4  
ER5  
ER6  
ER7 (SP)  
Control Registers (CR)  
23  
0
0
PC  
7
6 5 4 3 2 1  
CCR  
I UI H U N Z V C  
[Legend]  
SP:  
PC:  
Stack pointer  
Program counter  
H: Half-carry flag  
U: User bit  
CCR: Condition-code register  
N: Negative flag  
Z: Zero flag  
V: Overflow flag  
C: Carry flag  
I:  
Interrupt mask bit  
User bit  
UI:  
Figure 2.2 CPU Registers  
Rev. 6.00 Mar. 24, 2006 Page 17 of 412  
REJ09B0142-0600  
Section 2 CPU  
2.2.1  
General Registers  
The H8/300H CPU has eight 32-bit general registers. These general registers are all functionally  
identical and can be used as both address registers and data registers. When a general register is  
used as a data register, it can be accessed as a 32-bit, 16-bit, or 8-bit register. Figure 2.3 illustrates  
the usage of the general registers. When the general registers are used as 32-bit registers or address  
registers, they are designated by the letters ER (ER0 to ER7).  
The ER registers divide into 16-bit general registers designated by the letters E (E0 to E7) and R  
(R0 to R7). These registers are functionally equivalent, providing a maximum of sixteen 16-bit  
registers. The E registers (E0 to E7) are also referred to as extended registers.  
The R registers divide into 8-bit registers designated by the letters RH (R0H to R7H) and RL (R0L  
to R7L). These registers are functionally equivalent, providing a maximum of sixteen 8-bit  
registers.  
The usage of each register can be selected independently.  
General register ER7 has the function of stack pointer (SP) in addition to its general-register  
function, and is used implicitly in exception handling and subroutine calls. Figure 2.4 shows the  
stack.  
• Address registers  
• 32-bit registers  
• 16-bit registers  
• 8-bit registers  
E registers (extended registers)  
(E0 to E7)  
ER registers  
(ER0 to ER7)  
RH registers  
(R0H to R7H)  
R registers  
(R0 to R7)  
RL registers  
(R0L to R7L)  
Figure 2.3 Usage of General Registers  
Rev. 6.00 Mar. 24, 2006 Page 18 of 412  
REJ09B0142-0600  
Section 2 CPU  
Free area  
SP (ER7)  
Stack area  
Figure 2.4 Relationship between Stack Pointer and Stack Area  
Program Counter (PC)  
2.2.2  
This 24-bit counter indicates the address of the next instruction the CPU will execute. The length  
of all CPU instructions is 2 bytes (one word), so the least significant PC bit is ignored. (When an  
instruction is fetched, the least significant PC bit is regarded as 0). The PC is initialized when the  
start address is loaded by the vector address generated during reset exception-handling sequence.  
2.2.3  
Condition-Code Register (CCR)  
This 8-bit register contains internal CPU status information, including an interrupt mask bit (I) and  
half-carry (H), negative (N), zero (Z), overflow (V), and carry (C) flags. The I bit is initialized to 1  
by reset exception-handling sequence, but other bits are not initialized.  
Some instructions leave flag bits unchanged. Operations can be performed on the CCR bits by the  
LDC, STC, ANDC, ORC, and XORC instructions. The N, Z, V, and C flags are used as branching  
conditions for conditional branch (Bcc) instructions.  
For the action of each instruction on the flag bits, see appendix A.1, Instruction List.  
Rev. 6.00 Mar. 24, 2006 Page 19 of 412  
REJ09B0142-0600  
Section 2 CPU  
Initial  
Bit Name Value  
Bit  
R/W  
Description  
7
I
1
R/W  
Interrupt Mask Bit  
Masks interrupts other than NMI when set to 1. NMI is  
accepted regardless of the I bit setting. The I bit is set  
to 1 at the start of an exception-handling sequence.  
6
5
UI  
H
Undefined R/W  
Undefined R/W  
User Bit  
Can be written and read by software using the LDC,  
STC, ANDC, ORC, and XORC instructions.  
Half-Carry Flag  
When the ADD.B, ADDX.B, SUB.B, SUBX.B, CMP.B,  
or NEG.B instruction is executed, this flag is set to 1 if  
there is a carry or borrow at bit 3, and cleared to 0  
otherwise. When the ADD.W, SUB.W, CMP.W, or  
NEG.W instruction is executed, the H flag is set to 1 if  
there is a carry or borrow at bit 11, and cleared to 0  
otherwise. When the ADD.L, SUB.L, CMP.L, or NEG.L  
instruction is executed, the H flag is set to 1 if there is a  
carry or borrow at bit 27, and cleared to 0 otherwise.  
4
3
2
1
0
U
N
Z
Undefined R/W  
Undefined R/W  
Undefined R/W  
Undefined R/W  
Undefined R/W  
User Bit  
Can be written and read by software using the LDC,  
STC, ANDC, ORC, and XORC instructions.  
Negative Flag  
Stores the value of the most significant bit of data as a  
sign bit.  
Zero Flag  
Set to 1 to indicate zero data, and cleared to 0 to  
indicate non-zero data.  
V
C
Overflow Flag  
Set to 1 when an arithmetic overflow occurs, and  
cleared to 0 at other times.  
Carry Flag  
Set to 1 when a carry occurs, and cleared to 0  
otherwise. Used by:  
Add instructions, to indicate a carry  
Subtract instructions, to indicate a borrow  
Shift and rotate instructions, to indicate a carry  
The carry flag is also used as a bit accumulator by bit  
manipulation instructions.  
Rev. 6.00 Mar. 24, 2006 Page 20 of 412  
REJ09B0142-0600  
Section 2 CPU  
2.3  
Data Formats  
The H8/300H CPU can process 1-bit, 4-bit (BCD), 8-bit (byte), 16-bit (word), and 32-bit  
(longword) data. Bit-manipulation instructions operate on 1-bit data by accessing bit n (n = 0, 1, 2,  
…, 7) of byte operand data. The DAA and DAS decimal-adjust instructions treat byte data as two  
digits of 4-bit BCD data.  
2.3.1  
General Register Data Formats  
Figure 2.5 shows the data formats in general registers.  
Data Type  
1-bit data  
General Register  
RnH  
Data Format  
7
0
0
Don't care  
7
6
5
4
3
2
1
7
0
0
Don't care  
RnL  
RnH  
RnL  
RnH  
RnL  
7
6
5
4
3
2
1
1-bit data  
7
4
3
0
4-bit BCD data  
Upper  
Lower  
Don't care  
7
4
3
0
4-bit BCD data  
Byte data  
Don't care  
Upper  
Lower  
7
0
Don't care  
MSB  
LSB  
7
0
Byte data  
Don't care  
MSB  
LSB  
Figure 2.5 General Register Data Formats (1)  
Rev. 6.00 Mar. 24, 2006 Page 21 of 412  
REJ09B0142-0600  
Section 2 CPU  
Data Type  
Word data  
General  
Data Format  
Register  
Rn  
15  
0
MSB  
LSB  
Word data  
En  
15  
0
MSB  
31  
LSB  
Longword  
data  
ERn  
16 15  
0
MSB  
LSB  
[Legend]  
ERn: General register ER  
En: General register E  
Rn: General register R  
RnH: General register RH  
RnL: General register RL  
MSB: Most significant bit  
LSB: Least significant bit  
Figure 2.5 General Register Data Formats (2)  
Rev. 6.00 Mar. 24, 2006 Page 22 of 412  
REJ09B0142-0600  
Section 2 CPU  
2.3.2  
Memory Data Formats  
Figure 2.6 shows the data formats in memory. The H8/300H CPU can access word data and  
longword data in memory, however word or longword data must begin at an even address. If an  
attempt is made to access word or longword data at an odd address, an address error does not  
occur, however the least significant bit of the address is regarded as 0, so access begins the  
preceding address. This also applies to instruction fetches.  
When ER7 (SP) is used as an address register to access the stack, the operand size should be word  
or longword.  
Data Type  
Address  
Data Format  
7
7
0
0
1-bit data  
Byte data  
Word data  
Address L  
Address L  
6
5
4
3
2
1
MSB  
MSB  
LSB  
LSB  
Address 2M  
Address 2M+1  
Longword data  
Address 2N  
MSB  
Address 2N+1  
Address 2N+2  
Address 2N+3  
LSB  
Figure 2.6 Memory Data Formats  
Rev. 6.00 Mar. 24, 2006 Page 23 of 412  
REJ09B0142-0600  
Section 2 CPU  
2.4  
Instruction Set  
2.4.1  
Table of Instructions Classified by Function  
The H8/300H CPU has 62 instructions. Tables 2.2 to 2.9 summarize the instructions in each  
functional category. The notation used in tables 2.2 to 2.9 is defined below.  
Table 2.1 Operation Notation  
Symbol  
Description  
Rd  
General register (destination)*  
General register (source)*  
General register*  
General register (32-bit register or address register)  
Destination operand  
Source operand  
Rs  
Rn  
ERn  
(EAd)  
(EAs)  
CCR  
Condition-code register  
N (negative) flag in CCR  
Z (zero) flag in CCR  
V (overflow) flag in CCR  
C (carry) flag in CCR  
Program counter  
N
Z
V
C
PC  
SP  
Stack pointer  
#IMM  
Immediate data  
disp  
Displacement  
+
Addition  
Subtraction  
×
Multiplication  
÷
Division  
Logical AND  
Logical OR  
Logical XOR  
Move  
¬
NOT (logical complement)  
3-, 8-, 16-, or 24-bit length  
:3/:8/:16/:24  
Note:  
*
General registers include 8-bit registers (R0H to R7H, R0L to R7L), 16-bit registers  
(R0 to R7, E0 to E7), and 32-bit registers/address register (ER0 to ER7).  
Rev. 6.00 Mar. 24, 2006 Page 24 of 412  
REJ09B0142-0600  
Section 2 CPU  
Table 2.2 Data Transfer Instructions  
Instruction  
Size*  
Function  
MOV  
B/W/L  
(EAs) Rd, Rs (EAd)  
Moves data between two general registers or between a general register  
and memory, or moves immediate data to a general register.  
MOVFPE  
MOVTPE  
POP  
B
(EAs) Rd, Cannot be used in this LSI.  
Rs (EAs) Cannot be used in this LSI.  
B
W/L  
@SP+ Rn  
Pops a general register from the stack. POP.W Rn is identical to  
MOV.W @SP+, Rn. POP.L ERn is identical to MOV.L @SP+, ERn.  
PUSH  
W/L  
Rn @–SP  
Pushes a general register onto the stack. PUSH.W Rn is identical to  
MOV.W Rn, @–SP. PUSH.L ERn is identical to MOV.L ERn, @–SP.  
Note: * Refers to the operand size.  
B: Byte  
W: Word  
L: Longword  
Rev. 6.00 Mar. 24, 2006 Page 25 of 412  
REJ09B0142-0600  
Section 2 CPU  
Table 2.3 Arithmetic Operations Instructions (1)  
Instruction  
Size*  
Function  
ADD  
SUB  
B/W/L  
Rd Rs Rd, Rd #IMM Rd  
Performs addition or subtraction on data in two general registers, or on  
immediate data and data in a general register (immediate byte data  
cannot be subtracted from byte data in a general register. Use the  
SUBX or ADD instruction.)  
ADDX  
SUBX  
B
Rd Rs C Rd, Rd #IMM C Rd  
Performs addition or subtraction with carry on byte data in two general  
registers, or on immediate data and data in a general register.  
INC  
B/W/L  
Rd 1 Rd, Rd 2 Rd  
DEC  
Increments or decrements a general register by 1 or 2. (Byte operands  
can be incremented or decremented by 1 only.)  
ADDS  
SUBS  
L
Rd 1 Rd, Rd 2 Rd, Rd 4 Rd  
Adds or subtracts the value 1, 2, or 4 to or from data in a 32-bit register.  
DAA  
DAS  
B
Rd decimal adjust Rd  
Decimal-adjusts an addition or subtraction result in a general register by  
referring to the CCR to produce 4-bit BCD data.  
MULXU  
MULXS  
DIVXU  
B/W  
B/W  
B/W  
Rd × Rs Rd  
Performs unsigned multiplication on data in two general registers: either  
8 bits × 8 bits 16 bits or 16 bits × 16 bits 32 bits.  
Rd × Rs Rd  
Performs signed multiplication on data in two general registers: either 8  
bits × 8 bits 16 bits or 16 bits × 16 bits 32 bits.  
Rd ÷ Rs Rd  
Performs unsigned division on data in two general registers: either 16  
bits ÷ 8 bits 8-bit quotient and 8-bit remainder or 32 bits ÷ 16 bits →  
16-bit quotient and 16-bit remainder.  
Note: * Refers to the operand size.  
B: Byte  
W: Word  
L: Longword  
Rev. 6.00 Mar. 24, 2006 Page 26 of 412  
REJ09B0142-0600  
Section 2 CPU  
Table 2.3 Arithmetic Operations Instructions (2)  
Instruction  
Size*  
Function  
DIVXS  
B/W  
Rd ÷ Rs Rd  
Performs signed division on data in two general registers: either 16 bits  
÷ 8 bits 8-bit quotient and 8-bit remainder or 32 bits ÷ 16 bits 16-bit  
quotient and 16-bit remainder.  
CMP  
B/W/L  
Rd – Rs, Rd – #IMM  
Compares data in a general register with data in another general  
register or with immediate data, and sets CCR bits according to the  
result.  
NEG  
B/W/L  
W/L  
0 – Rd Rd  
Takes the two's complement (arithmetic complement) of data in a  
general register.  
EXTU  
Rd (zero extension) Rd  
Extends the lower 8 bits of a 16-bit register to word size, or the lower 16  
bits of a 32-bit register to longword size, by padding with zeros on the  
left.  
EXTS  
W/L  
Rd (sign extension) Rd  
Extends the lower 8 bits of a 16-bit register to word size, or the lower 16  
bits of a 32-bit register to longword size, by extending the sign bit.  
Note: * Refers to the operand size.  
B: Byte  
W: Word  
L: Longword  
Rev. 6.00 Mar. 24, 2006 Page 27 of 412  
REJ09B0142-0600  
Section 2 CPU  
Table 2.4 Logic Operations Instructions  
Instruction  
Size*  
Function  
AND  
B/W/L  
Rd Rs Rd, Rd #IMM Rd  
Performs a logical AND operation on a general register and another  
general register or immediate data.  
OR  
B/W/L  
B/W/L  
B/W/L  
Rd Rs Rd, Rd #IMM Rd  
Performs a logical OR operation on a general register and another  
general register or immediate data.  
XOR  
NOT  
Rd Rs Rd, Rd #IMM Rd  
Performs a logical exclusive OR operation on a general register and  
another general register or immediate data.  
¬ (Rd) (Rd)  
Takes the one's complement of general register contents.  
Note: * Refers to the operand size.  
B: Byte  
W: Word  
L: Longword  
Table 2.5 Shift Instructions  
Instruction  
Size*  
Function  
SHAL  
SHAR  
B/W/L  
Rd (shift) Rd  
Performs an arithmetic shift on general register contents.  
SHLL  
SHLR  
B/W/L  
B/W/L  
B/W/L  
Rd (shift) Rd  
Performs a logical shift on general register contents.  
ROTL  
ROTR  
Rd (rotate) Rd  
Rotates general register contents.  
ROTXL  
ROTXR  
Rd (rotate) Rd  
Rotates general register contents through the carry flag.  
Note: * Refers to the operand size.  
B: Byte  
W: Word  
L: Longword  
Rev. 6.00 Mar. 24, 2006 Page 28 of 412  
REJ09B0142-0600  
Section 2 CPU  
Table 2.6 Bit Manipulation Instructions (1)  
Instruction  
Size*  
Function  
BSET  
B
1 (<bit-No.> of <EAd>)  
Sets a specified bit in a general register or memory operand to 1. The bit  
number is specified by 3-bit immediate data or the lower three bits of a  
general register.  
BCLR  
BNOT  
BTST  
B
B
B
0 (<bit-No.> of <EAd>)  
Clears a specified bit in a general register or memory operand to 0. The  
bit number is specified by 3-bit immediate data or the lower three bits of  
a general register.  
¬ (<bit-No.> of <EAd>) (<bit-No.> of <EAd>)  
Inverts a specified bit in a general register or memory operand. The bit  
number is specified by 3-bit immediate data or the lower three bits of a  
general register.  
¬ (<bit-No.> of <EAd>) Z  
Tests a specified bit in a general register or memory operand and sets  
or clears the Z flag accordingly. The bit number is specified by 3-bit  
immediate data or the lower three bits of a general register.  
BAND  
B
B
C (<bit-No.> of <EAd>) C  
ANDs the carry flag with a specified bit in a general register or memory  
operand and stores the result in the carry flag.  
BIAND  
C ¬ (<bit-No.> of <EAd>) C  
ANDs the carry flag with the inverse of a specified bit in a general  
register or memory operand and stores the result in the carry flag.  
The bit number is specified by 3-bit immediate data.  
BOR  
B
B
C (<bit-No.> of <EAd>) C  
ORs the carry flag with a specified bit in a general register or memory  
operand and stores the result in the carry flag.  
BIOR  
C ¬ (<bit-No.> of <EAd>) C  
ORs the carry flag with the inverse of a specified bit in a general register  
or memory operand and stores the result in the carry flag.  
The bit number is specified by 3-bit immediate data.  
Note: * Refers to the operand size.  
B: Byte  
Rev. 6.00 Mar. 24, 2006 Page 29 of 412  
REJ09B0142-0600  
Section 2 CPU  
Table 2.6 Bit Manipulation Instructions (2)  
Instruction  
Size*  
Function  
BXOR  
B
C (<bit-No.> of <EAd>) C  
XORs the carry flag with a specified bit in a general register or memory  
operand and stores the result in the carry flag.  
BIXOR  
B
C ¬ (<bit-No.> of <EAd>) C  
XORs the carry flag with the inverse of a specified bit in a general  
register or memory operand and stores the result in the carry flag.  
The bit number is specified by 3-bit immediate data.  
BLD  
B
B
(<bit-No.> of <EAd>) C  
Transfers a specified bit in a general register or memory operand to the  
carry flag.  
BILD  
¬ (<bit-No.> of <EAd>) C  
Transfers the inverse of a specified bit in a general register or memory  
operand to the carry flag.  
The bit number is specified by 3-bit immediate data.  
BST  
B
B
C (<bit-No.> of <EAd>)  
Transfers the carry flag value to a specified bit in a general register or  
memory operand.  
BIST  
¬ C (<bit-No.> of <EAd>)  
Transfers the inverse of the carry flag value to a specified bit in a  
general register or memory operand.  
The bit number is specified by 3-bit immediate data.  
Note: * Refers to the operand size.  
B: Byte  
Rev. 6.00 Mar. 24, 2006 Page 30 of 412  
REJ09B0142-0600  
Section 2 CPU  
Table 2.7 Branch Instructions  
Instruction  
Size  
Function  
Bcc*  
Branches to a specified address if a specified condition is true. The  
branching conditions are listed below.  
Mnemonic  
BRA (BT)  
BRN (BF)  
BHI  
Description  
Always (true)  
Never (false)  
High  
Condition  
Always  
Never  
C Z = 0  
C Z = 1  
C = 0  
BLS  
Low or same  
BCC (BHS)  
Carry clear  
(high or same)  
BCS (BLO)  
BNE  
BEQ  
BVC  
BVS  
Carry set (low)  
Not equal  
C = 1  
Z = 0  
Equal  
Z = 1  
Overflow clear  
Overflow set  
Plus  
V = 0  
V = 1  
BPL  
N = 0  
BMI  
Minus  
N = 1  
BGE  
BLT  
Greater or equal  
Less than  
N V = 0  
N V = 1  
Z(N V) = 0  
Z(N V) = 1  
BGT  
BLE  
Greater than  
Less or equal  
JMP  
BSR  
JSR  
RTS  
Branches unconditionally to a specified address.  
Branches to a subroutine at a specified address.  
Branches to a subroutine at a specified address.  
Returns from a subroutine  
Note:  
*
Bcc is the general name for conditional branch instructions.  
Rev. 6.00 Mar. 24, 2006 Page 31 of 412  
REJ09B0142-0600  
Section 2 CPU  
Table 2.8 System Control Instructions  
Instruction  
TRAPA  
RTE  
Size*  
Function  
Starts trap-instruction exception handling.  
Returns from an exception-handling routine.  
Causes a transition to a power-down state.  
SLEEP  
LDC  
B/W  
(EAs) CCR  
Moves the source operand contents to the CCR. The CCR size is one  
byte, but in transfer from memory, data is read by word access.  
STC  
B/W  
CCR (EAd), EXR (EAd)  
Transfers the CCR contents to a destination location. The condition  
code register size is one byte, but in transfer to memory, data is written  
by word access.  
ANDC  
ORC  
B
CCR #IMM CCR, EXR #IMM EXR  
Logically ANDs the CCR with immediate data.  
B
CCR #IMM CCR, EXR #IMM EXR  
Logically ORs the CCR with immediate data.  
XORC  
NOP  
B
CCR #IMM CCR, EXR #IMM EXR  
Logically XORs the CCR with immediate data.  
PC + 2 PC  
Only increments the program counter.  
Note: * Refers to the operand size.  
B: Byte  
W: Word  
Rev. 6.00 Mar. 24, 2006 Page 32 of 412  
REJ09B0142-0600  
Section 2 CPU  
Table 2.9 Block Data Transfer Instructions  
Instruction  
Size  
Function  
EEPMOV.B  
if R4L 0 then  
Repeat @ER5+ @ER6+,  
R4L–1 R4L  
Until R4L = 0  
else next;  
if R4 0 then  
Repeat @ER5+ @ER6+,  
EEPMOV.W  
R4–1 R4  
Until R4 = 0  
else next;  
Transfers a data block. Starting from the address set in ER5, transfers  
data for the number of bytes set in R4L or R4 to the address location set  
in ER6.  
Execution of the next instruction begins as soon as the transfer is  
completed.  
Rev. 6.00 Mar. 24, 2006 Page 33 of 412  
REJ09B0142-0600  
Section 2 CPU  
2.4.2  
Basic Instruction Formats  
H8/300H CPU instructions consist of 2-byte (1-word) units. An instruction consists of an  
operation field (op field), a register field (r field), an effective address extension (EA field), and a  
condition field (cc).  
Figure 2.7 shows examples of instruction formats.  
Operation Field  
Indicates the function of the instruction, the addressing mode, and the operation to be carried  
out on the operand. The operation field always includes the first four bits of the instruction.  
Some instructions have two operation fields.  
Register Field  
Specifies a general register. Address registers are specified by 3 bits, and data registers by 3  
bits or 4 bits. Some instructions have two register fields. Some have no register field.  
Effective Address Extension  
8, 16, or 32 bits specifying immediate data, an absolute address, or a displacement. A24-bit  
address or displacement is treated as a 32-bit data in which the first 8 bits are 0 (H'00).  
Condition Field  
Specifies the branching condition of Bcc instructions.  
(1) Operation field only  
op  
NOP, RTS, etc.  
(2) Operation field and register fields  
op  
rm  
rn  
ADD.B Rn, Rm, etc.  
(3) Operation field, register fields, and effective address extension  
op  
rn  
rm  
MOV.B @(d:16, Rn), Rm  
EA(disp)  
(4) Operation field, effective address extension, and condition field  
op cc EA(disp) BRA d:8  
Figure 2.7 Instruction Formats  
Rev. 6.00 Mar. 24, 2006 Page 34 of 412  
REJ09B0142-0600  
Section 2 CPU  
2.5  
Addressing Modes and Effective Address Calculation  
The following describes the H8/300H CPU. In this LSI, the upper eight bits are ignored in the  
generated 24-bit address, so the effective address is 16 bits.  
2.5.1  
Addressing Modes  
The H8/300H CPU supports the eight addressing modes listed in table 2.10. Each instruction uses  
a subset of these addressing modes. Addressing modes that can be used differ depending on the  
instruction. For details, refer to appendix A.4, Combinations of Instructions and Addressing  
Modes.  
Arithmetic and logic instructions can use the register direct and immediate modes. Data transfer  
instructions can use all addressing modes except program-counter relative and memory indirect.  
Bit manipulation instructions use register direct, register indirect, or the absolute addressing mode  
to specify an operand, and register direct (BSET, BCLR, BNOT, and BTST instructions) or  
immediate (3-bit) addressing mode to specify a bit number in the operand.  
Table 2.10 Addressing Modes  
No.  
1
Addressing Mode  
Symbol  
Register direct  
Rn  
2
Register indirect  
@ERn  
3
Register indirect with displacement  
@(d:16,ERn)/@(d:24,ERn)  
4
Register indirect with post-increment  
Register indirect with pre-decrement  
@ERn+  
@–ERn  
5
6
7
8
Absolute address  
Immediate  
@aa:8/@aa:16/@aa:24  
#xx:8/#xx:16/#xx:32  
@(d:8,PC)/@(d:16,PC)  
@@aa:8  
Program-counter relative  
Memory indirect  
Rev. 6.00 Mar. 24, 2006 Page 35 of 412  
REJ09B0142-0600  
Section 2 CPU  
(1) Register Direct—Rn  
The register field of the instruction specifies an 8-, 16-, or 32-bit general register containing the  
operand. R0H to R7H and R0L to R7L can be specified as 8-bit registers. R0 to R7 and E0 to E7  
can be specified as 16-bit registers. ER0 to ER7 can be specified as 32-bit registers.  
(2) Register Indirect—@ERn  
The register field of the instruction code specifies an address register (ERn), the lower 24 bits of  
which contain the address of the operand on memory.  
(3) Register Indirect with Displacement—@(d:16, ERn) or @(d:24, ERn)  
A 16-bit or 24-bit displacement contained in the instruction is added to an address register (ERn)  
specified by the register field of the instruction, and the lower 24 bits of the sum the address of a  
memory operand. A 16-bit displacement is sign-extended when added.  
(4) Register Indirect with Post-Increment or Pre-Decrement—@ERn+ or @-ERn  
(a) Register indirect with post-increment—@ERn+  
The register field of the instruction code specifies an address register (ERn) the lower 24 bits of  
which contains the address of a memory operand. After the operand is accessed, 1, 2, or 4 is added  
to the address register contents (32 bits) and the sum is stored in the address register. The value  
added is 1 for byte access, 2 for word access, or 4 for longword access. For the word or longword  
access, the register value should be even.  
(b) Register indirect with pre-decrement—@-ERn  
The value 1, 2, or 4 is subtracted from an address register (ERn) specified by the register field in  
the instruction code, and the lower 24 bits of the result is the address of a memory operand. The  
result is also stored in the address register. The value subtracted is 1 for byte access, 2 for word  
access, or 4 for longword access. For the word or longword access, the register value should be  
even.  
Rev. 6.00 Mar. 24, 2006 Page 36 of 412  
REJ09B0142-0600  
Section 2 CPU  
(5) Absolute Address—@aa:8, @aa:16, @aa:24  
The instruction code contains the absolute address of a memory operand. The absolute address  
may be 8 bits long (@aa:8), 16 bits long (@aa:16), 24 bits long (@aa:24)  
For an 8-bit absolute address, the upper 16 bits are all assumed to be 1 (H'FFFF). For a 16-bit  
absolute address the upper 8 bits are a sign extension. A 24-bit absolute address can access the  
entire address space.  
The access ranges of absolute addresses for the group of this LSI are those shown in table 2.11,  
because the upper 8 bits are ignored.  
Table 2.11 Absolute Address Access Ranges  
Absolute Address  
8 bits (@aa:8)  
Access Range  
H'FF00 to H'FFFF  
H'0000 to H'FFFF  
H'0000 to H'FFFF  
16 bits (@aa:16)  
24 bits (@aa:24)  
(6) Immediate—#xx:8, #xx:16, or #xx:32  
The instruction contains 8-bit (#xx:8), 16-bit (#xx:16), or 32-bit (#xx:32) immediate data as an  
operand.  
The ADDS, SUBS, INC, and DEC instructions contain immediate data implicitly. Some bit  
manipulation instructions contain 3-bit immediate data in the instruction code, specifying a bit  
number. The TRAPA instruction contains 2-bit immediate data in its instruction code, specifying a  
vector address.  
(7) Program-Counter Relative—@(d:8, PC) or @(d:16, PC)  
This mode is used in the BSR instruction. An 8-bit or 16-bit displacement contained in the  
instruction is sign-extended and added to the 24-bit PC contents to generate a branch address. The  
PC value to which the displacement is added is the address of the first byte of the next instruction,  
so the possible branching range is –126 to +128 bytes (–63 to +64 words) or –32766 to +32768  
bytes (–16383 to +16384 words) from the branch instruction. The resulting value should be an  
even number.  
Rev. 6.00 Mar. 24, 2006 Page 37 of 412  
REJ09B0142-0600  
Section 2 CPU  
(8) Memory Indirect—@@aa:8  
This mode can be used by the JMP and JSR instructions. The instruction code contains an 8-bit  
absolute address specifying a memory operand. This memory operand contains a branch address.  
The memory operand is accessed by longword access. The first byte of the memory operand is  
ignored, generating a 24-bit branch address. Figure 2.8 shows how to specify branch address for in  
memory indirect mode. The upper bits of the absolute address are all assumed to be 0, so the  
address range is 0 to 255 (H'0000 to H'00FF).  
Note that the first part of the address range is also the exception vector area.  
Specified  
by @aa:8  
Dummy  
Branch address  
Figure 2.8 Branch Address Specification in Memory Indirect Mode  
Rev. 6.00 Mar. 24, 2006 Page 38 of 412  
REJ09B0142-0600  
Section 2 CPU  
2.5.2  
Effective Address Calculation  
Table 2.12 indicates how effective addresses are calculated in each addressing mode. In this LSI  
the upper 8 bits of the effective address are ignored in order to generate a 16-bit effective address.  
Table 2.12 Effective Address Calculation (1)  
No  
1
Addressing Mode and Instruction Format  
Register direct(Rn)  
Effective Address Calculation  
Effective Address (EA)  
Operand is general register contents.  
op  
rm rn  
2
3
Register indirect(@ERn)  
31  
0
23  
0
General register contents  
General register contents  
op  
r
Register indirect with displacement  
@(d:16,ERn) or @(d:24,ERn)  
31  
31  
0
0
23  
0
op  
r
disp  
disp  
Sign extension  
Register indirect with post-increment or  
pre-decrement  
•Register indirect with post-increment @ERn+  
4
31  
31  
0
0
23  
0
General register contents  
op  
r
1, 2, or 4  
•Register indirect with pre-decrement @-ERn  
General register contents  
23  
0
op  
r
1, 2, or 4  
The value to be added or subtracted is 1 when the  
operand is byte size, 2 for word size, and 4 for  
longword size.  
Rev. 6.00 Mar. 24, 2006 Page 39 of 412  
REJ09B0142-0600  
Section 2 CPU  
Table 2.12 Effective Address Calculation (2)  
No  
5
Addressing Mode and Instruction Format  
Effective Address Calculation  
Effective Address (EA)  
Absolute address  
@aa:8  
23  
8 7  
0
0
op  
abs  
H'FFFF  
@aa:16  
23  
16 15  
op  
op  
abs  
Sign extension  
@aa:24  
23  
0
abs  
6
7
Immediate  
#xx:8/#xx:16/#xx:32  
op  
Operand is immediate data.  
IMM  
disp  
23  
0
0
Program-counter relative  
@(d:8,PC) @(d:16,PC)  
PC contents  
op  
23  
Sign  
disp  
extension  
23  
0
8
Memory indirect @@aa:8  
23  
8
7
0
0
op  
abs  
abs  
H'0000  
15  
23  
16 15  
H'00  
0
Memory contents  
[Legend]  
r, rm,rn : Register field  
op :  
Operation field  
Displacement  
Immediate data  
Absolute address  
disp :  
IMM :  
abs :  
Rev. 6.00 Mar. 24, 2006 Page 40 of 412  
REJ09B0142-0600  
Section 2 CPU  
2.6  
Basic Bus Cycle  
CPU operation is synchronized by a system clock (φ) or a subclock (φSUB). The period from a rising  
edge of φ or φSUB to the next rising edge is called one state. A bus cycle consists of two states or  
three states. The cycle differs depending on whether access is to on-chip memory or to on-chip  
peripheral modules.  
2.6.1  
Access to On-Chip Memory (RAM, ROM)  
Access to on-chip memory takes place in two states. The data bus width is 16 bits, allowing access  
in byte or word size. Figure 2.9 shows the on-chip memory access cycle.  
Bus cycle  
T1 state  
T2 state  
φ or φ SUB  
Internal address bus  
Address  
Internal read signal  
Internal data bus  
(read access)  
Read data  
Internal write signal  
Internal data bus  
(write access)  
Write data  
Figure 2.9 On-Chip Memory Access Cycle  
Rev. 6.00 Mar. 24, 2006 Page 41 of 412  
REJ09B0142-0600  
Section 2 CPU  
2.6.2  
On-Chip Peripheral Modules  
On-chip peripheral modules are accessed in two states or three states. The data bus width is 8 bits  
or 16 bits depending on the register. For description on the data bus width and number of  
accessing states of each register, refer to section 19.1, Register Addresses (Address Order).  
Registers with 16-bit data bus width can be accessed by word size only. Registers with 8-bit data  
bus width can be accessed by byte or word size. When a register with 8-bit data bus width is  
accessed by word size, access is completed in two cycles. In two-state access, the operation timing  
is the same as that for on-chip memory.  
Figure 2.10 shows the operation timing in the case of three-state access to an on-chip peripheral  
module.  
Bus cycle  
T1 state  
T2 state  
T3 state  
φ or φSUB  
Internal  
address bus  
Address  
Internal  
read signal  
Internal  
data bus  
Read data  
(read access)  
Internal  
write signal  
Internal  
data bus  
Write data  
(write access)  
Figure 2.10 On-Chip Peripheral Module Access Cycle (3-State Access)  
Rev. 6.00 Mar. 24, 2006 Page 42 of 412  
REJ09B0142-0600  
Section 2 CPU  
2.7  
CPU States  
There are four CPU states: the reset state, program execution state, program halt state, and  
exception-handling state. The program execution state includes active mode and subactive mode.  
In the program halt state there are a sleep mode, standby mode, and sub-sleep mode. These states  
are shown in figure 2.11. Figure 2.12 shows the state transitions. For details on program execution  
state and program halt state, refer to section 6, Power-Down Modes. For details on exception  
processing, refer to section 3, Exception Handling.  
CPU state  
Reset state  
The CPU is initialized  
Program  
execution state  
Active  
(high speed) mode  
The CPU executes successive program  
instructions at high speed,  
synchronized by the system clock  
Subactive mode  
The CPU executes  
successive program  
instructions at reduced  
speed, synchronized  
by the subclock  
Power-down  
modes  
Sleep mode  
Standby mode  
Subsleep mode  
Program halt state  
A state in which some  
or all of the chip  
functions are stopped  
to conserve power  
Exception-  
handling state  
A transient state in which the CPU changes  
the processing flow due to a reset or an interrupt  
Figure 2.11 CPU Operation States  
Rev. 6.00 Mar. 24, 2006 Page 43 of 412  
REJ09B0142-0600  
Section 2 CPU  
Reset cleared  
Reset occurs  
Reset state  
Exception-handling state  
Reset  
occurs  
Interrupt  
source  
Reset  
occurs  
Interrupt  
source  
Exception-  
handling  
complete  
Program halt state  
Program execution state  
SLEEP instruction executed  
Figure 2.12 State Transitions  
2.8  
Usage Notes  
2.8.1  
Notes on Data Access to Empty Areas  
The address space of this LSI includes empty areas in addition to the ROM, RAM, and on-chip  
I/O registers areas available to the user. When data is transferred from CPU to empty areas, the  
transferred data will be lost. This action may also cause the CPU to malfunction. When data is  
transferred from an empty area to CPU, the contents of the data cannot be guaranteed.  
2.8.2  
EEPMOV Instruction  
EEPMOV is a block-transfer instruction and transfers the byte size of data indicated by R4L,  
which starts from the address indicated by R5, to the address indicated by R6. Set R4L and R6 so  
that the end address of the destination address (value of R6 + R4L) does not exceed H'FFFF (the  
value of R6 must not change from H'FFFF to H'0000 during execution).  
Rev. 6.00 Mar. 24, 2006 Page 44 of 412  
REJ09B0142-0600  
Section 2 CPU  
2.8.3  
Bit Manipulation Instruction  
The BSET, BCLR, BNOT, BST, and BIST instructions read data from the specified address in  
byte units, manipulate the data of the target bit, and write data to the same address again in byte  
units. Special care is required when using these instructions in cases where two registers are  
assigned to the same address or when a bit is directly manipulated for a port, because this may  
rewrite data of a bit other than the bit to be manipulated.  
(1) Bit manipulation for two registers assigned to the same address  
Example 1: Bit manipulation for the timer load register and timer counter  
(Applicable for timer B and timer C, not for the group of this LSI.)  
Figure 2.13 shows an example of a timer in which two timer registers are assigned to the same  
address. When a bit manipulation instruction accesses the timer load register and timer counter of  
a reloadable timer, since these two registers share the same address, the following operations takes  
place.  
1. Data is read in byte units.  
2. The CPU sets or resets the bit to be manipulated with the bit manipulation instruction.  
3. The written data is written again in byte units to the timer load register.  
The timer is counting, so the value read is not necessarily the same as the value in the timer load  
register. As a result, bits other than the intended bit in the timer counter may be modified and the  
modified value may be written to the timer load register.  
Read  
Count clock  
Timer counter  
Reload  
Write  
Timer load register  
Internal bus  
Figure 2.13 Example of Timer Configuration with Two Registers Allocated to Same  
Address  
Rev. 6.00 Mar. 24, 2006 Page 45 of 412  
REJ09B0142-0600  
Section 2 CPU  
Example 2: The BSET instruction is executed for port 5.  
P57 and P56 are input pins, with a low-level signal input at P57 and a high-level signal input at  
P56. P55 to P50 are output pins and output low-level signals. An example to output a high-level  
signal at P50 with a BSET instruction is shown below.  
Prior to executing BSET  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Input/output  
Pin state  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Low  
level  
High  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
PCR5  
PDR5  
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
BSET instruction executed  
BSET #0, @PDR5  
The BSET instruction is executed for port 5.  
After executing BSET  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Input/output  
Pin state  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Low  
level  
High  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
High  
level  
PCR5  
PDR5  
0
0
0
1
1
0
1
0
1
0
1
0
1
0
1
1
Description on operation  
When the BSET instruction is executed, first the CPU reads port 5.  
Since P57 and P56 are input pins, the CPU reads the pin states (low-level and high-level input).  
P55 to P50 are output pins, so the CPU reads the value in PDR5. In this example PDR5 has a  
value of H'80, but the value read by the CPU is H'40.  
Next, the CPU sets bit 0 of the read data to 1, changing the PDR5 data to H'41.  
Finally, the CPU writes H'41 to PDR5, completing execution of BSET.  
Rev. 6.00 Mar. 24, 2006 Page 46 of 412  
REJ09B0142-0600  
Section 2 CPU  
As a result of the BSET instruction, bit 0 in PDR5 becomes 1, and P50 outputs a high-level signal.  
However, bits 7 and 6 of PDR5 end up with different values. To prevent this problem, store a copy  
of the PDR5 data in a work area in memory. Perform the bit manipulation on the data in the work  
area, then write this data to PDR5.  
Prior to executing BSET  
MOV.B  
MOV.B  
MOV.B  
#80, R0L  
R0L, @RAM0  
R0L, @PDR5  
The PDR5 value (H'80) is written to a work area in  
memory (RAM0) as well as to PDR5.  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Input/output  
Pin state  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Low  
level  
High  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
PCR5  
PDR5  
RAM0  
0
1
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
BSET instruction executed  
BSET  
#0,  
@RAM0  
The BSET instruction is executed designating the PDR5  
work area (RAM0).  
After executing BSET  
MOV.B  
MOV.B  
@RAM0, R0L  
R0L, @PDR5  
The work area (RAM0) value is written to PDR5.  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Input/output  
Pin state  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Low  
level  
High  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
High  
level  
PCR5  
PDR5  
RAM0  
0
1
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
1
Rev. 6.00 Mar. 24, 2006 Page 47 of 412  
REJ09B0142-0600  
Section 2 CPU  
(2) Bit Manipulation in a Register Containing a Write-Only Bit  
Example 3: BCLR instruction executed designating port 5 control register PCR5  
P57 and P56 are input pins, with a low-level signal input at P57 and a high-level signal input at  
P56. P55 to P50 are output pins that output low-level signals. An example of setting the P50 pin as  
an input pin by the BCLR instruction is shown below. It is assumed that a high-level signal will be  
input to this input pin.  
Prior to executing BCLR  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Input/output  
Pin state  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Low  
level  
High  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
PCR5  
PDR5  
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
BCLR instruction executed  
BCLR #0, @PCR5  
The BCLR instruction is executed for PCR5.  
After executing BCLR  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Input/output  
Pin state  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Input  
Low  
level  
High  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
High  
level  
PCR5  
PDR5  
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
Description on operation  
When the BCLR instruction is executed, first the CPU reads PCR5. Since PCR5 is a write-only  
register, the CPU reads a value of H'FF, even though the PCR5 value is actually H'3F.  
Next, the CPU clears bit 0 in the read data to 0, changing the data to H'FE.  
Finally, H'FE is written to PCR5 and BCLR instruction execution ends.  
Rev. 6.00 Mar. 24, 2006 Page 48 of 412  
REJ09B0142-0600  
Section 2 CPU  
As a result of this operation, bit 0 in PCR5 becomes 0, making P50 an input port. However, bits 7  
and 6 in PCR5 change to 1, so that P57 and P56 change from input pins to output pins. To prevent  
this problem, store a copy of the PDR5 data in a work area in memory and manipulate data of the  
bit in the work area, then write this data to PDR5.  
Prior to executing BCLR  
MOV.B  
MOV.B  
MOV.B  
#3F, R0L  
R0L, @RAM0  
R0L, @PCR5  
The PCR5 value (H'3F) is written to a work area in  
memory (RAM0) as well as to PCR5.  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Input/output  
Pin state  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Low  
level  
High  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
PCR5  
PDR5  
RAM0  
0
1
0
0
0
0
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
BCLR instruction executed  
BCLR #0, @RAM0  
The BCLR instructions executed for the PCR5 work area  
(RAM0).  
After executing BCLR  
MOV.B  
MOV.B  
@RAM0, R0L  
R0L, @PCR5  
The work area (RAM0) value is written to PCR5.  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Input/output  
Pin state  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Low  
level  
High  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
High  
level  
PCR5  
PDR5  
RAM0  
0
1
0
0
0
0
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
0
0
0
Rev. 6.00 Mar. 24, 2006 Page 49 of 412  
REJ09B0142-0600  
Section 2 CPU  
Rev. 6.00 Mar. 24, 2006 Page 50 of 412  
REJ09B0142-0600  
Section 3 Exception Handling  
Section 3 Exception Handling  
Exception handling may be caused by a reset, a trap instruction (TRAPA), or interrupts.  
Reset  
A reset has the highest exception priority. Exception handling starts as soon as the reset is cleared  
by the RES pin. The chip is also reset when the watchdog timer overflows, and exception handling  
starts. Exception handling is the same as exception handling by the RES pin.  
Trap Instruction  
Exception handling starts when a trap instruction (TRAPA) is executed. The TRAPA instruction  
generates a vector address corresponding to a vector number from 0 to 3, as specified in the  
instruction code. Exception handling can be executed at all times in the program execution state.  
Interrupts  
External interrupts other than NMI and internal interrupts other than address break are masked by  
the I bit in CCR, and kept masked while the I bit is set to 1. Exception handling starts when the  
current instruction or exception handling ends, if an interrupt request has been issued.  
3.1  
Exception Sources and Vector Address  
Table 3.1 shows the vector addresses and priority of each exception handling. When more than  
one interrupt is requested, handling is performed from the interrupt with the highest priority.  
Rev. 6.00 Mar. 24, 2006 Page 51 of 412  
REJ09B0142-0600  
Section 3 Exception Handling  
Table 3.1 Exception Sources and Vector Address  
Vector  
Number Vector Address  
Relative Module  
RES pin  
Exception Sources  
Priority  
Reset  
0
H'0000 to H'0001  
High  
Watchdog timer  
Reserved for system use  
NMI  
1 to 6  
7
H'0002 to H'000D  
H'000E to H'000F  
External interrupt  
pin  
CPU  
Trap instruction (#0)  
8
H'0010 to H'0011  
H'0012 to H'0013  
H'0014 to H'0015  
H'0016 to H'0017  
H'0018 to H'0019  
H'001A to H'001B  
(#1)  
9
(#2)  
(#3)  
10  
11  
12  
Address break  
CPU  
Break conditions satisfied  
Direct transition by executing the 13  
SLEEP instruction  
External interrupt  
pin  
IRQ0  
14  
15  
16  
17  
18  
19  
20  
H'001C to H'001D  
H'001E to H'001F  
H'0020 to H'0021  
H'0022 to H'0023  
H'0024 to H'0025  
H'0026 to H'0027  
H'0028 to H'0029  
H'002A to H'002B  
IRQ1  
IRQ2  
IRQ3  
WKP  
Timer A  
Overflow  
Reserved for system use  
Timer W  
Input capture A/compare match A 21  
Input capture B/compare match B  
Input capture C/compare match C  
Input capture D/compare match D  
Timer W overflow  
Timer V  
SCI3  
Timer V compare match A  
Timer V compare match B  
Timer V overflow  
22  
H'002C to H'002D  
H'002E to H'002F  
SCI3 receive data full  
SCI3 transmit data empty  
SCI3 transmit end  
23  
SCI3 receive error  
IIC  
Data transfer end  
24  
25  
H'0030 to H'0031  
H'0032 to H'0033  
Address inequality  
Stop conditions detected  
A/D conversion end  
A/D converter  
Low  
Rev. 6.00 Mar. 24, 2006 Page 52 of 412  
REJ09B0142-0600  
Section 3 Exception Handling  
3.2  
Register Descriptions  
Interrupts are controlled by the following registers.  
Interrupt edge select register 1 (IEGR1)  
Interrupt edge select register 2 (IEGR2)  
Interrupt enable register 1 (IENR1)  
Interrupt flag register 1 (IRR1)  
Wakeup interrupt flag register (IWPR)  
3.2.1  
Interrupt Edge Select Register 1 (IEGR1)  
IEGR1 selects the direction of an edge that generates interrupt requests of pins NMI and IRQ3 to  
IRQ0.  
Initial  
Bit  
Bit Name  
Value  
R/W  
Description  
7
NMIEG  
0
R/W  
NMI Edge Select  
0: Falling edge of NMI pin input is detected  
1: Rising edge of NMI pin input is detected  
Reserved  
6
5
4
3
1
1
1
0
These bits are always read as 1.  
IEG3  
R/W  
IRQ3 Edge Select  
0: Falling edge of IRQ3 pin input is detected  
1: Rising edge of IRQ3 pin input is detected  
IRQ2 Edge Select  
2
1
0
IEG2  
IEG1  
IEG0  
0
0
0
R/W  
R/W  
R/W  
0: Falling edge of IRQ2 pin input is detected  
1: Rising edge of IRQ2 pin input is detected  
IRQ1 Edge Select  
0: Falling edge of IRQ1 pin input is detected  
1: Rising edge of IRQ1 pin input is detected  
IRQ0 Edge Select  
0: Falling edge of IRQ0 pin input is detected  
1: Rising edge of IRQ0 pin input is detected  
Rev. 6.00 Mar. 24, 2006 Page 53 of 412  
REJ09B0142-0600  
Section 3 Exception Handling  
3.2.2  
Interrupt Edge Select Register 2 (IEGR2)  
IEGR2 selects the direction of an edge that generates interrupt requests of the pins ADTRG and  
WKP5 to WKP0.  
Initial  
Bit  
7
Bit Name  
Value  
R/W  
Description  
1
1
0
Reserved  
6
These bits are always read as 1.  
WKP5 Edge Select  
5
WPEG5  
R/W  
0: Falling edge of WKP5 (ADTRG) pin input is detected  
1: Rising edge of WKP5 (ADTRG) pin input is detected  
WKP4 Edge Select  
4
3
2
1
0
WPEG4  
WPEG3  
WPEG2  
WPEG1  
WPEG0  
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
0: Falling edge of WKP4 pin input is detected  
1: Rising edge of WKP4 pin input is detected  
WKP3 Edge Select  
0: Falling edge of WKP3 pin input is detected  
1: Rising edge of WKP3 pin input is detected  
WKP2 Edge Select  
0: Falling edge of WKP2 pin input is detected  
1: Rising edge of WKP2 pin input is detected  
WKP1Edge Select  
0: Falling edge of WKP1 pin input is detected  
1: Rising edge of WKP1 pin input is detected  
WKP0 Edge Select  
0: Falling edge of WKP0 pin input is detected  
1: Rising edge of WKP0 pin input is detected  
Rev. 6.00 Mar. 24, 2006 Page 54 of 412  
REJ09B0142-0600  
Section 3 Exception Handling  
3.2.3  
Interrupt Enable Register 1 (IENR1)  
IENR1 enables direct transition interrupts, timer A overflow interrupts, and external pin interrupts.  
Initial  
Bit  
Bit Name  
Value  
R/W  
Description  
7
IENDT  
0
R/W  
Direct Transfer Interrupt Enable  
When this bit is set to 1, direct transition interrupt  
requests are enabled.  
6
5
IENTA  
0
0
R/W  
R/W  
Timer A Interrupt Enable  
When this bit is set to 1, timer A overflow interrupt  
requests are enabled.  
IENWP  
Wakeup Interrupt Enable  
This bit is an enable bit, which is common to the pins  
WKP5 to WKP0. When the bit is set to 1, interrupt  
requests are enabled.  
4
3
1
0
Reserved  
This bit is always read as 1.  
IRQ3 Interrupt Enable  
IEN3  
R/W  
When this bit is set to 1, interrupt requests of the IRQ3  
pin are enabled.  
2
1
0
IEN2  
IEN1  
IEN0  
0
0
0
R/W  
R/W  
R/W  
IRQ2 Interrupt Enable  
When this bit is set to 1, interrupt requests of the IRQ2  
pin are enabled.  
IRQ1 Interrupt Enable  
When this bit is set to 1, interrupt requests of the IRQ1  
pin are enabled.  
IRQ0 Interrupt Enable  
When this bit is set to 1, interrupt requests of the IRQ0  
pin are enabled.  
When disabling interrupts by clearing bits in an interrupt enable register, or when clearing bits in  
an interrupt flag register, always do so while interrupts are masked (I = 1). If the above clear  
operations are performed while I = 0, and as a result a conflict arises between the clear instruction  
and an interrupt request, exception handling for the interrupt will be executed after the clear  
instruction has been executed.  
Rev. 6.00 Mar. 24, 2006 Page 55 of 412  
REJ09B0142-0600  
Section 3 Exception Handling  
3.2.4  
Interrupt Flag Register 1 (IRR1)  
IRR1 is a status flag register for direct transition interrupts, timer A overflow interrupts, and IRQ3  
to IRQ0 interrupt requests.  
Initial  
Bit  
Bit Name  
Value  
R/W  
Description  
7
IRRDT  
0
R/W  
Direct Transfer Interrupt Request Flag  
[Setting condition]  
When a direct transfer is made by executing a SLEEP  
instruction while DTON in SYSCR2 is set to 1.  
[Clearing condition]  
When IRRDT is cleared by writing 0  
Timer A Interrupt Request Flag  
[Setting condition]  
6
IRRTA  
0
R/W  
When the timer A counter value overflows  
[Clearing condition]  
When IRRTA is cleared by writing 0  
Reserved  
5
4
3
1
1
0
These bits are always read as 1.  
IRQ3 Interrupt Request Flag  
[Setting condition]  
IRRI3  
R/W  
When IRQ3 pin is designated for interrupt input and  
the designated signal edge is detected.  
[Clearing condition]  
When IRRI3 is cleared by writing 0  
IRQ2 Interrupt Request Flag  
[Setting condition]  
2
1
IRRI2  
IRRI1  
0
0
R/W  
R/W  
When IRQ2 pin is designated for interrupt input and  
the designated signal edge is detected.  
[Clearing condition]  
When IRRI2 is cleared by writing 0  
IRQ1 Interrupt Request Flag  
[Setting condition]  
When IRQ1 pin is designated for interrupt input and  
the designated signal edge is detected.  
[Clearing condition]  
When IRRI1 is cleared by writing 0  
Rev. 6.00 Mar. 24, 2006 Page 56 of 412  
REJ09B0142-0600  
Section 3 Exception Handling  
Initial  
Value  
Bit  
Bit Name  
R/W  
Description  
0
IRRl0  
0
R/W  
IRQ0 Interrupt Request Flag  
[Setting condition]  
When IRQ0 pin is designated for interrupt input and  
the designated signal edge is detected.  
[Clearing condition]  
When IRRI0 is cleared by writing 0  
3.2.5  
Wakeup Interrupt Flag Register (IWPR)  
IWPR is a status flag register for WKP5 to WKP0 interrupt requests.  
Initial  
Bit  
7
Bit Name  
Value  
R/W  
Description  
1
1
0
Reserved  
6
These bits are always read as 1.  
WKP5 Interrupt Request Flag  
[Setting condition]  
5
IWPF5  
IWPF4  
IWPF3  
R/W  
R/W  
R/W  
When WKP5 pin is designated for interrupt input and  
the designated signal edge is detected.  
[Clearing condition]  
When IWPF5 is cleared by writing 0.  
WKP4 Interrupt Request Flag  
[Setting condition]  
4
3
0
0
When WKP4 pin is designated for interrupt input and  
the designated signal edge is detected.  
[Clearing condition]  
When IWPF4 is cleared by writing 0.  
WKP3 Interrupt Request Flag  
[Setting condition]  
When WKP3 pin is designated for interrupt input and  
the designated signal edge is detected.  
[Clearing condition]  
When IWPF3 is cleared by writing 0.  
Rev. 6.00 Mar. 24, 2006 Page 57 of 412  
REJ09B0142-0600  
Section 3 Exception Handling  
Initial  
Bit  
Bit Name  
Value  
R/W  
Description  
2
IWPF2  
0
R/W  
WKP2 Interrupt Request Flag  
[Setting condition]  
When WKP2 pin is designated for interrupt input and  
the designated signal edge is detected.  
[Clearing condition]  
When IWPF2 is cleared by writing 0.  
WKP1 Interrupt Request Flag  
[Setting condition]  
1
0
IWPF1  
IWPF0  
0
0
R/W  
R/W  
When WKP1 pin is designated for interrupt input and  
the designated signal edge is detected.  
[Clearing condition]  
When IWPF1 is cleared by writing 0.  
WKP0 Interrupt Request Flag  
[Setting condition]  
When WKP0 pin is designated for interrupt input and  
the designated signal edge is detected.  
[Clearing condition]  
When IWPF0 is cleared by writing 0.  
Rev. 6.00 Mar. 24, 2006 Page 58 of 412  
REJ09B0142-0600  
Section 3 Exception Handling  
3.3  
Reset Exception Handling  
When the RES pin goes low, all processing halts and this LSI enters the reset. The internal state of  
the CPU and the registers of the on-chip peripheral modules are initialized by the reset. To ensure  
that this LSI is reset at power-up, hold the RES pin low until the clock pulse generator output  
stabilizes. To reset the chip during operation, hold the RES pin low for at least 10 system clock  
cycles. When the RES pin goes high after being held low for the necessary time, this LSI starts  
reset exception handling. The reset exception handling sequence is shown in figure 3.1.  
The reset exception handling sequence is as follows:  
1. Set the I bit in the condition code register (CCR) to 1.  
2. The CPU generates a reset exception handling vector address (from H'0000 to H'0001), the  
data in that address is sent to the program counter (PC) as the start address, and program  
execution starts from that address.  
3.4  
Interrupt Exception Handling  
3.4.1  
External Interrupts  
There are external interrupts, NMI, IRQ3 to IRQ0, and WKP5 to WKP0.  
(1) NMI Interrupt  
NMI interrupt is requested by input signal edge to pin NMI. This interrupt is detected by either  
rising edge sensing or falling edge sensing, depending on the setting of bit NMIEG in IEGR1.  
NMI is the highest-priority interrupt, and can always be accepted without depending on the I bit  
value in CCR.  
(2) IRQ3 to IRQ0 Interrupts  
IRQ3 to IRQ0 interrupts are requested by input signals to pins IRQ3 to IRQ0. These four  
interrupts are given different vector addresses, and are detected individually by either rising edge  
sensing or falling edge sensing, depending on the settings of bits IEG3 to IEG0 in IEGR1.  
When pins IRQ3 to IRQ0 are designated for interrupt input in PMR1 and the designated signal  
edge is input, the corresponding bit in IRR1 is set to 1, requesting the CPU of an interrupt. When  
IRQ3 to IRQ0 interrupt is accepted, the I bit is set to 1 in CCR. These interrupts can be masked by  
setting bits IEN3 to IEN0 in IENR1.  
Rev. 6.00 Mar. 24, 2006 Page 59 of 412  
REJ09B0142-0600  
Section 3 Exception Handling  
(3) WKP5 to WKP0 Interrupts  
WKP5 to WKP0 interrupts are requested by input signals to pins WKP5 to WKP0. These six  
interrupts have the same vector addresses, and are detected individually by either rising edge  
sensing or falling edge sensing, depending on the settings of bits WPEG5 to WPEG0 in IEGR2.  
When pins WKP5 to WKP0 are designated for interrupt input in PMR5 and the designated signal  
edge is input, the corresponding bit in IWPR is set to 1, requesting the CPU of an interrupt. These  
interrupts can be masked by setting bit IENWP in IENR1.  
Reset cleared  
Initial program  
instruction prefetch  
Vector fetch Internal  
processing  
RES  
φ
Internal  
address bus  
(1)  
(2)  
Internal read  
signal  
Internal write  
signal  
Internal data  
bus (16 bits)  
(2)  
(3)  
(1) Reset exception handling vector address (H'0000)  
(2) Program start address  
(3) Initial program instruction  
Figure 3.1 Reset Sequence  
Rev. 6.00 Mar. 24, 2006 Page 60 of 412  
REJ09B0142-0600  
Section 3 Exception Handling  
3.4.2  
Internal Interrupts  
Each on-chip peripheral module has a flag to show the interrupt request status and the enable bit to  
enable or disable the interrupt. For timer A interrupt requests and direct transfer interrupt requests  
generated by execution of a SLEEP instruction, this function is included in IRR1 and IENR1.  
When an on-chip peripheral module requests an interrupt, the corresponding interrupt request  
status flag is set to 1, requesting the CPU of an interrupt. When this interrupt is accepted, the I bit  
is set to 1 in CCR. These interrupts can be masked by writing 0 to clear the corresponding enable  
bit.  
3.4.3  
Interrupt Handling Sequence  
Interrupts are controlled by an interrupt controller.  
Interrupt operation is described as follows.  
1. If an interrupt occurs while the NMI or interrupt enable bit is set to 1, an interrupt request  
signal is sent to the interrupt controller.  
2. When multiple interrupt requests are generated, the interrupt controller requests to the CPU for  
the interrupt handling with the highest priority at that time according to table 3.1. Other  
interrupt requests are held pending.  
3. The CPU accepts the NMI and address break without depending on the I bit value. Other  
interrupt requests are accepted, if the I bit is cleared to 0 in CCR; if the I bit is set to 1, the  
interrupt request is held pending.  
4. If the CPU accepts the interrupt after processing of the current instruction is completed,  
interrupt exception handling will begin. First, both PC and CCR are pushed onto the stack. The  
state of the stack at this time is shown in figure 3.2. The PC value pushed onto the stack is the  
address of the first instruction to be executed upon return from interrupt handling.  
5. Then, the I bit of CCR is set to 1, masking further interrupts excluding the NMI and address  
break. Upon return from interrupt handling, the values of I bit and other bits in CCR will be  
restored and returned to the values prior to the start of interrupt exception handling.  
6. Next, the CPU generates the vector address corresponding to the accepted interrupt, and  
transfers the address to PC as a start address of the interrupt handling-routine. Then a program  
starts executing from the address indicated in PC.  
Figure 3.3 shows a typical interrupt sequence where the program area is in the on-chip ROM and  
the stack area is in the on-chip RAM.  
Rev. 6.00 Mar. 24, 2006 Page 61 of 412  
REJ09B0142-0600  
Section 3 Exception Handling  
SP – 4  
SP – 3  
SP – 2  
SP – 1  
SP (R7)  
SP (R7)  
SP + 1  
SP + 2  
SP + 3  
SP + 4  
CCR  
CCR*3  
PCH  
PCL  
Even address  
Stack area  
Prior to start of interrupt  
exception handling  
After completion of interrupt  
exception handling  
PC and CCR  
saved to stack  
[Legend]  
PC  
PC  
H
L
: Upper 8 bits of program counter (PC)  
Lower 8 bits of program counter (PC)  
:
CCR: Condition code register  
SP: Stack pointer  
1. PC shows the address of the first instruction to be executed upon return from the interrupt  
handling routine.  
Notes:  
2. Register contents must always be saved and restored by word length, starting from  
an even-numbered address.  
3. Ignored when returning from the interrupt handling routine.  
Figure 3.2 Stack Status after Exception Handling  
3.4.4  
Interrupt Response Time  
Table 3.2 shows the number of wait states after an interrupt request flag is set until the first  
instruction of the interrupt handling-routine is executed.  
Table 3.2 Interrupt Wait States  
Item  
States  
Total  
Waiting time for completion of executing instruction*  
Saving of PC and CCR to stack  
Vector fetch  
1 to 23  
15 to 37  
4
2
4
4
Instruction fetch  
Internal processing  
Note:  
*
Not including EEPMOV instruction.  
Rev. 6.00 Mar. 24, 2006 Page 62 of 412  
REJ09B0142-0600  
Section 3 Exception Handling  
Figure 3.3 Interrupt Sequence  
Rev. 6.00 Mar. 24, 2006 Page 63 of 412  
REJ09B0142-0600  
Section 3 Exception Handling  
3.5  
Usage Notes  
3.5.1  
Interrupts after Reset  
If an interrupt is accepted after a reset and before the stack pointer (SP) is initialized, the PC and  
CCR will not be saved correctly, leading to a program crash. To prevent this, all interrupt requests,  
including NMI, are disabled immediately after a reset. Since the first instruction of a program is  
always executed immediately after the reset state ends, make sure that this instruction initializes  
the stack pointer (example: MOV.W #xx: 16, SP).  
3.5.2  
Notes on Stack Area Use  
When word data is accessed the least significant bit of the address is regarded as 0. Access to the  
stack always takes place in word size, so the stack pointer (SP: R7) should never indicate an odd  
address. Use PUSH Rn (MOV.W Rn, @–SP) or POP Rn (MOV.W @SP+, Rn) to save or restore  
register values.  
3.5.3  
Notes on Rewriting Port Mode Registers  
When a port mode register is rewritten to switch the functions of external interrupt pins, IRQ3 to  
IRQ0, and WKP5 to WKP0, the interrupt request flag may be set to 1.  
Figure 3.4 shows a port mode register setting and interrupt request flag clearing procedure.  
When switching a pin function, mask the interrupt before setting the bit in the port mode register.  
After accessing the port mode register, execute at least one instruction (e.g., NOP), then clear the  
interrupt request flag from 1 to 0.  
Rev. 6.00 Mar. 24, 2006 Page 64 of 412  
REJ09B0142-0600  
Section 3 Exception Handling  
Interrupts masked. (Another possibility  
is to disable the relevant interrupt in  
interrupt enable register 1.)  
CCR I bit  
1
Set port mode register bit  
After setting the port mode register bit,  
first execute at least one instruction  
(e.g., NOP), then clear the interrupt  
request flag to 0  
Execute NOP instruction  
Clear interrupt request flag to 0  
Interrupt mask cleared  
CCR I bit  
0
Figure 3.4 Port Mode Register Setting and Interrupt Request Flag Clearing Procedure  
Rev. 6.00 Mar. 24, 2006 Page 65 of 412  
REJ09B0142-0600  
Section 3 Exception Handling  
Rev. 6.00 Mar. 24, 2006 Page 66 of 412  
REJ09B0142-0600  
Section 4 Address Break  
Section 4 Address Break  
The address break simplifies on-board program debugging. It requests an address break interrupt  
when the set break condition is satisfied. The interrupt request is not affected by the I bit of CCR.  
Break conditions that can be set include instruction execution at a specific address and a  
combination of access and data at a specific address. With the address break function, the  
execution start point of a program containing a bug is detected and execution is branched to the  
correcting program. Figure 4.1 shows a block diagram of the address break.  
Internal address bus  
Comparator  
BARH  
BARL  
ABRKCR  
ABRKSR  
Interrupt  
generation  
control circuit  
BDRH  
BDRL  
Comparator  
Interrupt  
[Legend]  
BARH, BARL: Break address register  
BDRH, BDRL: Break data register  
ABRKCR:  
ABRKSR:  
Address break control register  
Address break status register  
Figure 4.1 Block Diagram of Address Break  
Rev. 6.00 Mar. 24, 2006 Page 67 of 412  
REJ09B0142-0600  
Section 4 Address Break  
4.1  
Register Descriptions  
Address break has the following registers.  
Address break control register (ABRKCR)  
Address break status register (ABRKSR)  
Break address register (BARH, BARL)  
Break data register (BDRH, BDRL)  
4.1.1  
Address Break Control Register (ABRKCR)  
ABRKCR sets address break conditions.  
Initial  
Bit  
Bit Name  
Value  
R/W  
Description  
7
RTINTE  
1
R/W  
RTE Interrupt Enable  
When this bit is 0, the interrupt immediately after  
executing RTE is masked and then one instruction must  
be executed. When this bit is 1, the interrupt is not  
masked.  
6
5
CSEL1  
CSEL0  
0
0
R/W  
R/W  
Condition Select 1 and 0  
These bits set address break conditions.  
00: Instruction execution cycle  
01: CPU data read cycle  
10: CPU data write cycle  
11: CPU data read/write cycle  
Address Compare Condition Select 2 to 0  
4
3
2
ACMP2  
ACMP1  
ACMP0  
0
0
0
R/W  
R/W  
R/W  
These bits comparison condition between the address  
set in BAR and the internal address bus.  
000: Compares 16-bit addresses  
001: Compares upper 12-bit addresses  
010: Compares upper 8-bit addresses  
011: Compares upper 4-bit addresses  
1XX: Reserved (setting prohibited)  
Rev. 6.00 Mar. 24, 2006 Page 68 of 412  
REJ09B0142-0600  
Section 4 Address Break  
Initial  
Value  
Bit  
1
Bit Name  
DCMP1  
DCMP0  
R/W  
R/W  
R/W  
Description  
0
0
Data Compare Condition Select 1 and 0  
0
These bits set the comparison condition between the  
data set in BDR and the internal data bus.  
00: No data comparison  
01: Compares lower 8-bit data between BDRL and data  
bus  
10: Compares upper 8-bit data between BDRH and  
data bus  
11: Compares 16-bit data between BDR and data bus  
[Legend]  
X: Don't care.  
When an address break is set in the data read cycle or data write cycle, the data bus used will  
depend on the combination of the byte/word access and address. Table 4.1 shows the access and  
data bus used. When an I/O register space with an 8-bit data bus width is accessed in word size, a  
byte access is generated twice. For details on data widths of each register, see section 19.1,  
Register Addresses (Address Order).  
Table 4.1 Access and Data Bus Used  
Word Access  
Byte Access  
Even Address  
Odd Address  
Lower 8 bits  
Lower 8 bits  
Upper 8 bits  
Even Address  
Odd Address  
Upper 8 bits  
Upper 8 bits  
Upper 8 bits  
ROM space  
RAM space  
Upper 8 bits  
Upper 8 bits  
Upper 8 bits  
Upper 8 bits  
Upper 8 bits  
I/O register with 8-bit Upper 8 bits  
data bus width  
I/O register with 16- Upper 8 bits  
bit data bus width  
Lower 8 bits  
Rev. 6.00 Mar. 24, 2006 Page 69 of 412  
REJ09B0142-0600  
Section 4 Address Break  
4.1.2  
Address Break Status Register (ABRKSR)  
ABRKSR consists of the address break interrupt flag and the address break interrupt enable bit.  
Initial  
Bit  
Bit Name  
Value  
R/W  
Description  
7
ABIF  
0
R/W  
Address Break Interrupt Flag  
[Setting condition]  
When the condition set in ABRKCR is satisfied  
[Clearing condition]  
When 0 is written after ABIF=1 is read  
Address Break Interrupt Enable  
6
ABIE  
0
R/W  
When this bit is 1, an address break interrupt request is  
enabled.  
5 to 0  
All 1  
Reserved  
These bits are always read as 1.  
4.1.3  
Break Address Registers (BARH, BARL)  
BARH and BARL are 16-bit read/write registers that set the address for generating an address  
break interrupt. When setting the address break condition to the instruction execution cycle, set  
the first byte address of the instruction. The initial value of this register is H'FFFF.  
4.1.4  
Break Data Registers (BDRH, BDRL)  
BDRH and BDRL are 16-bit read/write registers that set the data for generating an address break  
interrupt. BDRH is compared with the upper 8-bit data bus. BDRL is compared with the lower 8-  
bit data bus. When memory or registers are accessed by byte, the upper 8-bit data bus is used for  
even and odd addresses in the data transmission. Therefore, comparison data must be set in  
BDRH for byte access. For word access, the data bus used depends on the address. See section  
4.1.1, Address Break Control Register (ABRKCR), for details. The initial value of this register is  
undefined.  
Rev. 6.00 Mar. 24, 2006 Page 70 of 412  
REJ09B0142-0600  
Section 4 Address Break  
4.2  
Operation  
When the ABIF and ABIE bits in ABRKSR are set to 1, the address break function generates an  
interrupt request to the CPU. The ABIF bit in ABRKSR is set to 1 by the combination of the  
address set in BAR, the data set in BDR, and the conditions set in ABRKCR. When the interrupt  
request is accepted, interrupt exception handling starts after the instruction being executed ends.  
The address break interrupt is not masked because of the I bit in CCR of the CPU.  
Figures 4.2 show the operation examples of the address break interrupt setting.  
When the address break is specified in instruction execution cycle  
Register setting  
• ABRKCR = H'80  
• BAR = H'025A  
Program  
0258 NOP  
* 025A NOP  
025C MOV.W @H'025A,R0  
0260 NOP  
Underline indicates the address  
to be stacked.  
0262 NOP  
:
:
NOP  
NOP  
MOV  
MOV  
instruc- instruc- instruc- instruc-  
tion  
tion  
tion 1  
tion 2  
Internal  
prefetch prefetch prefetch prefetch processing  
Stack save  
φ
Address  
bus  
0258  
025A  
025C  
025E  
SP-2  
SP-4  
Interrupt  
request  
Interrupt acceptance  
Figure 4.2 Address Break Interrupt Operation Example (1)  
Rev. 6.00 Mar. 24, 2006 Page 71 of 412  
REJ09B0142-0600  
Section 4 Address Break  
When the address break is specified in the data read cycle  
Register setting  
• ABRKCR = H'A0  
• BAR = H'025A  
Program  
0258 NOP  
025A NOP  
* 025C MOV.W @H'025A,R0  
0260 NOP  
0262 NOP  
Underline indicates the address  
to be stacked.  
:
:
MOV  
MOV  
NOP  
MOV  
NOP  
Next  
instruc- instruc- instruc- instruc- instruc- instru-  
tion 1  
tion 2  
tion  
tion  
tion  
ction  
Internal Stack  
prefetch prefetch prefetch execution prefetch prefetch processing save  
φ
Address  
bus  
025C  
025E  
0260  
025A  
0262  
0264  
SP-2  
Interrupt  
request  
Interrupt acceptance  
Figure 4.2 Address Break Interrupt Operation Example (2)  
Rev. 6.00 Mar. 24, 2006 Page 72 of 412  
REJ09B0142-0600  
Section 4 Address Break  
4.3  
Usage Notes  
When an address break is set to an instruction after a conditional branch instruction, and the  
instruction set when the condition of the branch instruction is not satisfied is executed (see figure  
4.3), note that an address break interrupt request is not generated. Therefore an address break must  
not be set to the instruction after a conditional branch instruction.  
[Register setting]  
[Program]  
ABRKCR = H'80  
BAR = H'0136  
012A MOV.B . . .  
:
:
0134 BNE  
*0136 NOP  
0138 NOP  
:
:
BNE  
NOP  
MOV  
NOP  
instruction instruction instruction instruction  
prefetch prefetch prefetch prefetch  
φ
0134  
0136  
102A  
0138  
Address bus  
Address break  
interrupt request  
Figure 4.3 Operation when Condition is not Satisfied in Branch Instruction  
Rev. 6.00 Mar. 24, 2006 Page 73 of 412  
REJ09B0142-0600  
Section 4 Address Break  
When another interrupt request is accepted before an instruction to which an address break is set is  
executed, exception handling of an address break interrupt is not executed. However, the ABIF bit  
is set to 1 (see figure 4.4). Therefore the ABIF bit must be read during exception handling of an  
address break interrupt.  
[Register setting]  
[Program]  
ABRKCR = H'80  
BAR = H'0144  
001C 0900  
:
:
0142 MOV.B #H'23,R1H  
0144 MOV.B #H'45,R1H  
0146 MOV.B #H'67,R1H  
External interrupt  
Underlined indicates the address to be stacked.  
*
MOV  
MOV  
MOV  
instruction instruction instruction  
prefetch prefetch prefetch  
Internal  
processing  
Internal  
processing  
External interrupt  
acceptance  
Vector  
fetch  
Stack save  
φ
0900  
001C  
0142  
0144  
0146  
SP-2  
SP-4  
Address bus  
Address break  
interrupt request  
ABIF  
External interrupt acceptance  
Figure 4.4 Operation when Another Interrupt is Accepted at Address Break Setting  
Instruction  
Rev. 6.00 Mar. 24, 2006 Page 74 of 412  
REJ09B0142-0600  
Section 4 Address Break  
When an address break is set to an instruction as a branch destination of a conditional branch  
instruction, the instruction set when the condition of the branch instruction is not satisfied is not  
executed, and an address break is generated. Therefore an address break must not be set to the  
instruction as a branch destination of a conditional branch instruction.  
[Register setting]  
ADBRKCR = H'80  
BAR = H'0150  
[Program]  
0134 BNE  
0136 NOP  
0138 NOP  
.
.
.
0150 MOV.B  
*
BNE  
NOP  
MOV  
NOP  
instruction instruction instruction instruction  
prefetch prefetch prefetch prefetch  
φ
Address bus  
0134  
0136  
0150  
0138  
Address break  
interrupt request  
Interrupt acceptance  
Figure 4.5 Operation when the Instruction Set is not Executed and does not Branch due to  
Conditions not Being Satisfied  
Rev. 6.00 Mar. 24, 2006 Page 75 of 412  
REJ09B0142-0600  
Section 4 Address Break  
Rev. 6.00 Mar. 24, 2006 Page 76 of 412  
REJ09B0142-0600  
Section 5 Clock Pulse Generators  
Section 5 Clock Pulse Generators  
Clock oscillator circuitry (CPG: clock pulse generator) is provided on-chip, including both a  
system clock pulse generator and a subclock pulse generator. The system clock pulse generator  
consists of a system clock oscillator, a duty correction circuit, and system clock dividers. The  
subclock pulse generator consists of a subclock oscillator circuit and a subclock divider.  
Figure 5.1 shows a block diagram of the clock pulse generators.  
φOSC  
φOSC/8  
φ
System  
clock  
divider  
System  
clock  
oscillator  
Duty  
correction  
circuit  
OSC1  
OSC2  
φOSC  
(fOSC  
φOSC  
(fOSC  
φOSC/16  
φOSC/32  
φOSC/64  
)
)
φ/2  
Prescaler S  
(13 bits)  
to  
System clock pulse generator  
φ/8192  
φW/2  
φW/4  
φW/8  
Subclock  
oscillator  
X1  
X2  
φW  
Subclock  
divider  
φSUB  
(fW  
)
φW/8  
Prescaler W  
(5 bits)  
to  
φW/128  
Subclock pulse generator  
Figure 5.1 Block Diagram of Clock Pulse Generators  
The basic clock signals that drive the CPU and on-chip peripheral modules are φ and φSUB. The  
system clock is divided by prescaler S to become a clock signal from φ/8192 to φ/2, and the  
subclock is divided by prescaler W to become a clock signal from φw/128 to φw/8. Both the  
system clock and subclock signals are provided to the on-chip peripheral modules.  
Rev. 6.00 Mar. 24, 2006 Page 77 of 412  
REJ09B0142-0600  
Section 5 Clock Pulse Generators  
5.1  
System Clock Generator  
Clock pulses can be supplied to the system clock divider either by connecting a crystal or ceramic  
resonator, or by providing external clock input. Figure 5.2 shows a block diagram of the system  
clock generator.  
OSC2  
LPM  
OSC1  
LPM: Low-power mode (standby mode, subactive mode, subsleep mode)  
Figure 5.2 Block Diagram of System Clock Generator  
5.1.1  
Connecting Crystal Resonator  
Figure 5.3 shows a typical method of connecting a crystal resonator. An AT-cut parallel-resonance  
crystal resonator should be used. Figure 5.4 shows the equivalent circuit of a crystal resonator. A  
resonator having the characteristics given in table 5.1 should be used.  
C1  
OSC1  
C2  
OSC2  
C1 = C2 = 12 pF 20ꢀ  
Note: Capacitances are reference values.  
Figure 5.3 Typical Connection to Crystal Resonator  
LS  
RS  
CS  
OSC1  
OSC2  
C0  
Figure 5.4 Equivalent Circuit of Crystal Resonator  
Rev. 6.00 Mar. 24, 2006 Page 78 of 412  
REJ09B0142-0600  
Section 5 Clock Pulse Generators  
Table 5.1 Crystal Resonator Parameters  
Frequency (MHz)  
RS (max)  
2
4
8
10  
16  
500  
7 pF  
120 Ω  
7 pF  
80 Ω  
7 pF  
60 Ω  
7 pF  
50 Ω  
7 pF  
C0 (max)  
5.1.2  
Connecting Ceramic Resonator  
Figure 5.5 shows a typical method of connecting a ceramic resonator.  
C1  
OSC1  
C2  
C1 = 30 pF 10ꢀ  
2 = 30 pF 10ꢀ  
OSC2  
C
Note: Capacitances are reference values.  
Figure 5.5 Typical Connection to Ceramic Resonator  
External Clock Input Method  
5.1.3  
Connect an external clock signal to pin OSC1, and leave pin OSC2 open. Figure 5.6 shows a typical  
connection. The duty cycle of the external clock signal must be 45 to 55%.  
OSC1  
OSC 2  
External clock input  
Open  
Figure 5.6 Example of External Clock Input  
Rev. 6.00 Mar. 24, 2006 Page 79 of 412  
REJ09B0142-0600  
Section 5 Clock Pulse Generators  
5.2  
Subclock Generator  
Figure 5.7 shows a block diagram of the subclock generator.  
x
2
8M  
x
1
Note : Resistance is a reference value.  
Figure 5.7 Block Diagram of Subclock Generator  
5.2.1  
Connecting 32.768-kHz Crystal Resonator  
Clock pulses can be supplied to the subclock divider by connecting a 32.768-kHz crystal  
resonator, as shown in figure 5.8. Figure 5.9 shows the equivalent circuit of the 32.768-kHz  
crystal resonator.  
C1  
X1  
C2  
X2  
C1 = C2 = 15 pF (typ.)  
Note: Capacitances are reference values.  
Figure 5.8 Typical Connection to 32.768-kHz Crystal Resonator  
LS  
CS  
RS  
X1  
X2  
CO  
CO = 1.5 pF (typ.)  
RS = 14 k(typ.)  
fW = 32.768 kHz  
Note: Constants are reference values.  
Figure 5.9 Equivalent Circuit of 32.768-kHz Crystal Resonator  
Rev. 6.00 Mar. 24, 2006 Page 80 of 412  
REJ09B0142-0600  
Section 5 Clock Pulse Generators  
5.2.2  
Pin Connection when Not Using Subclock  
When the subclock is not used, connect pin X1 to VCL or VSS and leave pin X2 open, as shown in  
figure 5.10.  
VCL or VSS  
X1  
X2  
Open  
Figure 5.10 Pin Connection when not Using Subclock  
5.3  
Prescalers  
5.3.1  
Prescaler S  
Prescaler S is a 13-bit counter using the system clock (φ) as its input clock. It is incremented once  
per clock period. Prescaler S is initialized to H'0000 by a reset, and starts counting on exit from  
the reset state. In standby mode, subactive mode, and subsleep mode, the system clock pulse  
generator stops. Prescaler S also stops and is initialized to H'0000. The CPU cannot read or write  
prescaler S. The output from prescaler S is shared by the on-chip peripheral modules. The divider  
ratio can be set separately for each on-chip peripheral function. In active mode and sleep mode,  
the clock input to prescaler S is determined by the division factor designated by MA2 to MA0 in  
SYSCR2.  
5.3.2  
Prescaler W  
Prescaler W is a 5-bit counter using a 32.768 kHz signal divided by 4 (φW/4) as its input clock. The  
divided output is used for clock time base operation of timer A. Prescaler W is initialized to H'00  
by a reset, and starts counting on exit from the reset state. Even in standby mode, subactive mode,  
or subsleep mode, prescaler W continues functioning so long as clock signals are supplied to pins  
X1 and X2. Prescaler W can be reset by setting 1s in bits TMA3 and TMA2 of timer mode register  
A (TMA).  
Rev. 6.00 Mar. 24, 2006 Page 81 of 412  
REJ09B0142-0600  
Section 5 Clock Pulse Generators  
5.4  
Usage Notes  
5.4.1  
Note on Resonators  
Resonator characteristics are closely related to board design and should be carefully evaluated by  
the user, referring to the examples shown in this section. Resonator circuit constants will differ  
depending on the resonator element, stray capacitance in its interconnecting circuit, and other  
factors. Suitable constants should be determined in consultation with the resonator element  
manufacturer. Design the circuit so that the resonator element never receives voltages exceeding  
its maximum rating.  
5.4.2  
Notes on Board Design  
When using a crystal resonator (ceramic resonator), place the resonator and its load capacitors as  
close as possible to the OSC1 and OSC2 pins. Other signal lines should be routed away from the  
resonator circuit to prevent induction from interfering with correct oscillation (see figure 5.11).  
Avoid  
Signal A Signal B  
C1  
C2  
OSC1  
OSC2  
Figure 5.11 Example of Incorrect Board Design  
Rev. 6.00 Mar. 24, 2006 Page 82 of 412  
REJ09B0142-0600  
Section 6 Power-Down Modes  
Section 6 Power-Down Modes  
This LSI has six modes of operation after a reset. These include a normal active mode and four  
power-down modes, in which power consumption is significantly reduced. Module standby mode  
reduces power consumption by selectively halting on-chip module functions.  
Active mode  
The CPU and all on-chip peripheral modules are operable on the system clock. The system  
clock frequency can be selected from φosc, φosc/8, φosc/16, φosc/32, and φosc/64.  
Subactive mode  
The CPU and all on-chip peripheral modules are operable on the subclock. The subclock  
frequency can be selected from φw/2, φw/4, and φw/8.  
Sleep mode  
The CPU halts. On-chip peripheral modules are operable on the system clock.  
Subsleep mode  
The CPU halts. On-chip peripheral modules are operable on the subclock.  
Standby mode  
The CPU and all on-chip peripheral modules halt. When the clock time-base function is  
selected, timer A is operable.  
Module standby mode  
Independent of the above modes, power consumption can be reduced by halting on-chip  
peripheral modules that are not used in module units.  
Rev. 6.00 Mar. 24, 2006 Page 83 of 412  
REJ09B0142-0600  
Section 6 Power-Down Modes  
6.1  
Register Descriptions  
The registers related to power-down modes are listed below.  
System control register 1 (SYSCR1)  
System control register 2 (SYSCR2)  
Module standby control register 1 (MSTCR1)  
6.1.1  
System Control Register 1 (SYSCR1)  
SYSCR1 controls the power-down modes, as well as SYSCR2.  
Initial  
Bit  
Bit Name  
Value  
R/W  
Description  
7
SSBY  
0
R/W  
Software Standby  
This bit selects the mode to transit after the execution  
of the SLEEP instruction.  
0: a transition is made to sleep mode or subsleep  
mode.  
1: a transition is made to standby mode.  
For details, see table 6.2.  
6
5
4
STS2  
STS1  
STS0  
0
0
0
R/W  
R/W  
R/W  
Standby Timer Select 2 to 0  
These bits designate the time the CPU and peripheral  
modules wait for stable clock operation after exiting  
from standby mode, subactive mode, or subsleep mode  
to active mode or sleep mode due to an interrupt. The  
designation should be made according to the clock  
frequency so that the waiting time is at least 6.5 ms.  
The relationship between the specified value and the  
number of wait states is shown in table 6.1. When an  
external clock is to be used, the minimum value (STS2  
= STS1 = STS0 = 1) is recommended.  
Rev. 6.00 Mar. 24, 2006 Page 84 of 412  
REJ09B0142-0600  
Section 6 Power-Down Modes  
Initial  
Value  
Bit  
Bit Name  
R/W  
Description  
3
NESEL  
0
R/W  
Noise Elimination Sampling Frequency Select  
The subclock pulse generator generates the watch  
clock signal (φW) and the system clock pulse generator  
generates the oscillator clock (φOSC). This bit selects the  
sampling frequency of the oscillator clock when the  
watch clock signal (φW) is sampled. When φOSC = 4 to 16  
MHz, clear NESEL to 0.  
0: Sampling rate is φOSC/16  
1: Sampling rate is φOSC/4  
Reserved  
2
1
0
0
0
0
These bits are always read as 0.  
Table 6.1 Operating Frequency and Waiting Time  
STS2 STS1 STS0 Waiting Time  
16 MHz 10 MHz 8 MHz  
4 MHz  
2.0  
2 MHz  
4.1  
1 MHz  
8.1  
0.5 MHz  
16.4  
0
0
1
0
1
0
1
0
1
0
1
0
1
8,192 states  
16,384 states  
32,768 states  
65,536 states  
0.5  
1.0  
2.0  
4.1  
0.8  
1.0  
1.6  
2.0  
4.1  
8.2  
16.4  
32.8  
65.5  
131.1  
1.02  
0.13  
0.02  
32.8  
3.3  
4.1  
8.2  
16.4  
32.8  
65.5  
0.51  
0.06  
0.01  
65.5  
6.6  
8.2  
16.4  
32.8  
0.26  
0.03  
0.00  
131.1  
262.1  
2.05  
1
131,072 states 8.2  
13.1  
0.10  
0.01  
0.00  
16.4  
0.13  
0.02  
0.00  
1,024 states  
128 states  
16 states  
0.06  
0.00  
0.00  
0.26  
0.03  
Note: Time unit is ms.  
Rev. 6.00 Mar. 24, 2006 Page 85 of 412  
REJ09B0142-0600  
Section 6 Power-Down Modes  
6.1.2  
System Control Register 2 (SYSCR2)  
SYSCR2 controls the power-down modes, as well as SYSCR1.  
Initial  
Bit  
7
Bit Name  
SMSEL  
LSON  
Value  
R/W Description  
0
0
0
R/W Sleep Mode Selection  
R/W Low Speed on Flag  
R/W Direct Transfer on Flag  
6
5
DTON  
These bits select the mode to transit after the execution  
of a SLEEP instruction, as well as bit SSBY of  
SYSCR1.  
For details, see table 6.2.  
4
3
2
MA2  
MA1  
MA0  
0
0
0
R/W Active Mode Clock Select 2 to 0  
R/W These bits select the operating clock frequency in  
active and sleep modes. The operating clock frequency  
R/W  
changes to the set frequency after the SLEEP  
instruction is executed.  
0XX: φOSC  
100: φOSC/8  
101: φOSC/16  
110: φOSC/32  
111: φOSC/64  
1
0
SA1  
SA0  
0
0
R/W Subactive Mode Clock Select 1 and 0  
R/W These bits select the operating clock frequency in  
subactive and subsleep modes. The operating clock  
frequency changes to the set frequency after the  
SLEEP instruction is executed.  
00: φW/8  
01: φW/4  
1X: φW/2  
[Legend]  
X:  
Don't care.  
Rev. 6.00 Mar. 24, 2006 Page 86 of 412  
REJ09B0142-0600  
Section 6 Power-Down Modes  
6.1.3  
Module Standby Control Register 1 (MSTCR1)  
MSTCR1 allows the on-chip peripheral modules to enter a standby state in module units.  
Initial  
Bit  
Bit Name  
Value  
R/W Description  
7
0
Reserved  
This bit is always read as 0.  
6
5
4
MSTIIC  
MSTS3  
MSTAD  
0
0
0
R/W IIC Module Standby  
IIC enters standby mode when this bit is set to 1  
R/W SCI3 Module Standby  
SCI3 enters standby mode when this bit is set to 1  
R/W A/D Converter Module Standby  
A/D converter enters standby mode when this bit is set  
to 1  
3
MSTWD  
0
R/W Watchdog Timer Module Standby  
Watchdog timer enters standby mode when this bit is  
set to 1.When the internal oscillator is selected for the  
watchdog timer clock, the watchdog timer operates  
regardless of the setting of this bit  
2
1
0
MSTTW  
MSTTV  
MSTTA  
0
0
0
R/W Timer W Module Standby  
Timer W enters standby mode when this bit is set to 1  
R/W Timer V Module Standby  
Timer V enters standby mode when this bit is set to 1  
R/W Timer A Module Standby  
Timer A enters standby mode when this bit is set to 1  
Rev. 6.00 Mar. 24, 2006 Page 87 of 412  
REJ09B0142-0600  
Section 6 Power-Down Modes  
6.2  
Mode Transitions and States of LSI  
Figure 6.1 shows the possible transitions among these operating modes. A transition is made from  
the program execution state to the program halt state of the program by executing a SLEEP  
instruction. Interrupts allow for returning from the program halt state to the program execution  
state of the program. A direct transition between active mode and subactive mode, which are both  
program execution states, can be made without halting the program. The operating frequency can  
also be changed in the same modes by making a transition directly from active mode to active  
mode, and from subactive mode to subactive mode. RES input enables transitions from a mode to  
the reset state. Table 6.2 shows the transition conditions of each mode after the SLEEP instruction  
is executed and a mode to return by an interrupt. Table 6.3 shows the internal states of the LSI in  
each mode.  
Reset state  
Program halt state  
Standby mode  
Program execution state  
Active mode  
Program halt state  
Sleep mode  
Direct transition  
interrupt  
SLEEP  
instruction  
SLEEP  
instruction  
Interrupt  
Interrupt  
SLEEP  
instruction  
Direct  
transition  
interrupt  
Direct  
transition  
interrupt  
Interrupt  
SLEEP  
instruction  
SLEEP  
instruction  
Interrupt  
SLEEP  
instruction  
Subactive  
mode  
Subsleep mode  
Interrupt  
Direct transition  
interrupt  
Notes: 1. To make a transition to another mode by an interrupt, make sure interrupt handling is after the interrupt  
is accepted.  
2. Details on the mode transition conditions are given in table 6.2.  
Figure 6.1 Mode Transition Diagram  
Rev. 6.00 Mar. 24, 2006 Page 88 of 412  
REJ09B0142-0600  
Section 6 Power-Down Modes  
Table 6.2 Transition Mode after SLEEP Instruction Execution and Interrupt Handling  
Transition Mode after  
SLEEP Instruction  
Execution  
Transition Mode due  
to Interrupt  
DTON  
SSBY  
SMSEL  
LSON  
0
0
0
0
1
0
1
X
0
Sleep mode  
Active mode  
Subactive mode  
Active mode  
Subactive mode  
Active mode  
1
Subsleep mode  
Standby mode  
1
X
1
X
0*  
Active mode (direct  
transition)  
X
X
1
Subactive mode (direct  
transition)  
[Legend]  
X:  
Don't care.  
Note:  
*
When a state transition is performed while SMSEL is 1, timer V, SCI3, and the A/D  
converter are reset, and all registers are set to their initial values. To use these  
functions after entering active mode, reset the registers.  
Rev. 6.00 Mar. 24, 2006 Page 89 of 412  
REJ09B0142-0600  
Section 6 Power-Down Modes  
Table 6.3 Internal State in Each Operating Mode  
Subactive  
Mode  
Subsleep  
Mode  
Standby  
Mode  
Function  
Active Mode  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Sleep Mode  
Functioning  
Functioning  
Halted  
System clock oscillator  
Subclock oscillator  
Halted  
Halted  
Halted  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Halted  
Functioning  
Halted  
CPU  
operations  
Instructions  
Registers  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
RAM  
Retained  
Retained  
IO ports  
Register  
contents are  
retained, but  
output is the  
high-  
impedance  
state.  
External  
interrupts  
IRQ3 to IRQ0 Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
WKP5 to  
WKP0  
Functioning  
Peripheral Timer A  
functions  
Functioning  
Functioning  
Functioning if the timekeeping time-base  
function is selected, and retained if not selected  
Timer V  
Timer W  
Functioning  
Functioning  
Functioning  
Functioning  
Reset  
Reset  
Reset  
Retained (if internal clock φ is  
selected as a count clock, the  
counter is incremented by a  
subclock*)  
Retained  
Watchdog  
timer  
Functioning  
Functioning  
Retained (functioning if the internal oscillator is  
selected as a count clock*)  
SCI3  
IIC  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Reset  
Reset  
Reset  
Retained*  
Reset  
Retained  
Reset  
Retained  
Reset  
A/D converter Functioning  
Note:  
*
Registers can be read or written in subactive mode.  
Rev. 6.00 Mar. 24, 2006 Page 90 of 412  
REJ09B0142-0600  
Section 6 Power-Down Modes  
6.2.1  
Sleep Mode  
In sleep mode, CPU operation is halted but the on-chip peripheral modules function at the clock  
frequency set by the MA2, MA1, and MA0 bits in SYSCR2. CPU register contents are retained.  
When an interrupt is requested, sleep mode is cleared and interrupt exception handling starts.  
Sleep mode is not cleared if the I bit of the condition code register (CCR) is set to 1 or the  
requested interrupt is disabled in the interrupt enable register. After sleep mode is cleared, a  
transition is made to active mode when the LSON bit in SYSCR2 is 0, and a transition is made to  
subactive mode when the bit is 1.  
When the RES pin goes low, the CPU goes into the reset state and sleep mode is cleared.  
6.2.2  
Standby Mode  
In standby mode, the clock pulse generator stops, so the CPU and on-chip peripheral modules stop  
functioning. However, as long as the rated voltage is supplied, the contents of CPU registers, on-  
chip RAM, and some on-chip peripheral module registers are retained. On-chip RAM contents  
will be retained as long as the voltage set by the RAM data retention voltage is provided. The I/O  
ports go to the high-impedance state.  
Standby mode is cleared by an interrupt. When an interrupt is requested, the system clock pulse  
generator starts. After the time set in bits STS2–STS0 in SYSCR1 has elapsed, and interrupt  
exception handling starts. Standby mode is not cleared if the I bit of CCR is set to 1 or the  
requested interrupt is disabled in the interrupt enable register.  
When the RES pin goes low, the system clock pulse generator starts. Since system clock signals  
are supplied to the entire chip as soon as the system clock pulse generator starts functioning, the  
RES pin must be kept low until the pulse generator output stabilizes. After the pulse generator  
output has stabilized, the CPU starts reset exception handling if the RES pin is driven high.  
Rev. 6.00 Mar. 24, 2006 Page 91 of 412  
REJ09B0142-0600  
Section 6 Power-Down Modes  
6.2.3  
Subsleep Mode  
In subsleep mode, operation of the CPU and on-chip peripheral modules other than timer A is  
halted. As long as a required voltage is applied, the contents of CPU registers, the on-chip RAM,  
and some registers of the on-chip peripheral modules are retained. I/O ports keep the same states  
as before the transition.  
Subsleep mode is cleared by an interrupt. When an interrupt is requested, subsleep mode is cleared  
and interrupt exception handling starts. Subsleep mode is not cleared if the I bit of CCR is set to 1  
or the requested interrupt is disabled in the interrupt enable register. After subsleep mode is  
cleared, a transition is made to active mode when the LSON bit in SYSCR2 is 0, and a transition is  
made to subactive mode when the bit is 1.  
When the RES pin goes low, the system clock pulse generator starts. Since system clock signals  
are supplied to the entire chip as soon as the system clock pulse generator starts functioning, the  
RES pin must be kept low until the pulse generator output stabilizes. After the pulse generator  
output has stabilized, the CPU starts reset exception handling if the RES pin is driven high.  
6.2.4  
Subactive Mode  
The operating frequency of subactive mode is selected from φW/2, φW/4, and φW/8 by the SA1 and  
SA0 bits in SYSCR2. After the SLEEP instruction is executed, the operating frequency changes to  
the frequency which is set before the execution. When the SLEEP instruction is executed in  
subactive mode, a transition to sleep mode, subsleep mode, standby mode, active mode, or  
subactive mode is made, depending on the combination of SYSCR1 and SYSCR2. When the RES  
pin goes low, the system clock pulse generator starts. Since system clock signals are supplied to  
the entire chip as soon as the system clock pulse generator starts functioning, the RES pin must be  
kept low until the pulse generator output stabilizes. After the pulse generator output has stabilized,  
the CPU starts reset exception handling if the RES pin is driven high.  
Rev. 6.00 Mar. 24, 2006 Page 92 of 412  
REJ09B0142-0600  
Section 6 Power-Down Modes  
6.3  
Operating Frequency in Active Mode  
Operation in active mode is clocked at the frequency designated by the MA2, MA1, and MA0 bits  
in SYSCR2. The operating frequency changes to the set frequency after SLEEP instruction  
execution.  
6.4  
Direct Transition  
The CPU can execute programs in two modes: active and subactive mode. A direct transition is a  
transition between these two modes without stopping program execution. A direct transition can  
be made by executing a SLEEP instruction while the DTON bit in SYSCR2 is set to 1. The direct  
transition also enables operating frequency modification in active or subactive mode. After the  
mode transition, direct transition interrupt exception handling starts.  
If the direct transition interrupt is disabled in interrupt enable register 1, a transition is made  
instead to sleep or subsleep mode. Note that if a direct transition is attempted while the I bit in  
CCR is set to 1, sleep or subsleep mode will be entered, and the resulting mode cannot be cleared  
by means of an interrupt.  
6.4.1  
Direct Transition from Active Mode to Subactive Mode  
The time from the start of SLEEP instruction execution to the end of interrupt exception handling  
(the direct transition time) is calculated by equation (1).  
Direct transition time = {(number of SLEEP instruction execution states) +  
(number of internal processing states)}× (tcyc before transition) +  
(number of interrupt exception handling states) × (tsubcyc after transition).………………(1)  
Example:  
Direct transition time = (2 + 1) × tosc + 14 × 8tw = 3tosc + 112tw  
(when the CPU operating clock of φosc → φw/8 is selected)  
[Legend]  
tosc: OSC clock cycle time  
tw: watch clock cycle time  
tcyc: system clock (φ) cycle time  
tsubcyc: subclock (φSUB) cycle time  
Rev. 6.00 Mar. 24, 2006 Page 93 of 412  
REJ09B0142-0600  
Section 6 Power-Down Modes  
6.4.2  
Direct Transition from Subactive Mode to Active Mode  
The time from the start of SLEEP instruction execution to the end of interrupt exception handling  
(the direct transition time) is calculated by equation (2).  
Direct transition time = {(number of SLEEP instruction execution states) +  
(number of internal processing states)} × (tsubcyc before transition) +  
{(waiting time set in bits STS2 to STS0) + (number of interrupt exception handling states)} ×  
(tcyc after transition)…………………………………………………………………………(2)  
Example  
Direct transition time = (2 + 1) × 8 tw + (8192 + 14) × tosc = 24tw + 8206 tosc  
(when the CPU operating clock of φw/8 → φosc and a waiting time of 8192 states are selected)  
[Legend]  
tosc: OSC clock cycle time  
tw: watch clock cycle time  
tcyc: system clock (φ) cycle time  
tsubcyc: subclock (φSUB) cycle time  
6.5  
Module Standby Function  
The module-standby function can be set to any peripheral module. In module standby mode, the  
clock supply to modules stops to enter the power-down mode. Module standby mode enables each  
on-chip peripheral module to enter the standby state by setting a bit that corresponds to each  
module to 1 and cancels the mode by clearing the bit to 0.  
6.6  
Usage Note  
When subsleep mode is entered by setting the SMSEL bit to 1 while the subclock is not used (the  
X1 pin is fixed), note that active mode cannot be re-entered by using an interrupt. To use a power-  
down mode while a port is retained, connect the subclock to the X1 and X2 pins.  
Rev. 6.00 Mar. 24, 2006 Page 94 of 412  
REJ09B0142-0600  
Section 7 ROM  
Section 7 ROM  
The features of the 32-kbyte flash memory built into the flash memory version are summarized  
below.  
Programming/erase methods  
The flash memory is programmed 128 bytes at a time. Erase is performed in single-block  
units. The flash memory is configured as follows: 1 kbyte × 4 blocks and 28 kbytes × 1  
block. To erase the entire flash memory, each block must be erased in turn.  
Reprogramming capability  
The flash memory can be reprogrammed up to 1,000 times.  
On-board programming  
On-board programming/erasing can be done in boot mode, in which the boot program built  
into the chip is started to erase or program of the entire flash memory. In normal user  
program mode, individual blocks can be erased or programmed.  
Programmer mode  
Flash memory can be programmed/erased in programmer mode using a PROM  
programmer, as well as in on-board programming mode.  
Automatic bit rate adjustment  
For data transfer in boot mode, this LSI's bit rate can be automatically adjusted to match  
the transfer bit rate of the host.  
Programming/erasing protection  
Sets software protection against flash memory programming/erasing.  
Power-down mode  
Operation of the power supply circuit can be partly halted in subactive mode. As a result,  
flash memory can be read with low power consumption.  
Rev. 6.00 Mar. 24, 2006 Page 95 of 412  
REJ09B0142-0600  
Section 7 ROM  
7.1  
Block Configuration  
Figure 7.1 shows the block configuration of 32-kbyte flash memory. The thick lines indicate  
erasing units, the narrow lines indicate programming units, and the values are addresses. The  
flash memory is divided into 1 kbyte × 4 blocks and 28 kbytes × 1 block. Erasing is performed in  
these units. Programming is performed in 128-byte units starting from an address with lower eight  
bits H'00 or H'80.  
H'0000  
H'0080  
H'0001  
H'0081  
H'0002  
H'0082  
Programming unit: 128 bytes  
Programming unit: 128 bytes  
Programming unit: 128 bytes  
Programming unit: 128 bytes  
Programming unit: 128 bytes  
H'007F  
H'00FF  
Erase unit  
1kbyte  
H'0380  
H'0400  
H'0480  
H'0381  
H'0401  
H'0481  
H'0382  
H'0402  
H'0481  
H'03FF  
H'047F  
H'04FF  
Erase unit  
1kbyte  
H'0780  
H'0800  
H'0880  
H'0781  
H'0801  
H'0881  
H'0782  
H'0802  
H'0882  
H'07FF  
H'087F  
H'08FF  
Erase unit  
1kbyte  
H'0B80  
H'0C00  
H'0C80  
H'0B81  
H'0C01  
H'0C81  
H'0B82  
H'0C02  
H'0C82  
H'0BFF  
H'0C7F  
H'0CFF  
Erase unit  
1kbyte  
H'0F80  
H'1000  
H'1080  
H'0F81  
H'1001  
H'1081  
H'0F82  
H'1002  
H'1082  
H'0FFF  
H'107F  
H'10FF  
Erase unit  
28 kbytes  
H'7F80  
H'7F81  
H'7F82  
H'7FFF  
Figure 7.1 Flash Memory Block Configuration  
Rev. 6.00 Mar. 24, 2006 Page 96 of 412  
REJ09B0142-0600  
Section 7 ROM  
7.2  
Register Descriptions  
The flash memory has the following registers.  
Flash memory control register 1 (FLMCR1)  
Flash memory control register 2 (FLMCR2)  
Erase block register 1 (EBR1)  
Flash memory power control register (FLPWCR)  
Flash memory enable register (FENR)  
7.2.1  
Flash Memory Control Register 1 (FLMCR1)  
FLMCR1 is a register that makes the flash memory change to program mode, program-verify  
mode, erase mode, or erase-verify mode. For details on register setting, refer to section 7.4, Flash  
Memory Programming/Erasing.  
Bit  
Name  
Initial  
Value  
Bit  
R/W  
Description  
7
0
Reserved  
This bit is always read as 0.  
Software Write Enable  
6
5
4
SWE  
0
R/W  
R/W  
R/W  
When this bit is set to 1, flash memory  
programming/erasing is enabled. When this bit is  
cleared to 0, other FLMCR1 register bits and all EBR1  
bits cannot be set.  
ESU  
PSU  
0
0
Erase Setup  
When this bit is set to 1, the flash memory changes to  
the erase setup state. When it is cleared to 0, the  
erase setup state is cancelled. Set this bit to 1 before  
setting the E bit to 1 in FLMCR1.  
Program Setup  
When this bit is set to 1, the flash memory changes to  
the program setup state. When it is cleared to 0, the  
program setup state is cancelled. Set this bit to 1  
before setting the P bit in FLMCR1.  
Rev. 6.00 Mar. 24, 2006 Page 97 of 412  
REJ09B0142-0600  
Section 7 ROM  
Bit  
Name  
Initial  
Value  
Bit  
R/W  
Description  
3
EV  
PV  
E
0
0
0
R/W  
Erase-Verify  
When this bit is set to 1, the flash memory changes to  
erase-verify mode. When it is cleared to 0, erase-verify  
mode is cancelled.  
2
1
R/W  
R/W  
Program-Verify  
When this bit is set to 1, the flash memory changes to  
program-verify mode. When it is cleared to 0,  
program-verify mode is cancelled.  
Erase  
When this bit is set to 1, and while the SWE=1 and  
ESU=1 bits are 1, the flash memory changes to erase  
mode. When it is cleared to 0, erase mode is  
cancelled.  
0
P
0
R/W  
Program  
When this bit is set to 1, and while the SWE=1 and  
PSU=1 bits are 1, the flash memory changes to  
program mode. When it is cleared to 0, program mode  
is cancelled.  
7.2.2  
Flash Memory Control Register 2 (FLMCR2)  
FLMCR2 is a register that displays the state of flash memory programming/erasing. FLMCR2 is a  
read-only register, and should not be written to.  
Bit  
Name  
Initial  
Value  
Bit  
R/W  
Description  
7
FLER  
0
R
Flash Memory Error  
Indicates that an error has occurred during an  
operation on flash memory (programming or erasing).  
When FLER is set to 1, flash memory goes to the error-  
protection state.  
See section 7.5.3, Error Protection, for details.  
Reserved  
6 to 0  
All 0  
These bits are always read as 0.  
Rev. 6.00 Mar. 24, 2006 Page 98 of 412  
REJ09B0142-0600  
Section 7 ROM  
7.2.3  
Erase Block Register 1 (EBR1)  
EBR1 specifies the flash memory erase area block. EBR1 is initialized to H'00 when the SWE bit  
in FLMCR1 is 0. Do not set more than one bit at a time, as this will cause all the bits in EBR1 to  
be automatically cleared to 0.  
Bit  
Name  
Initial  
Value  
Bit  
R/W  
Description  
7 to 5  
All 0  
Reserved  
These bits are always read as 0.  
4
3
2
1
0
EB4  
EB3  
EB2  
EB1  
EB0  
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
When this bit is set to 1, 28 kbytes of H'1000 to H'7FFF  
will be erased.  
When this bit is set to 1, 1 kbyte of H'0C00 to H'0FFF  
will be erased.  
When this bit is set to 1, 1 kbyte of H'0800 to H'0BFF  
will be erased.  
When this bit is set to 1, 1 kbyte of H'0400 to H'07FF  
will be erased.  
When this bit is set to 1, 1 kbyte of H'0000 to H'03FF  
will be erased.  
7.2.4  
Flash Memory Power Control Register (FLPWCR)  
FLPWCR enables or disables a transition to the flash memory power-down mode when the LSI  
switches to subactive mode. There are two modes: mode in which operation of the power supply  
circuit of flash memory is partly halted in power-down mode and flash memory can be read, and  
mode in which even if a transition is made to subactive mode, operation of the power supply  
circuit of flash memory is retained and flash memory can be read.  
Bit  
Name  
Initial  
Value  
Bit  
R/W  
Description  
7
PDWND  
0
R/W  
Power-Down Disable  
When this bit is 0 and a transition is made to subactive  
mode, the flash memory enters the power-down mode.  
When this bit is 1, the flash memory remains in the  
normal mode even after a transition is made to  
subactive mode.  
6 to 0  
All 0  
Reserved  
These bits are always read as 0.  
Rev. 6.00 Mar. 24, 2006 Page 99 of 412  
REJ09B0142-0600  
Section 7 ROM  
7.2.5  
Flash Memory Enable Register (FENR)  
Bit 7 (FLSHE) in FENR enables or disables the CPU access to the flash memory control registers,  
FLMCR1, FLMCR2, EBR1, and FLPWCR.  
Bit  
Name  
Initial  
Value  
Bit  
R/W  
Description  
7
FLSHE  
0
R/W  
Flash Memory Control Register Enable  
Flash memory control registers can be accessed when  
this bit is set to 1. Flash memory control registers  
cannot be accessed when this bit is set to 0.  
6 to 0  
All 0  
Reserved  
These bits are always read as 0.  
7.3  
On-Board Programming Modes  
There are two modes for programming/erasing of the flash memory; boot mode, which enables on-  
board programming/erasing, and programmer mode, in which programming/erasing is performed  
with a PROM programmer. On-board programming/erasing can also be performed in user  
program mode. At reset-start in reset mode, the series of HD64F3664 changes to a mode  
depending on the TEST pin settings, NMI pin settings, and input level of each port, as shown in  
table 7.1. The input level of each pin must be defined four states before the reset ends.  
When changing to boot mode, the boot program built into this LSI is initiated. The boot program  
transfers the programming control program from the externally-connected host to on-chip RAM  
via SCI3. After erasing the entire flash memory, the programming control program is executed.  
This can be used for programming initial values in the on-board state or for a forcible return when  
programming/erasing can no longer be done in user program mode. In user program mode,  
individual blocks can be erased and programmed by branching to the user program/erase control  
program prepared by the user.  
Table 7.1 Setting Programming Modes  
TEST  
NMI  
1
P85  
X
PB0  
X
PB1  
X
PB2  
X
LSI State after Reset End  
User Mode  
0
0
0
1
X
X
X
Boot Mode  
1
X
X
0
0
0
Programmer Mode  
[Legend]  
X:  
Don't care.  
Rev. 6.00 Mar. 24, 2006 Page 100 of 412  
REJ09B0142-0600  
Section 7 ROM  
7.3.1  
Boot Mode  
Table 7.2 shows the boot mode operations between reset end and branching to the programming  
control program.  
1. When boot mode is used, the flash memory programming control program must be prepared in  
the host beforehand. Prepare a programming control program in accordance with the  
description in section 7.4, Flash Memory Programming/Erasing.  
2. SCI3 should be set to asynchronous mode, and the transfer format as follows: 8-bit data, 1 stop  
bit, and no parity.  
3. When the boot program is initiated, the chip measures the low-level period of asynchronous  
SCI communication data (H'00) transmitted continuously from the host. The chip then  
calculates the bit rate of transmission from the host, and adjusts the SCI3 bit rate to match that  
of the host. The reset should end with the RxD pin high. The RxD and TxD pins should be  
pulled up on the board if necessary. After the reset is complete, it takes approximately 100  
states before the chip is ready to measure the low-level period.  
4. After matching the bit rates, the chip transmits one H'00 byte to the host to indicate the  
completion of bit rate adjustment. The host should confirm that this adjustment end indication  
(H'00) has been received normally, and transmit one H'55 byte to the chip. If reception could  
not be performed normally, initiate boot mode again by a reset. Depending on the host's  
transfer bit rate and system clock frequency of this LSI, there will be a discrepancy between  
the bit rates of the host and the chip. To operate the SCI properly, set the host's transfer bit  
rate and system clock frequency of this LSI within the ranges listed in table 7.3.  
5. In boot mode, a part of the on-chip RAM area is used by the boot program. The area H'F780 to  
H'FEEF is the area to which the programming control program is transferred from the host.  
The boot program area cannot be used until the execution state in boot mode switches to the  
programming control program.  
6. Before branching to the programming control program, the chip terminates transfer operations  
by SCI3 (by clearing the RE and TE bits in SCR to 0), however the adjusted bit rate value  
remains set in BRR. Therefore, the programming control program can still use it for transfer  
of write data or verify data with the host. The TxD pin is high (PCR22 = 1, P22 = 1). The  
contents of the CPU general registers are undefined immediately after branching to the  
programming control program. These registers must be initialized at the beginning of the  
programming control program, as the stack pointer (SP), in particular, is used implicitly in  
subroutine calls, etc.  
7. Boot mode can be cleared by a reset. End the reset after driving the reset pin low, waiting at  
least 20 states, and then setting the TEST pin and NMI pin. Boot mode is also cleared when a  
WDT overflow occurs.  
8. Do not change the TEST pin and NMI pin input levels in boot mode.  
Rev. 6.00 Mar. 24, 2006 Page 101 of 412  
REJ09B0142-0600  
Section 7 ROM  
Table 7.2 Boot Mode Operation  
Host Operation  
Communication Contents  
LSI Operation  
Processing Contents  
Processing Contents  
Branches to boot program at reset-start.  
Boot program initiation  
. . .  
H'00, H'00  
H'00  
Continuously transmits data H'00  
at specified bit rate.  
• Measures low-level period of receive data  
H'00.  
• Calculates bit rate and sets BRR in SCI3.  
• Transmits data H'00 to host as adjustment  
end indication.  
H'00  
Transmits data H'55 when data H'00  
is received error-free.  
H'55  
H'55 reception.  
H'FF  
H'AA  
Checks flash memory data, erases all flash  
memory blocks in case of written data  
existing, and transmits data H'AA to host.  
(If erase could not be done, transmits data  
H'FF to host and aborts operation.)  
Boot program  
erase error  
H'AA reception  
Upper bytes, lower bytes  
Echoback  
Transmits number of bytes (N) of  
programming control program to be  
transferred as 2-byte data  
(low-order byte following high-order  
byte)  
Echobacks the 2-byte data  
received to host.  
Echobacks received data to host and also  
transfers it to RAM.  
(repeated for N times)  
H'XX  
Transmits 1-byte of programming  
control program (repeated for N times)  
Echoback  
H'AA  
Transmits data H'AA to host when data H'55  
is received.  
H'AA reception  
Branches to programming control program  
transferred to on-chip RAM and starts  
execution.  
Rev. 6.00 Mar. 24, 2006 Page 102 of 412  
REJ09B0142-0600  
Section 7 ROM  
Table 7.3 System Clock Frequencies for which Automatic Adjustment of LSI Bit Rate is  
Possible  
Host Bit Rate  
19,200 bps  
9,600 bps  
System Clock Frequency Range of LSI  
16 MHz  
8 to 16 MHz  
4 to 16 MHz  
2 to 16 MHz  
4,800 bps  
2,400 bps  
7.3.2  
Programming/Erasing in User Program Mode  
On-board programming/erasing of an individual flash memory block can also be performed in user  
program mode by branching to a user program/erase control program. The user must set branching  
conditions and provide on-board means of supplying programming data. The flash memory must  
contain the user program/erase control program or a program that provides the user program/erase  
control program from external memory. As the flash memory itself cannot be read during  
programming/erasing, transfer the user program/erase control program to on-chip RAM, as in boot  
mode. Figure 7.2 shows a sample procedure for programming/erasing in user program mode.  
Prepare a user program/erase control program in accordance with the description in section 7.4,  
Flash Memory Programming/Erasing.  
Reset-start  
No  
Program/erase?  
Yes  
Transfer user program/erase control  
program to RAM  
Branch to flash memory application  
program  
Branch to user program/erase control  
program in RAM  
Execute user program/erase control  
program (flash memory rewrite)  
Branch to flash memory application  
program  
Figure 7.2 Programming/Erasing Flowchart Example in User Program Mode  
Rev. 6.00 Mar. 24, 2006 Page 103 of 412  
REJ09B0142-0600  
Section 7 ROM  
7.4  
Flash Memory Programming/Erasing  
A software method using the CPU is employed to program and erase flash memory in the on-  
board programming modes. Depending on the FLMCR1 setting, the flash memory operates in one  
of the following four modes: Program mode, program-verify mode, erase mode, and erase-verify  
mode. The programming control program in boot mode and the user program/erase control  
program in user program mode use these operating modes in combination to perform  
programming/erasing. Flash memory programming and erasing should be performed in  
accordance with the descriptions in section 7.4.1, Program/Program-Verify and section 7.4.2,  
Erase/Erase-Verify, respectively.  
7.4.1  
Program/Program-Verify  
When writing data or programs to the flash memory, the program/program-verify flowchart shown  
in figure 7.3 should be followed. Performing programming operations according to this flowchart  
will enable data or programs to be written to the flash memory without subjecting the chip to  
voltage stress or sacrificing program data reliability.  
1. Programming must be done to an empty address. Do not reprogram an address to which  
programming has already been performed.  
2. Programming should be carried out 128 bytes at a time. A 128-byte data transfer must be  
performed even if writing fewer than 128 bytes. In this case, H'FF data must be written to the  
extra addresses.  
3. Prepare the following data storage areas in RAM: A 128-byte programming data area, a 128-  
byte reprogramming data area, and a 128-byte additional-programming data area. Perform  
reprogramming data computation according to table 7.4, and additional programming data  
computation according to table 7.5.  
4. Consecutively transfer 128 bytes of data in byte units from the reprogramming data area or  
additional-programming data area to the flash memory. The program address and 128-byte  
data are latched in the flash memory. The lower 8 bits of the start address in the flash memory  
destination area must be H'00 or H'80.  
5. The time during which the P bit is set to 1 is the programming time. Table 7.6 shows the  
allowable programming times.  
6. The watchdog timer (WDT) is set to prevent overprogramming due to program runaway, etc.  
An overflow cycle of approximately 6.6 ms is allowed.  
7. For a dummy write to a verify address, write 1-byte data H'FF to an address whose lower 2 bits  
are B'00. Verify data can be read in words or in longwords from the address to which a  
dummy write was performed.  
Rev. 6.00 Mar. 24, 2006 Page 104 of 412  
REJ09B0142-0600  
Section 7 ROM  
8. The maximum number of repetitions of the program/program-verify sequence of the same bit  
is 1,000.  
START  
Set SWE bit in FLMCR1  
Wait 1 µs  
Write pulse application subroutine  
Apply Write Pulse  
WDT enable  
Set PSU bit in FLMCR1  
Wait 50 µs  
Store 128-byte program data in program  
data area and reprogram data area  
*
n= 1  
m= 0  
Set P bit in FLMCR1  
Write 128-byte data in RAM reprogram  
data area consecutively to flash memory  
Wait (Wait time=programming time)  
Clear P bit in FLMCR1  
Apply Write pulse  
Wait 5 µs  
Set PV bit in FLMCR1  
Clear PSU bit in FLMCR1  
Wait 4 µs  
Wait 5 µs  
Set block start address as  
verify address  
n n + 1  
Disable WDT  
End Sub  
H'FF dummy write to verify address  
Wait 2 µs  
*
Read verify data  
Increment address  
Verify data =  
write data?  
No  
m = 1  
Yes  
No  
n 6 ?  
Yes  
Additional-programming data computation  
Reprogram data computation  
128-byte  
data verification completed?  
No  
Yes  
Clear PV bit in FLMCR1  
Wait 2 µs  
No  
n 6?  
Yes  
Successively write 128-byte data from additional-  
programming data area in RAM to flash memory  
Sub-Routine-Call  
Apply Write Pulse  
No  
Yes  
m= 0 ?  
n 1000 ?  
Yes  
No  
Clear SWE bit in FLMCR1  
Clear SWE bit in FLMCR1  
Wait 100 µs  
Wait 100 µs  
End of programming  
Programming failure  
Note: *The RTS instruction must not be used during the following 1. and 2. periods.  
1. A period between 128-byte data programming to flash memory and the P bit clearing  
2. A period between dummy writing of H'FF to a verify address and verify data reading  
Figure 7.3 Program/Program-Verify Flowchart  
Rev. 6.00 Mar. 24, 2006 Page 105 of 412  
REJ09B0142-0600  
Section 7 ROM  
Table 7.4 Reprogram Data Computation Table  
Program Data  
Verify Data  
Reprogram Data  
Comments  
0
0
1
1
0
1
0
1
1
0
1
1
Programming completed  
Reprogram bit  
Remains in erased state  
Table 7.5 Additional-Program Data Computation Table  
Additional-Program  
Reprogram Data  
Verify Data  
Data  
Comments  
0
0
1
1
0
1
0
1
0
1
1
1
Additional-program bit  
No additional programming  
No additional programming  
No additional programming  
Table 7.6 Programming Time  
n
Programming  
In Additional  
Programming  
(Number of Writes) Time  
Comments  
1 to 6  
30  
10  
7 to 1,000  
200  
Note: Time shown in µs.  
Rev. 6.00 Mar. 24, 2006 Page 106 of 412  
REJ09B0142-0600  
Section 7 ROM  
7.4.2  
Erase/Erase-Verify  
When erasing flash memory, the erase/erase-verify flowchart shown in figure 7.4 should be  
followed.  
1. Prewriting (setting erase block data to all 0s) is not necessary.  
2. Erasing is performed in block units. Make only a single-bit specification in the erase block  
register (EBR1). To erase multiple blocks, each block must be erased in turn.  
3. The time during which the E bit is set to 1 is the flash memory erase time.  
4. The watchdog timer (WDT) is set to prevent overerasing due to program runaway, etc. An  
overflow cycle of approximately 19.8 ms is allowed.  
5. For a dummy write to a verify address, write 1-byte data H'FF to an address whose lower two  
bits are B'00. Verify data can be read in longwords from the address to which a dummy write  
was performed.  
6. If the read data is not erased successfully, set erase mode again, and repeat the erase/erase-  
verify sequence as before. The maximum number of repetitions of the erase/erase-verify  
sequence is 100.  
7.4.3  
Interrupt Handling when Programming/Erasing Flash Memory  
All interrupts, including the NMI interrupt, are disabled while flash memory is being programmed  
or erased, or while the boot program is executing, for the following three reasons:  
1. Interrupt during programming/erasing may cause a violation of the programming or erasing  
algorithm, with the result that normal operation cannot be assured.  
2. If interrupt exception handling starts before the vector address is written or during  
programming/erasing, a correct vector cannot be fetched and the CPU malfunctions.  
3. If an interrupt occurs during boot program execution, normal boot mode sequence cannot be  
carried out.  
Rev. 6.00 Mar. 24, 2006 Page 107 of 412  
REJ09B0142-0600  
Section 7 ROM  
Erase start  
SWE bit 1  
Wait 1 µs  
n 1  
Set EBR1  
Enable WDT  
ESU bit 1  
Wait 100 µs  
E bit 1  
Wait 10 ms  
E bit 0  
Wait 10 µs  
ESU bit 10  
10 µs  
Disable WDT  
EV bit 1  
Wait 20 µs  
Set block start address as verify address  
H'FF dummy write to verify address  
Wait 2 µs  
*
n n + 1  
Read verify data  
No  
Verify data + all 1s ?  
Yes  
Increment address  
No  
Last address of block ?  
Yes  
EV bit 0  
Wait 4 µs  
EV bit 0  
Wait 4µs  
No  
Yes  
n 100 ?  
All erase block erased ?  
No  
Yes  
SWE bit 0  
SWE bit 0  
Wait 100 µs  
Erase failure  
Wait 100 µs  
End of erasing  
Note: *The RTS instruction must not be used during a period between dummy writing of H'FF to a verify address and verify data reading.  
Figure 7.4 Erase/Erase-Verify Flowchart  
Rev. 6.00 Mar. 24, 2006 Page 108 of 412  
REJ09B0142-0600  
Section 7 ROM  
7.5  
Program/Erase Protection  
There are three kinds of flash memory program/erase protection; hardware protection, software  
protection, and error protection.  
7.5.1  
Hardware Protection  
Hardware protection refers to a state in which programming/erasing of flash memory is forcibly  
disabled or aborted because of a transition to reset, subactive mode, subsleep mode, or standby  
mode. Flash memory control register 1 (FLMCR1), flash memory control register 2 (FLMCR2),  
and erase block register 1 (EBR1) are initialized. In a reset via the RES pin, the reset state is not  
entered unless the RES pin is held low until oscillation stabilizes after powering on. In the case of  
a reset during operation, hold the RES pin low for the RES pulse width specified in the AC  
Characteristics section.  
7.5.2  
Software Protection  
Software protection can be implemented against programming/erasing of all flash memory blocks  
by clearing the SWE bit in FLMCR1. When software protection is in effect, setting the P or E bit  
in FLMCR1 does not cause a transition to program mode or erase mode. By setting the erase  
block register 1 (EBR1), erase protection can be set for individual blocks. When EBR1 is set to  
H'00, erase protection is set for all blocks.  
7.5.3  
Error Protection  
In error protection, an error is detected when CPU runaway occurs during flash memory  
programming/erasing, or operation is not performed in accordance with the program/erase  
algorithm, and the program/erase operation is aborted. Aborting the program/erase operation  
prevents damage to the flash memory due to overprogramming or overerasing.  
When the following errors are detected during programming/erasing of flash memory, the FLER  
bit in FLMCR2 is set to 1, and the error protection state is entered.  
When the flash memory of the relevant address area is read during programming/erasing  
(including vector read and instruction fetch)  
Immediately after exception handling excluding a reset during programming/erasing  
When a SLEEP instruction is executed during programming/erasing  
Rev. 6.00 Mar. 24, 2006 Page 109 of 412  
REJ09B0142-0600  
Section 7 ROM  
The FLMCR1, FLMCR2, and EBR1 settings are retained, however program mode or erase mode  
is aborted at the point at which the error occurred. Program mode or erase mode cannot be re-  
entered by re-setting the P or E bit. However, PV and EV bit setting is enabled, and a transition  
can be made to verify mode. Error protection can be cleared only by a power-on reset.  
7.6  
Programmer Mode  
In programmer mode, a PROM programmer can be used to perform programming/erasing via a  
socket adapter, just as a discrete flash memory. Use a PROM programmer that supports the MCU  
device type with the on-chip 64-kbyte flash memory (FZTAT64V5).  
7.7  
Power-Down States for Flash Memory  
In user mode, the flash memory will operate in either of the following states:  
Normal operating mode  
The flash memory can be read and written to at high speed.  
Power-down operating mode  
The power supply circuit of flash memory can be partly halted. As a result, flash memory can  
be read with low power consumption.  
Standby mode  
All flash memory circuits are halted.  
Table 7.7 shows the correspondence between the operating modes of this LSI and the flash  
memory. In subactive mode, the flash memory can be set to operate in power-down mode with the  
PDWND bit in FLPWCR. When the flash memory returns to its normal operating state from  
power-down mode or standby mode, a period to stabilize operation of the power supply circuits  
that were stopped is needed. When the flash memory returns to its normal operating state, bits  
STS2 to STS0 in SYSCR1 must be set to provide a wait time of at least 20 µs, even when the  
external clock is being used.  
Rev. 6.00 Mar. 24, 2006 Page 110 of 412  
REJ09B0142-0600  
Section 7 ROM  
Table 7.7 Flash Memory Operating States  
Flash Memory Operating State  
PDWND = 0 (Initial value) PDWND = 1  
LSI Operating State  
Active mode  
Normal operating mode  
Power-down mode  
Normal operating mode  
Standby mode  
Normal operating mode  
Normal operating mode  
Normal operating mode  
Standby mode  
Subactive mode  
Sleep mode  
Subsleep mode  
Standby mode  
Standby mode  
Standby mode  
Rev. 6.00 Mar. 24, 2006 Page 111 of 412  
REJ09B0142-0600  
Section 7 ROM  
Rev. 6.00 Mar. 24, 2006 Page 112 of 412  
REJ09B0142-0600  
Section 8 RAM  
Section 8 RAM  
This LSI has an on-chip high-speed static RAM. The RAM is connected to the CPU by a 16-bit  
data bus, enabling two-state access by the CPU to both byte data and word data.  
Product Classification  
Flash memory version  
(F-ZTATTM version)  
RAM Size  
2 kbytes  
2 kbytes  
1 kbyte  
RAM Address  
H8/3664N  
H8/3664F  
H8/3664  
H8/3663  
H8/3662  
H8/3661  
H8/3660  
H'F780 to H'FF7F*  
H'F780 to H'FF7F*  
H'FB80 to H'FF7F  
H'FB80 to H'FF7F  
H'FD80 to H'FF7F  
H'FD80 to H'FF7F  
H'FD80 to H'FF7F  
Mask ROM version  
1 kbyte  
512 bytes  
512 bytes  
512 bytes  
Note:  
*
Area H'F780 to H'FB7F must not be accessed.  
Rev. 6.00 Mar. 24, 2006 Page 113 of 412  
REJ09B0142-0600  
Section 8 RAM  
Rev. 6.00 Mar. 24, 2006 Page 114 of 412  
REJ09B0142-0600  
Section 9 I/O Ports  
Section 9 I/O Ports  
The group of this LSI has twenty-nine general I/O ports (twenty-seven ports for H8/3664N) and  
eight general input-only ports. Port 8 is a large current port, which can drive 20 mA (@VOL = 1.5  
V) when a low level signal is output. Any of these ports can become an input port immediately  
after a reset. They can also be used as I/O pins of the on-chip peripheral modules or external  
interrupt input pins, and these functions can be switched depending on the register settings. The  
registers for selecting these functions can be divided into two types: those included in I/O ports  
and those included in each on-chip peripheral module. General I/O ports are comprised of the port  
control register for controlling inputs/outputs and the port data register for storing output data and  
can select inputs/outputs in bit units. For functions in each port, see appendix B.1, I/O Port Block.  
For the execution of bit manipulation instructions to the port control register and port data register,  
see section 2.8.3, Bit Manipulation Instruction.  
9.1  
Port 1  
Port 1 is a general I/O port also functioning as IRQ interrupt input pins, a timer A output pin, and  
a timer V input pin. Figure 9.1 shows its pin configuration.  
P17/IRQ3/TRGV  
P16/IRQ2  
P15/IRQ1  
Port 1  
P14/IRQ0  
P12  
P11  
P10/TMOW  
Figure 9.1 Port 1 Pin Configuration  
Port 1 has the following registers.  
Port mode register 1 (PMR1)  
Port control register 1 (PCR1)  
Port data register 1 (PDR1)  
Port pull-up control register 1 (PUCR1)  
Rev. 6.00 Mar. 24, 2006 Page 115 of 412  
REJ09B0142-0600  
Section 9 I/O Ports  
9.1.1  
Port Mode Register 1 (PMR1)  
PMR1 switches the functions of pins in port 1 and port 2.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
IRQ3  
IRQ2  
IRQ1  
IRQ0  
0
0
0
0
R/W  
P17/IRQ3/TRGV Pin Function Switch  
This bit selects whether pin P17/IRQ3/TRGV is used as  
P17 or as IRQ3/TRGV.  
0: General I/O port  
1: IRQ3/TRGV input pin  
P16/IRQ2 Pin Function Switch  
6
5
4
R/W  
R/W  
R/W  
This bit selects whether pin P16/IRQ2 is used as P16 or  
as IRQ2.  
0: General I/O port  
1: IRQ2 input pin  
P15/IRQ1 Pin Function Switch  
This bit selects whether pin P15/IRQ1 is used as P15 or  
as IRQ1.  
0: General I/O port  
1: IRQ1 input pin  
P14/IRQ0 Pin Function Switch  
This bit selects whether pin P14/IRQ0 is used as P14 or  
as IRQ0.  
0: General I/O port  
1: IRQ0 input pin  
3
2
1
1
1
0
Reserved  
These bits are always read as 1.  
P22/TXD Pin Function Switch  
TXD  
R/W  
This bit selects whether pin P22/TXD is used as P22 or  
as TXD.  
0: General I/O port  
1: TXD output pin  
Rev. 6.00 Mar. 24, 2006 Page 116 of 412  
REJ09B0142-0600  
Section 9 I/O Ports  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
0
TMOW  
0
R/W  
P10/TMOW Pin Function Switch  
This bit selects whether pin P10/TMOW is used as P10  
or as TMOW.  
0: General I/O port  
1: TMOW output pin  
9.1.2  
Port Control Register 1 (PCR1)  
PCR1 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 1.  
Initial  
Bit  
7
Bit Name Value  
R/W  
W
Description  
PCR17  
PCR16  
PCR15  
PCR14  
0
0
0
0
0
0
0
When the corresponding pin is designated in PMR1 as  
a general I/O pin, setting a PCR1 bit to 1 makes the  
corresponding pin an output port, while clearing the bit  
to 0 makes the pin an input port.  
6
W
5
W
4
W
Bit 3 is a reserved bit.  
3
W
2
PCR12  
PCR11  
PCR10  
1
W
0
W
Rev. 6.00 Mar. 24, 2006 Page 117 of 412  
REJ09B0142-0600  
Section 9 I/O Ports  
9.1.3  
Port Data Register 1 (PDR1)  
PDR1 is a general I/O port data register of port 1.  
Initial  
Bit  
7
Bit Name Value  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
P17  
P16  
P15  
P14  
0
0
0
0
1
0
0
0
PDR1 stores output data for port 1 pins.  
6
If PDR1 is read while PCR1 bits are set to 1, the value  
stored in PDR1 are read. If PDR1 is read while PCR1  
bits are cleared to 0, the pin states are read regardless  
of the value stored in PDR1.  
5
4
3
Bit 3 is a reserved bit. This bit is always read as 1.  
2
P12  
P11  
P10  
R/W  
R/W  
R/W  
1
0
9.1.4  
Port Pull-Up Control Register 1 (PUCR1)  
PUCR1 controls the pull-up MOS in bit units of the pins set as the input ports.  
Initial  
Bit  
7
Bit Name Value  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
PUCR17  
PUCR16  
PUCR15  
PUCR14  
0
0
0
0
1
0
0
0
Only bits for which PCR1 is cleared are valid. The pull-  
up MOS of P17 to P14 and P12 to P10 pins enter the  
on-state when these bits are set to 1, while they enter  
the off-state when these bits are cleared to 0.  
6
5
4
Bit 3 is a reserved bit. This bit is always read as 1.  
3
2
PUCR12  
PUCR11  
PUCR10  
R/W  
R/W  
R/W  
1
0
Rev. 6.00 Mar. 24, 2006 Page 118 of 412  
REJ09B0142-0600  
Section 9 I/O Ports  
9.1.5  
The correspondence between the register specification and the port functions is shown below.  
P17/IRQ3/TRGV Pin  
Pin Functions  
Register  
Bit Name  
PMR1  
IRQ3  
PCR1  
PCR17  
Pin Function  
Setting value 0  
0
1
X
P17 input pin  
P17 output pin  
1
IRQ3 input/TRGV input pin  
[Legend]  
X:  
Don't care.  
P16/IRQ2 Pin  
Register  
Bit Name  
PMR1  
IRQ2  
PCR1  
PCR16  
Pin Function  
P16 input pin  
P16 output pin  
IRQ2 input pin  
Setting value 0  
0
1
X
1
[Legend]  
X:  
Don't care.  
P15/IRQ1 Pin  
Register  
Bit Name  
PMR1  
IRQ1  
PCR1  
PCR15  
Pin Function  
P15 input pin  
P15 output pin  
IRQ1 input pin  
Setting value 0  
0
1
X
1
[Legend]  
X:  
Don't care.  
Rev. 6.00 Mar. 24, 2006 Page 119 of 412  
REJ09B0142-0600  
Section 9 I/O Ports  
P14/IRQ0 Pin  
Register  
PMR1  
IRQ0  
0
PCR1  
Bit Name  
PCR14  
Pin Function  
P14 input pin  
P14 output pin  
IRQ0 input pin  
Setting value  
0
1
X
1
[Legend]  
X:  
Don't care.  
P12 Pin  
Register  
PCR1  
Bit Name  
Setting value  
PCR12  
Pin Function  
0
1
P12 input pin  
P12 output pin  
P11 Pin  
Register  
PCR1  
Bit Name  
PCR11  
Pin Function  
P11 input pin  
P11 output pin  
Setting value  
0
1
P10/TMOW Pin  
Register  
PMR1  
TMOW  
0
PCR1  
Bit Name  
PCR10  
Pin Function  
Setting value  
0
1
X
P10 input pin  
P10 output pin  
TMOW output pin  
1
[Legend]  
X:  
Don't care.  
Rev. 6.00 Mar. 24, 2006 Page 120 of 412  
REJ09B0142-0600  
Section 9 I/O Ports  
9.2  
Port 2  
Port 2 is a general I/O port also functioning as a SCI3 I/O pin. Each pin of the port 2 is shown in  
figure 9.2. The register settings of PMR1 and SCI3 have priority for functions of the pins for both  
uses.  
P22/TXD  
P21/RXD  
Port 2  
P20/SCK3  
Figure 9.2 Port 2 Pin Configuration  
Port 2 has the following registers.  
Port control register 2 (PCR2)  
Port data register 2 (PDR2)  
9.2.1  
Port Control Register 2 (PCR2)  
PCR2 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 2.  
Initial  
Bit  
7
Bit Name Value  
R/W  
W
Description  
0
Reserved  
6
5
4
3
2
PCR22  
PCR21  
PCR20  
When each of the port 2 pins P22 to P20 functions as  
an general I/O port, setting a PCR2 bit to 1 makes the  
corresponding pin an output port, while clearing the bit  
to 0 makes the pin an input port.  
1
0
W
0
0
W
Rev. 6.00 Mar. 24, 2006 Page 121 of 412  
REJ09B0142-0600  
Section 9 I/O Ports  
9.2.2  
Port Data Register 2 (PDR2)  
PDR2 is a general I/O port data register of port 2.  
Initial  
Bit  
7
Bit Name Value  
R/W  
Description  
1
1
1
1
1
0
0
0
Reserved  
6
These bits are always read as 1.  
5
4
3
2
P22  
P21  
P20  
R/W  
R/W  
R/W  
PDR2 stores output data for port 2 pins.  
1
PDR2 is read while PCR2 bits are set to 1, the value  
stored in PDR2 is read. If PDR2 is read while PCR2 bits  
are cleared to 0, the pin states are read regardless of  
the value stored in PDR2.  
0
9.2.3  
Pin Functions  
The correspondence between the register specification and the port functions is shown below.  
P22/TXD Pin  
Register  
Bit Name  
PMR1  
TXD  
PCR2  
PCR22  
Pin Function  
P22 input pin  
P22 output pin  
TXD output pin  
Setting Value 0  
0
1
X
1
[Legend]  
X:  
Don't care.  
Rev. 6.00 Mar. 24, 2006 Page 122 of 412  
REJ09B0142-0600  
Section 9 I/O Ports  
P21/RXD Pin  
Register  
Bit Name  
SCR3  
RE  
PCR2  
PCR21  
Pin Function  
P21 input pin  
P21 output pin  
RXD input pin  
Setting Value 0  
0
1
X
1
[Legend]  
X:  
Don't care.  
P20/SCK3 Pin  
Register  
Bit Name  
SCR3  
SMR  
COM  
0
PCR2  
CKE1  
CKE0  
PCR20  
Pin Function  
Setting Value 0  
0
0
P20 input pin  
1
P20 output pin  
SCK3 output pin  
SCK3 output pin  
SCK3 input pin  
0
0
1
X
1
X
X
X
0
X
X
1
[Legend]  
X:  
Don't care.  
Rev. 6.00 Mar. 24, 2006 Page 123 of 412  
REJ09B0142-0600  
Section 9 I/O Ports  
9.3  
Port 5  
Port 5 is a general I/O port also functioning as an I2C bus interface I/O pin, an A/D trigger input  
pin, wakeup interrupt input pin. Each pin of the port 5 is shown in figure 9.3. The register setting  
of the I2C bus interface register has priority for functions of the pins P57/SCL and P56/SDA. Since  
the output buffer for pins P56 and P57 has the NMOS push-pull structure, it differs from an output  
buffer with the CMOS structure in the high-level output characteristics (see section 20, Electrical  
Characteristics). The H8/3664N does not have P57 and P56.  
H8/3664  
H8/3664N  
P57/SCL  
SCL  
P56/SDA  
SDA  
P55/WKP5/ADTRG  
P54/WKP4  
P53/WKP3  
P52/WKP2  
P51/WKP1  
P50/WKP0  
P55/WKP5/ADTRG  
P54/WKP4  
P53/WKP3  
P52/WKP2  
P51/WKP1  
P50/WKP0  
Port 5  
Port 5  
Figure 9.3 Port 5 Pin Configuration  
Port 5 has the following registers.  
Port mode register 5 (PMR5)  
Port control register 5 (PCR5)  
Port data register 5 (PDR5)  
Port pull-up control register 5 (PUCR5)  
Rev. 6.00 Mar. 24, 2006 Page 124 of 412  
REJ09B0142-0600  
Section 9 I/O Ports  
9.3.1  
Port Mode Register 5 (PMR5)  
PMR5 switches the functions of pins in port 5.  
Initial  
Bit  
7
Bit Name  
Value  
R/W Description  
0
0
0
Reserved  
6
These bits are always read as 0.  
5
WKP5  
R/W P55/WKP5/ADTRG Pin Function Switch  
Selects whether pin P55/WKP5/ADTRG is used as P55  
or as WKP5/ADTRG input.  
0: General I/O port  
1: WKP5/ADTRG input pin  
4
3
2
1
WKP4  
WKP3  
WKP2  
WKP1  
0
0
0
0
R/W P54/WKP4 Pin Function Switch  
Selects whether pin P54/WKP4 is used as P54 or as  
WKP4.  
0: General I/O port  
1: WKP4 input pin  
R/W P53/WKP3 Pin Function Switch  
Selects whether pin P53/WKP3 is used as P53 or as  
WKP3.  
0: General I/O port  
1: WKP3 input pin  
R/W P52/WKP2 Pin Function Switch  
Selects whether pin P52/WKP2 is used as P52 or as  
WKP2.  
0: General I/O port  
1: WKP2 input pin  
R/W P51/WKP1 Pin Function Switch  
Selects whether pin P51/WKP1 is used as P51 or as  
WKP1.  
0: General I/O port  
1: WKP1 input pin  
Rev. 6.00 Mar. 24, 2006 Page 125 of 412  
REJ09B0142-0600  
Section 9 I/O Ports  
Initial  
Value  
Bit  
Bit Name  
R/W Description  
0
WKP0  
0
R/W P50/WKP0 Pin Function Switch  
Selects whether pin P50/WKP0 is used as P50 or as  
WKP0.  
0: General I/O port  
1: WKP0 input pin  
9.3.2  
Port Control Register 5 (PCR5)  
PCR5 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 5.  
Initial  
Bit  
7
Bit Name  
PCR57  
PCR56  
PCR55  
PCR54  
PCR53  
PCR52  
PCR51  
PCR50  
Value  
R/W Description  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
When each of the port 5 pins P57 to P50 functions as  
an general I/O port, setting a PCR5 bit to 1 makes the  
corresponding pin an output port, while clearing the bit  
to 0 makes the pin an input port.  
6
5
4
Note: Do not set PCR57 and PCR56 to 1 for H8/3664N.  
3
2
1
0
Rev. 6.00 Mar. 24, 2006 Page 126 of 412  
REJ09B0142-0600  
Section 9 I/O Ports  
9.3.3  
Port Data Register 5 (PDR5)  
PDR5 is a general I/O port data register of port 5.  
Initial  
Bit  
7
Bit Name  
P57  
Value  
R/W Description  
0
0
0
0
0
0
0
0
R/W Stores output data for port 5 pins.  
6
P56  
R/W If PDR5 is read while PCR5 bits are set to 1, the value  
stored in PDR5 are read. If PDR5 is read while PCR5  
bits are cleared to 0, the pin states are read regardless  
of the value stored in PDR5.  
5
P55  
R/W  
4
P54  
R/W  
3
P53  
R/W  
Note: Do not set P57 and P56 to 1 for H8/3664N.  
2
P52  
R/W  
R/W  
R/W  
1
P51  
0
P50  
9.3.4  
Port Pull-Up Control Register 5 (PUCR5)  
PUCR5 controls the pull-up MOS in bit units of the pins set as the input ports.  
Initial  
Bit  
7
Bit Name  
Value  
R/W Description  
0
0
0
0
0
0
0
0
Reserved  
6
These bits are always read as 0.  
5
PUCR55  
PUCR54  
PUCR53  
PUCR52  
PUCR51  
PUCR50  
R/W Only bits for which PCR5 is cleared are valid. The pull-  
up MOS of the corresponding pins enter the on-state  
when these bits are set to 1, while they enter the off-  
state when these bits are cleared to 0.  
4
R/W  
3
R/W  
2
R/W  
R/W  
R/W  
1
0
Rev. 6.00 Mar. 24, 2006 Page 127 of 412  
REJ09B0142-0600  
Section 9 I/O Ports  
9.3.5  
Pin Functions  
The correspondence between the register specification and the port functions is shown below.  
P57/SCL Pin  
Register  
Bit Name  
ICCR  
ICE  
PCR5  
PCR57  
Pin Function  
P57 input pin  
P57 output pin  
SCL I/O pin  
Setting Value 0  
0
1
X
1
[Legend]  
X:  
Don't care.  
SCL performs the NMOS open-drain output, that enables a direct bus drive.  
P56/SDA Pin  
Register  
Bit Name  
ICCR  
ICE  
PCR5  
PCR56  
Pin Function  
P56 input pin  
P56 output pin  
SDA I/O pin  
Setting Value 0  
0
1
X
1
[Legend]  
X:  
Don't care.  
SDA performs the NMOS open-drain output, that enables a direct bus drive.  
P55/WKP5/ADTRG Pin  
Register  
Bit Name  
PMR5  
WKP5  
PCR5  
PCR55  
Pin Function  
Setting Value 0  
0
1
X
P55 input pin  
P55 output pin  
1
WKP5/ADTRG input pin  
[Legend]  
X:  
Don't care.  
Rev. 6.00 Mar. 24, 2006 Page 128 of 412  
REJ09B0142-0600  
Section 9 I/O Ports  
P54/WKP4 Pin  
Register  
Bit Name  
PMR5  
WKP4  
PCR5  
PCR54  
Pin Function  
P54 input pin  
P54 output pin  
WKP4 input pin  
Setting Value 0  
0
1
X
1
[Legend]  
X:  
Don't care.  
P53/WKP3 Pin  
Register  
Bit Name  
PMR5  
WKP3  
PCR5  
PCR53  
Pin Function  
P53 input pin  
P53 output pin  
WKP3 input pin  
Setting Value 0  
0
1
X
1
[Legend]  
X:  
Don't care.  
P52/WKP2 Pin  
Register  
Bit Name  
PMR5  
WKP2  
PCR5  
PCR52  
Pin Function  
P52 input pin  
P52 output pin  
WKP2 input pin  
Setting Value 0  
0
1
X
1
[Legend]  
X:  
Don't care.  
Rev. 6.00 Mar. 24, 2006 Page 129 of 412  
REJ09B0142-0600  
Section 9 I/O Ports  
P51/WKP1 Pin  
Register  
Bit Name  
PMR5  
WKP1  
PCR5  
PCR51  
Pin Function  
P51 input pin  
P51 output pin  
WKP1 input pin  
Setting Value 0  
0
1
X
1
[Legend]  
X:  
Don't care.  
P50/WKP0 Pin  
Register  
Bit Name  
PMR5  
WKP0  
PCR5  
PCR50  
Pin Function  
P50 input pin  
P50 output pin  
WKP0 input pin  
Setting Value 0  
0
1
X
1
[Legend]  
X:  
Don't care.  
9.4  
Port 7  
Port 7 is a general I/O port also functioning as a timer V I/O pin. Each pin of the port 7 is shown  
in figure 9.4. The register setting of TCSRV in timer V has priority for functions of pin  
P76/TMOV. The pins, P75/TMCIV and P74/TMRIV, are also functioning as timer V input ports  
that are connected to the timer V regardless of the register setting of port 7.  
P76/TMOV  
Port 7  
P75/TMCIV  
P74/TMRIV  
Figure 9.4 Port 7 Pin Configuration  
Rev. 6.00 Mar. 24, 2006 Page 130 of 412  
REJ09B0142-0600  
Section 9 I/O Ports  
Port 7 has the following registers.  
Port control register 7 (PCR7)  
Port data register 7 (PDR7)  
9.4.1  
Port Control Register 7 (PCR7)  
PCR7 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 7.  
Initial  
Bit  
7
Bit Name Value  
R/W Description  
0
W
W
W
Reserved  
6
PCR76  
PCR75  
PCR74  
Setting a PCR7 bit to 1 makes the corresponding pin an  
output port, while clearing the bit to 0 makes the pin an  
input port. Note that the TCSRV setting of the timer V  
has priority for deciding input/output direction of the  
P76/TMOV pin.  
5
0
4
0
3
2
1
0
Reserved  
9.4.2  
Port Data Register 7 (PDR7)  
PDR7 is a general I/O port data register of port 7.  
Initial  
Bit  
Bit Name Value  
R/W Description  
7
1
Reserved  
This bit is always read as 1.  
6
5
4
P76  
P75  
P74  
0
0
0
R/W PDR7 stores output data for port 7 pins.  
R/W PDR7 is read while PCR7 bits are set to 1, the value  
stored in PDR7 is read. If PDR7 is read while PCR7 bits  
are cleared to 0, the pin states are read regardless of  
the value stored in PDR7.  
R/W  
3
2
1
0
1
1
1
1
Reserved  
These bits are always read as 1.  
Rev. 6.00 Mar. 24, 2006 Page 131 of 412  
REJ09B0142-0600  
Section 9 I/O Ports  
9.4.3  
Pin Functions  
The correspondence between the register specification and the port functions is shown below.  
P76/TMOV Pin  
Register  
Bit Name  
Setting Value 0000  
TCSRV  
PCR7  
OS3 to OS0 PCR76  
Pin Function  
P76 input pin  
0
1
X
P76 output pin  
TMOV output pin  
Other than  
the above  
values  
[Legend]  
X:  
Don't care.  
P75/TMCIV Pin  
Register  
Bit Name  
PCR7  
PCR75  
Pin Function  
Setting Value 0  
1
P75 input/TMCIV input pin  
P75 output/TMCIV input pin  
P74/TMRIV Pin  
Register  
Bit Name  
PCR7  
PCR74  
Pin Function  
Setting Value 0  
1
P74 input/TMRIV input pin  
P74 output/TMRIV input pin  
Rev. 6.00 Mar. 24, 2006 Page 132 of 412  
REJ09B0142-0600  
Section 9 I/O Ports  
9.5  
Port 8  
Port 8 is a general I/O port also functioning as a timer W I/O pin. Each pin of the port 8 is shown  
in figure 9.5. The register setting of the timer W has priority for functions of the pins P84/FTIOD,  
P83/FTIOC, P82/FTIOB, and P81/FTIOA. P80/FTCI also functions as a timer W input port that is  
connected to the timer W regardless of the register setting of port 8.  
P87  
P86  
P85  
P84/FTIOD  
Port 8  
P83/FTIOC  
P82/FTIOB  
P81/FTIOA  
P80/FTCI  
Figure 9.5 Port 8 Pin Configuration  
Port 8 has the following registers.  
Port control register 8 (PCR8)  
Port data register 8 (PDR8)  
Rev. 6.00 Mar. 24, 2006 Page 133 of 412  
REJ09B0142-0600  
Section 9 I/O Ports  
9.5.1  
Port Control Register 8 (PCR8)  
PCR8 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 8.  
Initial  
Bit  
7
Bit Name  
PCR87  
PCR86  
PCR85  
PCR84  
PCR83  
PCR82  
PCR81  
PCR80  
Value  
R/W  
W
Description  
0
0
0
0
0
0
0
0
When each of the port 8 pins P87 to P80 functions as  
an general I/O port, setting a PCR8 bit to 1 makes the  
corresponding pin an output port, while clearing the bit  
to 0 makes the pin an input port.  
6
W
5
W
4
W
3
W
2
W
1
W
0
W
9.5.2  
Port Data Register 8 (PDR8)  
PDR8 is a general I/O port data register of port 8.  
Initial  
Bit  
7
Bit Name  
P87  
Value  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
0
0
0
0
0
0
0
0
PDR8 stores output data for port 8 pins.  
6
P86  
PDR8 is read while PCR8 bits are set to 1, the value  
stored in PDR8 is read. If PDR8 is read while PCR8  
bits are cleared to 0, the pin states are read  
regardless of the value stored in PDR8.  
5
P85  
4
P84  
3
P83  
2
P82  
1
P81  
0
P80  
Rev. 6.00 Mar. 24, 2006 Page 134 of 412  
REJ09B0142-0600  
Section 9 I/O Ports  
9.5.3  
The correspondence between the register specification and the port functions is shown below.  
P87 Pin  
Pin Functions  
Register  
Bit Name  
PCR8  
PCR87  
Pin Function  
P87 input pin  
P87 output pin  
Setting Value 0  
1
P86 Pin  
Register  
Bit Name  
PCR8  
PCR86  
Pin Function  
P86 input pin  
P86 output pin  
Setting Value 0  
1
P85 Pin  
Register  
Bit Name  
PCR8  
PCR85  
Pin Function  
P85 input pin  
P85 output pin  
Setting Value 0  
1
Rev. 6.00 Mar. 24, 2006 Page 135 of 412  
REJ09B0142-0600  
Section 9 I/O Ports  
P84/FTIOD Pin  
Register  
Bit Name  
TMRW  
TIOR1  
PCR8  
PWMD IOD2 IOD1 IOD0 PCR84 Pin Function  
Setting Value 0  
0
0
0
0
1
X
X
0
1
X
P84 input/FTIOD input pin  
P84 output/FTIOD input pin  
FTIOD output pin  
0
0
1
0
1
X
1
X
X
FTIOD output pin  
P84 input/FTIOD input pin  
P84 output/FTIOD input pin  
PWM output pin  
1
X
X
X
[Legend]  
X:  
Don't care.  
P83/FTIOC Pin  
Register  
Bit Name  
TMRW  
TIOR1  
PCR8  
PWMC IOC2 IOC1 IOC0 PCR83 Pin Function  
Setting Value 0  
0
0
0
0
1
X
X
0
1
X
P83 input/FTIOC input pin  
P83 output/FTIOC input pin  
FTIOC output pin  
0
0
1
0
1
X
1
X
X
FTIOC output pin  
P83 input/FTIOC input pin  
P83 output/FTIOC input pin  
PWM output pin  
1
X
X
X
[Legend]  
X:  
Don't care.  
Rev. 6.00 Mar. 24, 2006 Page 136 of 412  
REJ09B0142-0600  
Section 9 I/O Ports  
P82/FTIOB Pin  
Register  
Bit Name  
TMRW  
TIOR0  
PCR8  
PWMB IOB2 IOB1 IOB0 PCR82 Pin Function  
Setting Value 0  
0
0
0
0
1
X
X
0
1
X
P82 input/FTIOB input pin  
P82 output/FTIOB input pin  
FTIOB output pin  
0
0
1
0
1
X
1
X
X
FTIOB output pin  
P82 input/FTIOB input pin  
P82 output/FTIOB input pin  
PWM output pin  
1
X
X
X
[Legend]  
X:  
Don't care.  
P81/FTIOA Pin  
Register  
Bit Name  
TIOR0  
PCR8  
IOA2  
IOA1  
IOA0  
PCR81  
Pin Function  
Setting Value 0  
0
0
0
1
X
X
0
1
X
X
0
1
P81 input/FTIOA input pin  
P81 output/FTIOA input pin  
FTIOA output pin  
0
0
1
0
1
X
FTIOA output pin  
P81 input/FTIOA input pin  
P81 output/FTIOA input pin  
[Legend]  
X:  
Don't care.  
P80/FTCI Pin  
Register  
Bit Name  
PCR8  
PCR80  
Pin Function  
Setting Value 0  
1
P80 input/FTCI input pin  
P80 output/FTCI input pin  
Rev. 6.00 Mar. 24, 2006 Page 137 of 412  
REJ09B0142-0600  
Section 9 I/O Ports  
9.6  
Port B  
Port B is an input port also functioning as an A/D converter analog input pin. Each pin of the port  
B is shown in figure 9.6.  
PB7/AN7  
PB6/AN6  
PB5/AN5  
PB4/AN4  
Port B  
PB3/AN3  
PB2/AN2  
PB1/AN1  
PB0/AN0  
Figure 9.6 Port B Pin Configuration  
Port B has the following register.  
Port data register B (PDRB)  
9.6.1 Port Data Register B (PDRB)  
PDRB is a general input-only port data register of port B.  
Initial  
Bit  
7
Bit Name  
PB7  
Value  
R/W  
R
Description  
The input value of each pin is read by reading this  
register.  
6
PB6  
R
However, if a port B pin is designated as an analog  
input channel by ADCSR in A/D converter, 0 is read.  
5
PB5  
R
4
PB4  
R
3
PB3  
R
2
PB2  
R
1
PB1  
R
0
PB0  
R
Rev. 6.00 Mar. 24, 2006 Page 138 of 412  
REJ09B0142-0600  
Section 10 Timer A  
Section 10 Timer A  
Timer A is an 8-bit timer with interval timing and real-time clock time-base functions. The clock  
time-base function is available when a 32.768kHz crystal oscillator is connected. Figure 10.1  
shows a block diagram of timer A.  
10.1  
Features  
Timer A can be used as an interval timer or a clock time base.  
An interrupt is requested when the counter overflows.  
Any of eight clock signals can be output from pin TMOW: 32.768 kHz divided by 32, 16, 8, or  
4 (1 kHz, 2 kHz, 4 kHz, 8 kHz), or the system clock divided by 32, 16, 8, or 4.  
Interval Timer:  
Choice of eight internal clock sources (φ/8192, φ/4096, φ/2048, φ/512, φ/256, φ/128, φ/32, φ8)  
Clock Time Base:  
Choice of four overflow periods (1 s, 0.5 s, 0.25 s, 31.25 ms) when timer A is used as a clock  
time base (using a 32.768 kHz crystal oscillator).  
Rev. 6.00 Mar. 24, 2006 Page 139 of 412  
REJ09B0142-0600  
Section 10 Timer A  
1/4  
PSW  
TMA  
φW  
φW/4  
φW/32  
φW/16  
φW/8  
φW/128  
φW/4  
TCA  
TMOW  
φW/32  
φW/16  
φW/8  
φ/8192, φ/4096,  
φ/2048, φ/512,  
φ/256, φ/128,  
φ/32, φ/8  
φW/4  
φ
PSS  
IRRTA  
[Legend]  
TMA: Timer mode register A  
TCA: Timer counter A  
IRRTA: Timer A overflow interrupt request flag  
PSW: Prescaler W  
PSS:  
Prescaler S  
Note:  
*
Can be selected only when the prescaler W output (ø /128) is used as the TCA input clock.  
W
Figure 10.1 Block Diagram of Timer A  
10.2  
Input/Output Pins  
Table 10.1 shows the timer A input/output pin.  
Table 10.1 Pin Configuration  
Name  
Abbreviation  
I/O  
Function  
Clock output  
TMOW  
Output  
Output of waveform generated by  
timer A output circuit  
Rev. 6.00 Mar. 24, 2006 Page 140 of 412  
REJ09B0142-0600  
Section 10 Timer A  
10.3  
Register Descriptions  
Timer A has the following registers.  
Timer mode register A (TMA)  
Timer counter A (TCA)  
10.3.1 Timer Mode Register A (TMA)  
TMA selects the operating mode, the divided clock output, and the input clock.  
Bit  
Name  
Initial  
Value  
Bit  
7
R/W  
R/W  
R/W  
R/W  
Description  
TMA7  
TMA6  
TMA5  
0
0
0
Clock Output Select 7 to 5  
6
These bits select the clock output at the TMOW pin.  
5
000: φ/32  
001: φ/16  
010: φ/8  
011: φ/4  
100: φw/32  
101: φw/16  
110: φw/8  
111: φw/4  
For details on clock outputs, see section 10.4.3, Clock  
Output.  
4
3
1
0
Reserved  
This bit is always read as 1.  
Internal Clock Select 3  
TMA3  
R/W  
This bit selects the operating mode of the timer A.  
0: Functions as an interval timer to count the outputs of  
prescaler S.  
1: Functions as a clock-time base to count the outputs  
of prescaler W.  
Rev. 6.00 Mar. 24, 2006 Page 141 of 412  
REJ09B0142-0600  
Section 10 Timer A  
Bit  
Initial  
Value  
Bit  
2
Name  
TMA2  
TMA1  
TMA0  
R/W  
R/W  
R/W  
R/W  
Description  
0
0
0
Internal Clock Select 2 to 0  
1
These bits select the clock input to TCA when TMA3 =  
0.  
0
000: φ/8192  
001: φ/4096  
010: φ/2048  
011: φ/512  
100: φ/256  
101: φ/128  
110: φ/32  
111: φ/8  
These bits select the overflow period when TMA3 = 1  
(when a 32.768 kHz crystal oscillator with is used as  
φW).  
000: 1s  
001: 0.5 s  
010: 0.25 s  
011: 0.03125 s  
1XX: Both PSW and TCA are reset  
[Legend]  
X:  
Don't care.  
10.3.2 Timer Counter A (TCA)  
TCA is an 8-bit readable up-counter, which is incremented by internal clock input. The clock  
source for input to this counter is selected by bits TMA3 to TMA0 in TMA. TCA values can be  
read by the CPU in active mode, but cannot be read in subactive mode. When TCA overflows, the  
IRRTA bit in interrupt request register 1 (IRR1) is set to 1. TCA is cleared by setting bits TMA3  
and TMA2 in TMA to B’11. TCA is initialized to H'00.  
Rev. 6.00 Mar. 24, 2006 Page 142 of 412  
REJ09B0142-0600  
Section 10 Timer A  
10.4  
Operation  
10.4.1 Interval Timer Operation  
When bit TMA3 in TMA is cleared to 0, timer A functions as an 8-bit interval timer.  
Upon reset, TCA is cleared to H'00 and bit TMA3 is cleared to 0, so up-counting of timer A  
resume immediately as an interval timer. The clock input to timer A is selected by bits TMA2 to  
TMA0 in TMA; any of eight internal clock signals output by prescaler S can be selected.  
After the count value in TCA reaches H'FF, the next clock signal input causes timer A to  
overflow, setting bit IRRTA to 1 in interrupt Flag Register 1 (IRR1). If IENTA = 1 in interrupt  
enable register 1 (IENR1), a CPU interrupt is requested. At overflow, TCA returns to H'00 and  
starts counting up again. In this mode timer A functions as an interval timer that generates an  
overflow output at intervals of 256 input clock pulses.  
10.4.2 Clock Time Base Operation  
When bit TMA3 in TMA is set to 1, timer A functions as a clock-timer base by counting clock  
signals output by prescaler W. When a clock signal is input after the TCA counter value has  
become H'FF, timer A overflows and IRRTA in IRR1 is set to 1. At that time, an interrupt request  
is generated to the CPU if IENTA in the interrupt enable register 1 (IENR1) is 1. The overflow  
period of timer A is set by bits TMA1 and TMA0 in TMA. A choice of four periods is available.  
In clock time base operation (TMA3 = 1), setting bit TMA2 to 1 clears both TCA and prescaler W  
to H'00.  
10.4.3 Clock Output  
Setting bit TMOW in port mode register 1 (PMR1) to 1 causes a clock signal to be output at pin  
TMOW. Eight different clock output signals can be selected by means of bits TMA7 to TMA5 in  
TMA. The system clock divided by 32, 16, 8, or 4 can be output in active mode and sleep mode. A  
32.768 kHz signal divided by 32, 16, 8, or 4 can be output in active mode, sleep mode, and  
subactive mode.  
Rev. 6.00 Mar. 24, 2006 Page 143 of 412  
REJ09B0142-0600  
Section 10 Timer A  
10.5  
Usage Note  
When the clock time base function is selected as the internal clock of TCA in active mode or sleep  
mode, the internal clock is not synchronous with the system clock, so it is synchronized by a  
synchronizing circuit. This may result in a maximum error of 1/φ (s) in the count cycle.  
Rev. 6.00 Mar. 24, 2006 Page 144 of 412  
REJ09B0142-0600  
Section 11 Timer V  
Section 11 Timer V  
Timer V is an 8-bit timer based on an 8-bit counter. Timer V counts external events. Compare-  
match signals with two registers can also be used to reset the counter, request an interrupt, or  
output a pulse signal with an arbitrary duty cycle. Counting can be initiated by a trigger input at  
the TRGV pin, enabling pulse output control to be synchronized to the trigger, with an arbitrary  
delay from the trigger input. Figure 11.1 shows a block diagram of timer V.  
11.1  
Features  
Choice of seven clock signals is available.  
Choice of six internal clock sources (φ/128, φ/64, φ/32, φ/16, φ/8, φ/4) or an external clock.  
Counter can be cleared by compare match A or B, or by an external reset signal. If the count  
stop function is selected, the counter can be halted when cleared.  
Timer output is controlled by two independent compare match signals, enabling pulse output  
with an arbitrary duty cycle, PWM output, and other applications.  
Three interrupt sources: compare match A, compare match B, timer overflow  
Counting can be initiated by trigger input at the TRGV pin. The rising edge, falling edge, or  
both edges of the TRGV input can be selected.  
Rev. 6.00 Mar. 24, 2006 Page 145 of 412  
REJ09B0142-0600  
Section 11 Timer V  
TCRV1  
TCORB  
Trigger  
control  
TRGV  
TMCIV  
φ
Comparator  
Clock select  
TCNTV  
Comparator  
TCORA  
PSS  
Clear  
control  
TCRV0  
TMRIV  
Interrupt  
request  
control  
Output  
control  
TCSRV  
TMOV  
CMIA  
CMIB  
OVI  
[Legend]  
TCORA: Time constant register A  
TCORB: Time constant register B  
TCNTV: Timer counter V  
TCSRV: Timer control/status register V  
TCRV0: Timer control register V0  
TCRV1: Timer control register V1  
PSS:  
Prescaler S  
CMIA: Compare-match interrupt A  
CMIB: Compare-match interrupt B  
OVI:  
Overflow interupt  
Figure 11.1 Block Diagram of Timer V  
Rev. 6.00 Mar. 24, 2006 Page 146 of 412  
REJ09B0142-0600  
Section 11 Timer V  
11.2  
Input/Output Pins  
Table 11.1 shows the timer V pin configuration.  
Table 11.1 Pin Configuration  
Name  
Abbreviation  
TMOV  
I/O  
Function  
Timer V output  
Timer V clock input  
Timer V reset input  
Trigger input  
Output  
Input  
Input  
Input  
Timer V waveform output  
Clock input to TCNTV  
TMCIV  
TMRIV  
External input to reset TCNTV  
Trigger input to initiate counting  
TRGV  
11.3  
Register Descriptions  
Time V has the following registers.  
Timer counter V (TCNTV)  
Timer constant register A (TCORA)  
Timer constant register B (TCORB)  
Timer control register V0 (TCRV0)  
Timer control/status register V (TCSRV)  
Timer control register V1 (TCRV1)  
11.3.1 Timer Counter V (TCNTV)  
TCNTV is an 8-bit up-counter. The clock source is selected by bits CKS2 to CKS0 in timer  
control register V0 (TCRV0). The TCNTV value can be read and written by the CPU at any time.  
TCNTV can be cleared by an external reset input signal, or by compare match A or B. The  
clearing signal is selected by bits CCLR1 and CCLR0 in TCRV0.  
When TCNTV overflows, OVF is set to 1 in timer control/status register V (TCSRV).  
TCNTV is initialized to H'00.  
Rev. 6.00 Mar. 24, 2006 Page 147 of 412  
REJ09B0142-0600  
Section 11 Timer V  
11.3.2 Time Constant Registers A and B (TCORA, TCORB)  
TCORA and TCORB have the same function.  
TCORA and TCORB are 8-bit read/write registers.  
TCORA and TCNTV are compared at all times. When the TCORA and TCNTV contents match,  
CMFA is set to 1 in TCSRV. If CMIEA is also set to 1 in TCRV0, a CPU interrupt is requested.  
Note that they must not be compared during the T3 state of a TCORA write cycle.  
Timer output from the TMOV pin can be controlled by the identifying signal (compare match A)  
and the settings of bits OS3 to OS0 in TCSRV.  
TCORA and TCORB are initialized to H'FF.  
11.3.3 Timer Control Register V0 (TCRV0)  
TCRV0 selects the input clock signals of TCNTV, specifies the clearing conditions of TCNTV,  
and controls each interrupt request.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
CMIEB  
CMIEA  
OVIE  
0
0
0
R/W  
Compare Match Interrupt Enable B  
When this bit is set to 1, interrupt request from the  
CMFB bit in TCSRV is enabled.  
6
5
R/W  
R/W  
Compare Match Interrupt Enable A  
When this bit is set to 1, interrupt request from the  
CMFA bit in TCSRV is enabled.  
Timer Overflow Interrupt Enable  
When this bit is set to 1, interrupt request from the OVF  
bit in TCSRV is enabled.  
Rev. 6.00 Mar. 24, 2006 Page 148 of 412  
REJ09B0142-0600  
Section 11 Timer V  
Initial  
Bit  
4
Bit Name Value  
R/W  
R/W  
R/W  
Description  
CCLR1  
CCLR0  
0
0
Counter Clear 1 and 0  
3
These bits specify the clearing conditions of TCNTV.  
00: Clearing is disabled  
01: Cleared by compare match A  
10: Cleared by compare match B  
11: Cleared on the rising edge of the TMRIV pin. The  
operation of TCNTV after clearing depends on  
TRGE in TCRV1.  
2
1
0
CKS2  
CKS1  
CKS0  
0
0
0
R/W  
R/W  
R/W  
Clock Select 2 to 0  
These bits select clock signals to input to TCNTV and  
the counting condition in combination with ICKS0 in  
TCRV1.  
Refer to table 11.2.  
Table 11.2 Clock Signals to Input to TCNTV and Counting Conditions  
TCRV0  
Bit 1  
TCRV1  
Bit 2  
CKS2  
0
Bit 0  
CKS0  
0
Bit 0  
CKS1  
ICKS0  
Description  
0
0
Clock input prohibited  
1
Internal clock: counts on φ/4, falling edge  
Internal clock: counts on φ/8, falling edge  
Internal clock: counts on φ/16, falling edge  
Internal clock: counts on φ/32, falling edge  
Internal clock: counts on φ/64, falling edge  
Internal clock: counts on φ/128, falling edge  
Clock input prohibited  
1
1
0
1
0
1
0
1
1
0
1
0
1
0
1
External clock: counts on rising edge  
External clock: counts on falling edge  
External clock: counts on rising and falling  
edge  
Rev. 6.00 Mar. 24, 2006 Page 149 of 412  
REJ09B0142-0600  
Section 11 Timer V  
11.3.4 Timer Control/Status Register V (TCSRV)  
TCSRV indicates the status flag and controls outputs by using a compare match.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
CMFB  
CMFA  
OVF  
0
0
0
1
R/W  
Compare Match Flag B  
Setting condition:  
When the TCNTV value matches the TCORB value  
Clearing condition:  
After reading CMFB = 1, cleared by writing 0 to CMFB  
Compare Match Flag A  
6
5
4
R/W  
R/W  
Setting condition:  
When the TCNTV value matches the TCORA value  
Clearing condition:  
After reading CMFA = 1, cleared by writing 0 to CMFA  
Timer Overflow Flag  
Setting condition:  
When TCNTV overflows from H'FF to H'00  
Clearing condition:  
After reading OVF = 1, cleared by writing 0 to OVF  
Reserved  
This bit is always read as 1.  
Output Select 3 and 2  
3
2
OS3  
OS2  
0
0
R/W  
R/W  
These bits select an output method for the TMOV pin  
by the compare match of TCORB and TCNTV.  
00: No change  
01: 0 output  
10: 1 output  
11: Output toggles  
Rev. 6.00 Mar. 24, 2006 Page 150 of 412  
REJ09B0142-0600  
Section 11 Timer V  
Initial  
Bit  
1
Bit Name Value  
R/W  
R/W  
R/W  
Description  
OS1  
OS0  
0
0
Output Select 1 and 0  
0
These bits select an output method for the TMOV pin  
by the compare match of TCORA and TCNTV.  
00: No change  
01: 0 output  
10: 1 output  
11: Output toggles  
OS3 and OS2 select the output level for compare match B. OS1 and OS0 select the output level  
for compare match A. The two output levels can be controlled independently. After a reset, the  
timer output is 0 until the first compare match.  
11.3.5 Timer Control Register V1 (TCRV1)  
TCRV1 selects the edge at the TRGV pin, enables TRGV input, and selects the clock input to  
TCNTV.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7 to 5  
All 1  
Reserved  
These bits are always read as 1.  
TRGV Input Edge Select  
4
3
TVEG1  
TVEG0  
0
0
R/W  
R/W  
These bits select the TRGV input edge.  
00: TRGV trigger input is prohibited  
01: Rising edge is selected  
10: Falling edge is selected  
11: Rising and falling edges are both selected  
2
TRGE  
0
R/W  
TCNTV starts counting up by the input of the edge  
which is selected by TVEG1 and TVEG0.  
0: Disables starting counting-up TCNTV by the input of  
the TRGV pin and halting counting-up TCNTV when  
TCNTV is cleared by a compare match.  
1: Enables starting counting-up TCNTV by the input of  
the TRGV pin and halting counting-up TCNTV when  
TCNTV is cleared by a compare match.  
Rev. 6.00 Mar. 24, 2006 Page 151 of 412  
REJ09B0142-0600  
Section 11 Timer V  
Initial  
Bit Name Value  
Bit  
R/W  
Description  
1
1
Reserved  
This bit is always read as 1.  
Internal Clock Select 0  
0
ICKS0  
0
R/W  
This bit selects clock signals to input to TCNTV in  
combination with CKS2 to CKS0 in TCRV0.  
Refer to table 11.2.  
11.4  
Operation  
11.4.1 Timer V Operation  
1. According to table 11.2, six internal/external clock signals output by prescaler S can be  
selected as the timer V operating clock signals. When the operating clock signal is selected,  
TCNTV starts counting-up. Figure 11.2 shows the count timing with an internal clock signal  
selected, and figure 11.3 shows the count timing with both edges of an external clock signal  
selected.  
2. When TCNTV overflows (changes from H'FF to H'00), the overflow flag (OVF) in TCRV0  
will be set. The timing at this time is shown in figure 11.4. An interrupt request is sent to the  
CPU when OVIE in TCRV0 is 1.  
3. TCNTV is constantly compared with TCORA and TCORB. Compare match flag A or B  
(CMFA or CMFB) is set to 1 when TCNTV matches TCORA or TCORB, respectively. The  
compare-match signal is generated in the last state in which the values match. Figure 11.5  
shows the timing. An interrupt request is generated for the CPU when CMIEA or CMIEB in  
TCRV0 is 1.  
4. When a compare match A or B is generated, the TMOV responds with the output value  
selected by bits OS3 to OS0 in TCSRV. Figure 11.6 shows the timing when the output is  
toggled by compare match A.  
5. When CCLR1 or CCLR0 in TCRV0 is 01 or 10, TCNTV can be cleared by the corresponding  
compare match. Figure 11.7 shows the timing.  
6. When CCLR1 or CCLR0 in TCRV0 is 11, TCNTV can be cleared by the rising edge of the  
input of TMRIV pin. A TMRIV input pulse-width of at least 1.5 system clocks is necessary.  
Figure 11.8 shows the timing.  
7. When a counter-clearing source is generated with TRGE in TCRV1 set to 1, the counting-up is  
halted as soon as TCNTV is cleared. TCNTV resumes counting-up when the edge selected by  
TVEG1 or TVEG0 in TCRV1 is input from the TGRV pin.  
Rev. 6.00 Mar. 24, 2006 Page 152 of 412  
REJ09B0142-0600  
Section 11 Timer V  
φ
Internal clock  
TCNTV input  
clock  
N – 1  
N
N + 1  
TCNTV  
Figure 11.2 Increment Timing with Internal Clock  
φ
TMCIV  
(External clock  
input pin)  
TCNTV input  
clock  
N – 1  
N
N + 1  
TCNTV  
Figure 11.3 Increment Timing with External Clock  
φ
TCNTV  
H'FF  
H'00  
Overflow signal  
OVF  
Figure 11.4 OVF Set Timing  
Rev. 6.00 Mar. 24, 2006 Page 153 of 412  
REJ09B0142-0600  
Section 11 Timer V  
φ
TCNTV  
N
N
N+1  
TCORA or  
TCORB  
Compare match  
signal  
CMFA or  
CMFB  
Figure 11.5 CMFA and CMFB Set Timing  
φ
Compare match  
A signal  
Timer V output  
pin  
Figure 11.6 TMOV Output Timing  
φ
Compare match  
A signal  
N
H'00  
TCNTV  
Figure 11.7 Clear Timing by Compare Match  
Rev. 6.00 Mar. 24, 2006 Page 154 of 412  
REJ09B0142-0600  
Section 11 Timer V  
φ
TMRIV(External  
counter reset  
input pin )  
TCNTV reset  
signal  
N – 1  
N
H'00  
TCNTV  
Figure 11.8 Clear Timing by TMRIV Input  
11.5  
Timer V Application Examples  
11.5.1 Pulse Output with Arbitrary Duty Cycle  
Figure 11.9 shows an example of output of pulses with an arbitrary duty cycle.  
1. Set bits CCLR1 and CCLR0 in TCRV0 so that TCNTV will be cleared by compare match with  
TCORA.  
2. Set bits OS3 to OS0 in TCSRV so that the output will go to 1 at compare match with TCORA  
and to 0 at compare match with TCORB.  
3. Set bits CKS2 to CKS0 in TCRV0 and bit ICKS0 in TCRV1 to select the desired clock source.  
4. With these settings, a waveform is output without further software intervention, with a period  
determined by TCORA and a pulse width determined by TCORB.  
TCNTV value  
H'FF  
Counter cleared  
TCORA  
TCORB  
H'00  
Time  
TMOV  
Figure 11.9 Pulse Output Example  
Rev. 6.00 Mar. 24, 2006 Page 155 of 412  
REJ09B0142-0600  
Section 11 Timer V  
11.5.2 Pulse Output with Arbitrary Pulse Width and Delay from TRGV Input  
The trigger function can be used to output a pulse with an arbitrary pulse width at an arbitrary  
delay from the TRGV input, as shown in figure 11.10. To set up this output:  
1. Set bits CCLR1 and CCLR0 in TCRV0 so that TCNTV will be cleared by compare match with  
TCORB.  
2. Set bits OS3 to OS0 in TCSRV so that the output will go to 1 at compare match with TCORA  
and to 0 at compare match with TCORB.  
3. Set bits TVEG1 and TVEG0 in TCRV1 and set TRGE to select the falling edge of the TRGV  
input.  
4. Set bits CKS2 to CKS0 in TCRV0 and bit ICKS0 in TCRV1 to select the desired clock source.  
5. After these settings, a pulse waveform will be output without further software intervention,  
with a delay determined by TCORA from the TRGV input, and a pulse width determined by  
(TCORB – TCORA).  
TCNTV value  
H'FF  
Counter cleared  
TCORB  
TCORA  
H'00  
Time  
TRGV  
TMOV  
Compare match A  
Compare match B  
Compare match A  
Compare match B  
clears TCNTV and  
halts count-up  
clears TCNTV and  
halts count-up  
Figure 11.10 Example of Pulse Output Synchronized to TRGV Input  
Rev. 6.00 Mar. 24, 2006 Page 156 of 412  
REJ09B0142-0600  
Section 11 Timer V  
11.6  
Usage Notes  
The following types of contention or operation can occur in timer V operation.  
1. Writing to registers is performed in the T3 state of a TCNTV write cycle. If a TCNTV clear  
signal is generated in the T3 state of a TCNTV write cycle, as shown in figure 11.11, clearing  
takes precedence and the write to the counter is not carried out. If counting-up is generated in  
the T3 state of a TCNTV write cycle, writing takes precedence.  
2. If a compare match is generated in the T3 state of a TCORA or TCORB write cycle, the write  
to TCORA or TCORB takes precedence and the compare match signal is inhibited. Figure  
11.12 shows the timing.  
3. If compare matches A and B occur simultaneously, any conflict between the output selections  
for compare match A and compare match B is resolved by the following priority: toggle  
output > output 1 > output 0.  
4. Depending on the timing, TCNTV may be incremented by a switch between different internal  
clock sources. When TCNTV is internally clocked, an increment pulse is generated from the  
falling edge of an internal clock signal, that is divided system clock (φ). Therefore, as shown  
in figure 11.3 the switch is from a high clock signal to a low clock signal, the switchover is  
seen as a falling edge, causing TCNTV to increment. TCNTV can also be incremented by a  
switch between internal and external clocks.  
TCNTV write cycle by CPU  
T1  
T2  
T3  
φ
Address  
TCNTV address  
Internal  
write signal  
Counter clear  
signal  
TCNTV  
N
H'00  
Figure 11.11 Contention between TCNTV Write and Clear  
Rev. 6.00 Mar. 24, 2006 Page 157 of 412  
REJ09B0142-0600  
Section 11 Timer V  
TCORA write cycle by CPU  
T1 T2 T3  
φ
TCORA address  
Address  
Internal  
write signal  
N
N
N+1  
TCNTV  
TCORA  
M
TCORA write data  
Compare match  
signal  
Inhibited  
Figure 11.12 Contention between TCORA Write and Compare Match  
Clock before  
switching  
Clock after  
switching  
Count clock  
TCNTV  
N
N+1  
N+2  
Write to CKS1 and CKS0  
Figure 11.13 Internal Clock Switching and TCNTV Operation  
Rev. 6.00 Mar. 24, 2006 Page 158 of 412  
REJ09B0142-0600  
Section 12 Timer W  
Section 12 Timer W  
The timer W has a 16-bit timer having output compare and input capture functions. The timer W  
can count external events and output pulses with an arbitrary duty cycle by compare match  
between the timer counter and four general registers. Thus, it can be applied to various systems.  
12.1  
Features  
Selection of five counter clock sources: four internal clocks (φ, φ/2, φ/4, and φ/8) and an  
external clock (external events can be counted)  
Capability to process up to four pulse outputs or four pulse inputs  
Four general registers:  
Independently assignable output compare or input capture functions  
Usable as two pairs of registers; one register of each pair operates as a buffer for the output  
compare or input capture register  
Four selectable operating modes :  
Waveform output by compare match  
Selection of 0 output, 1 output, or toggle output  
Input capture function  
Rising edge, falling edge, or both edges  
Counter clearing function  
Counters can be cleared by compare match  
PWM mode  
Up to three-phase PWM output can be provided with desired duty ratio.  
Any initial timer output value can be set  
Five interrupt sources  
Four compare match/input capture interrupts and an overflow interrupt.  
Rev. 6.00 Mar. 24, 2006 Page 159 of 412  
REJ09B0142-0600  
Section 12 Timer W  
Table 12.1 summarizes the timer W functions, and figure 12.1 shows a block diagram of the timer  
W.  
Table 12.1 Timer W Functions  
Input/Output Pins  
Item  
Counter  
FTIOA  
FTIOB  
FTIOC  
FTIOD  
Count clock  
Internal clocks: φ, φ/2, φ/4, φ/8  
External clock: FTCI  
General registers  
(output compare/input  
capture registers)  
Period  
specified in  
GRA  
GRA  
GRB  
GRC (buffer GRD (buffer  
register for  
GRA in  
register for  
GRB in  
buffer mode) buffer mode)  
Counter clearing function GRA  
compare  
GRA  
compare  
match  
match  
Initial output value  
setting function  
Yes  
Yes  
Yes  
Yes  
Buffer function  
Yes  
Yes  
Compare  
match output  
0
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
1
Yes  
Yes  
Yes  
Toggle  
Yes  
Yes  
Yes  
Input capture function  
PWM mode  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Interrupt sources  
Overflow  
Compare  
Compare  
Compare  
Compare  
match/input match/input match/input match/input  
capture capture capture capture  
Rev. 6.00 Mar. 24, 2006 Page 160 of 412  
REJ09B0142-0600  
Section 12 Timer W  
FTIOA  
Internal clock: φ  
φ/2  
Clock  
selector  
FTIOB  
FTIOC  
FTIOD  
IRRTW  
φ/4  
φ/8  
Control logic  
External clock: FTCI  
Comparator  
Internal  
data bus  
[Legend]  
TMRW: Timer mode register W (8 bits)  
TCRW: Timer control register W (8 bits)  
TIERW: Timer interrupt enable register W (8 bits)  
TSRW: Timer status register W (8 bits)  
TIOR:  
Timer I/O control register (8 bits)  
TCNT: Timer counter (16 bits)  
GRA:  
GRB:  
GRC:  
GRD:  
General register A (input capture/output compare register: 16 bits)  
General register B (input capture/output compare register: 16 bits)  
General register C (input capture/output compare register: 16 bits)  
General register D (input capture/output compare register: 16 bits)  
IRRTW: Timer W interrupt request  
Figure 12.1 Timer W Block Diagram  
Rev. 6.00 Mar. 24, 2006 Page 161 of 412  
REJ09B0142-0600  
Section 12 Timer W  
12.2  
Input/Output Pins  
Table 12.2 summarizes the timer W pins.  
Table 12.2 Pin Configuration  
Name  
Abbreviation Input/Output  
Function  
External clock input  
FTCI  
Input  
External clock input pin  
Input capture/output  
compare A  
FTIOA  
Input/output  
Output pin for GRA output compare  
or input pin for GRA input capture  
Input capture/output  
compare B  
FTIOB  
FTIOC  
FTIOD  
Input/output  
Input/output  
Input/output  
Output pin for GRB output compare,  
input pin for GRB input capture, or  
PWM output pin in PWM mode  
Input capture/output  
compare C  
Output pin for GRC output compare,  
input pin for GRC input capture, or  
PWM output pin in PWM mode  
Input capture/output  
compare D  
Output pin for GRD output compare,  
input pin for GRD input capture, or  
PWM output pin in PWM mode  
12.3  
Register Descriptions  
The timer W has the following registers.  
Timer mode register W (TMRW)  
Timer control register W (TCRW)  
Timer interrupt enable register W (TIERW)  
Timer status register W (TSRW)  
Timer I/O control register 0 (TIOR0)  
Timer I/O control register 1 (TIOR1)  
Timer counter (TCNT)  
General register A (GRA)  
General register B (GRB)  
General register C (GRC)  
General register D (GRD)  
Rev. 6.00 Mar. 24, 2006 Page 162 of 412  
REJ09B0142-0600  
Section 12 Timer W  
12.3.1 Timer Mode Register W (TMRW)  
TMRW selects the general register functions and the timer output mode.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
CTS  
0
R/W  
Counter Start  
The counter operation is halted when this bit is 0, while  
it can be performed when this bit is 1.  
6
5
1
0
Reserved  
This bit is always read as 1.  
Buffer Operation B  
Selects the GRD function.  
BUFEB  
R/W  
0: GRD operates as an input capture/output compare  
register  
1: GRD operates as the buffer register for GRB  
Buffer Operation A  
4
BUFEA  
0
R/W  
Selects the GRC function.  
0: GRC operates as an input capture/output compare  
register  
1: GRC operates as the buffer register for GRA  
Reserved  
3
2
1
0
This bit is always read as 1.  
PWM Mode D  
PWMD  
R/W  
Selects the output mode of the FTIOD pin.  
0: FTIOD operates normally (output compare output)  
1: PWM output  
1
0
PWMC  
PWMB  
0
0
R/W  
R/W  
PWM Mode C  
Selects the output mode of the FTIOC pin.  
0: FTIOC operates normally (output compare output)  
1: PWM output  
PWM Mode B  
Selects the output mode of the FTIOB pin.  
0: FTIOB operates normally (output compare output)  
1: PWM output  
Rev. 6.00 Mar. 24, 2006 Page 163 of 412  
REJ09B0142-0600  
Section 12 Timer W  
12.3.2 Timer Control Register W (TCRW)  
TCRW selects the timer counter clock source, selects a clearing condition, and specifies the timer  
output levels.  
Initial  
Bit  
Bit Name Value  
R/W Description  
7
CCLR  
0
R/W Counter Clear  
The TCNT value is cleared by compare match A when  
this bit is 1. When it is 0, TCNT operates as a free-  
running counter.  
6
5
4
CKS2  
CKS1  
CKS0  
0
0
0
R/W Clock Select 2 to 0  
R/W Select the TCNT clock source.  
R/W 000: Internal clock: counts on φ  
001: Internal clock: counts on φ/2  
010: Internal clock: counts on φ/4  
011: Internal clock: counts on φ/8  
1XX: Counts on rising edges of the external event (FTCI)  
When the internal clock source (φ) is selected, subclock  
sources are counted in subactive and subsleep modes.  
3
2
1
TOD  
TOC  
TOB  
0
0
0
R/W Timer Output Level Setting D  
Sets the output value of the FTIOD pin until the first  
compare match D is generated.  
0: Output value is 0*  
1: Output value is 1*  
R/W Timer Output Level Setting C  
Sets the output value of the FTIOC pin until the first  
compare match C is generated.  
0: Output value is 0*  
1: Output value is 1*  
R/W Timer Output Level Setting B  
Sets the output value of the FTIOB pin until the first  
compare match B is generated.  
0: Output value is 0*  
1: Output value is 1*  
Rev. 6.00 Mar. 24, 2006 Page 164 of 412  
REJ09B0142-0600  
Section 12 Timer W  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
0
TOA  
0
R/W  
Timer Output Level Setting A  
Sets the output value of the FTIOA pin until the first  
compare match A is generated.  
0: Output value is 0*  
1: Output value is 1*  
[Legend]  
X:  
Don't care.  
Note:  
*
The change of the setting is immediately reflected in the output value.  
12.3.3 Timer Interrupt Enable Register W (TIERW)  
TIERW controls the timer W interrupt request.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
OVIE  
0
R/W  
Timer Overflow Interrupt Enable  
When this bit is set to 1, FOVI interrupt requested by  
OVF flag in TSRW is enabled.  
6
5
4
3
1
1
1
0
Reserved  
These bits are always read as 1.  
IMIED  
R/W  
Input Capture/Compare Match Interrupt Enable D  
When this bit is set to 1, IMID interrupt requested by  
IMFD flag in TSRW is enabled.  
2
1
0
IMIEC  
IMIEB  
IMIEA  
0
0
0
R/W  
R/W  
R/W  
Input Capture/Compare Match Interrupt Enable C  
When this bit is set to 1, IMIC interrupt requested by  
IMFC flag in TSRW is enabled.  
Input Capture/Compare Match Interrupt Enable B  
When this bit is set to 1, IMIB interrupt requested by  
IMFB flag in TSRW is enabled.  
Input Capture/Compare Match Interrupt Enable A  
When this bit is set to 1, IMIA interrupt requested by  
IMFA flag in TSRW is enabled.  
Rev. 6.00 Mar. 24, 2006 Page 165 of 412  
REJ09B0142-0600  
Section 12 Timer W  
12.3.4 Timer Status Register W (TSRW)  
TSRW shows the status of interrupt requests.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
OVF  
0
R/W  
Timer Overflow Flag  
[Setting condition]  
When TCNT overflows from H'FFFF to H'0000  
[Clearing condition]  
Read OVF when OVF = 1, then write 0 in OVF  
Reserved  
6
5
4
3
1
1
1
0
These bits are always read as 1.  
IMFD  
R/W  
Input Capture/Compare Match Flag D  
[Setting conditions]  
TCNT = GRD when GRD functions as an output  
compare register  
The TCNT value is transferred to GRD by an input  
capture signal when GRD functions as an input  
capture register  
[Clearing condition]  
Read IMFD when IMFD = 1, then write 0 in IMFD  
Input Capture/Compare Match Flag C  
[Setting conditions]  
2
IMFC  
0
R/W  
TCNT = GRC when GRC functions as an output  
compare register  
The TCNT value is transferred to GRC by an input  
capture signal when GRC functions as an input  
capture register  
[Clearing condition]  
Read IMFC when IMFC = 1, then write 0 in IMFC  
Rev. 6.00 Mar. 24, 2006 Page 166 of 412  
REJ09B0142-0600  
Section 12 Timer W  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
1
IMFB  
0
R/W  
Input Capture/Compare Match Flag B  
[Setting conditions]  
TCNT = GRB when GRB functions as an output  
compare register  
The TCNT value is transferred to GRB by an input  
capture signal when GRB functions as an input  
capture register  
[Clearing condition]  
Read IMFB when IMFB = 1, then write 0 in IMFB  
Input Capture/Compare Match Flag A  
[Setting conditions]  
0
IMFA  
0
R/W  
TCNT = GRA when GRA functions as an output  
compare register  
The TCNT value is transferred to GRA by an input  
capture signal when GRA functions as an input  
capture register  
[Clearing condition]  
Read IMFA when IMFA = 1, then write 0 in IMFA  
12.3.5 Timer I/O Control Register 0 (TIOR0)  
TIOR0 selects the functions of GRA and GRB, and specifies the functions of the FTIOA and  
FTIOB pins.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
1
0
Reserved  
This bit is always read as 1.  
I/O Control B2  
6
IOB2  
R/W  
Selects the GRB function.  
0: GRB functions as an output compare register  
1: GRB functions as an input capture register  
Rev. 6.00 Mar. 24, 2006 Page 167 of 412  
REJ09B0142-0600  
Section 12 Timer W  
Initial  
Bit Name Value  
Bit  
5
R/W  
R/W  
R/W  
Description  
IOB1  
IOB0  
0
0
I/O Control B1 and B0  
4
When IOB2 = 0,  
00: No output at compare match  
01: 0 output to the FTIOB pin at GRB compare match  
10: 1 output to the FTIOB pin at GRB compare match  
11: Output toggles to the FTIOB pin at GRB compare  
match  
When IOB2 = 1,  
00: Input capture at rising edge at the FTIOB pin  
01: Input capture at falling edge at the FTIOB pin  
1X: Input capture at rising and falling edges of the  
FTIOB pin  
3
2
1
0
Reserved  
This bit is always read as 1.  
IOA2  
R/W  
I/O Control A2  
Selects the GRA function.  
0: GRA functions as an output compare register  
1: GRA functions as an input capture register  
I/O Control A1 and A0  
1
0
IOA1  
IOA0  
0
0
R/W  
R/W  
When IOA2 = 0,  
00: No output at compare match  
01: 0 output to the FTIOA pin at GRA compare match  
10: 1 output to the FTIOA pin at GRA compare match  
11: Output toggles to the FTIOA pin at GRA compare  
match  
When IOA2 = 1,  
00: Input capture at rising edge of the FTIOA pin  
01: Input capture at falling edge of the FTIOA pin  
1X: Input capture at rising and falling edges of the  
FTIOA pin  
[Legend]  
X:  
Don't care.  
Rev. 6.00 Mar. 24, 2006 Page 168 of 412  
REJ09B0142-0600  
Section 12 Timer W  
12.3.6 Timer I/O Control Register 1 (TIOR1)  
TIOR1 selects the functions of GRC and GRD, and specifies the functions of the FTIOC and  
FTIOD pins.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
1
0
Reserved  
This bit is always read as 1.  
I/O Control D2  
6
IOD2  
R/W  
Selects the GRD function.  
0: GRD functions as an output compare register  
1: GRD functions as an input capture register  
I/O Control D1 and D0  
5
4
IOD1  
IOD0  
0
0
R/W  
R/W  
When IOD2 = 0,  
00: No output at compare match  
01: 0 output to the FTIOD pin at GRD compare match  
10: 1 output to the FTIOD pin at GRD compare match  
11: Output toggles to the FTIOD pin at GRD compare  
match  
When IOD2 = 1,  
00: Input capture at rising edge at the FTIOD pin  
01: Input capture at falling edge at the FTIOD pin  
1X: Input capture at rising and falling edges at the  
FTIOD pin  
3
2
1
0
Reserved  
This bit is always read as 1.  
I/O Control C2  
IOC2  
R/W  
Selects the GRC function.  
0: GRC functions as an output compare register  
1: GRC functions as an input capture register  
Rev. 6.00 Mar. 24, 2006 Page 169 of 412  
REJ09B0142-0600  
Section 12 Timer W  
Initial  
Bit Name Value  
Bit  
1
R/W  
R/W  
R/W  
Description  
IOC1  
IOC0  
0
0
I/O Control C1 and C0  
0
When IOC2 = 0,  
00: No output at compare match  
01: 0 output to the FTIOC pin at GRC compare match  
10: 1 output to the FTIOC pin at GRC compare match  
11: Output toggles to the FTIOC pin at GRC compare  
match  
When IOC2 = 1,  
00: Input capture to GRC at rising edge of the FTIOC  
pin  
01: Input capture to GRC at falling edge of the FTIOC  
pin  
1X: Input capture to GRC at rising and falling edges of  
the FTIOC pin  
[Legend]  
X:  
Don't care.  
12.3.7 Timer Counter (TCNT)  
TCNT is a 16-bit readable/writable up-counter. The clock source is selected by bits CKS2 to  
CKS0 in TCRW. TCNT can be cleared to H'0000 through a compare match with GRA by setting  
the CCLR in TCRW to 1. When TCNT overflows (changes from H'FFFF to H'0000), the OVF  
flag in TSRW is set to 1. If OVIE in TIERW is set to 1 at this time, an interrupt request is  
generated. TCNT must always be read or written in 16-bit units; 8-bit access is not allowed.  
TCNT is initialized to H'0000 by a reset.  
Rev. 6.00 Mar. 24, 2006 Page 170 of 412  
REJ09B0142-0600  
Section 12 Timer W  
12.3.8 General Registers A to D (GRA to GRD)  
Each general register is a 16-bit readable/writable register that can function as either an output-  
compare register or an input-capture register. The function is selected by settings in TIOR0 and  
TIOR1.  
When a general register is used as an input-compare register, its value is constantly compared with  
the TCNT value. When the two values match (a compare match), the corresponding flag (IMFA,  
IMFB, IMFC, or IMFD) in TSRW is set to 1. An interrupt request is generated at this time, when  
IMIEA, IMIEB, IMIEC, or IMIED is set to 1. Compare match output can be selected in TIOR.  
When a general register is used as an input-capture register, an external input-capture signal is  
detected and the current TCNT value is stored in the general register. The corresponding flag  
(IMFA, IMFB, IMFC, or IMFD) in TSRW is set to 1. If the corresponding interrupt-enable bit  
(IMIEA, IMIEB, IMIEC, or IMIED) in TSRW is set to 1 at this time, an interrupt request is  
generated. The edge of the input-capture signal is selected in TIOR.  
GRC and GRD can be used as buffer registers of GRA and GRB, respectively, by setting BUFEA  
and BUFEB in TMRW.  
For example, when GRA is set as an output-compare register and GRC is set as the buffer register  
for GRA, the value in the buffer register GRC is sent to GRA whenever compare match A is  
generated.  
When GRA is set as an input-capture register and GRC is set as the buffer register for GRA, the  
value in TCNT is transferred to GRA and the value in the buffer register GRC is transferred to  
GRA whenever an input capture is generated.  
GRA to GRD must be written or read in 16-bit units; 8-bit access is not allowed. GRA to GRD are  
initialized to H'FFFF by a reset.  
Rev. 6.00 Mar. 24, 2006 Page 171 of 412  
REJ09B0142-0600  
Section 12 Timer W  
12.4  
Operation  
The timer W has the following operating modes.  
Normal Operation  
PWM Operation  
12.4.1 Normal Operation  
TCNT performs free-running or periodic counting operations. After a reset, TCNT is set as a free-  
running counter. When the CTS bit in TMRW is set to 1, TCNT starts incrementing the count.  
When the count overflows from H'FFFF to H'0000, the OVF flag in TSRW is set to 1. If the OVIE  
in TIERW is set to 1, an interrupt request is generated. Figure 12.2 shows free-running counting.  
TCNT value  
H'FFFF  
H'0000  
CTS bit  
Time  
Flag cleared  
by software  
OVF  
Figure 12.2 Free-Running Counter Operation  
Periodic counting operation can be performed when GRA is set as an output compare register and  
bit CCLR in TCRW is set to 1. When the count matches GRA, TCNT is cleared to H'0000, the  
IMFA flag in TSRW is set to 1. If the corresponding IMIEA bit in TIERW is set to 1, an interrupt  
request is generated. TCNT continues counting from H'0000. Figure 12.3 shows periodic  
counting.  
Rev. 6.00 Mar. 24, 2006 Page 172 of 412  
REJ09B0142-0600  
Section 12 Timer W  
TCNT value  
GRA  
H'0000  
CTS bit  
Time  
Flag cleared  
by software  
IMFA  
Figure 12.3 Periodic Counter Operation  
By setting a general register as an output compare register, compare match A, B, C, or D can  
cause the output at the FTIOA, FTIOB, FTIOC, or FTIOD pin to output 0, output 1, or toggle.  
Figure 12.4 shows an example of 0 and 1 output when TCNT operates as a free-running counter, 1  
output is selected for compare match A, and 0 output is selected for compare match B. When  
signal is already at the selected output level, the signal level does not change at compare match.  
TCNT value  
H'FFFF  
GRA  
GRB  
Time  
No change  
No change  
H'0000  
FTIOA  
FTIOB  
No change  
No change  
Figure 12.4 0 and 1 Output Example (TOA = 0, TOB = 1)  
Rev. 6.00 Mar. 24, 2006 Page 173 of 412  
REJ09B0142-0600  
Section 12 Timer W  
Figure 12.5 shows an example of toggle output when TCNT operates as a free-running counter,  
and toggle output is selected for both compare match A and B.  
TCNT value  
H'FFFF  
GRA  
GRB  
Time  
H'0000  
FTIOA  
FTIOB  
Toggle output  
Toggle output  
Figure 12.5 Toggle Output Example (TOA = 0, TOB = 1)  
Figure 12.6 shows another example of toggle output when TCNT operates as a periodic counter,  
cleared by compare match A. Toggle output is selected for both compare match A and B.  
TCNT value  
Counter cleared by compare match with GRA  
H'FFFF  
GRA  
GRB  
Time  
H'0000  
FTIOA  
Toggle  
output  
Toggle  
output  
FTIOB  
Figure 12.6 Toggle Output Example (TOA = 0, TOB = 1)  
Rev. 6.00 Mar. 24, 2006 Page 174 of 412  
REJ09B0142-0600  
Section 12 Timer W  
The TCNT value can be captured into a general register (GRA, GRB, GRC, or GRD) when a  
signal level changes at an input-capture pin (FTIOA, FTIOB, FTIOC, or FTIOD). Capture can  
take place on the rising edge, falling edge, or both edges. By using the input-capture function, the  
pulse width and periods can be measured. Figure 12.7 shows an example of input capture when  
both edges of FTIOA and the falling edge of FTIOB are selected as capture edges. TCNT operates  
as a free-running counter.  
TCNT value  
H'FFFF  
H'F000  
H'AA55  
H'55AA  
H'1000  
H'0000  
Time  
FTIOA  
GRA  
H'1000  
H'F000  
H'55AA  
FTIOB  
GRB  
H'AA55  
Figure 12.7 Input Capture Operating Example  
Rev. 6.00 Mar. 24, 2006 Page 175 of 412  
REJ09B0142-0600  
Section 12 Timer W  
Figure 12.8 shows an example of buffer operation when the GRA is set as an input-capture  
register and GRC is set as the buffer register for GRA. TCNT operates as a free-running counter,  
and FTIOA captures both rising and falling edge of the input signal. Due to the buffer operation,  
the GRA value is transferred to GRC by input-capture A and the TCNT value is stored in GRA.  
TCNT value  
H'FFFF  
H'DA91  
H'5480  
H'0245  
H'0000  
Time  
FTIOA  
H'0245  
H'5480  
H'0245  
H'DA91  
H'5480  
GRA  
GRC  
Figure 12.8 Buffer Operation Example (Input Capture)  
12.4.2 PWM Operation  
In PWM mode, PWM waveforms are generated by using GRA as the period register and GRB,  
GRC, and GRD as duty registers. PWM waveforms are output from the FTIOB, FTIOC, and  
FTIOD pins. Up to three-phase PWM waveforms can be output. In PWM mode, a general register  
functions as an output compare register automatically. The output level of each pin depends on the  
corresponding timer output level set bit (TOB, TOC, and TOD) in TCRW. When TOB is 1, the  
FTIOB output goes to 1 at compare match A and to 0 at compare match B. When TOB is 0, the  
FTIOB output goes to 0 at compare match A and to 1 at compare match B. Thus the compare  
match output level settings in TIOR0 and TIOR1 are ignored for the output pin set to PWM mode.  
If the same value is set in the cycle register and the duty register, the output does not change when  
a compare match occurs.  
Rev. 6.00 Mar. 24, 2006 Page 176 of 412  
REJ09B0142-0600  
Section 12 Timer W  
Figure 12.9 shows an example of operation in PWM mode. The output signals go to 1 and TCNT  
is cleared at compare match A, and the output signals go to 0 at compare match B, C, and D  
(TOB, TOC, and TOD = 1: initial output values are set to 1).  
TCNT value  
Counter cleared by compare match A  
GRA  
GRB  
GRC  
GRD  
H'0000  
Time  
FTIOB  
FTIOC  
FTIOD  
Figure 12.9 PWM Mode Example (1)  
Figure 12.10 shows another example of operation in PWM mode. The output signals go to 0 and  
TCNT is cleared at compare match A, and the output signals go to 1 at compare match B, C, and  
D (TOB, TOC, and TOD = 0: initial output values are set to 1).  
TCNT value  
Counter cleared by compare match A  
GRA  
GRB  
GRC  
GRD  
H'0000  
Time  
FTIOB  
FTIOC  
FTIOD  
Figure 12.10 PWM Mode Example (2)  
Rev. 6.00 Mar. 24, 2006 Page 177 of 412  
REJ09B0142-0600  
Section 12 Timer W  
Figure 12.11 shows an example of buffer operation when the FTIOB pin is set to PWM mode and  
GRD is set as the buffer register for GRB. TCNT is cleared by compare match A, and FTIOB  
outputs 1 at compare match B and 0 at compare match A.  
Due to the buffer operation, the FTIOB output level changes and the value of buffer register GRD  
is transferred to GRB whenever compare match B occurs. This procedure is repeated every time  
compare match B occurs.  
TCNT value  
GRA  
H'0520  
H'0450  
H'0200  
GRB  
Time  
H'0000  
GRD  
H'0200  
H'0450  
H'0520  
H'0200  
H'0450  
H'0520  
GRB  
FTIOB  
Figure 12.11 Buffer Operation Example (Output Compare)  
Rev. 6.00 Mar. 24, 2006 Page 178 of 412  
REJ09B0142-0600  
Section 12 Timer W  
Figures 12.12 and 12.13 show examples of the output of PWM waveforms with duty cycles of 0%  
and 100%.  
TCNT value  
Write to GRB  
GRA  
GRB  
Write to GRB  
H'0000  
Time  
Duty 0%  
FTIOB  
Output does not change when cycle register  
and duty register compare matches occur  
simultaneously.  
TCNT value  
Write to GRB  
GRA  
Write to GRB  
Write to GRB  
Duty 100%  
GRB  
H'0000  
Time  
FTIOB  
Output does not change when cycle register  
and duty register compare matches occur  
simultaneously.  
TCNT value  
Write to GRB  
GRA  
Write to GRB  
Write to GRB  
Time  
GRB  
H'0000  
Duty 100%  
Duty 0%  
FTIOB  
Figure 12.12 PWM Mode Example  
(TOB, TOC, and TOD = 0: initial output values are set to 0)  
Rev. 6.00 Mar. 24, 2006 Page 179 of 412  
REJ09B0142-0600  
Section 12 Timer W  
TCNT value  
GRA  
Write to GRB  
GRB  
Write to GRB  
H'0000  
Time  
Duty 100%  
FTIOB  
Output does not change when cycle register  
and duty register compare matches occur  
simultaneously.  
TCNT value  
Write to GRB  
GRA  
Write to GRB  
Write to GRB  
Duty 0%  
GRB  
H'0000  
Time  
FTIOB  
Output does not change when cycle register  
and duty register compare matches occur  
simultaneously.  
TCNT value  
Write to GRB  
GRA  
Write to GRB  
Write to GRB  
Time  
GRB  
H'0000  
Duty 0%  
Duty 100%  
FTIOB  
Figure 12.13 PWM Mode Example  
(TOB, TOC, and TOD = 1: initial output values are set to 1)  
Rev. 6.00 Mar. 24, 2006 Page 180 of 412  
REJ09B0142-0600  
Section 12 Timer W  
12.5  
Operation Timing  
12.5.1 TCNT Count Timing  
Figure 12.14 shows the TCNT count timing when the internal clock source is selected. Figure  
12.15 shows the timing when the external clock source is selected. The pulse width of the external  
clock signal must be at least two system clock (φ) cycles; shorter pulses will not be counted  
correctly.  
φ
Internal  
clock  
Rising edge  
TCNT input  
clock  
TCNT  
N
N+1  
N+2  
Figure 12.14 Count Timing for Internal Clock Source  
φ
External  
clock  
Rising edge  
Rising edge  
TCNT input  
clock  
TCNT  
N
N+1  
N+2  
Figure 12.15 Count Timing for External Clock Source  
Rev. 6.00 Mar. 24, 2006 Page 181 of 412  
REJ09B0142-0600  
Section 12 Timer W  
12.5.2 Output Compare Output Timing  
The compare match signal is generated in the last state in which TCNT and GR match (when  
TCNT changes from the matching value to the next value). When the compare match signal is  
generated, the output value selected in TIOR is output at the compare match output pin (FTIOA,  
FTIOB, FTIOC, or FTIOD).  
When TCNT matches GR, the compare match signal is generated only after the next counter clock  
pulse is input.  
Figure 12.16 shows the output compare timing.  
φ
TCNT input  
clock  
N
N
N+1  
TCNT  
GRA to GRD  
Compare  
match signal  
FTIOA to FTIOD  
Figure 12.16 Output Compare Output Timing  
Rev. 6.00 Mar. 24, 2006 Page 182 of 412  
REJ09B0142-0600  
Section 12 Timer W  
12.5.3 Input Capture Timing  
Input capture on the rising edge, falling edge, or both edges can be selected through settings in  
TIOR0 and TIOR1. Figure 12.17 shows the timing when the falling edge is selected. The pulse  
width of the input capture signal must be at least two system clock (φ) cycles; shorter pulses will  
not be detected correctly.  
φ
Input capture  
input  
Input capture  
signal  
N–1  
N
N+1  
N
N+2  
TCNT  
GRA to GRD  
Figure 12.17 Input Capture Input Signal Timing  
12.5.4 Timing of Counter Clearing by Compare Match  
Figure 12.18 shows the timing when the counter is cleared by compare match A. When the GRA  
value is N, the counter counts from 0 to N, and its cycle is N + 1.  
φ
Compare  
match signal  
N
N
H'0000  
TCNT  
GRA  
Figure 12.18 Timing of Counter Clearing by Compare Match  
Rev. 6.00 Mar. 24, 2006 Page 183 of 412  
REJ09B0142-0600  
Section 12 Timer W  
12.5.5 Buffer Operation Timing  
Figures 12.19 and 12.20 show the buffer operation timing.  
φ
Compare  
match signal  
N
N+1  
TCNT  
M
GRC, GRD  
GRA, GRB  
M
Figure 12.19 Buffer Operation Timing (Compare Match)  
φ
Input capture  
signal  
N
N+1  
TCNT  
GRA, GRB  
M
N
N+1  
N
GRC, GRD  
M
Figure 12.20 Buffer Operation Timing (Input Capture)  
Rev. 6.00 Mar. 24, 2006 Page 184 of 412  
REJ09B0142-0600  
Section 12 Timer W  
12.5.6 Timing of IMFA to IMFD Flag Setting at Compare Match  
If a general register (GRA, GRB, GRC, or GRD) is used as an output compare register, the  
corresponding IMFA, IMFB, IMFC, or IMFD flag is set to 1 when TCNT matches the general  
register.  
The compare match signal is generated in the last state in which the values match (when TCNT is  
updated from the matching count to the next count). Therefore, when TCNT matches a general  
register, the compare match signal is generated only after the next TCNT clock pulse is input.  
Figure 12.21 shows the timing of the IMFA to IMFD flag setting at compare match.  
φ
TCNT input  
clock  
TCNT  
N
N
N+1  
GRA to GRD  
Compare  
match signal  
IMFA to IMFD  
IRRTW  
Figure 12.21 Timing of IMFA to IMFD Flag Setting at Compare Match  
Rev. 6.00 Mar. 24, 2006 Page 185 of 412  
REJ09B0142-0600  
Section 12 Timer W  
12.5.7 Timing of IMFA to IMFD Setting at Input Capture  
If a general register (GRA, GRB, GRC, or GRD) is used as an input capture register, the  
corresponding IMFA, IMFB, IMFC, or IMFD flag is set to 1 when an input capture occurs. Figure  
12.22 shows the timing of the IMFA to IMFD flag setting at input capture.  
φ
Input capture  
signal  
TCNT  
N
GRA to GRD  
IMFA to IMFD  
IRRTW  
N
Figure 12.22 Timing of IMFA to IMFD Flag Setting at Input Capture  
12.5.8 Timing of Status Flag Clearing  
When the CPU reads a status flag while it is set to 1, then writes 0 in the status flag, the status flag  
is cleared. Figure 12.23 shows the status flag clearing timing.  
TSRW write cycle  
T1  
T2  
φ
TSRW address  
Address  
Write signal  
IMFA to IMFD  
IRRTW  
Figure 12.23 Timing of Status Flag Clearing by CPU  
Rev. 6.00 Mar. 24, 2006 Page 186 of 412  
REJ09B0142-0600  
Section 12 Timer W  
12.6  
Usage Notes  
The following types of contention or operation can occur in timer W operation.  
1. The pulse width of the input clock signal and the input capture signal must be at least two  
system clock (φ) cycles; shorter pulses will not be detected correctly.  
2. Writing to registers is performed in the T2 state of a TCNT write cycle.  
If counter clear signal occurs in the T2 state of a TCNT write cycle, clearing of the counter  
takes priority and the write is not performed, as shown in figure 12.24. If counting-up is  
generated in the TCNT write cycle to contend with the TCNT counting-up, writing takes  
precedence.  
3. Depending on the timing, TCNT may be incremented by a switch between different internal  
clock sources. When TCNT is internally clocked, an increment pulse is generated from the  
rising edge of an internal clock signal, that is divided system clock (φ). Therefore, as shown in  
figure 12.25 the switch is from a low clock signal to a high clock signal, the switchover is seen  
as a rising edge, causing TCNT to increment.  
4. If timer W enters module standby mode while an interrupt request is generated, the interrupt  
request cannot be cleared. Before entering module standby mode, disable interrupt requests.  
TCNT write cycle  
T1  
T2  
φ
TCNT address  
Address  
Write signal  
Counter clear  
signal  
N
H'0000  
TCNT  
Figure 12.24 Contention between TCNT Write and Clear  
Rev. 6.00 Mar. 24, 2006 Page 187 of 412  
REJ09B0142-0600  
Section 12 Timer W  
Previous clock  
New clock  
Count clock  
TCNT  
N
N+1  
N+2  
N+3  
The change in signal level at clock switching is  
assumed to be a rising edge, and TCNT  
increments the count.  
Figure 12.25 Internal Clock Switching and TCNT Operation  
5. The TOA to TOD bits in TCRW decide the value of the FTIO pin, which is output until the  
first compare match occurs. Once a compare match occurs and this compare match changes the  
values of FTIOA to FTIOD output, the values of the FTIOA to FTIOD pin output and the  
values read from the TOA to TOD bits may differ. Moreover, when the writing to TCRW and  
the generation of the compare match A to D occur at the same timing, the writing to TCRW  
has the priority. Thus, output change due to the compare match is not reflected to the FTIOA  
to FTIOD pins. Therefore, when bit manipulation instruction is used to write to TCRW, the  
values of the FTIOA to FTIOD pin output may result in an unexpected result. When TCRW is  
to be written to while compare match is operating, stop the counter once before accessing to  
TCRW, read the port 8 state to reflect the values of FTIOA to FTIOD output, to TOA to TOD,  
and then restart the counter. Figure 12.26 shows an example when the compare match and the  
bit manipulation instruction to TCRW occur at the same timing.  
Rev. 6.00 Mar. 24, 2006 Page 188 of 412  
REJ09B0142-0600  
Section 12 Timer W  
TCRW has been set to H'06. Compare match B and compare match C are used. The FTIOB pin is the 1 output state,  
and is set to the toggle output or the 0 output on compare match B.  
When BCLR#2, @TCRW is executed to clear the TOC bit (the FTIOC signal is low) and compare match B occurs  
at the same timing as shown below, the H'02 writing to TCRW has priority and compare match B does not drive the  
FTIOB signal low; the FTIOB signal remains high.  
7
6
5
4
3
2
1
0
Bit  
TRCCR1  
CCLR  
CKS2  
CKS1  
CKS0  
TOD  
TOC  
TOB  
TOA  
0
0
0
0
0
1
1
0
Set value  
BCLR#2, @TCRW  
(1) TCRW read operation: Read H'06  
(2) Modify operation: Modify H'06 to H'02  
(3) Write operation to TCRW: Write H'02  
φ
TCRW  
write signal  
Compare match B  
signal  
FTIOB pin  
Expected  
output  
Remains high because the writing 1  
to TOB has priority  
Figure 12.26 When Compare Match and Bit Manipulation Instruction to TCRW  
Occur at the Same Timing  
Rev. 6.00 Mar. 24, 2006 Page 189 of 412  
REJ09B0142-0600  
Section 12 Timer W  
Rev. 6.00 Mar. 24, 2006 Page 190 of 412  
REJ09B0142-0600  
Section 13 Watchdog Timer  
Section 13 Watchdog Timer  
The watchdog timer is an 8-bit timer that can generate an internal reset signal for this LSI if a  
system crash prevents the CPU from writing to the timer counter, thus allowing it to overflow.  
The block diagram of the watchdog timer is shown in figure 13.1.  
CLK  
PSS  
Internal  
oscillator  
TCSRWD  
TCWD  
φ
TMWD  
[Legend]  
Internal reset  
signal  
TCSRWD: Timer control/status register WD  
TCWD:  
PSS:  
Timer counter WD  
Prescaler S  
TMWD:  
Timer mode register WD  
Figure 13.1 Block Diagram of Watchdog Timer  
13.1  
Features  
Selectable from nine counter input clocks.  
Eight clock sources (φ/64, φ/128, φ/256, φ/512, φ/1024, φ/2048, φ/4096, and φ/8192) or the  
internal oscillator can be selected as the timer-counter clock. When the internal oscillator is  
selected, it can operate as the watchdog timer in any operating mode.  
Reset signal generated on counter overflow  
An overflow period of 1 to 256 times the selected clock can be set.  
13.2  
Register Descriptions  
The watchdog timer has the following registers.  
Timer control/status register WD (TCSRWD)  
Timer counter WD (TCWD)  
Timer mode register WD (TMWD)  
Rev. 6.00 Mar. 24, 2006 Page 191 of 412  
REJ09B0142-0600  
Section 13 Watchdog Timer  
13.2.1 Timer Control/Status Register WD (TCSRWD)  
TCSRWD performs the TCSRWD and TCWD write control. TCSRWD also controls the  
watchdog timer operation and indicates the operating state. TCSRWD must be rewritten by using  
the MOV instruction. The bit manipulation instruction cannot be used to change the setting value.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
B6WI  
1
R/W  
Bit 6 Write Inhibit  
The TCWE bit can be written only when the write value  
of the B6WI bit is 0.  
This bit is always read as 1.  
6
TCWE  
0
R/W  
Timer Counter WD Write Enable  
TCWD can be written when the TCWE bit is set to 1.  
When writing data to this bit, the value for bit 7 must be  
0.  
5
4
B4WI  
1
0
R/W  
R/W  
Bit 4 Write Inhibit  
The TCSRWE bit can be written only when the write  
value of the B4WI bit is 0. This bit is always read as 1.  
TCSRWE  
Timer Control/Status Register WD Write Enable  
The WDON and WRST bits can be written when the  
TCSRWE bit is set to 1.  
When writing data to this bit, the value for bit 5 must be  
0.  
3
B2WI  
1
R/W  
Bit 2 Write Inhibit  
This bit can be written to the WDON bit only when the  
write value of the B2WI bit is 0.  
This bit is always read as 1.  
Rev. 6.00 Mar. 24, 2006 Page 192 of 412  
REJ09B0142-0600  
Section 13 Watchdog Timer  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
2
WDON  
0
R/W  
Watchdog Timer On  
TCWD starts counting up when WDON is set to 1 and  
halts when WDON is cleared to 0.  
[Setting condition]  
When 1 is written to the WDON bit while writing 0 to the  
B2WI bit when the TCSRWE bit=1  
[Clearing conditions]  
Reset by RES pin  
When 0 is written to the WDON bit while writing 0 to  
the B2WI when the TCSRWE bit=1  
1
0
B0WI  
1
0
R/W  
R/W  
Bit 0 Write Inhibit  
This bit can be written to the WRST bit only when the  
write value of the B0WI bit is 0. This bit is always read  
as 1.  
WRST  
Watchdog Timer Reset  
[Setting condition]  
When TCWD overflows and an internal reset signal is  
generated  
[Clearing conditions]  
Reset by RES pin  
When 0 is written to the WRST bit while writing 0 to  
the B0WI bit when the TCSRWE bit=1  
13.2.2 Timer Counter WD (TCWD)  
TCWD is an 8-bit readable/writable up-counter. When TCWD overflows from H'FF to H'00, the  
internal reset signal is generated and the WRST bit in TCSRWD is set to 1. TCWD is initialized to  
H'00.  
Rev. 6.00 Mar. 24, 2006 Page 193 of 412  
REJ09B0142-0600  
Section 13 Watchdog Timer  
13.2.3 Timer Mode Register WD (TMWD)  
TMWD selects the input clock.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7 to 4  
All 1  
Reserved  
These bits are always read as 1.  
Clock Select 3 to 0  
3
2
1
0
CKS3  
CKS2  
CKS1  
CKS0  
1
1
1
1
R/W  
R/W  
R/W  
R/W  
Select the clock to be input to TCWD.  
1000: Internal clock: counts on φ/64  
1001: Internal clock: counts on φ/128  
1010: Internal clock: counts on φ/256  
1011: Internal clock: counts on φ/512  
1100: Internal clock: counts on φ/1024  
1101: Internal clock: counts on φ/2048  
1110: Internal clock: counts on φ/4096  
1111: Internal clock: counts on φ8192  
0XXX: Internal oscillator  
For the internal oscillator overflow periods, see section  
20, Electrical Characteristics.  
[Legend]  
X:  
Don't care.  
Rev. 6.00 Mar. 24, 2006 Page 194 of 412  
REJ09B0142-0600  
Section 13 Watchdog Timer  
13.3  
Operation  
The watchdog timer is provided with an 8-bit counter. If 1 is written to WDON while writing 0 to  
B2WI when the TCSRWE bit in TCSRWD is set to 1, TCWD begins counting up. (To operate  
the watchdog timer, two write accesses to TCSRWD are required.) When a clock pulse is input  
after the TCWD count value has reached H'FF, the watchdog timer overflows and an internal reset  
signal is generated. The internal reset signal is output for a period of 256 φosc clock cycles. TCWD  
is a writable counter, and when a value is set in TCWD, the count-up starts from that value. An  
overflow period in the range of 1 to 256 input clock cycles can therefore be set, according to the  
TCWD set value.  
Figure 13.2 shows an example of watchdog timer operation.  
Example: With 30ms overflow period when φ = 4 MHz  
4 × 106  
× 30 × 10–3 = 14.6  
8192  
Therefore, 256 – 15 = 241 (H'F1) is set in TCW.  
TCWD overflow  
H'FF  
H'F1  
TCWD  
count value  
H'00  
Start  
H'F1 written  
to TCWD  
H'F1 written to TCWD  
Reset generated  
Internal reset  
signal  
256 φosc clock cycles  
Figure 13.2 Watchdog Timer Operation Example  
Rev. 6.00 Mar. 24, 2006 Page 195 of 412  
REJ09B0142-0600  
Section 13 Watchdog Timer  
Rev. 6.00 Mar. 24, 2006 Page 196 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
Section 14 Serial Communication Interface 3 (SCI3)  
Serial Communication Interface 3 (SCI3) can handle both asynchronous and clocked synchronous  
serial communication. In the asynchronous method, serial data communication can be carried out  
using standard asynchronous communication chips such as a Universal Asynchronous  
Receiver/Transmitter (UART) or an Asynchronous Communication Interface Adapter (ACIA). A  
function is also provided for serial communication between processors (multiprocessor  
communication function).  
Figure 14.1 shows a block diagram of the SCI3.  
14.1  
Features  
Choice of asynchronous or clocked synchronous serial communication mode  
Full-duplex communication capability  
The transmitter and receiver are mutually independent, enabling transmission and reception to  
be executed simultaneously.  
Double-buffering is used in both the transmitter and the receiver, enabling continuous  
transmission and continuous reception of serial data.  
On-chip baud rate generator allows any bit rate to be selected  
External clock or on-chip baud rate generator can be selected as a transfer clock source.  
Six interrupt sources  
Transmit-end, transmit-data-empty, receive-data-full, overrun error, framing error, and parity  
error.  
Asynchronous mode  
Data length: 7 or 8 bits  
Stop bit length: 1 or 2 bits  
Parity: Even, odd, or none  
Receive error detection: Parity, overrun, and framing errors  
Break detection: Break can be detected by reading the RxD pin level directly in the case of a  
framing error  
Clocked synchronous mode  
Data length: 8 bits  
Receive error detection: Overrun errors detected  
Rev. 6.00 Mar. 24, 2006 Page 197 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
External  
clock  
Internal clock (φ/64, φ/16, φ/4, φ)  
SCK3  
Baud rate generator  
BRC  
BRR  
Clock  
SMR  
SCR3  
SSR  
Transmit/receive  
control circuit  
TXD  
RXD  
TSR  
RSR  
TDR  
RDR  
Interrupt request  
(TEI, TXI, RXI, ERI)  
[Legend]  
RSR:  
Receive shift register  
RDR:  
TSR:  
TDR:  
Receive data register  
Transmit shift register  
Transmit data register  
Serial mode register  
SMR:  
SCR3: Serial control register 3  
SSR:  
BRR:  
BRC:  
Serial status register  
Bit rate register  
Bit rate counter  
Figure 14.1 Block Diagram of SCI3  
14.2  
Input/Output Pins  
Table 14.1 shows the SCI3 pin configuration.  
Table 14.1 Pin Configuration  
Pin Name  
Abbreviation  
SCK3  
I/O  
Function  
SCI3 clock  
I/O  
SCI3 clock input/output  
SCI3 receive data input  
SCI3 transmit data output  
SCI3 receive data input  
SCI3 transmit data output  
RXD  
Input  
Output  
TXD  
Rev. 6.00 Mar. 24, 2006 Page 198 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
14.3  
Register Descriptions  
The SCI3 has the following registers.  
Receive shift register (RSR)  
Receive data register (RDR)  
Transmit shift register (TSR)  
Transmit data register (TDR)  
Serial mode register (SMR)  
Serial control register 3 (SCR3)  
Serial status register (SSR)  
Bit rate register (BRR)  
14.3.1 Receive Shift Register (RSR)  
RSR is a shift register that is used to receive serial data input from the RxD pin and convert it into  
parallel data. When one byte of data has been received, it is transferred to RDR automatically.  
RSR cannot be directly accessed by the CPU.  
14.3.2 Receive Data Register (RDR)  
RDR is an 8-bit register that stores received data. When the SCI3 has received one byte of serial  
data, it transfers the received serial data from RSR to RDR, where it is stored. After this, RSR is  
receive-enabled. As RSR and RDR function as a double buffer in this way, continuous receive  
operations are possible. After confirming that the RDRF bit in SSR is set to 1, read RDR only  
once. RDR cannot be written to by the CPU. RDR is initialized to H'00.  
14.3.3 Transmit Shift Register (TSR)  
TSR is a shift register that transmits serial data. To perform serial data transmission, the SCI3 first  
transfers transmit data from TDR to TSR automatically, then sends the data that starts from the  
LSB to the TXD pin. TSR cannot be directly accessed by the CPU.  
Rev. 6.00 Mar. 24, 2006 Page 199 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
14.3.4 Transmit Data Register (TDR)  
TDR is an 8-bit register that stores data for transmission. When the SCI3 detects that TSR is  
empty, it transfers the transmit data written in TDR to TSR and starts transmission. The double-  
buffered structure of TDR and TSR enables continuous serial transmission. If the next transmit  
data has already been written to TDR during transmission of one-frame data, the SCI3 transfers  
the written data to TSR to continue transmission. To achieve reliable serial transmission, write  
transmit data to TDR only once after confirming that the TDRE bit in SSR is set to 1. TDR is  
initialized to H'FF.  
14.3.5 Serial Mode Register (SMR)  
SMR is used to set the SCI3’s serial transfer format and select the on-chip baud rate generator  
clock source.  
Initial  
Bit  
Bit Name  
Value  
R/W  
Description  
7
COM  
0
R/W  
Communication Mode  
0: Asynchronous mode  
1: Clocked synchronous mode  
6
CHR  
0
R/W  
Character Length (enabled only in asynchronous  
mode)  
0: Selects 8 bits as the data length.  
1: Selects 7 bits as the data length.  
5
4
PE  
0
0
R/W  
R/W  
Parity Enable (enabled only in asynchronous mode)  
When this bit is set to 1, the parity bit is added to  
transmit data before transmission, and the parity bit is  
checked in reception.  
PM  
Parity Mode (enabled only when the PE bit is 1 in  
asynchronous mode)  
0: Selects even parity.  
1: Selects odd parity.  
Rev. 6.00 Mar. 24, 2006 Page 200 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
Initial  
Value  
Bit  
Bit Name  
R/W  
Description  
3
STOP  
0
R/W  
Stop Bit Length (enabled only in asynchronous mode)  
Selects the stop bit length in transmission.  
0: 1 stop bit  
1: 2 stop bits  
For reception, only the first stop bit is checked,  
regardless of the value in the bit. If the second stop bit  
is 0, it is treated as the start bit of the next transmit  
character.  
2
MP  
0
R/W  
Multiprocessor Mode  
When this bit is set to 1, the multiprocessor  
communication function is enabled. The PE bit and  
PM bit settings are invalid. In clocked synchronous  
mode, this bit should be cleared to 0.  
1
0
CKS1  
CKS0  
0
0
R/W  
R/W  
Clock Select 0 and 1  
These bits select the clock source for the on-chip  
baud rate generator.  
00: φ clock (n = 0)  
01: φ/4 clock (n = 1)  
10: φ/16 clock (n = 2)  
11: φ/64 clock (n = 3)  
For the relationship between the bit rate register  
setting and the baud rate, see section 14.3.8, Bit Rate  
Register (BRR). n is the decimal representation of the  
value of n in BRR (see section 14.3.8, Bit Rate  
Register (BRR)).  
14.3.6 Serial Control Register 3 (SCR3)  
SCR3 is a register that enables or disables SCI3 transfer operations and interrupt requests, and is  
also used to select the transfer clock source. For details on interrupt requests, refer to section 14.7,  
Interrupts.  
Initial  
Bit  
Bit Name  
Value  
R/W  
Description  
7
TIE  
0
R/W  
Transmit Interrupt Enable  
When this bit is set to 1, the TXI interrupt request is  
enabled.  
Rev. 6.00 Mar. 24, 2006 Page 201 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
Initial  
Bit  
Bit Name  
Value  
R/W  
Description  
6
RIE  
0
R/W  
Receive Interrupt Enable  
When this bit is set to 1, RXI and ERI interrupt  
requests are enabled.  
5
4
3
TE  
0
0
0
R/W  
R/W  
R/W  
Transmit Enable  
When this bit is set to 1, transmission is enabled.  
Receive Enable  
RE  
When this bit is set to 1, reception is enabled.  
MPIE  
Multiprocessor Interrupt Enable (enabled only when  
the MP bit in SMR is 1 in asynchronous mode)  
When this bit is set to 1, receive data in which the  
multiprocessor bit is 0 is skipped, and setting of the  
RDRF, FER, and OER status flags in SSR is  
prohibited. On receiving data in which the  
multiprocessor bit is 1, this bit is automatically cleared  
and normal reception is resumed. For details, refer to  
section 14.6, Multiprocessor Communication  
Function.  
2
TEIE  
0
R/W  
Transmit End Interrupt Enable  
When this bit is set to 1, the TEI interrupt request is  
enabled.  
1
0
CKE1  
CKE0  
0
0
R/W  
R/W  
Clock Enable 0 and 1  
Selects the clock source.  
Asynchronous mode:  
00: Internal baud rate generator  
01: Internal baud rate generator  
Outputs a clock of the same frequency as the bit  
rate from the SCK3 pin.  
10: External clock  
Inputs a clock with a frequency 16 times the bit  
rate from the SCK3 pin.  
11:Reserved  
Clocked synchronous mode:  
00: Internal clock (SCK3 pin functions as clock output)  
01: Reserved  
10: External clock (SCK3 pin functions as clock input)  
11: Reserved  
Rev. 6.00 Mar. 24, 2006 Page 202 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
14.3.7 Serial Status Register (SSR)  
SSR is a register containing status flags of the SCI3 and multiprocessor bits for transfer. 1 cannot  
be written to flags TDRE, RDRF, OER, PER, and FER; they can only be cleared.  
Initial  
Bit  
Bit Name  
Value  
R/W  
Description  
7
TDRE  
1
R/W  
Transmit Data Register Empty  
Displays whether TDR contains transmit data.  
[Setting conditions]  
When the TE bit in SCR3 is 0  
When data is transferred from TDR to TSR  
[Clearing conditions]  
When 0 is written to TDRE after reading TDRE = 1  
When the transmit data is written to TDR  
6
RDRF  
0
R/W  
Receive Data Register Full  
Indicates that the received data is stored in RDR.  
[Setting condition]  
When serial reception ends normally and receive data  
is transferred from RSR to RDR  
[Clearing conditions]  
When 0 is written to RDRF after reading RDRF =  
1
When data is read from RDR  
5
4
OER  
FER  
0
0
R/W  
R/W  
Overrun Error  
[Setting condition]  
When an overrun error occurs in reception  
[Clearing condition]  
When 0 is written to OER after reading OER = 1  
Framing Error  
[Setting condition]  
When a framing error occurs in reception  
[Clearing condition]  
When 0 is written to FER after reading FER = 1  
Rev. 6.00 Mar. 24, 2006 Page 203 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
Initial  
Bit  
Bit Name  
Value  
R/W  
Description  
3
PER  
0
R/W  
Parity Error  
[Setting condition]  
When a parity error is generated during reception  
[Clearing condition]  
When 0 is written to PER after reading PER = 1  
Transmit End  
2
TEND  
1
R
[Setting conditions]  
When the TE bit in SCR3 is 0  
When TDRE = 1 at transmission of the last bit of a  
1-byte serial transmit character  
[Clearing conditions]  
When 0 is written to TEND after reading TEND = 1  
When the transmit data is written to TDR  
1
0
MPBR  
MPBT  
0
0
R
Multiprocessor Bit Receive  
MPBR stores the multiprocessor bit in the receive  
character data. When the RE bit in SCR3 is cleared to  
0, its previous state is retained.  
R/W  
Multiprocessor Bit Transfer  
MPBT stores the multiprocessor bit to be added to the  
transmit character data.  
Rev. 6.00 Mar. 24, 2006 Page 204 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
14.3.8 Bit Rate Register (BRR)  
BRR is an 8-bit register that adjusts the bit rate. The initial value of BRR is H'FF. Table 14.2  
shows the relationship between the N setting in BRR and the n setting in bits CKS1 and CKS0 of  
SMR in asynchronous mode. Table 14.3 shows the maximum bit rate for each frequency in  
asynchronous mode. The values shown in both tables 14.2 and 14.3 are values in active (high-  
speed) mode. Table 14.4 shows the relationship between the N setting in BRR and the n setting in  
bits CKS1 and CKS0 in SMR in clocked synchronous mode. The values shown in table 14.4 are  
values in active (high-speed) mode. The N setting in BRR and error for other operating  
frequencies and bit rates can be obtained by the following formulas:  
[Asynchronous Mode]  
φ
× 106 – 1  
N =  
64 × 22n–1 × B  
φ × 106  
(N + 1) × B × 64 × 22n–1  
Error (%) =  
– 1 × 100  
[Clocked Synchronous Mode]  
φ
× 106 – 1  
N =  
8 × 22n–1 × B  
[Legend]  
B: Bit rate (bit/s)  
N: BRR setting for baud rate generator (0 N 255)  
φ: Operating frequency (MHz)  
n: CKS1 and CKS0 setting for SMR (0 N 3)  
Rev. 6.00 Mar. 24, 2006 Page 205 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
Table 14.2 Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (1)  
Operating Frequency φ (MHz)  
2
2.097152  
Error  
(%)  
2.4576  
Error  
(%)  
3
Bit Rate  
(bits/s)  
Error  
(%)  
Error  
(%)  
n
1
1
0
0
0
0
0
0
0
0
0
N
n
1
1
0
0
0
0
0
0
0
0
0
N
n
1
1
0
0
0
0
0
0
0
0
0
N
n
1
1
1
0
0
0
0
0
0
0
N
110  
141 0.03  
103 0.16  
207 0.16  
103 0.16  
148 –0.04  
108 0.21  
217 0.21  
108 0.21  
174 –0.26  
127 0.00  
255 0.00  
127 0.00  
212 0.03  
155 0.16  
150  
300  
77  
0.16  
600  
155 0.16  
1200  
2400  
4800  
9600  
19200  
31250  
38400  
[Legend]  
51  
25  
12  
6
0.16  
54  
26  
13  
6
–0.70  
1.14  
63  
31  
15  
7
0.00  
0.00  
0.00  
0.00  
0.00  
22.88  
0.00  
77  
38  
19  
9
0.16  
0.16  
–2.34  
–2.34  
–2.34  
0.00  
0.16  
0.16  
–2.48  
–2.48  
13.78  
4.86  
–6.99  
8.51  
2
2
3
4
1
0.00  
1
1
2
1
–18.62  
1
–14.67  
1
: A setting is available but error occurs  
Operating Frequency φ (MHz)  
4.9152  
Error  
3.6864  
4
5
Bit Rate  
(bits/s)  
Error  
(%)  
Error  
(%)  
Error  
(%)  
n
2
1
1
0
0
0
0
0
0
0
N
n
2
1
1
0
0
0
0
0
0
0
0
N
n
2
1
1
0
0
0
0
0
0
0
0
N
(%)  
n
2
2
1
1
0
0
0
0
0
0
0
N
110  
64  
0.70  
70  
0.03  
86  
0.31  
88  
64  
–0.25  
0.16  
150  
191 0.00  
95 0.00  
191 0.00  
207 0.16  
103 0.16  
207 0.16  
103 0.16  
255 0.00  
127 0.00  
255 0.00  
127 0.00  
300  
129 0.16  
64 0.16  
129 0.16  
600  
1200  
2400  
4800  
9600  
19200  
31250  
38400  
95  
47  
23  
11  
5
0.00  
0.00  
0.00  
0.00  
0.00  
51  
25  
12  
6
0.16  
0.16  
0.16  
–6.99  
0.00  
8.51  
63  
31  
15  
7
0.00  
0.00  
0.00  
0.00  
–1.70  
0.00  
64  
32  
15  
7
0.16  
–1.36  
1.73  
1.73  
0.00  
1.73  
2
3
4
4
0.00  
2
3
3
Rev. 6.00 Mar. 24, 2006 Page 206 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
Table 14.2 Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (2)  
Operating Frequency φ (MHz)  
6
6.144  
7.3728  
8
Bit Rate  
(bit/s)  
Error  
(%)  
Error  
(%)  
Error  
(%)  
Error  
(%)  
n
2
2
1
1
0
0
0
0
0
0
0
N
n
2
2
1
1
0
0
0
0
0
0
0
N
n
2
2
1
1
0
0
0
0
0
0
0
N
n
2
2
1
1
0
0
0
0
0
0
0
N
110  
106 –0.44  
77 0.16  
155 0.16  
77 0.16  
155 0.16  
108 0.08  
79 0.00  
159 0.00  
79 0.00  
159 0.00  
130 –0.07  
95 0.00  
191 0.00  
95 0.00  
191 0.00  
141 0.03  
103 0.16  
207 0.16  
103 0.16  
207 0.16  
103 0.16  
150  
300  
600  
1200  
2400  
4800  
9600  
19200  
31250  
38400  
77  
38  
19  
9
0.16  
79  
39  
19  
9
0.00  
0.00  
0.00  
0.00  
2.40  
0.00  
95  
47  
23  
11  
6
0.00  
0.00  
0.00  
0.00  
5.33  
0.00  
0.16  
51  
25  
12  
7
0.16  
0.16  
0.16  
0.00  
-6.99  
–2.34  
–2.34  
0.00  
5
5
4
–2.34  
4
5
6
Operating Frequency φ (MHz)  
10 12  
9.8304  
N
12.888  
N
Bit Rate  
(bit/s)  
Error  
(%)  
Error  
(%)  
Error  
(%)  
Error  
(%)  
n
2
2
1
1
0
0
0
0
0
0
0
n
2
2
2
1
1
0
0
0
0
0
0
N
n
2
2
2
1
1
0
0
0
0
0
0
N
n
2
2
2
1
1
0
0
0
0
0
0
110  
174 –0.26  
127 0.00  
255 0.00  
127 0.00  
255 0.00  
127 0.00  
177 –0.25  
129 0.16  
212 0.03  
155 0.16  
217 0.08  
159 0.00  
150  
300  
64  
129 0.16  
64 0.16  
129 0.16  
0.16  
77  
155 0.16  
77 0.16  
155 0.16  
0.16  
79  
159 0.00  
79 0.00  
159 0.00  
0.00  
600  
1200  
2400  
4800  
9600  
19200  
31250  
38400  
63  
31  
15  
9
0.00  
0.00  
0.00  
–1.70  
0.00  
64  
32  
15  
9
0.16  
–1.36  
1.73  
0.00  
1.73  
77  
38  
19  
11  
9
0.16  
79  
39  
19  
11  
9
0.00  
0.00  
0.00  
2.40  
0.00  
0.16  
–2.34  
0.00  
7
7
–2.34  
Rev. 6.00 Mar. 24, 2006 Page 207 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
Table 14.2 Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (3)  
Operating Frequency φ (MHz)  
14  
14.7456  
16  
Bit Rate  
(bit/s)  
Error  
(%)  
Error  
(%)  
Error  
(%)  
n
2
2
2
1
1
0
0
0
0
0
N
n
3
2
2
1
1
0
0
0
0
0
0
N
n
3
2
2
1
1
0
0
0
0
0
0
N
110  
248 –0.17  
181 0.16  
64  
0.70  
70  
0.03  
150  
191 0.00  
95 0.00  
191 0.00  
95 0.00  
191 0.00  
207 0.16  
103 0.16  
207 0.16  
103 0.16  
207 0.16  
103 0.16  
300  
90  
181 0.16  
90 0.16  
181 0.16  
0.16  
600  
1200  
2400  
4800  
9600  
19200  
31250  
38400  
[Legend]  
90  
45  
22  
13  
0.16  
–0.93  
–0.93  
0.00  
95  
47  
23  
14  
11  
0.00  
0.00  
0.00  
–1.70  
0.00  
51  
25  
15  
12  
0.16  
0.16  
0.00  
0.16  
—:  
A setting is available but error occurs.  
Table 14.3 Maximum Bit Rate for Each Frequency (Asynchronous Mode)  
Maximum Bit  
Rate (bit/s)  
Maximum Bit  
Rate (bit/s)  
φ (MHz)  
n
0
0
0
0
0
0
0
0
0
0
N
0
0
0
0
0
0
0
0
0
0
φ (MHz)  
7.3728  
8
n
0
0
0
0
0
0
0
0
0
N
0
0
0
0
0
0
0
0
0
2
62500  
230400  
250000  
307200  
312500  
375000  
384000  
437500  
460800  
500000  
2.097152 65536  
2.4576  
76800  
9.8304  
10  
3
93750  
3.6864  
115200  
125000  
153600  
156250  
187500  
192000  
12  
4
12.288  
14  
4.9152  
5
14.7456  
16  
6
6.144  
Rev. 6.00 Mar. 24, 2006 Page 208 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
Table 14.4 BRR Settings for Various Bit Rates (Clocked Synchronous Mode)  
Operating Frequency φ (MHz)  
2
4
8
10  
16  
N
Bit Rate  
(bit/s)  
n
3
2
1
1
0
0
0
0
0
0
0
0
N
n
2
2
1
1
0
0
0
0
0
0
0
0
N
n
3
2
2
1
1
0
0
0
0
0
0
0
0
N
n
N
n
110  
250  
500  
1k  
70  
124  
249  
124  
199  
99  
49  
19  
9
1
249  
124  
249  
99  
49  
24  
9
249  
124  
249  
99  
199  
99  
39  
19  
9
124  
249  
124  
199  
99  
199  
79  
39  
19  
7
3
3
2
2
1
1
0
0
0
0
0
0
0
0
249  
124  
249  
99  
199  
99  
159  
79  
39  
15  
7
2.5k  
5k  
1
10k  
0
25k  
0
50k  
0
100k  
250k  
500k  
1M  
4
0
1
3
0
0*  
1
3
0
4
0*  
1
0
0*  
3
2M  
0*  
1
2.5M  
4M  
0*  
[Legend]  
Blank: No setting is available.  
—:  
A setting is available but error occurs.  
Continuous transfer is not possible.  
*:  
Rev. 6.00 Mar. 24, 2006 Page 209 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
14.4  
Operation in Asynchronous Mode  
Figure 14.2 shows the general format for asynchronous serial communication. One frame consists  
of a start bit (low level), followed by data (in LSB-first order), a parity bit (high or low level), and  
finally stop bits (high level). Inside the SCI3, the transmitter and receiver are independent units,  
enabling full duplex. Both the transmitter and the receiver also have a double-buffered structure,  
so data can be read or written during transmission or reception, enabling continuous data transfer.  
LSB  
MSB  
1
Serial  
data  
Parity  
bit  
Start  
bit  
Mark state  
Transmit/receive data  
7 or 8 bits  
Stop bit  
1 bit  
1 bit,  
1 or  
or none  
2 bits  
One unit of transfer data (character or frame)  
Figure 14.2 Data Format in Asynchronous Communication  
14.4.1 Clock  
Either an internal clock generated by the on-chip baud rate generator or an external clock input at  
the SCK3 pin can be selected as the SCI3’s serial clock source, according to the setting of the  
COM bit in SMR and the CKE0 and CKE1 bits in SCR3. When an external clock is input at the  
SCK3 pin, the clock frequency should be 16 times the bit rate used.  
When the SCI3 is operated on an internal clock, the clock can be output from the SCK3 pin. The  
frequency of the clock output in this case is equal to the bit rate, and the phase is such that the  
rising edge of the clock is in the middle of the transmit data, as shown in figure 14.3.  
Clock  
1
1
0
D0 D1 D2 D3 D4 D5 D6 D7 0/1  
1 character (frame)  
Serial data  
Figure 14.3 Relationship between Output Clock and Transfer Data Phase  
(Asynchronous Mode) (Example with 8-Bit Data, Parity, Two Stop Bits)  
Rev. 6.00 Mar. 24, 2006 Page 210 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
14.4.2 SCI3 Initialization  
Follow the flowchart as shown in figure 14.4 to initialize the SCI3. When the TE bit is cleared to  
0, the TDRE flag is set to 1. Note that clearing the RE bit to 0 does not initialize the contents of  
the RDRF, PER, FER, and OER flags, or the contents of RDR. When the external clock is used in  
asynchronous mode, the clock must be supplied even during initialization.  
[1] Set the clock selection in SCR3.  
Be sure to clear bits RIE, TIE, TEIE,  
and MPIE, and bits TE and RE, to 0.  
Start initialization  
When the clock output is selected in  
asynchronous mode, clock is output  
immediately after CKE1 and CKE0  
settings are made. When the clock  
output is selected at reception in  
clocked synchronous mode, clock is  
output immediately after CKE1, CKE0,  
and RE are set to 1.  
Clear TE and RE bits in SCR3 to 0  
Set CKE1 and CKE0 bits in SCR3  
Set data transfer format in SMR  
[1]  
[2]  
[3]  
[2] Set the data transfer format in SMR.  
Set value in BRR  
Wait  
[3] Write a value corresponding to the bit  
rate to BRR. Not necessary if an  
external clock is used.  
No  
1-bit interval elapsed?  
Yes  
[4] Wait at least one bit interval, then set  
the TE bit or RE bit in SCR3 to 1. RE  
settings enable the RXD pin to be  
used. For transmission, set the TXD bit  
in PMR1 to 1 to enable the TXD output  
pin to be used. Also set the RIE, TIE,  
TEIE, and MPIE bits, depending on  
whether interrupts are required. In  
asynchronous mode, the bits are  
Set TE and RE bits in  
[4]  
SCR3 to 1, and set RIE, TIE, TEIE,  
and MPIE bits. For transmit (TE=1),  
also set the TxD bit in PMR1.  
marked at transmission and idled at  
reception to wait for the start bit.  
<Initialization completion>  
Figure 14.4 Sample SCI3 Initialization Flowchart  
Rev. 6.00 Mar. 24, 2006 Page 211 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
14.4.3 Data Transmission  
Figure 14.5 shows an example of operation for transmission in asynchronous mode. In  
transmission, the SCI3 operates as described below.  
1. The SCI3 monitors the TDRE flag in SSR. If the flag is cleared to 0, the SCI3 recognizes that  
data has been written to TDR, and transfers the data from TDR to TSR.  
2. After transferring data from TDR to TSR, the SCI3 sets the TDRE flag to 1 and starts  
transmission. If the TIE bit is set to 1 at this time, a TXI interrupt request is generated.  
Continuous transmission is possible because the TXI interrupt routine writes next transmit data  
to TDR before transmission of the current transmit data has been completed.  
3. The SCI3 checks the TDRE flag at the timing for sending the stop bit.  
4. If the TDRE flag is 0, the data is transferred from TDR to TSR, the stop bit is sent, and then  
serial transmission of the next frame is started.  
5. If the TDRE flag is 1, the TEND flag in SSR is set to 1, the stop bit is sent, and then the “mark  
state” is entered, in which 1 is output. If the TEIE bit in SCR3 is set to 1 at this time, a TEI  
interrupt request is generated.  
6. Figure 14.6 shows a sample flowchart for transmission in asynchronous mode.  
Start  
bit  
Transmit  
data  
Parity Stop Start  
Transmit  
data  
Parity Stop  
Mark  
state  
bit  
bit bit  
bit  
bit  
1
0
D0 D1  
D7 0/1  
1
0
D0 D1  
1 frame  
D7 0/1  
1
1
Serial  
data  
1 frame  
TDRE  
TEND  
LSI  
TXI interrupt  
TDRE flag  
cleared to 0  
TXI interrupt request generated  
TEI interrupt request  
generated  
operation request  
generated  
User  
processing  
Data written  
to TDR  
Figure 14.5 Example SCI3 Operation in Transmission in Asynchronous Mode  
(8-Bit Data, Parity, One Stop Bit)  
Rev. 6.00 Mar. 24, 2006 Page 212 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
Start transmission  
[1] Read SSR and check that the TDRE  
flag is set to 1, then write transmit  
data to TDR. When data is written to  
TDR, the TDRE flag is automaticaly  
cleared to 0.  
[1]  
Read TDRE flag in SSR  
[2] To continue serial transmission,  
read 1 from the TDRE flag to  
confirm that writing is possible, then  
write data to TDR. When data is  
written to TDR, the TDRE flag is  
automaticaly cleared to 0.  
No  
TDRE = 1  
Yes  
Write transmit data to TDR  
[3] To output a break in serial  
transmission, after setting PCR to 1  
and PDR to 0, clear TxD in PMR1 to  
0, then clear the TE bit in SCR3 to  
0.  
Yes  
[2]  
All data transmitted?  
No  
Read TEND flag in SSR  
No  
No  
TEND = 1  
Yes  
[3]  
Break output?  
Yes  
Clear PDR to 0 and set PCR to 1  
Clear TE bit in SCR3 to 0  
<End>  
Figure 14.6 Sample Serial Transmission Flowchart (Asynchronous Mode)  
Rev. 6.00 Mar. 24, 2006 Page 213 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
14.4.4 Serial Data Reception  
Figure 14.7 shows an example of operation for reception in asynchronous mode. In serial  
reception, the SCI operates as described below.  
1. The SCI3 monitors the communication line. If a start bit is detected, the SCI3 performs  
internal synchronization, receives data in RSR, and checks the parity bit and stop bit.  
2. If an overrun error occurs (when reception of the next data is completed while the RDRF flag  
is still set to 1), the OER bit in SSR is set to 1. If the RIE bit in SCR3 is set to 1 at this time, an  
ERI interrupt request is generated. Receive data is not transferred to RDR.  
3. If a parity error is detected, the PER bit in SSR is set to 1 and receive data is transferred to  
RDR. If the RIE bit in SCR3 is set to 1 at this time, an ERI interrupt request is generated.  
4. If a framing error is detected (when the stop bit is 0), the FER bit in SSR is set to 1 and receive  
data is transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an ERI interrupt  
request is generated.  
5. If reception is completed successfully, the RDRF bit in SSR is set to 1, and receive data is  
transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an RXI interrupt request is  
generated. Continuous reception is possible because the RXI interrupt routine reads the receive  
data transferred to RDR before reception of the next receive data has been completed.  
Start  
bit  
Receive  
data  
Parity Stop Start  
Receive  
data  
Parity Stop Mark state  
bit  
bit bit  
bit  
bit  
(idle state)  
1
0
D0 D1  
D7 0/1  
1
0
D0 D1  
1 frame  
D7 0/1  
0
1
Serial  
data  
1 frame  
RDRF  
FER  
LSI  
operation  
RXI request RDRF  
cleared to 0  
0 stop bit  
detected  
ERI request in  
response to  
framing error  
User  
processing  
RDR data read  
Framing error  
processing  
Figure 14.7 Example SCI3 Operation in Reception in Asynchronous Mode  
(8-Bit Data, Parity, One Stop Bit)  
Rev. 6.00 Mar. 24, 2006 Page 214 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
Table 14.5 shows the states of the SSR status flags and receive data handling when a receive error  
is detected. If a receive error is detected, the RDRF flag retains its state before receiving data.  
Reception cannot be resumed while a receive error flag is set to 1. Accordingly, clear the OER,  
FER, PER, and RDRF bits to 0 before resuming reception. Figure 14.8 shows a sample flowchart  
for serial data reception.  
Table 14.5 SSR Status Flags and Receive Data Handling  
SSR Status Flag  
RDRF*  
OER  
FER  
0
PER  
Receive Data  
Lost  
Receive Error Type  
Overrun error  
1
0
0
1
1
0
1
1
0
0
1
1
0
1
0
0
1
0
1
1
1
1
Transferred to RDR  
Transferred to RDR  
Lost  
Framing error  
0
Parity error  
1
Overrun error + framing error  
Overrun error + parity error  
Framing error + parity error  
0
Lost  
1
Transferred to RDR  
Lost  
1
Overrun error + framing error  
+ parity error  
Note:  
*
The RDRF flag retains the state it had before data reception.  
Rev. 6.00 Mar. 24, 2006 Page 215 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
[1] Read the OER, PER, and FER flags in  
SSR to identify the error. If a receive  
error occurs, performs the appropriate  
error processing.  
Start reception  
Read OER, PER, and  
FER flags in SSR  
[1]  
[2] Read SSR and check that RDRF = 1,  
then read the receive data in RDR. The  
RDRF flag is cleared automatically.  
[3] To continue serial reception, before the  
stop bit for the current frame is received,  
read the RDRF flag and read RDR.  
The RDRF flag is cleared automatically.  
[4] If a receive error occurs, read the OER,  
PER, and FER flags in SSR to identify  
the error. After performing the  
Yes  
OER+PER+FER = 1  
[4]  
No  
Error processing  
(Continued on next page)  
[2]  
Read RDRF flag in SSR  
appropriate error processing, ensure that  
the OER, PER, and FER flags are all  
cleared to 0. Reception cannot be  
resumed if any of these flags are set to  
1. In the case of a framing error, a break  
can be detected by reading the value of  
the input port corresponding to the RxD  
pin.  
No  
RDRF = 1  
Yes  
Read receive data in RDR  
Yes  
All data received?  
No  
[3]  
(A)  
Clear RE bit in SCR3 to 0  
<End>  
Figure 14.8 Sample Serial Data Reception Flowchart (Asynchronous mode) (1)  
Rev. 6.00 Mar. 24, 2006 Page 216 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
[4]  
Error processing  
No  
No  
OER = 1  
Yes  
Overrun error processing  
FER = 1  
Yes  
Yes  
Break?  
No  
Framing error processing  
No  
PER = 1  
Yes  
Parity error processing  
(A)  
Clear OER, PER, and  
FER flags in SSR to 0  
<End>  
Figure 14.8 Sample Serial Reception Data Flowchart (2)  
Rev. 6.00 Mar. 24, 2006 Page 217 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
14.5  
Operation in Clocked Synchronous Mode  
Figure 14.9 shows the general format for clocked synchronous communication. In clocked  
synchronous mode, data is transmitted or received synchronous with clock pulses. A single  
character in the transmit data consists of the 8-bit data starting from the LSB. In clocked  
synchronous serial communication, data on the transmission line is output from one falling edge of  
the serial clock to the next. In clocked synchronous mode, the SCI3 receives data in synchronous  
with the rising edge of the serial clock. After 8-bit data is output, the transmission line holds the  
MSB state. In clocked synchronous mode, no parity or multiprocessor bit is added. Inside the  
SCI3, the transmitter and receiver are independent units, enabling full-duplex communication  
through the use of a common clock. Both the transmitter and the receiver also have a double-  
buffered structure, so data can be read or written during transmission or reception, enabling  
continuous data transfer.  
8-bit  
One unit of transfer data (character or frame)  
*
*
Synchronization  
clock  
LSB  
Bit 0  
MSB  
Bit 7  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Serial data  
Don't care  
* High except in continuous transfer  
Don't care  
Note:  
Figure 14.9 Data Format in Clocked Synchronous Communication  
14.5.1 Clock  
Either an internal clock generated by the on-chip baud rate generator or an external  
synchronization clock input at the SCK3 pin can be selected, according to the setting of the COM  
bit in SMR and CKE0 and CKE1 bits in SCR3. When the SCI3 is operated on an internal clock,  
the serial clock is output from the SCK3 pin. Eight serial clock pulses are output in the transfer of  
one character, and when no transfer is performed the clock is fixed high.  
14.5.2 SCI3 Initialization  
Before transmitting and receiving data, the SCI3 should be initialized as described in a sample  
flowchart in figure 14.4.  
Rev. 6.00 Mar. 24, 2006 Page 218 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
14.5.3 Serial Data Transmission  
Figure 14.10 shows an example of SCI3 operation for transmission in clocked synchronous mode.  
In serial transmission, the SCI3 operates as described below.  
1. The SCI3 monitors the TDRE flag in SSR, and if the flag is 0, the SCI recognizes that data has  
been written to TDR, and transfers the data from TDR to TSR.  
2. The SCI3 sets the TDRE flag to 1 and starts transmission. If the TIE bit in SCR3 is set to 1 at  
this time, a transmit data empty interrupt (TXI) is generated.  
3. 8-bit data is sent from the TxD pin synchronized with the output clock when output clock  
mode has been specified, and synchronized with the input clock when use of an external clock  
has been specified. Serial data is transmitted sequentially from the LSB (bit 0), from the TXD  
pin.  
4. The SCI checks the TDRE flag at the timing for sending the MSB (bit 7).  
5. If the TDRE flag is cleared to 0, data is transferred from TDR to TSR, and serial transmission  
of the next frame is started.  
6. If the TDRE flag is set to 1, the TEND flag in SSR is set to 1, and the TDRE flag maintains  
the output state of the last bit. If the TEIE bit in SCR3 is set to 1 at this time, a TEI interrupt  
request is generated.  
7. The SCK3 pin is fixed high.  
Figure 14.11 shows a sample flowchart for serial data transmission. Even if the TDRE flag is  
cleared to 0, transmission will not start while a receive error flag (OER, FER, or PER) is set to 1.  
Make sure that the receive error flags are cleared to 0 before starting transmission.  
Serial  
clock  
Serial  
data  
Bit 0  
Bit 1  
Bit 7  
Bit 0  
Bit 1  
Bit 6  
Bit 7  
1 frame  
1 frame  
TDRE  
TEND  
LSI  
TXI interrupt  
TDRE flag  
cleared to 0  
TXI interrupt request generated  
TEI interrupt request  
generated  
operation request  
generated  
User  
processing  
Data written  
to TDR  
Figure 14.10 Example of SCI3 Operation in Transmission in Clocked Synchronous Mode  
Rev. 6.00 Mar. 24, 2006 Page 219 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
Start transmission  
[1] Read SSR and check that the TDRE  
flag is set to 1, then write transmit data  
to TDR. When data is written to TDR,  
the TDRE flag is automatically cleared  
to 0 and clocks are output to start the  
data transmission.  
[2] To continue serial transmission, be  
sure to read 1 from the TDRE flag to  
confirm that writing is possible, then  
write data to TDR.  
[1]  
Read TDRE flag in SSR  
TDRE = 1  
No  
Yes  
Write transmit data to TDR  
When data is written to TDR, the TDRE  
Yes  
All data transmitted?  
No  
[2]  
Read TEND flag in SSR  
No  
TEND = 1  
Yes  
Clear TE bit in SCR3 to 0  
<End>  
Figure 14.11 Sample Serial Transmission Flowchart (Clocked Synchronous Mode)  
Rev. 6.00 Mar. 24, 2006 Page 220 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
14.5.4 Serial Data Reception (Clocked Synchronous Mode)  
Figure 14.12 shows an example of SCI3 operation for reception in clocked synchronous mode. In  
serial reception, the SCI3 operates as described below.  
1. The SCI3 performs internal initialization synchronous with a synchronous clock input or  
output, starts receiving data.  
2. The SCI3 stores the received data in RSR.  
3. If an overrun error occurs (when reception of the next data is completed while the RDRF flag  
in SSR is still set to 1), the OER bit in SSR is set to 1. If the RIE bit in SCR3 is set to 1 at this  
time, an ERI interrupt request is generated, receive data is not transferred to RDR, and the  
RDRF flag remains to be set to 1.  
4. If reception is completed successfully, the RDRF bit in SSR is set to 1, and receive data is  
transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an RXI interrupt request is  
generated.  
Serial  
clock  
Serial  
data  
Bit 7  
Bit 0  
Bit 7  
Bit 0  
Bit 1  
Bit 6  
Bit 7  
1 frame  
1 frame  
RDRF  
OER  
LSI  
RXI interrupt RDRF flag  
RXI interrupt request generated  
ERI interrupt request  
operation  
request  
generated  
cleared  
to 0  
generated by  
overrun error  
User  
processing  
RDR data read  
RDR data has  
not been read  
(RDRF = 1)  
Overrun error  
processing  
Figure 14.12 Example of SCI3 Reception Operation in Clocked Synchronous Mode  
Rev. 6.00 Mar. 24, 2006 Page 221 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
Reception cannot be resumed while a receive error flag is set to 1. Accordingly, clear the OER,  
FER, PER, and RDRF bits to 0 before resuming reception. Figure 14.13 shows a sample flowchart  
for serial data reception.  
Start reception  
[1] Read the OER flag in SSR to determine  
if there is an error. If an overrun error  
[1]  
has occurred, execute overrun error  
processing.  
Read OER flag in SSR  
[2] Read SSR and check that the RDRF  
flag is set to 1, then read the receive  
data in RDR. When data is read from  
RDR, the RDRF flag is automatically  
cleared to 0.  
[3] To continue serial reception, before the  
MSB (bit 7) of the current frame is  
received, reading the RDRF flag and  
reading RDR should be finished. When  
data is read from RDR, the RDRF flag  
is automatically cleared to 0.  
Yes  
OER = 1  
No  
[4]  
Error processing  
(Continued below)  
Read RDRF flag in SSR  
[2]  
No  
RDRF = 1  
Yes  
[4] If an overrun error occurs, read the  
OER flag in SSR, and after performing  
the appropriate error processing, clear  
the OER flag to 0. Reception cannot be  
Read receive data in RDR  
Yes  
All data received?  
[3]  
No  
Clear RE bit in SCR3 to 0  
<End>  
[4]  
Error processing  
Overrun error processing  
Clear OER flag in SSR to 0  
<End>  
Figure 14.13 Sample Serial Reception Flowchart (Clocked Synchronous Mode)  
Rev. 6.00 Mar. 24, 2006 Page 222 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
14.5.5 Simultaneous Serial Data Transmission and Reception  
Figure 14.14 shows a sample flowchart for simultaneous serial transmit and receive operations.  
The following procedure should be used for simultaneous serial data transmit and receive  
operations. To switch from transmit mode to simultaneous transmit and receive mode, after  
checking that the SCI3 has finished transmission and the TDRE and TEND flags are set to 1, clear  
TE to 0. Then simultaneously set TE and RE to 1 with a single instruction. To switch from receive  
mode to simultaneous transmit and receive mode, after checking that the SCI3 has finished  
reception, clear RE to 0. Then after checking that the RDRF and receive error flags (OER, FER,  
and PER) are cleared to 0, simultaneously set TE and RE to 1 with a single instruction.  
Start transmission/reception  
Read TDRE flag in SSR  
TDRE = 1  
[1] Read SSR and check that the TDRE  
flag is set to 1, then write transmit  
data to TDR.  
[1]  
When data is written to TDR, the  
TDRE flag is automatically cleared  
to 0.  
No  
[2] Read SSR and check that the RDRF  
flag is set to 1, then read the receive  
data in RDR.  
Yes  
When data is read from RDR, the  
RDRF flag is automatically cleared  
to 0.  
Write transmit data to TDR  
[3] To continue serial transmission/  
reception, before the MSB (bit 7) of  
the current frame is received, finish  
reading the RDRF flag, reading  
RDR. Also, before the MSB (bit 7)  
of the current frame is transmitted,  
read 1 from the TDRE flag to confirm  
that writing is possible. Then write  
data to TDR.  
Read OER flag in SSR  
Yes  
OER = 1  
No  
[4]  
Error processing  
[2]  
Read RDRF flag in SSR  
When data is written to TDR, the  
TDRE flag is automatically cleared  
to 0. When data is read from RDR,  
the RDRF flag is automatically  
cleared to 0.  
No  
RDRF = 1  
Yes  
[4] If an overrun error occurs, read the  
OER flag in SSR, and after  
performing the appropriate error  
processing, clear the OER flag to 0.  
Transmission/reception cannot be  
resumed if the OER flag is set to 1.  
For overrun error processing, see  
figure 14.13.  
Read receive data in RDR  
Yes  
All data received?  
No  
[3]  
Clear TE and RE bits in SCR to 0  
<End>  
Figure 14.14 Sample Flowchart of Simultaneous Serial Transmit and Receive Operations  
(Clocked Synchronous Mode)  
Rev. 6.00 Mar. 24, 2006 Page 223 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
14.6  
Multiprocessor Communication Function  
Use of the multiprocessor communication function enables data transfer between a number of  
processors sharing communication lines by asynchronous serial communication using the  
multiprocessor format, in which a multiprocessor bit is added to the transfer data. When  
multiprocessor communication is performed, each receiving station is addressed by a unique ID  
code. The serial communication cycle consists of two component cycles; an ID transmission cycle  
that specifies the receiving station, and a data transmission cycle. The multiprocessor bit is used to  
differentiate between the ID transmission cycle and the data transmission cycle. If the  
multiprocessor bit is 1, the cycle is an ID transmission cycle; if the multiprocessor bit is 0, the  
cycle is a data transmission cycle. Figure 14.15 shows an example of inter-processor  
communication using the multiprocessor format. The transmitting station first sends the ID code  
of the receiving station with which it wants to perform serial communication as data with a 1  
multiprocessor bit added. It then sends transmit data as data with a 0 multiprocessor bit added.  
When data with a 1 multiprocessor bit is received, the receiving station compares that data with its  
own ID. The station whose ID matches then receives the data sent next. Stations whose IDs do not  
match continue to skip data until data with a 1 multiprocessor bit is again received.  
The SCI3 uses the MPIE bit in SCR3 to implement this function. When the MPIE bit is set to 1,  
transfer of receive data from RSR to RDR, error flag detection, and setting the SSR status flags,  
RDRF, FER, and OER to 1, are inhibited until data with a 1 multiprocessor bit is received. On  
reception of a receive character with a 1 multiprocessor bit, the MPBR bit in SSR is set to 1 and  
the MPIE bit is automatically cleared, thus normal reception is resumed. If the RIE bit in SCR3 is  
set to 1 at this time, an RXI interrupt is generated.  
When the multiprocessor format is selected, the parity bit setting is rendered invalid. All other bit  
settings are the same as those in normal asynchronous mode. The clock used for multiprocessor  
communication is the same as that in normal asynchronous mode.  
Rev. 6.00 Mar. 24, 2006 Page 224 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
Transmitting  
station  
Serial transmission line  
Receiving  
station A  
Receiving  
station B  
Receiving  
station C  
Receiving  
station D  
(ID = 01)  
(ID = 02)  
(ID = 03)  
(ID = 04)  
Serial  
data  
H'01  
H'AA  
(MPB = 1)  
(MPB = 0)  
ID transmission cycle =  
receiving station  
specification  
Data transmission cycle =  
Data transmission to  
receiving station specified by ID  
[Legend]  
MPB: Multiprocessor bit  
Figure 14.15 Example of Communication Using Multiprocessor Format  
(Transmission of Data H'AA to Receiving Station A)  
Rev. 6.00 Mar. 24, 2006 Page 225 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
14.6.1 Multiprocessor Serial Data Transmission  
Figure 14.16 shows a sample flowchart for multiprocessor serial data transmission. For an ID  
transmission cycle, set the MPBT bit in SSR to 1 before transmission. For a data transmission  
cycle, clear the MPBT bit in SSR to 0 before transmission. All other SCI3 operations are the same  
as those in asynchronous mode.  
Start transmission  
[1] Read SSR and check that the TDRE  
flag is set to 1, set the MPBT bit in  
[1]  
Read TDRE flag in SSR  
SSR to 0 or 1, then write transmit  
data to TDR. When data is written to  
TDR, the TDRE flag is automatically  
cleared to 0.  
No  
TDRE = 1  
[2] To continue serial transmission, be  
sure to read 1 from the TDRE flag to  
confirm that writing is possible, then  
write data to TDR. When data is  
written to TDR, the TDRE flag is  
automatically cleared to 0.  
[3] To output a break in serial  
transmission, set the port PCR to 1,  
clear PDR to 0, then clear the TE bit  
in SCR3 to 0.  
Yes  
Set MPBT bit in SSR  
Write transmit data to TDR  
Yes  
[2]  
All data transmitted?  
No  
Read TEND flag in SSR  
No  
No  
TEND = 1  
Yes  
Break output?  
Yes  
[3]  
Clear PDR to 0 and set PCR to 1  
Clear TE bit in SCR3 to 0  
<End>  
Figure 14.16 Sample Multiprocessor Serial Transmission Flowchart  
Rev. 6.00 Mar. 24, 2006 Page 226 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
14.6.2 Multiprocessor Serial Data Reception  
Figure 14.17 shows a sample flowchart for multiprocessor serial data reception. If the MPIE bit in  
SCR3 is set to 1, data is skipped until data with a 1 multiprocessor bit is received. On receiving  
data with a 1 multiprocessor bit, the receive data is transferred to RDR. An RXI interrupt request  
is generated at this time. All other SCI3 operations are the same as in asynchronous mode. Figure  
14.18 shows an example of SCI3 operation for multiprocessor format reception.  
Start reception  
[1] Set the MPIE bit in SCR3 to 1.  
[2] Read OER and FER in SSR to check for  
Set MPIE bit in SCR3 to 1  
[1]  
[2]  
errors. Receive error processing is  
performed in cases where a receive error  
occurs.  
Read OER and FER flags in SSR  
[3] Read SSR and check that the RDRF flag  
is set to 1, then read the receive data in  
RDR and compare it with this station’s  
ID.  
Yes  
FER+OER = 1  
No  
Read RDRF flag in SSR  
[3]  
If the data is not this station’s ID, set the  
MPIE bit to 1 again.  
When data is read from RDR, the RDRF  
flag is automatically cleared to 0.  
[4] Read SSR and check that the RDRF flag  
is set to 1, then read the data in RDR.  
[5] If a receive error occurs, read the OER  
and FER flags in SSR to identify the  
error. After performing the appropriate  
error processing, ensure that the OER  
and FER flags are all cleared to 0.  
Reception cannot be resumed if either of  
these flags is set to 1.  
No  
No  
RDRF = 1  
Yes  
Read receive data in RDR  
This station's ID?  
Yes  
Read OER and FER flags in SSR  
In the case of a framing error, a break  
can be detected by reading the RxD pin  
value.  
Yes  
FER+OER = 1  
No  
Read RDRF flag in SSR  
[4]  
No  
[5]  
RDRF = 1  
Error processing  
Yes  
(Continued on  
next page)  
Read receive data in RDR  
Yes  
All data received?  
No  
[A]  
Clear RE bit in SCR3 to 0  
<End>  
Figure 14.17 Sample Multiprocessor Serial Reception Flowchart (1)  
Rev. 6.00 Mar. 24, 2006 Page 227 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
[5]  
Error processing  
OER = 1  
No  
Yes  
Overrun error processing  
No  
FER = 1  
Yes  
Yes  
Break?  
No  
[A]  
Framing error processing  
Clear OER, and  
FER flags in SSR to 0  
<End>  
Figure 14.17 Sample Multiprocessor Serial Reception Flowchart (2)  
Rev. 6.00 Mar. 24, 2006 Page 228 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
Start  
bit  
Receive  
data (ID1)  
Stop Start  
bit bit  
Receive data  
(Data1)  
Stop Mark state  
bit  
(idle state)  
MPB  
1
MPB  
0
1
0
D0 D1  
D7  
1
0
D0 D1  
D7  
1
1
Serial  
data  
1 frame  
1 frame  
MPIE  
RDRF  
RDR  
value  
ID1  
LSI  
operation  
RXI interrupt  
request  
MPIE cleared  
to 0  
RDRF flag  
cleared  
to 0  
RXI interrupt request  
is not generated, and  
RDR retains its state  
User  
processing  
RDR data read  
When data is not  
this station's ID,  
MPIE is set to 1  
again  
(a) When data does not match this receiver's ID  
Start  
bit  
Receive  
data (ID2)  
Stop Start  
bit bit  
Receive data  
(Data2)  
Stop Mark state  
bit  
(idle state)  
MPB  
1
MPB  
0
Serial  
data  
1
0
D0 D1  
D7  
1
0
D0 D1  
D7  
1
1
1 frame  
1 frame  
MPIE  
RDRF  
RDR  
value  
ID1  
ID2  
Data2  
LSI  
operation  
RXI interrupt  
request  
MPIE cleared  
to 0  
RDRF flag  
cleared  
to 0  
RXI interrupt RDRF flag  
request  
cleared  
to 0  
User  
processing  
RDR data read  
When data is  
this station's  
ID, reception  
is continued  
RDR data read  
MPIE set to 1  
again  
(b) When data matches this receiver's ID  
Figure 14.18 Example of SCI3 Operation in Reception Using Multiprocessor Format  
(Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit)  
Rev. 6.00 Mar. 24, 2006 Page 229 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
14.7  
Interrupts  
The SCI3 creates the following six interrupt requests: transmission end, transmit data empty,  
receive data full, and receive errors (overrun error, framing error, and parity error). Table 14.6  
shows the interrupt sources.  
Table 14.6 SCI3 Interrupt Requests  
Interrupt Requests  
Receive Data Full  
Transmit Data Empty  
Transmission End  
Receive Error  
Abbreviation  
Interrupt Sources  
RXI  
TXI  
TEI  
ERI  
Setting RDRF in SSR  
Setting TDRE in SSR  
Setting TEND in SSR  
Setting OER, FER, and PER in SSR  
The initial value of the TDRE flag in SSR is 1. Thus, when the TIE bit in SCR3 is set to 1 before  
transferring the transmit data to TDR, a TXI interrupt request is generated even if the transmit data  
is not ready. The initial value of the TEND flag in SSR is 1. Thus, when the TEIE bit in SCR3 is  
set to 1 before transferring the transmit data to TDR, a TEI interrupt request is generated even if  
the transmit data has not been sent. It is possible to make use of the most of these interrupt  
requests efficiently by transferring the transmit data to TDR in the interrupt routine. To prevent  
the generation of these interrupt requests (TXI and TEI), set the enable bits (TIE and TEIE) that  
correspond to these interrupt requests to 1, after transferring the transmit data to TDR.  
14.8  
Usage Notes  
14.8.1 Break Detection and Processing  
When framing error detection is performed, a break can be detected by reading the RxD pin value  
directly. In a break, the input from the RxD pin becomes all 0, setting the FER flag, and possibly  
the PER flag. Note that as the SCI3 continues the receive operation after receiving a break, even if  
the FER flag is cleared to 0, it will be set to 1 again.  
Rev. 6.00 Mar. 24, 2006 Page 230 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
14.8.2 Mark State and Break Sending  
When TE is 0, the TxD pin is used as an I/O port whose direction (input or output) and level are  
determined by PCR and PDR. This can be used to set the TxD pin to mark state (high level) or  
send a break during serial data transmission. To maintain the communication line at mark state  
until TE is set to 1, set both PCR and PDR to 1. As TE is cleared to 0 at this point, the TxD pin  
becomes an I/O port, and 1 is output from the TxD pin. To send a break during serial transmission,  
first set PCR to 1 and PDR to 0, and then clear TE to 0. When TE is cleared to 0, the transmitter is  
initialized regardless of the current transmission state, the TxD pin becomes an I/O port, and 0 is  
output from the TxD pin.  
14.8.3 Receive Error Flags and Transmit Operations (Clocked Synchronous Mode Only)  
Transmission cannot be started when a receive error flag (OER, PER, or FER) is set to 1, even if  
the TDRE flag is cleared to 0. Be sure to clear the receive error flags to 0 before starting  
transmission. Note also that receive error flags cannot be cleared to 0 even if the RE bit is cleared  
to 0.  
14.8.4 Receive Data Sampling Timing and Reception Margin in Asynchronous Mode  
In asynchronous mode, the SCI3 operates on a basic clock with a frequency of 16 times the  
transfer rate. In reception, the SCI3 samples the falling edge of the start bit using the basic clock,  
and performs internal synchronization. Receive data is latched internally at the rising edge of the  
8th pulse of the basic clock as shown in figure 14.19.  
Thus, the reception margin in asynchronous mode is given by formula (1) below.  
1
D – 0.5  
N
M = (0.5 –  
) –  
– (L – 0.5) F × 100(%)  
2N  
... Formula (1)  
Where N: Ratio of bit rate to clock (N = 16)  
D: Clock duty (D = 0.5 to 1.0)  
L: Frame length (L = 9 to 12)  
F: Absolute value of clock rate deviation  
Rev. 6.00 Mar. 24, 2006 Page 231 of 412  
REJ09B0142-0600  
Section 14 Serial Communication Interface 3 (SCI3)  
Assuming values of F (absolute value of clock rate deviation) = 0 and D (clock duty) = 0.5 in  
formula (1), the reception margin can be given by the formula.  
M = {0.5 – 1/(2 × 16)} × 100 [%] = 46.875%  
However, this is only the computed value, and a margin of 20% to 30% should be allowed for in  
system design.  
16 clocks  
8 clocks  
0
7
15 0  
7
15 0  
Internal basic  
clock  
Receive data  
(RxD)  
Start bit  
D0  
D1  
Synchronization  
sampling timing  
Data sampling  
timing  
Figure 14.19 Receive Data Sampling Timing in Asynchronous Mode  
Rev. 6.00 Mar. 24, 2006 Page 232 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
Section 15 I2C Bus Interface (IIC)  
The I2C bus interface conforms to and provides a subset of the Philips I2C bus (inter-IC bus)  
interface functions. The register configuration that controls the I2C bus differs partly from the  
Philips configuration, however.  
15.1  
Features  
Selection of I2C format or clocked synchronous serial format  
I2C bus format: addressing format with acknowledge bit, for master/slave operation  
Clocked synchronous serial format: non-addressing format without acknowledge bit, for  
master operation only  
I2C bus format  
Two ways of setting slave address  
Start and stop conditions generated automatically in master mode  
Selection of acknowledge output levels when receiving  
Automatic loading of acknowledge bit when transmitting  
Wait function in master mode  
A wait can be inserted by driving the SCL pin low after data transfer, excluding  
acknowledgement. The wait can be cleared by clearing the interrupt flag.  
Wait function in slave mode  
A wait request can be generated by driving the SCL pin low after data transfer, excluding  
acknowledgement. The wait request is cleared when the next transfer becomes possible.  
Three interrupt sources  
Data transfer end (including transmission mode transition with I2C bus format and address  
reception after loss of master arbitration)  
Address match: when any slave address matches or the general call address is received in  
slave receive mode  
Stop condition detection  
Selection of 16 internal clocks (in master mode)  
Direct bus drive  
Two pins, SCL and SDA pins function as NMOS open-drain outputs when the bus drive  
function is selected.  
Rev. 6.00 Mar. 24, 2006 Page 233 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
Figure 15.1 shows a block diagram of the I2C bus interface.  
Figure 15.2 shows an example of I/O pin connections to external circuits. The I/O pins are NMOS  
open drains. Set the upper limit of voltage applied to the power supply (VCC) voltage range +  
0.3 V, i.e. 5.8 V.  
φ
PS  
ICCR  
ICMR  
SCL  
Clock  
control  
Noise  
canceler  
Bus state  
decision  
circuit  
ICSR  
ICDRT  
ICDRS  
ICDRR  
Arbitration  
decision  
circuit  
Output data  
control  
circuit  
SDA  
Noise  
canceler  
Address  
comparator  
SAR, SARX  
Interrupt  
request  
Interrupt  
generator  
[Legend]  
ICCR: I2C bus control register  
ICMR: I2C bus mode register  
ICSR: I2C bus status register  
ICDR: I2C bus data register  
SAR: Slave address register  
SARX: Slave address register X  
PS:  
Prescaler  
Figure 15.1 Block Diagram of I2C Bus Interface  
Rev. 6.00 Mar. 24, 2006 Page 234 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
VDD  
VCC  
SCL  
SDA  
SCL  
SDA  
SCL in  
SCL out  
SDA in  
SDA out  
(Master)  
This LSI  
SCL in  
SCL in  
SCL out  
SCL out  
SDA in  
SDA in  
SDA out  
SDA out  
(Slave 1)  
(Slave 2)  
Figure 15.2 I2C Bus Interface Connections (Example: This LSI as Master)  
15.2  
Input/Output Pins  
Table 15.1 summarizes the input/output pins used by the I2C bus interface.  
Table 15.1 I2C Bus Interface Pins  
Name  
Abbreviation  
SCL  
I/O  
I/O  
I/O  
Function  
Serial clock  
Serial data  
IIC serial clock input/output  
IIC serial data input/output  
SDA  
Rev. 6.00 Mar. 24, 2006 Page 235 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
15.3  
Register Descriptions  
The I2C bus interface has the following registers. ICDR, SARX, ICMR, and SAR are allocated to  
one address, and registers that can be accessed depend on the ICE bit in ICCR. When ICE = 0.  
SAR and SARX can be accessed. When ICE = 1, ICMR and ICDR can be accessed.  
I2C bus control register (ICCR)  
I2C bus status register (ICSR)  
I2C bus data register (ICDR)  
I2C bus mode register (ICMR)  
Slave address register (SAR)  
Second slave address register (SARX)  
Timer serial control register (TSCR)  
15.3.1 I2C Bus Data Register (ICDR)  
ICDR is an 8-bit readable/writable register that is used as a transmit data register when  
transmitting and a receive data register when receiving. ICDR is divided internally into a shift  
register (ICDRS), receive buffer (ICDRR), and transmit buffer (ICDRT). Data transfers among the  
three registers are performed automatically in coordination with changes in the bus state, and  
affect the status of internal flags such as TDRE and RDRF. When TDRE is 1 and the transmit  
buffer is empty, TDRE shows that the next transmit data can be written from the CPU. When  
RDRF is 1, it shows that the valid receive data is stored in the receive buffer.  
If I2C is in transmit mode and the next data is in ICDRT (the TDRE flag is 0) following  
transmission/reception of one frame of data using ICDRS, data is transferred automatically from  
ICDRT to ICDRS. If I2C is in receive mode and no previous data remains in ICDRR (the RDRF  
flag is 0) following transmission/reception of one frame of data using ICDRS, data is transferred  
automatically from ICDRS to ICDRR.  
If the number of bits in a frame, excluding the acknowledge bit, is less than 8, transmit data and  
receive data are stored differently. Transmit data should be written justified toward the MSB side  
when MLS = 0, and toward the LSB side when MLS = 1. Receive data bits read from the LSB  
side should be treated as valid when MLS = 0, and bits read from the MSB side when MLS = 1.  
ICDR can be written and read only when the ICE bit is set to 1 in ICCR.  
The value of ICDR is undefined after a reset.  
Rev. 6.00 Mar. 24, 2006 Page 236 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
The TDRE and RDRF flags are set and cleared under the conditions shown below. Setting the  
TDRE and RDRF flags affects the status of the interrupt flags.  
Initial  
Bit  
Bit Name  
Value  
R/W Description  
Transmit Data Register Empty  
[Setting conditions]  
TDRE  
In transmit mode, when a start condition is detected  
in the bus line state after a start condition is issued  
in master mode with the I2C bus format or serial  
format selected  
When transmit mode (TRS = 1) is set without a  
format  
When data is transferred from ICDRT to ICDRS  
When a switch is made from receive mode to  
transmit mode after detection of a start condition  
[Clearing conditions]  
When transmit data is written in ICDR in transmit  
mode  
When a stop condition is detected in the bus line  
state after a stop condition is issued with the I2C  
bus format or serial format selected  
When a stop condition is detected with the I2C bus  
format selected  
In receive mode  
RDRF  
Receive Data Register Full  
[Setting condition]  
When data is transferred from ICDRS to ICDRR  
[Clearing condition]  
When ICDR (ICDRR) receive data is read in receive  
mode  
Rev. 6.00 Mar. 24, 2006 Page 237 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
15.3.2 Slave Address Register (SAR)  
SAR selects the slave address and selects the communication format. SAR can be written and read  
only when the ICE bit is cleared to 0 in ICCR.  
Initial  
Bit  
7
Bit Name  
SVA6  
SVA5  
SVA4  
SVA3  
SVA2  
SVA1  
SVA0  
FS  
Value  
R/W Description  
0
0
0
0
0
0
0
0
R/W Slave Address 6 to 0  
6
R/W Sets a slave address  
5
R/W  
R/W  
R/W  
R/W  
R/W  
4
3
2
1
0
R/W Selects the communication format together with the  
FSX bit in SARX. Refer to table 15.2.  
15.3.3 Second Slave Address Register (SARX)  
SARX stores the second slave address and selects the communication format. SARX can be  
written and read only when the ICE bit is cleared to 0 in ICCR.  
Initial  
Bit  
7
Bit Name  
SVAX6  
SVAX5  
SVAX4  
SVAX3  
SVAX2  
SVAX1  
SVAX0  
FSX  
Value  
R/W Description  
0
0
0
0
0
0
0
0
R/W Slave Address 6 to 0  
6
R/W Sets the second slave address  
5
R/W  
R/W  
R/W  
R/W  
R/W  
4
3
2
1
0
R/W Selects the communication format together with the FS  
bit in SAR. Refer to table 15.2.  
Rev. 6.00 Mar. 24, 2006 Page 238 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
Table 15.2 Communication Format  
SAR  
FS  
0
SARX  
FSX  
0
I2C Transfer Format  
SAR and SARX are used as the slave addresses with the I2C bus  
format.  
0
1
1
1
0
1
Only SAR is used as the slave address with the I2C bus format.  
Only SARX is used as the slave address with the I2C bus format.  
Clock synchronous serial format (SAR and SARX are invalid)  
15.3.4 I2C Bus Mode Register (ICMR)  
The I2C bus mode register (ICMR) sets the transfer format and transfer rate. It can only be  
accessed when the ICE bit in ICCR is 1.  
Initial  
Bit  
Bit Name  
Value  
R/W Description  
7
MLS  
0
R/W MSB-First/LSB-First Select  
0: MSB-first  
1: LSB-first  
Set this bit to 0 when the I2C bus format is used.  
6
WAIT  
0
R/W Wait Insertion Bit  
This bit is valid only in master mode with the I2C bus  
format.  
When WAIT is set to 1, after the fall of the clock for the  
final data bit, the IRIC flag is set to 1 in ICCR, and a  
wait state begins (with SCL at the low level). When the  
IRIC flag is cleared to 0 in ICCR, the wait ends and the  
acknowledge bit is transferred. If WAIT is cleared to 0,  
data and acknowledge bits are transferred  
consecutively with no wait inserted. The IRIC flag in  
ICCR is set to 1 on completion of the acknowledge bit  
transfer, regardless of the WAIT setting.  
5
4
3
CKS2  
CKS1  
CKS0  
0
0
0
R/W Serial Clock Select 2 to 0  
R/W This bit is valid only in master mode.  
R/W These bits select the required transfer rate, together  
with the IICX bit in TSCR. Refer table 15.3.  
Rev. 6.00 Mar. 24, 2006 Page 239 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
Initial  
Bit  
2
Bit Name  
BC2  
Value  
R/W Description  
0
0
0
R/W Bit Counter 2 to 0  
1
BC1  
R/W These bits specify the number of bits to be transferred  
next. With the I2C bus format, the data is transferred  
0
BC0  
R/W  
with one addition acknowledge bit. Bit BC2 to BC0  
settings should be made during an interval between  
transfer frames. If bits BC2 to BC0 are set to a value  
other than 000, the setting should be made while the  
SCL line is low. The value returns to 000 at the end of a  
data transfer, including the acknowledge bit.  
I2C Bus Format  
Clocked Synchronous Mode  
000: 9  
000: 8  
001: 1  
010: 2  
011: 3  
100: 4  
101: 5  
110: 6  
111: 7  
001: 2  
010: 3  
011: 4  
100: 5  
101: 6  
110: 7  
111: 8  
Rev. 6.00 Mar. 24, 2006 Page 240 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
Table 15.3 I2C Transfer Rate  
TSCR  
ICMR  
Bit 4  
Bit 0  
Bit 5  
Bit 3  
Transfer Rate  
IICX  
0
CKS2  
CKS1  
CKS0  
Clock φ = 5 MHz φ = 8 MHz φ = 10 MHz φ = 16 MHz  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
φ/28  
φ/40  
φ/48  
φ/64  
φ/80  
179MHz 286kHz  
357kHz  
250kHz  
208kHz  
156kHz  
125kHz  
571kHz  
400kHz  
333kHz  
250kHz  
200kHz  
160kHz  
0
125kHz  
104kHz  
200kHz  
167kHz  
0
0
78.1kHz 125kHz  
62.5kHz 100kHz  
0
0
φ/100 50.0kHz 80.0kHz 100kHz  
0
φ/112 44.6kHz 71.4kHz 89.3kHz 143kHz  
φ/128 39.1kHz 62.5kHz 78.1kHz 125kHz  
0
1
φ/56  
φ/80  
φ/96  
89.3kHz 143kHz  
62.5kHz 100kHz  
179kHz  
125kHz  
286kHz  
200kHz  
167kHz  
1
1
52.1kHz 83.3kHz 104kHz  
1
φ/128 39.1kHz 62.5kHz 78.1kHz 125kHz  
φ/160 31.3kHz 50.0kHz 62.5kHz 100kHz  
φ/200 25.0kHz 40.0kHz 50.0kHz 80.0kHz  
φ/224 22.3kHz 35.7kHz 44.6kHz 71.4kHz  
φ/256 19.5kHz 31.3kHz 39.1kHz 62.5kHz  
1
1
1
1
Rev. 6.00 Mar. 24, 2006 Page 241 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
15.3.5 I2C Bus Control Register (ICCR)  
I2C bus control register (ICCR) consists of the control bits and interrupt request flags of I2C bus  
interface.  
Initial  
Bit  
Bit Name  
Value  
R/W Description  
7
ICE  
0
R/W I2C Bus Interface Enable  
When this bit is set to 1, the I2C bus interface module is  
enabled to send/receive data and drive the bus since it  
is connected to the SCL and SDA pins. ICMR and  
ICDR can be accessed.  
When this bit is cleared, the module is halted and  
separated from the SCL and SDA pins. SAR and SARX  
can be accessed.  
6
IEIC  
0
R/W I2C Bus Interface Interrupt Enable  
When this bit is 1, Interrupts are enabled by IRIC.  
R/W Master/Slave Select  
5
4
MST  
TRS  
0
0
R/W Transmit/Receive Select  
00: Slave receive mode  
01: Slave transmit mode  
10: Master receive mode  
11: Master transmit mode  
Both these bits will be cleared by hardware when they  
lose in a bus contention in master mode of the I2C bus  
format. In slave receive mode, the R/W bit in the first  
frame immediately after the start automatically sets  
these bits in receive mode or transmit mode by using  
hardware. The settings can be made again for the bits  
that were set/cleared by hardware, by reading these  
bits. When the TRS bit is intended to change during a  
transfer, the bit will not be switched until the frame  
transfer is completed, including acknowledgement.  
Rev. 6.00 Mar. 24, 2006 Page 242 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
Initial  
Value  
Bit  
Bit Name  
R/W Description  
3
ACKE  
0
R/W Acknowledge Bit Judgement Selection  
0: The value of the acknowledge bit is ignored, and  
continuous transfer is performed. The value of the  
received acknowledge bit is not indicated by the  
ACKB bit, which is always 0.  
1: If the acknowledge bit is 1, continuous transfer is  
interrupted.  
2
BBSY  
0
R/W Bus Busy  
In slave mode, reading the BBSY flag enables to  
confirm whether the I2C bus is occupied or released.  
The BBSY flag is set to 0 when the SDA level changes  
from high to low under the condition of SCl = high,  
assuming that the start condition has been issued. The  
BBSY flag is cleared to 0 when the SDA level changes  
from low to high under the condition of SCl = high,  
assuming that the start condition has been issued.  
Writing to the BBSY flag in slave mode is disabled.  
In master mode, the BBSY flag is used to issue start  
and stop conditions. Write 1 to BBSY and 0 to SCP to  
issue a start condition. Follow this procedure when also  
re-transmitting a start condition. To issue a start/stop  
condition, use the MOV instruction. The I2C bus  
interface must be set in master transmit mode before  
the issue of a start condition.  
Rev. 6.00 Mar. 24, 2006 Page 243 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
Initial  
Bit  
Bit Name  
Value  
R/W Description  
1
IRIC  
0
R/W I2C Bus Interface Interrupt Request Flag  
Also see table 15.4.  
[Setting conditions]  
In master mode with I2C bus format  
When a start condition is detected in the bus line  
state after a start condition is issued  
When a wait is inserted between the data and  
acknowledge bit when WAIT = 1  
At the rising edge of the ninth transfer/receive clock,  
and at the falling edge of the eighth transfer/receive  
clock when a wait is inseted  
When a slave address is received after bus  
arbitration is lost (when the AL flag is set to1)  
When 1 is received as the acknowledge bit when  
the ACKE bit is 1 (when the ACKB bit is set to 1)  
I2C bus format slave mode  
When the slave address (SVA, SVAX) matches  
(when the AAS and AASX flags are set to 1) and at  
the end of data transfer up to the subsequent  
retransmission start condition or stop condition  
detection (FS = 0 and when the TDRE or RDRF flag  
is set to 1)  
When the general call address is detected (when  
the ADZ flag is set to 1) and at the end of data  
transfer up to the subsequent retransmission start  
condition or stop condition detection (when the  
TDRE or RDRF flag is set to 1)  
When 1 is received as the acknowledge bit when  
the ACKE bit is 1 (when the ACKB bit is set to 1)  
When a stop condition is detected (when the STOP  
or ESTP flag is set to 1)  
Clocked synchronous serial format  
At the end of data transfer (when the TDRE or  
RDRF flag is set to 1)  
When a start condition is detected with serial format  
selected  
[Clearing condition]  
When 0 is written in IRIC after reading IRIC = 1  
Rev. 6.00 Mar. 24, 2006 Page 244 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
Initial  
Value  
Bit  
Bit Name  
R/W Description  
Start Condition/Stop Condition Prohibit  
0
SCP  
1
W
The SCP bit controls the issue of start/stop conditions  
in master mode.  
To issue a start condition, write 1 in BBSY and 0 in  
SCP. A retransmit start condition is issued in the same  
way. To issue a stop condition, write 0 in BBSY and 0 in  
SCP. This bit is always read as 1. If 1 is written, the  
data is not stored.  
15.3.6 I2C Bus Status Register (ICSR)  
The I2C bus status register (ICSR) consists of status flags. Also see table 15.4.  
Initial  
Bit  
Bit Name  
Value  
R/W Description  
7
ESTP  
0
R/W  
Error Stop Condition Detection Flag  
This bit is valid in I2C bus format slave mode.  
[Setting condition]  
When a stop condition is detected during frame  
transfer.  
[Clearing conditions]  
When 0 is written in ESTP after reading ESTP = 1  
When the IRIC flag is cleared to 0  
6
STOP  
0
R/W Normal Stop Condition Detection Flag  
This bit is valid in I2C bus format slave mode.  
[Setting condition]  
When a stop condition is detected during frame  
transfer.  
[Clearing conditions]  
When 0 is written in STOP after reading STOP = 1  
When the IRIC flag is cleared to 0  
Rev. 6.00 Mar. 24, 2006 Page 245 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
Initial  
Bit  
Bit Name  
Value  
R/W Description  
5
IRTR  
0
R/W I2C Bus Interface Continuous Transmission/Reception  
Interrupt Request Flag  
[Setting conditions]  
In I2C bus interface slave mode  
When the TDRE or RDRF flag is set to 1 when  
AASX = 1  
In I2C bus interface other modes  
When the TDRE or RDRF flag is set to 1  
[Clearing conditions]  
When 0 is written in IRTR after reading IRTR = 1  
When the IRIC flag is cleared to 0  
4
AASX  
0
R/W Second Slave Address Recognition Flag  
[Setting condition]  
When the second slave address is detected in slave  
receive mode and FSX = 0  
[Clearing conditions]  
When 0 is written in AASX after reading AASX = 1  
When a start condition is detected  
In master mode  
3
AL  
0
R/W Arbitration Lost  
[Setting condition]  
When bus arbitration was lost in master mode.  
[Clearing conditions]  
When 0 is written in AL after reading AL = 1  
When ICDR data is written (transmit mode) or read  
(receive mode)  
Rev. 6.00 Mar. 24, 2006 Page 246 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
Initial  
Value  
Bit  
Bit Name  
R/W Description  
2
AAS  
0
R/W Slave Address Recognition Flag  
[Setting condition]  
When the slave address or general call address is  
detected in slave receive mode and FS = 0.  
[Clearing conditions]  
When ICDR data is written (transmit mode) or read  
(receive mode)  
When 0 is written in AAS after reading AAS = 1  
In master mode  
1
ADZ  
0
R/W General Call Address Recognition Flag  
This bit is valid in I2C bus format slave receive mode.  
[Setting condition]  
When the general call address is detected in slave  
receive mode and FSX = 0 or FS = 0.  
[Clearing conditions]  
When ICDR data is written (transmit mode) or read  
(receive mode)  
When 0 is written in ADZ after reading ADZ = 1  
In master mode  
0
ACKB  
0
R/W Acknowledge Bit  
In transmit mode, the acknowledge data that are  
returned by the receive device is loaded. In receive  
mode, the acknowledge data originally specified to this  
bit is sent to the transmit device, after receiving data.  
When this bit is read, the loaded value (return value  
from the receive device) is read at transmission and the  
specified value is read at reception.  
Rev. 6.00 Mar. 24, 2006 Page 247 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
15.3.7 Timer Serial Control Register (TSCR)  
The timer serial control register (TSCR) is an 8-bit readable/writable register that controls the  
operating modes.  
Initial  
Bit  
Bit Name  
Value  
R/W Description  
7 to 2  
All 1  
Reserved  
This bit is always read as 1 and cannot be modified.  
1
0
IICRST  
IICX  
0
0
R/W I2C Control Unit Reset  
Resets the control unit except for the I2C registers.  
When a hang up occurs due to illegal communication  
during I2C operation, setting IICRST to 1 can set a port  
or reset the I2C control unit without initializing registers.  
R/W I2C Transfer Rate Select  
Selects the transfer rate in master mode, together with  
bits CKS2 to CKS0 in ICMR. Refer to table 15.3.  
When, with the I2C bus format selected, IRIC is set to 1 and an interrupt is generated, other flags  
must be checked in order to identify the source that set IRIC to 1. Although each source has a  
corresponding flag, caution is needed at the end of a transfer. When the TDRE or RDRF internal  
flag is set, the readable IRTR flag may or may not be set. Even when the IRIC flag and IRTR flag  
are set, the TDRE or RDRF internal flag may not be set. Table 15.4 shows the relationship  
between the flags and the transfer states.  
Rev. 6.00 Mar. 24, 2006 Page 248 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
Table 15.4 Flags and Transfer States  
MST  
1/0  
1
TRS  
1/0  
1
BBSY ESTP STOP IRTR AASX AL  
AAS  
0
ADZ  
0
ACKB State  
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
1
0
0
Idle state (flag clearing required)  
Start condition issuance  
Start condition established  
Master mode wait  
0
0
0
0
1
1
0
0
0
0
1
1/0  
1/0  
0
0
0
0
0/1  
0/1  
0
1
0
0
0
Master mode transmit/receive end  
Arbitration lost  
0
1/0  
0
1/0  
1
1/0  
0
0
0
0
SAR match by first frame in slave  
mode  
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
1
0
0
0
General call address match  
SARX match  
0
0
1/0  
0/1  
Slave mode transmit/receive end  
(except after SARX match)  
0
0
0
1/0  
1
1
1
0
0
0
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
Slave mode transmit/receive end  
(after SARX match)  
0
0
1
1/0  
1/0  
1/0  
0/1  
Stop condition detected  
15.4  
Operation  
The I2C bus interface has serial and I2C bus formats.  
15.4.1 I2C Bus Data Format  
The I2C bus formats are addressing formats and an acknowledge bit is inserted. These are shown  
in figures 15.3. Figure 15.5 shows the I2C bus timing. The first frame following a start condition  
always consists of 8 bits.  
Rev. 6.00 Mar. 24, 2006 Page 249 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
(a) I2C bus format (FS = 0 or FSX = 0)  
S
1
SLA  
7
R/W  
A
1
DATA  
n
A
1
A/A  
P
1
1
1
n: transfer bit count  
(n = 1 to 8)  
m: transfer frame count  
(m 1)  
1
m
(b) I2C bus format (start condition retransmission, FS = 0 or FSX = 0)  
S
1
SLA  
7
R/W  
A
1
DATA  
n1  
A/A  
S
1
SLA  
7
R/W  
A
1
DATA  
n2  
A/A  
P
1
1
1
1
1
1
m1  
1
m2  
n1 and n2: transfer bit count (n1 and n2 = 1 to 8)  
m1 and m2: transfer frame count (m1 and m2 1)  
Figure 15.3 I2C Bus Data Formats (I2C Bus Formats)  
SDA  
1-7  
8
9
1-7  
8
9
1-7  
8
9
SCL  
S
SLA  
R/W  
A
DATA  
A
DATA  
A/A  
P
Figure 15.4 I2C Bus Timing  
[Legend]  
S: Start condition. The master device drives SDA from high to low while SCL is high  
SLA: Slave address  
R/W: Indicates the direction of data transfer: from the slave device to the master device when  
R/W is 1, or from the master device to the slave device when R/W is 0  
A:  
Acknowledge. The receiving device drives SDA  
DATA: Transferred data  
P:  
Stop condition. The master device drives SDA from low to high while SCL is high  
Rev. 6.00 Mar. 24, 2006 Page 250 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
15.4.2 Master Transmit Operation  
When data is set to ICDR during the period between the execution of an instruction to issue a start  
condition and the creation of the start condition, the data may not be output normally, because  
there will be a contention between a generation of a start condition and an output of data.  
Although data H'FF is to be sent to the ICDR register by a dummy write operation before an issue  
of a stop condition, the H'FF data may be output by the dummy write operation if the execution of  
the instruction to issue a stop condition is delayed. To prevent these problems, follow the  
flowchart shown below during the master transmit operation.  
In I2C bus format master transmit mode, the master device outputs the transmit clock and transmit  
data, and the slave device returns an acknowledge signal. The transmission procedure and  
operations synchronize with the ICDR writing are described below.  
1. Set the ICE bit in ICCR to 1. Set bits MLS, WAIT, and CKS2 to CKS0 in ICMR, and bit IICX  
in TSCR, according to the operating mode.  
2. Read the BBSY flag in ICCR to confirm that the bus is free.  
3. Set bits MST and TRS to 1 in ICCR to select master transmit mode.  
4. Write 1 to BBSY and 0 to SCP. This changes SDA from high to low when SCL is high, and  
generates the start condition.  
5. Then IRIC and IRTR flags are set to 1. If the IEIC bit in ICCR has been set to 1, an interrupt  
request is sent to the CPU.  
6. Write the data (slave address + R/W) to ICDR. With the I2C bus format (when the FS bit in  
SAR or the FSX bit in SARX is 0), the first frame data following the start condition indicates  
the 7-bit slave address and transmit/receive direction. As indicating the end of the transfer, and  
so the IRIC flag is cleared to 0. After writing ICDR, clear IRIC continuously not to execute  
other interrupt handling routine. If one frame of data has been transmitted before the IRIC  
clearing, it can not be determine the end of transmission. The master device sequentially sends  
the transmission clock and the data written to ICDR using the timing shown in figure 15.5. The  
selected slave device (i.e. the slave device with the matching slave address) drives SDA low at  
the 9th transmit clock pulse and returns an acknowledge signal.  
7. When one frame of data has been transmitted, the IRIC flag is set to 1 at the rise of the 9th  
transmit clock pulse. After one frame has been transmitted SCL is automatically fixed low in  
synchronization with the internal clock until the next transmit data is written.  
8. Read the ACKB bit in ICSR to confirm that ACKB is cleared to 0. When the slave device has  
not acknowledged (ACKB bit is 1), operate the step [12] to end transmission, and retry the  
transmit operation.  
Rev. 6.00 Mar. 24, 2006 Page 251 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
9. Write the transmit data to ICDR. As indicating the end of the transfer, and so the IRIC flag is  
cleared to 0. Perform the ICDR write and the IRIC flag clearing sequentially, just as in the step  
[6]. Transmission of the next frame is performed in synchronization with the internal clock.  
10. When one frame of data has been transmitted, the IRIC flag is set to 1 at the rise of the 9th  
transmit clock pulse. After one frame has been transmitted SCL is automatically fixed low in  
synchronization with the internal clock until the next transmit data is written.  
11. Read the ACKB bit in ICSR. Confirm that the slave device has been acknowledged (ACKB bit  
is 0). When there is data to be transmitted, go to the step [9] to continue next transmission.  
When the slave device has not acknowledged (ACKB bit is set to 1), operate the step [12] to  
end transmission.  
12. Clear the IRIC flag to 0. And write 0 to BBSY and SCP in ICCR. This changes SDA from low  
to high when SCL is high, and generates the stop condition.  
Start condition generation  
SCL  
(master output)  
1
2
3
4
5
6
7
8
9
1
2
Slave address  
Bit 4 Bit 3  
SDA  
(master output)  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
Bit 7  
Bit 6  
[7]  
Slave address  
Data 1  
R/W  
SDA  
(slave output)  
[5]  
A
IRIC  
IRTR  
ICDR  
Data 1  
Address + R/W  
*
[9] IRIC clearance  
ICDR writing  
prohibited  
Normal  
operation  
[9] ICDR write  
[6] IRIC clearance  
[6] ICDR write  
User processing [4] Write BBSY = 1  
and SCP = 0  
(start condition  
issuance)  
Note: * Data write timing in ICDR  
Figure 15.5 Master Transmit Mode Operation Timing Example  
(MLS = WAIT = 0)  
Rev. 6.00 Mar. 24, 2006 Page 252 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
15.4.3 Master Receive Operation  
The data buffer of the I2C module can receive data consecutively since it consists of ICDRR and  
ICDRS. However, if the completion of receiving the last data is delayed, there will be a contention  
between the instruction to issue a stop condition and the SCl clock output to receive the next data,  
and may generate unnecessary clocks or fix the output level of the SDA line as low. The switch  
timing of the ACKB bit in the ICSR register should be controlled because the acknowledge bit  
does not return acknowledgement after receiving the last data in master mode. These problems can  
be avoided by using the WAIT function. Follow the flowchart shown below.  
In master receive mode, the master device outputs the receive clock, receives data, and returns an  
acknowledge signal. The slave device transmits data. The reception procedure and operations with  
the wait function synchronized with the ICDR read operation to receive data in sequence are  
shown below.  
1. Clear the TRS bit in ICCR to 0 to switch from transmit mode to receive mode, and set the  
WAIT bit in ICMR to 1. Also clear the bit in ICSR to ACKB 0 (acknowledge data setting).  
2. When ICDR is read (dummy data read), reception is started, and the receive clock is output,  
and data received, in synchronization with the internal clock. In order to detect wait operation,  
set the IRIC flag in ICCR must be cleared to 0. After reading ICDR, clear IRIC continuously  
not to execute other interrupt handling routine. If one frame of data has been received before  
the IRIC clearing, it can not be determine the end of reception.  
3. The IRIC flag is set to 1 at the fall of the 8th receive clock pulse. If the IEIC bit in ICCR has  
been set to 1, an interrupt request is sent to the CPU. SCL is automatically fixed low in  
synchronization with the internal clock until the IRIC flag clearing. If the first frame is the last  
receive data, execute the step [10] to halt reception.  
4. Clear the IRIC flag to release from the Wait State. The master device outputs the 9th clock and  
drives SDA at the 9th receive clock pulse to return an acknowledge signal.  
5. When one frame of data has been received, the IRIC flag in ICCR and the IRTR flag in ICSR  
are set to 1 at the rise of the 9th receive clock pulse. The master device outputs SCL clock to  
receive next data.  
6. Read ICDR.  
7. Clear the IRIC flag to detect next wait operation. Data reception process from the step [5] to  
[7] should be executed during one byte reception period after IRIC flag clearing in the step [4]  
or [9] to release wait status.  
8. The IRIC flags set to 1 at the fall of 8th receive clock pulse. SCL is automatically fixed low in  
synchronization with the internal clock until the IRIC flag clearing. If this frame is the last  
receive data, execute the step [10] to halt reception.  
Rev. 6.00 Mar. 24, 2006 Page 253 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
9. Clear the IRIC flag in ICCR to cancel wait operation. The master device outputs the 9th clock  
and drives SDA at the 9th receive clock pulse to return an ackowledge signal. Data can be  
received continuously by repeating the step [5] to [9].  
10. Set the ACKB bit in ICSR to 1 so as to return “No acknowledge” data. Also set the TRS bit in  
ICCR to 1 to switch from receive mode to transmit mode.  
11. Clear IRIC flag to 0 to release from the Wait State.  
12. When one frame of data has been received, the IRIC flag is set to 1 at the rise of the 9th  
receive clock pulse.  
13. Clear the WAIT bit to 0 to switch from wait mode to no wait mode. Read ICDR and the IRIC  
flag to 0. Clearing of the IRIC flag should be after the WAIT = 0. If the WAIT bit is cleared to  
0 after clearing the IRIC flag and then an instruction to issue a stop condition is executed, the  
stop condition cannot be issued because the output level of the SDA line is fixed as low.  
14. Clear the BBSY bit and SCP bit to 0. This changes SDA from low to high when SCL is high,  
and generates the stop condition.  
Master tansmit mode  
Master receive mode  
SCL  
(master output)  
9
1
2
3
4
5
6
7
8
9
1
2
3
4
5
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
Data 1  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3  
Data 2  
SDA  
A
(slave output)  
[3]  
[5]  
SDA  
(master output)  
A
IRIC  
IRTR  
ICDR  
Data 1  
User processing  
[2] ICDR read  
(dummy read)  
[1] TRS cleared to 0  
WAIT set to 1  
ACKB cleared to 0  
[2] IRIC clearance  
[7] IRIC clearance  
[4] IRIC clearance [6] ICDR read  
(Data 1)  
Figure 15.6 Master Receive Mode Operation Timing Example (1)  
(MLS = ACKB = 0, WAIT = 1)  
Rev. 6.00 Mar. 24, 2006 Page 254 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
SCL  
(master output)  
8
9
1
2
3
4
5
6
7
8
9
1
2
Bit 0  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bit 7  
Bit 6  
SDA  
(slave output)  
Data 2  
Data 3  
Data 4  
[8]  
[5]  
[8]  
[5]  
SDA  
(master output)  
A
A
IRIC  
IRTR  
ICDR  
Data 3  
Data 1  
Data 2  
[6] ICDR read  
(Data 3)  
[7] IRIC clearance  
User processing  
[6] ICDR read  
(Data 2)  
[9] IRIC clearance  
[9] IRIC clearance  
[7] IRIC clearance  
Figure 15.6 Master Receive Mode Operation Timing Example (2)  
(MLS = ACKB = 0, WAIT = 1)  
15.4.4 Slave Receive Operation  
In slave receive mode, the master device outputs the transmit clock and transmit data, and the  
slave device returns an acknowledge signal. The reception procedure and operations in slave  
receive mode are described below.  
1. Set the ICE bit in ICCR to 1. Set the MLS bit in ICMR and the MST and TRS bits in ICCR  
according to the operating mode.  
2. When the start condition output by the master device is detected, the BBSY flag in ICCR is set  
to 1.  
3. When the slave address matches in the first frame following the start condition, the device  
operates as the slave device specified by the master device. If the 8th data bit (R/W) is 0, the  
TRS bit in ICCR remains cleared to 0, and slave receive operation is performed.  
4. At the 9th clock pulse of the receive frame, the slave device drives SDA low and returns an  
acknowledge signal. At the same time, the IRIC flag in ICCR is set to 1. If the IEIC bit in  
ICCR has been set to 1, an interrupt request is sent to the CPU. If the RDRF internal flag has  
been cleared to 0, it is set to 1, and the receive operation continues. If the RDRF internal flag  
has been set to 1 and ninth clock is received for the following data receival, the slave device  
drives SCL low from the falling edge of the receive clock until data is read into ICDR.  
Rev. 6.00 Mar. 24, 2006 Page 255 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
5. Read ICDR and clear the IRIC flag in ICCR to 0. The RDRF flag is cleared to 0.  
Receive operations can be performed continuously by repeating steps [4] and [5]. When SDA is  
changed from low to high when SCL is high, and the stop condition is detected, the BBSY flag in  
ICCR is cleared to 0.  
Start condition issuance  
SCL  
(master output)  
1
2
3
4
5
6
7
8
9
1
2
High  
SCL  
(slave output)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bit 7  
Bit 6  
SDA  
(master output)  
Slave address  
R/W  
Data 1  
[4]  
SDA  
(slave output)  
A
RDRF  
IRIC  
Interrupt  
request  
generation  
ICDRS  
ICDRR  
Address + R/W  
Address + R/W  
User processing  
[5] ICDR read  
[5] IRIC clearance  
Figure 15.7 Example of Slave Receive Mode Operation Timing (1)  
(MLS = ACKB = 0)  
Rev. 6.00 Mar. 24, 2006 Page 256 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
SCL  
(master output)  
7
8
9
1
2
3
4
5
6
7
8
9
SCL  
(slave output)  
SDA  
(master output)  
Bit 1  
Bit 0  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
[4]  
[4]  
Data  
1
Data 2  
SDA  
(slave output)  
A
RDRF  
IRIC  
Interrupt  
request  
generation  
Interrupt  
request  
generation  
ICDRS  
ICDRR  
Data  
Data  
1
1
Data 2  
Data  
2
User processing  
[5] ICDR read [5] IRIC clearance  
Figure 15.8 Example of Slave Receive Mode Operation Timing (2)  
(MLS = ACKB = 0)  
Rev. 6.00 Mar. 24, 2006 Page 257 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
15.4.5 Slave Transmit Operation  
In slave transmit mode, the slave device outputs the transmit data, while the master device outputs  
the receive clock and returns an acknowledge signal. The transmission procedure and operations  
in slave transmit mode are described below.  
1. Set the ICE bit in ICCR to 1. Set the MLS bit in ICMR and the MST and TRS bits in ICCR  
according to the operating mode.  
2. When the slave address matches in the first frame following detection of the start condition,  
the slave device drives SDA low at the 9th clock pulse and returns an acknowledge signal. At  
the same time, the IRIC flag in ICCR is set to 1. If the IEIC bit in ICCR has been set to 1, an  
interrupt request is sent to the CPU. If the 8th data bit (R/W) is 1, the TRS bit in ICCR is set to  
1, and the mode changes to slave transmit mode automatically. The TDRE internal flag is set  
to 1. The slave device drives SCL low from the fall of the transmit clock until ICDR data is  
written.  
3. After clearing the IRIC flag to 0, write data to ICDR. The TDRE internal flag is cleared to 0.  
The written data is transferred to ICDRS, and the TDRE internal flag and the IRIC and IRTR  
flags are set to 1 again. After clearing the IRIC flag to 0, write the next data to ICDR. The  
slave device sequentially sends the data written into ICDR in accordance with the clock output  
by the master device at the timing shown in figure 15.9.  
4. When one frame of data has been transmitted, the IRIC flag in ICCR is set to 1 at the rise of  
the 9th transmit clock pulse. If the TDRE internal flag has been set to 1, this slave device  
drives SCL low from the fall of the transmit clock until data is written to ICDR. The master  
device drives SDA low at the 9th clock pulse, and returns an acknowledge signal. As this  
acknowledge signal is stored in the ACKB bit in ICSR, this bit can be used to determine  
whether the transfer operation was performed normally. When the TDRE internal flag is 0, the  
data written into ICDR is transferred to ICDRS, transmission is started, and the TDRE internal  
flag and the IRIC and IRTR flags are set to 1 again.  
5. To continue transmission, clear the IRIC flag to 0, then write the next data to be transmitted  
into ICDR. The TDRE flag is cleared to 0.  
Transmit operations can be performed continuously by repeating steps [4] and [5]. To end  
transmission, write H'FF to ICDR. When SDA is changed from low to high when SCL is high, and  
the stop condition is detected, the BBSY flag in ICCR is cleared to 0.  
Rev. 6.00 Mar. 24, 2006 Page 258 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
Slave receive mode  
Slave transmit mode  
SCL  
(master output)  
8
9
1
2
3
4
5
6
7
8
9
1
2
SCL  
(slave output)  
SDA  
(slave output)  
Bit  
7
Bit  
6
Bit  
5
Bit  
4
Bit  
3
Bit  
2
Bit  
1
Bit  
0
Bit  
7
Bit  
6
A
Data 1  
Data 2  
[2]  
SDA  
(master output)  
A
R/W  
TDRE  
IRIC  
[3]  
Interrupt  
request  
Interrupt  
request  
Interrupt  
request  
generation  
generation  
generation  
ICDRT  
ICDRS  
Data 1  
Data 2  
Data 1  
Data 2  
[3] IRIC  
clearance  
[3] ICDR  
write  
[3] ICDR  
write  
[5] IRIC  
clearance  
[5] ICDR  
write  
User processing  
Figure 15.9 Example of Slave Transmit Mode Operation Timing  
(MLS = 0)  
FS = 1 and FSX = 1  
S
1
DATA  
8
DATA  
n
P
1
n: transfer bit count  
(n = 1 to 8)  
1
m
m: transfer frame count  
(m 1)  
Figure 15.10 I2C Bus Data Format (Serial Format)  
15.4.6 Clock Synchronous Serial Format  
Serial format is a non-addressing format that has no acknowledge bit. Figure 15.10 shows this  
format.  
Rev. 6.00 Mar. 24, 2006 Page 259 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
15.4.7 IRIC Setting Timing and SCL Control  
The interrupt request flag (IRIC) is set at different times depending on the WAIT bit in ICMR, the  
FS bit in SAR, and the FSX bit in SARX. If the TDRE or RDRF internal flag is set to 1, SCL is  
automatically held low after one frame has been transferred; this timing is synchronized with the  
internal clock. Figure 15.11 shows the IRIC set timing and SCL control.  
(a) When WAIT = 0, and FS = 0 or FSX = 0 (I2C bus format, no wait)  
SCL  
7
8
9
1
1
7
8
A
SDA  
IRIC  
User processing  
Clear IRIC  
Write to ICDR (transmit)  
or read ICDR (receive)  
(b) When WAIT = 1, and FS = 0 or FSX = 0 (I2C bus format, wait inserted)  
SCL  
8
9
1
1
SDA  
IRIC  
8
A
User processing  
Clear  
IRIC  
Clear Write to ICDR (transmit)  
IRIC or read ICDR (receive)  
(c) When FS = 1 and FSX = 1 (synchronous serial format)  
SCL  
7
8
1
1
SDA  
IRIC  
7
8
User processing  
Clear IRIC  
Write to ICDR (transmit)  
or read ICDR (receive)  
Figure 15.11 IRIC Setting Timing and SCL Control  
Rev. 6.00 Mar. 24, 2006 Page 260 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
15.4.8 Noise Canceler  
The logic levels at the SCL and SDA pins are routed through noise cancelers before being latched  
internally. Figure 15.12 shows a block diagram of the noise canceler circuit.  
The noise canceler consists of two cascaded latches and a match detector. The SCL (or SDA)  
input signal is sampled on the system clock, but is not passed forward to the next circuit unless the  
outputs of both latches agree. If they do not agree, the previous value is held.  
Sampling clock  
C
C
SCL or  
SDA input  
signal  
Internal  
SCL or  
SDA  
D
Q
D
Q
Match  
detector  
Latch  
Latch  
signal  
System clock  
period  
Sampling  
clock  
Figure 15.12 Block Diagram of Noise Canceler  
Rev. 6.00 Mar. 24, 2006 Page 261 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
15.4.9 Sample Flowcharts  
Figures 15.13 to 15.16 show sample flowcharts for using the I2C bus interface in each mode.  
Start  
Initialize  
[1] Initialization  
Read BBSY in ICCR  
BBSY = 0?  
[2] Test the status of the SCL and SDA lines.  
No  
Yes  
Set MST = 1 and  
TRS = 1 in ICCR  
[3] Select master transmit mode.  
[4] Start condition issuance  
Write BBSY =1 and  
SCP = 0 in ICCR  
Read IRIC in ICCR  
IRIC = 1?  
[5] Wait for a start condition  
No  
Yes  
Write transmit data in ICDR  
[6] Set transmit data for the first byte  
(slave address + R/W).  
Clear IRIC in ICCR  
(After writing ICDR, clear IRIC  
continuously)  
Read IRIC in ICCR  
[7] Wait for 1 byte to be transmitted.  
No  
IRIC = 1?  
Yes  
Read ACKB in ICSR  
[8] Test the acknowledge bit,  
transferred from slave device.  
No  
No  
ACKB = 0?  
Yes  
Transmit mode?  
Yes  
Master receive mode  
[9] Set transmit data for the second and  
subsequent bytes.  
(After writing ICDR, clear IRIC  
immediately)  
Write transmit data in ICDR  
Clear IRIC in ICCR  
Read IRIC in ICCR  
[10] Wait for 1 byte to be transmitted.  
[11] Test for end of tranfer  
No  
No  
IRIC = 1?  
Yes  
Read ACKB in ICSR  
End of transmission?  
or ACKB = 1?  
Yes  
Clear IRIC in ICCR  
[12] Stop condition issuance  
Write BBSY = 0 and  
SCP = 0 in ICCR  
End  
Figure 15.13 Sample Flowchart for Master Transmit Mode  
Rev. 6.00 Mar. 24, 2006 Page 262 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
Master receive operation  
Set TRS = 0 in ICCR  
Set WAIT = 1 in ICMR  
Set ACKB = 0 in ICSR  
[1] Select receive mode.  
Read ICDR  
[2] Start receiving. The first read  
is a dummy read. After reading  
ICDR, please clear IRIC immediately.  
Clear IRIC in ICCR  
Read IRIC in ICCR  
[3] Wait for 1 byte to be received.  
No  
IRIC = 1?  
Yes  
Yes  
Last receive?  
No  
[4] Clear IRIC.  
(to end the wait insertion)  
Clear IRIC in ICCR  
Read IRIC in ICCR  
[5] Wait for 1 byte to be received.  
No  
IRIC = 1?  
Yes  
[6] Read the receive data.  
[7] Clear IRIC.  
Read ICDR  
Clear IRIC in ICCR  
Read IRIC in ICCR  
[8] Wait for the next data to be  
received.  
No  
IRIC = 1?  
Yes  
Yes  
Last receive?  
No  
[9] Clear IRIC.  
(to end the wait insertion)  
Clear IRIC in ICCR  
Set ACKB = 1 in ICSR  
Set TRS = 1 in ICCR  
Clear IRIC in ICCR  
[10] Set acknowledge data for  
the last reception.  
[11] Clear IRIC.  
(to end the wait insertion)  
Read IRIC in ICCR  
[12] Wait for 1 byte to be received.  
No  
IRIC = 1?  
Yes  
Set Wait = 0 in ICMR  
Read ICDR  
[13] Clear wait mode.  
Read receive data.  
Clear IRIC.  
(Note: After setting WAIT = 0,  
IRIC should be cleared to 0.)  
Clear IRIC in ICCR  
Write BBSY = 0 and  
SCP = 0 in ICCR  
[14] Stop condition issuance.  
End  
Figure 15.14 Sample Flowchart for Master Receive Mode  
Rev. 6.00 Mar. 24, 2006 Page 263 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
Start  
Initialize  
Set MST = 0  
[1]  
[2]  
and TRS = 0 in ICCR  
Set ACKB = 0 in ICSR  
Read IRIC in ICCR  
No  
IRIC = 1?  
Yes  
Read AAS and ADZ in ICSR  
No  
AAS = 1  
and ADZ = 0?  
General call address processing  
* Description omitted  
Yes  
Read TRS in ICCR  
No  
TRS = 0?  
Yes  
Slave transmit mode  
Yes  
Last receive?  
No  
Read ICDR  
[3]  
[1] Select slave receive mode.  
Clear IRIC in ICCR  
Read IRIC in ICCR  
[2] Wait for the first byte to be received (slave  
address).  
[3] Start receiving. The first read is a dummy read.  
[4] Wait for the transfer to end.  
[4]  
No  
IRIC = 1?  
[5] Set acknowledge data for the last reception.  
[6] Start the last reception.  
Yes  
[7] Wait for the transfer to end.  
[8] Read the last receive data.  
[5]  
[6]  
Set ACKB = 1 in ICSR  
Read ICDR  
Clear IRIC in ICCR  
Read IRIC in ICCR  
[7]  
[8]  
No  
IRIC = 1?  
Yes  
Read ICDR  
Clear IRIC in ICCR  
End  
Figure 15.15 Sample Flowchart for Slave Receive Mode  
Rev. 6.00 Mar. 24, 2006 Page 264 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
Slave transmit mode  
Clear IRIC in ICCR  
[1] Set transmit data for the second and  
subsequent bytes.  
[2] Wait for 1 byte to be transmitted.  
[3] Test for end of transfer.  
Write transmit data in ICDR  
Clear IRIC in ICCR  
[1]  
[4] Set slave receive mode.  
[5] Dummy read (to release the SCL line).  
Read IRIC in ICCR  
IRIC = 1?  
[2]  
[3]  
No  
Yes  
Read ACKB in ICSR  
End  
of transmission  
(ACKB = 1)?  
No  
Yes  
[4]  
[5]  
Set TRS = 0 in ICCR  
Read ICDR  
Clear IRIC in ICCR  
End  
Figure 15.16 Sample Flowchart for Slave Transmit Mode  
Rev. 6.00 Mar. 24, 2006 Page 265 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
15.5  
Usage Notes  
1. In master mode, if an instruction to generate a start condition is immediately followed by an  
instruction to generate a stop condition, neither condition will be output correctly. To output  
consecutive start and stop conditions, after issuing the instruction that generates the start  
condition, read the relevant ports, check that SCL and SDA are both low, then issue the  
instruction that generates the stop condition. Note that SCL may not yet have gone low when  
BBSY is cleared to 0.  
2. Either of the following two conditions will start the next transfer. Pay attention to these  
conditions when reading or writing to ICDR.  
Write access to ICDR when ICE = 1 and TRS = 1 (including automatic transfer from  
ICDRT to ICDRS)  
Read access to ICDR when ICE = 1 and TRS = 0 (including automatic transfer from  
ICDRS to ICDRR)  
3. Table 15.5 shows the timing of SCL and SDA output in synchronization with the internal  
clock. Timings on the bus are determined by the rise and fall times of signals affected by the  
bus load capacitance, series resistance, and parallel resistance.  
Table 15.5 I2C Bus Timing (SCL and SDA Output)  
Item  
Symbol  
tSCLO  
Output Timing  
28tcyc to 256tcyc  
0.5tSCLO  
Unit  
ns  
Notes  
SCL output cycle time  
SCL output high pulse width  
SCL output low pulse width  
SDA output bus free time  
Start condition output hold time  
tSCLHO  
tSCLLO  
ns  
0.5tSCLO  
ns  
tBUFO  
0.5tSCLO – 1tcyc  
0.5tSCLO – 1tcyc  
1tSCLO  
ns  
tSTAHO  
tSTASO  
ns  
Retransmission start condition output  
setup time  
ns  
Stop condition output setup time  
Data output setup time (master)  
Data output setup time (slave)  
Data output hold time  
tSTOSO  
tSDASO  
0.5tSCLO + 2tcyc  
1tSCLLO – 3tcyc  
1tSCLL – 3tcyc  
3tcyc  
ns  
ns  
ns  
ns  
tSDAHO  
4. SCL and SDA inputs are sampled in synchronization with the internal clock. The AC timing  
therefore depends on the system clock cycle tcyc, as shown in table 20-4 in section 20, Electrical  
Characteristics. Note that the I2C bus interface AC timing specifications will not be met with a  
system clock frequency of less than 5 MHz.  
Rev. 6.00 Mar. 24, 2006 Page 266 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
5. The I2C bus interface specification for the SCL rise time tsr is under 1000 ns (300 ns for high-  
speed mode). In master mode, the I2C bus interface monitors the SCL line and synchronizes  
one bit at a time during communication. If tsr (the time for SCL to go from low to VIH) exceeds  
the time determined by the input clock of the I2C bus interface, the high period of SCL is  
extended. The SCL rise time is determined by the pull-up resistance and load capacitance of  
the SCL line. To insure proper operation at the set transfer rate, adjust the pull-up resistance  
and load capacitance so that the SCL rise time does not exceed the values given in the table in  
table 15.6.  
Table 15.6 Permissible SCL Rise Time (tsr) Values  
Time Indication  
I2C Bus  
Specification φ =  
tcyc  
φ =  
φ =  
φ = 16  
IICX Indication  
(Max.)  
5 MHz  
8 MHz  
10 MHz MHz  
0
7.5tcyc  
Normal mode  
1000 ns  
1000 ns 937 ns  
750 ns  
300 ns  
468 ns  
300 ns  
High-speed mode 300 ns  
Normal mode 1000 ns  
High-speed mode 300 ns  
300 ns  
1000 ns 1000 ns  
300 ns 300 ns  
300 ns  
1
17.5tcyc  
1000 ns 1000 ns  
300 ns 300 ns  
6. The I2C bus interface specifications for the SCL and SDA rise and fall times are under 1000 ns  
and 300 ns. The I2C bus interface SCL and SDA output timing is prescribed by tScyc and tcyc, as  
shown in table 15.5. However, because of the rise and fall times, the I2C bus interface  
specifications may not be satisfied at the maximum transfer rate. Table 15.7 shows output  
timing calculations for different operating frequencies, including the worst-case influence of  
rise and fall times. The values in the above table will vary depending on the settings of the  
IICX bit and bits CKS0 to CKS2. Depending on the frequency it may not be possible to  
achieve the maximum transfer rate; therefore, whether or not the I2C bus interface  
specifications are met must be determined in accordance with the actual setting conditions.  
tBUFO fails to meet the I2C bus interface specifications at any frequency. The solution is either (a)  
to provide coding to secure the necessary interval (approximately 1 µs) between issuance of a  
stop condition and issuance of a start condition, or (b) to select devices whose input timing  
permits this output timing for use as slave devices connected to the I2C bus.  
t
SCLLO in high-speed mode and tSTASO in standard mode fail to satisfy the I2C bus interface  
specifications for worst-case calculations of tSr/tSf. Possible solutions that should be  
investigated include (a) adjusting the rise and fall times by means of a pull-up resistor and  
capacitive load, (b) reducing the transfer rate to meet the specifications, or (c) selecting devices  
whose input timing permits this output timing for use as slave devices connected to the I2C  
bus.  
Rev. 6.00 Mar. 24, 2006 Page 267 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
Table 15.7 I2C Bus Timing (with Maximum Influence of tsr/tsf)  
Time Indication (at Maximum Transfer Rate) [ns]  
I2C Bus  
Specifi-  
tsr/tsf  
Influence cation φ =  
φ =  
φ =  
φ =  
Item  
tcyc Indication  
(Max.)  
(Min.)  
4000  
600  
5 MHz  
4000  
950  
8 MHz  
10 MHz 16 MHz  
tSCLHO  
0.5tSCLO (–tSr)  
Standard mode  
–1000  
4000  
950  
4000  
950  
4000  
950  
High-speed mode –300  
Standard mode –250  
High-speed mode –250  
Standard mode –1000  
High-speed mode –300  
Standard mode –250  
High-speed mode –250  
Standard mode –1000  
High-speed mode –300  
Standard mode –1000  
High-speed mode –300  
Standard mode –1000  
High-speed mode –300  
Standard mode –1000  
High-speed mode –300  
tSCLLO  
0.5tSCLO (–tSf  
)
4700  
1300  
4700  
1300  
4000  
600  
4750  
1000*1  
3800*1  
750*1  
4550  
800  
4750  
1000*1  
3875*1  
825*1  
4625  
875  
4750  
1000*1  
3900*1  
850*1  
4650  
900  
4750  
1000*1  
3938*1  
888*1  
4688  
938  
tBUFO  
0.5tSCLO –1tcyc  
( –tSr  
)
tSTAHO  
tSTASO  
tSTOSO  
tSDASO  
0.5tSCLO –1tcyc  
(–tSf  
)
1tSCLO (–tSr  
)
4700  
600  
9000  
2200  
4400  
1350  
3100  
400  
9000  
2200  
4250  
1200  
3325  
625  
9000  
2200  
4200  
1150  
3400  
700  
9000  
2200  
4125  
1075  
3513  
813  
0.5tSCLO + 2tcyc  
(–tSr  
4000  
600  
)
1tSCLLO*2 –3tcyc  
250  
(master) (–tSr  
)
100  
tSDASO  
1tSCLL*2 –3tcyc  
250  
3100  
400  
3325  
625  
3400  
700  
3513  
813  
(slave)  
(–tSr  
)
100  
tSDAHO  
3tcyc  
Standard mode  
0
0
600  
375  
300  
188  
High-speed mode  
0
0
600  
375  
300  
188  
Notes: 1. Does not meet the I2C bus interface specification  
2. Calculated using the I2C bus specification values (standard mode: 4700 ns min.; high-  
speed mode: 1300 ns min.).  
Rev. 6.00 Mar. 24, 2006 Page 268 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
7. Note on ICDR Read at end of Master Reception  
To halt reception after completion of a receive operation in master receive mode, set the TRS  
bit to 1 and write 0 to BBSY and SCP in ICCR. This changes the SDA pin from low to high  
when the SCL pin is high, and generates the stop condition. After this, receive data can be read  
by means of an ICDR read, but if data remains in the buffer the ICDRS receive data will not be  
transferred to ICDR, and so it will not be possible to read the second byte of data. If it is  
necessary to read the second byte of data, issue the stop condition in master receive mode (i.e.  
with the TRS bit cleared to 0). When reading the receive data, first confirm that the BBSY bit  
in ICCR is cleared to 0, the stop condition has been generated, and the bus has been released,  
then read ICDR with TRS cleared to 0. Note that if the receive data (ICDR data) is read in the  
interval between execution of the instruction for issuance of the stop condition (writing of 0 to  
BBSY and SCP in ICCR) and the actual generation of the stop condition, the clock may not be  
output correctly in subsequent master transmission.  
8. Notes on Start Condition Issuance for Retransmission  
Depending on the timing combination with the start condition issuance and the subsequently  
writing data to ICDR, it may not be possible to issue the retransmission and the data  
transmission after retransmission condition issuance.  
After start condition issuance is done and determined the start condition, write the transmit  
data to ICDR, as shown below. Figure 15.17 shows the timing of start condition issuance for  
retransmission, and the timing for subsequently writing data to ICDR, together with the  
corresponding flowchart.  
Rev. 6.00 Mar. 24, 2006 Page 269 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
[1] Wait for end of 1-byte transfer  
No  
No  
[1]  
IRIC = 1?  
Yes  
[2] Determine whether SCL is low  
Clear IRIC in ICSR  
[3] Issue restart condition instruction for transmission  
[4] Determine whether start condition is generated or not  
[5] Set transmit data (slave address + R/W)  
Start condition  
issuance?  
Other processing  
Yes  
Read SCL pin  
No  
No  
[2]  
SCL = Low?  
Yes  
Write BBSY = 1,  
SCP = 0 (ICSR)  
[3]  
[4]  
Note: Program so that processing from [3] to [5]  
is executed continuously.  
IRIC = 1?  
Yes  
[5]  
Write transmit data to ICDR  
Start condition  
(retransmission)  
SCL  
9
SDA  
ACK  
Bit 7  
Data output  
IRIC  
[5] ICDR write (next transmit data)  
[4] IRIC determination  
[3] (Restart) Start condition instruction issuance  
[2] Detemination of SCL = Low  
[1] IRIC determination  
Figure 15.17 Flowchart and Timing of Start Condition Instruction Issuance for  
Retransmission  
Rev. 6.00 Mar. 24, 2006 Page 270 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
Notes on WAIT Function  
Conditions to cause this phenomenon  
When both of the following conditions are satisfied, the clock pulse of the 9th clock could  
be outputted continuously in master mode using the WAIT function due to the failure of  
the WAIT insertion after the 8th clock fall.  
(1) Setting the WAIT bit of the ICMR register to 1 and operating WAIT, in master mode  
(2) If the IRIC bit of interrupt flag is cleared from 1 to 0 between the fall of the 7th clock  
and the fall of the 8th clock.  
Error phenomenon  
Normally, WAIT state will be cancelled by clearing the IRIC flag bit from 1 to 0 after the  
fall of the 8th clock in WAIT state. In this case, if the IRIC flag bit is cleared between the  
7th clock fall and the 8th clock fall, the IRIC flag clear- data will be retained internally.  
Therefore, the WAIT state will be cancelled right after WAIT insertion on 8th clock fall.  
Restrictions  
Please clear the IRIC flag before the rise of the 7th clock (the counter value of BC2  
through BC0 should be 2 or greater), after the IRIC flag is set to 1 on the rise of the 9th  
clock.  
If the IRIC flag-clear is delayed due to the interrupt or other processes and the value of BC  
counter is turned to 1 or 0, please confirm the SCL pins are in the low state after the  
counter value of BC2 through BC0 is turned to 0, and clear the IRIC flag. (See figure  
15.18.)  
Transmit/receive  
A
Transmit/receive data  
A
SDA  
data  
SCL =  
'L' confirm  
9
1
2
3
4
5
6
7
8
9
1
2
3
SCL  
0
7
6
5
4
3
2
1
0
7
6
5
BC2 to BC0  
IRIC clear  
When BC2 to BC0 2  
clear IRIC  
IRIC  
(operation  
example)  
IRIC flag clear available  
IRIC flag clear available  
IRIC flag clear unavailable  
Figure 15.18 IRIC Flag Clear Timing on WAIT Operation  
Rev. 6.00 Mar. 24, 2006 Page 271 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
Notes on TRS Bit Setting and ICDR Register Access  
Conditions to cause this failure  
Low-fixation of the SCL pins is cancelled incorrectly when the following conditions are  
satisfied.  
Master mode:  
Figure 15.19 shows the notes on ICDR reading (TRS = 1) in master mode.  
(a) When previously received 2-byte data remains in ICDR unread (ICDRS are full).  
(b) Reads ICDR register after switching to transmit mode (TRS = 1). (RDRF = 0 state)  
(c) Sets to receive mode (TRS = 0), after transmitting the first frame of issued start  
condition by master mode.  
Slave mode:  
Figure 15.20 shows the notes on ICDR writing (TRS = 0) in slave mode.  
(a) Writes ICDR register in receive mode (TRS = 0), after entering the start condition by  
slave mode (TDRE = 0 state).  
(b) Address match with the first frame, receive 1 by R/W bit, and switches to transmit  
mode (TRS = 1).  
When these conditions are satisfied, the low fixation of the SCL pins is cancelled without  
ICDR register access after the first frame is transferred.  
Along with ICDRS ICDRR transfer  
Cancel condition of SCL =  
Low fixation is set.  
Stop condition Start condition  
A
Address  
A
9
Data  
SDA  
SCL  
8
9
1
2
3
4
5
6
7
8
1
2
3
(c) TRS = 0  
TRS bit  
(b) RDRF = 0  
RDRF bit  
ICDRS data full  
(a) ICDRS data full  
ICDR read  
TRS = 0 setting  
Detection of 9th clock rise  
(TRS = 1)  
Figure 15.19 Notes on ICDR Reading with TRS = 1 Setting in Master Mode  
Rev. 6.00 Mar. 24, 2006 Page 272 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
Along with ICDRT ICDRR transfer  
Cancel condition of SCL =  
Low fixation is set.  
Stop condition Start condition  
A
Address  
A
9
Data  
3
SDA  
SCL  
8
9
1
2
3
4
5
6
7
8
1
2
4
(b) TRS = 1  
TRS bit  
TDRE bit  
(a) TDRE = 0  
TRS = 0 setting  
ICDR write  
Automatic TRS = 1 setting by  
receiving R/W = 1  
Figure 15.20 Notes on ICDR Writing with TRS = 0 Setting in Slave Mode  
Restriction  
Please carry out the following countermeasures when transmitting/receiving via the IIC bus  
interface module.  
(1) Please read the ICDR registers in receive mode, and write them in transmit mode.  
(2) In receiving operation with master mode, please issue the start condition after clearing  
the internal flag of the IIC bus interface module, using CLR3 to CLR0 bit of the  
DDCSWR register on bus-free state (BBSY = 0).  
Rev. 6.00 Mar. 24, 2006 Page 273 of 412  
REJ09B0142-0600  
Section 15 I2C Bus Interface (IIC)  
Rev. 6.00 Mar. 24, 2006 Page 274 of 412  
REJ09B0142-0600  
Section 16 A/D Converter  
Section 16 A/D Converter  
This LSI includes a successive approximation type 10-bit A/D converter that allows up to eight  
analog input channels to be selected. The block diagram of the A/D converter is shown in figure  
16.1.  
16.1  
Features  
10-bit resolution  
Eight input channels (four channels for the 42-pin version)  
Conversion time: at least 4.4 µs per channel (at 16 MHz operation)  
Two operating modes  
Single mode: Single-channel A/D conversion  
Scan mode: Continuous A/D conversion on 1 to 4 channels  
Four data registers  
Conversion results are held in a 16-bit data register for each channel  
Sample and hold function  
Two conversion start methods  
Software  
External trigger signal  
Interrupt request  
An A/D conversion end interrupt request (ADI) can be generated  
Rev. 6.00 Mar. 24, 2006 Page 275 of 412  
REJ09B0142-0600  
Section 16 A/D Converter  
Module data bus  
Internal data bus  
AVCC  
A
D
D
R
A
A
D
D
R
B
A
D
D
R
C
A
D
D
R
D
A
D
C
S
R
A
D
C
R
10-bit D/A  
*
AN0  
+
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
φ/4  
φ/8  
Control circuit  
Comparator  
Sample-and-  
hold circuit  
ADI  
interrupt  
ADTRG  
[Legend]  
ADCR: A/D control register  
ADCSR: A/D control/status register  
ADDRA: A/D data register A  
ADDRB: A/D data register B  
ADDRC: A/D data register C  
ADDRD: A/D data register D  
Note: AN4, AN5, AN6, and AN7 do not exist in the 42-pin version.  
Figure 16.1 Block Diagram of A/D Converter  
Rev. 6.00 Mar. 24, 2006 Page 276 of 412  
REJ09B0142-0600  
Section 16 A/D Converter  
16.2  
Input/Output Pins  
Table 16.1 summarizes the input pins used by the A/D converter. The eight analog input pins are  
divided into two groups; analog input pins 0 to 3 (AN0 to AN3) comprising group 0, analog input  
pins 4 to 7 (AN4 to AN7) comprising group 1. The AVcc pin is the power supply pin for the  
analog block in the A/D converter.  
Table 16.1 Pin Configuration  
Pin Name  
Symbol  
AVCC  
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
I/O  
Function  
Analog power supply pin  
Analog input pin 0  
Analog input pin 1  
Analog input pin 2  
Analog input pin 3  
Analog input pin 4  
Analog input pin 5  
Analog input pin 6  
Analog input pin 7  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Analog block power supply pin  
Group 0 analog input pins  
Group 1 analog input pins  
A/D external trigger input pin ADTRG  
External trigger input pin for starting A/D  
conversion  
Rev. 6.00 Mar. 24, 2006 Page 277 of 412  
REJ09B0142-0600  
Section 16 A/D Converter  
16.3  
Register Description  
The A/D converter has the following registers.  
A/D data register A (ADDRA)  
A/D data register B (ADDRB)  
A/D data register C (ADDRC)  
A/D data register D (ADDRD)  
A/D control/status register (ADCSR)  
A/D control register (ADCR)  
16.3.1 A/D Data Registers A to D (ADDRA to ADDRD)  
There are four 16-bit read-only ADDR registers; ADDRA to ADDRD, used to store the results of  
A/D conversion. The ADDR registers, which store a conversion result for each channel, are  
shown in table 16.2.  
The converted 10-bit data is stored in bits 6 to 15. The lower 6 bits are always read as 0.  
The data bus between the CPU and the A/D converter is 8 bits wide. The upper byte can be read  
directly from the CPU, however the lower byte should be read via a temporary register. The  
temporary register contents are transferred from the ADDR when the upper byte data is read.  
Therefore, byte access to ADDR should be done by reading the upper byte first then the lower  
one. Word access is also possible. ADDR is initialized to H'0000.  
Table 16.2 Analog Input Channels and Corresponding ADDR Registers  
Analog Input Channel  
Group 0  
AN0  
Group 1  
AN4  
A/D Data Register to be Stored Results of A/D Conversion  
ADDRA  
ADDRB  
ADDRC  
ADDRD  
AN1  
AN5  
AN2  
AN6  
AN3  
AN7  
Rev. 6.00 Mar. 24, 2006 Page 278 of 412  
REJ09B0142-0600  
Section 16 A/D Converter  
16.3.2 A/D Control/Status Register (ADCSR)  
ADCSR consists of the control bits and conversion end status bits of the A/D converter.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
ADF  
0
R/W  
A/D End Flag  
[Setting conditions]  
When A/D conversion ends in single mode  
When A/D conversion ends on all the channels  
selected in scan mode  
[Clearing condition]  
When 0 is written after reading ADF = 1  
A/D Interrupt Enable  
6
5
ADIE  
0
0
R/W  
R/W  
A/D conversion end interrupt (ADI) request enabled by  
ADF when 1 is set  
ADST  
A/D Start  
Setting this bit to 1 starts A/D conversion. In single  
mode, this bit is cleared to 0 automatically when  
conversion on the specified channel is complete. In  
scan mode, conversion continues sequentially on the  
specified channels until this bit is cleared to 0 by  
software, a reset, or a transition to standby mode.  
4
3
SCAN  
CKS  
0
0
R/W  
R/W  
Scan Mode  
Selects single mode or scan mode as the A/D  
conversion operating mode.  
0: Single mode  
1: Scan mode  
Clock Select  
Selects the A/D conversions time  
0: Conversion time = 134 states (max.)  
1: Conversion time = 70 states (max.)  
Clear the ADST bit to 0 before switching the  
conversion time.  
Rev. 6.00 Mar. 24, 2006 Page 279 of 412  
REJ09B0142-0600  
Section 16 A/D Converter  
Initial  
Bit Name Value  
Bit  
2
R/W  
R/W  
R/W  
R/W  
Description  
CH2  
CH1  
CH0  
0
0
0
Channel Select 0 to 2  
Select analog input channels.  
1
0
When SCAN = 0  
000: AN0  
001: AN1  
010: AN2  
011: AN3  
100: AN4  
101: AN5  
110: AN6  
111: AN7  
When SCAN = 1  
000: AN0  
001: AN0 to AN1  
010: AN0 to AN2  
011: AN0 to AN3  
100: AN4  
101: AN4 to AN5  
110: AN4 to AN6  
111: AN4 to AN7  
AN4, AN5, AN6, and AN7 do not exist in the 42-pin  
version.  
16.3.3 A/D Control Register (ADCR)  
ADCR enables A/D conversion started by an external trigger signal.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
TRGE  
0
R/W  
Trigger Enable  
A/D conversion is started at the falling edge and the  
rising edge of the external trigger signal (ADTRG)  
when this bit is set to 1.  
The selection between the falling edge and rising edge  
of the external trigger pin (ADTRG) conforms to the  
WPEG5 bit in the interrupt edge select register 2  
(IEGR2).  
6 to 1  
0
All 1  
0
Reserved  
These bits are always read as 1.  
Reserved  
R/W  
Do not set this bit to 1, though the bit is  
readable/writable.  
Rev. 6.00 Mar. 24, 2006 Page 280 of 412  
REJ09B0142-0600  
Section 16 A/D Converter  
16.4  
Operation  
The A/D converter operates by successive approximation with 10-bit resolution. It has two  
operating modes; single mode and scan mode. When changing the operating mode or analog input  
channel, in order to prevent incorrect operation, first clear the bit ADST to 0 in ADCSR. The  
ADST bit can be set at the same time as the operating mode or analog input channel is changed.  
16.4.1 Single Mode  
In single mode, A/D conversion is performed once for the analog input on the specified single  
channel as follows:  
1. A/D conversion is started when the ADST bit in ADCSR is set to 1, according to software or  
external trigger input.  
2. When A/D conversion is completed, the result is transferred to the corresponding A/D data  
register to the channel.  
3. On completion of conversion, the ADF bit in ADCSR is set to 1. If the ADIE bit is set to 1 at  
this time, an ADI interrupt request is generated.  
4. The ADST bit remains set to 1 during A/D conversion. When A/D conversion ends, the ADST  
bit is automatically cleared to 0 and the A/D converter enters the wait state.  
16.4.2 Scan Mode  
In scan mode, A/D conversion is performed sequentially for the analog input on the specified  
channels (four channels maximum) as follows:  
1. When the ADST bit is set to 1 by software, or external trigger input, A/D conversion starts on  
the first channel in the group (AN0 when CH2 = 0, AN4 when CH2 = 1).  
2. When A/D conversion for each channel is completed, the result is sequentially transferred to  
the A/D data register corresponding to each channel.  
3. When conversion of all the selected channels is completed, the ADF flag in ADCSR is set to 1.  
If the ADIE bit is set to 1 at this time, an ADI interrupt is requested. Conversion of the first  
channel in the group starts again.  
4. The ADST bit is not automatically cleared to 0. Steps [2] to [3] are repeated as long as the  
ADST bit remains set to 1. When the ADST bit is cleared to 0, A/D conversion stops.  
Rev. 6.00 Mar. 24, 2006 Page 281 of 412  
REJ09B0142-0600  
Section 16 A/D Converter  
16.4.3 Input Sampling and A/D Conversion Time  
The A/D converter has a built-in sample-and-hold circuit. The A/D converter samples the analog  
input when the A/D conversion start delay time (tD) has passed after the ADST bit is set to 1, then  
starts conversion. Figure 16.2 shows the A/D conversion timing. Table 16.3 shows the A/D  
conversion time.  
As indicated in figure 16.2, the A/D conversion time includes tD and the input sampling time. The  
length of tD varies depending on the timing of the write access to ADCSR. The total conversion  
time therefore varies within the ranges indicated in table 16.3.  
In scan mode, the values given in table 16.3 apply to the first conversion time. In the second and  
subsequent conversions, the conversion time is 128 states (fixed) when CKS = 0 and 66 states  
(fixed) when CKS = 1.  
(1)  
φ
Address  
(2)  
Write signal  
Input sampling  
timing  
ADF  
[Legend]  
(1):  
(2):  
tD:  
ADCSR write cycle  
ADCSR address  
A/D conversion start delay  
Input sampling time  
tSPL  
:
tCONV: A/D conversion time  
Figure 16.2 A/D Conversion Timing  
Rev. 6.00 Mar. 24, 2006 Page 282 of 412  
REJ09B0142-0600  
Section 16 A/D Converter  
Table 16.3 A/D Conversion Time (Single Mode)  
CKS = 0  
CKS = 1  
Item  
Symbol  
Min  
6
Typ  
Max  
9
Min  
4
Typ  
Max  
5
A/D conversion start delay tD  
Input sampling time  
A/D conversion time  
tSPL  
tCONV  
31  
69  
15  
131  
134  
70  
Note: All values represent the number of states.  
16.4.4 External Trigger Input Timing  
The A/D conversion can also be started by an external trigger input. When the TRGE bit is set to 1  
in ADCR, external trigger input is enabled at the ADTRG pin. A falling edge at the ADTRG  
input pin sets the ADST bit to 1 in ADCSR, starting A/D conversion. Other operations, in both  
single and scan modes, are the same as when the bit ADST has been set to 1 by software. Figure  
16.3 shows the timing.  
φ
ADTRG  
Internal trigger  
signal  
ADST  
A/D conversion  
Figure 16.3 External Trigger Input Timing  
Rev. 6.00 Mar. 24, 2006 Page 283 of 412  
REJ09B0142-0600  
Section 16 A/D Converter  
16.5  
A/D Conversion Accuracy Definitions  
This LSI's A/D conversion accuracy definitions are given below.  
Resolution  
The number of A/D converter digital output codes  
Quantization error  
The deviation inherent in the A/D converter, given by 1/2 LSB (see figure 16.4).  
Offset error  
The deviation of the analog input voltage value from the ideal A/D conversion characteristic  
when the digital output changes from the minimum voltage value 0000000000 to 0000000001  
(see figure 16.5).  
Full-scale error  
The deviation of the analog input voltage value from the ideal A/D conversion characteristic  
when the digital output changes from 1111111110 to 1111111111 (see figure 16.5).  
Nonlinearity error  
The error with respect to the ideal A/D conversion characteristics between zero voltage and  
full-scale voltage. Does not include offset error, full-scale error, or quantization error.  
Absolute accuracy  
The deviation between the digital value and the analog input value. Includes offset error, full-  
scale error, quantization error, and nonlinearity error.  
Rev. 6.00 Mar. 24, 2006 Page 284 of 412  
REJ09B0142-0600  
Section 16 A/D Converter  
Digital output  
Ideal A/D conversion  
characteristic  
111  
110  
101  
100  
011  
010  
001  
Quantization error  
000  
1
2
8
3
8
4
8
5
8
6
8
7
8
FS  
8
Analog  
input voltage  
Figure 16.4 A/D Conversion Accuracy Definitions (1)  
Full-scale error  
Digital output  
Ideal A/D conversion  
characteristic  
Nonlinearity  
error  
Actual A/D conversion  
characteristic  
FS  
Analog  
input voltage  
Offset error  
Figure 16.5 A/D Conversion Accuracy Definitions (2)  
Rev. 6.00 Mar. 24, 2006 Page 285 of 412  
REJ09B0142-0600  
Section 16 A/D Converter  
16.6  
Usage Notes  
16.6.1 Permissible Signal Source Impedance  
This LSI's analog input is designed such that conversion accuracy is guaranteed for an input signal  
for which the signal source impedance is 5 kor less. This specification is provided to enable the  
A/D converter's sample-and-hold circuit input capacitance to be charged within the sampling time;  
if the sensor output impedance exceeds 5 k, charging may be insufficient and it may not be  
possible to guarantee A/D conversion accuracy. However, for A/D conversion in single mode with  
a large capacitance provided externally, the input load will essentially comprise only the internal  
input resistance of 10 k, and the signal source impedance is ignored. However, as a low-pass  
filter effect is obtained in this case, it may not be possible to follow an analog signal with a large  
differential coefficient (e.g., 5 mV/µs or greater) (see figure 16.6). When converting a high-speed  
analog signal or converting in scan mode, a low-impedance buffer should be inserted.  
16.6.2 Influences on Absolute Accuracy  
Adding capacitance results in coupling with GND, and therefore noise in GND may adversely  
affect absolute accuracy. Be sure to make the connection to an electrically stable GND.  
Care is also required to ensure that filter circuits do not interfere with digital signals or act as  
antennas on the mounting board.  
This LSI  
A/D converter  
Sensor output  
impedance  
equivalent circuit  
10 k  
to 5 kΩ  
Sensor input  
Cin  
15 pF  
=
Low-pass  
filter  
20 pF  
C to 0.1 µF  
Figure 16.6 Analog Input Circuit Example  
Rev. 6.00 Mar. 24, 2006 Page 286 of 412  
REJ09B0142-0600  
Section 17 EEPROM  
Section 17 EEPROM  
This LSI has an on-chip 512-byte EEPROM. The block diagram of the EEPROM is shown in  
figure 17.1.  
17.1  
Features  
Two writing methods:  
1-byte write  
Page write: Page size 8 bytes  
Three reading methods:  
Current address read  
Random address read  
Sequential read  
Acknowledge polling possible  
Write cycle time:  
10 ms (power supply voltage Vcc = 2.7 V or more)  
Write/Erase Endurance:  
104 cycles/byte (byte write mode), 105 cycles/page (page write mode)  
Data retention:  
10 years after the write cycle of 104 cycles (page write mode)  
Interface with the CPU  
I2C bus interface (complies with the standard of Philips Corporation)  
Device code 1010  
Sleep address code can be changed (initial value: 000))  
The I2C bus is open to the outside, so the EEPROM can be directly accessed from the outside.  
Rev. 6.00 Mar. 24, 2006 Page 287 of 412  
REJ09B0142-0600  
Section 17 EEPROM  
EEPROM Data bus  
H'FF10  
EEPROM Key  
Y-select/  
register (EKR)  
Sense amp.  
Memory  
array  
Key control circuit  
H'0000  
H'01FF  
User area  
(512 bytes)  
SDA  
SCL  
2
I C bus interface  
control circuit  
Slave address  
register  
H'FF09  
ESAR  
Power-on reset  
Booster circuit  
EEPROM module  
[Legend]  
ESAR: Register for referring the slave address  
(specifies the slave address of the memory array)  
Figure 17.1 Block Diagram of EEPROM  
Rev. 6.00 Mar. 24, 2006 Page 288 of 412  
REJ09B0142-0600  
Section 17 EEPROM  
17.2  
Input/Output Pins  
Pins used in the EEPROM are listed in table 17.1.  
Table 17.1 Pin Configuration  
Input/  
Pin name  
Symbol Output Function  
Serial clock SCL  
pin  
Input  
The SCL pin is used to control serial input/output data timing.  
The data is input at the rising edge of the clock and output at  
the falling edge of the clock. The SCL pin needs to be pulled  
up by resistor as that pin is open-drain driven structure of the  
I2C pin. Use proper resistor value for your system by  
considering VOL, IOL, and the CIN pin capacitance in section  
20.2.2, DC Characteristics and in section 20.2.3, AC  
Characteristics. Maximum clock frequency is 400 kHz.  
Serial data SDA  
pin  
Input/  
The SDA pin is bidirectional for serial data transfer. The SDA  
Output pin needs to be pulled up by resistor as that pin is open-drain  
driven structure. Use proper resistor value for your system by  
considering VOL, IOL, and the CIN pin capacitance in section  
20.2.2, DC Characteristics and in section 20.2.3, AC  
Characteristics. Except for a start condition and a stop  
condition which will be discussed later, the high-to-low and  
low-to-high change of SDA input should be done during SCL  
low periods.  
17.3  
Register Description  
The EEPROM has a following register.  
EEPROM key register (EKR)  
17.3.1 EEPROM Key Register (EKR)  
EKR is an 8-bit readable/writable register, which changes the slave address code written in the  
EEPROM. The slave address code is changed by writing H'5F in EKR and then writing either of  
H'00 to H'07 as an address code to the H'FF09 address in the EEPROM by the byte write method.  
EKR is initialized to H'FF.  
Rev. 6.00 Mar. 24, 2006 Page 289 of 412  
REJ09B0142-0600  
Section 17 EEPROM  
17.4  
Operation  
17.4.1 EEPROM Interface  
This LSI has a multi-chip structure with two internal chips of F-ZTAT™ HD64F3664 and 512-  
byte EEPROM.  
The EEPROM interface is the I2C bus interface. This I2C bus is open to the outside, so the  
communication with the external devices connected to the I2C bus can be made.  
17.4.2 Bus Format and Timing  
The I2C bus format and the I2C bus timing follow section 15.4.1, I2C Bus Data Format. The bus  
formats specific for the EEPROM are the following two.  
1. The EEPROM address is configured of two bytes, the write data is transferred in the order of  
upper address and lower address from each MSB side.  
2. The write data is transmitted from the MSB side.  
The bus format and bus timing of the EEPROM are shown in figure 17.2.  
Stop  
Start  
conditon  
condition  
Upper memory  
address  
lower memory  
address  
Slave address  
Data  
Data  
R/W ACK  
ACK  
ACK  
ACK  
ACK  
SCL  
1
2
3
4
5
6
7
8
9
1
8
9
1
8
9
1
8
9
1
8
9
SDA  
A15  
A8  
A7  
A0  
D7  
D0  
D7  
D0  
[Legend]  
R/W: R/W code (0 is for a write and 1 is for a read),  
ACK: acknowledge  
Figure 17.2 EEPROM Bus Format and Bus Timing  
Rev. 6.00 Mar. 24, 2006 Page 290 of 412  
REJ09B0142-0600  
Section 17 EEPROM  
17.4.3 Start Condition  
A high-to-low transition of the SDA input with the SCL input high is needed to generate the start  
condition for starting read, write operation.  
17.4.4 Stop Condition  
A low-to-high transition of the SDA input with the SCL input high is needed to generate the stop  
condition for stopping read, write operation.  
The standby operation starts after a read sequence by a stop condition. In the case of write  
operation, a stop condition terminates the write data inputs and place the device in an internally-  
timed write cycle to the memories. After the internally-timed write cycle (tWC) which is specified  
as tWC, the device enters a standby mode.  
17.4.5 Acknowledge  
All address data and serial data such as read data and write data are transmitted to and from in 8-  
bit unit. The acknowledgement is the signal that indicates that this 8-bit data is normally  
transmitted to and from.  
In the write operation, EEPROM sends "0" to acknowledge in the ninth cycle after receiving the  
data. In the read operation, EEPROM sends a read data following the acknowledgement after  
receiving the data. After sending read data, the EEPROM enters the bus open state. If the  
EEPROM receives "0" as an acknowledgement, it sends read data of the next address. If the  
EEPROM does not receive acknowledgement "0" and receives a following stop condition, it stops  
the read operation and enters a standby mode. If the EEPROM receives neither acknowledgement  
"0" nor a stop condition, the EEPROM keeps bus open without sending read data.  
Rev. 6.00 Mar. 24, 2006 Page 291 of 412  
REJ09B0142-0600  
Section 17 EEPROM  
17.4.6 Slave Addressing  
The EEPROM device receives a 7-bit slave address and a 1-bit R/W code following the generation  
of the start conditions. The EEPROM enables the chip for a read or a write operation with this  
operation.  
The slave address consists of a former 4-bit device code and latter 3-bit slave address as shown in  
table 17.2. The device code is used to distinguish device type and this LSI uses "1010" fixed code  
in the same manner as in a general-purpose EEPROM. The slave address code selects one device  
out of all devices with device code 1010 (8 devices in maximum) which are connected to the I2C  
bus. This means that the device is selected if the inputted slave address code received in the order  
of A2, A1, A0 is equal to the corresponding slave address reference register (ESAR).  
The slave address code is stored in the address H'FF09 in the EEPROM. It is transferred to ESAR  
from the slave address register in the memory array during 10 ms after the reset is released. An  
access to the EEPROM is not allowed during transfer.  
The initial value of the slave address code written in the EEPROM is H'00. It can be written in the  
range of H'00 to H'07. Be sure to write the data by the byte write method.  
The next one bit of the slave address is the R/W code. 0 is for a write and 1 is for a read.  
The EEPROM turns to a standby state if the device code is not "1010" or slave address code  
doesn’t coincide.  
Table 17.2 Slave Addresses  
Initial  
Value  
Setting  
Value  
Bit  
7
Bit name  
Remarks  
Device code D3  
0
1
6
Device code D2  
0
5
Device code D1  
1
4
Device code D0  
0
3
Slave address code A2  
Slave address code A1  
Slave address code A0  
A2  
A1  
A0  
The initial value can be changed  
The initial value can be changed  
The initial value can be changed  
2
0
1
0
Rev. 6.00 Mar. 24, 2006 Page 292 of 412  
REJ09B0142-0600  
Section 17 EEPROM  
17.4.7 Write Operations  
There are two types write operations; byte write operation and page write operation. To initiate  
the write operation, input 0 to R/W code following the slave address.  
1. Byte Write  
A write operation requires an 8-bit data of a 7-bit slave address with R/W code = "0". Then  
the EEPROM sends acknowledgement "0" at the ninth bit. This enters the write mode. Then,  
two bytes of the memory address are received from the MSB side in the order of upper and  
lower. Upon receipt of one-byte memory address, the EEPROM sends acknowledgement "0"  
and receives a following a one-byte write data. After receipt of write data, the EEPROM sends  
acknowledgement "0". If the EEPROM receives a stop condition, the EEPROM enters an  
internally controlled write cycle and terminates receipt of SCL and SDA inputs until  
completion of the write cycle. The EEPROM returns to a standby mode after completion of  
the write cycle.  
The byte write operation is shown in figure 17.3.  
SCL  
1
2
3
4
5
6
7
8
9
1
8
9
1
8
9
1
8
9
SDA  
A15  
A8  
A7  
A0  
D7  
D0  
Upper memory  
address  
lower memory  
address  
Slave address  
R/W ACK  
ACK  
ACK  
Write Data  
ACK  
Stop  
Start  
conditon  
condition  
[Legend]  
R/W: R/W code (0 is for a write and 1 is for a read)  
ACK: acknowledge  
Figure 17.3 Byte Write Operation  
2. Page Write  
This LSI is capable of the page write operation which allows any number of bytes up to 8  
bytes to be written in a single write cycle. The write data is input in the same sequence as the  
byte write in the order of a start condition, slave address + R/W code, memory address (n), and  
write data (Dn) with every ninth bit acknowledgement "0" output. The EEPROM enters the  
page write operation if the EEPROM receives more write data (Dn+1) is input instead of  
receiving a stop condition after receiving the write data (Dn). LSB 3 bits (A2 to A0) in the  
EEPROM address are automatically incremented to be the (n+1) address upon receiving write  
data (Dn+1). Thus the write data can be received sequentially.  
Rev. 6.00 Mar. 24, 2006 Page 293 of 412  
REJ09B0142-0600  
Section 17 EEPROM  
Addresses in the page are incremented at each receipt of the write data and the write data can  
be input up to 8 bytes. If the LSB 3 bits (A2 to A0) in the EEPROM address reach the last  
address of the page, the address will roll over to the first address of the same page. When the  
address is rolled over, write data is received twice or more to the same address, however, the  
last received data is valid. At the receipt of the stop condition, write data reception is  
terminated and the write operation is entered.  
The page write operation is shown in figure 17.4.  
SCL  
1
2
3
4
5
6
7
8
9
1
8
9
1
8
9
1
8
9
A15  
A8  
A7  
A0  
D7  
D0  
D7  
D0  
SDA  
Upper memory  
address  
lower memory  
address  
R/W ACK  
ACK  
ACK Write Data ACK  
Write Data ACK  
Slave address  
Stop  
Start  
condition  
conditon  
[Legend]  
R/W: R/W code (0 is for a write and 1 is for a read),  
ACK: acknowledge  
Figure 17.4 Page Write Operation  
17.4.8 Acknowledge Polling  
Acknowledge polling feature is used to show if the EEPROM is in an internally-timed write cycle  
or not. This feature is initiated by the input of the 8-bit slave address + R/W code following the  
start condition during an internally-timed write cycle. Acknowledge polling will operate R/W  
code = "0". The ninth acknowledgement judges if the EEPROM is an internally-timed write cycle  
or not. Acknowledgement "1" shows the EEPROM is in a internally-timed write cycle and  
acknowledgement "0" shows the internally-timed write cycle has been completed. The  
acknowledge polling starts to function after a write data is input, i.e., when the stop condition is  
input.  
Rev. 6.00 Mar. 24, 2006 Page 294 of 412  
REJ09B0142-0600  
Section 17 EEPROM  
17.4.9 Read Operation  
There are three read operations; current address read, random address read, and sequential read.  
Read operations are initiated in the same way as write operations with the exception of R/W = 1.  
1. Current Address Read  
The internal address counter maintains the (n+1) address that is made by the last address (n)  
accessed during the last read or write operation, with incremented by one. Current address  
read accesses the (n+1) address kept by the internal address counter.  
After receiving in the order of a start condition and the slave address + R/W code (R/W = 1),  
the EEPROM outputs the 1-byte data of the (n+1) address from the most significant bit  
following acknowledgement "0". If the EEPROM receives in the order of acknowledgement  
"1" and a following stop condition, the EEPROM stops the read operation and is turned to a  
standby state.  
In case the EEPROM has accessed the last address H'01FF at previous read operation, the  
current address will roll over and returns to zero address. In case the EEPROM has accessed  
the last address of the page at previous write operation, the current address will roll over within  
page addressing and returns to the first address in the same page.  
The current address is valid while power is on. The current address after power on will be  
undefined. After power is turned on, define the address by the random address read operation  
described below is necessary.  
The current address read operation is shown in figure 17.5.  
SCL  
1
2
3
4
5
6
7
8
9
1
8
9
D7  
D0  
SDA  
Read Data  
R/W ACK  
ACK  
Slave address  
Stop  
Start  
conditon  
condition  
[Legend]  
R/W: R/W code (0 is for a write and 1 is for a read)  
ACK: acknowledge  
Figure 17.5 Current Address Read Operation  
Rev. 6.00 Mar. 24, 2006 Page 295 of 412  
REJ09B0142-0600  
Section 17 EEPROM  
2. Random Address Read  
This is a read operation with defined read address. A random address read requires a dummy  
write to set read address. The EEPROM receives a start condition, slave address + R/W code  
(R/W = 0), memory address (upper) and memory address (lower) sequentially. The EEPROM  
outputs acknowledgement "0" after receiving memory address (lower) then enters a current  
address read with receiving a start condition again. The EEPROM outputs the read data of the  
address which was defined in the dummy write operation. After receiving acknowledgement  
"1" and a following stop condition, the EEPROM stops the random read operation and returns  
to a standby state.  
The random address read operation is shown in figure 17.6.  
SCL  
1
2
3
4
5
6
7
8
9
1
8
9
1
8
9
1
2
3
4
5
6
7
8
9
1
8
9
SDA  
A15  
A8  
A7  
A0  
D7  
D0  
Upper memory  
address  
lower memory  
address  
R/W ACK  
ACK  
ACK  
R
ACK ACK  
Read Data  
Slave address  
Slave address  
Start  
condition  
Start  
Stop  
conditon  
condition  
[Legend]  
R/W: R/W code (0 is for a write and 1 is for a read),  
ACK: acknowledge  
Figure 17.6 Random Address Read Operation  
3. Sequential Read  
This is a mode to read the data sequentially. Data is sequential read by either a current address  
read or a random address read. If the EEPROM receives acknowledgement "0" after 1-byte  
read data is output, the read address is incremented and the next 1-byte read data are coming  
out. Data is output sequentially by incrementing addresses as long as the EEPROM receives  
acknowledgement "0" after the data is output. The address will roll over and returns address  
zero if it reaches the last address H'01FF. The sequential read can be continued after roll over.  
The sequential read is terminated if the EEPROM receives acknowledgement "1" and a  
following stop condition as the same manner as in the random address read.  
The condition of a sequential read when the current address read is used is shown in figure  
17.7.  
Rev. 6.00 Mar. 24, 2006 Page 296 of 412  
REJ09B0142-0600  
Section 17 EEPROM  
SCL  
SDA  
1
2
3
4
5
6
7
8
9
1
8
9
1
8
9
D7  
D0  
D7  
D0  
R/W ACK  
ACK  
ACK  
Slave address  
Read Data  
·
·
·
·
Read Data  
Start  
Stop  
conditon  
condition  
[Legend]  
R/W: R/W code (0 is for a write and 1 is for a read)  
ACK: acknowledge  
Figure 17.7 Sequential Read Operation (when current address read is used)  
17.5  
Usage Notes  
17.5.1 Data Protection at VCC On/Off  
When VCC is turned on or off, the data might be destroyed by malfunction. Be careful of the  
notices described below to prevent the data to be destroyed.  
1. SCL and SDA should be fixed to VCC or VSS during VCC on/off.  
2. VCC should be turned off after the EEPROM is placed in a standby state.  
3. When VCC is turned on from the intermediate level, malfunction is caused, so VCC should be  
turned on from the ground level (VSS).  
4. VCC turn on speed should be longer than 10 us.  
17.5.2 Write/Erase Endurance  
The endurance is 105 cycles/page (1% cumulative failure rate) in case of page programming and  
104 cycles/byte in case of byte programming. The data retention time is more than 10 years when a  
device is page-programmed less than 104 cycles.  
Rev. 6.00 Mar. 24, 2006 Page 297 of 412  
REJ09B0142-0600  
Section 17 EEPROM  
17.5.3 Noise Suppression Time  
This EEPROM has a noise suppression function at SCL and SDA inputs, that cuts noise of width  
less than 50 ns. Be careful not to allow noise of width more than 50 ns because the noise of with  
more than 50 ms is recognized as an active pulse.  
Rev. 6.00 Mar. 24, 2006 Page 298 of 412  
REJ09B0142-0600  
Section 18 Power Supply Circuit  
Section 18 Power Supply Circuit  
This LSI incorporates an internal power supply step-down circuit. Use of this circuit enables the  
internal power supply to be fixed at a constant level of approximately 3.0 V, independently of the  
voltage of the power supply connected to the external VCC pin. As a result, the current consumed  
when an external power supply is used at 3.0 V or above can be held down to virtually the same  
low level as when used at approximately 3.0 V. If the external power supply is 3.0 V or below, the  
internal voltage will be practically the same as the external voltage. It is, of course, also possible  
to use the same level of external power supply voltage and internal power supply voltage without  
using the internal power supply step-down circuit.  
18.1  
When Using Internal Power Supply Step-Down Circuit  
Connect the external power supply to the VCC pin, and connect a capacitance of approximately 0.1  
µF between VCL and VSS, as shown in figure 18.1. The internal step-down circuit is made effective  
simply by adding this external circuit. In the external circuit interface, the external power supply  
voltage connected to VCC and the GND potential connected to VSS are the reference levels. For  
example, for port input/output levels, the VCC level is the reference for the high level, and the VSS  
level is that for the low level. The A/D converter analog power supply is not affected by the  
internal step-down circuit.  
VCC  
VCC = 3.0 to 5.5 V  
Step-down circuit  
VCL  
Stabilization  
capacitance  
(approx. 0.1 µF)  
Internal  
power  
supply  
Internal  
logic  
VSS  
Figure 18.1 Power Supply Connection when Internal Step-Down Circuit is Used  
Rev. 6.00 Mar. 24, 2006 Page 299 of 412  
REJ09B0142-0600  
Section 18 Power Supply Circuit  
18.2  
When Not Using Internal Power Supply Step-Down Circuit  
When the internal power supply step-down circuit is not used, connect the external power supply  
to the VCL pin and VCC pin, as shown in figure 18.2. The external power supply is then input directly  
to the internal power supply. The permissible range for the power supply voltage is 3.0 V to 3.6 V.  
Operation cannot be guaranteed if a voltage outside this range (less than 3.0 V or more than 3.6 V)  
is input.  
VCC  
VCC = 3.0 to 3.6 V  
Step-down circuit  
Internal  
VCL  
Internal  
logic  
power  
supply  
VSS  
Figure 18.2 Power Supply Connection when Internal Step-Down Circuit is Not Used  
Rev. 6.00 Mar. 24, 2006 Page 300 of 412  
REJ09B0142-0600  
Section 19 List of Registers  
Section 19 List of Registers  
The register list gives information on the on-chip I/O register addresses, how the register bits are  
configured, and the register states in each operating mode. The information is given as shown  
below.  
1. Register addresses (address order)  
Registers are listed from the lower allocation addresses.  
Registers are classified by functional modules.  
The data bus width is indicated.  
The number of access states is indicated.  
2. Register bits  
Bit configurations of the registers are described in the same order as the register addresses.  
Reserved bits are indicated by in the bit name column.  
When registers consist of 16 bits, bits are described from the MSB side.  
3. Register states in each operating mode  
Register states are described in the same order as the register addresses.  
The register states described here are for the basic operating modes. If there is a specific reset  
for an on-chip peripheral module, refer to the section on that on-chip peripheral module.  
Rev. 6.00 Mar. 24, 2006 Page 301 of 412  
REJ09B0142-0600  
Section 19 List of Registers  
19.1  
Register Addresses (Address Order)  
The data bus width indicates the numbers of bits by which the register is accessed.  
The number of access states indicates the number of states based on the specified reference clock.  
Data  
Abbre-  
viation  
Module  
Bus  
Access  
Register Name  
Bit No. Address Name  
Width State  
Timer mode register W  
Timer control register W  
Timer interrupt enable register W  
Timer status register W  
Timer I/O control register 0  
Timer I/O control register 1  
Timer counter  
TMRW  
TCRW  
TIERW  
TSRW  
TIOR0  
TIOR1  
TCNT  
GRA  
8
H'FF80  
H'FF81  
H'FF82  
H'FF83  
H'FF84  
H'FF85  
H'FF86  
H'FF88  
H'FF8A  
H'FF8C  
H'FF8E  
H'FF90  
H'FF91  
H'FF92  
H'FF93  
H'FF9B  
H'FFA0  
H'FFA1  
H'FFA2  
H'FFA3  
H'FFA4  
H'FFA5  
H'FFA6  
H'FFA7  
H'FFA8  
H'FFA9  
H'FFAA  
Timer W  
Timer W  
Timer W  
Timer W  
Timer W  
Timer W  
Timer W  
Timer W  
Timer W  
Timer W  
Timer W  
ROM  
8
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
2
2
3
3
3
8
8
8
8
8
8
8
8
8
8
16  
16  
16  
16  
16  
8
16*1  
16*1  
16*1  
16*1  
16*1  
8
General register A  
General register B  
GRB  
General register C  
GRC  
General register D  
GRD  
Flash memory control register 1  
Flash memory control register 2  
Flash memory power control register  
Erase block register 1  
Flash memory enable register  
Timer control register V0  
Timer control/status register V  
Timer constant register A  
Timer constant register B  
Timer counter V  
FLMCR1  
FLMCR2  
FLPWCR  
EBR1  
8
ROM  
8
8
ROM  
8
8
ROM  
8
FENR  
TCRV0  
TCSRV  
TCORA  
TCORB  
TCNTV  
TCRV1  
TMA  
8
ROM  
8
8
Timer V  
Timer V  
Timer V  
Timer V  
Timer V  
Timer V  
Timer A  
Timer A  
SCI3  
8
8
8
8
8
8
8
8
8
Timer control register V1  
Timer mode register A  
Timer counter A  
8
8
8
8
TCA  
8
8
Serial mode register  
SMR  
8
8
Bit rate register  
BRR  
8
SCI3  
8
Serial control register 3  
SCR3  
8
SCI3  
8
Rev. 6.00 Mar. 24, 2006 Page 302 of 412  
REJ09B0142-0600  
Section 19 List of Registers  
Data  
Abbre-  
viation  
Module  
Bus  
Access  
State  
Register Name  
Bit No. Address Name  
Width  
Transmit data register  
Serial status register  
Receive data register  
A/D data register A  
TDR  
8
H'FFAB  
H'FFAC  
H'FFAD  
H'FFB0  
H'FFB2  
H'FFB4  
H'FFB6  
H'FFB8  
H'FFB9  
H'FFC0  
H'FFC1  
H'FFC2  
H'FFC4  
H'FFC5  
H'FFC6  
H'FFC6  
H'FFC7  
H'FFC7  
H'FFC8  
H'FFC9  
H'FFCA  
H'FFCB  
SCI3  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
SSR  
8
SCI3  
RDR  
8
SCI3  
ADDRA  
ADDRB  
ADDRC  
ADDRD  
ADCSR  
ADCR  
TCSRWD  
TCWD  
TMWD  
ICCR  
16  
16  
16  
16  
8
A/D converter  
A/D converter  
A/D converter  
A/D converter  
A/D converter  
A/D converter  
WDT*2  
A/D data register B  
A/D data register C  
A/D data register D  
A/D control/status register  
A/D control register  
8
Timer control/status register WD  
Timer counter WD  
8
8
WDT*2  
WDT*2  
Timer mode register WD  
I2C bus control register  
I2C bus status register  
I2C bus data register  
8
8
IIC  
ICSR  
8
IIC  
ICDR  
8
IIC  
Second slave address register  
I2C bus mode register  
Slave address register  
Address break control register  
Address break status register  
Break address register H  
Break address register L  
Break data register H  
Break data register L  
Port pull-up control register 1  
Port pull-up control register 5  
Port data register 1  
SARX  
ICMR  
8
IIC  
8
IIC  
SAR  
8
IIC  
ABRKCR  
ABRKSR  
BARH  
BARL  
8
Address break  
Address break  
Address break  
Address break  
8
8
8
BDRH  
BDRL  
8
H'FFCC Address break  
H'FFCD Address break  
8
PUCR1  
PUCR5  
PDR1  
8
H'FFD0  
H'FFD1  
H'FFD4  
H'FFD5  
H'FFD8  
H'FFDA  
H'FFDB  
I/O port  
I/O port  
I/O port  
I/O port  
I/O port  
I/O port  
I/O port  
8
8
Port data register 2  
PDR2  
8
Port data register 5  
PDR5  
8
Port data register 7  
PDR7  
8
Port data register 8  
PDR8  
8
Rev. 6.00 Mar. 24, 2006 Page 303 of 412  
REJ09B0142-0600  
Section 19 List of Registers  
Data  
Bus  
Abbre-  
viation  
Module  
Name  
Access  
Register Name  
Bit No. Address  
Width State  
Port data register B  
PDRB  
PMR1  
PMR5  
PCR1  
8
8
8
8
8
8*3  
8
8
8
8
8
8
8
8
8
8
8
H'FFDD  
H'FFE0  
H'FFE1  
H'FFE4  
H'FFE5  
H'FFE8  
H'FFEA  
H'FFEB  
H'FFF0  
H'FFF1  
H'FFF2  
H'FFF3  
H'FFF4  
H'FFF6  
H'FFF8  
H'FFF9  
H'FFFC  
I/O port  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Port mode register 1  
I/O port  
Port mode register 5  
I/O port  
Port control register 1  
I/O port  
Port control register 2  
PCR2  
I/O port  
Port control register 5  
PCR5  
I/O port  
Port control register 7  
PCR7  
I/O port  
Port control register 8  
PCR8  
I/O port  
System control register 1  
System control register 2  
Interrupt edge select register 1  
Interrupt edge select register 2  
Interrupt enable register 1  
Interrupt flag register 1  
Wake-up interrupt flag register  
Module standby control register 1  
Timer serial control register  
SYSCR1  
SYSCR2  
IEGR1  
IEGR2  
IENR1  
IRR1  
Power-down  
Power-down  
Interrupts  
Interrupts  
Interrupts  
Interrupts  
Interrupts  
Power-down  
IIC  
IWPR  
MSTCR1  
TSCR  
Notes: 1. Only word access can be used.  
2. WDT: Watchdog timer.  
3. The number of bits is six for H8/3664N.  
EEPROM  
Data  
Bus  
Abbre-  
viation  
Module  
Name  
Access  
Register Name  
EEPROM key register  
Bit No. Address  
Width State  
EKR  
8
H'FF10  
IEEPROM  
8
2
Rev. 6.00 Mar. 24, 2006 Page 304 of 412  
REJ09B0142-0600  
Section 19 List of Registers  
19.2  
Register Bits  
Register bit names of the on-chip peripheral modules are described below.  
Each line covers eight bits, and 16-bit registers are shown as 2 lines.  
Register  
Module  
Name  
TMRW  
TCRW  
TIERW  
TSRW  
TIOR0  
TIOR1  
TCNT  
Bit 7  
CTS  
CCLR  
OVIE  
OVF  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PWMB  
TOA  
Name  
BUFEB BUFEA  
PWMD  
TOC  
PWMC  
TOB  
Timer W  
CKS2  
CKS1  
CKS0  
TOD  
IMIED  
IMFD  
IMIEC  
IMFC  
IOA2  
IOC2  
IMIEB  
IMFB  
IOA1  
IOC1  
IMIEA  
IMFA  
IOA0  
IOC0  
TCNT8  
TCNT0  
GRA8  
GRA0  
GRB8  
GRB0  
GRC8  
GRC0  
GRD8  
GRD0  
P
IOB2  
IOD2  
IOB1  
IOD1  
IOB0  
IOD0  
TCNT15 TCNT14 TCNT13 TCNT12 TCNT11 TCNT10 TCNT9  
TCNT7 TCNT6 TCNT5 TCNT4 TCNT3 TCNT2 TCNT1  
GRA15 GRA14 GRA13 GRA12 GRA11 GRA10 GRA9  
GRA7 GRA6 GRA5 GRA4 GRA3 GRA2 GRA1  
GRB15 GRB14 GRB13 GRB12 GRB11 GRB10 GRB9  
GRB7 GRB6 GRB5 GRB4 GRB3 GRB2 GRB1  
GRC15 GRC14 GRC13 GRC12 GRC11 GRC10 GRC9  
GRC7 GRC6 GRC5 GRC4 GRC3 GRC2 GRC1  
GRD15 GRD14 GRD13 GRD12 GRD11 GRD10 GRD9  
GRA  
GRB  
GRC  
GRD  
GRD7  
GRD6  
SWE  
GRD5  
ESU  
GRD4  
PSU  
GRD3  
EV  
GRD2  
PV  
GRD1  
E
FLMCR1  
ROM  
FLMCR2 FLER  
FLPWCR PDWND  
EBR1  
EB4  
EB3  
EB2  
EB1  
EB0  
FENR  
TCRV0  
TCSRV  
TCORA  
TCORB  
TCNTV  
TCRV1  
TMA  
FLSHE  
CMIEB  
CMFB  
CMIEA  
CMFA  
OVIE  
OVF  
CCLR1 CCLR0 CKS2  
OS3 OS2  
CKS1  
OS1  
CKS0  
OS0  
Timer V  
TCORA7 TCORA6 TCORA5 TCORA4 TCORA3 TCORA2 TCORA1 TCORA0  
TCORB7 TCORB6 TCORB5 TCORB4 TCORB3 TCORB2 TCORB1 TCORB0  
TCNTV7 TCNTV6 TCNTV5 TCNTV4 TCNTV3 TCNTV2 TCNTV1 TCNTV0  
TVEG1 TVEG0 TRGE  
ICKS0  
TMA0  
TCA0  
TMA7  
TCA7  
TMA6  
TCA6  
TMA5  
TCA5  
TMA3  
TCA3  
TMA2  
TCA2  
TMA1  
TCA1  
Timer A  
TCA  
TCA4  
Rev. 6.00 Mar. 24, 2006 Page 305 of 412  
REJ09B0142-0600  
Section 19 List of Registers  
Register  
Module  
Name  
Name  
SMR  
BRR  
Bit 7  
COM  
BRR7  
TIE  
Bit 6  
CHR  
BRR6  
RIE  
Bit 5  
PE  
Bit 4  
PM  
Bit 3  
STOP  
BRR3  
MPIE  
TDR3  
PER  
RDR3  
AD5  
Bit 2  
MP  
Bit 1  
CKS1  
BRR1  
CKE1  
TDR1  
MPBR  
RDR1  
AD3  
Bit 0  
CKS0  
BRR0  
CKE0  
TDR0  
MPBT  
RDR0  
AD2  
SCI3  
BRR5  
TE  
BRR4  
RE  
BRR2  
TEIE  
TDR2  
TEND  
RDR2  
AD4  
SCR3  
TDR  
TDR7  
TDRE  
RDR7  
AD9  
TDR6  
RDRF  
RDR6  
AD8  
TDR5  
OER  
RDR5  
AD7  
TDR4  
FER  
RDR4  
AD6  
SSR  
RDR  
ADDRA  
A/D converter  
AD1  
AD0  
ADDRB  
ADDRC  
ADDRD  
AD9  
AD8  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
AD9  
AD8  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
AD9  
AD8  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
ADCSR  
ADCR  
ADF  
TRGE  
ADIE  
ADST  
SCAN  
CKS  
CH2  
CH1  
CH0  
TCSRWD B6WI  
TCWE  
B4WI  
TCSRWE B2WI  
WDON  
B0WI  
WRST  
WDT*1  
TCWD  
TMWD  
ICCR  
ICSR  
ICDR  
SARX  
ICMR  
SAR  
TCWD7 TCWD6 TCWD5 TCWD4 TCWD3 TCWD2 TCWD1 TCWD0  
CKS3  
ACKE  
AL  
CKS2  
BBSY  
AAS  
CKS1  
IRIC  
CKS0  
SCP  
ACKB  
ICDR0  
FSX  
ICE  
IEIC  
MST  
TRS  
IIC  
ESTP  
ICDR7  
SVAX6  
MLS  
STOP  
ICDR6  
SVAX5  
WAIT  
SVA5  
IRTR  
ICDR5  
SVAX4  
CKS2  
SVA4  
CSEL0  
AASX  
ICDR4  
SVAX3  
CKS1  
SVA3  
ADZ  
ICDR3  
SVAX2  
CKS0  
SVA2  
ICDR2  
SVAX1  
BC2  
ICDR1  
SVAX0  
BC1  
BC0  
SVA6  
SVA1  
SVA0  
FS  
ABRKCR RTINTE CSEL1  
ABRKSR ABIF ABIE  
ACMP2 ACMP1 ACMP0 DCMP1 DCMP0 Address break  
BARH  
BARL  
BDRH  
BDRL  
PUCR1  
PUCR5  
PDR1  
PDR2  
PDR5  
BARH7 BARH6 BARH5 BARH4 BARH3 BARH2 BARH1 BARH0  
BARL7 BARL6 BARL5 BARL4 BARL3 BARL2 BARL1 BARL0  
BDRH7 BDRH6 BDRH5 BDRH4 BDRH3 BDRH2 BDRH1 BDRH0  
BDRL7  
BDRL6  
BDRL5  
BDRL4  
BDRL3  
BDRL2  
BDRL1  
BDRL0  
PUCR17 PUCR16 PUCR15 PUCR14  
PUCR12 PUCR11 PUCR10 I/O port  
PUCR55 PUCR54 PUCR53 PUCR52 PUCR51 PUCR50  
P17  
P57*2  
P16  
P56*2  
P15  
P14  
P12  
P22  
P52  
P11  
P21  
P51  
P10  
P20  
P50  
P55  
P54  
P53  
Rev. 6.00 Mar. 24, 2006 Page 306 of 412  
REJ09B0142-0600  
Section 19 List of Registers  
Register  
Name  
Module  
Name  
Bit 7  
Bit 6  
P76  
P86  
PB6  
IRQ2  
Bit 5  
P75  
Bit 4  
P74  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PDR7  
PDR8  
PDRB  
PMR1  
PMR5  
PCR1  
PCR2  
PCR5  
PCR7  
PCR8  
I/O port  
P87  
PB7  
IRQ3  
P85  
P84  
P83  
P82  
P81  
P80  
PB5  
PB4  
PB3  
PB2  
PB1  
PB0  
IRQ1  
WKP5  
PCR15  
IRQ0  
WKP4  
PCR14  
TXD  
WKP1  
PCR11  
PCR21  
PCR51  
TMOW  
WKP0  
PCR10  
PCR20  
PCR50  
WKP3  
WKP2  
PCR12  
PCR22  
PCR52  
PCR17  
PCR57*2 PCR56*2 PCR55  
PCR16  
PCR54  
PCR74  
PCR84  
STS0  
MA2  
PCR53  
PCR76  
PCR86  
STS2  
PCR75  
PCR85  
STS1  
DTON  
PCR87  
PCR83  
NESEL  
MA1  
IEG3  
PCR82  
PCR81  
PCR80  
SYSCR1 SSBY  
Power-down  
Interrupts  
SYSCR2 SMSEL LSON  
MA0  
IEG2  
SA1  
SA0  
IEGR1  
IEGR2  
IENR1  
IRR1  
NMIEG  
IEG1  
IEG0  
WPEG5 WPEG4 WPEG3 WPEG2 WPEG1 WPEG0  
IENDT  
IRRDT  
IENTA  
IRRTA  
IENWP  
IEN3  
IEN2  
IEN1  
IEN0  
IRRI3  
IWPF3  
IRRI2  
IWPF2  
IRRI1  
IWPF1  
IRRI0  
IWPF0  
IWPR  
IWPF5  
IWPF4  
MSTCR1  
TSCR  
MSTIIC MSTS3 MSTAD MSTWD MSTTW MSTTV MSTTA Power-down  
IICRST IICX  
IIC  
Notes: 1. WDT: Watchdog timer  
2. This bit is not included in H8/3664N.  
EEPROM  
Register  
Name  
Module  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
EKR  
EKR7  
EKR6  
EKR5  
EKR4  
EKR3  
EKR2  
EKR1  
EKR0  
EEPROM  
Rev. 6.00 Mar. 24, 2006 Page 307 of 412  
REJ09B0142-0600  
Section 19 List of Registers  
19.3  
Register States in Each Operating Mode  
Register  
Name  
Reset  
Active  
Sleep  
Subactive Subsleep Standby  
Module  
TMRW  
TCRW  
TIERW  
TSRW  
TIOR0  
TIOR1  
TCNT  
GRA  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Timer W  
GRB  
GRC  
GRD  
FLMCR1 Initialized  
FLMCR2 Initialized  
FLPWCR Initialized  
Initialized  
Initialized  
Initialized  
ROM  
EBR1  
FENR  
TCRV0  
TCSRV  
TCORA  
TCORB  
TCNTV  
TCRV1  
TMA  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Timer V  
Timer A  
SCI3  
TCA  
SMR  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
BRR  
SCR3  
TDR  
SSR  
RDR  
Rev. 6.00 Mar. 24, 2006 Page 308 of 412  
REJ09B0142-0600  
Section 19 List of Registers  
Register  
Name  
Reset  
Active  
Sleep  
Subactive Subsleep Standby  
Module  
ADDRA  
ADDRB  
ADDRC  
ADDRD  
ADCSR  
ADCR  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
A/D converter  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
TCSRWD Initialized  
WDT*  
TCWD  
TMWD  
ICCR  
ICSR  
ICDR  
SARX  
ICMR  
SAR  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
IIC  
ABRKCR Initialized  
ABRKSR Initialized  
Address Break  
BARH  
BARL  
BDRH  
BDRL  
PUCR1  
PUCR5  
PDR1  
PDR2  
PDR5  
PDR7  
PDR8  
PDRB  
PMR1  
PMR5  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
I/O port  
Rev. 6.00 Mar. 24, 2006 Page 309 of 412  
REJ09B0142-0600  
Section 19 List of Registers  
Register  
Name  
Reset  
Active  
Sleep  
Subactive Subsleep Standby  
Module  
PCR1  
PCR2  
PCR5  
PCR7  
PCR8  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
I/O port  
SYSCR1 Initialized  
SYSCR2 Initialized  
Power-down  
Power-down  
Interrupts  
Interrupts  
Interrupts  
Interrupts  
Interrupts  
Power-down  
IIC  
IEGR1  
IEGR2  
IENR1  
IRR1  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
IWPR  
MSTCR1 Initialized  
TSCR Initialized  
Note : is not initialized  
*
WDT: Watchdog timer  
EEPROM  
Register  
Name  
Reset  
Active  
Sleep  
Subactive Subsleep Standby  
Module  
EKR  
Initialized  
EEPROM  
Rev. 6.00 Mar. 24, 2006 Page 310 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
Section 20 Electrical Characteristics  
20.1  
Absolute Maximum Ratings  
Table 20.1 Absolute Maximum Ratings  
Item  
Symbol  
VCC  
Value  
Unit  
V
Note  
Power supply voltage  
Analog power supply voltage  
–0.3 to +7.0  
–0.3 to +7.0  
–0.3 to VCC +0.3  
*
AVCC  
V
Input voltage  
Ports other than Port B and VIN  
V
X1  
Port B  
X1  
–0.3 to AVCC +0.3  
–0.3 to 4.3  
V
V
Operating temperature  
Storage temperature  
Topr  
Tstg  
–20 to +75  
°C  
°C  
–55 to +125  
Note:  
*
Permanent damage may result if maximum ratings are exceeded. Normal operation  
should be under the conditions specified in Electrical Characteristics. Exceeding these  
values can result in incorrect operation and reduced reliability.  
20.2  
Electrical Characteristics (F-ZTAT™ Version, F-ZTAT™ Version  
with EEPROM)  
20.2.1 Power Supply Voltage and Operating Ranges  
Power Supply Voltage and Oscillation Frequency Range  
φ OSC (MHz)  
φ W (kHz)  
16.0  
32.768  
10.0  
2.0  
3.0  
4.0  
5.5  
VCC (V)  
3.0  
4.0  
5.5  
VCC (V)  
• AVCC = 3.3 V to 5.5 V  
• Active mode  
• AVCC = 3.3 V to 5.5 V  
• All operating modes  
• Sleep mode  
Rev. 6.00 Mar. 24, 2006 Page 311 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
Power Supply Voltage and Operating Frequency Range  
φ (MHz)  
φ SUB (kHz)  
16.0  
16.384  
10.0  
1.0  
8.192  
4.096  
3.0  
4.0  
5.5  
VCC (V)  
3.0  
4.0  
5.5  
VCC (V)  
• AVCC = 3.3 V to 5.5 V  
• Active mode  
• Sleep mode  
• AVCC = 3.3 V to 5.5 V  
• Subactive mode  
• Subsleep mode  
(When MA2 = 0 in SYSCR2)  
φ (kHz)  
2000  
1250  
78.125  
3.0  
4.0  
5.5  
V
CC (V)  
• AVCC = 3.3 V to 5.5 V  
• Active mode  
• Sleep mode  
(When MA2 = 1 in SYSCR2)  
Rev. 6.00 Mar. 24, 2006 Page 312 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
Analog Power Supply Voltage and A/D Converter Accuracy Guarantee Range  
φ (MHz)  
16.0  
10.0  
2.0  
3.3  
4.0  
5.5 AVCC (V)  
• VCC = 3.0 V to 5.5 V  
• Active mode  
• Sleep mode  
Rev. 6.00 Mar. 24, 2006 Page 313 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
20.2.2 DC Characteristics  
Table 20.2 DC Characteristics (1)  
V
CC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C unless otherwise indicated.  
Values  
Item  
Symbol Applicable Pins Test Condition  
Min  
Typ Max  
Unit  
Notes  
Input high VIH  
voltage  
RES, NMI,  
V
CC = 4.0 V to 5.5 V  
VCC × 0.8  
VCC + 0.3  
V
WKP0 to WKP5,  
IRQ0 to IRQ3,  
ADTRG, TMRIV,  
TMCIV, FTCI,  
FTIOA to FTIOD,  
SCK3, TRGV  
V
CC × 0.9  
CC × 0.7  
VCC + 0.3  
VCC + 0.3  
RXD, SCL, SDA,  
P10 to P12,  
V
CC = 4.0 V to 5.5 V  
V
V
P14 to P17,  
P20 to P22,  
P50 to P57*,  
P74 to P76,  
P80 to P87  
V
CC × 0.8  
VCC + 0.3  
PB0 to PB7  
VCC = 4.0 V to 5.5 V  
VCC = 4.0 V to 5.5 V  
VCC = 4.0 V to 5.5 V  
V
CC × 0.7  
CC × 0.8  
AVCC + 0.3 V  
AVCC + 0.3  
V
OSC1  
VCC – 0.5  
VCC – 0.3  
–0.3  
VCC + 0.3  
VCC + 0.3  
V
Input low VIL  
voltage  
RES, NMI,  
V
CC × 0.2  
V
WKP0 to WKP5,  
IRQ0 to IRQ3,  
ADTRG, TMRIV,  
TMCIV, FTCI,  
FTIOA to FTIOD,  
SCK3, TRGV  
–0.3  
–0.3  
V
V
CC × 0.1  
CC × 0.3  
RXD, SCL, SDA,  
P10 to P12,  
V
CC = 4.0 V to 5.5 V  
V
V
P14 to P17,  
P20 to P22,  
P50 to P57*,  
P74 to P76,  
P80 to P87,  
PB0 to PB7  
–0.3  
V
CC × 0.2  
OSC1  
VCC = 4.0 V to 5.5 V  
–0.3  
–0.3  
0.5  
0.3  
Note:  
*
P50 to P55 for H8/3664N  
Rev. 6.00 Mar. 24, 2006 Page 314 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
Values  
Item  
Symbol Applicable Pins Test Condition  
Min  
Typ  
Max  
Unit  
Notes  
Output  
high  
voltage  
VOH  
P10 to P12,  
P14 to P17,  
P20 to P22,  
P50 to P55,  
P74 to P76,  
P80 to P87,  
VCC = 4.0 V to 5.5 V  
–IOH = 1.5 mA  
V
CC – 1.0  
V
–IOH = 0.1 mA  
VCC – 0.5  
P56, P57*  
VCC = 4.0 V to 5.5 V  
–IOH = 0.1 mA  
V
V
CC – 2.5  
CC – 2.0  
V
VCC = 3.0 V to 4.0 V  
–IOH = 0.1 mA  
Output  
low  
VOL  
P10 to P12,  
P14 to P17,  
P20 to P22,  
P50 to P57*,  
P74 to P76,  
VCC = 4.0 V to 5.5 V  
IOL = 1.6 mA  
0.6  
V
V
voltage  
I
OL = 0.4 mA  
0.4  
1.5  
P80 to P87  
VCC = 4.0 V to 5.5 V  
IOL = 20.0 mA  
VCC = 4.0 V to 5.5 V  
IOL = 10.0 mA  
1.0  
0.4  
VCC = 4.0 V to 5.5 V  
IOL = 1.6 mA  
IOL = 0.4 mA  
0.4  
0.6  
SCL, SDA  
VCC = 4.0 V to 5.5 V  
IOL = 6.0 mA  
V
IOL = 3.0 mA  
0.4  
Note:  
*
P50 to P55 for H8/3664N  
Rev. 6.00 Mar. 24, 2006 Page 315 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
Values  
Typ  
Item  
Symbol Applicable Pins Test Condition  
Min  
Max  
Unit Notes  
Input/  
| IIL  
|
OSC1, RES, NMI, VIN = 0.5 V to  
WKP0 to WKP5, (VCC – 0.5 V)  
IRQ0 to IRQ3,  
1.0  
µA  
output  
leakage  
current  
ADTRG, TRGV,  
TMRIV, TMCIV,  
FTCI, FTIOA to  
FTIOD, RXD,  
SCK3, SCL, SDA  
P10 to P12,  
P14 to P17,  
P20 to P22,  
P50 to P57*1,  
P74 to P76,  
P80 to P87,  
V
IN = 0.5 V to  
1.0  
µA  
(VCC – 0.5 V)  
PB0 to PB7  
VIN = 0.5 V to  
(AVCC – 0.5 V)  
1.0  
µA  
µA  
Pull-up  
MOS  
current  
–Ip  
Cin  
P10 to P12,  
P14 to P17,  
P50 to P55  
VCC = 5.0 V,  
50.0  
300.0  
V
IN = 0.0 V  
V
V
CC = 3.0 V,  
IN = 0.0 V  
60.0  
Reference  
value  
Input  
All input pins  
except power  
supply pins  
f = 1 MHz,  
VIN = 0.0 V,  
Ta = 25°C  
15.0  
pF  
H8/3664N  
capaci-  
tance  
SCL, SDA  
VCC  
25.0  
22.5  
2
*
Active  
mode  
IOPE1  
Active mode 1  
15.0  
mA  
V
CC = 5.0 V,  
supply  
current  
fOSC = 16 MHz  
2
Active mode 1  
CC = 3.0 V,  
OSC = 10 MHz  
8.0  
1.8  
1.2  
*
V
Reference  
value  
f
2
*
IOPE2  
VCC  
Active mode 2  
CC = 5.0 V,  
OSC = 16 MHz  
2.7  
mA  
V
f
2
*
Active mode 2  
CC = 3.0 V,  
OSC = 10 MHz  
V
Reference  
value  
f
Notes: 1. P50 to P55 for H8/3664N  
2. Pin states during supply current measurement are given below (excluding current in the  
pull-up MOS transistors and output buffers).  
Rev. 6.00 Mar. 24, 2006 Page 316 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
Values  
Item  
Symbol Applicable Pins Test Condition  
Min  
Typ Max  
Unit Notes  
Sleep  
mode  
supply  
current  
ISLEEP1  
VCC  
VCC  
VCC  
Sleep mode 1  
CC = 5.0 V,  
OSC = 16 MHz  
11.5 17.0  
mA  
mA  
µA  
*
V
f
Sleep mode 1  
CC = 3.0 V,  
OSC = 10 MHz  
6.5  
1.7  
1.1  
*
V
Reference  
value  
f
ISLEEP2  
Sleep mode 2  
CC = 5.0 V,  
OSC = 16 MHz  
2.5  
*
V
f
Sleep mode 2  
CC = 3.0 V,  
OSC = 10 MHz  
*
V
Reference  
value  
f
Subactive ISUB  
mode  
supply  
VCC = 3.0 V  
32-kHz crystal  
resonator  
35.0 70.0  
*
current  
(φSUB = φW/2)  
V
CC = 3.0 V  
2.0  
25.0  
*
32-kHz crystal  
resonator  
(φSUB = φW/8)  
Reference  
value  
Subsleep ISUBSP  
mode  
supply  
VCC  
VCC  
VCC  
VCC = 3.0 V  
32-kHz crystal  
resonator  
25.0 50.0  
µA  
µA  
V
*
current  
(φSUB = φW/2)  
Standby  
mode  
ISTBY  
32-kHz crystal  
resonator not  
used  
5.0  
*
supply  
current  
RAM data VRAM  
retaining  
voltage  
Note:  
*
Pin states during supply current measurement are given below (excluding current in the  
pull-up MOS transistors and output buffers).  
Rev. 6.00 Mar. 24, 2006 Page 317 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
Mode  
RES Pin  
VCC  
Internal State  
Other Pins  
Oscillator Pins  
Active mode 1  
Active mode 2  
Operates  
VCC  
Main clock:  
ceramic or crystal  
resonator  
Operates  
(φosc/64)  
Subclock:  
Pin X1 = VSS  
Sleep mode 1  
Sleep mode 2  
VCC  
Only timers operate  
VCC  
Only timers operate  
(φosc/64)  
Subactive mode  
Subsleep mode  
VCC  
VCC  
Operates  
VCC  
VCC  
Main clock:  
ceramic or crystal  
resonator  
Only timers operate  
Subclock:  
crystal resonator  
Standby mode  
VCC  
CPU and timers  
both stop  
VCC  
Main clock:  
ceramic or crystal  
resonator  
Subclock:  
Pin X1 = VSS  
Table 20.2 DC Characteristics (2)  
V
CC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise indicated.  
Values  
Item  
Symbol Applicable Pins Test Condition  
Min Typ Max  
Unit Notes  
EEPROM IEEW  
supply  
VCC  
VCC  
VCC  
VCC = 5.0 V, tSCL = 2.5  
µs (when writing)  
2.0  
0.3  
3.0  
mA  
mA  
µA  
*
current  
IEER  
VCC = 5.0 V, tSCL = 2.5  
µs (when reading)  
IEESTBY  
VCC = 5.0 V, tSCL = 2.5  
µs (at standby)  
Note:  
*
The supply current of the EEPROM chip is shown.  
For the supply current of H8/3664N, add the above current values to the supply current  
of H8/3664F.  
Rev. 6.00 Mar. 24, 2006 Page 318 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
Table 20.2 DC Characteristics (3)  
VCC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise indicated.  
Applicable  
Pins  
Values  
Typ  
Item  
Symbol  
Min  
Max  
Unit  
Test Condition  
Allowable output low  
current (per pin)  
IOL  
Output pins except VCC = 4.0 V to  
2.0  
mA  
port 8, SCL, and  
SDA  
5.5 V  
Port 8  
20.0  
10.0  
6.0  
mA  
mA  
mA  
mA  
Port 8  
SCL and SDA  
Output pins except  
port 8, SCL, and  
SDA  
0.5  
Allowable output low  
current (total)  
IOL  
Output pins except VCC = 4.0 V to  
40.0  
mA  
port 8, SCL, and  
SDA  
5.5 V  
Port 8,  
SCL, and SDA  
80.0  
20.0  
mA  
mA  
Output pins except  
port 8, SCL, and  
SDA  
Port 8,  
SCL, and SDA  
40.0  
2.0  
mA  
mA  
Allowable output high I –IOH  
current (per pin)  
I
All output pins  
VCC = 4.0 V to  
5.5 V  
0.2  
mA  
mA  
Allowable output high I –IOH  
current (total)  
I
All output pins  
VCC = 4.0 V to  
5.5 V  
30.0  
8.0  
mA  
Rev. 6.00 Mar. 24, 2006 Page 319 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
20.2.3 AC Characteristics  
Table 20.3 AC Characteristics  
V
CC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Values  
Applicable  
Symbol Pins  
Reference  
Unit Figure  
Item  
Test Condition  
Min  
Typ  
Max  
1
*
System clock  
oscillation  
fOSC OSC1,  
VCC = 4.0 V to 5.5 V 2.0  
16.0  
MHz  
OSC2  
frequency  
2.0  
1
10.0  
64  
MHz  
tOSC  
µs  
2
*
System clock (φ)  
cycle time  
tcyc  
12.8  
Subclock oscillation fW  
frequency  
X1, X2  
X1, X2  
32.768 —  
kHz  
Watch clock (φW)  
cycle time  
tW  
2
30.5  
µs  
tW  
2
*
Subclock (φSUB  
)
tsubcyc  
8
cycle time  
Instruction cycle  
time  
2
tcyc  
tsubcyc  
Oscillation  
stabilization time  
(crystal resonator)  
trc  
OSC1,  
OSC2  
10.0  
ms  
Oscillation  
stabilization time  
(ceramic resonator)  
trc  
OSC1,  
OSC2  
5.0  
2.0  
ms  
Oscillation  
stabilization time  
trcx  
X1, X2  
OSC1  
s
External clock  
high width  
tCPH  
VCC = 4.0 V to 5.5 V 25.0  
ns  
Figure 20.1  
40.0  
External clock  
low width  
tCPL  
tCPr  
tCPf  
OSC1  
OSC1  
OSC1  
VCC = 4.0 V to 5.5 V 25.0  
ns  
ns  
ns  
40.0  
External clock  
rise time  
VCC = 4.0 V to 5.5 V —  
10.0  
15.0  
10.0  
15.0  
VCC = 4.0 V to 5.5 V —  
External clock  
fall time  
Rev. 6.00 Mar. 24, 2006 Page 320 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
Applicable  
Symbol Pins  
Values  
Typ  
Reference  
Unit Figure  
Item  
Test Condition  
Min  
Max  
RES pin low  
tREL  
RES  
At power-on and in trc  
modes other than  
those below  
ms  
Figure 20.2  
width  
In active mode and 10  
sleep mode  
operation  
tcyc  
Input pin high  
width  
tIH  
NMI,  
2
tcyc  
Figure 20.3  
IRQ0 to  
IRQ3,  
tsubcyc  
WKP0 to  
WKP5,  
TMCIV,  
TMRIV,  
TRGV,  
ADTRG,  
FTCI,  
FTIOA to  
FTIOD  
Input pin low  
width  
tIL  
NMI,  
2
tcyc  
tsubcyc  
IRQ0 to  
IRQ3,  
WKP0 to  
WKP5,  
TMCIV,  
TMRIV,  
TRGV,  
ADTRG,  
FTCI,  
FTIOA to  
FTIOD  
Notes: 1. When an external clock is input, the minimum system clock oscillator frequency is  
1.0 MHz.  
2. Determined by MA2, MA1, MA0, SA1, and SA0 of system control register 2 (SYSCR2).  
Rev. 6.00 Mar. 24, 2006 Page 321 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
Table 20.4 I2C Bus Interface Timing  
V
CC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20 to +75°C, unless otherwise specified.  
Test  
Values  
Typ  
Reference  
Unit Figure  
Item  
Symbol Condition Min  
Max  
SCL input cycle time tSCL  
SCL input high width tSCLH  
12tcyc + 600 —  
ns  
ns  
ns  
ns  
Figure 20.4  
3tcyc + 300  
5tcyc + 300  
SCL input low width  
tSCLL  
tSf  
Input fall time of  
SCL and SDA  
300  
SCL and SDA input  
spike pulse removal  
time  
tSP  
1tcyc  
ns  
SDA input bus-free  
time  
tBUF  
5tcyc  
3tcyc  
3tcyc  
ns  
ns  
ns  
Start condition input  
hold time  
tSTAH  
Retransmission start tSTAS  
condition input setup  
time  
Setup time for stop  
condition input  
tSTOS  
3tcyc  
ns  
Data-input setup time tSDAS  
1tcyc+20  
ns  
ns  
pF  
Data-input hold time  
tSDAH  
cb  
0
0
Capacitive load of  
SCL and SDA  
400  
SCL and SDA output tSf  
fall time  
VCC = 4.0 V —  
to 5.5 V  
250  
300  
ns  
Rev. 6.00 Mar. 24, 2006 Page 322 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
Table 20.5 Serial Interface (SCI3) Timing  
CC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
V
Applicable  
Symbol Pins  
Values  
Reference  
Item  
Test Condition  
Min Typ Max Unit Figure  
Input  
clock  
cycle  
Asynchro-  
nous  
tScyc  
SCK3  
4
6
tcyc  
tcyc  
Figure 20.5  
Clocked  
synchro-  
nous  
Input clock pulse  
width  
tSCKW  
tTXD  
SCK3  
TXD  
0.4  
0.6 tScyc  
Transmit data delay  
time (clocked  
synchronous)  
VCC = 4.0 V to 5.5 V  
VCC = 4.0 V to 5.5 V  
VCC = 4.0 V to 5.5 V  
1
1
tcyc  
tcyc  
Figure 20.6  
Receive data setup  
time (clocked  
synchronous)  
tRXS  
RXD  
RXD  
62.5  
ns  
ns  
100.0 —  
Receive data hold time tRXH  
(clocked synchronous)  
62.5  
ns  
ns  
100.0 —  
Rev. 6.00 Mar. 24, 2006 Page 323 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
20.2.4 A/D Converter Characteristics  
Table 20.6 A/D Converter Characteristics  
V
CC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Applicable Test  
Symbol Pins Condition  
Values  
Reference  
Unit Figure  
Item  
Min  
Typ Max  
VCC 5.5  
1
*
Analog power supply AVCC  
voltage  
AVCC  
3.3  
V
Analog input voltage AVIN  
AN0 to  
AN7  
VSS – 0.3  
AVCC + 0.3  
V
Analog power supply AIOPE  
current  
AVCC  
AVCC = 5.0 V —  
fOSC  
16 MHz  
2.0  
mA  
=
2
*
AISTOP1  
AVCC  
AVCC  
50  
µA  
Reference  
value  
3
*
AISTOP2  
5.0  
µA  
pF  
Analog input  
capacitance  
CAIN  
AN0 to  
AN7  
30.0  
Allowable signal  
source impedance  
RAIN  
AN0 to  
AN7  
10  
5.0  
10  
kΩ  
bit  
tcyc  
Resolution (data  
length)  
10  
Conversion time  
(single mode)  
AVCC = 3.3 V 134  
to 5.5 V  
Nonlinearity error  
Offset error  
7.5  
7.5  
7.5  
0.5  
8.0  
LSB  
LSB  
LSB  
LSB  
LSB  
tcyc  
Full-scale error  
Quantization error  
Absolute accuracy  
Conversion time  
(single mode)  
AVCC = 4.0 V 70  
to 5.5 V  
Nonlinearity error  
Offset error  
7.5  
7.5  
7.5  
0.5  
8.0  
LSB  
LSB  
LSB  
LSB  
LSB  
Full-scale error  
Quantization error  
Absolute accuracy  
Rev. 6.00 Mar. 24, 2006 Page 324 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
Applicable Test  
Symbol Pins Condition  
Values  
Reference  
Unit Figure  
Item  
Min  
Typ Max  
Conversion time  
(single mode)  
AVCC = 4.0 V 134  
to 5.5 V  
tcyc  
Nonlinearity error  
Offset error  
3.5  
LSB  
LSB  
LSB  
LSB  
LSB  
3.5  
3.5  
0.5  
4.0  
Full-scale error  
Quantization error  
Absolute accuracy  
Notes: 1. Set AVCC = VCC when the A/D converter is not used.  
2. AISTOP1 is the current in active and sleep modes while the A/D converter is idle.  
3. AISTOP2 is the current at reset and in standby, subactive, and subsleep modes while the  
A/D converter is idle.  
20.2.5 Watchdog Timer Characteristics  
Table 20.7 Watchdog Timer Characteristics  
V
CC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Applicable  
Pins  
Values  
Typ  
Reference  
Unit Figure  
Test  
Item  
Symbol  
Condition  
Min  
Max  
On-chip  
oscillator  
overflow  
time  
tOVF  
0.2  
0.4  
s
*
Note:  
*
Shows the time to count from 0 to 255, at which point an internal reset is generated,  
when the internal oscillator is selected.  
Rev. 6.00 Mar. 24, 2006 Page 325 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
20.2.6 Memory Characteristics  
Table 20.8 Flash Memory Characteristics  
VCC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Test  
Values  
Typ  
7
Item  
Symbol Condition  
Min  
Max  
200  
1200  
Unit  
ms  
Programming time (per 128 bytes)*1*2*4  
Erase time (per block) *1*3*6  
Reprogramming count  
tP  
tE  
100  
ms  
NWEC  
x
1000  
1
10000  
Times  
µs  
Programming Wait time after SWE  
bit setting*1  
Wait time after PSU  
y
50  
µs  
bit setting*1  
Wait time after P bit setting*1*4 z1  
1 n 6  
28  
198  
8
30  
32  
µs  
µs  
µs  
z2  
z3  
7 n 1000  
200  
10  
202  
12  
Additional-  
programming  
Wait time after P bit clear*1  
Wait time after PSU bit clear*1  
Wait time after PV bit setting*1  
Wait time after dummy write*1  
Wait time after PV bit clear*1  
Wait time after SWE bit clear*1  
α
β
γ
5
µs  
5
µs  
4
µs  
ε
2
µs  
η
θ
N
2
µs  
100  
µs  
Maximum  
1000  
Times  
programming count*1*4*5  
Rev. 6.00 Mar. 24, 2006 Page 326 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
Test  
Values  
Item  
Symbol Condition  
Min  
Typ  
Max  
Unit  
Erase  
Wait time after SWE  
x
1
µs  
bit setting*1  
Wait time after ESU  
y
100  
µs  
bit setting*1  
Wait time after E bit setting*1*6  
Wait time after E bit clear*1  
Wait time after ESU bit clear*1  
Wait time after EV bit setting*1  
Wait time after dummy write*1  
Wait time after EV bit clear*1  
Wait time after SWE bit clear*1  
Maximum erase count*1*6*7  
z
α
β
γ
10  
10  
10  
20  
2
100  
ms  
µs  
µs  
µs  
ε
µs  
η
θ
N
4
µs  
100  
µs  
120  
Times  
Notes: 1. Make the time settings in accordance with the program/erase algorithms.  
2. The programming time for 128 bytes. (Indicates the total time for which the P bit in flash  
memory control register 1 (FLMCR1) is set. The program-verify time is not included.)  
3. The time required to erase one block. (Indicates the time for which the E bit in flash  
memory control register 1 (FLMCR1) is set. The erase-verify time is not included.)  
4. Programming time maximum value (tP(MAX)) = wait time after P bit setting (z) ×  
maximum programming count (N)  
5. Set the maximum programming count (N) according to the actual set values of z1, z2,  
and z3, so that it does not exceed the programming time maximum value (tP(MAX)).  
The wait time after P bit setting (z1, z2) should be changed as follows according to the  
value of the programming count (n).  
Programming count (n)  
1 n 6  
z1 = 30 µs  
7 n 1000 z2 = 200 µs  
6. Erase time maximum value (tE(max)) = wait time after E bit setting (z) × maximum erase  
count (N)  
7. Set the maximum maximum erase count (N) according to the actual set value of (z), so  
that it does not exceed the erase time maximum value (tE(max)).  
Rev. 6.00 Mar. 24, 2006 Page 327 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
20.2.7 EEPROM Characteristics  
Table 20.9 EEPROM Characteristics  
VCC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Test  
Values  
Typ Max  
Reference  
Figure  
Item  
Symbol  
tSCL  
Condition  
Min  
Unit  
ns  
SCL input cycle time  
SCL input high pulse width  
SCL input low pulse width  
2500  
600  
1200  
Figure 20.7  
tSCLH  
tSCLL  
50  
µs  
ns  
SCL, SDA input spike pulse  
removal time  
tSP  
ns  
SDA input bus-free time  
tBUF  
1200  
600  
ns  
ns  
ns  
Start condition input hold time  
tSTAH  
Retransmit start condition input tSTAS  
setup time  
600  
Stop condition input setup time tSTOS  
600  
160  
0
ns  
ns  
ns  
ns  
ns  
ns  
pF  
ns  
ms  
ms  
Data input setup time  
Data input hold time  
SCL, SDA input fall time  
SDA input rise time  
Data output hold time  
SCL, SDA capacitive load  
Access time  
tSDAS  
tSDAH  
tSf  
300  
300  
tSr  
tDH  
50  
0
Cb  
400  
900  
10  
tAA  
100  
Cycle time at writing*  
Reset release time  
tWC  
tRES  
13  
Note:  
*
Cycle time at writing is a time from the stop condition to write completion (internal  
control).  
Rev. 6.00 Mar. 24, 2006 Page 328 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
20.3  
Electrical Characteristics (Mask ROM Version)  
20.3.1 Power Supply Voltage and Operating Ranges  
Power Supply Voltage and Oscillation Frequency Range  
φ OSC (MHz)  
φ W (kHz)  
16.0  
32.768  
10.0  
2.0  
2.7  
4.0  
5.5 VCC (V)  
2.7  
4.0  
5.5  
VCC (V)  
• AVCC = 3.0 V to 5.5 V  
• Active mode  
• AVCC = 3.0 V to 5.5 V  
• All operating modes  
• Sleep mode  
Rev. 6.00 Mar. 24, 2006 Page 329 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
Power Supply Voltage and Operating Frequency Range  
φ (MHz)  
φ SUB (kHz)  
16.0  
16.384  
10.0  
1.0  
8.192  
4.096  
2.7  
4.0  
5.5  
VCC (V)  
2.7  
4.0  
5.5  
VCC (V)  
• AVCC = 3.0 V to 5.5 V  
• Active mode  
• Sleep mode  
• AVCC = 3.0 V to 5.5 V  
• Subactive mode  
• Subsleep mode  
(When MA2 = 0 in SYSCR2)  
φ (kHz)  
2000  
1250  
78.125  
2.7  
4.0  
5.5  
V
CC (V)  
• AVCC = 3.0 V to 5.5 V  
• Active mode  
• Sleep mode  
(When MA2 = 1 in SYSCR2)  
Rev. 6.00 Mar. 24, 2006 Page 330 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
Analog Power Supply Voltage and A/D Converter Accuracy Guarantee Range:  
φ (MHz)  
16.0  
10.0  
2.0  
3.0  
4.0  
5.5 AVCC (V)  
• VCC = 2.7 V to 5.5 V  
• Active mode  
• Sleep mode  
20.3.2 DC Characteristics  
Table 20.10 DC Characteristics (1)  
V
CC = 2.7 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C unless otherwise indicated.  
Values  
Item  
Symbol Applicable Pins Test Condition  
Min  
Typ Max  
Unit Notes  
Input high VIH  
voltage  
RES, NMI,  
V
CC = 4.0 V to 5.5 V  
V
CC × 0.8  
VCC + 0.3  
V
WKP0 to WKP5,  
IRQ0 to IRQ3,  
ADTRG, TMRIV,  
TMCIV, FTCI,  
FTIOA to FTIOD,  
SCK3, TRGV  
V
CC × 0.9  
CC × 0.7  
VCC + 0.3  
VCC + 0.3  
V
V
RXD, SCL, SDA,  
P10 to P12,  
P14 to P17,  
P20 to P22,  
P50 to P57,  
P74 to P76,  
P80 to P87  
V
CC = 4.0 V to 5.5 V  
V
V
CC × 0.8  
VCC + 0.3  
V
PB0 to PB7  
VCC = 4.0 V to 5.5 V  
VCC = 4.0 V to 5.5 V  
V
CC × 0.7  
CC × 0.8  
AVCC + 0.3  
AVCC + 0.3  
VCC + 0.3  
VCC + 0.3  
V
V
V
V
V
OSC1  
VCC – 0.5  
VCC – 0.3  
Rev. 6.00 Mar. 24, 2006 Page 331 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
Values  
Item  
Symbol Applicable Pins Test Condition  
Min  
Typ Max  
Unit  
Notes  
Input low  
voltage  
VIL  
RES, NMI,  
V
CC = 4.0 V to 5.5 V –0.3  
V
CC × 0.2  
V
WKP0 to WKP5,  
IRQ0 to IRQ3,  
ADTRG, TMRIV,  
TMCIV, FTCI,  
FTIOA to FTIOD,  
SCK3, TRGV  
–0.3  
V
V
CC × 0.1  
CC × 0.3  
V
V
RXD, SCL, SDA,  
P10 to P12,  
V
CC = 4.0 V to 5.5 V –0.3  
P14 to P17,  
P20 to P22,  
P50 to P57,  
P74 to P76,  
P80 to P87,  
PB0 to PB7  
–0.3  
V
CC × 0.2  
V
OSC1  
VCC = 4.0 V to 5.5 V –0.3  
–0.3  
0.5  
0.3  
V
V
V
Output  
high  
VOH  
P10 to P12,  
P14 to P17,  
P20 to P22,  
P50 to P55,  
P74 to P76,  
P80 to P87  
VCC = 4.0 V to 5.5 V VCC –  
1.0  
–IOH = 1.5 mA  
voltage  
–IOH = 0.1 mA  
VCC  
0.5  
V
P56, P57  
VCC = 4.0 V to 5.5 V VCC  
V
V
2.5  
–IOH = 0.1 mA  
VCC =2.7 V to 4.0 V  
–IOH = 0.1 mA  
VCC  
2.0  
Rev. 6.00 Mar. 24, 2006 Page 332 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
Values  
Item  
Symbol Applicable Pins Test Condition  
Min  
Typ  
Max  
Unit Notes  
Output  
low  
voltage  
VOL  
P10 to P12,  
P14 to P17,  
P20 to P22,  
P50 to P57,  
P74 to P76  
VCC = 4.0 V to 5.5 V  
IOL = 1.6 mA  
0.6  
V
I
OL = 0.4 mA  
0.4  
1.5  
V
V
P80 to P87  
VCC = 4.0 V to 5.5 V  
IOL = 20.0 mA  
VCC = 4.0 V to 5.5 V  
IOL = 10.0 mA  
VCC = 4.0 V to 5.5 V  
IOL = 1.6 mA  
1.0  
0.4  
V
V
IOL = 0.4 mA  
0.4  
0.6  
V
V
SCL, SDA  
VCC = 4.0 to  
IOL = 6.0 mA  
IOL = 3.0 mA  
0.4  
1.0  
V
Input/  
| IIL  
|
OSC1, RES, NMI, VIN = 0.5 V to  
WKP0 to WKP5, (VCC – 0.5 V)  
IRQ0 to IRQ3,  
µA  
output  
leakage  
current  
ADTRG, TRGV,  
TMRIV, TMCIV,  
FTCI, FTIOA to  
FTIOD, RXD,  
SCK3, SCL, SDA  
P10 to P12,  
P14 to P17,  
P20 to P22,  
P50 to P57,  
P74 to P76,  
P80 to P87  
V
IN = 0.5 V to  
1.0  
µA  
(VCC – 0.5 V)  
PB0 to PB7  
VIN = 0.5 V to  
(AVCC – 0.5 V)  
1.0  
µA  
µA  
Pull-up  
MOS  
–Ip  
P10 to P12,  
P14 to P17,  
VCC = 5.0 V,  
50.0  
300.0  
V
IN = 0.0 V  
current  
P50 to P55  
V
V
CC = 3.0 V,  
IN = 0.0 V  
60.0  
µA  
Reference  
value  
Rev. 6.00 Mar. 24, 2006 Page 333 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
Values  
Item  
Symbol Applicable Pins Test Condition  
Min  
Typ Max  
Unit Notes  
Input  
capaci-  
tance  
Cin  
All input pins  
except power  
supply pins  
f = 1 MHz,  
VIN = 0.0 V,  
Ta = 25°C  
15.0  
pF  
Active  
mode  
supply  
current  
IOPE1  
VCC  
VCC  
VCC  
VCC  
VCC  
Active mode 1  
15.0 22.5  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
*
V
CC = 5.0 V,  
fOSC = 16 MHz  
Active mode 1  
8.0  
1.8  
1.2  
7.1  
4.0  
1.1  
0.5  
*
V
CC = 3.0 V,  
Reference  
value  
fOSC = 10 MHz  
IOPE2  
Active mode 2  
2.7  
*
V
CC = 5.0 V,  
f
OSC = 16 MHz  
Active mode 2  
CC = 3.0 V,  
*
V
Reference  
value  
fOSC = 10 MHz  
Sleep  
mode  
supply  
current  
ISLEEP1  
Sleep mode 1  
13.0  
*
V
CC = 5.0 V,  
fOSC = 16 MHz  
Sleep mode 1  
*
V
CC = 3.0 V,  
Reference  
value  
f
OSC = 10 MHz  
ISLEEP2  
Sleep mode 2  
CC = 5.0 V,  
2.0  
*
V
fOSC = 16 MHz  
Sleep mode 2  
*
V
CC = 3.0 V,  
Reference  
value  
fOSC = 10 MHz  
Subactive ISUB  
mode  
supply  
VCC = 3.0 V  
32-kHz crystal  
resonator  
35.0 70.0  
*
current  
(φSUB = φW/2)  
V
CC = 3.0 V  
25.0  
µA  
µA  
µA  
*
32-kHz crystal  
resonator  
(φSUB = φW/8)  
Reference  
value  
Subsleep ISUBSP  
mode  
VCC  
VCC = 3.0 V  
32-kHz crystal  
resonator  
25.0 50.0  
*
supply  
current  
(φSUB = φW/2)  
Standby  
mode  
ISTBY  
VCC  
32-kHz crystal  
5.0  
*
resonator not used  
supply  
current  
Rev. 6.00 Mar. 24, 2006 Page 334 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
Values  
Item  
Symbol Applicable Pins Test Condition  
Min  
Typ  
Max  
Unit Notes  
RAM data VRAM  
retaining  
VCC  
2.0  
V
voltage  
Note:  
*
Pin states during supply current measurement are given below (excluding current in the  
pull-up MOS transistors and output buffers).  
Mode  
RES Pin  
Internal State  
Other Pins  
Oscillator Pins  
Active mode 1  
Active mode 2  
VCC  
Operates  
VCC  
Main clock:  
ceramic or crystal  
resonator  
Operates  
(φosc/64)  
Subclock:  
Pin X1 = VSS  
Sleep mode 1  
Sleep mode 2  
VCC  
Only timers operate  
VCC  
Only timers operate  
(φosc/64)  
Subactive mode  
VCC  
Operates  
VCC  
Main clock:  
ceramic or crystal  
resonator  
Subsleep mode  
Standby mode  
VCC  
VCC  
Only timers operate  
VCC  
VCC  
Subclock:  
crystal resonator  
CPU and timers  
both stop  
Main clock:  
ceramic or crystal  
resonator  
Subclock:  
Pin X1 = VSS  
Rev. 6.00 Mar. 24, 2006 Page 335 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
Table 20.10 DC Characteristics (2)  
VCC = 2.7 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise indicated.  
Applicable  
Symbol Pins  
Values  
Typ  
Item  
Min  
Max  
Unit  
Test Condition  
VCC = 4.0 V to 5.5 V  
Allowable output low  
current (per pin)  
IOL  
Output pins  
2.0  
mA  
except port 8,  
SCL, and SDA  
Port 8  
20.0  
10.0  
6.0  
mA  
mA  
mA  
mA  
Port 8  
SCL and SDA  
Output pins  
0.5  
except port 8,  
SCL,, and SDA  
Allowable output low  
current (total)  
IOL  
Output pins  
except port 8,  
SCL and SDA  
V
CC = 4.0 V to 5.5 V  
40.0  
mA  
Port 8,  
SCL, and SDA  
80.0  
20.0  
mA  
mA  
Output pins  
except port 8,  
SCL, and SDA  
Port 8,  
40.0  
mA  
SCL, and SDA  
Allowable output high I –IOH  
current (per pin)  
I
All output pins VCC = 4.0 V to 5.5 V  
All output pins VCC = 4.0 V to 5.5 V  
2.0  
0.2  
mA  
mA  
mA  
mA  
Allowable output high I –IOH  
current (total)  
I
30.0  
8.0  
Rev. 6.00 Mar. 24, 2006 Page 336 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
20.3.3 AC Characteristics  
Table 20.11 AC Characteristics  
V
CC = 2.7 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Applicable  
Symbol Pins  
Values  
Min Typ  
Reference  
Unit Figure  
Item  
Test Condition  
Max  
1
*
System clock  
oscillation  
fOSC  
OSC1,  
OSC2  
VCC = 4.0 V to 5.5 V 2.0  
16.0  
MHz  
frequency  
2.0  
1
10.0  
64  
2
*
System clock (φ)  
cycle time  
tcyc  
tOSC  
µs  
12.8  
Subclock oscillation fW  
frequency  
X1, X2  
X1, X2  
32.768 —  
kHz  
Watch clock (φW)  
cycle time  
tW  
2
30.5  
µs  
tW  
2
*
Subclock (φSUB  
)
tsubcyc  
8
cycle time  
Instruction cycle  
time  
2
tcyc  
tsubcyc  
Oscillation  
stabilization time  
(crystal resonator)  
trc  
OSC1,  
OSC2  
10.0  
ms  
ms  
s
Oscillation  
stabilization time  
(ceramic resonator)  
trc  
OSC1,  
OSC2  
5.0  
2.0  
Oscillation  
stabilization time  
trcx  
X1, X2  
OSC1  
External clock  
high width  
tCPH  
VCC = 4.0 V to 5.5 V 25.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Figure 20.1  
40.0  
VCC = 4.0 V to 5.5 V 25.0  
40.0  
External clock  
low width  
tCPL  
tCPr  
tCPf  
OSC1  
OSC1  
OSC1  
External clock  
rise time  
VCC = 4.0 V to 5.5 V  
10.0  
15.0  
10.0  
15.0  
External clock  
fall time  
VCC = 4.0 V to 5.5 V  
Rev. 6.00 Mar. 24, 2006 Page 337 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
Applicable  
Symbol Pins  
Values  
Typ  
Reference  
Unit Figure  
Item  
Test Condition  
Min  
Max  
RES pin low  
tREL  
RES  
At power-on and  
in modes other  
than those below  
trc  
ms  
Figure 20.2  
width  
In active mode  
and sleep mode  
operation  
10  
2
tcyc  
Input pin high  
width  
tIH  
NMI,  
tcyc  
Figure 20.3  
IRQ0 to  
IRQ3,  
tsubcyc  
WKP0 to  
WKP5,  
TMCIV,  
TMRIV,  
TRGV,  
ADTRG,  
FTCI,  
FTIOA to  
FTIOD  
Input pin low  
width  
tIL  
NMI,  
2
tcyc  
tsubcyc  
IRQ0 to  
IRQ3,  
WKP0 to  
WKP5,  
TMCIV,  
TMRIV,  
TRGV,  
ADTRG,  
FTCI,  
FTIOA to  
FTIOD  
Notes: 1. When an external clock is input, the minimum system clock oscillator frequency is  
1.0 MHz.  
2. Determined by MA2, MA1, MA0, SA1, and SA0 of system control register 2 (SYSCR2).  
Rev. 6.00 Mar. 24, 2006 Page 338 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
Table 20.12 I2C Bus Interface Timing  
Values  
Typ  
Test  
Reference  
Figure  
Item  
Symbol  
Min  
Max  
Unit  
ns  
Condition  
SCL input cycle time tSCL  
SCL input high width tSCLH  
12tcyc + 600 —  
Figure 20.4  
3tcyc + 300  
5tcyc + 300  
ns  
SCL input low width  
tSCLL  
tSf  
ns  
Input fall time of  
SCL and SDA  
300  
ns  
SCL and SDA input  
spike pulse removal  
time  
tSP  
1tcyc  
ns  
SDA input bus-free  
time  
tBUF  
5tcyc  
3tcyc  
3tcyc  
ns  
ns  
ns  
Start condition input  
hold time  
tSTAH  
Retransmission start tSTAS  
condition input setup  
time  
Setup time for stop  
condition input  
tSTOS  
3tcyc  
ns  
Data-input setup time tSDAS  
1tcyc+20  
ns  
ns  
pF  
Data-input hold time  
tSDAH  
cb  
0
0
Capacitive load of  
SCL and SDA  
400  
SCL and SDA output tSf  
fall time  
250  
300  
ns  
ns  
VCC = 4.0 V  
to 5.5 V  
Rev. 6.00 Mar. 24, 2006 Page 339 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
Table 20.13 Serial Interface (SCI3) Timing  
V
CC = 2.7 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Applicable  
Symbol Pins  
Values  
Reference  
Item  
Test Condition  
Min  
Typ Max Unit Figure  
Input  
clock  
Asynchro-  
nous  
tScyc  
SCK3  
4
tcyc  
tcyc  
Figure 20.5  
cycle  
Clocked  
synchronous  
6
Input clock pulse  
width  
tSCKW  
tTXD  
SCK3  
TXD  
0.4  
0.6 tScyc  
Transmit data delay  
time (clocked  
synchronous)  
VCC = 4.0 V to 5.5 V  
1
1
tcyc  
tcyc  
Figure 20.6  
Receive data setup  
time (clocked  
synchronous)  
tRXS  
RXD  
RXD  
VCC = 4.0 V to 5.5 V 62.5  
100.0  
ns  
ns  
Receive data hold  
time (clocked  
synchronous)  
tRXH  
VCC = 4.0 V to 5.5 V 62.5  
100.0  
ns  
ns  
Rev. 6.00 Mar. 24, 2006 Page 340 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
20.3.4 A/D Converter Characteristics  
Table 20.14 A/D Converter Characteristics  
V
CC = 2.7 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Applicable Test  
Symbol Pins Condition  
Values  
Reference  
Figure  
Item  
Min  
Typ  
Max  
5.5  
Unit  
1
*
Analog power supply AVCC  
voltage  
AVCC  
3.0  
VCC  
V
Analog input voltage AVIN  
AN0 to  
AN7  
VSS – 0.3 —  
AVCC + 0.3 V  
Analog power supply AIOPE  
current  
AVCC  
AVCC = 5.0 V  
fOSC  
16 MHz  
2.0  
mA  
=
2
*
AISTOP1  
AVCC  
AVCC  
50  
µA  
Reference  
value  
3
*
AISTOP2  
5.0  
µA  
pF  
Analog input  
capacitance  
CAIN  
AN0 to  
AN7  
30.0  
Allowable signal  
source impedance  
RAIN  
AN0 to  
AN7  
10  
5.0  
10  
kΩ  
bit  
tcyc  
Resolution (data  
length)  
10  
Conversion time  
(single mode)  
AVCC = 3.0 V 134  
to 5.5 V  
Nonlinearity error  
Offset error  
7.5  
7.5  
7.5  
0.5  
8.0  
LSB  
LSB  
LSB  
LSB  
LSB  
tcyc  
Full-scale error  
Quantization error  
Absolute accuracy  
Conversion time  
(single mode)  
AVCC = 4.0 V 70  
to 5.5 V  
Nonlinearity error  
Offset error  
7.5  
7.5  
7.5  
0.5  
8.0  
LSB  
LSB  
LSB  
LSB  
LSB  
Full-scale error  
Quantization error  
Absolute accuracy  
Rev. 6.00 Mar. 24, 2006 Page 341 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
Applicable Test  
Symbol Pins Condition  
Values  
Typ  
Reference  
Figure  
Item  
Min  
Max  
Unit  
Conversion time  
(single mode)  
AVCC = 4.0 V to 134  
5.5 V  
tcyc  
Nonlinearity error  
Offset error  
3.5  
3.5  
3.5  
0.5  
4.0  
LSB  
LSB  
LSB  
LSB  
LSB  
Full-scale error  
Quantization error  
Absolute accuracy  
Notes: 1. Set AVCC = VCC when the A/D converter is not used.  
2. AISTOP1 is the current in active and sleep modes while the A/D converter is idle.  
3. AISTOP2 is the current at reset and in standby, subactive, and subsleep modes while the  
A/D converter is idle.  
20.3.5 Watchdog Timer Characteristics  
Table 20.15 Watchdog Timer Characteristics  
V
CC = 2.7 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Applicable  
Pins  
Test  
Values  
Typ  
Reference  
Figure  
*
Item  
Symbol  
Condition  
Min  
Max  
Unit  
On-chip  
oscillator  
overflow  
time  
tOVF  
0.2  
0.4  
s
Note:  
*
Shows the time to count from 0 to 255, at which point an internal reset is generated,  
when the internal oscillator is selected.  
Rev. 6.00 Mar. 24, 2006 Page 342 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
20.4  
Operation Timing  
tOSC  
V
IH  
OSC1  
V
IL  
tCPH  
tCPL  
tCPf  
tCPr  
Figure 20.1 System Clock Input Timing  
VCC × 0.7  
VCC  
OSC1  
tREL  
RES  
VIL  
VIL  
tREL  
Figure 20.2 RES Low Width Timing  
NMI  
IRQ0 to IRQ3  
V
IH  
WKP0 to WKP5  
ADTRG  
V
IL  
TMCI  
FTIOA to FTIOD  
TMCIV, TMRIV  
TRGV  
tIL  
tIH  
Figure 20.3 Input Timing  
Rev. 6.00 Mar. 24, 2006 Page 343 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
VIH  
SDA  
VIL  
tBUF  
tSTAH  
tSP  
tSTOS  
tSCLH  
tSTAS  
SCL  
P*  
S*  
Sr*  
P*  
tSCLL  
tSDAS  
tSf  
tSCL  
tSDAH  
Note: * S, P, and Sr represent the following:  
S: Start condition  
P: Stop condition  
Sr: Retransmission start condition  
Figure 20.4 I2C Bus Interface Input/Output Timing  
tSCKW  
SCK3  
tScyc  
Figure 20.5 SCK3 Input Clock Timing  
Rev. 6.00 Mar. 24, 2006 Page 344 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
tScyc  
*
*
VIH or VOH  
VIL or VOL  
SCK3  
tTXD  
*
VOH  
TXD  
(transmit data)  
*
VOL  
tRXS  
tRXH  
RXD  
(receive data)  
Note: * Output timing reference levels  
Output high:  
Output low:  
V
V
OH = 2.0 V  
OL = 0.8 V  
Load conditions are shown in figure 20.8.  
Figure 20.6 SCI3 Input/Output Timing in Clocked Synchronous Mode  
1/fSCL  
t
sf  
tsp  
tSCLH  
tSCLL  
SCL  
t
STAS  
t
SDAH  
tSTOS  
tSTAH  
tSDAS  
tsr  
SDA  
(in)  
tBUF  
t
AA  
tDH  
SDA  
(out)  
Figure 20.7 EEPROM Bus Timing  
Rev. 6.00 Mar. 24, 2006 Page 345 of 412  
REJ09B0142-0600  
Section 20 Electrical Characteristics  
20.5  
Output Load Condition  
VCC  
2.4 kΩ  
LSI output pin  
30 pF  
12 kΩ  
Figure 20.8 Output Load Circuit  
Rev. 6.00 Mar. 24, 2006 Page 346 of 412  
REJ09B0142-0600  
Appendix  
Appendix A Instruction Set  
A.1  
Instruction List  
Operand Notation  
Symbol  
Rd  
Description  
General (destination*) register  
Rs  
General (source*) register  
General register*  
Rn  
ERd  
ERs  
ERn  
(EAd)  
(EAs)  
PC  
General destination register (address register or 32-bit register)  
General source register (address register or 32-bit register)  
General register (32-bit register)  
Destination operand  
Source operand  
Program counter  
SP  
Stack pointer  
CCR  
N
Condition-code register  
N (negative) flag in CCR  
Z (zero) flag in CCR  
Z
V
V (overflow) flag in CCR  
C (carry) flag in CCR  
C
disp  
Displacement  
Transfer from the operand on the left to the operand on the right, or transition from  
the state on the left to the state on the right  
+
×
÷
Addition of the operands on both sides  
Subtraction of the operand on the right from the operand on the left  
Multiplication of the operands on both sides  
Division of the operand on the left by the operand on the right  
Logical AND of the operands on both sides  
Logical OR of the operands on both sides  
Rev. 6.00 Mar. 24, 2006 Page 347 of 412  
REJ09B0142-0600  
Appendix  
Symbol  
Description  
Logical exclusive OR of the operands on both sides  
NOT (logical complement)  
Contents of operand  
¬
( ), < >  
Note: General registers include 8-bit registers (R0H to R7H and R0L to R7L) and 16-bit registers  
(R0 to R7 and E0 to E7).  
Condition Code Notation  
Symbol  
Description  
Changed according to execution result  
Undetermined (no guaranteed value)  
Cleared to 0  
*
0
1
Set to 1  
Not affected by execution of the instruction  
Varies depending on conditions, described in notes  
Rev. 6.00 Mar. 24, 2006 Page 348 of 412  
REJ09B0142-0600  
Appendix  
Table A.1 Instruction Set  
1. Data transfer instructions  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
MOV.B #xx:8, Rd  
B
B
B
B
B
B
2
#xx:8 Rd8  
0
0
0
0
0
0
2
2
MOV  
MOV.B Rs, Rd  
2
2
4
8
2
Rs8 Rd8  
MOV.B @ERs, Rd  
MOV.B @(d:16, ERs), Rd  
MOV.B @(d:24, ERs), Rd  
MOV.B @ERs+, Rd  
@ERs Rd8  
4
@(d:16, ERs) Rd8  
@(d:24, ERs) Rd8  
6
10  
6
@ERs Rd8  
ERs32+1 ERs32  
MOV.B @aa:8, Rd  
B
B
B
B
B
B
B
2
@aa:8 Rd8  
0
0
0
0
0
0
0
4
6
MOV.B @aa:16, Rd  
MOV.B @aa:24, Rd  
MOV.B Rs, @ERd  
4
@aa:16 Rd8  
@aa:24 Rd8  
Rs8 @ERd  
6
8
2
4
8
2
4
MOV.B Rs, @(d:16, ERd)  
MOV.B Rs, @(d:24, ERd)  
MOV.B Rs, @–ERd  
Rs8 @(d:16, ERd)  
Rs8 @(d:24, ERd)  
6
10  
6
ERd32–1 ERd32  
Rs8 @ERd  
MOV.B Rs, @aa:8  
B
B
2
4
6
Rs8 @aa:8  
0
0
0
0
0
0
0
0
0
4
6
MOV.B Rs, @aa:16  
MOV.B Rs, @aa:24  
MOV.W #xx:16, Rd  
MOV.W Rs, Rd  
Rs8 @aa:16  
Rs8 @aa:24  
#xx:16 Rd16  
Rs16 Rd16  
B
8
W
W
W
W
W
W
4
4
2
2
4
8
2
2
MOV.W @ERs, Rd  
MOV.W @(d:16, ERs), Rd  
MOV.W @(d:24, ERs), Rd  
MOV.W @ERs+, Rd  
@ERs Rd16  
@(d:16, ERs) Rd16  
@(d:24, ERs) Rd16  
4
6
10  
6
@ERs Rd16  
ERs32+2 @ERd32  
MOV.W @aa:16, Rd  
MOV.W @aa:24, Rd  
MOV.W Rs, @ERd  
W
W
W
W
W
4
@aa:16 Rd16  
0
0
0
0
0
6
8
6
@aa:24 Rd16  
2
4
8
Rs16 @ERd  
4
MOV.W Rs, @(d:16, ERd)  
MOV.W Rs, @(d:24, ERd)  
Rs16 @(d:16, ERd)  
Rs16 @(d:24, ERd)  
6
10  
Rev. 6.00 Mar. 24, 2006 Page 349 of 412  
REJ09B0142-0600  
Appendix  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
MOV.W Rs, @–ERd  
W
2
ERd32–2 ERd32  
Rs16 @ERd  
0
6
MOV  
MOV.W Rs, @aa:16  
MOV.W Rs, @aa:24  
MOV.L #xx:32, Rd  
W
W
L
4
6
Rs16 @aa:16  
0
0
0
0
0
0
0
0
6
8
Rs16 @aa:24  
6
#xx:32 Rd32  
6
MOV.L ERs, ERd  
L
2
ERs32 ERd32  
@ERs ERd32  
2
MOV.L @ERs, ERd  
MOV.L @(d:16, ERs), ERd  
MOV.L @(d:24, ERs), ERd  
MOV.L @ERs+, ERd  
L
4
8
L
6
@(d:16, ERs) ERd32  
@(d:24, ERs) ERd32  
10  
14  
10  
L
10  
4
L
@ERs ERd32  
ERs32+4 ERs32  
MOV.L @aa:16, ERd  
MOV.L @aa:24, ERd  
MOV.L ERs, @ERd  
L
L
L
L
L
L
6
@aa:16 ERd32  
0
0
0
0
0
0
10  
12  
8
8
@aa:24 ERd32  
4
ERs32 @ERd  
MOV.L ERs, @(d:16, ERd)  
MOV.L ERs, @(d:24, ERd)  
MOV.L ERs, @–ERd  
6
ERs32 @(d:16, ERd)  
ERs32 @(d:24, ERd)  
10  
14  
10  
10  
4
ERd32–4 ERd32  
ERs32 @ERd  
MOV.L ERs, @aa:16  
MOV.L ERs, @aa:24  
POP.W Rn  
L
L
6
8
ERs32 @aa:16  
ERs32 @aa:24  
0
0
0
10  
12  
6
W
2
4
2
4
@SP Rn16  
SP+2 SP  
POP  
POP.L ERn  
PUSH.W Rn  
PUSH.L ERn  
L
W
L
@SP ERn32  
SP+4 SP  
0
0
0
10  
6
SP–2 SP  
PUSH  
Rn16 @SP  
SP–4 SP  
10  
ERn32 @SP  
Cannot be used in  
this LSI  
MOVFPE MOVFPE @aa:16, Rd  
MOVTPE MOVTPE Rs, @aa:16  
B
B
Cannot be used in  
this LSI  
4
4
Cannot be used in  
this LSI  
Cannot be used in  
this LSI  
Rev. 6.00 Mar. 24, 2006 Page 350 of 412  
REJ09B0142-0600  
Appendix  
2. Arithmetic instructions  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
ADD.B #xx:8, Rd  
ADD.B Rs, Rd  
B
B
2
4
6
Rd8+#xx:8 Rd8  
Rd8+Rs8 Rd8  
2
2
4
2
6
ADD  
2
2
ADD.W #xx:16, Rd  
ADD.W Rs, Rd  
W
W
L
Rd16+#xx:16 Rd16  
Rd16+Rs16 Rd16  
— (1)  
— (1)  
— (2)  
ADD.L #xx:32, ERd  
ERd32+#xx:32 →  
ERd32  
ADD.L ERs, ERd  
L
2
ERd32+ERs32 →  
— (2)  
2
ERd32  
ADDX.B #xx:8, Rd  
ADDX.B Rs, Rd  
ADDS.L #1, ERd  
ADDS.L #2, ERd  
ADDS.L #4, ERd  
INC.B Rd  
B
B
L
2
Rd8+#xx:8 +C Rd8  
Rd8+Rs8 +C Rd8  
ERd32+1 ERd32  
ERd32+2 ERd32  
ERd32+4 ERd32  
Rd8+1 Rd8  
(3)  
(3)  
2
2
2
2
2
2
2
2
2
2
2
ADDX  
ADDS  
2
2
2
2
2
2
2
2
2
2
*
L
L
B
W
W
L
INC  
INC.W #1, Rd  
INC.W #2, Rd  
INC.L #1, ERd  
INC.L #2, ERd  
DAA Rd  
Rd16+1 Rd16  
Rd16+2 Rd16  
ERd32+1 ERd32  
ERd32+2 ERd32  
L
B
Rd8 decimal adjust  
*
DAA  
SUB  
Rd8  
SUB.B Rs, Rd  
B
W
W
L
2
2
2
Rd8–Rs8 Rd8  
2
4
2
6
2
2
2
2
2
2
2
2
2
SUB.W #xx:16, Rd  
SUB.W Rs, Rd  
SUB.L #xx:32, ERd  
SUB.L ERs, ERd  
SUBX.B #xx:8, Rd  
SUBX.B Rs, Rd  
SUBS.L #1, ERd  
SUBS.L #2, ERd  
SUBS.L #4, ERd  
DEC.B Rd  
4
6
2
Rd16–#xx:16 Rd16  
Rd16–Rs16 Rd16  
— (1)  
— (1)  
ERd32–#xx:32 ERd32 — (2)  
ERd32–ERs32 ERd32 — (2)  
L
SUBX  
SUBS  
B
B
L
Rd8–#xx:8–C Rd8  
Rd8–Rs8–C Rd8  
ERd32–1 ERd32  
ERd32–2 ERd32  
ERd32–4 ERd32  
Rd8–1 Rd8  
(3)  
(3)  
2
2
2
2
2
2
2
L
L
DEC  
B
W
W
DEC.W #1, Rd  
DEC.W #2, Rd  
Rd16–1 Rd16  
Rd16–2 Rd16  
Rev. 6.00 Mar. 24, 2006 Page 351 of 412  
REJ09B0142-0600  
Appendix  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
DEC.L #1, ERd  
DEC.L #2, ERd  
L
L
B
2
2
2
ERd32–1 ERd32  
ERd32–2 ERd32  
*
2
2
2
DEC  
DAS DAS.Rd  
Rd8 decimal adjust  
*
Rd8  
MULXU MULXU. B Rs, Rd  
MULXU. W Rs, ERd  
MULXS MULXS. B Rs, Rd  
MULXS. W Rs, ERd  
B
W
B
2
2
4
4
2
Rd8 × Rs8 Rd16  
14  
22  
16  
24  
14  
(unsigned multiplication)  
Rd16 × Rs16 ERd32  
(unsigned multiplication)  
Rd8 × Rs8 Rd16  
(signed multiplication)  
W
B
Rd16 × Rs16 ERd32  
(signed multiplication)  
DIVXU DIVXU. B Rs, Rd  
Rd16 ÷ Rs8 Rd16  
(RdH: remainder,  
RdL: quotient)  
— (6) (7) —  
— (6) (7) —  
— (8) (7) —  
— (8) (7) —  
(unsigned division)  
DIVXU. W Rs, ERd  
DIVXS DIVXS. B Rs, Rd  
DIVXS. W Rs, ERd  
W
B
2
4
4
ERd32 ÷ Rs16 ERd32  
(Ed: remainder,  
22  
16  
24  
Rd: quotient)  
(unsigned division)  
Rd16 ÷ Rs8 Rd16  
(RdH: remainder,  
RdL: quotient)  
(signed division)  
W
ERd32 ÷ Rs16 ERd32  
(Ed: remainder,  
Rd: quotient)  
(signed division)  
CMP CMP.B #xx:8, Rd  
CMP.B Rs, Rd  
B
B
2
4
6
Rd8–#xx:8  
2
2
4
2
4
2
2
2
2
Rd8–Rs8  
CMP.W #xx:16, Rd  
CMP.W Rs, Rd  
W
W
L
Rd16–#xx:16  
Rd16–Rs16  
ERd32–#xx:32  
ERd32–ERs32  
— (1)  
— (1)  
— (2)  
— (2)  
CMP.L #xx:32, ERd  
CMP.L ERs, ERd  
L
Rev. 6.00 Mar. 24, 2006 Page 352 of 412  
REJ09B0142-0600  
Appendix  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
NEG.B Rd  
B
0–Rd8 Rd8  
W 0–Rd16 Rd16  
0–ERd32 ERd32  
2
2
2
2
2
2
2
2
NEG  
NEG.W Rd  
NEG.L ERd  
L
EXTU EXTU.W Rd  
W 0 (<bits 15 to 8>  
0
0
0
0
0
0
of Rd16)  
EXTU.L ERd  
L
0 (<bits 31 to 16>  
2
2
2
2
2
2
of ERd32)  
EXTS EXTS.W Rd  
EXTS.L ERd  
W (<bit 7> of Rd16) →  
(<bits 15 to 8> of Rd16)  
L
(<bit 15> of ERd32) →  
(<bits 31 to 16> of  
ERd32)  
Rev. 6.00 Mar. 24, 2006 Page 353 of 412  
REJ09B0142-0600  
Appendix  
3. Logic instructions  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
AND.B #xx:8, Rd  
AND.B Rs, Rd  
B
B
W
W
L
2
4
6
2
4
6
2
4
6
Rd8 #xx:8 Rd8  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
4
2
6
4
2
2
4
2
6
4
2
2
4
2
6
4
2
2
2
AND  
2
2
4
2
2
4
2
2
Rd8 Rs8 Rd8  
AND.W #xx:16, Rd  
AND.W Rs, Rd  
AND.L #xx:32, ERd  
AND.L ERs, ERd  
OR.B #xx:8, Rd  
OR.B Rs, Rd  
Rd16 #xx:16 Rd16  
Rd16 Rs16 Rd16  
ERd32 #xx:32 ERd32  
ERd32 ERs32 ERd32  
Rd8#xx:8 Rd8  
L
B
B
W
W
L
OR  
Rd8Rs8 Rd8  
OR.W #xx:16, Rd  
OR.W Rs, Rd  
Rd16#xx:16 Rd16  
Rd16Rs16 Rd16  
ERd32#xx:32 ERd32  
ERd32ERs32 ERd32  
Rd8 #xx:8 Rd8  
Rd8 Rs8 Rd8  
OR.L #xx:32, ERd  
OR.L ERs, ERd  
L
XOR XOR.B #xx:8, Rd  
XOR.B Rs, Rd  
B
B
W
W
L
XOR.W #xx:16, Rd  
XOR.W Rs, Rd  
Rd16 #xx:16 Rd16  
Rd16 Rs16 Rd16  
ERd32 #xx:32 ERd32  
ERd32 ERs32 ERd32  
¬ Rd8 Rd8  
XOR.L #xx:32, ERd  
XOR.L ERs, ERd  
NOT NOT.B Rd  
NOT.W Rd  
L
4
2
2
2
B
W
L
¬ Rd16 Rd16  
NOT.L ERd  
¬ Rd32 Rd32  
Rev. 6.00 Mar. 24, 2006 Page 354 of 412  
REJ09B0142-0600  
Appendix  
4. Shift instructions  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
SHAL.B Rd  
B
W
L
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
SHAL  
SHAR  
SHLL  
C
0
SHAL.W Rd  
SHAL.L ERd  
SHAR.B Rd  
SHAR.W Rd  
SHAR.L ERd  
SHLL.B Rd  
MSB  
LSB  
B
W
L
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C
MSB  
LSB  
B
W
L
C
0
SHLL.W Rd  
SHLL.L ERd  
SHLR.B Rd  
SHLR.W Rd  
SHLR.L ERd  
ROTXL.B Rd  
ROTXL.W Rd  
ROTXL.L ERd  
ROTXR.B Rd  
ROTXR.W Rd  
ROTXR.L ERd  
MSB  
MSB  
LSB  
LSB  
B
W
L
SHLR  
ROTXL  
0
C
B
W
L
C
MSB  
LSB  
B
W
L
ROTXR  
C
MSB  
LSB  
ROTL ROTL.B Rd  
ROTL.W Rd  
B
W
L
C
MSB  
LSB  
ROTL.L ERd  
ROTR.B Rd  
ROTR.W Rd  
ROTR.L ERd  
B
W
L
ROTR  
C
MSB  
LSB  
Rev. 6.00 Mar. 24, 2006 Page 355 of 412  
REJ09B0142-0600  
Appendix  
5. Bit manipulation instructions  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
BSET #xx:3, Rd  
BSET #xx:3, @ERd  
BSET #xx:3, @aa:8  
BSET Rn, Rd  
B
B
B
B
B
B
B
B
B
B
B
B
B
2
4
4
2
4
4
2
4
4
2
4
4
2
(#xx:3 of Rd8) 1  
(#xx:3 of @ERd) 1  
(#xx:3 of @aa:8) 1  
(Rn8 of Rd8) 1  
2
8
8
2
8
8
2
8
8
2
8
8
2
BSET  
BCLR  
BNOT  
BSET Rn, @ERd  
BSET Rn, @aa:8  
BCLR #xx:3, Rd  
BCLR #xx:3, @ERd  
BCLR #xx:3, @aa:8  
BCLR Rn, Rd  
(Rn8 of @ERd) 1  
(Rn8 of @aa:8) 1  
(#xx:3 of Rd8) 0  
(#xx:3 of @ERd) 0  
(#xx:3 of @aa:8) 0  
(Rn8 of Rd8) 0  
BCLR Rn, @ERd  
BCLR Rn, @aa:8  
BNOT #xx:3, Rd  
(Rn8 of @ERd) 0  
(Rn8 of @aa:8) 0  
(#xx:3 of Rd8) ←  
¬ (#xx:3 of Rd8)  
BNOT #xx:3, @ERd  
BNOT #xx:3, @aa:8  
BNOT Rn, Rd  
B
B
B
B
B
4
(#xx:3 of @ERd) ←  
8
8
2
8
8
¬ (#xx:3 of @ERd)  
4
(#xx:3 of @aa:8) ←  
¬ (#xx:3 of @aa:8)  
2
4
4
(Rn8 of Rd8) ←  
¬ (Rn8 of Rd8)  
BNOT Rn, @ERd  
BNOT Rn, @aa:8  
(Rn8 of @ERd) ←  
¬ (Rn8 of @ERd)  
(Rn8 of @aa:8) ←  
¬ (Rn8 of @aa:8)  
BTST #xx:3, Rd  
BTST #xx:3, @ERd  
BTST #xx:3, @aa:8  
BTST Rn, Rd  
B
B
B
B
B
B
B
2
4
4
2
4
4
2
¬ (#xx:3 of Rd8) Z  
¬ (#xx:3 of @ERd) Z  
¬ (#xx:3 of @aa:8) Z  
¬ (Rn8 of @Rd8) Z  
¬ (Rn8 of @ERd) Z  
¬ (Rn8 of @aa:8) Z  
(#xx:3 of Rd8) C  
2
6
6
2
6
6
2
BTST  
BTST Rn, @ERd  
BTST Rn, @aa:8  
BLD #xx:3, Rd  
BLD  
Rev. 6.00 Mar. 24, 2006 Page 356 of 412  
REJ09B0142-0600  
Appendix  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
BLD #xx:3, @ERd  
BLD #xx:3, @aa:8  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
4
(#xx:3 of @ERd) C  
(#xx:3 of @aa:8) C  
¬ (#xx:3 of Rd8) C  
¬ (#xx:3 of @ERd) C  
¬ (#xx:3 of @aa:8) C  
C (#xx:3 of Rd8)  
6
6
2
6
6
2
8
8
2
8
8
2
6
6
2
6
6
2
6
6
2
6
6
2
6
6
2
6
6
BLD  
4
BILD BILD #xx:3, Rd  
BILD #xx:3, @ERd  
BILD #xx:3, @aa:8  
2
4
4
BST #xx:3, Rd  
2
BST  
BST #xx:3, @ERd  
BST #xx:3, @aa:8  
BIST #xx:3, Rd  
4
C (#xx:3 of @ERd24)  
C (#xx:3 of @aa:8)  
¬ C (#xx:3 of Rd8)  
¬ C (#xx:3 of @ERd24)  
¬ C (#xx:3 of @aa:8)  
C (#xx:3 of Rd8) C  
C (#xx:3 of @ERd24) C  
C (#xx:3 of @aa:8) C  
4
2
BIST  
BIST #xx:3, @ERd  
BIST #xx:3, @aa:8  
BAND #xx:3, Rd  
4
4
2
BAND  
BIAND  
BOR  
BAND #xx:3, @ERd  
BAND #xx:3, @aa:8  
BIAND #xx:3, Rd  
BIAND #xx:3, @ERd  
BIAND #xx:3, @aa:8  
BOR #xx:3, Rd  
4
4
2
C
C
C
¬ (#xx:3 of Rd8) C  
4
¬ (#xx:3 of @ERd24) C  
¬ (#xx:3 of @aa:8) C  
4
2
C (#xx:3 of Rd8) C  
BOR #xx:3, @ERd  
BOR #xx:3, @aa:8  
BIOR #xx:3, Rd  
4
C (#xx:3 of @ERd24) C  
C (#xx:3 of @aa:8) C  
4
2
C
C
C
C
C
C
C
C
C
¬ (#xx:3 of Rd8) C  
¬ (#xx:3 of @ERd24) C  
¬ (#xx:3 of @aa:8) C  
(#xx:3 of Rd8) C  
BIOR  
BXOR  
BIXOR  
BIOR #xx:3, @ERd  
BIOR #xx:3, @aa:8  
BXOR #xx:3, Rd  
4
4
2
BXOR #xx:3, @ERd  
BXOR #xx:3, @aa:8  
BIXOR #xx:3, Rd  
BIXOR #xx:3, @ERd  
BIXOR #xx:3, @aa:8  
4
(#xx:3 of @ERd24) C  
(#xx:3 of @aa:8) C  
¬ (#xx:3 of Rd8) C  
¬ (#xx:3 of @ERd24) C  
¬ (#xx:3 of @aa:8) C  
4
2
4
4
Rev. 6.00 Mar. 24, 2006 Page 357 of 412  
REJ09B0142-0600  
Appendix  
6. Branching instructions  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
Branch  
I
H
N
Z
V
C
Condition  
BRA d:8 (BT d:8)  
BRA d:16 (BT d:16)  
BRN d:8 (BF d:8)  
BRN d:16 (BF d:16)  
BHI d:8  
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
Always  
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
If condition  
is true then  
PC PC+d  
else next;  
Bcc  
Never  
C
C
Z = 0  
Z = 1  
BHI d:16  
BLS d:8  
BLS d:16  
BCC d:8 (BHS d:8)  
BCC d:16 (BHS d:16)  
BCS d:8 (BLO d:8)  
BCS d:16 (BLO d:16)  
BNE d:8  
C = 0  
C = 1  
Z = 0  
Z = 1  
V = 0  
V = 1  
N = 0  
N = 1  
BNE d:16  
BEQ d:8  
BEQ d:16  
BVC d:8  
BVC d:16  
BVS d:8  
BVS d:16  
BPL d:8  
BPL d:16  
BMI d:8  
BMI d:16  
BGE d:8  
N
N
Z
Z
V = 0  
BGE d:16  
BLT d:8  
V = 1  
BLT d:16  
BGT d:8  
(N V) = 0  
(N V) = 1  
BGT d:16  
BLE d:8  
BLE d:16  
Rev. 6.00 Mar. 24, 2006 Page 358 of 412  
REJ09B0142-0600  
Appendix  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
JMP @ERn  
JMP @aa:24  
JMP @@aa:8  
BSR d:8  
2
4
2
2
PC ERn  
4
6
JMP  
BSR  
PC aa:24  
PC @aa:8  
8
6
10  
8
PC @–SP  
PC PC+d:8  
BSR d:16  
4
PC @–SP  
8
6
8
8
8
10  
8
PC PC+d:16  
JSR  
JSR @ERn  
JSR @aa:24  
JSR @@aa:8  
2
4
2
PC @–SP  
PC ERn  
PC @–SP  
PC aa:24  
10  
12  
10  
PC @–SP  
PC @aa:8  
RTS RTS  
2
PC @SP+  
Rev. 6.00 Mar. 24, 2006 Page 359 of 412  
REJ09B0142-0600  
Appendix  
7. System control instructions  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
1
TRAPA #x:2  
RTE  
2
PC @–SP  
14 16  
TRAPA  
RTE  
CCR @–SP  
<vector> PC  
CCR @SP+  
PC @SP+  
10  
2
SLEEP SLEEP  
Transition to power-  
down state  
LDC #xx:8, CCR  
B
B
2
#xx:8 CCR  
2
2
LDC  
LDC Rs, CCR  
2
Rs8 CCR  
LDC @ERs, CCR  
W
W
W
W
4
@ERs CCR  
6
LDC @(d:16, ERs), CCR  
LDC @(d:24, ERs), CCR  
LDC @ERs+, CCR  
6
@(d:16, ERs) CCR  
@(d:24, ERs) CCR  
8
10  
4
12  
8
@ERs CCR  
ERs32+2 ERs32  
LDC @aa:16, CCR  
LDC @aa:24, CCR  
STC CCR, Rd  
W
W
B
6
@aa:16 CCR  
@aa:24 CCR  
CCR Rd8  
8
10  
2
8
2
STC  
STC CCR, @ERd  
W
W
W
W
4
CCR @ERd  
6
STC CCR, @(d:16, ERd)  
STC CCR, @(d:24, ERd)  
STC CCR, @–ERd  
6
CCR @(d:16, ERd)  
CCR @(d:24, ERd)  
8
10  
4
12  
8
ERd32–2 ERd32  
CCR @ERd  
STC CCR, @aa:16  
STC CCR, @aa:24  
ANDC #xx:8, CCR  
ORC #xx:8, CCR  
XORC #xx:8, CCR  
W
W
B
6
8
CCR @aa:16  
CCR @aa:24  
CCR #xx:8 CCR  
CCR #xx:8 CCR  
CCR #xx:8 CCR  
PC PC+2  
8
10  
2
2
2
2
ANDC  
ORC  
B
2
XORC  
B
2
NOP NOP  
2
2
Rev. 6.00 Mar. 24, 2006 Page 360 of 412  
REJ09B0142-0600  
Appendix  
8. Block transfer instructions  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
EEPMOV  
EEPMOV. B  
4
4
if R4L 0 then  
8+  
repeat @R5 @R6  
R5+1 R5  
4n*2  
R6+1 R6  
R4L–1 R4L  
until  
else next  
R4L=0  
EEPMOV. W  
if R4 0 then  
repeat @R5 @R6  
R5+1 R5  
8+  
4n*2  
R6+1 R6  
R4–1 R4  
until  
R4=0  
else next  
Notes: 1. The number of states in cases where the instruction code and its operands are located  
in on-chip memory is shown here. For other cases see appendix A.3, Number of  
Execution States.  
2. n is the value set in register R4L or R4.  
(1) Set to 1 when a carry or borrow occurs at bit 11; otherwise cleared to 0.  
(2) Set to 1 when a carry or borrow occurs at bit 27; otherwise cleared to 0.  
(3) Retains its previous value when the result is zero; otherwise cleared to 0.  
(4) Set to 1 when the adjustment produces a carry; otherwise retains its previous value.  
(5) The number of states required for execution of an instruction that transfers data in  
synchronization with the E clock is variable.  
(6) Set to 1 when the divisor is negative; otherwise cleared to 0.  
(7) Set to 1 when the divisor is zero; otherwise cleared to 0.  
(8) Set to 1 when the quotient is negative; otherwise cleared to 0.  
Rev. 6.00 Mar. 24, 2006 Page 361 of 412  
REJ09B0142-0600  
Appendix  
A.2  
Operation Code Map  
Table A.2 Operation Code Map (1)  
Rev. 6.00 Mar. 24, 2006 Page 362 of 412  
REJ09B0142-0600  
Appendix  
Table A.2 Operation Code Map (2)  
Rev. 6.00 Mar. 24, 2006 Page 363 of 412  
REJ09B0142-0600  
Appendix  
Table A.2 Operation Code Map (3)  
Rev. 6.00 Mar. 24, 2006 Page 364 of 412  
REJ09B0142-0600  
Appendix  
A.3  
Number of Execution States  
The status of execution for each instruction of the H8/300H CPU and the method of calculating  
the number of states required for instruction execution are shown below. Table A.4 shows the  
number of cycles of each type occurring in each instruction, such as instruction fetch and data  
read/write. Table A.3 shows the number of states required for each cycle. The total number of  
states required for execution of an instruction can be calculated by the following expression:  
Execution states = I × SI + J × SJ + K × SK + L × SL + M × SM + N × SN  
Examples: When instruction is fetched from on-chip ROM, and an on-chip RAM is accessed.  
BSET #0, @FF00  
From table A.4:  
I = L = 2, J = K = M = N= 0  
From table A.3:  
SI = 2, SL = 2  
Number of states required for execution = 2 × 2 + 2 × 2 = 8  
When instruction is fetched from on-chip ROM, branch address is read from on-chip ROM, and  
on-chip RAM is used for stack area.  
JSR @@ 30  
From table A.4:  
I = 2, J = K = 1, L = M = N = 0  
From table A.3:  
SI = SJ = SK = 2  
Number of states required for execution = 2 × 2 + 1 × 2+ 1 × 2 = 8  
Rev. 6.00 Mar. 24, 2006 Page 365 of 412  
REJ09B0142-0600  
Appendix  
Table A.3 Number of Cycles in Each Instruction  
Access Location  
On-Chip Peripheral Module  
Execution Status  
(Instruction Cycle)  
On-Chip Memory  
Instruction fetch  
SI  
2
Branch address read  
Stack operation  
SJ  
SK  
SL  
SM  
SN  
Byte data access  
Word data access  
Internal operation  
2 or 3*  
1
Note:  
*
Depends on which on-chip peripheral module is accessed. See section 19.1, Register  
Addresses (Address Order).  
Rev. 6.00 Mar. 24, 2006 Page 366 of 412  
REJ09B0142-0600  
Appendix  
Table A.4 Number of Cycles in Each Instruction  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
ADD  
ADD.B #xx:8, Rd  
1
1
2
1
3
1
1
1
1
1
1
2
1
3
2
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
ADD.B Rs, Rd  
ADD.W #xx:16, Rd  
ADD.W Rs, Rd  
ADD.L #xx:32, ERd  
ADD.L ERs, ERd  
ADDS #1/2/4, ERd  
ADDX #xx:8, Rd  
ADDX Rs, Rd  
AND.B #xx:8, Rd  
AND.B Rs, Rd  
AND.W #xx:16, Rd  
AND.W Rs, Rd  
AND.L #xx:32, ERd  
AND.L ERs, ERd  
ANDC #xx:8, CCR  
BAND #xx:3, Rd  
BAND #xx:3, @ERd  
BAND #xx:3, @aa:8  
BRA d:8 (BT d:8)  
BRN d:8 (BF d:8)  
BHI d:8  
ADDS  
ADDX  
AND  
ANDC  
BAND  
1
1
Bcc  
BLS d:8  
BCC d:8 (BHS d:8)  
BCS d:8 (BLO d:8)  
BNE d:8  
BEQ d:8  
BVC d:8  
BVS d:8  
BPL d:8  
BMI d:8  
BGE d:8  
Rev. 6.00 Mar. 24, 2006 Page 367 of 412  
REJ09B0142-0600  
Appendix  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
Bcc  
BLT d:8  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
1
2
2
1
2
2
1
2
2
BGT d:8  
BLE d:8  
BRA d:16(BT d:16)  
BRN d:16(BF d:16)  
BHI d:16  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
BLS d:16  
BCC d:16(BHS d:16)  
BCS d:16(BLO d:16)  
BNE d:16  
BEQ d:16  
BVC d:16  
BVS d:16  
BPL d:16  
BMI d:16  
BGE d:16  
BLT d:16  
BGT d:16  
BLE d:16  
BCLR  
BCLR #xx:3, Rd  
BCLR #xx:3, @ERd  
BCLR #xx:3, @aa:8  
BCLR Rn, Rd  
BCLR Rn, @ERd  
BCLR Rn, @aa:8  
BIAND #xx:3, Rd  
BIAND #xx:3, @ERd  
BIAND #xx:3, @aa:8  
BILD #xx:3, Rd  
BILD #xx:3, @ERd  
BILD #xx:3, @aa:8  
2
2
2
2
BIAND  
BILD  
1
1
1
1
Rev. 6.00 Mar. 24, 2006 Page 368 of 412  
REJ09B0142-0600  
Appendix  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
BIOR  
BIOR #xx:8, Rd  
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
2
2
1
2
2
BIOR #xx:8, @ERd  
BIOR #xx:8, @aa:8  
BIST #xx:3, Rd  
1
1
BIST  
BIST #xx:3, @ERd  
BIST #xx:3, @aa:8  
BIXOR #xx:3, Rd  
BIXOR #xx:3, @ERd  
BIXOR #xx:3, @aa:8  
BLD #xx:3, Rd  
2
2
BIXOR  
BLD  
1
1
BLD #xx:3, @ERd  
BLD #xx:3, @aa:8  
BNOT #xx:3, Rd  
BNOT #xx:3, @ERd  
BNOT #xx:3, @aa:8  
BNOT Rn, Rd  
1
1
BNOT  
2
2
BNOT Rn, @ERd  
BNOT Rn, @aa:8  
BOR #xx:3, Rd  
2
2
BOR  
BOR #xx:3, @ERd  
BOR #xx:3, @aa:8  
BSET #xx:3, Rd  
BSET #xx:3, @ERd  
BSET #xx:3, @aa:8  
BSET Rn, Rd  
1
1
BSET  
2
2
BSET Rn, @ERd  
BSET Rn, @aa:8  
BSR d:8  
2
2
BSR  
BST  
1
1
BSR d:16  
2
BST #xx:3, Rd  
BST #xx:3, @ERd  
BST #xx:3, @aa:8  
2
2
Rev. 6.00 Mar. 24, 2006 Page 369 of 412  
REJ09B0142-0600  
Appendix  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
BTST  
BTST #xx:3, Rd  
1
2
2
1
2
2
1
2
2
1
1
2
1
3
1
1
1
1
1
1
2
2
1
1
2
2
1
1
1
1
BTST #xx:3, @ERd  
BTST #xx:3, @aa:8  
BTST Rn, Rd  
1
1
BTST Rn, @ERd  
BTST Rn, @aa:8  
BXOR #xx:3, Rd  
BXOR #xx:3, @ERd  
BXOR #xx:3, @aa:8  
CMP.B #xx:8, Rd  
CMP.B Rs, Rd  
CMP.W #xx:16, Rd  
CMP.W Rs, Rd  
CMP.L #xx:32, ERd  
CMP.L ERs, ERd  
DAA Rd  
1
1
BXOR  
CMP  
1
1
DAA  
DAS  
DEC  
DAS Rd  
DEC.B Rd  
DEC.W #1/2, Rd  
DEC.L #1/2, ERd  
DIVXS.B Rs, Rd  
DIVXS.W Rs, ERd  
DIVXU.B Rs, Rd  
DIVXU.W Rs, ERd  
EEPMOV.B  
DUVXS  
DIVXU  
EEPMOV  
EXTS  
12  
20  
12  
20  
2n+2*1  
2n+2*1  
EEPMOV.W  
EXTS.W Rd  
EXTS.L ERd  
EXTU  
EXTU.W Rd  
EXTU.L ERd  
Rev. 6.00 Mar. 24, 2006 Page 370 of 412  
REJ09B0142-0600  
Appendix  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
INC  
INC.B Rd  
1
1
1
2
2
2
2
2
2
1
1
2
3
5
2
3
4
1
1
1
2
4
1
1
2
3
1
2
4
1
1
INC.W #1/2, Rd  
INC.L #1/2, ERd  
JMP @ERn  
JMP  
JSR  
LDC  
JMP @aa:24  
2
2
JMP @@aa:8  
1
1
JSR @ERn  
1
1
1
JSR @aa:24  
2
JSR @@aa:8  
LDC #xx:8, CCR  
LDC Rs, CCR  
LDC@ERs, CCR  
LDC@(d:16, ERs), CCR  
LDC@(d:24,ERs), CCR  
LDC@ERs+, CCR  
LDC@aa:16, CCR  
LDC@aa:24, CCR  
MOV.B #xx:8, Rd  
MOV.B Rs, Rd  
1
1
1
1
1
1
2
MOV  
MOV.B @ERs, Rd  
MOV.B @(d:16, ERs), Rd  
MOV.B @(d:24, ERs), Rd  
MOV.B @ERs+, Rd  
MOV.B @aa:8, Rd  
MOV.B @aa:16, Rd  
MOV.B @aa:24, Rd  
MOV.B Rs, @Erd  
MOV.B Rs, @(d:16, ERd)  
MOV.B Rs, @(d:24, ERd)  
MOV.B Rs, @-ERd  
MOV.B Rs, @aa:8  
1
1
1
1
1
1
1
1
1
1
1
1
2
2
Rev. 6.00 Mar. 24, 2006 Page 371 of 412  
REJ09B0142-0600  
Appendix  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
MOV  
MOV.B Rs, @aa:16  
2
3
2
1
1
2
4
1
2
3
1
2
4
1
2
3
3
1
2
3
5
2
3
4
2
3
5
2
3
4
2
2
1
1
MOV.B Rs, @aa:24  
MOV.W #xx:16, Rd  
MOV.W Rs, Rd  
MOV.W @ERs, Rd  
1
1
1
1
1
1
1
1
1
1
1
1
MOV.W @(d:16,ERs), Rd  
MOV.W @(d:24,ERs), Rd  
MOV.W @ERs+, Rd  
MOV.W @aa:16, Rd  
MOV.W @aa:24, Rd  
MOV.W Rs, @ERd  
2
MOV.W Rs, @(d:16,ERd)  
MOV.W Rs, @(d:24,ERd)  
MOV.W Rs, @-ERd  
MOV.W Rs, @aa:16  
MOV.W Rs, @aa:24  
MOV.L #xx:32, ERd  
MOV.L ERs, ERd  
MOV  
2
MOV.L @ERs, ERd  
MOV.L @(d:16,ERs), ERd  
MOV.L @(d:24,ERs), ERd  
MOV.L @ERs+, ERd  
MOV.L @aa:16, ERd  
MOV.L @aa:24, ERd  
MOV.L ERs,@ERd  
2
2
2
2
2
2
2
2
2
2
2
2
2
MOV.L ERs, @(d:16,ERd)  
MOV.L ERs, @(d:24,ERd)  
MOV.L ERs, @-ERd  
MOV.L ERs, @aa:16  
MOV.L ERs, @aa:24  
MOVFPE @aa:16, Rd*2  
MOVTPE Rs,@aa:16*2  
2
MOVFPE  
MOVTPE  
1
1
Rev. 6.00 Mar. 24, 2006 Page 372 of 412  
REJ09B0142-0600  
Appendix  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
MULXS  
MULXU  
NEG  
MULXS.B Rs, Rd  
2
2
1
1
1
1
1
1
1
1
1
1
1
2
1
3
2
1
1
2
1
2
1
1
1
1
1
1
1
1
1
12  
20  
12  
20  
MULXS.W Rs, ERd  
MULXU.B Rs, Rd  
MULXU.W Rs, ERd  
NEG.B Rd  
NEG.W Rd  
NEG.L ERd  
NOP  
NOT  
NOP  
NOT.B Rd  
NOT.W Rd  
NOT.L ERd  
OR  
OR.B #xx:8, Rd  
OR.B Rs, Rd  
OR.W #xx:16, Rd  
OR.W Rs, Rd  
OR.L #xx:32, ERd  
OR.L ERs, ERd  
ORC #xx:8, CCR  
POP.W Rn  
ORC  
POP  
1
2
1
2
2
2
2
2
POP.L ERn  
PUSH  
ROTL  
PUSH.W Rn  
PUSH.L ERn  
ROTL.B Rd  
ROTL.W Rd  
ROTL.L ERd  
ROTR.B Rd  
ROTR  
ROTR.W Rd  
ROTR.L ERd  
ROTXL.B Rd  
ROTXL.W Rd  
ROTXL.L ERd  
ROTXL  
Rev. 6.00 Mar. 24, 2006 Page 373 of 412  
REJ09B0142-0600  
Appendix  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
ROTXR  
ROTXR.B Rd  
ROTXR.W Rd  
ROTXR.L ERd  
RTE  
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
3
5
2
3
4
1
2
1
3
1
1
RTE  
2
1
2
2
RTS  
RTS  
SHAL  
SHAL.B Rd  
SHAL.W Rd  
SHAL.L ERd  
SHAR  
SHLL  
SHLR  
SHAR.B Rd  
SHAR.W Rd  
SHAR.L ERd  
SHLL.B Rd  
SHLL.W Rd  
SHLL.L ERd  
SHLR.B Rd  
SHLR.W Rd  
SHLR.L ERd  
SLEEP  
STC  
SLEEP  
STC CCR, Rd  
STC CCR, @ERd  
STC CCR, @(d:16,ERd)  
STC CCR, @(d:24,ERd)  
STC CCR,@-ERd  
STC CCR, @aa:16  
STC CCR, @aa:24  
SUB.B Rs, Rd  
SUB.W #xx:16, Rd  
SUB.W Rs, Rd  
SUB.L #xx:32, ERd  
SUB.L ERs, ERd  
SUBS #1/2/4, ERd  
1
1
1
1
1
1
2
SUB  
SUBS  
Rev. 6.00 Mar. 24, 2006 Page 374 of 412  
REJ09B0142-0600  
Appendix  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
SUBX  
SUBX #xx:8, Rd  
1
1
2
1
1
2
1
3
2
1
SUBX. Rs, Rd  
TRAPA  
XOR  
TRAPA #xx:2  
1
2
4
XOR.B #xx:8, Rd  
XOR.B Rs, Rd  
XOR.W #xx:16, Rd  
XOR.W Rs, Rd  
XOR.L #xx:32, ERd  
XOR.L ERs, ERd  
XORC #xx:8, CCR  
XORC  
Notes: 1. n:specified value in R4L and R4. The source and destination operands are accessed  
n+1 times respectively.  
2. Cannot be used in this LSI.  
Rev. 6.00 Mar. 24, 2006 Page 375 of 412  
REJ09B0142-0600  
Appendix  
A.4  
Combinations of Instructions and Addressing Modes  
Table A.5 Combinations of Instructions and Addressing Modes  
Addressing Mode  
Functions  
Instructions  
Data  
transfer  
instructions  
MOV  
BWL BWL BWL BWL BWL BWL  
B
BWL BWL  
WL  
POP, PUSH  
MOVFPE,  
MOVTPE  
ADD, CMP  
SUB  
Arithmetic  
operations  
BWL BWL  
WL BWL  
ADDX, SUBX  
ADDS, SUBS  
INC, DEC  
DAA, DAS  
MULXU,  
B
B
L
BWL  
B
BW  
MULXS,  
DIVXU,  
DIVXS  
NEG  
B
BWL  
WL  
BWL  
BWL  
BWL  
B
B
W
W
W
W
W
W
B
W
W
EXTU, EXTS  
AND, OR, XOR  
NOT  
Logical  
operations  
Shift operations  
Bit manipulations  
Branching  
instructions  
BCC, BSR  
JMP, JSR  
RTS  
W
W
System  
control  
instructions  
TRAPA  
RTE  
W
W
SLEEP  
LDC  
B
STC  
B
B
ANDC, ORC,  
XORC  
NOP  
Block data transfer instructions  
BW  
Rev. 6.00 Mar. 24, 2006 Page 376 of 412  
REJ09B0142-0600  
Appendix  
Appendix B I/O Port Block Diagrams  
B.1  
I/O Port Block  
RES goes low in a reset, and SBY goes low in a reset and in standby mode.  
Internal data bus  
RES  
SBY  
PUCR  
PMR  
Pull-up MOS  
PDR  
PCR  
IRQ  
TRGV  
[Legend]  
PUCR: Port pull-up control register  
PMR: Port mode register  
PDR: Port data register  
PCR: Port control register  
Figure B.1 Port 1 Block Diagram (P17)  
Rev. 6.00 Mar. 24, 2006 Page 377 of 412  
REJ09B0142-0600  
Appendix  
Internal data bus  
RES  
SBY  
PUCR  
PMR  
Pull-up MOS  
PDR  
PCR  
IRQ  
[Legend]  
PUCR: Port pull-up control register  
PMR: Port mode register  
PDR: Port data register  
PCR: Port control register  
Figure B.2 Port 1 Block Diagram (P16 to P14)  
Rev. 6.00 Mar. 24, 2006 Page 378 of 412  
REJ09B0142-0600  
Appendix  
Internal data bus  
RES  
SBY  
PUCR  
Pull-up MOS  
PDR  
PCR  
[Legend]  
PUCR: Port pull-up control register  
PDR: Port data register  
PCR: Port control register  
Figure B.3 Port 1 Block Diagram (P12, P11)  
Rev. 6.00 Mar. 24, 2006 Page 379 of 412  
REJ09B0142-0600  
Appendix  
Internal data bus  
RES  
SBY  
PUCR  
PMR  
Pull-up MOS  
PDR  
PCR  
Timer A  
TMOW  
[Legend]  
PUCR: Port pull-up control register  
PMR: Port mode register  
PDR: Port data register  
PCR: Port control register  
Figure B.4 Port 1 Block Diagram (P10)  
Rev. 6.00 Mar. 24, 2006 Page 380 of 412  
REJ09B0142-0600  
Appendix  
Internal data bus  
SBY  
PMR  
PDR  
PCR  
SCI3  
TxD  
[Legend]  
PMR: Port mode register  
PDR: Port data register  
PCR: Port control register  
Figure B.5 Port 2 Block Diagram (P22)  
Rev. 6.00 Mar. 24, 2006 Page 381 of 412  
REJ09B0142-0600  
Appendix  
SBY  
Internal data bus  
PDR  
PCR  
SCI3  
RE  
RxD  
[Legend]  
PDR: Port data register  
PCR: Port control register  
Figure B.6 Port 2 Block Diagram (P21)  
Rev. 6.00 Mar. 24, 2006 Page 382 of 412  
REJ09B0142-0600  
Appendix  
SBY  
SCI3  
SCKIE  
SCKOE  
Internal data bus  
PDR  
PCR  
SCKO  
SCKI  
[Legend]  
PDR: Port data register  
PCR: Port control register  
Figure B.7 Port 2 Block Diagram (P20)  
Rev. 6.00 Mar. 24, 2006 Page 383 of 412  
REJ09B0142-0600  
Appendix  
Internal data bus  
SBY  
PDR  
PCR  
IIC  
ICE  
SDAO/SCLO  
SDAI/SCLI  
[Legend]  
PDR: Port data register  
PCR: Port control register  
Figure B.8 Port 5 Block Diagram (P57, P56)*  
Note: * Not included in H8/3664N.  
Rev. 6.00 Mar. 24, 2006 Page 384 of 412  
REJ09B0142-0600  
Appendix  
Internal data bus  
RES  
SBY  
PUCR  
PMR  
Pull-up MOS  
PDR  
PCR  
WKP  
ADTRG  
[Legend]  
PUCR: Port pull-up control register  
PMR: Port mode register  
PDR: Port data register  
PCR: Port control register  
Figure B.9 Port 5 Block Diagram (P55)  
Rev. 6.00 Mar. 24, 2006 Page 385 of 412  
REJ09B0142-0600  
Appendix  
Internal data bus  
RES  
SBY  
PUCR  
PMR  
Pull-up MOS  
PDR  
PCR  
WKP  
[Legend]  
PUCR: Port pull-up control register  
PMR: Port mode register  
PDR: Port data register  
PCR: Port control register  
Figure B.10 Port 5 Block Diagram (P54 to P50)  
Rev. 6.00 Mar. 24, 2006 Page 386 of 412  
REJ09B0142-0600  
Appendix  
Internal data bus  
SBY  
Timer V  
OS3  
OS2  
OS1  
OS0  
PDR  
PCR  
TMOV  
[Legend]  
PDR: Port data register  
PCR: Port control register  
Figure B.11 Port 7 Block Diagram (P76)  
Rev. 6.00 Mar. 24, 2006 Page 387 of 412  
REJ09B0142-0600  
Appendix  
Internal data bus  
SBY  
PDR  
PCR  
Timer V  
TMCIV  
[Legend]  
PDR: Port data register  
PCR: Port control register  
Figure B.12 Port 7 Block Diagram (P75)  
Rev. 6.00 Mar. 24, 2006 Page 388 of 412  
REJ09B0142-0600  
Appendix  
Internal data bus  
SBY  
PDR  
PCR  
Timer V  
TMRIV  
[Legend]  
PDR: Port data register  
PCR: Port control register  
Figure B.13 Port 7 Block Diagram (P74)  
Rev. 6.00 Mar. 24, 2006 Page 389 of 412  
REJ09B0142-0600  
Appendix  
Internal data bus  
SBY  
PDR  
PCR  
[Legend]  
PDR: Port data register  
PCR: Port control register  
Figure B.14 Port 8 Block Diagram (P87 to P85)  
Rev. 6.00 Mar. 24, 2006 Page 390 of 412  
REJ09B0142-0600  
Appendix  
Internal data bus  
SBY  
Timer W  
Output  
control  
signals  
A to D  
PDR  
PCR  
FTIOA  
FTIOB  
FTIOC  
FTIOD  
[Legend]  
PDR: Port data register  
PCR: Port control register  
Figure B.15 Port 8 Block Diagram (P84 to P81)  
Rev. 6.00 Mar. 24, 2006 Page 391 of 412  
REJ09B0142-0600  
Appendix  
Internal data bus  
SBY  
PDR  
PCR  
Timer W  
FTCI  
[Legend]  
PDR: Port data register  
PCR: Port control register  
Figure B.16 Port 8 Block Diagram (P80)  
Rev. 6.00 Mar. 24, 2006 Page 392 of 412  
REJ09B0142-0600  
Appendix  
Internal data bus  
A/D converter  
DEC  
CH3 to CH0  
VIN  
Figure B.17 Port B Block Diagram (PB7 to PB0)  
Rev. 6.00 Mar. 24, 2006 Page 393 of 412  
REJ09B0142-0600  
Appendix  
B.2  
Port States in Each Operating State  
Port  
Reset  
Sleep  
Subsleep  
Standby  
Subactive Active  
P17 to P14, High  
Retained  
Retained  
High  
Functioning Functioning  
P12 to P10  
impedance  
impedance*  
P22 to P20  
High  
impedance  
Retained  
Retained  
Retained  
Retained  
High  
impedance*  
Functioning Functioning  
Functioning Functioning  
P57 to P50  
High  
High  
(P55 to P50 impedance  
impedance  
for  
H8/3664N)  
P76 to P74  
High  
impedance  
Retained  
Retained  
High  
Retained  
Retained  
High  
High  
impedance  
Functioning Functioning  
Functioning Functioning  
P87 to P80  
High  
impedance  
High  
impedance  
PB7 to PB0 High  
High  
High  
High  
impedance impedance impedance impedance impedance impedance  
Note:  
*
High level output when the pull-up MOS is in on state.  
Rev. 6.00 Mar. 24, 2006 Page 394 of 412  
REJ09B0142-0600  
Appendix  
Appendix C Product Code Lineup  
Product Type  
Product Code Model Marking  
Package Code  
H8/3664  
Flash memory Standard HD64N3664FP  
HD64N3664FP  
LQFP-64 (FP-64E)  
version with  
EEPROM  
product  
Flash memory Standard HD64F3664FP  
HD64F3664FP  
HD64F3664H  
HD64F3664FX  
HD64F3664FY  
HD64F3664BP  
LQFP-64 (FP-64E)  
QFP-64 (FP-64A)  
LQFP-48 (FP-48F)  
LQFP-48 (FP-48B)  
SDIP-42 (DP-42S)  
version  
product  
HD64F3664H  
HD64F3664FX  
HD64F3664FY  
HD64F3664BP  
Mask ROM  
version  
Standard HD6433664FP  
HD6433664 (***) FP LQFP-64 (FP-64E)  
HD6433664 (***) H QFP-64 (FP-64A)  
product  
HD6433664H  
HD6433664FX  
HD6433664FY  
HD6433664 (***) FX LQFP-48 (FP-48F)  
HD6433664 (***) FY LQFP-48 (FP-48B)  
HD6433664 (***) BP SDIP-42 (DP-42S)  
HD6433663 (***) FP LQFP-64 (FP-64E)  
HD6433664BP  
H8/3663  
H8/3662  
H8/3661  
Mask ROM  
version  
Standard HD6433663FP  
product  
HD6433663H  
HD6433663 (***) H  
QFP-64 (FP-64A)  
HD6433663FX  
HD6433663FY  
HD6433663 (***) FX LQFP-48 (FP-48F)  
HD6433663 (***) FY LQFP-48 (FP-48B)  
HD6433663 (***) BP SDIP-42 (DP-42S)  
HD6433662 (***) FP LQFP-64 (FP-64E)  
HD6433663BP  
Mask ROM  
version  
Standard HD6433662FP  
product  
HD6433662H  
HD6433662 (***) H  
QFP-64 (FP-64A)  
HD6433662FX  
HD6433662FY  
HD6433662 (***) FX LQFP-48 (FP-48F)  
HD6433662 (***) FY LQFP-48 (FP-48B)  
HD6433662 (***) BP SDIP-42 (DP-42S)  
HD6433661 (***) FP LQFP-64 (FP-64E)  
HD6433662BP  
Mask ROM  
version  
Standard HD6433661FP  
product  
HD6433661H  
HD6433661 (***) H  
QFP-64 (FP-64A)  
HD6433661FX  
HD6433661FY  
HD6433661BP  
HD6433661 (***) FX LQFP-48 (FP-48F)  
HD6433661 (***) FY LQFP-48 (FP-48B)  
HD6433661 (***) BP SDIP-42 (DP-42S)  
Rev. 6.00 Mar. 24, 2006 Page 395 of 412  
REJ09B0142-0600  
Appendix  
Product Type  
Product Code Model Marking  
Package Code  
H8/3660  
Mask ROM  
version  
Standard HD6433660FP  
HD6433660 (***) FP LQFP-64 (FP-64E)  
HD6433660 (***) H QFP-64 (FP-64A)  
product  
HD6433660H  
HD6433660FX  
HD6433660FY  
HD6433660BP  
HD6433660 (***) FX LQFP-48 (FP-48F)  
HD6433660 (***) FY LQFP-48 (FP-48B)  
HD6433660 (***) BP SDIP-42 (DP-42S)  
[Legend]  
(***): ROM code  
Rev. 6.00 Mar. 24, 2006 Page 396 of 412  
REJ09B0142-0600  
Appendix  
Appendix D Package Dimensions  
The package dimensions that are shows in the Renesas Semiconductor Packages Data Book have  
priority.  
12.0 0.2  
Unit: mm  
10  
48  
33  
49  
64  
32  
17  
M
1
16  
0.08  
1.2ꢀ  
*0.22 0.0ꢀ  
0.20 0.04  
1.0  
0° − 8°  
0.ꢀ 0.2  
0.10  
Package Code  
FP-64E  
JEDEC  
EIAJ  
Mass (reference value)  
*Dimension including the plating thickness  
Conforms  
0.4 g  
Base material dimension  
Figure D.1 FP-64E Package Dimensions  
Rev. 6.00 Mar. 24, 2006 Page 397 of 412  
REJ09B0142-0600  
Appendix  
Unit: mm  
17.2 0.3  
14  
33  
48  
32  
17  
49  
64  
1
16  
M
*0.37 0.08  
0.3ꢀ 0.06  
0.1ꢀ  
1.6  
1.0  
0° − 8°  
0.8 0.3  
0.10  
Package Code  
JEDEC  
EIAJ  
FP-64A  
Conforms  
*Dimension including the plating thickness  
Base material dimension  
Mass (reference value) 1.2 g  
Figure D.2 FP-64A Package Dimensions  
Rev. 6.00 Mar. 24, 2006 Page 398 of 412  
REJ09B0142-0600  
Appendix  
12.0 0.2  
10  
Unit: mm  
36  
2ꢀ  
37  
48  
24  
13  
12  
1
1.42ꢀ  
*0.32 0.0ꢀ  
0.30 0.04  
M
0.13  
1.0  
°
°
0 – 8  
0.ꢀ0 0.1  
0.10  
Package Code  
JEDEC  
FP-48F  
EIAJ  
0.4 g  
*Dimension including the plating thickness  
Mass (reference value)  
Base material dimension  
Figure D.3 FP-48F Package Dimensions  
Rev. 6.00 Mar. 24, 2006 Page 399 of 412  
REJ09B0142-0600  
Appendix  
9.0 0.2  
7
Unit: mm  
36  
2ꢀ  
37  
48  
24  
13  
1
12  
*0.22 0.0ꢀ  
0.20 0.04  
M
0.08  
0.7ꢀ  
1.0  
0˚ – 8˚  
0.ꢀ 0.1  
0.08  
Package Code  
JEDEC  
FP-48B  
JEITA  
*Dimension including the plating thickness  
Mass (reference value)  
0.2 g  
Base material dimension  
Figure D.4 FP-48B Package Dimensions  
Unit: mm  
37.3  
38.6 Max  
42  
1
22  
21  
1.0  
1.38 Max  
1ꢀ.24  
+ 0.10  
0.2ꢀ  
- 0.0ꢀ  
1.78 0.2ꢀ  
0.48 0.10  
0° − 1ꢀ°  
Package Code  
JEDEC  
DP-42S  
EIAJ  
Conforms  
4.8 g  
Mass (reference value)  
Figure D.5 DP-42S Package Dimensions  
Rev. 6.00 Mar. 24, 2006 Page 400 of 412  
REJ09B0142-0600  
Appendix  
Appendix E EEPROM Stacked-Structure Cross-Sectional  
View  
Figure E.1 EEPROM Stacked-Structure Cross-Sectional View  
Rev. 6.00 Mar. 24, 2006 Page 401 of 412  
REJ09B0142-0600  
Appendix  
Rev. 6.00 Mar. 24, 2006 Page 402 of 412  
REJ09B0142-0600  
Main Revisions and Additions in this Edition  
Item  
Page Revision (See Manual for Details)  
Preface  
Notes  
vi, vii Amended  
When using the on-chip emulator (E7, E8) for H8/3664  
program development and debugging, the following  
restrictions must be noted (the on-chip debugging  
emulator (E7) can also be used).  
1. The NMI pin is reserved for the E7 or E8, and  
cannot be used.  
2. Pins P85, P86, and P87 cannot be used. In order to  
use these pins, additional hardware must be  
provided on the user board.  
3. Area H'7000 to H'7FFF is used by the E7 or E8, and  
is not available to the user.  
4. Area H'F780 to H'FB7F must on no account be  
accessed.  
5. When the E7 or E8 is used, address breaks can be  
set as either available to the user or for use by the  
E7 or E8. If address breaks are set as being used  
by the E7 or E8, the address break control registers  
must not be accessed.  
6. When the E7 or E8 is used, NMI is an input/output  
pin (open-drain in output mode), P85 and P87 are  
input pins, and P86 is an output pin.  
Figure 5.3 Typical Connection to 78 to Added  
Crystal Resonator  
80  
Note: Capacitances are reference values.  
Figure 5.5 Typical Connection to  
Ceramic Resonator  
Figure 5.8 Typical Connection to  
32.768-kHz Crystal Resonator  
Rev. 6.00 Mar. 24, 2006 Page 403 of 412  
REJ09B0142-0600  
Item  
Page Revision (See Manual for Details)  
6.1.1 System Control Register 1 85  
(SYSCR1)  
Amended  
Bit Bit Name Description  
3
NESEL  
Noise Elimination Sampling Frequency Select  
The subclock pulse generator generates the watch  
clock signal (φW) and the system clock pulse  
generator generates the oscillator clock (φOSC). This  
bit selects the sampling frequency of the oscillator  
clock when the watch clock signal (φW) is sampled.  
When φOSC = 4 to 16 MHz, clear NESEL to 0.  
0: Sampling rate is φOSC/16  
1: Sampling rate is φOSC/4  
Table 7.2 Boot Mode Operation  
102  
Amended  
Host Operation  
Communication Contents  
LSI Operation  
Processing Contents  
Processing Contents  
Continuously transmits data H'00  
at specified bit rate.  
H'00, H'00  
ata  
H'00.  
• Calculates bit rate and sets BRR in SCI3.  
• Transmits data H'00 to host as adjustment  
end indication.  
H'00  
Transmits data H'55 when data H'00  
is received error-free.  
H'55  
H'55 reception.  
9.5.3 Pin Functions  
P84/FTIOD Pin  
136  
Amended  
Register  
TMRW  
TIOR1  
PCR8  
Bit Name  
Setting Value  
PWMD IOD2 IOD1 IOD0 PCR84 Pin Function  
0
0
0
0
0
1
X
X
0
1
X
P84 input/FTIOD input pin  
P84 output/FTIOD input pin  
FTIOD output pin  
0
0
1
0
1
X
1
X
X
FTIOD output pin  
P84 input/FTIOD input pin  
P84 output/FTIOD input pin  
PWM output pin  
1
X
X
X
Rev. 6.00 Mar. 24, 2006 Page 404 of 412  
REJ09B0142-0600  
Item  
Page Revision (See Manual for Details)  
9.5.3 Pin Functions  
136  
Amended  
Register  
TMRW  
TIOR1  
PCR8  
P83/FTIOC Pin  
Bit Name  
PWMC IOC2 IOC1 IOC0 PCR83 Pin Function  
Setting Value  
0
0
0
0
0
1
X
X
0
1
X
P83 input/FTIOC input pin  
P83 output/FTIOC input pin  
FTIOC output pin  
0
0
1
0
1
X
1
X
X
FTIOC output pin  
P83 input/FTIOC input pin  
P83 output/FTIOC input pin  
PWM output pin  
1
X
X
X
9.5.3 Pin Functions  
P82/FTIOB Pin  
137  
Amended  
Register  
TMRW  
TIOR0  
PCR8  
Bit Name  
PWMB IOB2 IOB1 IOB0 PCR82 Pin Function  
Setting Value  
0
0
0
0
0
1
X
X
0
1
X
P82 input/FTIOB input pin  
P82 output/FTIOB input pin  
FTIOB output pin  
0
0
1
0
1
X
1
X
X
FTIOB output pin  
P82 input/FTIOB input pin  
P82 output/FTIOB input pin  
PWM output pin  
1
X
X
X
11.3.4 Timer Control/Status  
Register V (TCSRV)  
150, Amended  
151  
Bit  
3
Bit Name Description  
OS3  
OS2  
Output Select 3 and 2  
These bits select an output method for the  
TMOV pin by the compare match of TCORB and  
2
TCNTV.  
00: No change  
01: 0 output1  
:
1
0
OS1  
OS0  
Output Select 1 and 0  
These bits select an output method for the  
TMOV pin by the compare match of TCORA and  
TCNTV.  
:
13.2.1 Timer Control/Status  
Register WD (TCSRWD)  
192  
Amended  
Bit  
Bit Name Description  
4
TCSRWE Timer Control/Status Register WD Write Enable  
:
Rev. 6.00 Mar. 24, 2006 Page 405 of 412  
REJ09B0142-0600  
Item  
Page Revision (See Manual for Details)  
15.5 Usage Notes  
271 to Added.  
274  
Notes on WAIT Function  
Notes on TRS Bit Setting and  
ICDR Register Access  
16.3.1 A/D Data Registers A to D 278  
(ADDRA to ADDRD)  
Amended  
… Therefore, byte access to ADDR should be done by  
reading the upper byte first then the lower one. Word  
access is also possible. ADDR is initialized to H'0000.  
Table 20.2 DC Characteristics (1) 314  
Amended  
Values  
Item  
Applicable Pins Test Condition  
Min  
Input high PB0 to PB7  
voltage  
VCC = 4.0 V to 5.5 V  
VCC × 0.7  
AVCC = 3.3 V to 5.5 V  
VCC × 0.8  
Input low  
voltage  
P50 to P57*,  
P74 to P76,  
P80 to P87,  
PB0 to PB7  
–0.3  
Pb0 to PB7  
AVCC = 4.0 V to 5.5 V –0.3  
AVCC = 3.3 V to 5.5 V –0.3  
Table 20.2 DC Characteristics (1) 318, Amended  
335  
Note:  
*
Pin states during supply current  
measurement are given below (excluding  
current in the pull-up MOS transistors and  
output buffers).  
Table 20.10 DC Characteristics  
(1)  
Mode  
RES Pin  
Internal State  
Active mode 1  
Active mode 2  
VCC  
Operates  
Operates  
(φosc/64)  
Sleep mode 1  
Sleep mode 2  
VCC  
Only timers operate  
Only timers operate  
(φosc/64)  
Rev. 6.00 Mar. 24, 2006 Page 406 of 412  
REJ09B0142-0600  
Item  
Page Revision (See Manual for Details)  
Table 20.10 DC Characteristics  
(1)  
331, Amended  
332  
Values  
Min  
Item  
Applicable Pins Test Condition  
Input high PB0 to PB7  
voltage  
VCC = 4.0 V to 5.5 V  
VCC × 0.7  
AVCC = 3.3 V to 5.5 V  
VCC × 0.8  
Input low  
voltage  
P50 to P57*,  
P74 to P76,  
P80 to P87,  
PB0 to PB7  
–0.3  
Pb0 to PB7  
AVCC = 4.0 V to 5.5 V –0.3  
AVCC = 3.3 V to 5.5 V –0.3  
Table A.1 Instruction Set  
2. Arithmetic instructions  
351  
Amended  
No. of  
States*1  
Condition Code  
Mnemonic  
I
H
N
Z
V
C
DAA DAA Rd  
B
*
*
2
Rev. 6.00 Mar. 24, 2006 Page 407 of 412  
REJ09B0142-0600  
Rev. 6.00 Mar. 24, 2006 Page 408 of 412  
REJ09B0142-0600  
Index  
EEPROM key register (EKR).............289  
Page write ...........................................293  
Random address read ..........................296  
Sequential read....................................296  
Slave addressing..................................292  
Start condition.....................................291  
Stop condition.....................................291  
Effective address.......................................39  
Electrical characteristics  
A
A/D converter ......................................... 275  
Sample-and-hold circuit...................... 282  
Scan mode........................................... 281  
Single mode........................................ 281  
Absolute maximum ratings..................... 311  
Address break ........................................... 67  
Addressing modes..................................... 35  
Absolute address................................... 37  
Immediate............................................. 37  
Memory indirect ................................... 38  
Program-counter relative ...................... 37  
Register direct....................................... 36  
Register indirect.................................... 36  
Register indirect with displacement...... 36  
Register indirect with post-increment... 36  
Register indirect with pre-decrement.... 36  
(F-ZTAT™ version, F-ZTAT™ version  
with EEPROM)  
AC characteristics ...............................320  
Electrical characteristics  
(F-ZTAT™ version, F-ZTAT™ version  
with EEPROM).......................................311  
DC characteristics ...............................314  
Electrical characteristics  
(Mask ROM version) ..............................329  
AC characteristics ...............................337  
DC characteristics ...............................331  
Exception handling ...................................51  
Reset exception handling ......................59  
Trap instruction.....................................51  
C
Clock  
Clock pulse generators.......................... 77  
Subclock generator ............................... 80  
System clock generator......................... 78  
Condition-code register (CCR)................. 19  
CPU .......................................................... 13  
F
Flash memory  
On-board programming modes ...........100  
Flash memory ...........................................95  
Boot mode...........................................101  
Boot program ......................................100  
Erase/erase-verify ...............................107  
Error protection...................................109  
Hardware protection............................109  
Power-down state................................110  
Program/program-verify .....................104  
Programmer mode...............................110  
E
EEPROM................................................ 287  
acknowledge....................................... 291  
Acknowledge polling.......................... 294  
Byte write ........................................... 293  
Corresponding slave address reference  
address (ESAR) .................................. 292  
Current address read ........................... 295  
EEPROM interface............................. 290  
Rev. 6.00 Mar. 24, 2006 Page 409 of 412  
REJ09B0142-0600  
Software protection............................. 109  
Package dimensions................................ 397  
Pin arrangement.......................................... 5  
Power supply circuit  
Internal power supply step-down circuit  
............................................................ 299  
Power supply circuit ............................... 299  
Power-down modes................................... 83  
Module standby function ...................... 94  
Sleep mode............................................ 91  
Standby mode ....................................... 91  
Subactive mode..................................... 92  
Subsleep mode...................................... 92  
Prescaler S ................................................ 81  
Prescaler W............................................... 81  
Product code lineup ................................ 395  
Program counter (PC) ............................... 19  
G
General registers....................................... 18  
I
I/O ports.................................................. 115  
I/O port block diagrams...................... 377  
I2C bus interface (IIC) ............................ 233  
Acknowledge...................................... 250  
Clock synchronous serial format ........ 259  
General call address............................ 247  
I2C bus data formats ........................... 250  
I2C transfer rate................................... 241  
Slave address ...................................... 250  
Start condition .................................... 250  
Stop condition..................................... 250  
Instruction set ........................................... 24  
Interrupt  
R
Registers  
ABRKCR...................... 68, 303, 306, 309  
ABRKSR ...................... 70, 303, 306, 309  
ADCR ......................... 280, 303, 306, 309  
ADCSR....................... 279, 303, 306, 309  
ADDRA ...................... 278, 303, 306, 309  
ADDRB ...................... 278, 303, 306, 309  
ADDRC ...................... 278, 303, 306, 309  
ADDRD ...................... 278, 303, 306, 309  
BARH ........................... 70, 303, 306, 309  
BARL............................ 70, 303, 306, 309  
BDRH ........................... 70, 303, 306, 309  
BDRL............................ 70, 303, 306, 309  
BRR ............................ 205, 302, 306, 308  
EBR1............................. 99, 302, 305, 308  
EKR ............................ 289, 304, 307, 310  
FENR.......................... 100, 302, 305, 308  
FLMCR1....................... 97, 302, 305, 308  
FLMCR2....................... 98, 302, 305, 308  
FLPWCR ...................... 99, 302, 305, 308  
GRA............................ 171, 302, 305, 308  
Internal interrupts ................................. 61  
Interrupt response time ......................... 62  
IRQ3 to IRQ0 interrupts....................... 59  
NMI interrupt........................................ 59  
WKP5 to WKP0 interrupts................... 60  
Interrupt mask bit (I)................................. 19  
L
Laminated-structure cross section of  
H8/3664N ............................................... 401  
Large current ports...................................... 1  
M
Memory map ............................................ 14  
P
Package....................................................... 2  
Rev. 6.00 Mar. 24, 2006 Page 410 of 412  
REJ09B0142-0600  
GRB............................ 171, 302, 305, 308  
GRC............................ 171, 302, 305, 308  
GRD............................ 171, 302, 305, 308  
ICCR........................... 242, 303, 306, 309  
ICDR........................... 236, 303, 306, 309  
ICMR.......................... 239, 303, 306, 309  
ICSR ........................... 245, 303, 306, 309  
IEGR1........................... 53, 304, 307, 310  
IEGR2........................... 54, 304, 307, 310  
IENR1........................... 55, 304, 307, 310  
IRR1 ............................. 56, 304, 307, 310  
IWPR............................ 57, 304, 307, 310  
MSTCR1....................... 87, 304, 307, 310  
PCR1........................... 117, 304, 307, 310  
PCR2........................... 121, 304, 307, 310  
PCR5........................... 126, 304, 307, 310  
PCR7........................... 131, 304, 307, 310  
PCR8........................... 134, 304, 307, 310  
PDR1 .......................... 118, 303, 306, 309  
PDR2 .......................... 122, 303, 306, 309  
PDR5 .......................... 127, 303, 306, 309  
PDR7 .......................... 131, 303, 307, 309  
PDR8 .......................... 134, 303, 307, 309  
PDRB.......................... 138, 304, 307, 309  
PMR1.......................... 116, 304, 307, 309  
PMR5.......................... 125, 304, 307, 309  
PUCR1........................ 118, 303, 306, 309  
PUCR5........................ 127, 303, 306, 309  
RDR............................ 199, 303, 306, 308  
RSR..................................................... 199  
SAR ............................ 238, 303, 306, 309  
SARX ......................... 238, 303, 306, 309  
SCR3........................... 201, 302, 306, 308  
SMR............................ 200, 302, 306, 308  
SSR............................. 203, 303, 306, 308  
SYSCR1 ....................... 84, 304, 307, 310  
SYSCR2 ....................... 86, 304, 307, 310  
TCA............................ 142, 302, 305, 308  
TCNT.......................... 170, 302, 305, 308  
TCNTV....................... 147, 302, 305, 308  
TCORA....................... 148, 302, 305, 308  
TCORB....................... 148, 302, 305, 308  
TCRV0........................ 148, 302, 305, 308  
TCRV1........................ 151, 302, 305, 308  
TCRW......................... 164, 302, 305, 308  
TCSRV........................ 150, 302, 305, 308  
TCSRWD.................... 192, 303, 306, 309  
TCWD......................... 193, 303, 306, 309  
TDR ............................ 200, 303, 306, 308  
TIERW........................ 165, 302, 305, 308  
TIOR0......................... 167, 302, 305, 308  
TIOR1......................... 169, 302, 305, 308  
TMA............................ 141, 302, 305, 308  
TMRW........................ 163, 302, 305, 308  
TMWD........................ 194, 303, 306, 309  
TSCR .......................... 248, 304, 307, 310  
TSR.....................................................199  
TSRW ......................... 166, 302, 305, 308  
S
Serial communication interface 3 (SCI3) 197  
Asynchronous mode............................210  
Bit rate.................................................205  
Break detection ...................................230  
Clocked synchronous mode ................218  
Framing error ......................................214  
Mark state ...........................................231  
Multiprocessor communication  
function...............................................224  
Overrun error ......................................214  
Parity error ..........................................214  
Stack pointer (SP) .....................................19  
T
Timer A...................................................139  
Timer V...................................................145  
Timer W..................................................159  
PWM operation...................................176  
Rev. 6.00 Mar. 24, 2006 Page 411 of 412  
REJ09B0142-0600  
V
W
Vector address .......................................... 52  
Watchdog timer....................................... 191  
Rev. 6.00 Mar. 24, 2006 Page 412 of 412  
REJ09B0142-0600  
Renesas 16-Bit Single-Chip Microcomputer  
Hardware Manual  
H8/3664 Group  
Publication Date: 1st Edition, Mar, 2000  
Rev.6.00, Mar. 24, 2006  
Published by:  
Sales Strategic Planning Div.  
Renesas Technology Corp.  
Edited by:  
Customer Support Department  
Global Strategic Communication Div.  
Renesas Solutions Corp.  
2006. Renesas Technology Corp., All rights reserved. Printed in Japan.  
Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
RENESAS SALES OFFICES  
http://www.renesas.com  
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.  
Renesas Technology America, Inc.  
450 Holger Way, San Jose, CA 95134-1368, U.S.A  
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501  
Renesas Technology Europe Limited  
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.  
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900  
Renesas Technology (Shanghai) Co., Ltd.  
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120  
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898  
Renesas Technology Hong Kong Ltd.  
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong  
Tel: <852> 2265-6688, Fax: <852> 2730-6071  
Renesas Technology Taiwan Co., Ltd.  
10th Floor, No.99, Fushing North Road, Taipei, Taiwan  
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999  
Renesas Technology Singapore Pte. Ltd.  
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632  
Tel: <65> 6213-0200, Fax: <65> 6278-8001  
Renesas Technology Korea Co., Ltd.  
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea  
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145  
Renesas Technology Malaysia Sdn. Bhd  
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia  
Tel: <603> 7955-9390, Fax: <603> 7955-9510  
Colophon 6.0  
H8/3664 Group  
Hardware Manual  

相关型号:

HD6433662H

Renesas 16-Bit Single-Chip Microcomputer H8 Family/H8/300H Tiny Series
RENESAS

HD6433662XXXBP

Microcontroller
ETC

HD6433662XXXFP

Microcontroller
ETC

HD6433662XXXFX

Microcontroller
ETC

HD6433662XXXFY

Microcontroller
ETC

HD6433662XXXH

Microcontroller
ETC

HD6433663

Renesas 16-Bit Single-Chip Microcomputer H8 Family/H8/300H Tiny Series
RENESAS

HD6433663BP

Renesas 16-Bit Single-Chip Microcomputer H8 Family/H8/300H Tiny Series
RENESAS

HD6433663FP

Renesas 16-Bit Single-Chip Microcomputer H8 Family/H8/300H Tiny Series
RENESAS

HD6433663FX

Renesas 16-Bit Single-Chip Microcomputer H8 Family/H8/300H Tiny Series
RENESAS

HD6433663FY

Renesas 16-Bit Single-Chip Microcomputer H8 Family/H8/300H Tiny Series
RENESAS

HD6433663H

Renesas 16-Bit Single-Chip Microcomputer H8 Family/H8/300H Tiny Series
RENESAS