HD6473298VC [RENESAS]

UVPROM, 5MHz, MICROCONTROLLER, CDIP64, WINDOWED, SHRINK, DIP-64;
HD6473298VC
型号: HD6473298VC
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

UVPROM, 5MHz, MICROCONTROLLER, CDIP64, WINDOWED, SHRINK, DIP-64

可编程只读存储器 时钟 CD 外围集成电路
文件: 总321页 (文件大小:1040K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OMC942723054  
HITACHI SINGLE-CHIP MICROCOMPUTER  
H8/329 SERIES  
H8/329  
HD6473298, HD6433298, HD6413298  
H8/328  
HD6433288  
H8/327  
HD6473278, HD6433278, HD6413278  
H8/326  
HD6433268  
HARDWARE MANUAL  
Preface  
The H8/329 Series is a series of high-performance single-chip microcomputers having a fast  
H8/300 CPU core and a set of on-chip supporting functions optimized for embedded control.  
These include ROM, RAM, two types of timers, a serial communication interface, an A/D  
converter, I/O ports, and other functions needed in control system configurations, so that compact,  
high-performance systems can be realized easily. The H8/329 Series includes four chips: the  
H8/329 with 32K-byte ROM and 1K-byte RAM; the H8/328 with 24K-byte ROM and 1K-byte  
RAM; the H8/327 with 16K-byte ROM and 512-byte RAM; and the H8/326 with 8K-byte ROM  
and 256-byte RAM.  
The H8/329 and H8/327 are available in a masked ROM version, a ZTAT™* (Zero Turn-Around  
Time) version, and a ROMless version, providing a quick and flexible response to conditions from  
ramp-up through full-scale volume producion, even for applications with frequently-changing  
specifications.  
This manual describes the hardware of the H8/329 Series. Refer to the H8/300 Series  
Programming Manual for a detailed description of the instruction set.  
Notes: * ZTAT is a registered trademark of Hitachi, Ltd.  
Contents  
Section 1. Overview...............................................................................................................  
1.1 Overview...............................................................................................................................  
1.2 Block Diagram......................................................................................................................  
1.3 Pin Assignments and Functions............................................................................................  
1.3.1 Pin Arrangement......................................................................................................  
1.3.2 Pin Functions...........................................................................................................  
1
1
5
6
6
8
Section 2. MCU Operating Modes and Address Space................................................ 15  
2.1 Overview............................................................................................................................... 15  
2.1.1 Mode Selection........................................................................................................ 15  
2.1.2 Mode and System Control Registers (MDCR and SYSCR) ................................... 16  
2.2 System Control Register (SYSCR)—H'FFC4...................................................................... 16  
2.3 Mode Control Register (MDCR)—H'FFC5 ......................................................................... 18  
2.4 Address Space Maps............................................................................................................. 19  
Section 3. CPU........................................................................................................................ 23  
3.1 Overview............................................................................................................................... 23  
3.1.1 Features.................................................................................................................... 23  
3.2 Register Configuration.......................................................................................................... 24  
3.2.1 General Registers..................................................................................................... 24  
3.2.2 Control Registers..................................................................................................... 25  
3.2.3 Initial Register Values.............................................................................................. 26  
3.3 Addressing Modes ................................................................................................................ 27  
3.3.1 Addressing Mode..................................................................................................... 27  
3.3.2 How to Calculate Where the Execution Starts ........................................................ 29  
3.4 Data Formats......................................................................................................................... 33  
3.4.1 Data Formats in General Registers.......................................................................... 34  
3.4.2 Memory Data Formats............................................................................................. 35  
3.5 Instruction Set....................................................................................................................... 36  
3.5.1 Data Transfer Instructions ....................................................................................... 38  
3.5.2 Arithmetic Operations ............................................................................................. 40  
3.5.3 Logic Operations ..................................................................................................... 41  
3.5.4 Shift Operations....................................................................................................... 41  
3.5.5 Bit Manipulations .................................................................................................... 43  
3.5.6 Branching Instructions............................................................................................. 47  
3.5.7 System Control Instructions .................................................................................... 49  
i
3.5.8 Block Data Transfer Instruction .............................................................................. 50  
3.6 CPU States............................................................................................................................ 51  
3.6.1 Program Execution State ......................................................................................... 52  
3.6.2 Exception-Handling State........................................................................................ 52  
3.6.3 Power-Down State................................................................................................... 53  
3.7 Access Timing and Bus Cycle.............................................................................................. 53  
3.7.1 Access to On-Chip Memory (RAM and ROM) ...................................................... 53  
3.7.2 Access to On-Chip Register Field and External Devices........................................ 55  
Section 4. Exception Handling............................................................................................ 59  
4.1 Overview............................................................................................................................... 59  
4.2 Reset ..................................................................................................................................... 59  
4.2.1 Overview ................................................................................................................. 59  
4.2.2 Reset Sequence........................................................................................................ 59  
4.2.3 Disabling of Interrupts after Reset........................................................................... 62  
4.3 Interrupts............................................................................................................................... 62  
4.3.1 Overview ................................................................................................................. 62  
4.3.2 Interrupt-Related Registers...................................................................................... 64  
4.3.3 External Interrupts................................................................................................... 66  
4.3.4 Internal Interrupts .................................................................................................... 67  
4.3.5 Interrupt Handling ................................................................................................... 67  
4.3.6 Interrupt Response Time.......................................................................................... 72  
4.3.7 Precaution................................................................................................................ 72  
4.4 Note on Stack Handling........................................................................................................ 73  
Section 5. I/O Ports................................................................................................................ 75  
5.1 Overview............................................................................................................................... 75  
5.2 Port 1..................................................................................................................................... 77  
5.3 Port 2..................................................................................................................................... 80  
5.4 Port 3..................................................................................................................................... 84  
5.5 Port 4..................................................................................................................................... 88  
5.6 Port 5..................................................................................................................................... 96  
5.7 Port 6.....................................................................................................................................100  
5.8 Port 7..................................................................................................................................... 111  
Section 6. 16-Bit Free-Running Timer.............................................................................. 113  
6.1 Overview............................................................................................................................... 113  
6.1.1 Features.................................................................................................................... 113  
ii  
6.1.2 Block Diagram......................................................................................................... 113  
6.1.3 Input and Output Pins.............................................................................................. 115  
6.1.4 Register Configuration ............................................................................................ 115  
6.2 Register Descriptions............................................................................................................ 116  
6.2.1 Free-Running Counter (FRC)—H'FF92.................................................................. 116  
6.2.2 Output Compare Registers A and B (OCRA and OCRB)—H'FF94....................... 117  
6.2.3 Input Capture Registers A to D (ICRA to ICRD)—  
H'FF98, H'FF9A, H'FF9C, H'FF9E......................................................................... 117  
6.2.4 Timer Interrupt Enable Register (TIER)—H'FF90 .................................................120  
6.2.5 Timer Control/Status Register (TCSR)—H'FF91 ...................................................122  
6.2.6 Timer Control Register (TCR)—H'FF96 ................................................................125  
6.2.7 Timer Output Compare Control Register (TOCR)—H'FF97..................................127  
6.3 CPU Interface .......................................................................................................................128  
6.4 Operation ..............................................................................................................................130  
6.4.1 FRC Incrementation Timing....................................................................................130  
6.4.2 Output Compare Timing..........................................................................................132  
6.4.3 Input Capture Timing ..............................................................................................133  
6.4.4 Setting of FRC Overflow Flag (OVF).....................................................................136  
6.5 Interrupts...............................................................................................................................137  
6.6 Sample Application...............................................................................................................137  
6.7 Application Notes .................................................................................................................138  
Section 7. 8-Bit Timers .........................................................................................................143  
7.1 Overview...............................................................................................................................143  
7.1.1 Features....................................................................................................................143  
7.1.2 Block Diagram.........................................................................................................143  
7.1.3 Input and Output Pins..............................................................................................144  
7.1.4 Register Configuration ............................................................................................145  
7.2 Register Descriptions............................................................................................................145  
7.2.1 Timer Counter (TCNT)—H'FFCC (TMR0), H'FFD4 (TMR1)...............................145  
7.2.2 Time Constant Registers A and B (TCORA and TCORB)—  
H'FFCA and H'FFCB (TMR0), H'FFD2 and H'FFD3 (TMR1)..............................146  
7.2.3 Timer Control Register (TCR)—H'FFC8 (TMR0), H'FFD0 (TMR1) ....................146  
7.2.4 Timer Control/Status Register (TCSR)—H'FFC9 (TMR0), H'FFD1 (TMR1).......149  
7.2.5 Serial/Timer Control Register (STCR)—H'FFC3 ...................................................151  
7.3 Operation ..............................................................................................................................152  
7.3.1 TCNT Incrementation Timing.................................................................................152  
7.3.2 Compare Match Timing...........................................................................................153  
iii  
7.3.3 External Reset of TCNT..........................................................................................155  
7.3.4 Setting of TCSR Overflow Flag (OVF) ..................................................................156  
7.4 Interrupts...............................................................................................................................157  
7.5 Sample Application...............................................................................................................157  
7.6 Application Notes .................................................................................................................158  
Section 8. Serial Communication Interface .....................................................................163  
8.1 Overview...............................................................................................................................163  
8.1.1 Features....................................................................................................................163  
8.1.2 Block Diagram.........................................................................................................164  
8.1.3 Input and Output Pins..............................................................................................164  
8.1.4 Register Configuration ............................................................................................165  
8.2 Register Descriptions............................................................................................................166  
8.2.1 Receive Shift Register (RSR)..................................................................................166  
8.2.2 Receive Data Register (RDR)—H'FFDD................................................................166  
8.2.3 Transmit Shift Register (TSR).................................................................................166  
8.2.4 Transmit Data Register (TDR)—H'FFDB...............................................................167  
8.2.5 Serial Mode Register (SMR)—H'FFD8 ..................................................................167  
8.2.6 Serial Control Register (SCR)—H'FFDA ...............................................................170  
8.2.7 Serial Status Register (SSR)—H'FFDC ..................................................................174  
8.2.8 Bit Rate Register (BRR)—H'FFD9.........................................................................177  
8.2.9 Serial/Timer Control Register (STCR)—H'FFC3 ...................................................181  
8.3 Operation ..............................................................................................................................182  
8.3.1 Overview .................................................................................................................182  
8.3.2 Asynchronous Mode................................................................................................184  
8.3.3 Clocked Synchronous Operation.............................................................................197  
8.4 SCI Interrupts........................................................................................................................206  
8.5 Application Notes .................................................................................................................206  
Section 9. A/D Converter .....................................................................................................209  
9.1 Overview...............................................................................................................................209  
9.1.1 Features....................................................................................................................209  
9.1.2 Block Diagram.........................................................................................................210  
9.1.3 Input Pins................................................................................................................. 211  
9.1.4 Register Configuration ............................................................................................ 211  
9.2 Register Descriptions............................................................................................................212  
9.2.1 A/D Data Registers (ADDR)—H'FFE0 to H'FFE6.................................................212  
9.2.2 A/D Control/Status Register (ADCSR)—H'FFE8 ..................................................212  
iv  
9.2.3 A/D Control Register (ADCR)—H'FFEA...............................................................215  
9.3 Operation ..............................................................................................................................215  
9.3.1 Single Mode (SCAN = 0)........................................................................................216  
9.3.2 Scan Mode (SCAN = 1) ..........................................................................................219  
9.3.3 Input Sampling Time and A/D Conversion Time....................................................222  
9.3.4 External Trigger Input Timing.................................................................................223  
9.4 Interrupts...............................................................................................................................224  
Section 10. RAM.......................................................................................................................225  
10.1 Overview...............................................................................................................................225  
10.2 Block Diagram......................................................................................................................225  
10.3 RAM Enable Bit (RAME) in System Control Register (SYSCR) .......................................225  
10.4 Operation ..............................................................................................................................226  
10.4.1 Expanded Modes (Modes 1 and 2)..........................................................................226  
10.4.2 Single-Chip Mode (Mode 3) ...................................................................................226  
Section 11. ROM.......................................................................................................................227  
11.1 Overview...............................................................................................................................227  
11.1.1 Block Diagram.........................................................................................................228  
11.2 PROM Mode (H8/329, H8/327)...........................................................................................228  
11.2.1 PROM Mode Setup .................................................................................................228  
11.2.2 Socket Adapter Pin Assignments and Memory Map...............................................229  
11.3 Programming ........................................................................................................................232  
11.3.1 Writing and Verifying..............................................................................................232  
11.3.2 Notes on Writing......................................................................................................236  
11.3.3 Reliability of Written Data ......................................................................................236  
11.3.4 Erasing of Data........................................................................................................237  
11.4 Handling of Windowed Packages.........................................................................................238  
Section 12. Power-Down State..............................................................................................239  
12.1 Overview...............................................................................................................................239  
12.2 System Control Register: Power-Down Control Bits...........................................................240  
12.3 Sleep Mode ...........................................................................................................................241  
12.3.1 Transition to Sleep Mode.........................................................................................242  
12.3.2 Exit from Sleep Mode .............................................................................................242  
12.4 Software Standby Mode........................................................................................................242  
12.4.1 Transition to Software Standby Mode.....................................................................243  
12.4.2 Exit from Software Standby Mode..........................................................................243  
v
12.4.3 Sample Application of Software Standby Mode.....................................................243  
12.4.4 Application Note .....................................................................................................244  
12.5 Hardware Standby Mode ......................................................................................................245  
12.5.1 Transition to Hardware Standby Mode....................................................................245  
12.5.2 Recovery from Hardware Standby Mode................................................................245  
12.5.3 Timing Relationships...............................................................................................246  
Section 13. Clock Pulse Generator.......................................................................................247  
13.1 Overview...............................................................................................................................247  
13.1.1 Block Diagram.........................................................................................................247  
13.2 Oscillator Circuit...................................................................................................................247  
13.3 System Clock Divider...........................................................................................................250  
Section 14. Electrical Specifications....................................................................................251  
14.1 Absolute Maximum Ratings.................................................................................................251  
14.2 Electrical Characteristics ......................................................................................................251  
14.2.1 DC Characteristics...................................................................................................251  
14.2.2 AC Characteristics...................................................................................................257  
14.2.3 A/D Converter Characteristics.................................................................................261  
14.3 MCU Operational Timing.....................................................................................................262  
14.3.1 Bus Timing ..............................................................................................................262  
14.3.2 Control Signal Timing.............................................................................................263  
14.3.3 16-Bit Free-Running Timer Timing ........................................................................266  
14.3.4 8-Bit Timer Timing..................................................................................................267  
14.3.5 Serial Communication Interface Timing .................................................................268  
14.3.6 I/O Port Timing........................................................................................................269  
Appendices  
Appendix A. CPU Instruction Set......................................................................................271  
A.1 Instruction Set List................................................................................................................271  
A.2 Operation Code Map.............................................................................................................278  
A.3 Number of States Required for Execution............................................................................280  
Appendix B. Register Field.................................................................................................286  
B.1 Register Addresses and Bit Names.......................................................................................286  
B.2 Register Descriptions............................................................................................................290  
vi  
Appendix C. Pin States.........................................................................................................317  
C.1 Pin States in Each Mode.......................................................................................................317  
Appendix D. Timing of Transition to and Recovery from Hardware  
Standby Mode................................................................................................319  
Appendix E. Package Dimensions ....................................................................................320  
vii  
Section 1. Overview  
1.1 Overview  
The H8/329 Series of single-chip microcomputers features an H8/300 CPU core and a complement  
of on-chip supporting modules implementing a variety of system functions.  
The H8/300 CPU is a high-speed processor with an architecture featuring powerful bit-  
manipulation instructions, ideally suited for realtime control applications. The on-chip supporting  
modules implement peripheral functions needed in system configurations. These include ROM,  
RAM, two types of timers (a 16-bit free-running timer and 8-bit timers), a serial communication  
interface (SCI), an A/D converter, and I/O ports.  
The H8/329 Series can operate in a single-chip mode or in two expanded modes, depending on the  
requirements of the application. (The operating mode will be referred to as the MCU mode in this  
manual.)  
The entire H8/329 Series is available with masked ROM. The H8/329 and H8/327 are also  
available in ZTAT™ versions* that can be programmed at the user site, and in ROMless versions.  
Notes: * ZTAT is a registered trademark of Hitachi, Ltd.  
Table 1-1 lists the features of the H8/329 Series.  
1
Table 1-1. Features  
Item  
Specification  
CPU  
Two-way general register configuration  
• Eight 16-bit registers, or  
• Sixteen 8-bit registers  
High-speed operation  
• Maximum clock rate: 10MHz  
• Add/subtract:  
0.2µs  
1.4µs  
• Multiply/divide:  
Streamlined, concise instruction set  
• Instruction length: 2 or 4 bytes  
• Register-register arithmetic and logic operations  
• MOV instruction for data transfer between registers and memory  
Instruction set features  
• Multiply instruction (8 bits × 8 bits)  
• Divide instruction (16 bits ÷ 8 bits)  
• Bit-accumulator instructions  
• Register-indirect specification of bit positions  
• H8/329: 32k-byte ROM; 1k-byte RAM  
• H8/328: 24k-byte ROM; 1k-byte RAM  
• H8/327: 16k-byte ROM; 512-byte RAM  
• H8/326: 8k-byte ROM; 256-byte RAM  
• One 16-bit free-running counter (can also count external events)  
• Two output-compare lines  
Memory  
16-bit free-  
running timer  
(1 channel)  
8-bit timer  
• Four input capture lines (can be buffered)  
Each channel has  
(2 channels)  
• One 8-bit up-counter (can also count external events)  
• Two time constant registers  
Serial  
• Asynchronous or clocked synchronous mode (selectable)  
• Full duplex: can transmit and receive simultaneously  
• On-chip baud rate generator  
communication  
interface (SCI)  
(1 channel)  
2
Table 1-1. Features (cont.)  
Item  
Specification  
A/D converter  
• 8-bit resolution  
• Eight channels: single or scan mode (selectable)  
• Start of A/D conversion can be externally triggered  
• Sample-and-hold function  
I/O ports  
Interrupts  
• 43 input/output lines (16 of which can drive LEDs)  
• 8 input-only lines  
• Four external interrupt lines: NMI, IRQ0, IRQ1, IRQ2  
• 18 on-chip interrupt sources  
Operating  
modes  
• Expanded mode with on-chip ROM disabled (mode 1)  
• Expanded mode with on-chip ROM enabled (mode 2)  
• Single-chip mode (mode 3)  
Power-down  
modes  
• Sleep mode  
• Software standby mode  
• Hardware standby mode  
Other features  
• On-chip oscillator  
3
Table 1-1. Features (cont.)  
Item  
Specification  
Series lineup  
5-V version  
3-V version  
Package  
ROM  
H8/329 HD6473298C  
HD6473298VC  
64-pin windowed shrink DIP PROM  
(DC-64S)  
HD6473298P  
HD6473298F  
HD6473298VP  
HD6473298VF  
HD6473298VCP  
HD6433298VP  
HD6433298VF  
HD6433298VCP  
HD6413298VP  
HD6413298VF  
HD6413298VCP  
HD6433288VP  
HD6433288VF  
HD6433288VCP  
HD6473278VC  
64-pin shrink DIP (DP-64S)  
64-pin QFP (FP-64A)  
HD6473298CP  
HD6433298P  
68-pin PLCC (CP-68)  
64-pin shrink DIP (DP-64S)  
64-pin QFP (FP-64A)  
68-pin PLCC (CP-68)  
64-pin shrink DIP (DP-64S)  
64-pin QFP (FP-64A)  
68-pin PLCC (CP-68)  
64-pin shrink DIP (DP-64S)  
64-pin QFP (FP-64A)  
68-pin PLCC (CP-68)  
Masked ROM  
HD6433298F  
HD6433298CP  
HD6413298P  
ROMless  
HD6413298F  
HD6413298CP  
H8/328 HD6433288P  
HD6433288F  
Masked ROM  
HD6433288CP  
H8/327 HD6473278C  
64-pin windowed shrink DIP PROM  
(DC-64S)  
HD6473278P  
HD6473278F  
HD6473278VP  
HD6473278VF  
HD6473278VCP  
HD6433278VP  
HD6433278VF  
HD6433278VCP  
HD6413278VP  
HD6413278VF  
HD6413278VCP  
HD6433268VP  
HD6433268VF  
HD6433268VCP  
64-pin shrink DIP (DP-64S)  
64-pin QFP (FP-64A)  
HD6473278CP  
HD6433278P  
68-pin PLCC (CP-68)  
64-pin shrink DIP (DP-64S)  
64-pin QFP (FP-64A)  
68-pin PLCC (CP-68)  
64-pin shrink DIP (DP-64S)  
64-pin QFP (FP-64A)  
68-pin PLCC (CP-68)  
64-pin shrink DIP (DP-64S)  
64-pin QFP (FP-64A)  
68-pin PLCC (CP-68)  
Masked ROM  
HD6433278F  
HD6433278CP  
HD6413278P  
ROMless  
HD6413278F  
HD6413278CP  
H8/326 HD6433268P  
HD6433268F  
Masked ROM  
HD6433268CP  
4
1.2 Block Diagram  
Figure 1-1 shows a block diagram of the H8/329 Series.  
*1  
Clock  
pulse  
gener-  
ator  
CPU  
H8/300  
Data bus (Low)  
P40 /IRQ2/ADTRG  
P41 /IRQ1  
P42 /IRQ0  
P43 /RD  
P44 /WR  
P45 /AS  
P10/A0  
P11/A1  
P12/A2  
P13/A3  
P14/A4  
P15/A5  
P16/A6  
P17/A7  
PROM *2  
(or masked ROM)  
RAM  
P46 /Ø  
P47 /WAIT  
Serial  
communication  
interface  
16-bit free-  
running timer  
P30/D0  
P31/D1  
P32/D2  
P33/D3  
P34/D4  
P35/D5  
P36/D6  
P37/D7  
P20/A8  
P21/A9  
P22 /A10  
P23 /A11  
P24 /A12  
P25 /A13  
P26 /A14  
P27 /A15  
8-bit timer  
(2 channels)  
8-bit A/D converter  
(8 channels)  
Port 6  
Port 7  
Port 5  
Memory Sizes  
Notes: *1 CP-68 package only.  
*2 PROM is available only in  
the H8/329 and H8/327.  
H8/329  
H8/328  
H8/327  
H8/326  
ROM  
RAM  
32k bytes  
1k byte  
24k bytes  
1k byte  
16k bytes  
512 bytes  
8k bytes  
256 bytes  
Figure 1-1. Block Diagram  
5
1.3 Pin Assignments and Functions  
1.3.1 Pin Arrangement  
Figure 1-2 shows the pin arrangement of the DC-64S and DP-64S packages. Figure 1-3 shows the  
pin arrangement of the FP-64A package. Figure 1-4 shows the pin arrangement of the CP-68  
package.  
P40/ADTRG/IRQ2  
P41/IRQ1  
P42/IRQ0  
P43/RD  
P44/WR  
P45/AS  
P46/Ø  
1
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P37/D7  
2
P36/D6  
3
P35/D5  
4
P34/D4  
5
P33/D3  
6
P32/D2  
7
P31/D1  
P47/WAIT  
P50/TxD  
P51/RxD  
P52/SCK  
RES  
8
P30/D0  
9
P10/A0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
P11/A1  
P12/A2  
P13/A3  
NMI  
P14/A4  
VCC  
P15/A5  
STBY  
P16/A6  
VSS  
P17/A7  
XTAL  
VSS  
EXTAL  
MD1  
P20/A8  
P21/A9  
MD0  
P22/A10  
P23/A11  
P24/A12  
P25/A13  
P26/A14  
P27/A15  
VCC  
AVSS  
P70/AN0  
P71/AN1  
P72/AN2  
P73/AN3  
P74/AN4  
P75/AN5  
P76/AN6  
P77/AN7  
AVCC  
P67/TMO1  
P66/FTOB/TMRI1  
P65/FTID/TMCI1  
P64/FTIC/TMO0  
P63/FTIB/TMRI0  
P62/FTIA  
P60/FTCI/TMCI0  
P61/FTOA  
Figure 1-2. Pin Arrangement (DC-64S and DP-64S, Top View)  
6
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
P50/TxD  
P51/RxD  
P52/SCK  
RES  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P10/A0  
P11/A1  
P12/A2  
P13/A3  
P14/A4  
P15/A5  
P16/A6  
P17/A7  
VSS  
2
3
4
NMI  
5
VCC  
6
STBY  
VSS  
7
8
XTAL  
EXTAL  
MD1  
9
10  
11  
12  
13  
14  
15  
16  
P20/A8  
P21/A9  
P22/A10  
P23/A11  
P24/A12  
P25/A13  
P26/A14  
MD0  
AVSS  
P70/AN0  
P71/AN1  
P72/AN2  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Figure 1-3. Pin Arrangement (FP-64A, Top View)  
7
9
8
7
6
5
4
3
2
1
68 67 66 65 64 63 62 61  
P50/TxD  
P51/RxD  
P52/SCK  
RES  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
P10/A0  
P11/A1  
P12/A2  
P13/A3  
P14/A4  
P15/A5  
P16/A6  
P17/A7  
VSS  
NMI  
VCC  
STBY  
VSS  
VSS  
XTAL  
EXTAL  
MD1  
VSS  
P20/A8  
P21/A9  
P22/A10  
P23/A11  
P24/A12  
P25/A13  
P26/A14  
MD0  
AVSS  
P70/AN0  
P71/AN1  
P72/AN2  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
Figure 1-4. Pin Arrangement (CP-68, Top View)  
8
1.3.2 Pin Functions  
(1) Pin Assignments in Each Operating Mode: Table 1-2 lists the assignments of the pins of the  
DC-64S, DP-64S, FP-64A, and CP-68 packages in each operating mode.  
Table 1-2. Pin Assignments in Each Operating Mode (1)  
Pin No.  
DC-64S  
Expanded modes  
Mode 2  
Single-chip mode  
Mode 3  
VSS  
PROM  
mode  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VPP  
EA9  
VCC  
VSS  
VSS  
VSS  
NC  
NC  
VSS  
VSS  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DP-64S FP-64A CP-68  
Mode 1  
VSS  
1
57  
58  
59  
60  
61  
62  
63  
64  
1
1
VSS  
2
P40/IRQ2/ADTRG  
P41/IRQ1  
P42/IRQ0  
RD  
P40/IRQ2/ADTRG  
P41/IRQ1  
P42/IRQ0  
RD  
P40/IRQ2/ADTRG  
P41/IRQ1  
P42/IRQ0  
P43  
2
3
3
4
4
5
5
6
WR  
WR  
P44  
6
7
AS  
AS  
P45  
7
8
Ø
Ø
P46/Ø  
8
9
WAIT  
WAIT  
P47  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
P50/TxD  
P51/RxD  
P52/SCK  
RES  
P50/TxD  
P51/RxD  
P52/SCK  
RES  
P50/TxD  
P51/RxD  
P52/SCK  
RES  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2
3
4
5
NMI  
NMI  
NMI  
6
VCC  
VCC  
VCC  
7
STBY  
VSS  
STBY  
VSS  
STBY  
8
VSS  
9
VSS  
VSS  
VSS  
XTAL  
EXTAL  
MD1  
XTAL  
EXTAL  
MD1  
XTAL  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
EXTAL  
MD1  
MD0  
MD0  
MD0  
AVSS  
AVSS  
AVSS  
P70/AN0  
P71/AN1  
P72/AN2  
P73/AN3  
P74/AN4  
P75/AN5  
P76/AN6  
P77/AN7  
P70/AN0  
P71/AN1  
P72/AN2  
P73/AN3  
P74/AN4  
P75/AN5  
P76/AN6  
P77/AN7  
P70/AN0  
P71/AN1  
P72/AN2  
P73/AN3  
P74/AN4  
P75/AN5  
P76/AN6  
P77/AN7  
Notes: 1. Pins marked NC should be left unconnected.  
2. For details on PROM mode, refer to 11.2, “PROM Mode.”  
9
Table 1-2. Pin Assignments in Each Operating Mode (2)  
Pin No.  
DC-64S  
Expanded modes  
Mode 2  
Single-chip mode  
PROM  
mode  
VCC  
NC  
DP-64S FP-64A CP-68  
Mode 1  
Mode 3  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
AVCC  
AVCC  
AVCC  
P60/FTCI/TMCI0  
P60/FTCI/TMCI0  
P61/FTOA  
VSS  
P60/FTCI/TMCI0  
P61/FTOA  
P61/FTOA  
NC  
VSS  
VSS  
VSS  
P62/FTIA  
P62/FTIA  
P63/FTIB/TMRI0  
P64/FTIC/TMO0  
P65/FTID/TMCI1  
P66/FTOB/TMRI1  
P67/TMO1  
VCC  
P62/FTIA  
NC  
P63/FTIB/TMRI0  
P63/FTIB/TMRI0  
VCC  
VCC  
NC  
P64/FTIC/TMO0  
P64/FTIC/TMO0  
P65/FTID/TMCI1  
P65/FTID/TMCI1  
P66/FTOB/TMRI1  
P66/FTOB/TMRI1  
NC  
P67/TMO1  
VCC  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
P67/TMO1  
VCC  
P27  
P26  
P25  
P24  
P23  
P22  
P21  
P20  
VSS  
VSS  
P17  
P16  
P15  
P14  
P13  
P12  
P11  
P10  
P30  
P31  
P32  
P33  
P34  
P35  
P36  
P37  
NC  
VCC  
CE  
A27/A15  
P26/A14  
P25/A13  
P24/A12  
P23/A11  
P22/A10  
P21/A9  
P20/A8  
VSS  
EA14  
EA13  
EA12  
EA11  
EA10  
OE  
A8  
EA8  
VSS  
VSS  
VSS  
A7  
VSS  
VSS  
P17/A7  
P16/A6  
P15/A5  
P14/A4  
P13/A3  
P12/A2  
P11/A1  
P10/A0  
D0  
EA7  
EA6  
EA5  
EA4  
EA3  
EA2  
EA1  
EA0  
EO0  
EO1  
EO2  
EO3  
EO4  
EO5  
EO6  
EO7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D0  
D1  
D1  
D2  
D2  
D3  
D3  
D4  
D4  
D5  
D5  
D6  
D6  
D7  
D7  
Notes: 1. Pins marked NC should be left unconnected.  
2. For details on PROM mode, refer to 11.2, “PROM Mode.”  
10  
(2) Pin Functions: Table 1-3 gives a concise description of the function of each pin.  
Table 1-3. Pin Functions (1)  
Pin No.  
DC-64S  
Type  
Symbol  
DP-64S FP-64A CP-68  
I/O Name and function  
Power  
VCC  
14, 39  
16, 48  
17  
6, 31  
8, 40  
9
15, 42  
I
I
I
Power: Connected to the power supply  
(+5V). Connect both VCC pins to the  
system power supply (+5V).  
VSS  
1, 17, 18,  
35, 51, 52  
Ground: Connected to ground (0V).  
Connect all VSS pins to the system power  
supply (0V).  
Clock  
XTAL  
19  
Crystal: Connected to a crystal oscillator.  
The crystal frequency should be double  
the desired system clock frequency.  
If an external clock is input at the EXTAL  
pin, a reverse-phase clock should be input  
at the XTAL pin.  
EXTAL  
18  
10  
20  
I
External crystal: Connected to a crystal  
oscillator or external clock. The frequency  
of the external clock should be double the  
desired system clock frequency. See  
section 13.2, “Oscillator Circuit” for  
examples of connections to a crystal and  
external clock.  
Ø
7
63  
4
8
O
I
System clock: Supplies the system clock  
to peripheral devices.  
System  
control  
RES  
STBY  
12  
15  
13  
16  
Reset: A Low input causes the chip to  
reset.  
7
I
Standby: A transition to the hardware  
standby mode (a power-down state) occurs  
when a Low input is received at the STBY  
pin.  
Address  
bus  
A15 to A0  
40 to 47, 32 to 39, 43 to 50,  
49 to 56 41 to 48 53 to 60  
O
Address bus: Address output pins.  
11  
Table 1-3. Pin Functions (2)  
DC-64S  
Pin No.  
Type  
Symbol  
D7 to D0  
WAIT  
DP-64S FP-64A CP-68  
I/O Name and function  
Data bus  
Bus  
57 to 64 49 to 56 61 to 68  
I/O Data bus: 8-Bit bidirectional data bus.  
8
64  
9
I
Wait: Requests the CPU to insert TW  
states into the bus cycle when an external  
address is accessed.  
control  
RD  
WR  
AS  
4
5
6
60  
61  
62  
5
6
7
O
O
O
Read: Goes Low to indicate that the CPU  
is reading an external address.  
Write: Goes Low to indicate that the CPU  
is writing to an external address.  
Address Strobe: Goes Low to indicate  
that there is a valid address on the address  
bus.  
Interrupt  
signals  
NMI  
13  
5
14  
I
NonMaskable Interrupt: Highest-  
priority interrupt request. The NMIEG bit  
in the system control register (SYSCR)  
determines whether the interrupt is  
requested on the rising or falling edge of  
the NMI input.  
IRQ0 to  
IRQ2  
1 to 3  
57 to 59 2 to 4  
I
I
Interrupt Request 0 to 2: Maskable  
interrupt request pins.  
Operating MD1,  
19,  
20  
11,  
12  
21,  
22  
Mode: Input pins for setting the MCU  
operating mode according to the table  
below.  
mode  
MD0  
control  
MD1 MD0 Mode  
Description  
0
1
1
1
0
1
Mode 1 Expanded mode  
with on-chip ROM  
disabled  
Mode 2 Expanded mode  
with on-chip ROM  
enabled  
Mode 3 Single-chip mode  
12  
Table 1-3. Pin Functions (3)  
DC-64S  
Pin No.  
Type  
Symbol  
DP-64S FP-64A CP-68  
I/O Name and function  
Serial com- TxD  
munication  
9
1
2
3
10  
11  
12  
O
Transmit Data: Data output pin for the  
serial communication interface.  
interface  
RxD  
10  
11  
I
Receive Data: Data input pin for the  
serial communication interface.  
SCK  
I/O Serial ClocK: Input/output pin for the  
serial clock.  
16-bit free- FTOA,  
32,  
37  
24,  
29  
34,  
40  
O
I
FRT Output compare A and B: Output  
pins controlled by comparators A and B  
of the free-running timer.  
running  
timer  
FTOB  
FTCI  
31  
23  
33  
FRT counter Clock Input: Input pin  
for an external clock signal for the  
free-running timer.  
FTIA to  
FTID  
33 to 36 25 to 28 36 to 39  
I
FRT Input capture A to D: Input capture  
pins for the free-running timer.  
8-bit TiMer Output: Compare-match  
output pins for the 8-bit timers.  
8-bit TiMer counter Clock Input:  
External clock input pins for the 8-bit  
timer counters.  
8-bit  
TMO0,  
TMO1  
TMCI0,  
TMCI1  
35,  
38  
27,  
30  
38,  
41  
O
I
timer  
31,  
36  
23,  
28  
33,  
39  
TMRI0,  
TMRI1  
34,  
37  
26,  
29  
37,  
40  
I
8-bit TiMer counter Reset Input:  
A High input at these pins resets the 8-bit  
timer counters.  
A/D  
AN7 to AN0 22 to 29 14 to 21 24 to 31  
I
I
I
ANalog input: Analog signal input pins  
for the A/D converter.  
converter  
ADTRG  
AVCC  
1
57  
22  
2
A/D Trigger: External trigger input for  
starting the A/D converter.  
30  
32  
Analog reference Voltage: Reference  
voltage pin for the A/D converter. If the  
A/D converter is not used, connect AVCC  
to the system power supply (+5V).  
Analog ground: Ground pin for the A/D  
converter.  
AVSS  
21  
13  
23  
I
13  
Table 1-3. Pin Functions (4)  
DC-64S  
Pin No.  
Type  
Symbol  
DP-64S FP-64A CP-68  
I/O Name and function  
General-  
purpose  
I/O  
P17 to P10 49 to 56 41 to 48 53 to 60  
P27 to P20 40 to 47 32 to 39 43 to 50  
P37 to P30 57 to 64 49 to 56 61 to 68  
I/O Port 1: An 8-bit input/output port with  
programmable MOS input pull-ups and  
LED driving capability. The direction of  
each bit can be selected in the port 1 data  
direction register (P1DDR).  
I/O Port 2: An 8-bit input/output port with  
programmable MOS input pull-ups and  
LED driving capability. The direction of  
each bit can be selected in the port 2 data  
direction register (P2DDR).  
I/O Port 3: An 8-bit input/output port with  
programmable MOS input pull-ups. The  
direction of each bit can be selected in the  
port 3 data direction register (P3DDR).  
I/O Port 4: An 8-bit input/output port. The  
direction of each bit can be selected in the  
port 4 data direction register (P4DDR).  
I/O Port 5: A 3-bit input/output port. The  
direction of each bit can be selected in the  
port 5 data direction register (P5DDR).  
I/O Port 6: An 8-bit input/output port. The  
direction of each bit can be selected in the  
port 6 data direction register (P6DDR).  
P47 to P40 1 to 8  
57 to 64 2 to 9  
P52 to P50 9 to 11 1 to 3  
10 to 12  
P67 to P60 31 to 38 23 to 30 33, 34,  
36 to 41  
P77 to P70 22 to 29 14 to 21 24 to 31  
I
Port 7: An 8-bit input port.  
14  
Section 2. MCU Operating Modes and Address Space  
2.1 Overview  
2.1.1 Mode Selection  
The H8/329 Series operates in three modes numbered 1, 2, and 3. The mode is selected by the  
inputs at the mode pins (MD1 and MD0) when the chip comes out of a reset. See table 2-1.  
The ROMless versions (HD6413298 and HD6413278) can be used only in mode 1 (expanded mode  
with on-chip ROM disabled.)  
Table 2-1. Operating Modes  
Mode  
MD1  
Low  
Low  
High  
High  
MD0  
Low  
High  
Low  
High  
Address space  
On-chip ROM  
On-chip RAM  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Expanded  
Expanded  
Single-chip  
Disabled  
Enabled  
Enabled  
Enabled*  
Enabled*  
Enabled  
Note: * If the RAME bit in the system control register (SYSCR) is cleared to 0, off-chip memory  
can be accessed instead.  
Modes 1 and 2 are expanded modes that permit access to off-chip memory and peripheral devices.  
The maximum address space supported by these externally expanded modes is 64K bytes.  
In mode 3 (single-chip mode), only on-chip ROM and RAM and the on-chip register field are used.  
All ports are available for general-purpose input and output.  
Mode 0 is inoperative in the H8/329 Series. Avoid setting the mode pins to mode 0.  
15  
2.1.2 Mode and System Control Registers (MDCR and SYSCR)  
Table 2-2 lists the registers related to the operating mode: the system control register (SYSCR) and  
mode control register (MDCR). The mode control register indicates the inputs to the mode pins  
MD1 and MD0.  
Table 2-2. Mode and System Control Registers  
Name  
Abbreviation  
SYSCR  
Read/Write  
Address  
H'FFC4  
H'FFC5  
System control register  
Mode control register  
R/W  
R
MDCR  
2.2 System Control Register (SYSCR)—H'FFC4  
Bit  
7
SSBY  
0
6
STS2  
0
5
STS1  
0
4
STS0  
0
3
1
2
NMIEG  
0
1
1
0
RAME  
1
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The system control register (SYSCR) is an 8-bit register that controls the operation of the chip.  
Bit 7—Software Standby (SSBY): Enables transition to the software standby mode. For details,  
see section 12, “Power-Down State.”  
On recovery from software standby mode by an external interrupt, the SSBY bit remains set to “1.”  
It can be cleared by writing “0.”  
Bit 7  
SSBY  
Description  
0
1
The SLEEP instruction causes a transition to sleep mode.  
The SLEEP instruction causes a transition to software standby mode.  
(Initial value)  
16  
Bits 6 to 4—Standby Timer Select 2 to 0 (STS2 to STS0): These bits select the clock settling  
time when the chip recovers from the software standby mode by an external interrupt. During the  
selected time the CPU and on-chip supporting modules continue to stand by. These bits should be  
set according to the clock frequency so that the settling time is at least 10ms. For specific settings,  
see section 12.2, “System Control Register: Power-Down Control Bits.”  
Bit 6  
Bit 5  
Bit 4  
STS2 STS1 STS0  
Description  
0
0
0
0
1
0
0
0
1
Settling time = 8192 states  
Settling time = 16384 states  
Settling time = 32768 states  
Settling time = 65536 states  
Settling time = 131072 states  
(Initial value)  
1
0
1
1
Bit 3—Reserved: This bit cannot be modified and is always read as “1.”  
Bit 2—NMI Edge (NMIEG): Selects the valid edge of the NMI input.  
Bit 2  
NMIEG Description  
0
1
An interrupt is requested on the falling edge of the NMI input.  
An interrupt is requested on the rising edge of the NMI input.  
(Initial value)  
Bit 1—Reserved: This bit cannot be modified and is always read as “1.”  
Bit 0—RAM Enable (RAME): Enables or disables the on-chip RAM. The RAME bit is initialized  
by a reset, but is not initialized in the software standby mode.  
Bit 0  
RAME  
Description  
0
1
The on-chip RAM is disabled.  
The on-chip RAM is enabled.  
(Initial value)  
17  
2.3 Mode Control Register (MDCR)—H'FFC5  
Bit  
7
1
6
1
5
1
4
0
3
0
2
1
1
0
MDS1 MDS0  
Initial value  
Read/Write  
*
*
R
R
Note: * Initialized according to MD1 and MD0 inputs.  
The mode control register (MDCR) is an eight-bit register that indicates the operating mode of the  
chip.  
Bits 7 to 5—Reserved: These bits cannot be modified and are always read as “1.”  
Bits 4 and 3—Reserved: These bits cannot be modified and are always read as “0.”  
Bit 2—Reserved: This bit cannot be modified and is always read as “1.”  
Bits 1 and 0—Mode Select 1 and 0 (MDS1 and MDS0): These bits indicate the values of the  
mode pins (MD1 and MD0), thus indicating the current operating mode of the chip. MDS1  
corresponds to MD1 and MDS0 to MD0. These bits can be read but not written. When the mode  
control register is read, the levels at the mode pins (MD1 and MD0) are latched in these bits.  
18  
2.4 Address Space Maps  
Figures 2-1 to 2-4 show memory maps of the H8/329, H8/328, H8/327, and H8/326 in modes 1, 2,  
and 3.  
Mode 1  
Expanded Mode without  
On-Chip ROM  
Mode 2  
Expanded Mode with  
On-Chip ROM  
Mode 3  
Single-Chip Mode  
H'0000  
H'0000  
H'0000  
Vector Table  
Vector Table  
Vector Table  
H'0047  
H'0048  
H'0047  
H'0048  
H'0047  
H'0048  
On-Chip ROM,  
32k bytes  
On-Chip ROM,  
32k bytes  
External Address Space  
H'7FFF  
H'8000  
H'7FFF  
External Address Space  
H'FB7F  
H'FB80  
H'FB7F  
H'FB80  
H'FB80  
H'FF7F  
*
*
On-Chip RAM ,  
On-Chip RAM ,  
On-Chip RAM,  
1k byte  
1k byte  
1k byte  
H'FF7F  
H'FF80  
H'FF87  
H'FF88  
H'FF7F  
H'FF80  
H'FF87  
H'FF88  
External Address Space  
On-Chip Register Field  
External Address Space  
On-Chip Register Field  
H'FF88  
H'FFFF  
On-Chip Register Field  
H'FFFF  
H'FFFF  
Note: * External memory can be accessed at these addresses when the RAME bit in  
the system control register (SYSCR) is cleared to 0.  
Figure 2-1. H8/329 Address Space Map  
19  
Mode 1  
Expanded Mode without  
On-Chip ROM  
Mode 2  
Expanded Mode with  
On-Chip ROM  
Mode 3  
Single-Chip Mode  
H'0000  
H'0000  
H'0000  
Vector Table  
Vector Table  
Vector Table  
H'0047  
H'0048  
H'0047  
H'0048  
H'0047  
H'0048  
On-Chip ROM,  
24k bytes  
On-Chip ROM,  
24k bytes  
H'5FFF  
H'6000  
H'5FFF  
External Address Space  
Reserved*1  
H'7FFF  
H'8000  
External Address Space  
H'FB7F  
H'FB80  
H'FB7F  
H'FB80  
H'FB80  
H'FF7F  
On-Chip RAM*2,  
1k byte  
On-Chip RAM*2,  
1k byte  
On-Chip RAM, 1k byte  
On-Chip Register Field  
H'FF7F  
H'FF80  
H'FF87  
H'FF88  
H'FF7F  
H'FF80  
H'FF87  
H'FF88  
External Address Space  
On-Chip Register Field  
External Address Space  
On-Chip Register Field  
H'FF88  
H'FFFF  
H'FFFF  
H'FFFF  
Notes: *1 Do not access these reserved areas.  
*2 External memory can be accessed at these addresses when the RAME bit in  
the system control register (SYSCR) is cleared to 0.  
Figure 2-2. H8/328 Address Space Map  
20  
Mode 1  
Expanded Mode without  
On-Chip ROM  
Mode 2  
Expanded Mode with  
On-Chip ROM  
Mode 3  
Single-Chip Mode  
H'0000  
H'0000  
H'0000  
Vector Table  
Vector Table  
Vector Table  
H'0047  
H'0048  
H'0047  
H'0048  
H'0047  
H'0048  
On-Chip ROM,  
16k bytes  
On-Chip ROM,  
16k bytes  
H'3FFF  
H'4000  
H'3FFF  
External Address Space  
Reserved*1  
H'7FFF  
H'8000  
External Address Space  
Reserved*1, *2  
H'FB7F  
H'FB80  
H'FB7F  
H'FB80  
Reserved*1, *2  
H'FD7F  
H'FD80  
H'FD7F  
H'FD80  
H'FD80  
H'FF7F  
On-Chip RAM*2,  
512 Bytes  
On-Chip RAM*2,  
512 Bytes  
On-Chip RAM,  
512 Bytes  
H'FF7F  
H'FF80  
H'FF87  
H'FF88  
H'FF7F  
H'FF80  
H'FF87  
H'FF88  
External Address Space  
External Address Space  
H'FF88  
H'FFFF  
On-Chip Register Field  
On-Chip Register Field  
On-Chip Register Field  
H'FFFF  
H'FFFF  
Notes: *1 Do not access these reserved areas.  
*2 External memory can be accessed at these addresses when the RAME bit in  
the system control register (SYSCR) is cleared to 0.  
Figure 2-3. H8/327 Address Space Map  
21  
Mode 1  
Expanded Mode without  
On-Chip ROM  
Mode 2  
Expanded Mode with  
On-Chip ROM  
Mode 3  
Single-Chip Mode  
H'0000  
H'0000  
H'0000  
Vector Table  
Vector Table  
Vector Table  
H'0047  
H'0048  
H'0047  
H'0048  
H'0047  
H'0048  
On-Chip ROM,  
8k bytes  
On-Chip ROM,  
8k bytes  
H'1FFF  
H'2000  
H'1FFF  
External Address Space  
Reserved*1  
H'7FFF  
H'8000  
External Address Space  
Reserved*1, *2  
H'FB7F  
H'FB80  
H'FB7F  
H'FB80  
Reserved*1, *2  
H'FE7F  
H'FE80  
H'FE7F  
H'FE80  
H'FE80  
H'FF7F  
On-Chip RAM*2,  
256 Bytes  
On-Chip RAM*2,  
256 Bytes  
On-Chip RAM,  
256 Bytes  
H'FF7F  
H'FF80  
H'FF87  
H'FF88  
H'FF7F  
H'FF80  
H'FF87  
H'FF88  
External Address Space  
External Address Space  
H'FF88  
H'FFFF  
On-Chip Register Field  
On-Chip Register Field  
On-Chip Register Field  
H'FFFF  
H'FFFF  
Notes: *1 Do not access these reserved areas.  
*2 External memory can be accessed at these addresses when the RAME bit in  
the system control register (SYSCR) is cleared to 0.  
Figure 2-4. H8/326 Address Space Map  
22  
Section 3. CPU  
3.1 Overview  
The H8/329 Series has the H8/300 CPU: a fast central processing unit with eight 16-bit general  
registers (also configurable as 16 eight-bit registers) and a concise instruction set designed for high-  
speed operation.  
3.1.1 Features  
The main features of the H8/300 CPU are listed below.  
• Two-way register configuration  
— Sixteen 8-bit general registers, or  
— Eight 16-bit general registers  
• Instruction set with 57 basic instructions, including:  
— Multiply and divide instructions  
— Powerful bit-manipulation instructions  
• Eight addressing modes  
— Register direct (Rn)  
— Register indirect (@Rn)  
— Register indirect with displacement (@(d:16, Rn))  
— Register indirect with post-increment or pre-decrement (@Rn+ or @–Rn)  
— Absolute address (@aa:8 or @aa:16)  
— Immediate (#xx:8 or #xx:16)  
— PC-relative (@(d:8, PC))  
— Memory indirect (@@aa:8)  
• Maximum 64K-byte address space  
• High-speed operation  
— All frequently-used instructions are executed two to four states  
— The maximum clock rate is 10MHz  
— 8- or 16-bit register-register add or subtract: 0.2µs  
— 8 × 8-bit multiply:  
1.4µs  
1.4µs  
— 16 ÷ 8-bit divide:  
• Power-down mode  
— SLEEP instruction  
23  
3.2 Register Configuration  
Figure 3-1 shows the register structure of the CPU. There are two groups of registers: the general  
registers and control registers.  
7
07  
0
R0H  
R1H  
R2H  
R3H  
R4H  
R5H  
R6H  
R7H  
R0L  
R1L  
R2L  
R3L  
R4L  
R5L  
R6L  
R7L  
(SP)  
SP: Stack Pointer  
15  
0
PC  
PC: Program Counter  
7 6 5 4 3 2 1 0  
I U H U N Z V C  
CCR: Condition Code Register  
Carryflag  
CCR  
Overflow flag  
Zero flag  
Negative flag  
Half-carryflag  
Interrupt mask bit  
User bit  
User bit  
Figure 3-1. CPU Registers  
3.2.1 General Registers  
All the general registers can be used as both data registers and address registers. When used as  
address registers, the general registers are accessed as 16-bit registers (R0 to R7). When used as  
data registers, they can be accessed as 16-bit registers, or the high and low bytes can be accessed  
separately as 8-bit registers (R0H to R7H and R0L to R7L).  
R7 also functions as the stack pointer, used implicitly by hardware in processing interrupts and  
subroutine calls. In assembly-language coding, R7 can also be denoted by the letters SP. As  
indicated in figure 3-2, R7 (SP) points to the top of the stack.  
24  
Unused area  
Stack area  
SP  
(R7)  
Figure 3-2. Stack Pointer  
3.2.2 Control Registers  
The CPU control registers include a 16-bit program counter (PC) and an 8-bit condition code  
register (CCR).  
(1) Program Counter (PC): This 16-bit register indicates the address of the next instruction the  
CPU will execute. Each instruction is accessed in 16 bits (1 word), so the least significant bit of the  
PC is ignored (always regarded as 0).  
(2) Condition Code Register (CCR): This 8-bit register contains internal status information,  
including carry (C), overflow (V), zero (Z), negative (N), and half-carry (H) flags and the interrupt  
mask bit (I).  
Bit 7—Interrupt Mask Bit (I): When this bit is set to “1,” all interrupts except NMI are masked.  
This bit is set to “1” automatically by a reset and at the start of interrupt handling.  
Bit 6—User Bit (U): This bit can be written and read by software (using the LDC, STC, ANDC,  
ORC, and XORC instructions).  
Bit 5—Half-Carry Flag (H): This flag is set to “1” when the ADD.B, ADDX.B, SUB.B,  
SUBX.B, NEG.B, or CMP.B instruction causes a carry or borrow out of bit 3, and is cleared to “0”  
otherwise. Similarly, it is set to “1” when the ADD.W, SUB.W, or CMP.W instruction causes a  
carry or borrow out of bit 11, and cleared to “0” otherwise. It is used implicitly in the DAA and  
DAS instructions.  
Bit 4—User Bit (U): This bit can be written and read by software (using the LDC, STC, ANDC,  
ORC, and XORC instructions).  
25  
Bit 3—Negative Flag (N): This flag indicates the most significant bit (sign bit) of the result of an  
instruction.  
Bit 2—Zero Flag (Z): This flag is set to “1” to indicate a zero result and cleared to “0” to indicate  
a nonzero result.  
Bit 1—Overflow Flag (V): This flag is set to “1” when an arithmetic overflow occurs, and cleared  
to “0” at other times.  
Bit 0—Carry Flag (C): This flag is used by:  
• Add and subtract instructions, to indicate a carry or borrow at the most significant bit of the  
result  
• Shift and rotate instructions, to store the value shifted out of the most significant or least  
significant bit  
• Bit manipulation and bit load instructions, as a bit accumulator  
The LDC, STC, ANDC, ORC, and XORC instructions enable the CPU to load and store the CCR,  
and to set or clear selected bits by logic operations. The N, Z, V, and C flags are used in  
conditional branching instructions (BCC).  
For the action of each instruction on the flag bits, see the H8/300 Series Programming Manual.  
3.2.3 Initial Register Values  
When the CPU is reset, the program counter (PC) is loaded from the vector table and the interrupt  
mask bit (I) in the CCR is set to “1.” The other CCR bits and the general registers are not  
initialized.  
In particular, the stack pointer (R7) is not initialized. To prevent program crashes the stack pointer  
should be initialized by software, by the first instruction executed after a reset.  
26  
3.3 Addressing Modes  
3.3.1 Addressing Mode  
The H8/300 CPU supports eight addressing modes. Each instruction uses a subset of these  
addressing modes.  
Table 3-1. Addressing Modes  
No.  
(1)  
(2)  
(3)  
(4)  
Addressing mode  
Symbol  
Register direct  
Rn  
Register indirect  
@Rn  
Register indirect with displacement  
Register indirect with post-increment  
Register indirect with pre-decrement  
Absolute address  
@(d:16, Rn)  
@Rn+  
@–Rn  
(5)  
(6)  
(7)  
(8)  
@aa:8 or @aa:16  
#xx:8 or #xx:16  
@(d:8, PC)  
@@aa:8  
Immediate  
Program-counter-relative  
Memory indirect  
(1) Register Direct—Rn: The register field of the instruction specifies an 8- or 16-bit general  
register containing the operand. In most cases the general register is accessed as an 8-bit register.  
Only the MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 bits × 8 bits), and  
DIVXU (16 bits ÷ 8 bits) instructions have 16-bit operands.  
(2) Register indirect—@Rn: The register field of the instruction specifies a 16-bit general  
register containing the address of the operand.  
(3) Register Indirect with Displacement—@(d:16, Rn): This mode, which is used only in MOV  
instructions, is similar to register indirect but the instruction has a second word (bytes 3 and 4)  
which is added to the contents of the specified general register to obtain the operand address. For  
the MOV.W instruction, the resulting address must be even.  
(4) Register Indirect with Post-Increment or Pre-Decrement—@Rn+ or @–Rn:  
Register indirect with Post-Increment—@Rn+  
The @Rn+ mode is used with MOV instructions that load registers from memory.  
It is similar to the register indirect mode, but the 16-bit general register specified in the register  
field of the instruction is incremented after the operand is accessed. The size of the increment is  
27  
1 or 2 depending on the size of the operand: 1 for MOV.B; 2 for MOV.W. For MOV.W, the  
original contents of the 16-bit general register must be even.  
Register Indirect with Pre-Decrement—@–Rn  
The @–Rn mode is used with MOV instructions that store register contents to memory.  
It is similar to the register indirect mode, but the 16-bit general register specified in the register  
field of the instruction is decremented before the operand is accessed. The size of the  
decrement is 1 or 2 depending on the size of the operand: 1 for MOV.B; 2 for MOV.W. For  
MOV.W, the original contents of the 16-bit general register must be even.  
(5) Absolute Address—@aa:8 or @aa:16: The instruction specifies the absolute address of the  
operand in memory. The MOV.B instruction uses an 8-bit absolute address of the form H'FFxx.  
The upper 8 bits are assumed to be 1, so the possible address range is H'FF00 to H'FFFF (65280 to  
65535). The MOV.B, MOV.W, JMP, and JSR instructions can use 16-bit absolute addresses.  
(6) Immediate—#xx:8 or #xx:16: The instruction contains an 8-bit operand in its second byte, or  
a 16-bit operand in its third and fourth bytes. Only MOV.W instructions can contain 16-bit  
immediate values.  
The ADDS and SUBS instructions implicitly contain the value 1 or 2 as immediate data. Some bit  
manipulation instructions contain 3-bit immediate data (#xx:3) in the second or fourth byte of the  
instruction, specifying a bit number.  
(7) Program-Counter-Relative—@(d:8, PC): This mode is used to generate branch addresses in  
the Bcc and BSR instructions. An 8-bit value in byte 2 of the instruction code is added as a sign-  
extended value to the program counter contents. The result must be an even number. The possible  
branching range is –126 to +128 bytes (–63 to +64 words) from the current address.  
(8) Memory Indirect—@@aa:8: This mode can be used by the JMP and JSR instructions. The  
second byte of the instruction code specifies an 8-bit absolute address from H'0000 to H'00FF (0 to  
255). The word located at this address contains the branch address. Note that addresses H'0000 to  
H'0047 (0 to 71) are located in the vector table.  
If an odd address is specified as a branch destination or as the operand address of a MOV.W  
instruction, the least significant bit is regarded as “0,” causing word access to be performed at the  
address preceding the specified address. See section 3.4.2, “Memory Data Formats,” for further  
information.  
28  
3.3.2 How to Calculate Where the Execution Starts  
Table 3-2 shows how to calculate the Effective Address (EA: Effective Address) for each  
addressing mode.  
In the operation instruction, 1) register direct, as well as 6) immediate (for each instruction,  
ADD.B, ADDX, SUBX, CMP.B, AND, OR, XOR) are used.  
In the move instruction, 7) program counter relative and 8) all addressing mode to delete the  
memory indirect can be used.  
In the bit manipulation instruction for the operand specifications, 1) register direct, 2) register  
indirect, as well as 5) absolute address (8 bit) can be used. Furthermore, to specify the bit number  
within the operand, 1) register direct (for each instruction, BSET, BCLR, BNOT, BTST) as well as  
6) immediate (3 bit) can be used independently.  
29  
Table 3-2. Effective Address Calculation (1)  
Addressing mode and  
No. instruction format  
Effective address calculation  
Effective address  
3
0
3
0
1
Register direct, Rn  
regm  
regn  
15 8 7  
4 3  
0
op  
regm  
regn  
Operands are contained in registers regm  
and regn  
15  
0
0
2
3
Register indirect, @Rn  
16-bit register contents  
15  
0
15  
7 6 4 3  
reg  
0
0
op  
15  
Register indirect with displacement,  
@(d:16, Rn)  
16-bit register contents  
15  
0
15  
7 6 4 3  
op  
reg  
disp  
disp  
15  
0
15  
0
4
Register indirect with  
post-increment, @Rn+  
16-bit register contents  
15  
7 6 4 3  
0
op  
reg  
1 or 2 *  
15  
0
Register indirect with pre-decrement,  
@–Rn  
16-bit register contents  
15  
0
15  
7 6 4 3  
reg  
0
op  
*
1 or 2  
Note: * 1 for a byte operand, 2 for a word operand  
Table 3-2. Effective Address Calculation (2)  
Addressing mode and  
No. instruction format  
Effective address calculation  
Effective address  
15  
8 7  
0
0
5
6
7
Absolute address  
H'FF  
@aa:8  
15  
8 7  
0
0
op  
abs  
@aa:16  
15  
15  
op  
abs  
Immediate  
#xx:8  
15  
8 7  
0
0
op  
IMM  
Operand is 1- or 2-byte immediate data  
#xx:16  
15  
op  
IMM  
15  
0
PC-relative  
@(d:8, PC)  
PC contents  
15  
0
Sign extension  
disp  
15  
8 7  
0
op  
disp  
Table 3-2. Effective Address Calculation (3)  
Addressing mode and  
No. instruction format  
Effective address calculation  
Effective address  
8
Memory indirect, @@aa:8  
15  
8 7  
0
op  
abs  
15  
8 7  
0
H'00  
15  
0
Memory contents (16 bits)  
Notation  
reg: General register  
op: Operation code  
disp: Displacement  
IMM: Immediate data  
abs: Absolute address  
3.4 Data Formats  
The H8/300 CPU can process 1-bit data, 4-bit (BCD) data, 8-bit (byte) data, and 16-bit (word)  
data.  
• Bit manipulation instructions operate on 1-bit data specified as bit n (n = 0, 1, 2, ..., 7) in a byte  
operand.  
• All arithmetic and logic instructions except ADDS and SUBS can operate on byte data.  
• The DAA and DAS instruction perform decimal arithmetic adjustments on byte data in packed  
BCD form. Each nibble of the byte is treated as a decimal digit.  
• The MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 bits × 8 bits), and DIVXU  
(16 bits ÷ 8 bits) instructions operate on word data.  
33  
3.4.1 Data Formats in General Registers  
Data of all the sizes above can be stored in general registers as shown in figure 3-3.  
Data type  
Register No.  
Data format  
7
0
RnH  
7 6 5 4 3 2 1 0  
Don't-care  
1-Bit data  
7
0
Don't-care  
1-Bit data  
Byte data  
Byte data  
RnL  
RnH  
7 6 5 4 3 2 1 0  
7
0
M
S
B
L
S
B
Don't-care  
7
M
S
0
L
S
RnL  
Rn  
Don't-care  
B
B
15  
0
M
S
B
L
S
B
Word data  
7
0
4 3  
Upper digit Lower digit  
RnH  
RnL  
Don't-care  
4 3  
4-Bit BCD data  
4-Bit BCD data  
7
0
Upper digit Lower digit  
Don't-care  
Figure 3-3. Register Data Formats  
Note: RnH: Upper digit of general register  
RnL: Lower digit of general register  
MSB: Most significant bit  
LSB: Least significant bit  
34  
3.4.2 Memory Data Formats  
Figure 3-4 indicates the data formats in memory.  
Word data stored in memory must always begin at an even address. In word access the least  
significant bit of the address is regarded as “0.” If an odd address is specified, no address error  
occurs but the access is performed at the preceding even address. This rule affects MOV.W  
instructions and branching instructions, and implies that only even addresses should be stored in the  
vector table.  
Data type  
Address  
Data format  
7
0
7 6 5 4 3 2 1 0  
Address n  
Address n  
1-Bit data  
Byte data  
M
S
B
L
S
B
M
S
B
Upper 8 bits  
Lower 8 bits  
Even address  
Odd address  
L
S
B
Word data  
M
S
B
M
S
B
L
S
B
L
S
B
CCR  
Even address  
Odd address  
Byte data (CCR) on stack  
CCR*  
M
S
B
Even address  
Odd address  
L
S
B
Word data on stack  
CCR: Condition Code Register  
Note: * Ignored when returned  
Figure 3-4. Memory Data Formats  
When the stack is addressed using R7, it must always be accessed a word at a time. When the CCR  
is pushed on the stack, two identical copies of the CCR are pushed to make a complete word.  
When they are returned, the lower byte is ignored.  
35  
3.5 Instruction Set  
Table 3-3 lists the H8/300 instruction set.  
Table 3-3. Instruction Classification  
Function  
Instructions  
Types  
Data transfer  
MOV, MOVTPE*3, MOVFPE*3, PUSH*1, POP*1  
3
Arithmetic operations  
ADD, SUB, ADDX, SUBX, INC, DEC, ADDS, SUBS, 14  
DAA, DAS, MULXU, DIVXU, CMP, NEG  
Logic operations  
Shift  
AND, OR, XOR, NOT  
4
8
SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL,  
ROTXR  
Bit manipulation  
BSET, BCLR, BNOT, BTST,BAND, BIAND, BOR,  
BIOR, BXOR, BIXOR, BLD, BILD, BST, BIST  
Bcc*2, JMP, BSR, JSR, RTS  
14  
Branch  
5
8
1
System control  
Block data transfer  
RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP  
EEPMOV  
Total 57  
Notes: *1 PUSH Rn is equivalent to MOV.W Rn, @–SP.  
POP Rn is equivalent to MOV.W @SP+, Rn.  
*2 Bcc is a conditional branch instruction in which cc represents a condition code.  
*3 Not supported by the H8/329 Series.  
The following sections give a concise summary of the instructions in each category, and indicate  
the bit patterns of their object code. The notation used is defined next.  
36  
Operation Notation  
Rd  
General register (destination)  
#xx:3  
#xx:8  
3-Bit immediate data  
8-Bit immediate data  
Rs  
General register (source)  
General register  
Rn  
#xx:16 16-Bit immediate data  
(EAd)  
(EAs)  
SP  
Destination operand  
Source operand  
disp  
+
Displacement  
Addition  
Stack pointer  
Subtraction  
Multiplication  
Division  
PC  
Program counter  
×
CCR  
N
Condition code register  
N (negative) flag of CCR  
Z (zero) flag of CCR  
V (overflow) flag of CCR  
C (carry) flag of CCR  
Immediate data  
÷
AND logical  
OR logical  
Exclusive OR logical  
Move  
Z
V
C
#imm  
¬
Not  
37  
3.5.1 Data Transfer Instructions  
Table 3-4 describes the data transfer instructions. Figure 3-5 shows their object code formats.  
Table 3-4. Data Transfer Instructions  
Instruction  
Size* Function  
MOV  
B/W (EAs) Rd, Rs (EAd)  
Moves data between two general registers or between a general register  
and memory, or moves immediate data to a general register.  
The Rn, @Rn, @(d:16, Rn), @aa:16, #xx:8 or #xx:16, @–Rn, and  
@Rn+ addressing modes are available for byte or word data. The  
@aa:8 addressing mode is available for byte data only.  
The @–R7 and @R7+ modes require word operands. Do not specify  
byte size for these two modes.  
MOVTPE  
MOVFPE  
PUSH  
B
Not supported by the H8/329 Series.  
B
Not supported by the H8/329 Series.  
W
Rn @–SP  
Pushes a 16-bit general register onto the stack. Equivalent to MOV.W  
Rn, @–SP.  
POP  
W
@SP+ Rn  
Pops a 16-bit general register from the stack. Equivalent to MOV.W  
@SP+, Rn.  
Note: * Size: operand size  
B: Byte  
W: Word  
38  
15  
8
7
0
MOV  
r
r
Rn  
Op  
Op  
Rm  
m
n
r
r
Rn  
@Rm, or @Rm  
Rn  
m
n
r
r
@(d:16, Rm)  
Op  
Rn, or  
m
n
disp.  
Rn  
@(d:16, Rm)  
r
r
@–Rm  
Op  
@Rm+  
@aa:8  
Rn, or Rn  
Rn, or Rn @aa:8  
m
n
r
Op  
Op  
abs.  
n
r
Op  
@aa:16  
Rn, or  
n
abs.  
Rn  
@aa:16  
r
Rn  
#imm.  
#xx:8  
n
r
Rn  
Op  
#xx:16  
n
#imm.  
r
Op  
Op  
MOVFPE, MOVTPE  
PUSH, POP  
n
abs.  
r
n
Op:  
Operation field  
Register field  
r , r :  
m n  
disp.:  
abs.:  
#imm.:  
Displacement  
Absolute address  
Immediate data  
Figure 3-5. Data Transfer Instruction Codes  
39  
3.5.2 Arithmetic Operations  
Table 3-5 describes the arithmetic instructions. See figure 3-6 in section 3.5.4, “Shift Operations”  
for their object codes.  
Table 3-5. Arithmetic Instructions  
Instruction  
ADD  
Size* Function  
B/W Rd ± Rs Rd, Rd + #imm Rd  
SUB  
Performs addition or subtraction on data in two general registers, or  
addition on immediate data and data in a general register. Immediate  
data cannot be subtracted from data in a general register. Word data can  
be added or subtracted only when both words are in general registers.  
Rd ± Rs ± C Rd, Rd ± #imm ± C Rd  
Performs addition or subtraction with carry or borrow on byte data in  
two general registers, or addition or subtraction on immediate data and  
data in a general register.  
ADDX  
SUBX  
B
INC  
B
Rd ± #1 Rd  
DEC  
ADDS  
SUBS  
Increments or decrements a general register.  
Rd ± #imm Rd  
Adds or subtracts immediate data to or from data in a general register.  
The immediate data must be 1 or 2.  
W
DAA  
DAS  
B
Rd decimal adjust Rd  
Decimal-adjusts (adjusts to packed BCD) an addition or subtraction  
result in a general register by referring to the CCR.  
Rd × Rs Rd  
Performs 8-bit × 8-bit unsigned multiplication on data in two general  
registers, providing a 16-bit result.  
MULXU  
DIVXU  
CMP  
B
B
Rd ÷ Rs Rd  
Performs 16-bit ÷ 8-bit unsigned division on data in two general  
registers, providing an 8-bit quotient and 8-bit remainder.  
Rd – Rs, Rd – #imm  
B/W  
Compares data in a general register with data in another general register  
or with immediate data. Word data can be compared only between two  
general registers.  
NEG  
B
0 – Rd Rd  
Obtains the two’s complement (arithmetic complement) of data in a  
general register.  
Note: * Size: operand size  
B: Byte  
W: Word  
40  
3.5.3 Logic Operations  
Table 3-6 describes the four instructions that perform logic operations. See figure 3-6 in  
section 3.5.4, “Shift Operations,” for their object codes.  
Table 3-6. Logic Operation Instructions  
Instruction  
Size* Function  
AND  
B
B
B
B
Rd  
Rs Rd,  
Rd  
#imm Rd  
Performs a logical AND operation on a general register and another  
general register or immediate data.  
OR  
Rd  
Rs Rd,  
Rd  
#imm Rd  
Performs a logical OR operation on a general register and another  
general register or immediate data.  
XOR  
NOT  
Rd  
Rs Rd,  
Rd #imm Rd  
Performs a logical exclusive OR operation on a general register and  
another general register or immediate data.  
¬ (Rd) (Rd)  
Obtains the one’s complement (logical complement) of general register  
contents.  
Note: * Size: operand size  
B: Byte  
3.5.4 Shift Operations  
Table 3-7 describes the eight shift instructions. Figure 3-6 shows the object code formats of the  
arithmetic, logic, and shift instructions.  
Table 3-7. Shift Instructions  
Instruction  
SHAL  
Size* Function  
B
B
B
B
Rd shift Rd  
SHAR  
Performs an arithmetic shift operation on general register contents.  
Rd shift Rd  
SHLL  
SHLR  
Performs a logical shift operation on general register contents.  
Rd rotate Rd  
ROTL  
ROTR  
Rotates general register contents.  
ROTXL  
ROTXR  
Rd rotate through carry Rd  
Rotates general register contents through the C (carry) bit.  
Note: * Size: operand size  
B: Byte  
41  
15  
8
7
0
Op  
r
r
ADD, SUB, CMP  
m
n
ADDX, SUBX(Rm), MULXU, DIVXU  
Op  
r
ADDS, SUBS, INC, DEC, DAA,  
DAS, NEG, NOT  
n
r
Op  
#imm.  
#imm.  
ADD, ADDX, SUBX, CMP  
(#xx:8)  
n
r
r
Op  
AND, OR, XOR (Rm)  
m
n
Op  
r
AND, OR, XOR (#xx:8)  
n
r
Op  
SHAL, SHAR, SHLL, SHLR,  
ROTL, ROTR, ROTXL, ROTXR  
n
Op:  
Operation field  
Register field  
Immediate data  
r , r :  
m n  
#imm.:  
Figure 3-6. Arithmetic, Logic, and Shift Instruction Codes  
42  
3.5.5 Bit Manipulations  
Table 3-8 describes the bit-manipulation instructions. Figure 3-7 shows their object code formats.  
Table 3-8. Bit-Manipulation Instructions (1)  
Instruction  
Size* Function  
BSET  
B
B
B
1 (<bit-No.> of <EAd>)  
Sets a specified bit in a general register or memory to “1.” The bit is  
specified by a bit number, given in 3-bit immediate data or the lower  
three bits of a general register.  
BCLR  
BNOT  
BTST  
0 (<bit-No.> of <EAd>)  
Clears a specified bit in a general register or memory to “0.” The bit is  
specified by a bit number, given in 3-bit immediate data or the lower  
three bits of a general register.  
¬(<bit-No.> of <EAd>) (<bit-No.> of <EAd>)  
Inverts a specified bit in a general register or memory. The bit is  
specified by a bit number, given in 3-bit immediate data or the lower  
three bits of a general register  
B
B
¬ (<bit-No.> of <EAd>) Z  
Tests a specified bit in a general register or memory and sets or clears  
the Z flag accordingly. The bit is specified by a bit number, given in  
3-bit immediate data or the lower three bits of a general register.  
BAND  
C
(<bit-No.> of <EAd>) C  
ANDs the C flag with a specified bit in a general register or memory.  
[¬ (<bit-No.> of <EAd>)] C  
BIAND  
C
ANDs the C flag with the inverse of a specified bit in a general register  
or memory.  
The bit number is specified by 3-bit immediate data.  
BOR  
B
B
C
(<bit-No.> of <EAd>) C  
ORs the C flag with a specified bit in a general register or memory.  
[¬ (<bit-No.> of <EAd>)] C  
BIOR  
C
ORs the C flag with the inverse of a specified bit in a general register or  
memory.  
The bit number is specified by 3-bit immediate data.  
BXOR  
C
(<bit-No.> of <EAd>) C  
XORs the C flag with a specified bit in a general register or memory.  
Note: * Size: operand size  
B: Byte  
43  
Table 3-8. Bit-Manipulation Instructions (2)  
Instruction  
Size* Function  
BIXOR  
B
C
¬ [(<bit-No.> of <EAd>)] C  
XORs the C flag with the inverse of a specified bit in a general register  
or memory.  
The bit number is specified by 3-bit immediate data.  
(<bit-No.> of <EAd>) C  
BLD  
B
Copies a specified bit in a general register or memory to the C flag.  
¬ (<bit-No.> of <EAd>) C  
BILD  
Copies the inverse of a specified bit in a general register or memory to  
the C flag.  
The bit number is specified by 3-bit immediate data.  
C (<bit-No.> of <EAd>)  
BST  
B
Copies the C flag to a specified bit in a general register or memory.  
¬ C (<bit-No.> of <EAd>)  
BIST  
Copies the inverse of the C flag to a specified bit in a general register or  
memory.  
The bit number is specified by 3-bit immediate data.  
Note: * Size: operand size  
B: Byte  
Notes on Bit Manipulation Instructions: BSET, BCLR, BNOT, BST, and BIST are read-modify-  
write instructions. They read a byte of data, modify one bit in the byte, then write the byte back.  
Care is required when these instructions are applied to registers with write-only bits and to the I/O  
port registers.  
Step  
Description  
1
2
3
Read  
Read one data byte at the specified address  
Modify one bit in the data byte  
Modify  
Write  
Write the modified data byte back to the specified address  
Example: BCLR is executed to clear bit 0 in the port 4 data direction register (P4DDR) under the  
following conditions.  
P47:  
Input pin, Low  
Input pin, High  
Output pins, Low  
P46:  
P45 – P40:  
The intended purpose of this BCLR instruction is to switch P40 from output to input.  
44  
Before Execution of BCLR Instruction  
P47  
Input  
Low  
0
P46  
P45  
P44  
P43  
P42  
P41  
P40  
Input/output  
Pin state  
DDR  
Input Output Output Output Output Output Output  
High  
Low  
Low  
Low  
Low  
Low  
Low  
0
0
1
0
1
0
1
0
1
0
1
0
1
0
DR  
1
Execution of BCLR Instruction  
;clear bit 0 in data direction register  
After Execution of BCLR Instruction  
BCLR #0, @P4DDR  
P47  
P46  
P45  
P44  
P43  
P42  
P41  
P40  
Input/output  
Pin state  
DDR  
Output Output Output Output Output Output Output Input  
Low  
High  
Low  
Low  
Low  
Low  
Low  
High  
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
DR  
Explanation: To execute the BCLR instruction, the CPU begins by reading P4DDR. Since  
P4DDR is a write-only register, it is read as H'FF, even though its true value is H'3F.  
Next the CPU clears bit 0 of the read data, changing the value to H'FE.  
Finally, the CPU writes this value (H'FE) back to P4DDR to complete the BCLR instruction.  
As a result, P40DDR is cleared to “0,” making P40 an input pin. In addition, P47DDR and P46DDR  
are set to “1,” making P47 and P46 output pins.  
45  
0
15  
8
7
BSET, BCLR, BNOT, BTST  
Operand: register direct (Rn)  
Bit No.: immediate (#xx:3)  
r
r
Op  
#imm.  
n
n
r
Op  
Operand: register direct (Rn)  
Bit No.: register direct (Rm)  
m
Op  
Op  
r
0
0
0
0
0
0
0
0
Operand: register indirect (@Rn)  
Bit No.: immediate (#xx:3)  
n
#imm.  
Op  
Op  
r
r
0
0
0
0
0
0
0
0
Operand: register indirect (@Rn)  
Bit No.: register direct (Rm)  
n
m
Op  
abs.  
0
Operand: absolute (@aa:8)  
Bit No.: immediate (#xx:3)  
Op  
#imm.  
0
0
0
0
0
0
Op  
Op  
abs.  
0
Operand: absolute (@aa:8)  
Bit No.: register direct (Rm)  
r
m
BAND, BOR, BXOR, BLD, BST  
Operand: register direct (Rn)  
Bit No.: immediate (#xx:3)  
Op  
r
n
#imm.  
r
0
0
0
0
0 0  
Op  
Op  
Operand: register indirect (@Rn)  
Bit No.: immediate (#xx:3)  
n
#imm.  
0
0
Op  
Op  
abs.  
0
Operand: absolute (@aa:8)  
Bit No.: immediate (#xx:3)  
#imm.  
#imm.  
0
0
0
BIAND, BIOR, BIXOR, BILD, BIST  
Operand: register direct (Rn)  
Bit No.: immediate (#xx:3)  
Op  
r
n
Op  
Op  
r
0
0
0
0
0
0
0
0
Operand: register indirect (@Rn)  
Bit No.: immediate (#xx:3)  
n
#imm.  
Op  
abs.  
0
Operand: absolute (@aa:8)  
Bit No.: immediate (#xx:3)  
Op  
0
0
0
#imm.  
Op:  
Operation field  
Register field  
Absolute address  
Immediate data  
r , r :  
m
n
abs.:  
#imm.:  
Figure 3-7. Bit Manipulation Instruction Codes  
46  
3.5.6 Branching Instructions  
Table 3-9 describes the branching instructions. Figure 3-8 shows their object code formats.  
Table 3-9. Branching Instructions  
Instruction  
Size  
Function  
Bcc  
Branches to the specified address if condition cc is true.  
Mnemonic  
BRA (BT)  
BRN (BF)  
BHI  
cc field  
0 0 0 0  
0 0 0 1  
0 0 1 0  
0 0 1 1  
0 1 0 0  
Description  
Always (True)  
Never (False)  
High  
Condition  
Always  
Never  
C
C
Z = 0  
Z = 1  
BLS  
Low or Same  
Carry Clear  
(High or Same)  
Carry Set (Low)  
Not Equal  
BCC (BHS)  
C = 0  
BCS (BLO)  
BNE  
0 1 0 1  
0 1 1 0  
0 1 1 1  
1 0 0 0  
1 0 0 1  
1 0 1 0  
1 0 1 1  
1 1 0 0  
1 1 0 1  
1 1 1 0  
1 1 1 1  
C = 1  
Z = 0  
Z = 1  
V = 0  
V = 1  
N = 0  
N = 1  
BEQ  
Equal  
BVC  
Overflow Clear  
Overflow Set  
Plus  
BVS  
BPL  
BMI  
Minus  
BGE  
Greater or Equal  
Less Than  
N
N
Z
Z
V = 0  
BLT  
V = 1  
BGT  
Greater Than  
Less or Equal  
(N V) = 0  
(N V) = 1  
BLE  
JMP  
JSR  
BSR  
Branches unconditionally to a specified address.  
Branches to a subroutine at a specified address.  
Branches to a subroutine at a specified displacement from the current  
address.  
RTS  
Returns from a subroutine  
47  
15  
8
7
0
0
Op  
cc  
disp.  
Bcc  
r
Op  
m
0
0
0
JMP(@Rm)  
JMP (@aa:16)  
Op  
abs.  
Op  
abs.  
JMP (@@aa:8)  
BSR  
Op  
disp.  
r
Op  
0
0
0
0
JSR(@Rm)  
JSR (@aa:16)  
m
Op  
abs.  
Op  
abs.  
JSR (@@aa:8)  
RTS  
Op  
Op:  
cc:  
Operation field  
Condition field  
Register field  
Displacement  
Absolute address  
r :  
m
disp.:  
abs.:  
Figure 3-8. Branching Instruction Codes  
48  
3.5.7 System Control Instructions  
Table 3-10 describes the system control instructions. Figure 3-9 shows their object code formats.  
Table 3-10. System Control Instructions  
Instruction  
RTE  
Size  
B
Function  
Returns from an exception-handling routine.  
Causes a transition to the power-down state.  
Rs CCR, #imm CCR  
SLEEP  
LDC  
Moves immediate data or general register contents to the condition code  
register.  
STC  
B
B
B
B
CCR Rd  
Copies the condition code register to a specified general register.  
CCR #imm CCR  
ANDC  
ORC  
Logically ANDs the condition code register with immediate data.  
CCR #imm CCR  
Logically ORs the condition code register with immediate data.  
CCR #imm CCR  
XORC  
Logically exclusive-ORs the condition code register with immediate  
data.  
NOP  
PC + 2 PC  
Only increments the program counter.  
Note: * Size: operand size  
B: Byte  
49  
15  
8
7
0
Op  
RTE, SLEEP, NOP  
LDC, STC (Rn)  
r
Op  
n
Op  
#imm.  
ANDC, ORC, XORC, LDC  
(#xx:8)  
Op:  
Operation field  
Register field  
Immediate data  
r :  
n
#imm.:  
Figure 3-9. System Control Instruction Codes  
3.5.8 Block Data Transfer Instruction  
Table 3-11 describes the EEPMOV instruction. Figure 3-10 shows its object code format.  
Table 3-11. Block Data Transfer Instruction/EEPROM Write Operation  
Instruction  
Size  
Function  
EEPMOV  
if R4L 0 then  
repeat @R5+ @R6+  
R4L – 1 R4L  
until  
R4L = 0  
else next;  
Moves a data block according to parameters set in general registers R4L,  
R5, and R6.  
R4L: size of block (bytes)  
R5:  
R6:  
starting source address  
starting destination address  
Execution of the next instruction starts as soon as the block transfer is  
completed.  
50  
15  
8
7
0
Op  
Op  
EEPROM  
Op: Operation field  
Figure 3-10. Block Data Transfer Instruction/EEPROM Write Operation Code  
Notes on EEPMOV Instruction  
1. The EEPMOV instruction is a block data transfer instruction. It moves the number of bytes  
specified by R4L from the address specified by R5 to the address specified by R6.  
R5  
R6  
R5 + R4L →  
R6 + R4L  
2. When setting R4L and R6, make sure that the final destination address (R6 + R4L) does not  
exceed H'FFFF. The value in R6 must not change from H'FFFF to H'0000 during execution of  
the instruction.  
R5 →  
R6  
R5 + R4L  
H'FFFF  
Not allowed  
R6 + R4L  
3.6 CPU States  
The CPU has three states: the program execution state, exception-handling state, and power-down  
state. The power-down state is further divided into three modes: the sleep mode, software standby  
mode, and hardware standby mode. Figure 3-11 summarizes these states, and figure 3-12 shows a  
map of the state transitions.  
State  
Program execution state  
The CPU executes successive program instructions.  
Exception-handling state  
A transient state triggered by a reset or interrupt. The CPU executes a hardware  
sequence that includes loading the program counter from the vector table.  
Power-down state  
Sleep mode  
A state in which some or all of the chip  
functions are stopped to conserve power.  
Software standby mode  
Hardware standby mode  
Figure 3-11. Operating States  
51  
Program  
execution state  
SLEEP instruction  
with SSBY bit set  
Exception  
handling  
request  
SLEEP  
instruction  
Exception  
handing  
Exception -  
handling state  
Sleep mode  
Interrupt request  
NMIorIRQ0  
to IRQ2  
Software  
standby mode  
RES = 1  
STBY=1, RES=0  
Hardware  
standby mode  
Reset state  
Power-down state  
Notes: *1 A transition to the reset state occurs when RES goes Low, except when the chip is in the hardware standby mode.  
*2 A transition from any state to the hardware standby mode occurs when STBY goes Low.  
Figure 3-12. State Transitions  
3.6.1 Program Execution State  
In this state the CPU executes program instructions.  
3.6.2 Exception-Handling State  
The exception-handling state is a transient state that occurs when the CPU is reset or accepts an  
interrupt. In this state the CPU carries out a hardware-controlled sequence that prepares it to  
execute a user-coded exception-handling routine.  
In the hardware exception-handling sequence the CPU does the following:  
(1) Saves the program counter and condition code register to the stack (except in the case of a  
reset).  
(2) Sets the interrupt mask (I) bit in the condition code register to “1.”  
(3) Fetches the start address of the exception-handling routine from the vector table.  
(4) Branches to that address, returning to the program execution state.  
See section 4, “Exception Handling,” for further information on the exception-handling state.  
52  
3.6.3 Power-Down State  
The power-down state includes three modes: the sleep mode, the software standby mode, and the  
hardware standby mode.  
(1) Sleep Mode: The sleep mode is entered when a SLEEP instruction is executed. The CPU  
halts, but CPU register contents remain unchanged and the on-chip supporting modules continue to  
function.  
(2) Software Standby Mode: The software standby mode is entered if the SLEEP instruction is  
executed while the SSBY (Software Standby) bit in the system control register (SYSCR) is set.  
The CPU and all on-chip supporting modules halt. The on-chip supporting modules are initialized,  
but the contents of the on-chip RAM and CPU registers remain unchanged. I/O port outputs also  
remain unchanged.  
(3) Hardware Standby Mode: The hardware standby mode is entered when the input at the  
STBY pin goes Low. All chip functions halt, including I/O port output. The on-chip supporting  
modules are initialized, but on-chip RAM contents are held.  
See section 12, “Power-Down State,” for further information.  
3.7 Access Timing and Bus Cycle  
The CPU is driven by the system clock (Ø). The period from one rising edge of the system clock to  
the next is referred to as a “state.”  
Memory access is performed in a two- or three-state bus cycle. On-chip memory, on-chip  
supporting modules, and external devices are accessed in different bus cycles as described below.  
3.7.1 Access to On-Chip Memory (RAM and ROM)  
On-chip ROM and RAM are accessed in a cycle of two states designated T1 and T2. Either byte or  
word data can be accessed, via a 16-bit data bus. Figure 3-13 shows the on-chip memory access  
cycle. Figure 3-14 shows the associated pin states.  
53  
Bus cycle  
T2 state  
T1 state  
Ø
Internal address bus  
Internal Read signal  
Internal data bus (read)  
Address  
Read data  
Write data  
Internal Write signal  
Internal data bus (write)  
Figure 3-13. On-Chip Memory Access Cycle  
Bus cycle  
T1 state  
T2 state  
Ø
Address bus  
Address  
AS: High  
RD: High  
WR: High  
Data bus: high impedance state  
Figure 3-14. Pin States during On-Chip Memory Access Cycle  
54  
3.7.2 Access to On-Chip Register Field and External Devices  
The on-chip register field (I/O ports, on-chip supporting module registers, etc.) and external devices  
are accessed in a cycle consisting of three states: T1, T2, and T3. Only one byte of data can be  
accessed per cycle, via an 8-bit data bus. Access to word data or instruction codes requires two  
consecutive cycles (six states).  
Figure 3-15 shows the access cycle for the on-chip register field. Figure 3-16 shows the associated  
pin states. Figures 3-17 (a) and (b) show the read and write access timing for external devices.  
Bus cycle  
T1 state  
T2 state  
T3 state  
Ø
Internal address bus  
Internal Read signal  
Internal data bus (read)  
Address  
Read data  
Internal Write signal  
Write data  
Internal data bus (write)  
Figure 3-15. On-Chip Register Field Access Cycle  
55  
Bus cycle  
T2 state  
T1 state  
T3 state  
Ø
Address bus  
AS: High  
Address  
RD: High  
WR: High  
Data bus: high impedance state  
Figure 3-16. Pin States during On-Chip Register Field Access Cycle  
Read cycle  
T1 state  
T2 state  
T3 state  
Ø
Address bus  
Address  
AS  
RD  
WR: High  
Data bus  
Read data  
Figure 3-17 (a). External Device Access Timing (Read)  
56  
Write cycle  
T2 state  
T1 state  
T3 state  
Ø
Address bus  
AS  
Address  
RD: High  
WR  
Data bus  
Write data  
Figure 3-17 (b). External Device Access Timing (Write)  
57  
Section 4. Exception Handling  
4.1 Overview  
The H8/329 Series recognizes only two kinds of exceptions: interrupts and the reset. Table 4-1  
indicates their priority and the timing of their hardware exception-handling sequences.  
Table 4-1. Hardware Exception-Handling Sequences and Priority  
Type of  
Priority  
exception  
Timing of exception-handling sequence  
High  
Reset  
The hardware exception-handling sequence begins as soon as RES  
changes from Low to High.  
Interrupt  
When an interrupt is requested, the hardware exception-handling  
sequence begins at the end of the current instruction, or at the end of  
the current hardware exception-handling sequence.  
Low  
4.2 Reset  
4.2.1 Overview  
A reset has the highest exception-handling priority. When the RES pin goes Low, all current  
processing stops and the chip enters the reset state. The internal state of the CPU and the registers  
of the on-chip supporting modules are initialized. When RES returns from Low to High, the reset  
exception-handling sequence starts.  
4.2.2 Reset Sequence  
The reset state begins when RES goes Low. To ensure correct resetting, at power-on the RES pin  
should be held Low for at least 20ms. In a reset during operation, the RES pin should be held Low  
for at least 10 system clock cycles. For the pin states during a reset, see appendix C, “Pin States.”  
When RES returns from Low to High, hardware carries out the following reset exception-handling  
sequence.  
59  
(1) The internal state of the CPU and the registers of the on-chip supporting modules are  
initialized, and the I bit in the condition code register (CCR) is set to “1.”  
(2) The CPU loads the program counter with the first word in the vector table (stored at addresses  
H'0000 and H'0001) and starts program execution.  
The RES pin should be held Low when power is switched off, as well as when power is switched  
on.  
Figure 4-1 indicates the timing of the reset sequence in modes 2 and 3. Figure 4-2 indicates the  
timing in mode 1.  
Vector  
fetch  
Internal  
processing prefetch  
Instruction  
RES  
Ø
Internal address  
bus  
(1)  
(2)  
Internal Read  
signal  
Internal Write  
signal  
Internal data bus  
(16 bits)  
(2)  
(3)  
(1) Reset vector address (H'0000)  
(2) Starting address of program (contents of H'0000–H'0001)  
(3) First instruction of program  
Figure 4-1. Reset Sequence (Mode 2 or 3, Program Stored in On-Chip ROM)  
60  
Internal  
process-  
ing  
Instruction prefetch  
Vector fetch  
RES  
Ø
(3)  
(5)  
(7)  
A15 to A0  
(1)  
RD  
WR  
D7 to D0  
(8 bits)  
(8)  
(2)  
(4)  
(6)  
(1),(3) Reset vector address: (1)=H'0000, (3)=H'0001  
(2),(4) Starting address of program (contents of reset vector): (2)=upper byte, (4)=lower byte  
(5),(7) Starting address of program: (5)=(2)(4), (7)=(2)(4)+1  
(6),(8) First instruction of program: (6)=first byte, (8)=second byte  
Figure 4-2. Reset Sequence (Mode 1)  
4.2.3 Disabling of Interrupts after Reset  
After a reset, if an interrupt were to be accepted before initialization of the stack pointer (SP: R7),  
the program counter and condition code register might not be saved correctly, leading to a program  
crash. To prevent this, all interrupts, including NMI, are disabled immediately after a reset. The  
first program instruction is therefore always executed. This instruction should initialize the stack  
pointer (example: MOV.W #xx:16, SP).  
4.3 Interrupts  
4.3.1 Overview  
The interrupt sources include four input pins for external interrupts (NMI, IRQ0 to IRQ2) and 18  
internal sources in the on-chip supporting modules. Table 4-2 lists the interrupt sources in priority  
order and gives their vector addresses. When two or more interrupts are requested, the interrupt  
with highest priority is served first.  
The features of these interrupts are:  
• NMI has the highest priority and is always accepted. All internal and external interrupts except  
NMI can be masked by the I bit in the CCR. When the I bit is set to “1,” interrupts other than  
NMI are not accepted.  
• IRQ0 to IRQ2 can be sensed on the falling edge of the input signal, or level-sensed. The type of  
sensing can be selected for each interrupt individually. NMI is edge-sensed, and either the  
rising or falling edge can be selected.  
• All interrupts are individually vectored. The software interrupt-handling routine does not have  
to determine what type of interrupt has occurred.  
62  
Table 4-2. Interrupts  
Address of entry  
in vector table  
Interrupt source  
NMI  
No.  
3
Priority  
H'0006  
H'0008  
H'0007  
H'0009  
High  
IRQ0  
4
IRQ1  
5
H'000A – H'000B  
IRQ2  
6
H'000C  
H'000E  
H'0010  
H'0012  
H'0014  
H'0016  
H'0018  
H'000D  
H'000F  
H'0011  
H'0013  
H'0015  
H'0017  
H'0019  
Reserved  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
16-Bit free-  
ICIA (Input capture A)  
running timer  
ICIB (Input capture B)  
ICIC (Input capture C)  
ICID (Input capture D)  
OCIA (Output compare A)  
OCIB (Output compare B)  
FOVI (Overflow)  
H'001A – H'001B  
H'001C  
H'001E  
H'0020  
H'0022  
H'0024  
H'0026  
H'0028  
H'001D  
H'001F  
H'0021  
H'0023  
H'0025  
H'0027  
H'0029  
8-Bit timer 0  
8-Bit timer 1  
Reserved  
CMI0A (Compare-match A)  
CMI0B (Compare-match B)  
OVI0 (Overflow)  
H'002A – H'002B  
CMI1A (Compare-match A)  
CMI1B (Compare-match B)  
OVI1 (Overflow)  
H'002C  
H'002E  
H'0030  
H'0032  
H'0034  
H'0036  
H'0038  
H'002D  
H'002F  
H'0031  
H'0033  
H'0035  
H'0037  
H'0039  
Serial  
ERI (Receive error)  
RXI (Receive end)  
TXI (TDR empty)  
TEI (TSR empty)  
communication  
interface  
H'003A – H'003B  
H'003C  
H'003E  
H'0040  
H'0042  
H'0044  
H'0046  
H'003D  
H'003F  
H'0041  
H'0043  
H'0045  
H'0047  
Reserved  
A/D converter  
ADI (Conversion end)  
Low  
Notes: 1. H'0000 and H'0001 contain the reset vector.  
2. H'0002 to H'0005 are reserved in the H8/329 Series and are not available to the user.  
63  
4.3.2 Interrupt-Related Registers  
The interrupt-related registers are the system control register (SYSCR), IRQ sense control register  
(ISCR), and IRQ enable register (IER).  
Table 4-3. Registers Read by Interrupt Controller  
Name  
Abbreviation  
SYSCR  
ISCR  
Read/Write  
R/W  
Address  
H'FFC4  
H'FFC6  
H'FFC7  
System control register  
IRQ sense control register  
IRQ enable register  
R/W  
IER  
R/W  
System Control Register (SYSCR)—H'FFC4  
Bit  
7
SSBY  
0
6
STS2  
0
5
STS1  
0
4
3
2
1
1
0
RAME  
1
STS0  
0
1
NMIEG  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The valid edge on the NMI line is controlled by bit 2 (NMIEG) in the system control register.  
Bit 2—NMI Edge (NMIEG): Determines whether a nonmaskable interrupt is generated on the  
falling or rising edge of the NMI input signal.  
Bit 2  
NMIEG Description  
0
1
An interrupt is generated on the falling edge of NMI.  
An interrupt is generated on the rising edge of NMI.  
(Initial state)  
See section 2.2, “System Control Register,” for information on the other SYSCR bits.  
IRQ Sense Control Register (ISCR)—H'FFC6  
Bit  
7
1
6
1
5
1
4
1
3
1
2
1
0
IRQ2SC IRQ1SC IRQ0SC  
Initial value  
Read/Write  
0
0
0
R/W  
R/W  
R/W  
Bits 3 to 7—Reserved: These bits cannot be modified and are always read as “1.”  
64  
Bits 0 to 2—IRQ0 to IRQ2 Sense Control (IRQ0SC to IRQ2SC): These bits determine whether  
IRQ0 to IRQ2 are level-sensed or sensed on the falling edge.  
Bits 0 to 2  
IRQ0SC to IRQ2SC  
Description  
0
An interrupt is generated when IRQ0 to IRQ2  
inputs are Low.  
(Initial state)  
1
An interrupt is generated by the falling edge of the IRQ0 to IRQ2 inputs.  
IRQ Enable Register (IER)—H'FFC7  
Bit  
7
1
6
1
5
1
4
1
3
1
2
1
0
IRQ2E IRQ1E IRQ0E  
Initial value  
Read/Write  
0
0
0
R/W  
R/W  
R/W  
Bits 3 to 7—Reserved: These bits cannot be modified and are always read as “1.”  
Bits 0 to 2—IRQ0 to IRQ2 Enable (IRQ0E to IRQ2E): These bits enable or disable the IRQ0 to  
IRQ2 interrupts individually.  
Bits 0 to 2  
IRQ0E to IRQ2E  
Description  
0
1
IRQ0 to IRQ2 interrupt requests are disabled.  
IRQ0 to IRQ2 interrupt requests are enabled.  
(Initial state)  
When edge sensing is selected (by setting bits IRQ0SC to IRQ7SC to “1”), it is possible for an  
interrupt-handling routine to be executed even though the corresponding enable bit (IRQ0E to  
IRQ7E) is cleared to “0” and the interrupt is disabled. If an interrupt is requested while the  
enable bit (IRQ0E to IRQ7E) is set to “1,” the request will be held pending until served. If the  
enable bit is cleared to “0” while the request is still pending, the request will remain pending,  
although new requests will not be recognized. If the interrupt mask bit (I) in the CCR is  
cleared to “0,” the interrupt-handling routine can be executed even though the enable bit is  
now “0.”  
65  
If execution of interrupt-handling routines under these conditions is not desired, it can be  
avoided by using the following procedure to disable and clear interrupt requests.  
1. Set the I bit to “1” in the CCR, masking interrupts. Note that the I bit is set to 1 automatically  
when execution jumps to an interrupt vector.  
2. Clear the desired bits from IRQ0E to IRQ7E to “0” to disable new interrupt requests.  
3. Clear the corresponding IRQ0SC to IRQ7SC bits to “0,” then set them to “1” again. Pending  
IRQn interrupt requests are cleared when I = “1” in the CCR, IRQnSC = “0,” and IRQnE = “0.”  
4.3.3 External Interrupts  
The external interrupts are NMI and IRQ0 to IRQ2. These four interrupts can be used to recover  
from software standby mode.  
(1) NMI: A nonmaskable interrupt is generated on the rising or falling edge of the NMI input  
signal regardless of whether the I (interrupt mask) bit is set in the CCR. The valid edge is selected  
by the NMIEG bit in the system control register. The NMI vector number is 3. In the NMI  
hardware exception-handling sequence the I bit in the CCR is set to “1.”  
(2) IRQ0 to IRQ2: These interrupt signals are level-sensed or sensed on the falling edge of the  
input, as selected by ISCR bits IRQ0SC to IRQ2SC. These interrupts can be masked collectively by  
the I bit in the CCR, and can be enabled and disabled individually by setting and clearing bits  
IRQ0E to IRQ2E in the IRQ enable register.  
When one of these interrupts is accepted, the I bit is set to “1.” IRQ0 to IRQ2 have interrupt vector  
numbers 4 to 6. They are prioritized in order from IRQ2 (Low) to IRQ0 (High). For details, see  
table 4-2.  
Interrupts IRQ0 to IRQ2 do not depend on whether pins IRQ0 to IRQ2 are input or output pins.  
When using external interrupts IRQ0 to IRQ2, clear the corresponding DDR bits to “0” to set these  
pins to the input state, and do not use these pins for input to the A/D converter.  
66  
4.3.4 Internal Interrupts  
Eighteen internal interrupts can be requested by the on-chip supporting modules. Each interrupt  
source has its own vector number, so the interrupt-handling routine does not have to determine  
which interrupt has occurred. All internal interrupts are masked when the I bit in the CCR is set to  
“1.” When one of these interrupts is accepted, the I bit is set to 1 to mask further interrupts (except  
NMI). The vector numbers are 12 to 35. For the priority order, see table 4-2.  
4.3.5 Interrupt Handling  
Interrupts are controlled by an interrupt controller that arbitrates between simultaneous interrupt  
requests, commands the CPU to start the hardware interrupt exception-handling sequence, and  
furnishes the necessary vector number. Figure 4-3 shows a block diagram of the interrupt  
controller.  
Interrupt  
CPU  
controller  
NMI interrupt  
*
IRQ0 flag  
IRQ0E  
Interrupt request  
IRQ0  
interrupt  
Priority  
decision  
Vector number  
ADF  
ADIE  
ADI  
interrupt  
Note: * For edge-sensed  
interrupts, these  
I (CCR)  
AND gates change  
to the circuit shown below.  
IRQ0 flag  
S Q  
IRQ0 edge  
IRQ0E  
IRQ0 interrupt  
Figure 4-3. Block Diagram of Interrupt Controller  
67  
The IRQ interrupts and interrupts from the on-chip supporting modules all have corresponding  
enable bits. When the enable bit is cleared to “0,” the interrupt signal is not sent to the interrupt  
controller, so the interrupt is ignored. These interrupts can also all be masked by setting the CPU’s  
interrupt mask bit (I) to “1.” Accordingly, these interrupts are accepted only when their enable bit  
is set to “1” and the I bit is cleared to “0.”  
The nonmaskable interrupt (NMI) is always accepted, except in the reset state and hardware  
standby mode.  
When an NMI or another enabled interrupt is requested, the interrupt controller transfers the  
interrupt request to the CPU and indicates the corresponding vector number. (When two or more  
interrupts are requested, the interrupt controller selects the vector number of the interrupt with the  
highest priority.) When notified of an interrupt request, at the end of the current instruction or  
current hardware exception-handling sequence, the CPU starts the hardware exception-handling  
sequence for the interrupt and latches the vector number.  
Figure 4-4 is a flowchart of the interrupt (and reset) operations. Figure 4-6 shows the interrupt  
timing sequence for the case in which the software interrupt-handling routine is in on-chip ROM  
and the stack is in on-chip RAM.  
(1) An interrupt request is sent to the interrupt controller when an NMI interrupt occurs, and when  
an interrupt occurs on an IRQ input line or in an on-chip supporting module provided the  
enable bit of that interrupt is set to “1.”  
(2) The interrupt controller checks the I bit in the CCR and accepts the interrupt request if the I bit  
is cleared to “0.” If the I bit is set to “1” only NMI requests are accepted; other interrupt  
requests remain pending.  
(3) Among all accepted interrupt requests, the interrupt controller selects the request with the  
highest priority and passes it to the CPU. Other interrupt requests remain pending.  
(4) When it receives the interrupt request, the CPU waits until completion of the current instruction  
or hardware exception-handling sequence, then starts the hardware exception-handling  
sequence for the interrupt and latches the interrupt vector number.  
(5) In the hardware exception-handling sequence, the CPU first pushes the PC and CCR onto the  
stack. See figure 4-5. The stacked PC indicates the address of the first instruction that will be  
executed on return from the software interrupt-handling routine.  
(6) Next the I bit in the CCR is set to “1,” masking all further interrupts except NMI.  
(7) The vector address corresponding to the vector number is generated, the vector table entry at  
this vector address is loaded into the program counter, and execution branches to the software  
interrupt-handling routine at the address indicated by that entry.  
68  
Program execution  
No  
Interrupt  
requested?  
Yes  
NMI?  
No  
Yes  
No  
Pending  
I = 0?  
Yes  
No  
IRQ0?  
Yes  
No  
IRQ1?  
Yes  
ADI?  
Yes  
Latch vector No.  
Save PC  
Save CCR  
Reset  
I 1  
Read vector address  
Branch to software  
interrupt-handling  
routine  
Figure 4-4. Hardware Interrupt-Handling Sequence  
69  
SP-4  
SP-3  
SP-2  
SP(R7)  
SP+1  
SP+2  
CCR  
CCR*  
PC (upper byte)  
SP-1  
SP+3  
SP+4  
PC (lower byte)  
SP(R7)  
Even address  
Stack area  
Before interrupt  
is accepted  
After interrupt  
is accepted  
Pushed onto stack  
PC: Program counter  
CCR: Condition code register  
SP: Stack pointer  
Notes: 1. The PC contains the address of the first instruction  
executed after return.  
2. Registers must be saved and restored by word  
access at an even address.  
* Ignored on return.  
Figure 4-5. Usage of Stack in Interrupt Handling  
70  
Interrupt  
accepted  
Instruction fetch  
(first instruction of  
Vector Internal interrupt-handling  
Interrupt priority  
decision. Wait for Instruction Internal  
end of instruction. fetch  
process-  
ing  
Stack  
fetch  
process- routine)  
ing  
Interrupt request  
signal  
Ø
Internal address  
bus  
(1)  
(3)  
(5)  
(6)  
(8)  
(9)  
Internal Read  
signal  
Internal Write  
signal  
Internal 16-bit  
data bus  
(2)  
(4)  
(1)  
(7)  
(9)  
(10)  
(1)  
Instruction prefetch address (Pushed on stack. Instruction is executed on return from  
interrupt-handling routine.)  
(2) (4)Instructioncode(Not executed)  
(3)  
Instruction prefetch address (Not executed)  
(5)  
SP–2  
(6)  
SP–4  
(7)  
(8)  
(9)  
(10)  
CCR  
Address of vector table entry  
Vector table entry (address of first instruction of interrupt-handling routine)  
First instruction of interrupt-handling routine  
Figure 4-6. Timing of Interrupt Sequence  
71  
4.3.6 Interrupt Response Time  
Table 4-4 indicates the number of states that elapse from an interrupt request signal until the first  
instruction of the software interrupt-handling routine is executed. Since the H8/329 Series accesses  
its on-chip memory 16 bits at a time, very fast interrupt service can be obtained by placing  
interrupt-handling routines in on-chip ROM and the stack in on-chip RAM.  
Table 4-4. Number of States before Interrupt Service  
Number of states  
No.  
1
Reason for wait  
Interrupt priority decision  
Wait for completion of  
current instruction*1  
Save PC and CCR  
Fetch vector  
On-chip memory  
2*3  
External memory  
2*3  
5 to 17*2  
2
1 to 13  
3
4
5
6
4
12*2  
6*2  
12*2  
2
Fetch instruction  
Internal processing  
Total  
4
4
4
17 to 29  
41 to 53 *2  
Notes: *1 These values do not apply if the current instruction is EEPMOV.  
*2 If wait states are inserted in external memory access, add the number of wait states.  
*3 1 for internal interrupts.  
4.3.7 Precaution  
Note that the following type of contention can occur in interrupt handling.  
Contention between Interrupt Request and Disable: When software clears the enable bit of an  
interrupt to “0” to disable the interrupt, the interrupt becomes disabled after execution of the  
clearing instruction. If an enable bit is cleared by a BCLR or MOV instruction, for example, and  
the interrupt is requested during execution of that instruction, at the instant when the instruction  
ends the interrupt is still enabled, so after execution of the instruction, the hardware exception-  
handling sequence is executed for the interrupt. If a higher-priority interrupt is requested at the  
same time, however, the hardware exception-handling sequence is executed for the higher-priority  
interrupt and the interrupt that was disabled is ignored.  
Similar considerations apply when an interrupt request flag is cleared to “0.”  
72  
Figure 4-7 shows an example in which the OCIAE bit is cleared to “0.”  
CPU write  
cycle to TIER  
TIER address  
OCIA interrupt handling  
Ø
Internal address bus  
Internal write signal  
OCIAE  
OCFA  
OCIA interrupt signal  
Figure 4-7. Contention between Interrupt and Disabling Instruction  
The above contention does not occur if the enable bit or flag is cleared to “0” while the interrupt  
mask bit (I) is set to “1.”  
4.4 Note on Stack Handling  
In word access, the least significant bit of the address is always assumed to be 0. The stack is  
always accessed by word access. Care should be taken to keep an even value in the stack pointer  
(general register R7). Use the PUSH and POP (or MOV.W Rn, @–SP and MOV.W @SP+, Rn)  
instructions to push and pop registers on the stack.  
Setting the stack pointer to an odd value can cause programs to crash. Figure 4-8 shows an  
example of damage caused when the stack pointer contains an odd address.  
73  
SP  
H'FECC  
H'FECD  
PC  
PC  
R1  
PC  
L
L
H
L
SP  
H'FECF  
SP  
BSR instruction  
MOV.B R1L, @–R7  
PC is improperly stored  
beyond top of stack  
PC is lost  
H
H'FECF set in SP  
PC : Upper byte of program counter  
H
PC : Lower byte of program counter  
L
R1 : General register  
L
SP : Stack pointer  
Figure 4-8. Example of Damage Caused by Setting an Odd Address in R7  
Although the CCR consists of only one byte, it is treated as word data when pushed on the stack.  
In the hardware interrupt exception-handling sequence, two identical CCR bytes are pushed onto  
the stack to make a complete word. When popped from the stack by an RTE instruction, the CCR  
is loaded from the byte stored at the even address. The byte stored at the odd address is ignored.  
74  
Section 5. I/O Ports  
5.1 Overview  
The H8/329 Series has seven parallel I/O ports, including:  
• Five 8-bit input/output ports—ports 1, 2, 3, 4, and 6  
• One 8-bit input port—port 7  
• One 3-bit input/output port—port 5  
Ports 1, 2, and 3 have programmable input pull-up transistors. Ports 1 to 6 can drive a Darlington  
pair. Ports 1 to 4, and 6 can drive one TTL load and a 90pF capacitive load. Port 5 can drive one  
TTL load and a 30pF capacitive load. Ports 1 and 2 can drive LEDs (10mA current sink).  
Input and output are memory-mapped. The CPU views each port as a data register (DR) located in  
the register field at the high end of the address space. Each port (except port 7) also has a data  
direction register (DDR) which determines which pins are used for input and which for output.  
Output: To send data to an output port, the CPU selects output in the data direction register and  
writes the desired data in the data register, causing the data to be held in a latch. The latch output  
drives the pin through a buffer amplifier. If the CPU reads the data register of an output port, it  
obtains the data held in the latch rather than the actual level of the pin.  
Input: To read data from an I/O port, the CPU selects input in the data direction register and reads  
the data register. This causes the input logic level at the pin to be placed directly on the internal  
data bus. There is no intervening input latch.  
The data direction registers are write-only registers; their contents are invisible to the CPU. If the  
CPU reads a data direction register all bits are read as “1,” regardless of their true values. Care is  
required if bit manipulation instructions are used to set and clear the data direction bits. See the  
note on bit manipulation instructions in section 3.5.5, “Bit Manipulations.”  
Auxiliary Functions: In addition to their general-purpose input/output functions, all of the I/O  
ports have auxiliary functions. Most of the auxiliary functions are software-selectable and must be  
enabled by setting bits in control registers. When selected, an auxiliary function usually replaces  
the general-purpose input/output function, but in some cases both functions can operate  
simultaneously. Table 5-1 summarizes the functions of the ports.  
75  
Table 5-1. Port Functions  
Port Description  
Expanded modes  
Mode 1 Mode 2  
Single-chip mode  
Mode 3  
Pins  
Port 1 • 8-bit input-output P17 to P10/  
Address output General input  
General input/  
port  
A7 to A0  
(low) when DDR = “0” output  
• Can drive LEDs  
• Input pull-ups  
(initial state)  
Address output  
(low) when  
DDR = “1”  
Port 2 • 8-bit input-output P27 to P20/  
Address output General input  
General input/  
port  
A15 to A8  
(high)  
when DDR = “0” output  
• Can drive LEDs  
• Input pull-ups  
(initial state)  
Address output  
(high) when  
DDR = “1”  
Data bus  
Port 3 • 8-bit input-output P37 to P30/  
Data bus  
General input/  
output  
port  
D7 to D0  
• Input pull-ups  
Port 4 • 8-bit input/output P47/WAIT  
WAIT input  
General input/  
output  
P46/Ø  
System clock  
output  
General input  
when DDR = “0”  
(initial state)  
System clock  
output when  
DDR = “1”  
General input/  
output  
P45/AS  
AS output  
WR output  
RD output  
P44/WR  
P43/RD  
P42/IRQ0  
General input/output or external interrupt input  
(IRQ0, IRQ1)  
P41/IRQ1  
P40/ADTRG/  
General input/output, A/D converter trigger input  
(ADTRG), or external interrupt input (IRQ2)  
General input/output or serial communication interface  
input/output (TxD, RxD, SCK)  
IRQ2  
Port 5 • 3-bit input-output P52 to P50  
port  
Port 6 • 8-bit input-output P67 to P60  
port  
General input/output, 16-bit free-running timer  
input/output (FTCI, FTOA, FTOB, FTIA, FTIB, FTIC,  
FTID), or 8-bit timer 0/1 input/output (TMCI0, TMO0,  
TMRI0, TMCI1, TMO1, TMRI1)  
Port 7 • 8-bit input port  
P77 to P70  
General input, or analog input to A/D converter  
76  
5.2 Port 1  
Port 1 is an 8-bit input/output port that also provides the low bits of the address bus. The function  
of port 1 depends on the MCU mode as indicated in table 5-2.  
Table 5-2. Functions of Port 1  
Mode 1  
Mode 2  
Mode 3  
Address bus (Low)  
(A7 to A0)  
Input port or  
Address bus (Low)  
(A7 to A0)*  
Input/output port  
Note: * Depending on the bit settings in the data direction register: 0—input pin; 1—address pin  
Pins of port 1 can drive a single TTL load and a 90pF capacitive load when they are used as output  
pins. They can also drive light-emitting diodes and a Darlington pair. When they are used as input  
pins, they have programmable MOS transistor pull-ups.  
Table 5-3 details the port 1 registers.  
Table 5-3. Port 1 Registers  
Name  
Abbreviation Read/Write Initial value  
Address  
Port 1 data direction register P1DDR  
W
H'FF (mode 1)  
H'00 (modes 2 and 3)  
H'00  
H'FFB0  
Port 1 data register  
P1DR  
R/W  
R/W  
H'FFB2  
H'FFAC  
Port 1 input pull-up control P1PCR  
register  
H'00  
Port 1 Data Direction Register (P1DDR)—H'FFB0  
Bit  
7
6
5
4
3
2
1
0
P17DDR P16DDR P15DDR P14DDR P13DDR P12DDR P11DDR P10DDR  
Mode 1  
Initial value  
Read/Write  
Modes 2 and 3  
Initial value  
Read/Write  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
77  
P1DDR is an 8-bit register that selects the direction of each pin in port 1. A pin functions as an  
output pin if the corresponding bit in P1DDR is set to “1,” and as an input pin if the bit is cleared to  
“0.”  
Port 1 Data Register (P1DR)—H'FFB2  
Bit  
7
P17  
0
6
P16  
0
5
P15  
0
4
P14  
0
3
P13  
0
2
P12  
0
1
P11  
0
0
P10  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P1DR is an 8-bit register containing the data for pins P17 to P10. When the CPU reads P1DR, for  
output pins it reads the value in the P1DR latch, but for input pins, it obtains the logic level directly  
from the pin, bypassing the P1DR latch.  
Port 1 Input Pull-Up Control Register (P1PCR)—H'FFAC  
Bit  
7
6
5
4
3
2
1
0
P17PCR P16PCR P15PCR P14PCR P13PCR P12PCR P11PCR P10PCR  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P1PCR is an 8-bit readable/writable register that controls the input pull-up transistors in port 1. If a  
bit in P1DDR is cleared to “0” (designating input) and the corresponding bit in P1PCR is set to “1,”  
the input pull-up transistor for that bit is turned on.  
Mode 1: In mode 1 (expanded mode without on-chip ROM), port 1 is automatically used for  
address output. The port 1 data direction register is unwritable. All bits in P1DDR are  
automatically set to “1” and cannot be cleared to “0.”  
Mode 2: In mode 2 (expanded mode with on-chip ROM), the usage of port 1 can be selected on a  
pin-by-pin basis. A pin is used for general-purpose input if its data direction bit is cleared to “0,”  
or for address output if its data direction bit is set to “1.”  
Mode 3: In the single-chip mode port 1 is a general-purpose input/output port.  
78  
Reset: A reset clears P1DDR, P1DR, and P1PCR to all “0,” placing all pins in the input state with  
the pull-up transistors off. In mode 1, when the chip comes out of reset, P1DDR is set to all “1.”  
Hardware Standby Mode: All pins are placed in the high-impedance state with the pull-up  
transistors off. P1DR and P1PCR are initialized to H'00. In modes 2 and 3, P1DDR is initialized to  
H'00.  
Software Standby Mode: In the software standby mode, P1DDR, P1DR, and P1PCR remain in  
their previous state. Address output pins are Low. General-purpose output pins continue to output  
the data in P1DR.  
Input Pull-Up Transistors: Port 1 has built-in programmable input pull-up transistors that are  
available in modes 2 and 3. The pull-up for each bit can be turned on and off individually. To turn  
on an input pull-up in mode 2 or 3, set the corresponding P1PCR bit to “1” and clear the  
corresponding P1DDR bit to “0.” P1PCR is cleared to H'00 by a reset and in the hardware standby  
mode, turning all input pull-ups off. In software standby mode, the previous state is maintained.  
Table 5-4 indicates the states of the input pull-up transistors in each operating mode.  
Table 5-4. States of Input Pull-Up Transistors (Port 1)  
Mode  
Reset  
Off  
Hardware standby  
Software standby  
Other operating modes  
1
2
3
Off  
Off  
Off  
Off  
Off  
Off  
On/off  
On/off  
On/off  
On/off  
Off  
Notes: Off:  
The input pull-up transistor is always off.  
On/off: The input pull-up transistor is on if P1PCR = “1” and P1DDR = “0,” but off  
otherwise.  
Figure 5-1 shows a schematic diagram of port 1.  
79  
Reset  
R
D
Q
P1n PCR  
C
WP1P  
RP1P  
Mode 1 Reset  
Hardware standby  
S
Q
R
D
P1n DDR  
C
*
WP1D  
Reset  
Mode 3  
R
D
Q
P1n  
P1n DR  
C
Mode 1 or 2  
WP1  
RP1  
WP1P: Write Port 1 PCR  
WP1D: Write Port 1 DDR  
WP1: Write Port 1  
RP1P : Read Port 1 PCR  
RP1:  
Read Port 1  
n = 0 to 7  
Note: * Set-priority  
Figure 5-1. Port 1 Schematic Diagram  
5.3 Port 2  
Port 2 is an 8-bit input/output port that also provides the high bits of the address bus. The function  
of port 2 depends on the MCU mode as indicated in table 5-5.  
Table 5-5. Functions of Port 2  
Mode 1  
Mode 2  
Mode 3  
Address bus (High)  
(A15 to A8)  
Input port or  
Address bus (High)  
(A15 to A8)*  
Input/output port  
Note: * Depending on the bit settings in the data direction register: 0—input pin; 1—address pin  
80  
Pins of port 2 can drive a single TTL load and a 90pF capacitive load when they are used as output  
pins. They can also drive light-emitting diodes and a Darlington pair. When they are used as input  
pins, they have programmable MOS transistor pull-ups.  
Table 5-6 details the port 2 registers.  
Table 5-6. Port 2 Registers  
Name  
Abbreviation Read/Write  
Initial value  
H'FF (mode 1)  
H'00 (modes 2 and 3)  
H'00  
Address  
Port 2 data direction  
register  
P2DDR  
W
H'FFB1  
Port 2 data register  
Port 2 input pull-up  
control register  
P2DR  
R/W  
R/W  
H'FFB3  
H'FFAD  
P2PCR  
H'00  
Port 2 Data Direction Register (P2DDR)—H'FFB1  
Bit  
7
6
5
4
3
2
1
0
P27DDR P26DDR P25DDR P24DDR P23DDR P22DDR P21DDR P20DDR  
Mode 1  
Initial value  
Read/Write  
Modes 2 and 3  
Initial value  
Read/Write  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
P2DDR is an 8-bit register that selects the direction of each pin in port 2. A pin functions as an  
output pin if the corresponding bit in P2DDR is set to “1,” and as an input pin if the bit is cleared to  
“0.”  
Port 2 Data Register (P2DR)—H'FFB3  
Bit  
7
P27  
0
6
P26  
0
5
P25  
0
4
P24  
0
3
P23  
0
2
P22  
0
1
P21  
0
0
P20  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P2DR is an 8-bit register containing the data for pins P27 to P20. When the CPU reads P2DR, for  
output pins it reads the value in the P2DR latch, but for input pins, it obtains the logic level directly  
from the pin, bypassing the P2DR latch.  
81  
Port 2 Input Pull-Up Control Register (P2PCR)—H'FFAD  
Bit  
7
6
5
4
3
2
1
0
P27PCR P26PCR P25PCR P24PCR P23PCR P22PCR P21PCR P20PCR  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P2PCR is an 8-bit readable/writable register that controls the input pull-up transistors in port 2. If a  
bit in P2DDR is cleared to “0” (designating input) and the corresponding bit in P2PCR is set to “1,”  
the input pull-up transistor for that bit is turned on.  
Mode 1: In mode 1 (expanded mode without on-chip ROM), port 2 is automatically used for  
address output. The port 2 data direction register is unwritable. All bits in P2DDR are  
automatically set to “1” and cannot be cleared to “0.”  
Mode 2: In mode 2 (expanded mode with on-chip ROM), the usage of port 2 can be selected on a  
pin-by-pin basis. A pin is used for general-purpose input if its data direction bit is cleared to “0,”  
or for address output if its data direction bit is set to “1.”  
Mode 3: In the single-chip mode port 2 is a general-purpose input/output port.  
Reset: A reset clears P2DDR, P2DR, and P2PCR to all “0,” placing all pins in the input state with  
the pull-up transistors off. In mode 1, when the chip comes out of reset, P2DDR is set to all “1.”  
Hardware Standby Mode: All pins are placed in the high-impedance state with the pull-up  
transistors off. P2DR and P2PCR are initialized to H'00. In modes 2 and 3, P2DDR is initialized to  
H'00.  
Software Standby Mode: In the software standby mode, P2DDR, P2DR, and P2PCR remain in  
their previous state. Address output pins are Low. General-purpose output pins continue to output  
the data in P2DR.  
Input Pull-Up Transistors: Port 2 has built-in programmable input pull-up transistors that are  
available in modes 2 and 3. The pull-up for each bit can be turned on and off individually. To turn  
on an input pull-up in mode 2 or 3, set the corresponding P2PCR bit to “1” and clear the  
corresponding P2DDR bit to “0.” P2PCR is cleared to H'00 by a reset and in the hardware standby  
mode, turning all input pull-ups off. In software standby mode, the previous state is maintained.  
82  
Table 5-7 indicates the states of the input pull-up transistors in each operating mode.  
Table 5-7. States of Input Pull-Up Transistors (Port 2)  
Mode  
Reset  
Off  
Hardware standby  
Software standby  
Other operating modes  
1
2
3
Off  
Off  
Off  
Off  
Off  
Off  
On/off  
On/off  
On/off  
On/off  
Off  
Notes: Off:  
The input pull-up transistor is always off.  
On/off: The input pull-up transistor is on if P2PCR = “1” and P2DDR = “0,” but off  
otherwise.  
Figure 5-2 shows a schematic diagram of port 2.  
Reset  
R
Q
D
P2n PCR  
C
WP2P  
RP2P  
Hardware  
standby  
Mode 1 Reset  
S
Q
R
D
P2n DDR  
C
*
WP2D  
Reset  
Mode 3  
R
D
Q
P2n  
P2n DR  
C
Mode 1 or 2  
WP2  
RP2  
WP2P: Write Port 2 PCR  
WP2D: Write Port 2 DDR  
WP2: Write Port 2  
RP2P : Read Port 2 PCR  
RP2:  
Read Port 2  
n = 0 to 7  
Note: * Set-priority  
Figure 5-2. Port 2 Schematic Diagram  
83  
5.4 Port 3  
Port 3 is an 8-bit input/output port that also provides the external data bus. The function of port 3  
depends on the MCU mode as indicated in table 5-8.  
Table 5-8. Functions of Port 3  
Mode 1  
Mode 2  
Mode 3  
Data bus  
Data bus  
Input/output port  
Pins of port 3 can drive a single TTL load and a 90pF capacitive load when they are used as output  
pins. They can also drive a Darlington pair. When they are used as input pins, they have program-  
mable MOS transistor pull-ups.  
Table 5-9 details the port 3 registers.  
Table 5-9. Port 3 Registers  
Name  
Abbreviation  
P3DDR  
Read/Write  
W
Initial value  
H'00  
Address  
H'FFB4  
H'FFB6  
H'FFAE  
Port 3 data direction register  
Port 3 data register  
Port 3 input pull-up control  
register  
P3DR  
R/W  
H'00  
P3PCR  
R/W  
H'00  
Port 3 Data Direction Register (P3DDR)—H'FFB4  
Bit  
7
6
5
4
3
2
1
0
P37DDR P36DDR P35DDR P34DDR P33DDR P32DDR P31DDR P30DDR  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
P3DDR is an 8-bit register that selects the direction of each pin in port 3. A pin functions as an  
output pin if the corresponding bit in P3DDR is set to “1,” and as an input pin if the bit is cleared to  
“0.”  
84  
Port 3 Data Register (P3DR)—H'FFB6  
Bit  
7
P37  
0
6
P36  
0
5
P35  
0
4
P34  
0
3
P33  
0
2
P32  
0
1
P31  
0
0
P30  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P3DR is an 8-bit register containing the data for pins P37 to P30. When the CPU reads P3DR, for  
output pins it reads the value in the P3DR latch, but for input pins, it obtains the logic level directly  
from the pin, bypassing the P3DR latch.  
Port 3 Input Pull-Up Control Register (P3PCR)—H'FFAE  
Bit  
7
6
5
4
3
2
1
0
P37PCR P36PCR P35PCR P34PCR P33PCR P32PCR P31PCR P30PCR  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P3PCR is an 8-bit readable/writable register that controls the input pull-up transistors in port 3. If a  
bit in P3DDR is cleared to “0” (designating input) and the corresponding bit in P3PCR is set to “1,”  
the input pull-up transistor for that bit is turned on.  
Modes 1 and 2: In the expanded modes, port 3 is automatically used as the data bus. The values  
in P3DDR, P3DR, and P3PCR are ignored.  
Mode 3: In the single-chip mode, port 3 can be used as a general-purpose input/output port.  
85  
Reset and Hardware Standby Mode: A reset or entry to the hardware standby mode clears  
P3DDR, P3DR, and P3PCR to all “0.” All pins are placed in the high-impedance state with the  
pull-up transistors off.  
Software Standby Mode: In the software standby mode, P3DDR, P3DR, and P3PCR remain in  
their previous state. In modes 1 and 2, all pins are placed in the data input (high-impedance) state.  
In mode 3, all pins remain in their previous input or output state.  
Input Pull-Up Transistors: Port 3 has built-in programmable input pull-up transistors that are  
available in mode 3. The pull-up for each bit can be turned on and off individually. To turn on an  
input pull-up in mode 3, set the corresponding P3PCR bit to “1” and clear the corresponding  
P3DDR bit to “0.” P3PCR is cleared to H'00 by a reset and in the hardware standby mode, turning  
all input pull-ups off. In software standby mode, the previous state is maintained.  
Table 5-10 indicates the states of the input pull-up transistors in each operating mode.  
Table 5-10. States of Input Pull-Up Transistors (Port 3)  
Mode  
Reset  
Off  
Hardware standby  
Software standby  
Other operating modes  
1
2
3
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
On/off  
On/off  
Notes: Off:  
The input pull-up transistor is always off.  
On/off: The input pull-up transistor is on if P3PCR = “1” and P3DDR = “0,” but off  
otherwise.  
Figure 5-3 shows a schematic diagram of port 3.  
86  
Reset  
Mode 3  
R
D
Q
P3n PCR  
C
RP3P  
WP3P  
Mode 3  
Reset  
R
D
Q
External  
address  
write  
P3n DDR  
C
WP3D  
Mode 3  
Reset  
R
Q
D
P3n  
P3n DR  
C
Mode 1 or 2  
WP3  
RP3  
External address  
read  
WP3P: Write Port 3 PCR  
WP3D: Write Port 3 DDR  
WP3: Write Port 3  
RP3P : Read Port 3 PCR  
RP3:  
Read Port 3  
n = 0 to 7  
Figure 5-3. Port 3 Schematic Diagram  
87  
5.5 Port 4  
Port 4 is an 8-bit input/output port that also provides pins for interrupt input (IRQ0 to IRQ2), A/D  
trigger input, system clock (Ø) output, and bus control signals (in the expanded modes).  
Pins P47 to P43 have different functions in different modes. Pins P42 to P40 have the same  
functions in all modes. Table 5-11 lists the pin functions.  
Table 5-11. Port 4 Pin Functions  
Pin  
P40  
P41  
P42  
P43  
P44  
P45  
P46  
P47  
Expanded modes  
Single-chip mode  
P40 input/output , IRQ2 input, and ADTRG input (simultaneously)  
P41 input/output and IRQ1 input (simultaneously)  
P42 input/output and IRQ0 input (simultaneously)  
RD output  
WR output  
AS output  
Ø output  
P43 input/output  
P44 input/output  
P45 input/output  
P46 input or Ø output  
P47 input/output  
WAIT input  
Pins of port 4 can drive a single TTL load and a 90pF capacitive load when they are used as output  
pins.  
Table 5-12 details the port 4 registers.  
Table 5-12. Port 4 Registers  
Name  
Abbreviation Read/Write Initial value  
Address  
H'40 (modes 1 and 2) H'FFB5  
H'00 (mode 3)  
Port 4 data direction register P4DDR  
W
Port 4 data register  
P4DR  
R/W*1  
Undetermined*2  
H'FFB7  
Notes: *1 Bit 6 is read-only.  
*2 Bit 6 is undetermined. Other bits are initially “0.”  
88  
Port 4 Data Direction Register (P4DDR)—H'FFB5  
Bit  
7
6
5
4
3
2
1
0
P47DDR P46DDR P45DDR P44DDR P43DDR P42DDR P41DDR P40DDR  
Modes 1 and 2  
Initial value  
Read/Write  
Mode 3  
0
1
0
0
0
0
0
0
W
W
W
W
W
W
W
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
P4DDR is an 8-bit register that selects the direction of each pin in port 4. A pin functions as an  
output pin if the corresponding bit in P4DDR is set to “1,” and as in input pin if the bit is cleared to  
“0.”  
Port 4 Data Register (P4DR)—H'FFB7  
Bit  
7
P47  
0
6
P46  
*
5
P45  
0
4
P44  
0
3
P43  
0
2
P42  
0
1
P41  
0
0
P40  
0
Initial value  
Read/Write  
R/W  
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Note: * Determined by the level at pin P46.  
P4DR is an 8-bit register containing the data for pins P47 to P40. When the CPU reads P4DR, for  
output pins (P4DDR = “1”) it reads the value in the P4DR latch, but for input pins (P4DDR = “0”),  
it obtains the logic level directly from the pin, bypassing the P4DR latch. This also applies to pins  
used for interrupt input, A/D trigger input, clock output, and control signal input or output.  
Pins P40, P41, and P42: Can be used for general-purpose input or output, interrupt request input,  
or A/D trigger input. See table 5-11. If a pin is used for interrupt or A/D trigger input, its data  
direction bit should be cleared to “0,” so that the output from P4DR will not generate an interrupt  
request or A/D trigger signal.  
Pins P43, P44 and P45: In modes 1 and 2 (the expanded modes), these pins are used for output of  
the RD, WR, and AS bus control signals. They are unaffected by the values in P4DDR and P4DR.  
89  
In mode 3 (single-chip mode), these pins can be used for general-purpose input or output.  
Pin P46: In modes 1 and 2, this pin is used for system clock (Ø) output.  
In mode 3, this pin is used for general-purpose input if P46DDR is cleared to “0,” or system clock  
output if P46DDR is set to “1.”  
Pin P47: In modes 1 and 2, this pin is used for input of the WAIT bus control signal. It is  
unaffected by the values in P4DDR and P4DR.  
In mode 3 (single-chip mode), this pin can be used for general-purpose input or output.  
Reset: In the single-chip mode (mode 3), a reset initializes all pins of port 4 to the general-purpose  
input function. In the expanded modes (modes 1 and 2), P40 to P42 are initialized as input port  
pins, and P43 to P47 are initialized to their bus control and system clock output functions.  
Hardware Standby Mode: All pins are placed in the high-impedance state.  
90  
Software Standby Mode: All pins remain in their previous state. For RD, WR, AS, and Ø this  
means the High output state.  
Figures 5-4 to 5-8 show schematic diagrams of port 4.  
Reset  
R
Q
D
P4.0 DDR  
C
WP4D  
Reset  
R
D
P40  
Q
P40 DR  
C
WP4  
RP4  
A/D converter  
module  
ADTRG  
IRQ2 input  
WP4D: Write Port 4 DDR  
WP4: Write Port 4  
IRQ enable  
register  
RP4:  
Read Port 4  
IRQ2 enable  
Figure 5-4. Port 4 Schematic Diagram (Pin P40)  
91  
Reset  
R
D
Q
P4n DDR  
C
WP4D  
Reset  
R
D
P4n  
Q
P4n DR  
C
WP4  
RP4  
IRQ0 input  
IRQ1 input  
WP4D: Write Port 4 DDR  
WP4: Write Port 4  
IRQ enable  
register  
RP4:  
Read Port 4  
n = 1, 2  
IRQ0 enable  
IRQ1 enable  
Figure 5-5. Port 4 Schematic Diagram (Pins P41 and P42)  
92  
Hardware standby  
Mode 1 or 2  
Reset  
R
D
Q
P4n DDR  
C
WP4D  
Mode 3  
Reset  
R
D
Q
P4 n  
P4n DR  
C
Mode 1 or 2  
WP4  
RD output  
WR output  
AS ouput  
RP4  
WP4D: Write Port 4 DDR  
WP4: Write Port 4  
RP4:  
Read Port 4  
n = 3, 4, 5  
Figure 5-6. Port 4 Schematic Diagram (Pins P43, P44 and P45)  
93  
Mode 1, 2 Reset  
Hardware standby  
S
Q
R
D
P46 DDR  
C
*
WP4D  
P46  
Ø
RP9  
WP4D: Write Port 4 DDR  
WP4: Write Port 4  
RP4: Read Port 4  
Note: * Set-priority  
Figure 5-7. Port 4 Schematic Diagram (Pin P46)  
94  
Reset  
Mode 1 or 2  
R
D
Q
P47 DDR  
C
WP4D  
Reset  
R
D
P47  
Q
P47 DR  
C
WP4  
RP4  
WAIT  
input  
WP4D: Write Port 4 DDR  
WP4: Write Port 4  
RP4:  
Read Port 4  
Figure 5-8. Port 4 Schematic Diagram (Pin P47)  
95  
5.6 Port 5  
Port 5 is a 3-bit input/output port that also provides input and output pins for the serial communi-  
cation interface (SCI). The pin functions depend on control bits in the serial control register (SCR).  
Pins not used for serial communication are available for general-purpose input/output. Table 5-13  
lists the pin functions, which are the same in both the expanded and single-chip modes.  
Table 5-13. Port 5 Pin Functions (Modes 1 to 3)  
Usage  
Pin functions  
I/O port  
P50  
P51  
P52  
Serial communication interface  
TxD  
RxD  
SCK  
See section 8, “Serial Communication Interface” for details of the serial control bits. Pins used by  
the serial communication interface are switched between input and output without regard to the  
values in the data direction register.  
Pins of port 5 can drive a single TTL load and a 30pF capacitive load when they are used as output  
pins. They can also drive a Darlington pair.  
Table 5-14 details the port 5 registers.  
Table 5-14. Port 5 Registers  
Name  
Abbreviation  
P5DDR  
Read/Write  
Initial value  
H'F8  
Address  
H'FFB8  
H'FFBA  
Port 5 data direction register  
Port 5 data register  
W
P5DR  
R/W  
H'F8  
Port 5 Data Direction Register (P5DDR)—H'FFB8  
Bit  
7
1
6
1
5
1
4
1
3
1
2
1
0
P52DDR P51DDR P50DDR  
Initial value  
Read/Write  
0
0
0
W
W
W
P5DDR is an 8-bit register that selects the direction of each pin in port 5. A pin functions as an  
output pin if the corresponding bit in P5DDR is set to “1,” and as an input pin if the bit is cleared to  
“0.”  
96  
Port 5 Data Register (P5DR)—H'FFBA  
Bit  
7
1
6
1
5
1
4
1
3
1
2
P52  
0
1
P51  
0
0
P50  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
P5DR is an 8-bit register containing the data for pins P52 to P50. When the CPU reads P5DR, for  
output pins (P5DDR = “1”) it reads the value in the P5DR latch, but for input pins (P5DDR = “0”),  
it obtains the logic level directly from the pin, bypassing the P5DR latch. This also applies to pins  
used for serial communication.  
Pin P50: This pin can be used for general-purpose input or output, or for output of serial transmit  
data (TxD). When used for TxD output, this pin is unaffected by the values in P5DDR and P5DR.  
Pin P51: This pin can be used for general-purpose input or output, or for input of serial receive  
data (RxD). When used for RxD input, this pin is unaffected by P5DDR and P5DR.  
Pin P52: This pin can be used for general-purpose input or output, or for serial clock input or  
output (SCK). When used for SCK input or output, this pin is unaffected by P5DDR and P5DR.  
Reset and Hardware Standby Mode: A reset or entry to the hardware standby mode makes all  
pins of port 5 into input port pins.  
Software Standby Mode: In the software standby mode, the serial control register is initialized  
but P5DDR and P5DR remain in their previous states. All pins become input or output port pins  
depending on the setting of P5DDR. Output pins output the values in P5DR.  
Figures 5-9 to 5-11 show schematic diagrams of port 5.  
97  
Reset  
R
D
Q
P50 DDR  
C
WP5D  
Reset  
R
D
Q
P50  
P50 DR  
C
SCI module  
WP5  
Serial transmit enable  
Serial transmit data  
RP5  
WP5D: Write Port 5 DDR  
WP5: Write Port 5  
RP5:  
Read Port 5  
Figure 5-9. Port 5 Schematic Diagram (Pin P50)  
98  
Reset  
R
D
Q
P51 DDR  
C
SCI module  
WP5D  
Serial receive  
enable  
Reset  
R
D
P51  
Q
P51 DR  
C
WP5  
RP5  
Serial receive  
data  
WP5D: Write Port 5 DDR  
WP5: Write Port 5  
RP5:  
Read Port 5  
Figure 5-10. Port 5 Schematic Diagram (Pin P51)  
99  
Reset  
R
D
Q
P52 DDR  
C
SCI module  
WP5D  
Serial clock  
input enable  
Reset  
R
D
Q
P52  
P52 DR  
C
WP5  
Serial clock  
output enble  
Serial clock  
output enable  
RP5  
Serial clock  
input  
WP5D: Write Port 5 DDR  
WP5: Write Port 5  
RP5:  
Read Port 5  
Figure 5-11. Port 5 Schematic Diagram (Pin P52)  
100  
5.7 Port 6  
Port 6 is an 8-bit input/output port that also provides input and output pins for the 16-bit free-  
running timer and 8-bit timers. The pin functions depend on control bits in the control registers of  
the timers. Pins not used by the timers are available for general-purpose input/output. Table 5-15  
lists the pin functions, which are the same in both the expanded and single-chip modes.  
Table 5-15. Port 6 Pin Functions (Modes 1 to 3)  
Usage  
Pin functions (Modes 1 to 3)  
I/O port  
P60  
P61  
P62  
P63  
P64  
P65  
P66  
P67  
16-bit timer  
8-bit timer  
FTCI  
FTOA FTIA  
FTIB  
FTIC  
FTID  
FTOB  
TMCI0 —  
TMRI0 TMO0 TMCI1 TMRI1 TMO1  
See section 6, “16-Bit Free-Running Timer,” and section 7, “8-Bit Timers” for details of the timer  
control bits.  
Pins of port 6 can drive a single TTL load and a 90pF capacitive load when they are used as output  
pins. They can also drive a Darlington pair.  
Table 5-16 details the port 6 registers.  
Table 5-16. Port 6 Registers  
Name  
Abbreviation  
P6DDR  
Read/Write  
Initial value  
H'00  
Address  
H'FFB9  
H'FFBB  
Port 6 data direction register  
Port 6 data register  
W
P6DR  
R/W  
H'00  
Port 6 Data Direction Register (P6DDR)—H'FFB9  
Bit  
7
6
5
4
3
2
1
0
P67DDR P66DDR P65DDR P64DDR P63DDR P62DDR P61DDR P60DDR  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
P6DDR is an 8-bit register that selects the direction of each pin in port 6. A pin functions as an  
output pin if the corresponding bit in P6DDR is set to “1,” and as an input pin if the bit is cleared to  
“0.”  
101  
Port 6 Data Register (P6DR)—H'FFBB  
Bit  
7
P67  
0
6
P66  
0
5
P65  
0
4
P64  
0
3
P63  
0
2
P62  
0
1
P61  
0
0
P60  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P6DR is an 8-bit register containing the data for pins P67 to P60. When the CPU reads P6DR, for  
output pins (P6DDR = “1”) it reads the value in the P6DR latch, but for input pins (P6DDR = “0”),  
it obtains the logic level directly from the pin, bypassing the P6DR latch. This also applies to pins  
used for timer input and output.  
Pin P60: This pin can be used for general-purpose input or output, and input of external clock  
signals to the 16-bit free-running timer and 8-bit timer 0. External clock input is selected by the  
CKS bits of the timers. When this pin is used for timer clock input, its P6DDR bit should normally  
be cleared to “0;” otherwise the timer will receive the value in P6DR.  
Pin P61: This pin can be used for general-purpose input or output, or for 16-bit free-running timer  
output (FTOA). When timer output is selected by the OEA bit of the 16-bit free-running timer, this  
pin is unaffected by the values in P6DDR and P6DR.  
Pin P62: This pin can be used for general-purpose input or output, and input of the FTIA input  
capture signal to the 16-bit free-running timer. FTIA input can operate simultaneously with  
general-purpose input or output.  
Pin P63: This pin can be used for general-purpose input or output, input of the FTIB input capture  
signal to the 16-bit free-running timer, and input of the timer reset signal to 8-bit timer 0. FTIB  
input operates simultaneously with the other functions. Reset signal input is selected by the CCLR  
bits of 8-bit timer 0. When this pin is used for timer reset signal input, its P6DDR bit should  
normally be cleared to “0;” otherwise the timer will receive the value in P6DR.  
Pin P64: This pin can be used for general-purpose input or output, input of the FTIC input capture  
signal to the 16-bit free-running timer, or output from 8-bit timer 0. FTIC input operates  
simultaneously with the other functions. When 8-bit timer output is selected by the OS bits of 8-bit  
timer 0, this pin is unaffected by the values in P6DDR and P6DR.  
102  
Pin P65: This pin can be used for general-purpose input or output, input of the FTID input capture  
signal to the 16-bit free-running timer, or input of an external clock signal to 8-bit timer 1. FTID  
input operates simultaneously with the other functions. When external clock input is selected by  
the CKS bits of 8-bit timer 1, the P6DDR bit of this pin should normally be cleared to “0,”  
otherwise the timer will receive the value in P6DR.  
Pin P66: This pin can be used for general-purpose input or output, 16-bit free-running timer output  
(FTOB), and input of the timer reset signal to 8-bit timer 1. Reset signal input is selected by the  
CCLR bits of 8-bit timer 1, and can operate simultaneously with general-purpose input or output or  
16-bit timer output. When 16-bit timer output is selected by the OEB bit of the 16-bit free-running  
timer, this pin is unaffected by the values in P6DDR and P6DR.  
Pin P67: This pin can be used for general-purpose input or output, or output from 8-bit timer 1.  
When 8-bit timer output is selected by the OS bits of 8-bit timer 1, this pin is unaffected by the  
values in P6DDR and P6DR.  
Reset and Hardware Standby Mode: A reset or entry to the hardware standby mode clears  
P6DDR and P6DR to all “0” and initializes the control registers of both the 8-bit and 16-bit timers.  
All pins become input port pins.  
Software Standby Mode: In the software standby mode, the control registers of the 8-bit and 16-  
bit timers are initialized but P6DDR and P6DR remain in their previous states. All pins become  
input or output port pins depending on the setting of P6DDR. Output pins output the values in  
P6DR.  
Figures 5-12 to 5-18 show schematic diagrams of port 6.  
103  
Reset  
R
D
Q
P60 DDR  
C
WP6D  
Reset  
R
D
P60  
Q
P60 DR  
C
WP6  
RP6  
Free-running timer  
module  
Counter clock input  
8-bit timer module  
Counter clock input  
WP6D: Write Port 6 DDR  
WP6: Write Port 6  
RP6:  
Read Port 6  
Figure 5-12. Port 6 Schematic Diagram (Pin P60)  
104  
Reset  
R
D
Q
P61 DDR  
C
WP6D  
Reset  
R
D
Q
P61  
P61 DR  
C
Free-running timer  
module  
WP6  
Output enable  
Output-compare  
output  
RP6  
WP6D: Write Port 6 DDR  
WP6: Write Port 6  
RP6:  
Read Port 6  
Figure 5-13. Port 6 Schematic Diagram (Pin P61)  
105  
Reset  
R
D
Q
P62 DDR  
C
WP6D  
Reset  
R
D
P62  
Q
P62 DR  
C
WP6  
RP6  
Free-running timer  
module  
Input-capture input  
WP6D: Write Port 6 DDR  
WP6: Write Port 6  
RP6:  
Read Port 6  
Figure 5-14. Port 6 Schematic Diagram (Pin P62)  
106  
Reset  
R
D
Q
P6n DDR  
C
WP6D  
Reset  
R
D
P6n  
Q
P6n DR  
C
WP6  
RP6  
Free-running timer  
module  
Input-capture input  
8-bit timer module  
Counter clock input  
Counter reset input  
WP6D: Write Port 6 DDR  
WP6: Write Port 6  
RP6:  
Read Port 6  
n = 3, 5  
Figure 5-15. Port 6 Schematic Diagram (Pins P63 and P65)  
107  
Reset  
R
D
Q
P64 DDR  
C
WP6D  
Reset  
R
D
Q
P64  
P64 DR  
C
8-bit timer module  
WP6  
Output enable  
8-bit timer output  
RP6  
Free-running timer  
module  
Input-capture input  
WP6D: Write Port 6 DDR  
WP6: Write Port 6  
RP6:  
Read Port 6  
Figure 5-16. Port 6 Schematic Diagram (Pin P64)  
108  
Reset  
R
D
Q
P66 DDR  
C
WP6D  
Reset  
R
D
Q
P66  
P66 DR  
C
Free-running timer  
module  
WP6  
Output enable  
Output-compare  
output  
RP6  
8-bit timer module  
Counter reset input  
WP6D: Write Port 6 DDR  
WP6: Write Port 6  
RP6:  
Read Port 6  
Figure 5-17. Port 6 Schematic Diagram (Pin P66)  
109  
Reset  
R
D
Q
P67 DDR  
C
WP6D  
Reset  
R
D
Q
P67  
P67 DR  
C
8-bit timer module  
WP6  
Output enable  
8-bit timer output  
RP6  
WP6D: Write Port 6 DDR  
WP6: Write Port 6  
RP6:  
Read Port 6  
Figure 5-18. Port 6 Schematic Diagram (Pin P67)  
110  
5.8 Port 7  
Port 7 is an 8-bit input port that also provides the analog input pins for the A/D converter module.  
The pin functions are the same in both the expanded and single-chip modes.  
Table 5-17 lists the pin functions. Table 5-18 describes the port 7 data register, which simply  
consists of connections of the port 7 pins to the internal data bus. Figure 5-19 shows a schematic  
diagram of port 7.  
Table 5-17. Port 7 Pin Functions (Modes 1 to 3)  
Usage  
Pin functions  
I/O port  
P70  
P71  
P72  
P73  
P74  
P75  
P76  
P77  
Analog input  
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
Table 5-18. Port 7 Register  
Name  
Abbreviation  
Read/Write  
Initial value  
Address  
Port 7 data register  
P7DR  
R
Undetermined  
H'FFBE  
Port 7 Data Register (P7DR)—H'FFBE  
Bit  
7
P77  
*
6
P76  
*
5
P75  
*
4
P74  
*
3
P73  
*
2
P72  
*
1
P71  
*
0
P70  
*
Initial value  
Read/Write  
R
R
R
R
R
R
R
R
Note: * Depends on the levels of pins P77 to P70.  
RP7  
A/D converter  
module  
P7n  
Analog input  
RP7: Read port 7  
n = 0 to 7  
Figure 5-19. Port 7 Schematic Diagram  
111  
Section 6. 16-Bit Free-Running Timer  
6.1 Overview  
The H8/329 Series has an on-chip 16-bit free-running timer (FRT) module that uses a 16-bit free-  
running counter as a time base. Applications of the FRT module include rectangular-wave output  
(up to two independent waveforms), input pulse width measurement, and measurement of external  
clock periods.  
6.1.1 Features  
The features of the free-running timer module are listed below.  
• Selection of four clock sources  
The free-running counter can be driven by an internal clock source (Ø/2, Ø/8, or Ø/32), or an  
external clock input (enabling use as an external event counter).  
• Two independent comparators  
Each comparator can generate an independent waveform.  
• Four input capture channels  
The current count can be captured on the rising or falling edge (selectable) of an input signal.  
The four input capture registers can be used separately, or in a buffer mode.  
• Counter can be cleared under program control  
The free-running counters can be cleared on compare-match A.  
• Seven independent interrupts  
Compare-match A and B, input capture A to D, and overflow interrupts are requested  
independently.  
113  
6.1.2 Block Diagram  
Figure 6-1 shows a block diagram of the free-running timer.  
Internal  
clock sources  
Ø/2  
External  
Ø/8  
Ø/32  
clock source  
FTCI  
Clock  
OCRA (H/L)  
Comparator A  
FRC(H/L)  
Clock select  
Compare-  
match A  
FTOA  
FTOB  
Overflow  
Clear  
Internal  
data bus  
Comparator B  
OCRB (H/L)  
Compare-  
match B  
Control  
logic  
Capture  
ICRA (H/L)  
ICRB (H/L)  
FTIA  
FTIB  
ICRC (H/L)  
ICRD (H/L)  
FTIC  
FTID  
TCSR  
TIER  
TCR  
TOCR  
ICIA  
ICIB  
ICIC  
ICID  
OCIA  
OCIB  
Interrupt signals  
FOVI  
FRC:  
OCRA, B:  
Free-Running Counter (16 bits)  
Output Compare Register A, B (16 bits)  
TIER: Timer Interrupt Enable Register (8 bits)  
TCR: Timer Control Register (8 bits)  
TOCR: Timer Output Compare Control  
Register (8 bits)  
ICRA, B, C, D: Input Capture Register A, B, C, D (16 bits)  
TCSR: Timer Control/Status Register (8 bits)  
Figure 6-1. Block Diagram of 16-Bit Free-Running Timer  
114  
6.1.3 Input and Output Pins  
Table 6-1 lists the input and output pins of the free-running timer module.  
Table 6-1. Input and Output Pins of Free-Running Timer Module  
Name  
Abbreviation  
I/O  
Function  
Counter clock input FTCI  
Input  
Input of external free-running counter clock  
signal  
Output compare A  
Output compare B  
Input capture A  
FTOA  
FTOB  
FTIA  
Output  
Output  
Input  
Output controlled by comparator A  
Output controlled by comparator B  
Trigger for capturing current count into input  
capture register A  
Input capture B  
Input capture C  
Input capture D  
FTIB  
FTIC  
FTID  
Input  
Input  
Input  
Trigger for capturing current count into input  
capture register B  
Trigger for capturing current count into input  
capture register C  
Trigger for capturing current count into input  
capture register D  
6.1.4 Register Configuration  
Table 6-2 lists the registers of the free-running timer module.  
Table 6-2. Register Configuration  
Initial  
value  
H'01  
Name  
Abbreviation R/W  
Address  
H'FF90  
H'FF91  
H'FF92  
H'FF93  
H'FF94*2  
H'FF95*2  
H'FF96  
H'FF97  
H'FF98  
H'FF99  
Timer interrupt enable register  
Timer control/status register  
Free-running counter (High)  
Free-running counter (Low)  
Output compare register A/B (High)*2  
Output compare register A/B (Low)*2  
Timer control register  
TIER  
R/W  
TCSR  
R/(W)*1 H'00  
FRC (H)  
FRC (L)  
OCRA/B (H)  
OCRA/B (L)  
TCR  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
H'00  
H'00  
H'FF  
H'FF  
H'00  
H'E0  
H'00  
H'00  
Timer output compare control register  
Input capture register A (High)  
Input capture register A (Low)  
TOCR  
ICRA (H)  
ICRA (L)  
R
Notes: *1 Software can write a “0” to clear bits 7 to 1, but cannot write a “1” in these bits.  
*2 OCRA and OCRB share the same addresses. Access is controlled by the OCRS  
bit in TOCR.  
115  
Table 6-2. Register Configuration (cont.)  
Initial  
value  
H'00  
H'00  
H'00  
H'00  
H'00  
H'00  
Name  
Abbreviation R/W  
Address  
H'FF9A  
H'FF9B  
H'FF9C  
H'FF9D  
H'FF9E  
H'FF9F  
Input capture register B (High)  
Input capture register B (Low)  
Input capture register C (High)  
Input capture register C (Low)  
Input capture register D (High)  
Input capture register D (Low)  
ICRB (H)  
ICRB (L)  
ICRC (H)  
ICRC (L)  
ICRD (H)  
ICRD (L)  
R
R
R
R
R
R
6.2 Register Descriptions  
6.2.1 Free-Running Counter (FRC)—H'FF92  
Bit  
15 14 13  
12 11 10  
9
0
8
0
7
0
6
5
0
4
0
3
0
2
0
1
0
0
0
Initial 0  
value  
0
0
0
0
0
0
Read/ R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
Write  
The FRC is a 16-bit readable/writable up-counter that increments on an internal pulse generated  
from a clock source. The clock source is selected by the clock select 1 and 0 bits (CKS1 and  
CKS0) of the timer control register (TCR).  
When the FRC overflows from H'FFFF to H'0000, the overflow flag (OVF) in the timer  
control/status register (TCSR) is set to “1.”  
Because the FRC is a 16-bit register, a temporary register (TEMP) is used when the FRC is written  
or read. See section 6.3, “CPU Interface,” for details.  
The FRC is initialized to H'0000 at a reset and in the standby modes. It can also be cleared by  
compare-match A.  
116  
6.2.2 Output Compare Registers A and B (OCRA and OCRB)—H'FF94  
Bit  
15 14 13  
12 11 10  
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
1
Initial 1  
value  
1
1
1
1
1
Read/ R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
Write  
OCRA and OCRB are 16-bit readable/writable registers, the contents of which are continually  
compared with the value in the FRC. When a match is detected, the corresponding output compare  
flag (OCFA or OCFB) is set in the timer control/status register (TCSR).  
In addition, if the output enable bit (OEA or OEB) in the timer output compare control register  
(TOCR) is set to “1,” when the output compare register and FRC values match, the logic level  
selected by the output level bit (OLVLA or OLVLB) in the TOCR is output at the output compare  
pin (FTOA or FTOB).  
OCRA and OCRB share the same address. They are differentiated by the OCRS bit in the TOCR.  
A temporary register (TEMP) is used for write access, as explained in section 6.3, “CPU Interface.”  
OCRA and OCRB are initialized to H'FFFF at a reset and in the standby modes.  
6.2.3 Input Capture Registers A to D (ICRA to ICRD)—H'FF98, H'FF9A, H'FF9C, H'FF9E  
Bit  
15 14 13  
12 11 10  
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Initial 0  
value  
0
0
0
0
0
Read/ R  
Write  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
Each input capture register is a 16-bit read-only register.  
When the rising or falling edge of the signal at an input capture pin (FTIA to FTID) is detected, the  
current value of the FRC is copied to the corresponding input capture register (ICRA to ICRD).*  
At the same time, the corresponding input capture flag (ICFA to ICFD) in the timer control/status  
register (TCSR) is set to “1.” The input capture edge is selected by the input edge select bits  
(IEDGA to IEDGD) in the timer control register (TCR).  
117  
Note: * The FRC contents are transferred to the input capture register regardless of the value of  
the input capture flag (ICFA/B/C/D).  
Input capture can be buffered by using the input capture registers in pairs. When the BUFEA bit in  
the timer control register (TCR) is set to “1,” ICRC is used as a buffer register for ICRA as shown  
in figure 6-2. When an FTIA input is received, the old ICRA contents are moved into ICRC, and  
the new FRC count is copied into ICRA.  
BUFEA  
IEDGA IEDGC  
Edge detect and  
capture signal  
FTIA  
generating circuit  
FRC  
ICRC  
ICRA  
BUFEA: Buffer Enable A  
IEDGA: Input Edge Select A  
IEDGC: Input Edge Select C  
ICRC:  
ICRA:  
FRC:  
Input Capture Register C  
Input Capture Register A  
Free-Running Counter  
Figure 6-2. Input Capture Buffering  
Similarly, when the BUFEB bit in TIER is set to “1,” ICRD is used as a buffer register for ICRB.  
When input capture is buffered, if the two input edge bits are set to different values (IEDGA ≠  
IEDGC or IEDGB IEDGD), then input capture is triggered on both the rising and falling edges of  
the FTIA or FTIB input signal. If the two input edge bits are set to the same value (IEDGA =  
IEDGC or IEDGB = IEDGD), then input capture is triggered on only one edge.  
118  
Table 6-3. Buffered Input Capture Edge Selection (Example)  
IEDGA  
IEDGC  
Input Capture Edge  
0
0
1
1
0
1
0
1
Captured on falling edge of input capture A (FTIA)  
(Initial value)  
Captured on both rising and falling edges of input capture A (FTIA)  
Captured on rising edge of input capture A (FTIA)  
Because the input capture registers are 16-bit registers, a temporary register (TEMP) is used when  
they are read. See section 6.3, “CPU Interface,” for details.  
To ensure input capture, the width of the input capture pulse (FTIA, FTIB, FTIC, FTID) should be  
at least 1.5 system clock periods (1.5·Ø). When triggering is enabled on both edges, the input  
capture pulse width should be at least 2.5 system clock periods.  
Ø
FTIA, FTIB,  
FTIC, orFTID  
Figure 6-3. Minimum Input Capture Pulse Width  
119  
The input capture registers are initialized to H'0000 at a reset and in the standby modes.  
Note: When input capture is detected, the FRC value is transferred to the input capture register  
even if the input capture flag is already set.  
6.2.4 Timer Interrupt Enable Register (TIER)—H'FF90  
Bit  
7
6
5
4
3
2
1
0
1
ICIAE ICIBE ICICE ICIDE OCIAE OCIBE OVIE  
Initial value  
Read/Write  
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The TIER is an 8-bit readable/writable register that enables and disables interrupts.  
The TIER is initialized to H'01 (all interrupts disabled) at a reset and in the standby modes.  
Bit 7—Input Capture Interrupt A Enable (ICIAE): This bit selects whether to request input  
capture interrupt A (ICIA) when input capture flag A (ICFA) in the timer status/control register  
(TCSR) is set to “1.”  
Bit 7  
ICIAE  
Description  
0
1
Input capture interrupt request A (ICIA) is disabled.  
Input capture interrupt request A (ICIA) is enabled.  
(Initial value)  
Bit 6—Input Capture Interrupt B Enable (ICIBE): This bit selects whether to request input  
capture interrupt B (ICIB) when input capture flag B (ICFB) in the timer status/control register  
(TCSR) is set to “1.”  
Bit 6  
ICIBE  
Description  
0
1
Input capture interrupt request B (ICIB) is disabled.  
Input capture interrupt request B (ICIB) is enabled.  
(Initial value)  
Bit 5—Input Capture Interrupt C Enable (ICICE): This bit selects whether to request input  
capture interrupt C (ICIC) when input capture flag C (ICFC) in the timer status/control register  
(TCSR) is set to “1.”  
120  
Bit 5  
ICICE  
Description  
0
1
Input capture interrupt request C (ICIC) is disabled.  
Input capture interrupt request C (ICIC) is enabled.  
(Initial value)  
Bit 4—Input Capture Interrupt D Enable (ICIDE): This bit selects whether to request input  
capture interrupt D (ICID) when input capture flag D (ICFD) in the timer status/control register  
(TCSR) is set to “1.”  
Bit 4  
ICIDE  
Description  
0
1
Input capture interrupt request D (ICID) is disabled.  
Input capture interrupt request D (ICID) is enabled.  
(Initial value)  
Bit 3—Output Compare Interrupt A Enable (OCIAE): This bit selects whether to request  
output compare interrupt A (OCIA) when output compare flag A (OCFA) in the timer status/control  
register (TCSR) is set to “1.”  
Bit 3  
OCIAE Description  
0
1
Output compare interrupt request A (OCIA) is disabled.  
Output compare interrupt request A (OCIA) is enabled.  
(Initial value)  
Bit 2—Output Compare Interrupt B Enable (OCIBE): This bit selects whether to request  
output compare interrupt B (OCIB) when output compare flag B (OCFB) in the timer status/control  
register (TCSR) is set to “1.”  
Bit 2  
OCIBE Description  
0
1
Output compare interrupt request B (OCIB) is disabled.  
Output compare interrupt request B (OCIB) is enabled.  
(Initial value)  
Bit 1—Timer Overflow Interrupt Enable (OVIE): This bit selects whether to request a free-  
running timer overflow interrupt (FOVI) when the timer overflow flag (OVF) in the timer  
status/control register (TCSR) is set to “1.”  
121  
Bit 1  
OVIE  
Description  
0
1
Timer overflow interrupt request (FOVI) is disabled.  
Timer overflow interrupt request (FOVI) is enabled.  
(Initial value)  
Bit 0—Reserved: This bit cannot be modified and is always read as “1.”  
6.2.5 Timer Control/Status Register (TCSR)—H'FF91  
Bit  
7
ICFA  
0
6
ICFB  
0
5
ICFC  
0
4
ICFD  
0
3
2
1
0
OCFA OCFB  
OVF CCLRA  
Initial value  
Read/Write  
0
0
0
0
R/(W)* R/(W)* R/(W)* R/(W)* R/(W)* R/(W)* R/(W)*  
R/W  
The TCSR is an 8-bit readable and partially writable* register that contains the seven interrupt flags  
and specifies whether to clear the counter on compare-match A (when the FRC and OCRA values  
match).  
Note: * Software can write a “0” in bits 7 to 1 to clear the flags, but cannot write a “1” in these  
bits.  
The TCSR is initialized to H'00 at a reset and in the standby modes.  
Bit 7—Input Capture Flag A (ICFA): This status bit is set to “1” to flag an input capture A  
event. If BUFEA = “0,” ICFA indicates that the FRC value has been copied to ICRA. If BUFEA =  
“1,” ICFA indicates that the old ICRA value has been moved into ICRC and the new FRC value  
has been copied to ICRA.  
ICFA must be cleared by software. It is set by hardware, however, and cannot be set by software.  
Bit 7  
ICFA  
Description  
0
To clear ICFA, the CPU must read ICFA after it  
has been set to “1,” then write a “0” in this bit.  
This bit is set to 1 when an FTIA input signal causes the FRC  
value to be copied to ICRA.  
(Initial value)  
1
122  
Bit 6—Input Capture Flag B (ICFB): This status bit is set to “1” to flag an input capture B  
event. If BUFEB = “0,” ICFB indicates that the FRC value has been copied to ICRB. If BUFEB =  
“1,” ICFB indicates that the old ICRB value has been moved into ICRC and the new FRC value has  
been copied to ICRB.  
ICFB must be cleared by software. It is set by hardware, however, and cannot be set by software.  
Bit 6  
ICFB  
Description  
0
To clear ICFB, the CPU must read ICFB after it  
has been set to “1,” then write a “0” in this bit.  
This bit is set to 1 when an FTIB input signal causes the FRC value  
to be copied to ICRB.  
(Initial value)  
1
Bit 5—Input Capture Flag C (ICFC): This status bit is set to “1” to flag input of a rising or  
falling edge of FTIC as selected by the IEDGC bit. When BUFEA = “0,” this indicates capture of  
the FRC count in ICRC. When BUFEA = “1,” however, the FRC count is not captured, so ICFC  
becomes simply an external interrupt flag. In other words, the buffer mode frees FTIC for use as a  
general-purpose interrupt signal (which can be enabled or disabled by the ICICE bit).  
ICFC must be cleared by software. It is set by hardware, however, and cannot be set by software.  
Bit 5  
ICFC  
Description  
0
To clear ICFC, the CPU must read ICFC after it  
has been set to “1,” then write a “0” in this bit.  
This bit is set to 1 when an FTIC input signal is received.  
(Initial value)  
1
Bit 4—Input Capture Flag D (ICFD): This status bit is set to “1” to flag input of a rising or  
falling edge of FTID as selected by the IEDGD bit. When BUFEB = “0,” this indicates capture of  
the FRC count in ICRD. When BUFEB = “1,” however, the FRC count is not captured, so ICFD  
becomes simply an external interrupt flag. In other words, the buffer mode frees FTID for use as a  
general-purpose interrupt signal (which can be enabled or disabled by the ICIDE bit).  
ICFD must be cleared by software. It is set by hardware, however, and cannot be set by software.  
123  
Bit 4  
ICFD  
0
Description  
To clear ICFD, the CPU must read ICFD after it  
has been set to “1,” then write a “0” in this bit.  
This bit is set to 1 when an FTID input signal is received.  
(Initial value)  
1
Bit 3—Output Compare Flag A (OCFA): This status flag is set to “1” when the FRC value  
matches the OCRA value. This flag must be cleared by software. It is set by hardware, however,  
and cannot be set by software.  
Bit 3  
OCFA  
Description  
0
To clear OCFA, the CPU must read OCFA after  
it has been set to “1,” then write a “0” in this bit.  
This bit is set to 1 when FRC = OCRA.  
(Initial value)  
1
Bit 2—Output Compare Flag B (OCFB): This status flag is set to “1” when the FRC value  
matches the OCRB value. This flag must be cleared by software. It is set by hardware, however,  
and cannot be set by software.  
Bit 2  
OCFB  
Description  
0
To clear OCFB, the CPU must read OCFB after  
it has been set to “1,” then write a “0” in this bit.  
This bit is set to 1 when FRC = OCRB.  
(Initial value)  
1
Bit 1—Timer Overflow Flag (OVF): This status flag is set to “1” when the FRC overflows  
(changes from H'FFFF to H'0000). This flag must be cleared by software. It is set by hardware,  
however, and cannot be set by software.  
Bit 1  
OVF  
Description  
0
To clear OVF, the CPU must read OVF after  
it has been set to “1,” then write a “0” in this bit.  
This bit is set to 1 when FRC changes from H'FFFF to H'0000.  
(Initial value)  
1
124  
Bit 0—Counter Clear A (CCLRA): This bit selects whether to clear the FRC at compare-match  
A (when the FRC and OCRA values match).  
Bit 0  
CCLRA Description  
0
1
The FRC is not cleared.  
(Initial value)  
The FRC is cleared at compare-match A.  
6.2.6 Timer Control Register (TCR)—H'FF96  
Bit  
7
6
5
4
3
2
1
0
IEDGA IEDGB IEDGC IEDGD BUFEA BUFEB CKS1  
CKS0  
0
Initial value  
Read/Write  
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The TCR is an 8-bit readable/writable register that selects the rising or falling edge of the input  
capture signals, enables the input capture buffer mode, and selects the FRC clock source.  
The TCR is initialized to H'00 at a reset and in the standby modes.  
Bit 7—Input Edge Select A (IEDGA): This bit causes input capture A events to be recognized on  
the selected edge of the input capture A signal (FTIA).  
Bit 7  
IEDGA Description  
0
1
Input capture A events are recognized on the falling edge of FTIA.  
Input capture A events are recognized on the rising edge of FTIA.  
(Initial value)  
Bit 6—Input Edge Select B (IEDGB): This bit causes input capture B events to be recognized on  
the selected edge of the input capture B signal (FTIB).  
Bit 6  
IEDGB Description  
0
1
Input capture B events are recognized on the falling edge of FTIB.  
Input capture B events are recognized on the rising edge of FTIB.  
(Initial value)  
125  
Bit 5—Input Edge Select C (IEDGC): This bit causes input capture C events to be recognized on  
the selected edge of the input capture C signal (FTIC).  
Bit 5  
IEDGC Description  
0
1
Input capture C events are recognized on the falling edge of FTIC.  
Input capture C events are recognized on the rising edge of FTIC.  
(Initial value)  
Bit 4—Input Edge Select D (IEDGD): This bit causes input capture D events to be recognized on  
the selected edge of the input capture D signal (FTID).  
Bit 4  
IEDGD Description  
0
1
Input capture D events are recognized on the falling edge of FTID.  
Input capture D events are recognized on the rising edge of FTID.  
(Initial value)  
Bit 3—Buffer Enable A (BUFEA): This bit selects whether to use ICRC as a buffer register for  
ICRA.  
Bit 3  
BUFEA Description  
0
1
ICRC is used for input capture C.  
(Initial value)  
ICRC is used as a buffer register for input capture A. Input C is not captured.  
Bit 2—Buffer Enable B (BUFEB): This bit selects whether to use ICRD as a buffer register for  
ICRB.  
Bit 2  
BUFEB Description  
0
1
ICRD is used for input capture D.  
(Initial value)  
ICRD is used as a buffer register for input capture B. Input D is not captured.  
Bits 1 and 0—Clock Select (CKS1 and CKS0): These bits select external clock input or one of  
three internal clock sources for the FRC. External clock pulses are counted on the rising edge.  
126  
Bit 1  
Bit 0  
CKS1  
CKS0  
Description  
0
0
1
1
0
1
0
1
Ø/2 Internal clock source  
Ø/8 Internal clock source  
Ø/32 Internal clock source  
External clock source (rising edge)  
(Initial value)  
6.2.7 Timer Output Compare Control Register (TOCR)—H'FF97  
Bit  
7
1
6
1
5
1
4
OCRS  
0
3
2
1
0
OEA  
0
OEB OLVLA OLVLB  
Initial value  
Read/Write  
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
The TOCR is an 8-bit readable/writable register that controls the output compare function.  
The TOCR is initialized to H'E0 at a reset and in the standby modes.  
Bits 7 to 5—Reserved: These bits cannot be modified and are always read as “1.”  
Bit 4—Output Compare Register Select (OCRS): When the CPU accesses addresses H'FF94  
and H'FF95, this bit directs the access to either OCRA or OCRB. These two registers share the  
same addresses as follows:  
Upper byte of OCRA and upper byte of OCRB: H'FF94  
Lower byte of OCRA and lower byte of OCRB: H'FF95  
Bit 4  
OCRS  
Description  
0
1
The CPU can access OCRA.  
The CPU can access OCRB.  
(Initial value)  
Bit 3—Output Enable A (OEA): This bit enables or disables output of the output compare A  
signal (FTOA).  
Bit 3  
OEA  
Description  
0
1
Output compare A output is disabled.  
Output compare A output is enabled.  
(Initial value)  
127  
Bit 2—Output Enable B (OEB): This bit enables or disables output of the output compare B  
signal (FTOB).  
Bit 2  
OEB Description  
0
1
Output compare B output is disabled.  
Output compare B output is enabled.  
(Initial value)  
Bit 1—Output Level A (OLVLA): This bit selects the logic level to be output at the FTOA pin  
when the FRC and OCRA values match.  
Bit 1  
OLVLA Description  
0
1
A “0” logic level (Low) is output for compare-match A.  
A “1” logic level (High) is output for compare-match A.  
(Initial value)  
Bit 0—Output Level B (OLVLB): This bit selects the logic level to be output at the FTOB pin  
when the FRC and OCRB values match.  
Bit 0  
OLVLB Description  
0
1
A “0” logic level (Low) is output for compare-match B.  
A “1” logic level (High) is output for compare-match B.  
(Initial value)  
6.3 CPU Interface  
The free-running counter (FRC), output compare registers (OCRA and OCRB), and input capture  
registers (ICRA to ICRD) are 16-bit registers, but they are connected to an 8-bit data bus. When  
the CPU accesses these registers, to ensure that both bytes are written or read simultaneously, the  
access is performed using an 8-bit temporary register (TEMP).  
These registers are written and read as follows:  
• Register Write  
When the CPU writes to the upper byte, the byte of write data is placed in TEMP. Next, when  
the CPU writes to the lower byte, this byte of data is combined with the byte in TEMP and all 16  
bits are written in the register simultaneously.  
128  
• Register Read  
When the CPU reads the upper byte, the upper byte of data is sent to the CPU and the lower byte  
is placed in TEMP. When the CPU reads the lower byte, it receives the value in TEMP.  
(As an exception, when the CPU reads OCRA or OCRB, it reads both the upper and lower bytes  
directly, without using TEMP.)  
Programs that access these registers should normally use word access. Equivalently, they may  
access first the upper byte, then the lower byte by two consecutive byte accesses. Data will not be  
transferred correctly if the bytes are accessed in reverse order, or if only one byte is accessed.  
Coding Examples  
To write the contents of general register R0 to OCRA:  
To transfer the contents of ICRA to general register R0:  
MOV.W R0, @OCRA  
MOV.W @ICRA, R0  
Figure 6-4 shows the data flow when the FRC is accessed. The other registers are accessed in the  
same way.  
(1) Upper byte write  
Module data bus  
CPU writes  
data H'AA  
Bus interface  
TEMP  
[H'AA]  
FRCL  
FRCH  
[
]
[
]
(2) Lower byte write  
Module data bus  
CPU writes  
data H'55  
Bus interface  
TEMP  
[H'AA]  
FRCH  
[H'AA]  
FRCL  
[H'55]  
Figure 6-4 (a). Write Access to FRC (when CPU Writes H'AA55)  
129  
(1) Upper byte read  
Module data bus  
CPU reads  
data H'AA  
Bus interface  
TEMP  
[H'55]  
FRCH  
[H'AA]  
FRCL  
[H'55]  
(2) Lower byte read  
Module data bus  
CPU reads  
data H'55  
Bus interface  
TEMP  
[H'55]  
FRCH  
FRCL  
[
]
[
]
Figure 6-4 (b). Read Access to FRC (when FRC Contains H'AA55)  
6.4 Operation  
6.4.1 FRC Incrementation Timing  
The FRC increments on a pulse generated once for each period of the selected (internal or external)  
clock source. The clock source is selected by bits CKS0 and CKS1 in the TCR.  
Internal Clock: The internal clock sources (Ø/2, Ø/8, Ø/32) are created from the system clock (Ø)  
by a prescaler. The FRC increments on a pulse generated from the falling edge of the prescaler  
output. See figure 6-5.  
130  
Ø
Internal  
clock  
FRC clock  
pulse  
FRC  
N – 1  
N
N + 1  
Figure 6-5. Increment Timing for Internal Clock Source  
External Clock: If external clock input is selected, the FRC increments on the rising edge of the  
FTCI clock signal. Figure 6-6 shows the increment timing.  
The pulse width of the external clock signal must be at least 1.5 system clock (Ø) periods. The  
counter will not increment correctly if the pulse width is shorter than 1.5 system clock periods.  
Ø
FTCI  
FRC clock pulse  
FRC  
N
N + 1  
Figure 6-6. Increment Timing for External Clock Source  
Ø
FTCI  
Figure 6-7. Minimum External Clock Pulse Width  
131  
6.4.2 Output Compare Timing  
(1) Setting of Output Compare Flags A and B (OCFA and OCFB): The output compare flags  
are set to “1” by an internal compare-match signal generated when the FRC value matches the  
OCRA or OCRB value. This compare-match signal is generated at the last state in which the two  
values match, just before the FRC increments to a new value.  
Accordingly, when the FRC and OCR values match, the compare-match signal is not generated  
until the next period of the clock source. Figure 6-8 shows the timing of the setting of the output  
compare flags.  
Ø
N
N
N + 1  
FRC  
OCRA or OCRB  
Internal compare-  
match signal  
OCFAorOCFB  
Figure 6-8. Setting of Output Compare Flags  
132  
(2) Output Timing: When a compare-match occurs, the logic level selected by the output level  
bit (OLVLA or OLVLB) in TOCR is output at the output compare pin (FTOA or FTOB).  
Figure 6-9 shows the timing of this operation for compare-match A.  
Ø
FRC  
N
N
N + 1  
N
N
N + 1  
OCRA  
Internal compare-  
match A signal  
Clear*  
OLVLA  
FTOA  
Note: * Cleared by software  
Figure 6-9. Timing of Output Compare A  
(3) FRC Clear Timing: If the CCLRA bit in the TCSR is set to “1,” the FRC is cleared when  
compare-match A occurs. Figure 6-10 shows the timing of this operation.  
Ø
Internal compare-  
match A signal  
FRC  
N
H'0000  
Figure 6-10. Clearing of FRC by Compare-Match A  
6.4.3 Input Capture Timing  
(1) Input Capture Timing: An internal input capture signal is generated from the rising or falling  
edge of the signal at the input capture pin FTIx (x = A, B, C, D), as selected by the corresponding  
IEDGx bit in TCR. Figure 6-11 shows the usual input capture timing when the rising edge is  
selected (IEDGx = “1”).  
133  
Ø
Input at FTI pin  
Internal input  
capture signal  
Figure 6-11. Input Capture Timing (Usual Case)  
If the upper byte of ICRx is being read when the input capture signal arrives, the internal input  
capture signal is delayed by one state. Figure 6-12 shows the timing for this case.  
Read cycle: CPU reads upper byte of ICR  
T 1  
T 2  
T 3  
Ø
Input at FTI pin  
Internal input  
capture signal  
Figure 6-12. Input Capture Timing (1-State Delay)  
In buffer mode, this delay occurs if the CPU is reading either of the two registers concerned. When  
ICRA and ICRC are used in buffer mode, for example, if the upper byte of either ICRA or ICRC is  
being read when the FTIA input arrives, the internal input capture signal is delayed by one state.  
Figure 6-13 shows the timing for this case. The case of ICRB and ICRD is similar.  
Read cycle: CPU reads upper byte of ICRA or ICRC  
T 1  
T 2  
T 3  
Ø
Input at  
FTIA pin  
Internal input  
capture signal  
Figure 6-13. Input Capture Timing (1-State Delay, Buffer Mode)  
134  
Figure 6-14 shows how input capture operates when ICRA and ICRC are used in buffer mode and  
IEDGA and IEDGC are set to different values (IEDGA = 0 and IEDGC = 1, or IEDGA = 1 and  
IEDGC = 0), so that input capture is performed on both the rising and falling edges of FTIA.  
Ø
FTIA  
Internal input  
capture signal  
n
n + 1  
N
N + 1  
FRC  
ICRA  
M
n
n
N
n
M
ICRC  
m
M
Figure 6-14. Buffered Input Capture with Both Edges Selected  
In this mode, FTIC does not cause the FRC contents to be copied to ICRC. However, input capture  
flag C still sets on the edge of FTIC selected by IEDGC, and if the interrupt enable bit (ICICE) is  
set, a CPU interrupt is requested.  
The situation when ICRB and ICRD are used in buffer mode is similar.  
135  
(2) Timing of Input Capture Flag (ICF) Setting: The input capture flag ICFx (x = A, B, C, D) is  
set to “1” by the internal input capture signal. Figure 6-15 shows the timing of this operation.  
Ø
Internal input  
capture signal  
ICFA/B/C/D  
FRC  
N
N
ICRA/B/C/D  
Figure 6-15. Setting of Input Capture Flag  
6.4.4 Setting of FRC Overflow Flag (OVF)  
The FRC overflow flag (OVF) is set to “1” when the FRC overflows (changes from H'FFFF to  
H'0000). Figure 6-16 shows the timing of this operation.  
Ø
FRC  
H'FFFF  
H'0000  
Internal overflow  
signal  
OVF  
Figure 6-16. Setting of Overflow Flag (OVF)  
136  
6.5 Interrupts  
The free-running timer can request seven types of interrupts: input capture A to D (ICIA, ICIB,  
ICIC, ICID), output compare A and B (OCIA and OCIB), and overflow (FOVI). Each interrupt is  
requested when the corresponding enable and flag bits are set. Independent signals are sent to the  
interrupt controller for each type of interrupt. Table 6-4 lists information about these interrupts.  
Table 6-4. Free-Running Timer Interrupts  
Interrupt  
ICIA  
Description  
Priority  
Requested when ICFA and ICIAE are set  
Requested when ICFB and ICIBE are set  
Requested when ICFC and ICICE are set  
Requested when ICFD and ICIDE are set  
Requested when OCFA and OCIAE are set  
Requested when OCFB and OCIBE are set  
Requested when OVF and OVIE are set  
High  
ICIB  
ICIC  
ICID  
OCIA  
OCIB  
FOVI  
Low  
6.6 Sample Application  
In the example below, the free-running timer is used to generate two square-wave outputs with a  
50% duty cycle and arbitrary phase relationship. The programming is as follows:  
(1) The CCLRA bit in the TCSR is set to “1.”  
(2) Each time a compare-match interrupt occurs, software inverts the corresponding output level  
bit in TOCR (OLVLA or OLVLB).  
FRC  
H'FFFF  
Clear counter  
OCRA  
OCRB  
H'0000  
FTOA  
FTOB  
Figure 6-17. Square-Wave Output (Example)  
137  
6.7 Application Notes  
Application programmers should note that the following types of contention can occur in the free-  
running timers.  
(1) Contention between FRC Write and Clear: If an internal counter clear signal is generated  
during the T3 state of a write cycle to the lower byte of the free-running counter, the clear signal  
takes priority and the write is not performed.  
Figure 6-18 shows this type of contention.  
Write cycle: CPU write to lower byte of FRC  
T1  
T2  
T3  
Ø
Internal address bus  
FRC address  
Internal write signal  
FRC clear signal  
FRC  
N
H'0000  
Figure 6-18. FRC Write-Clear Contention  
138  
(2) Contention between FRC Write and Increment: If an FRC increment pulse is generated  
during the T3 state of a write cycle to the lower byte of the free-running counter, the write takes  
priority and the FRC is not incremented.  
Figure 6-19 shows this type of contention.  
Write cycle: CPU write to lower byte of FRC  
T 1  
T 2  
T 3  
Ø
Internal address bus  
FRC address  
Internal write signal  
FRC clock pulse  
FRC  
N
M
Write data  
Figure 6-19. FRC Write-Increment Contention  
139  
(3) Contention between OCR Write and Compare-Match: If a compare-match occurs during  
the T3 state of a write cycle to the lower byte of OCRA or OCRB, the write takes priority and the  
compare-match signal is inhibited.  
Figure 6-20 shows this type of contention.  
Write cycle: CPU write to lower byte of OCRA or OCRB  
T1  
T2  
T3  
Ø
Internal address bus  
OCR address  
Internal write signal  
FRC  
N
N
N + 1  
M
OCRAorOCRB  
Write data  
Compare-match  
A or B signal  
Inhibited  
Figure 6-20. Contention between OCR Write and Compare-Match  
140  
(4) Incrementation Caused by Changing of Internal Clock Source: When an internal clock  
source is changed, the changeover may cause the FRC to increment. This depends on the time at  
which the clock select bits (CKS1 and CKS0) are rewritten, as shown in table 6-5.  
The pulse that increments the FRC is generated at the falling edge of the internal clock source. If  
clock sources are changed when the old source is High and the new source is Low, as in case No. 3  
in table 6-5, the changeover generates a falling edge that triggers the FRC increment clock pulse.  
Switching between an internal and external clock source can also cause the FRC to increment.  
Table 6-5. Effect of Changing Internal Clock Sources  
No.  
Description  
Timing chart  
Low Low:  
Old clock  
source  
CKS1 and CKS0 are  
rewritten while both  
clock sources are Low.  
1
New clock  
source  
FRC clock  
pulse  
N
N + 1  
FRC  
CKS rewrite  
Low High:  
Old clock  
source  
CKS1 and CKS0 are  
rewritten while old  
clock source is Low and  
new clock source is High.  
2
New clock  
source  
FRC clock  
pulse  
N
N + 1  
N + 2  
FRC  
CKS rewrite  
141  
Table 6-5. Effect of Changing Internal Clock Sources (cont.)  
No.  
Description  
Timing chart  
High Low:  
Old clock  
source  
CKS1 and CKS0 are  
rewritten while old  
clock source is High and  
new clock source is Low.  
3
New clock  
source  
*
FRC clock  
pulse  
FRC  
N
N + 1  
N + 2  
CKS rewrite  
High High:  
Old clock  
source  
CKS1 and CKS0 are  
rewritten while both  
clock sources are High.  
4
New clock  
source  
FRC clock  
pulse  
N
N + 1  
N + 2  
FRC  
CKS rewrite  
Note: * The switching of clock sources is regarded as a falling edge that increments the FRC.  
142  
Section 7. 8-Bit Timers  
7.1 Overview  
The H8/329 Series includes an 8-bit timer module with two channels (TMR0 and TMR1). Each  
channel has an 8-bit counter (TCNT) and two time constant registers (TCORA and TCORB) that  
are constantly compared with the TCNT value to detect compare-match events. One application of  
the 8-bit timer module is to generate a rectangular-wave output with an arbitrary duty cycle.  
7.1.1 Features  
The features of the 8-bit timer module are listed below.  
• Selection of seven clock sources  
The counters can be driven by one of six internal clock signals or an external clock input  
(enabling use as an external event counter).  
• Selection of three ways to clear the counters  
The counters can be cleared on compare-match A or B, or by an external reset signal.  
• Timer output controlled by two time constants  
The timer output signal in each channel is controlled by two independent time constants,  
enabling the timer to generate output waveforms with an arbitrary duty factor.  
• Three independent interrupts  
Compare-match A and B and overflow interrupts can be requested independently.  
7.1.2 Block Diagram  
Figure 7-1 shows a block diagram of one channel in the 8-bit timer module. The other channel is  
identical.  
143  
Internal  
clock sources  
External  
clock source  
Channel 0  
Ø/2  
Ø/8  
Ø/32  
Ø/64  
Ø/256  
Ø/1024  
Channel 1  
Ø/2  
Ø/8  
TMCI  
Ø/64  
Ø/128  
Ø/1024  
Ø/2048  
Clock  
Clock select  
TCORA  
Compare-match A  
Comparator A  
TCNT  
TMO  
TMRI  
Internal  
data bus  
Overflow  
Clear  
Comparator B  
TCORB  
Control  
logic  
Compare-match B  
TCSR  
TCR  
CMIA  
CMIB  
OVI  
Interrupt signals  
TCR:  
Timer Control Register (8 bits)  
TCSR: Timer Control Status Register (8 bits)  
TCORA: Time Constant Register A (8 bits)  
TCORB: Time Constant Register B (8 bits)  
TCNT: Timer Counter  
Figure 7-1. Block Diagram of 8-Bit Timer  
7.1.3 Input and Output Pins  
Table 7-1 lists the input and output pins of the 8-bit timer.  
Table 7-1. Input and Output Pins of 8-Bit Timer  
Abbreviation  
Name  
TMR0  
TMR1  
TMO1  
TMCI1  
TMRI1  
I/O  
Function  
Timer output  
TMO0  
Output  
Input  
Input  
Output controlled by compare-match  
External clock source for the counter  
External reset signal for the counter  
Timer clock input TMCI0  
Timer reset input TMRI0  
144  
7.1.4 Register Configuration  
Table 7-2 lists the registers of the 8-bit timer module. Each channel has an independent set of  
registers.  
Table 7-2. 8-Bit Timer Registers  
Address  
Name  
Abbreviation R/W  
Initial value TMR0  
TMR1  
Timer control register  
Timer control/status register  
Timer constant register A  
Timer constant register B  
Timer counter  
TCR  
R/W  
H'00  
H'10  
H'FF  
H'FF  
H'00  
H'F8  
H'FFC8 H'FFD0  
H'FFC9 H'FFD1  
H'FFCA H'FFD2  
H'FFCB H'FFD3  
H'FFCC H'FFD4  
H'FFC3 H'FFC3  
TCSR  
TCORA  
TCORB  
TCNT  
STCR  
R/(W)*  
R/W  
R/W  
R/W  
Serial/timer control register  
R/W  
Note: * Software can write a “0” to clear bits 7 to 5, but cannot write a “1” in these bits.  
7.2 Register Descriptions  
7.2.1 Timer Counter (TCNT)—H'FFCC (TMR0), H'FFD4 (TMR1)  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Each timer counter (TCNT) is an 8-bit up-counter that increments on a pulse generated from an  
internal or external clock source selected by clock select bits 2 to 0 (CKS2 to CKS0) of the timer  
control register (TCR). The CPU can always read or write the timer counter.  
The timer counter can be cleared by an external reset input or by an internal compare-match signal  
generated at a compare-match event. Clock clear bits 1 and 0 (CCLR1 and CCLR0) of the timer  
control register select the method of clearing.  
When a timer counter overflows from H'FF to H'00, the overflow flag (OVF) in the timer  
control/status register (TCSR) is set to “1.”  
145  
The timer counters are initialized to H'00 at a reset and in the standby modes.  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Bit  
7
6
5
4
3
2
1
CKS1  
0
0
CKS0  
0
CMIEB CMIEA OVIE CCLR1 CCLR0 CKS2  
Initial value  
Read/Write  
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
146  
Bit 7  
CMIEB Description  
0
1
Compare-match interrupt request B (CMIB) is disabled.  
Compare-match interrupt request B (CMIB) is enabled.  
(Initial value)  
7.2.2 Time Constant Registers A and B (TCORA and TCORB)—H'FFCA and H'FFCB  
(TMR0), H'FFD2 and H'FFD3 (TMR1)  
TCORA and TCORB are 8-bit readable/writable registers. The timer count is continually  
Bit 6  
CMIEA Description  
0
1
Compare-match interrupt request A (CMIA) is disabled.  
Compare-match interrupt request A (CMIA) is enabled.  
(Initial value)  
compared with the constants written in these registers. When a match is detected, the  
corresponding compare-match flag (CMFA or CMFB) is set in the timer control/status register  
(TCSR).  
The timer output signal (TMO0 or TMO1) is controlled by these compare-match signals as  
Bit 5  
OVIE  
Description  
0
1
The timer overflow interrupt request (OVI) is disabled.  
The timer overflow interrupt request (OVI) is enabled.  
(Initial value)  
specified by output select bits 3 to 0 (OS3 to OS0) in the timer control/status register (TCSR).  
TCORA and TCORB are initialized to H'FF at a reset and in the standby modes.  
Bit 4  
Bit 3  
CCLR1 CCLR0 Description  
0
0
1
1
0
1
0
1
Not cleared.  
(Initial value)  
Cleared on compare-match A.  
Cleared on compare-match B.  
Cleared on rising edge of external reset input signal.  
Compare-match is not detected during the T3 state of a write cycle to TCORA or TCORB. See  
item (3) in section 7.6, “Application Notes.”  
7.2.3 Timer Control Register (TCR)—H'FFC8 (TMR0), H'FFD0 (TMR1)  
Each TCR is an 8-bit readable/writable register that selects the clock source and the time at which  
147  
Bits 2, 1, and 0—Clock Select (CKS2, CKS1, and CKS0): These bits and bits ICKS1 and  
ICKS0 in the serial/timer control register (STCR) select the internal or external clock source for the  
timer counter. Six internal clock sources, derived by prescaling the system clock, are available for  
each timer channel. For internal clock sources the counter is incremented on the falling edge of the  
internal clock. For an external clock source, these bits can select whether to increment the counter  
on the rising or falling edge of the clock input, or on both edges.  
TCR  
STCR  
Bit 2 Bit 1 Bit 0 Bit 1 Bit 0  
Channel CKS2 CKS1 CKS0 ICKS1 ICKS0 Description  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
1
1
0
0
1
1
0
1
1
0
0
1
1
0
1
0
1
0
No clock source (timer stopped) (Initial value)  
Ø/8 internal clock, counted on falling edge  
Ø/2 internal clock, counted on falling edge  
Ø/64 internal clock, counted on falling edge  
Ø/32 internal clock, counted on falling edge  
Ø/1024 internal clock, counted on falling edge  
Ø/256 internal clock, counted on falling edge  
No clock source (timer stopped)  
1
0
1
0
1
External clock source, counted on rising edge  
External clock source, counted on falling edge  
External clock source, counted on both rising  
and falling edges  
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
1
1
0
0
1
1
0
1
1
0
0
1
1
0
1
0
1
0
No clock source (timer stopped) (Initial value)  
Ø/8 internal clock, counted on falling edge  
Ø/2 internal clock, counted on falling edge  
Ø/64 internal clock, counted on falling edge  
Ø/128 internal clock, counted on falling edge  
Ø/1024 internal clock, counted on falling edge  
Ø/2048 internal clock, counted on falling edge  
No clock source (timer stopped)  
1
0
1
0
1
External clock source, counted on rising edge  
External clock source, counted on falling edge  
External clock source, counted on both rising  
and falling edges  
148  
the timer counter is cleared, and enables interrupts.  
Bit  
7
6
5
OVF  
0
4
1
3
2
1
0
CMFB CMFA  
OS3  
0
OS2  
0
OS1  
0
OS0  
0
Initial value  
Read/Write  
0
0
R/(W)* R/(W)* R/(W)*  
R/W  
R/W  
R/W  
R/W  
The TCRs are initialized to H'00 at a reset and in the standby modes.  
For timing diagrams, see section 7.3, “Operation.”  
Bit 7—Compare-match Interrupt Enable B (CMIEB): This bit selects whether to request  
compare-match interrupt B (CMIB) when compare-match flag B (CMFB) in the timer  
control/status register (TCSR) is set to “1.”  
Bit 7  
CMFB  
Description  
0
To clear CMFB, the CPU must read CMFB after  
it has been set to “1,” then write a “0” in this bit.  
This bit is set to 1 when TCNT = TCORB.  
(Initial value)  
1
Bit 6  
CMFA  
0
Description  
To clear CMFA, the CPU must read CMFA after  
it has been set to “1,” then write a “0” in this bit.  
This bit is set to 1 when TCNT = TCORA.  
(Initial value)  
1
149  
Bit 6—Compare-match Interrupt Enable A (CMIEA): This bit selects whether to request  
compare-match interrupt A (CMIA) when compare-match flag A (CMFA) in the timer  
control/status register (TCSR) is set to “1.”  
Bit 5  
OVF  
Description  
0
To clear OVF, the CPU must read OVF after  
it has been set to “1,” then write a “0” in this bit.  
This bit is set to 1 when TCNT changes from H'FF to H'00.  
(Initial value)  
1
Bit 5—Timer Overflow Interrupt Enable (OVIE): This bit selects whether to request a timer  
overflow interrupt (OVI) when the overflow flag (OVF) in the timer control/status register (TCSR)  
is set to “1.”  
Bits 4 and 3—Counter Clear 1 and 0 (CCLR1 and CCLR0): These bits select how the timer  
counter is cleared: by compare-match A or B or by an external reset input.  
Bit 3  
Bit 2  
OS3  
OS2  
Description  
0
0
1
1
0
1
0
1
No change when compare-match B occurs.  
Output changes to “0” when compare-match B occurs.  
Output changes to “1” when compare-match B occurs.  
Output inverts (toggles) when compare-match B occurs.  
(Initial value)  
Bit 1  
Bit 0  
OS1  
OS0  
Description  
0
0
1
1
0
1
0
1
No change when compare-match A occurs.  
Output changes to “0” when compare-match A occurs.  
Output changes to “1” when compare-match A occurs.  
Output inverts (toggles) when compare-match A occurs.  
(Initial value)  
150  
7.2.5 Serial/Timer Control Register (STCR)—H'FFC3  
Bit  
7
1
6
1
5
1
4
1
3
1
2
1
0
MPE  
0
ICKS1 ICKS0  
Initial value  
Read/Write  
0
0
R/W  
R/W  
R/W  
The STCR is an 8-bit readable/writable register that controls the serial communication interface  
and selects internal clock sources for the timer counters.  
The STCR is initialized to H'F8 at a reset.  
Bits 7 to 3—Reserved: These bits cannot be modified and are always read as “1.”  
Bit 2—Multiprocessor Enable (MPE): Controls the operating mode of the serial communication  
interface. For details, see section 8, “Serial Communication Interface.”  
Bits 1 and 0—Internal Clock Source Select 1 and 0 (ICKS1 and ICKS0): These bits and bits  
CKS2 to CKS0 in the TCR select clock sources for the timer counters. For details, see  
section 7.2.3, “Timer Control Register.”  
151  
7.2.4 Timer Control/Status Register (TCSR)—H'FFC9 (TMR0), H'FFD1 (TMR1)  
Note: * Software can write a “0” in bits 7 to 5 to clear the flags, but cannot write a “1” in these  
bits.  
The TCSR is an 8-bit readable and partially writable register that indicates compare-match and  
overflow status and selects the effect of compare-match events on the timer output signal.  
The TCSR is initialized to H'10 at a reset and in the standby modes.  
Bit 7—Compare-Match Flag B (CMFB): This status flag is set to “1” when the timer count  
Ø
Internal  
clock  
TCNT clock  
pulse  
TCNT  
N–1  
N
N+1  
matches the time constant set in TCORB. CMFB must be cleared by software. It is set by  
hardware, however, and cannot be set by software.  
Bit 6—Compare-Match Flag A (CMFA): This status flag is set to “1” when the timer count  
matches the time constant set in TCORA. CMFA must be cleared by software. It is set by  
hardware, however, and cannot be set by software.  
152  
Ø
External clock  
source  
TCNT clock  
pulse  
TCNT  
N – 1  
N
N + 1  
Bit 5—Timer Overflow Flag (OVF): This status flag is set to “1” when the timer count overflows  
(changes from H'FF to H'00). OVF must be cleared by software. It is set by hardware, however,  
Ø
TMCI  
Minimum TMCI Pulse Width  
(Single-Edge Incrementation)  
Ø
TMCI  
Minimum TMCI Pulse Width  
(Double-Edge Incrementation)  
and cannot be set by software.  
Bit 4—Reserved: This bit cannot be modified and is always read as “1.”  
Bits 3 to 0—Output Select 3 to 0 (OS3 to OS0): These bits specify the effect of compare-match  
events on the timer output signal (TCOR or TCNT). Bits OS3 and OS2 control the effect of  
compare-match B on the output level. Bits OS1 and OS0 control the effect of compare-match A on  
the output level.  
153  
If compare-match A and B occur simultaneously, any conflict is resolved as explained in item (4) in  
section 7.6, “Application Notes.”  
Ø
N
N
N + 1  
TCNT  
TCOR  
Internal  
compare-match  
signal  
CMF  
After a reset, the timer output is “0” until the first compare-match event.  
When all four output select bits are cleared to “0” the timer output signal is disabled.  
Ø
Internal  
compare-match  
A signal  
Timer output  
(TMO)  
154  
7.3 Operation  
7.3.1 TCNT Incrementation Timing  
Ø
Internal  
compare-match  
signal  
TCNT  
N
H'00  
The timer counter increments on a pulse generated once for each period of the selected (internal or  
external) clock source.  
Internal Clock: Internal clock sources are created from the system clock by a prescaler. The  
counter increments on an internal TCNT clock pulse generated from the falling edge of the  
prescaler output, as shown in figure 7-2. Bits CKS2 to CKS0 of the TCR and bits ICKS1 and  
ICKS0 of the STCR can select one of the six internal clocks.  
Ø
External reset  
input (TMRI)  
Internal clear  
pulse  
N – 1  
N
H'00  
TCNT  
Figure 7-2. Count Timing for Internal Clock Input  
External Clock: If external clock input (TMCI) is selected, the timer counter can increment on the  
rising edge, the falling edge, or both edges of the external clock signal. Figure 7-3 shows  
incrementation on both edges of the external clock signal.  
The external clock pulse width must be at least 1.5 system clock periods for incrementation on a  
155  
single edge, and at least 2.5 system clock periods for incrementation on both edges. See  
figure 7-4. The counter will not increment correctly if the pulse width is shorter than these values.  
Ø
TCNT  
H'FF  
H'00  
Internal overflow  
signal  
OVF  
156  
Figure 7-3. Count Timing for External Clock Input  
Figure 7-4. Minimum External Clock Pulse Widths (Example)  
7.3.2 Compare Match Timing  
(1) Setting of Compare-Match Flags A and B (CMFA and CMFB): The compare-match flags  
are set to “1” by an internal compare-match signal generated when the timer count matches the time  
Interrupt  
CMIA  
CMIB  
OVI  
Description  
Priority  
Requested when CMFA and CMIEA are set  
Requested when CMFB and CMIEB are set  
Requested when OVF and OVIE are set  
High  
Low  
constant in TCNT or TCOR. The compare-match signal is generated at the last state in which the  
match is true, just before the timer counter increments to a new value.  
TCNT  
H'FF  
Clear counter  
TCORA  
TCORB  
H'00  
TMO pin  
157  
Accordingly, when the timer count matches one of the time constants, the compare-match signal is  
not generated until the next period of the clock source. Figure 7-5 shows the timing of the setting  
of the compare-match flags.  
Figure 7-5. Setting of Compare-Match Flags  
(2) Output Timing: When a compare-match event occurs, the timer output (TMO0 or TMO1)  
changes as specified by the output select bits (OS3 to OS0) in the TCSR. Depending on these bits,  
the output can remain the same, change to “0,” change to “1,” or toggle.  
Figure 7-6 shows the timing when the output is set to toggle on compare-match A.  
Write cycle: CPU writes to TCNT  
T1  
T2  
T3  
Ø
Internal Address  
bus  
TCNT address  
Internal write  
signal  
Counter clear  
signal  
TCNT  
N
H'00  
Figure 7-6. Timing of Timer Output  
158  
(3) Timing of Compare-Match Clear: Depending on the CCLR1 and CCLR0 bits in the TCR,  
the timer counter can be cleared when compare-match A or B occurs. Figure 7-7 shows the timing  
of this operation.  
Figure 7-7. Timing of Compare-Match Clear  
Write cycle: CPU writes to TCNT  
T1  
T2  
T3  
Ø
Internal Address  
bus  
TCNT address  
Internal write  
signal  
TCNT clock  
pulse  
TCNT  
N
M
Write data  
7.3.3 External Reset of TCNT  
When the CCLR1 and CCLR0 bits in the TCR are both set to “1,” the timer counter is cleared on  
the rising edge of an external reset input. Figure 7-8 shows the timing of this operation. The timer  
reset pulse width must be at least 1.5 system clock periods.  
Figure 7-8. Timing of External Reset  
159  
7.3.4 Setting of TCSR Overflow Flag (OVF)  
The overflow flag (OVF) is set to “1” when the timer count overflows (changes from H'FF to  
H'00). Figure 7-9 shows the timing of this operation.  
Write cycle: CPU writes to TCORA or TCORB  
T1  
T2  
T3  
Ø
Internal address  
bus  
TCOR address  
Internal write  
signal  
N + 1  
TCNT  
N
TCORAor  
TCORB  
N
M
TCOR write data  
Compare-match  
A or B signal  
Inhibited  
Figure 7-9. Setting of Overflow Flag (OVF)  
Output selection  
Toggle  
Priority  
High  
“1” Output  
“0” Output  
No change  
Low  
160  
7.4 Interrupts  
Each channel in the 8-bit timer can generate three types of interrupts: compare-match A and B  
(CMIA and CMIB), and overflow (OVI). Each interrupt is requested when the corresponding  
enable bits are set in the TCR and TCSR. Independent signals are sent to the interrupt controller  
for each interrupt. Table 7-3 lists information about these interrupts.  
Table 7-3. 8-Bit Timer Interrupts  
7.5 Sample Application  
In the example below, the 8-bit timer is used to generate a pulse output with a selected duty cycle.  
No.  
Description  
Timing chart  
Low Low*1:  
Old clock  
source  
Clock select bits are  
rewritten while both  
clock sources are Low.  
1
New clock  
source  
TCNT clock  
pulse  
N + 1  
TCNT  
N
CKS rewrite  
Low High*2:  
Old clock  
source  
Clock select bits are  
rewritten while old  
2
New clock  
source  
clock source is Low and  
new clock source is High.  
TCNT clock  
pulse  
TCNT  
N
N + 1  
N + 2  
CKS rewrite  
The control bits are set as follows:  
(1) In the TCR, CCLR1 is cleared to “0” and CCLR0 is set to “1” so that the timer counter is  
cleared when its value matches the constant in TCORA.  
161  
(2) In the TCSR, bits OS3 to OS0 are set to “0110,” causing the output to change to “1” on  
No.  
Description  
Timing chart  
High Low*1:  
Old clock  
source  
Clock select bits are  
rewritten while old  
clock source is High and  
new clock source is Low.  
3
New clock  
source  
*32  
*
TCNT clock  
pulse  
TCNT  
N
N + 1  
N + 2  
CKS rewrite  
High High:  
Old clock  
source  
Clock select bits are  
rewritten while both  
clock sources are High.  
4
New clock  
source  
TCNT clock  
pulse  
TCNT  
N
N + 1  
N + 2  
CKS rewrite  
compare-match A and to “0” on compare-match B.  
With these settings, the 8-bit timer provides output of pulses at a rate determined by TCORA with a  
pulse width determined by TCORB. No software intervention is required.  
Figure 7-10. Example of Pulse Output  
7.6 Application Notes  
Application programmers should note that the following types of contention can occur in the 8-bit  
timer.  
(1) Contention between TCNT Write and Clear: If an internal counter clear signal is generated  
during the T3 state of a write cycle to the timer counter, the clear signal takes priority and the write  
is not performed.  
Figure 7-11 shows this type of contention.  
162  
Section 8. Serial Communication Interface  
8.1 Overview  
The H8/329 Series includes a serial communication interface (SCI) for transferring serial data to  
and from other chips. Either synchronous or asynchronous communication can be selected.  
8.1.1 Features  
The features of the on-chip serial communication interface are:  
• Asynchronous mode  
The H8/329 Series can communicate with a UART (Universal Asynchronous  
Receiver/Transmitter), ACIA (Asynchronous Communication Interface Adapter), or other chip  
that employs standard asynchronous serial communication. It also has a multiprocessor  
communication function for communication with other processors. Twelve data formats are  
available.  
— Data length: 7 or 8 bits  
— Stop bit length: 1 or 2 bits  
— Parity: Even, odd, or none  
— Multiprocessor bit: “1” or “0”  
— Error detection: Parity, overrun, and framing errors  
— Break detection: When a framing error occurs, the break condition can be detected by  
reading the level of the RxD line directly.  
• Synchronous mode  
The SCI can communicate with chips able to perform clocked synchronous data transfer.  
— Data length: 8 bits  
— Error detection: Overrun errors  
• Full duplex communication  
The transmitting and receiving sections are independent, so each channel can transmit and  
receive simultaneously. Both the transmit and receive sections use double buffering, so  
continuous data transfer is possible in either direction.  
• Built-in baud rate generator  
Any specified baud rate can be generated.  
• Internal or external clock source  
The SCI can operate on an internal clock signal from baud rate generator, or an external clock  
signal input at the SCK pin.  
• Four interrupts  
TDR-empty, TSR-empty, receive-end, and receive-error interrupts are requested independently.  
163  
8.1.2 Block Diagram  
Figure 8-1 shows a block diagram of the serial communication interface.  
Internal  
data bus  
Module data bus  
RDR  
RSR  
TDR  
TSR  
SSR  
SCR  
SMR  
BRR  
Internal  
clock  
RxD  
TxD  
Ø
Communi-  
cation  
control  
Ø/4  
Ø/16  
Ø/64  
Baud rate  
generator  
Parity  
generate  
Clock  
Parity check  
External clock source  
SCK  
TEI  
TXI  
RXI  
ERI  
RSR: Receive Shift Register (8 bits)  
RDR: Receive Data Register (8 bits)  
TSR:  
TDR:  
Transmit Shift Register (8 bits)  
Transmit Data Register (8 bits)  
Interrupt signals  
SMR: Serial Mode Register (8 bits)  
SCR: Serial Control Register (8 bits)  
SSR: Serial Status Register (8 bits)  
BRR: Bit Rate Register (8 bits)  
Figure 8-1. Block Diagram of Serial Communication Interface  
164  
8.1.3 Input and Output Pins  
Table 8-1 lists the input and output pins used by the SCI module.  
Table 8-1. SCI Input/Output Pins  
Name  
Abbr.  
SCK  
RxD  
TxD  
I/O  
Function  
Serial clock  
Receive data  
Transmit data  
Input/output  
Input  
Serial clock input and output.  
Receive data input.  
Transmit data output.  
Output  
8.1.4 Register Configuration  
Table 8-2 lists the SCI registers. These registers specify the operating mode (synchronous or  
asynchronous), data format and bit rate, and control the transmit and receive sections.  
Table 8-2. SCI Registers  
Name  
Abbr.  
RSR  
RDR  
TSR  
R/W  
Value  
Address  
Receive shift register  
Receive data register  
Transmit shift register  
Transmit data register  
Serial mode register  
Serial control register  
Serial status register  
Bit rate register  
R
H'00  
H'FFDD  
TDR  
SMR  
SCR  
SSR  
R/W  
R/W  
R/W  
R/(W)*  
R/W  
R/W  
H'FF  
H'00  
H'00  
H'84  
H'FF  
H'F8  
H'FFDB  
H'FFD8  
H'FFDA  
H'FFDC  
H'FFD9  
H'FFC3  
BRR  
STCR  
Serial/timer control register  
Note: * Software can write a “0” to clear the flags in bits 7 to 3, but cannot write “1” in these bits.  
165  
8.2 Register Descriptions  
8.2.1 Receive Shift Register (RSR)  
Bit  
7
6
5
4
3
2
1
0
Read/Write  
The RSR receives incoming data bits. When one data character has been received, it is transferred  
to the receive data register (RDR).  
The CPU cannot read or write the RSR directly.  
8.2.2 Receive Data Register (RDR)—H'FFDD  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
The RDR stores received data. As each character is received, it is transferred from the RSR to the  
RDR, enabling the RSR to receive the next character. This double-buffering allows the SCI to  
receive data continuously.  
The CPU can read but not write the RDR. The RDR is initialized to H'00 at a reset and in the  
standby modes.  
8.2.3 Transmit Shift Register (TSR)  
Bit  
7
6
5
4
3
2
1
0
Read/Write  
The TSR holds the character currently being transmitted. When transmission of this character is  
completed, the next character is moved from the transmit data register (TDR) to the TSR and  
transmission of that character begins. If the TDRE bit is still set to “1,” however, nothing is  
transferred to the TSR.  
The CPU cannot read or write the TSR directly.  
166  
8.2.4 Transmit Data Register (TDR)—H'FFDB  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The TDR is an 8-bit readable/writable register that holds the next character to be transmitted.  
When the TSR becomes empty, the character written in the TDR is transferred to the TSR.  
Continuous data transmission is possible by writing the next byte in the TDR while the current byte  
is being transmitted from the TSR.  
The TDR is initialized to H'FF at a reset and in the standby modes.  
8.2.5 Serial Mode Register (SMR)—H'FFD8  
Bit  
7
C/A  
0
6
5
PE  
0
4
O/E  
0
3
STOP  
0
2
MP  
0
1
CKS1  
0
0
CKS0  
0
CHR  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The SMR is an 8-bit readable/writable register that controls the communication format and selects  
the clock rate for the internal clock source. It is initialized to H'00 at a reset and in the standby  
modes. For further information on the SMR settings and communication formats, see tables 8-5  
and 8-7 in section 8.3, “Operation.”  
Bit 7—Communication Mode (C/A): This bit selects the asynchronous or clocked synchronous  
communication mode.  
Bit 7  
C/A Description  
0
1
Asynchronous communication.  
(Initial value)  
Clocked synchronous communication.  
167  
Bit 6—Character Length (CHR): This bit selects the character length in asynchronous mode.  
It is ignored in synchronous mode. The character length is always eight bits in synchronous mode.  
Bit 6  
CHR  
Description  
0
1
8 bits per character.  
(Initial value)  
7 bits per character. (Bits 0 to 6 in TDR and RDR are sent and received.)  
Bit 5—Parity Enable (PE): This bit selects whether to add a parity bit in asynchronous mode.  
It is ignored in synchronous mode, and when a multiprocessor format is used.  
Bit 5  
PE  
Description  
0
Transmit: No parity bit is added.  
Receive: Parity is not checked.  
Transmit: A parity bit is added.  
Receive: Parity is checked.  
(Initial value)  
1
Bit 4—Parity Mode (O/E ): In asynchronous mode, when parity is enabled (PE = “1”), this bit  
selects even or odd parity.  
Even parity means that a parity bit is added to the data bits for each character to make the total  
number of 1’s even. Odd parity means that the total number of 1’s is made odd.  
This bit is ignored when PE = “0,” or when a multiprocessor format is used. It is also ignored in  
the synchronous mode.  
Bit 4  
O/E  
0
Description  
Even parity.  
Odd parity.  
(Initial value)  
1
168  
Bit 3—Stop Bit Length (STOP): This bit selects the number of stop bits. It is ignored in the  
synchronous mode.  
Bit 3  
STOP  
Description  
0
One stop bit  
(Initial value)  
Transmit: one stop bit is added.  
Receive: one stop bit is checked to detect framing errors.  
Two stop bits  
1
Transmit: two stop bits are added.  
Receive: the first stop bit is checked to detect framing errors; if the second bit is a space  
(0), it is regarded as the next start bit.  
Bit 2—Multiprocessor Mode (MP): This bit selects the multiprocessor format in asynchronous  
communication. When multiprocessor format is selected, the parity settings of the parity enable bit  
(PE) and parity mode bit (O/E) are ignored. The MP bit is ignored in synchronous communication.  
The MP bit is valid only when the MPE bit in the serial/timer control register (STCR) is set to “1.”  
When the MPE bit is cleared to “0,” the multiprocessor communication function is disabled  
regardless of the setting of the MP bit.  
Bit 2  
MP  
0
Description  
Multiprocessor communication function is disabled.  
Multiprocessor communication function is enabled.  
(Initial value)  
1
Bits 1 and 0—Clock Select 1 and 0 (CKS1 and CKS0): These bits select the internal clock  
source when the baud rate generator is clocked from within the chip.  
Bit 1  
Bit 0  
CKS1  
CKS0  
Description  
Ø clock  
0
0
1
1
0
1
0
1
(Initial value)  
Ø/4 clock  
Ø/16 clock  
Ø/64 clock  
169  
8.2.6 Serial Control Register (SCR)—H'FFDA  
Bit  
7
TIE  
0
6
RIE  
0
5
TE  
0
4
RE  
0
3
MPIE  
0
2
1
CKE1  
0
0
CKE0  
0
TEIE  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The SCR is an 8-bit readable/writable register that enables or disables various SCI functions.  
It is initialized to H'00 at a reset and in the standby modes.  
Bit 7—Transmit Interrupt Enable (TIE): This bit enables or disables the TDR-empty interrupt  
(TXI) requested when the transmit data register empty (TDRE) bit in the serial status register (SSR)  
is set to “1.”  
Bit 7  
TIE  
0
Description  
The TDR-empty interrupt request (TXI) is disabled.  
The TDR-empty interrupt request (TXI) is enabled.  
(Initial value)  
1
Bit 6—Receive Interrupt Enable (RIE): This bit enables or disables the receive-end interrupt  
(RxI) requested when the receive data register full (RDRF) bit in the serial status register (SSR) is  
set to “1.” It also enables or disables the receive-error interrupt (ERI) requested when the overrun  
error (ORER), framing error (FER), or parity error (PER) bit is set to “1.”  
Bit 6  
RIE  
Description  
0
The receive-end interrupt (RxI) and receive-error interrupt (ERI)  
requests are disabled.  
(Initial value)  
1
The receive-end interrupt (RxI) and receive-error interrupt (ERI)  
requests are enabled.  
170  
Bit 5—Transmit Enable (TE): This bit enables or disables the transmit function. When the  
transmit function is enabled, the TxD pin is automatically used for output. When the transmit  
function is disabled, the TxD pin can be used as a general-purpose I/O port.  
Bit 5  
TE  
Description  
0
The transmit function is disabled.  
(Initial value)  
The TxD pin can be used for general-purpose I/O.  
The transmit function is enabled. The TxD pin is used for output.  
1
Bit 4—Receive Enable (RE): This bit enables or disables the receive function. When the receive  
function is enabled, the RxD pin is automatically used for input. When the receive function is  
disabled, the RxD pin is available as a general-purpose I/O port.  
Bit 4  
RE  
Description  
0
The receive function is disabled. The RxD pin can be  
used for general-purpose I/O.  
(Initial value)  
1
The receive function is enabled. The RxD pin is used for input.  
171  
Bit 3—Multiprocessor Interrupt Enable (MPIE): When serial data are received in a  
multiprocessor format, this bit enables or disables the receive-end interrupt (RxI) and receive-error  
interrupt (ERI) until data with the multiprocessor bit set to “1” are received. It also enables or  
disables the transfer of received data from the RSR to the RDR, and enables or disables setting of  
the RDRF, FER, PER, and ORER bits in the serial status register (SSR).  
The MPIE bit is ignored when a multiprocessor format is not used, and in synchronous mode.  
Clearing the MPIE bit to “0” disables the multiprocessor receive interrupt function. In this  
condition data are received regardless of the value of the multiprocessor bit in the receive data.  
Setting the MPIE bit to “1” enables the multiprocessor receive interrupt function. In this condition,  
if the multiprocessor bit in the receive data is “0,” the receive-end interrupt (RxI) and receive-error  
interrupt (ERI) are disabled, the receive data are not transferred from the RSR to the RDR, and the  
RDRF, FER, PER, and ORER bits in the serial status register (SSR) are not set. If the  
multiprocessor bit is “1,” however, the MPB bit in the SSR is set to “1,” the MPIE bit is cleared to  
“0,” the FER, PER, and ORER bits can be set, and the receive-end and receive-error interrupts are  
enabled.  
Bit 3  
MPIE  
Description  
0
The multiprocessor receive interrupt function is disabled.  
(Normal receive operation)  
(Initial value)  
1
The multiprocessor receive interrupt function is enabled. During the  
interval before data with the multiprocessor bit set to “1” are received,  
the receive interrupt request (RxI) and receive-error interrupt request  
(ERI) are disabled, the RDRF, FER, PER, and ORER bits are not set in  
the serial status register (SSR), and no data are transferred from the RSR  
to the RDR. The MPIE bit is cleared at the following times:  
(1) When “0” is written in MPIE.  
(2) When data with the multiprocessor bit set to “1” are received.  
172  
Bit 2—Transmit-End Interrupt Enable (TEIE): This bit enables or disables the TSR-empty  
interrupt (TEI) requested when the transmit-end bit (TEND) in the serial status register (SSR) is set  
to “1.”  
Bit 2  
TEIE  
Description  
0
1
The TSR-empty interrupt request (TEI) is disabled.  
The TSR-empty interrupt request (TEI) is enabled.  
(Initial value)  
Bit 1—Clock Enable 1 (CKE1): This bit selects the internal or external clock source for the baud  
rate generator. When the external clock source is selected, the SCK pin is automatically used for  
input of the external clock signal.  
Bit 1  
CKE1  
Description  
0
Internal clock source.  
(Initial value)  
When C/A = “1,” the serial clock signal is output at the SCK pin.  
When C/A = “0,” output depends on the CKE0 bit.  
External clock source. The SCK pin is used for input.  
1
Bit 0—Clock Enable 0 (CKE0): When an internal clock source is used in asynchronous mode,  
this bit enables or disables serial clock output at the SCK pin.  
This bit is ignored when the external clock is selected, or when synchronous mode is selected.  
For further information on the communication format and clock source selection, see table 8-7 in  
section 8.3, “Operation.”  
Bit 0  
CKE0  
Description  
0
The SCK pin is not used by the SCI (and is available as  
a general-purpose I/O port).  
(Initial value)  
1
The SCK pin is used for serial clock output.  
173  
8.2.7 Serial Status Register (SSR)—H'FFDC  
Bit  
7
6
5
4
FER  
0
3
PER  
0
2
TEND  
1
1
MPB  
0
0
MPBT  
0
TDRE RDRF ORER  
Initial value  
Read/Write  
1
0
0
R/(W)* R/(W)* R/(W)* R/(W)* R/(W)*  
R
R
R/W  
Note: * Software can write a “0” to clear the flags, but cannot write a “1” in these bits.  
The SSR is an 8-bit register that indicates transmit and receive status. It is initialized to H'84 at a  
reset and in the standby modes.  
Bit 7—Transmit Data Register Empty (TDRE): This bit indicates when the TDR contents have  
been transferred to the TSR and the next character can safely be written in the TDR.  
Bit 7  
TDRE  
Description  
0
To clear TDRE, the CPU must read TDRE after it has been set to “1,”  
then write a “0” in this bit.  
1
This bit is set to 1 at the following times:  
(1) When TDR contents are transferred to the TSR.  
(2) When the TE bit in the SCR is cleared to “0.”  
(Initial value)  
Bit 6—Receive Data Register Full (RDRF): This bit indicates when one character has been  
received and transferred to the RDR.  
Bit 6  
RDRF  
Description  
0
To clear RDRF, the CPU must read RDRF after  
it has been set to “1,” then write a “0” in this bit.  
This bit is set to 1 when one character is received without error and  
transferred from the RSR to the RDR.  
(Initial value)  
1
174  
Bit 5—Overrun Error (ORER): This bit indicates an overrun error during reception.  
Bit 5  
ORER  
Description  
0
To clear ORER, the CPU must read ORER after  
it has been set to “1,” then write a “0” in this bit.  
This bit is set to 1 if reception of the next character ends while  
the receive data register is still full (RDRF = “1”).  
(Initial value)  
1
Bit 4—Framing Error (FER): This bit indicates a framing error during data reception in  
asynchronous mode. It has no meaning in synchronous mode.  
Bit 4  
FER  
Description  
0
To clear FER, the CPU must read FER after  
it has been set to “1,” then write a “0” in this bit.  
This bit is set to 1 if a framing error occurs (stop bit = “0”).  
(Initial value)  
1
Bit 3—Parity Error (PER): This bit indicates a parity error during data reception in the  
asynchronous mode, when a communication format with parity bits is used.  
This bit has no meaning in the synchronous mode, or when a communication format without parity  
bits is used.  
Bit 3  
PER  
Description  
0
To clear PER, the CPU must read PER after  
(Initial value)  
it has been set to “1,” then write a “0” in this bit.  
This bit is set to “1” when a parity error occurs (the parity of the received  
data does not match the parity selected by the O/E bit in SMR).  
1
175  
Bit 2—Transmit End (TEND): This bit indicates that transmission of a character has ended and  
the serial communication interface has stopped transmitting because there is no valid data in the  
TDR. The TEND bit is also set to “1” when the TE bit in the serial control register (SCR) is  
cleared to “0.”  
The TEND bit can be read but not written. To use the TEI interrupt, after TEND is cleared to “0”  
at the start of data transmission, set TEIE to “1” to enable the interrupt.  
Bit 2  
TEND  
Description  
0
To clear TEND, the CPU must read TDRE after  
it has been set to “1,” then write a “0” in TDRE.  
This bit is set to “1” when:  
(Initial value)  
1
(1) TE = “0”  
(2) TDRE = “1” at the end of transmission of a character  
Bit 1—Multiprocessor Bit (MPB): Stores the value of the multiprocessor bit in data received in a  
multiprocessor format in asynchronous communication mode. In synchronous mode, when a  
multiprocessor format is not used, or if the RE bit is cleared to “0” when a multiprocessor format is  
used, the MPB bit retains its previous value.  
MPB can be read but not written.  
Bit 1  
MPB  
Description  
0
1
Multiprocessor bit = “0” in receive data.  
Multiprocessor bit = “1” in receive data.  
(Initial value)  
Bit 0—Multiprocessor Bit Transfer (MPBT): Stores the value of the multiprocessor bit inserted  
in transmit data when a multiprocessor format is used in asynchronous communication mode. The  
MPBT bit is double-buffered, in the same way that TSR and TDR are double-buffered. The MPBT  
bit has no effect in synchronous mode, or when a multiprocessor format is not used.  
Bit 0  
MPBT  
Description  
0
1
Multiprocessor bit = “0” in transmit data.  
Multiprocessor bit = “1” in transmit data.  
(Initial value)  
176  
8.2.8 Bit Rate Register (BRR)—H'FFD9  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The BRR is an 8-bit register that, together with the CKS1 and CKS0 bits in the SMR, determines  
the baud rate output by the baud rate generator.  
The BRR is initialized to H'FF (the slowest rate) at a reset and in the standby modes.  
Tables 8-3 and 8-4 show examples of BRR (N) and CKS (n) settings for commonly used bit rates.  
Table 8-3. Examples of BRR Settings in Asynchronous Mode (1)  
XTAL frequency (MHz)  
2
2.4576  
4
4.194304  
Error  
(%)  
Bit  
Error  
(%)  
Error  
(%)  
Error  
(%)  
rate  
110  
n
N
n
1
0
0
0
0
0
0
0
0
0
N
n
N
n
N
1
70 +0.03  
207 +0.16  
103 +0.16  
51 +0.16  
25 +0.16  
12 +0.16  
86 +0.31  
255 0  
1
141  
103  
207  
103  
51  
+0.03  
+0.16  
+0.16  
+0.16  
+0.16  
+0.16  
+0.16  
1
148 –0.04  
108 +0.21  
217 +0.21  
108 +0.21  
150  
0
1
1
300  
0
127 0  
0
0
600  
0
63  
31  
15  
7
0
0
0
1200  
2400  
4800  
9600  
0
0
0
0
54  
26  
13  
6
–0.70  
+1.14  
–2.48  
–2.48  
0
0
0
25  
0
0
0
0
0
12  
0
3
0
0
0
19200 —  
31250 0  
38400 —  
1
0
0
0
1
0
177  
Table 8-3. Examples of BRR Settings in Asynchronous Mode (2)  
XTAL frequency (MHz)  
4.9152  
Error  
(%)  
6
7.3728  
8
Bit  
Error  
(%)  
Error  
Error  
(%)  
rate  
110  
n
1
1
0
0
0
0
0
0
N
n
2
1
1
0
0
0
0
0
0
0
N
n
2
1
1
0
0
0
0
0
0
0
N
(%)  
n
2
N
174 –0.26  
127 0  
52 +0.50  
155 +0.16  
77 +0.16  
155 +0.16  
77 +0.16  
38 +0.16  
19 –2.34  
64  
191  
95  
191  
95  
47  
23  
11  
5
+0.70  
70  
+0.03  
150  
0
0
0
0
0
0
0
0
0
1
207 +0.16  
103 +0.16  
207 +0.16  
103 +0.16  
300  
255 0  
1
600  
127 0  
0
1200  
2400  
4800  
9600  
63  
31  
15  
7
0
0
0
0
51  
25  
12  
3
+0.16  
+0.16  
+0.16  
0
0
0
9
–2.34  
–2.34  
0
0
19200 0  
31250 —  
38400 0  
3
0
4
0
1
0
2
2
0
Table 8-3. Examples of BRR Settings in Asynchronous Mode (3)  
XTAL frequency (MHz)  
9.8304  
10  
12  
12.288  
N
Bit  
Error  
(%)  
Error  
(%)  
Error  
(%)  
–0.44  
0
Error  
(%)  
rate  
110  
n
2
1
1
0
0
0
0
0
N
n
2
2
1
1
0
0
0
0
0
0
0
N
n
2
N
n
2
2
1
1
0
0
0
0
0
0
86 +0.31  
255 0  
88 –0.25  
64 +0.16  
129 +0.16  
64 +0.16  
129 +0.16  
64 +0.16  
32 –1.36  
15 +1.73  
106  
77  
155  
77  
155  
77  
38  
19  
5
108 +0.08  
150  
2
79  
159  
79  
159  
79  
39  
19  
4
0
300  
127 0  
1
0
0
600  
255 0  
1
0
0
1200  
2400  
4800  
9600  
127 0  
0
+0.16  
+0.16  
+0.16  
–2.34  
0
63  
31  
15  
7
0
0
0
0
0
0
0
0
0
19200 0  
31250 0  
38400 0  
0
7
4
3
+1.73  
0
0
0
4
–1.70  
0
0
5
+2.40  
3
+1.73  
178  
Table 8-3. Examples of BRR Settings in Asynchronous Mode (4)  
XTAL frequency (MHz)  
14.7456  
Error  
(%)  
130 –0.07  
95  
191 0  
95  
191 0  
16  
19.6608  
20  
Bit  
Error  
(%)  
Error  
Error  
(%)  
rate  
110  
n
2
2
1
1
0
0
0
0
N
n
2
2
1
1
0
0
0
0
0
0
N
n
2
2
1
1
0
0
0
0
0
0
0
N
(%)  
n
3
2
2
1
1
0
0
0
0
0
0
N
141 +0.03  
103 +0.16  
207 +0.16  
103 +0.16  
207 +0.16  
103 +0.16  
51 +0.16  
25 +0.16  
12 +0.16  
174  
127  
255  
127  
255  
127  
63  
–0.26  
43  
+0.88  
150  
0
0
129 +0.16  
64 +0.16  
129 +0.16  
64 +0.16  
129 +0.16  
300  
0
600  
0
0
1200  
2400  
4800  
9600  
0
95  
47  
23  
11  
5
0
0
0
0
64  
32  
15  
9
+0.16  
–1.36  
+1.73  
0
0
31  
0
19200 0  
31250 —  
38400 0  
0
15  
0
0
7
0
9
–1.70  
0
7
7
+1.73  
Note: If possible, the error should be within 1%.  
6
2n  
B = OSC × 10 /[64 × 2  
× (N + 1)]  
N: BRR value (0 N 255)  
OSC: Crystal oscillator frequency in MHz  
B: Bit rate (bits/second)  
n: Internal clock source (0, 1, 2, or 3)  
The meaning of n is given by the table below:  
n
0
1
2
3
CKS1  
CKS0  
Clock  
Ø
0
0
1
1
0
1
0
1
Ø/4  
Ø/16  
Ø/64  
179  
Table 8-4. Examples of BRR Settings in Synchronous Mode  
XTAL frequency (MHz)  
Bit  
2
4
8
10  
16  
20  
rate  
100  
250  
500  
1k  
n
1
N
n
2
1
1
0
0
0
0
0
0
0
0
N
n
2
2
1
1
0
0
0
0
0
0
0
0
N
n
N
n
3
2
2
1
1
0
0
0
0
0
0
0
N
n
N
249  
124  
249  
99  
49  
24  
9
124  
249  
124  
199  
99  
49  
19  
9
249  
124  
249  
99  
199  
99  
39  
19  
9
1
124  
249  
124  
49  
24  
4
124  
249  
124  
199  
99  
199  
79  
39  
19  
7
1
249  
124  
249  
99  
49  
24  
9
1
0
2.5k  
5k  
0
0
0
1
10k  
25k  
50k  
100k  
250k  
500k  
1M  
0
0
0
0
0
0
0
4
0
0
0
0*  
4
0
0
1
3
0
0*  
1
3
0
4
0*  
1
0
0*  
2.5M  
Notes: Blank: No setting is available.  
—: A setting is available, but the bit rate is inaccurate.  
* Continuous transfer is not possible.  
6
2n  
B = OSC × 10 /[8 × 2  
× (N + 1)]  
N: BRR value (0 N 255)  
OSC: Crystal oscillator frequency in MHz  
B: Bit rate (bits/second)  
n: Internal clock source (0, 1, 2, or 3)  
The meaning of n is given by the table below:  
n
0
1
2
3
CKS1  
CKS0  
Clock  
Ø
0
0
1
1
0
1
0
1
Ø/4  
Ø/16  
Ø/64  
180  
8.2.9 Serial/Timer Control Register (STCR)—H'FFC3  
Bit  
7
1
6
1
5
1
4
1
3
1
2
1
0
MPE  
0
ICKS1 ICKS0  
Initial value  
Read/Write  
0
0
R/W  
R/W  
R/W  
The STCR is an 8-bit readable/writable register that controls the operating mode of the serial  
communication interface and selects input clock sources for the 8-bit timer counters (TCNT).  
The STCR is initialized to H'F8 by a reset.  
Bits 7 to 3—Reserved: These bits cannot be modified and are always read as “1.”  
Bit 2—Multiprocessor Enable (MPE): Enables or disables the SCI’s multiprocessor  
communication function.  
Bit 2  
MPE  
Description  
0
The multiprocessor communication function is disabled,  
regardless of the setting of the MP bit in SMR.  
The multiprocessor communication function is enabled. The multi-  
processor format can be selected by setting the MP bit in SMR to “1.”  
(Initial value)  
1
Bits 1 and 0—Internal Clock Source Select 1 and 0 (ICKS1, ICKS0): These bits select the  
clock input to the timer counters (TCNT) in the 8-bit timers. For further information see  
section 7.2.3, “Timer Control Register.”  
181  
8.3 Operation  
8.3.1 Overview  
The SCI supports serial data transfer in two modes. In asynchronous mode each character is  
synchronized individually. In synchronous mode communication is synchronized with a clock  
signal.  
The selection of asynchronous or synchronous mode and the communication format depend on  
settings in the SMR as indicated in table 8-5. The clock source depends on the settings of the C/A  
bit in the SMR and the CKE1 and CKE0 bits in the SCR as indicated in table 8-6.  
(1) Asynchronous Mode:  
Data lengths of seven or eight bits can be selected.  
A parity bit or multiprocessor bit can be added, and stop bit lengths of one or two bits can be  
selected. These selections determine the communication format and character length.  
Framing errors (FER), parity errors (PER) and overrun errors (ORER) can be detected in  
receive data, and the line-break condition can be detected.  
An internal or external clock source can be selected for the serial clock.  
When an internal clock source is selected, the SCI is clocked by the on-chip baud rate generator  
and can output a clock signal at the bit-rate frequency.  
When the external clock source is selected, the on-chip baud rate generator is not used. The  
external clock frequency must be 16 times the bit rate.  
(2) Synchronous Mode:  
The transmit data length is eight bits.  
Overrun errors (ORER) can be detected in receive data.  
An internal or external clock source can be selected for the serial clock.  
When an internal clock source is selected, the SCI is clocked by the on-chip baud rate generator  
and outputs a serial clock signal.  
When the external clock source is selected, the on-chip baud rate generator is not used and the  
SCI operates on the input serial clock.  
182  
Table 8-5. Communication Formats Used by SCI  
SMR settings  
Communication format  
Bit 7 Bit 6 Bit 2 Bit 5 Bit 3  
C/A CHR MP PE STOP Mode  
Data  
Multipro- Parity Stop-bit  
length cessor bit bit  
length  
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
Asynchronous mode 8 bits  
None  
None 1 bit  
2 bits  
1
Present 1 bit  
2 bits  
None 1 bit  
2 bits  
1
0
7 bits  
1
Present 1 bit  
2 bits  
0
1
Asynchronous mode 8 bits  
(multiprocessor  
Present  
None  
None 1 bit  
2 bits  
1
format)  
7 bits  
1 bit  
2 bits  
1
Synchronous mode 8 bits  
None  
Table 8-6. SCI Clock Source Selection  
SMR  
Bit 7  
C/A  
0
SCR  
Bit 0  
Bit 1  
Serial transmit/receive clock  
CKE1 CKE0 Mode Clock source SCK pin function  
0
1
0
1
0
1
0
1
0
1
0
1
Async Internal  
Input/output port (not used by SCI)  
Serial clock output at bit rate  
External  
Serial clock input at 16 × bit rate  
1
Sync  
Internal  
External  
Serial clock output  
Serial clock input  
183  
8.3.2 Asynchronous Mode  
In asynchronous mode, each transmitted or received character is individually synchronized by  
framing it with a start bit and stop bit.  
Full duplex data transfer is possible because the SCI has independent transmit and receive sections.  
Double buffering in both sections enables data to be written and read during serial communication,  
for continuous data transfer.  
Figure 8-2 shows the general format of one character sent or received in asynchronous mode. The  
communication channel is normally held in the mark state (High). Character transmission or  
reception starts with a transition to the space state (Low).  
The first bit transmitted or received is the start bit (Low). It is followed by the data bits, in which  
the least significant bit (LSB) comes first. The data bits are followed by the parity or  
multiprocessor bit, if present, then the stop bit or bits (High) confirming the end of the frame.  
In receiving, the SCI synchronizes on the falling edge of the start bit, and samples each bit at the  
center of the bit (at the 8th cycle of the internal serial clock, which runs at 16 times the bit rate).  
(LSB)  
D0  
(MSB)  
D7  
Idle state  
(mark)  
Parity or  
multipro-  
cessor bit  
Start bit  
1 bit  
D1  
Stop bit  
Serial data  
7 or 8 bits  
0 or 1 bit  
1 or 2 bits  
One unit of data (one character or frame)  
Figure 8-2. Data Format in Asynchronous Mode  
(1) Data Format: Table 8-7 lists the data formats that can be sent and received in asynchronous  
mode. Twelve formats can be selected by bits in the SMR.  
184  
Table 8-7. Data Formats in Asynchronous Mode  
SMR Bits  
CHR PE  
MP  
STOP  
1
S
S
S
S
S
S
S
S
S
S
S
S
2
3
4
5
6
7
8
9
10  
11  
12  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
0
8-Bit data  
STOP  
0
0
0
0
0
0
0
0
1
1
1
1
1
0
1
0
1
0
1
0
1
0
1
8-Bit data  
8-Bit data  
8-Bit data  
7-Bit data  
7-Bit data  
7-Bit data  
7-Bit data  
8-Bit data  
8-Bit data  
7-Bit data  
7-Bit data  
STOP STOP  
1
P
P
STOP  
STOP STOP  
1
0
STOP  
0
STOP STOP  
1
P
P
STOP  
1
STOP STOP  
MPB STOP  
MPB STOP STOP  
MPB STOP  
MPB STOP STOP  
Notes: SMR: Serial mode register  
START: Start bit  
STOP: Stop bit  
P: Parity bit  
MPB: Multiprocessor bit  
(2) Clock: In asynchronous mode it is possible to select either an internal clock created by the on-  
chip baud rate generator, or an external clock input at the SCK pin. The clock selection depends on  
the C/A bit in the serial mode register (SMR) and the CKE0 and CKE1 bits in the serial control  
register (SCR). Refer to table 8-6.  
If an external clock is input at the SCK pin, its frequency should be 16 times the desired bit rate.  
If the internal clock provided by the on-chip baud rate generator is selected and the SCK pin is used  
for clock output, the output clock frequency is equal to the bit rate, and the clock pulse rises at the  
center of the transmit data bits. Figure 8-3 shows the phase relationship between the output clock  
and transmit data.  
185  
“0”  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
0/1  
“1”  
“1”  
One frame  
Figure 8-3. Phase Relationship between Clock Output and Transmit Data  
(Asynchronous Mode)  
(3) Transmitting and Receiving Data  
SCI Initialization: Before transmitting or receiving, software must clear the TE and RE bits to  
“0” in the serial control register (SCR), then initialize the SCI as follows.  
Note: When changing the communication mode or format, always clear the TE and RE bits to “0”  
before following the procedure given below. Clearing TE to “0” sets TDRE to “1” and  
initializes the transmit shift register (TSR). Clearing RE to “0,” however, does not initialize  
the RDRF, PER, FER, and ORER flags and receive data register (RDR), which retain their  
previous contents.  
When an external clock is used, the clock should not be stopped during initialization or  
subsequent operation. SCI operation becomes unreliable if the clock is stopped.  
186  
Initialization  
1. Select the communication format in the serial mode register (SMR).  
2. Write the value corresponding to the bit rate in the bit rate register  
(BRR). This step is not necessary when an external clock is used.  
Clear TE and RE bits to  
“0” in SCR  
3. Select interrupts and the clock source in the serial control register  
(SCR). Leave TE and RE cleared to “0.” If clock output is selected,  
in asynchronous mode, clock output starts immediately after the  
setting is made in SCR.  
1
2
3
Select communication  
format in SMR  
4. Wait for at least the interval required to transmit or receive one bit,  
then set TE or RE in the serial control register (SCR).  
Set value in BRR  
Setting TE or RE enables the SCI to use the TxD or RxD pin.  
Also set the RIE, TIE, TEIE, and MPIE bits as necessary to enable  
interrupts. The initial states are the mark transmit state, and the  
idle receive state (waiting for a start bit).  
Set CKE1 and CKE0 bits in  
SCR (leaving TE and RE  
cleared to “0”)  
No  
1 bit interval  
elapsed?  
Yes  
4
Set TE or RE to “1” in SCR,  
and set RIE, TIE, TEIE, and  
MPIE as necessary  
Start transmitting or receiving  
Figure 8-4. Sample Flowchart for SCI Initialization  
187  
Transmitting Serial Data: Follow the procedure below for transmitting serial data.  
1.  
2.  
SCI initialization: the transmit data output function of the TxD pin is  
selected automatically.  
1
2
Initialize  
SCI status check and transmit data write: read the serial status  
register (SSR), check that the TDRE bit is “1,” then write transmit  
data in the transmit data register (TDR) and clear TDRE to “0.”  
If a multiprocessor format is selected, after writing the transmit  
data write “0” or “1” in the multiprocessor bit transfer (MPBT) in  
SSR. Transition of the TDRE bit from “0” to “1” can be reported  
by an interrupt.  
Start transmitting  
Read TDRE bit in SSR  
No  
TDRE = “1”?  
Yes  
3. (a) To continue transmitting serial data: read the TDRE bit to check  
whether it is safe to write; if TDRE = “1,” write data in TDR, then  
clear TDRE to “0.”  
(b) To end serial transmission: end of transmission can be  
confirmed by checking transition of the TEND bit from “0” to “1.”  
This can be reported by a TEI interrupt.  
Write transmit data in TDR  
If using multiprocessor format,  
select MPBT value in SSR  
4.  
To output a break signal at the end of serial transmission: set the  
DDR bit to “1” and clear the DR bit to “0” (DDR and DR are I/O  
port registers), then clear TE to “0” in SCR.  
Clear TDRE bit to “0” in SSR  
Serial transmission  
End of  
transmission?  
No  
3
Yes  
Read TEND bit in SSR  
No  
No  
TEND = “1”?  
Yes  
Output break  
signal?  
4
Yes  
Set DR = “0,” DDR = “1”  
Clear TE bit in SCR to “0”  
End  
Figure 8-5. Sample Flowchart for Transmitting Serial Data  
188  
In transmitting serial data, the SCI operates as follows.  
1. The SCI monitors the TDRE bit in SSR. When TDRE is cleared to “0” the SCI recognizes that  
the transmit data register (TDR) contains new data, and loads this data from TDR into the  
transmit shift register (TSR).  
2. After loading the data from TDR into TSR, the SCI sets the TDRE bit to “1” and starts  
transmitting. If the TIE bit (TDR-empty interrupt enable) is set to “1” in SCR, the SCI requests  
a TXI interrupt (TDR-empty interrupt) at this time.  
Serial transmit data are transmitted in the following order from the TxD pin:  
(a) Start bit: one “0” bit is output.  
(b) Transmit data: seven or eight bits are output, LSB first.  
(c) Parity bit or multiprocessor bit: one parity bit (even or odd parity) or one multiprocessor bit  
is output. Formats in which neither a parity bit nor a multiprocessor bit is output can also  
be selected.  
(d) Stop bit: one or two “1” bits (stop bits) are output.  
(e) Mark state: output of “1” bits continues until the start bit of the next transmit data.  
3. The SCI checks the TDRE bit when it outputs the stop bit. If TDRE is “0,” the SCI loads new  
data from TDR into TSR, outputs the stop bit, then begins serial transmission of the next frame.  
If TDRE is “1,” the SCI sets the TEND bit to “1” in SSR, outputs the stop bit, then continues  
output of “1” bits in the mark state. If the TEIE bit (TSR-empty interrupt enable) in SCR is set  
to “1,” a TEI interrupt (TSR-empty interrupt) is requested.  
189  
Figure 8-6 shows an example of SCI transmit operation in asynchronous mode.  
Start  
bit  
Parity Stop Start  
bit bit bit  
Parity Stop  
bit bit  
Data  
Data  
“1”  
“1”  
“0”  
D0  
D1  
D7  
0/1 “1” “0”  
D0  
D1  
D7  
0/1 “1”  
Mark (idle)  
state  
TDRE  
TEND  
TXI  
request  
TXI interrupt handler  
writes data in TDR and  
clears TDRE to “0”  
TXI  
request  
TEI request  
1 frame  
Figure 8-6. Example of SCI Transmit Operation (8-Bit Data with Parity and One Stop Bit)  
190  
Receiving Serial Data: Follow the procedure below for receiving serial data.  
1
2
Initialize  
1. SCI initialization: the receive data function of the RxD pin is  
selected automatically.  
Start receiving  
2. SCI status check and receive data read: read the serial status  
register (SSR), check that RDRF is set to “1,” then read receive  
data from the receive data register (RDR) and clear RDRF to “0.”  
Transition of the RDRF bit from “0” to “1” can be reported by an  
RXI interrupt.  
Read RDRF bit in SSR  
No  
RDRF = “1”?  
Yes  
3. To continue receiving serial data: read RDR and clear RDRF to  
“0” before the stop bit of the current frame is received.  
Read receive data from RDR,  
and clear RDRF bit to “0”  
in SSR  
4. Receive error handling and break detection: if a receive error  
occurs, read the ORER, PER, and FER bits in SSR to identify  
the error. After executing the necessary error handling, clear  
ORER, PER, and FER all to “0.” Transmitting and receiving  
cannot resume if ORER, PER, or FER remains set to “1.”  
When a framing error occurs, the RxD pin can be read to detect  
the break state.  
Read ORER, PER, and  
FER in SSR  
3
Yes  
PER RER  
ORER = “1”?  
No  
4
No  
Finished  
receiving?  
Error handling  
Yes  
Clear RE to “0” in SCR  
End  
Start error handling  
Yes  
Yes  
FER = “1”?  
No  
Break?  
No  
Clear RE to “0”  
Clear error flags to  
“0” in SCR  
in SCR  
End  
Return  
Figure 8-7. Sample Flowchart for Receiving Serial Data  
191  
In receiving, the SCI operates as follows.  
1. The SCI monitors the receive data line and synchronizes internally when it detects a start bit.  
2. Receive data are shifted into RSR in order from LSB to MSB.  
3. The parity bit and stop bit are received.  
After receiving these bits, the SCI makes the following checks:  
(a) Parity check: the number of 1s in the receive data must match the even or odd parity setting  
of the O/E bit in SMR.  
(b) Stop bit check: the stop bit value must be “1.” If there are two stop bits, only the first stop  
bit is checked.  
(c) Status check: RDRF must be “0” so that receive data can be loaded from RSR into RDR.  
If these checks all pass, the SCI sets RDRF to “1” and stores the received data in RDR. If one of  
the checks fails (receive error), the SCI operates as indicated in table 8-8.  
Note: When a receive error flag is set, further receiving is disabled. The RDRF bit is not set to “1.”  
Be sure to clear the error flags.  
4. After setting RDRF to “1,” if the RIE bit (receive-end interrupt enable) is set to “1” in SCR, the  
SCI requests an RXI (receive-end) interrupt. If one of the error flags (ORER, PER, or FER) is  
set to “1” and the RIE bit in SCR is also set to “1,” the SCI requests an ERI (receive-error)  
interrupt.  
192  
Figure 8-8 shows an example of SCI receive operation in asynchronous mode.  
Table 8-8. Receive Error Conditions and SCI Operation  
Receive error  
Abbreviation Condition  
Data transfer  
Overrun error  
ORER  
Receiving of next data ends  
Receive data not loaded from  
while RDRF is still set to “1” RSR into RDR  
in SSR  
Framing error  
Parity error  
FER  
PER  
Stop bit is “0”  
Receive data loaded from RSR  
into RDR  
Parity of receive data differs  
from even/odd parity setting  
in SMR  
Receive data loaded from RSR  
into RDR  
Start  
bit  
Parity Stop Start  
Parity Stop  
Data  
bit  
bit  
bit  
Data  
bit  
bit  
“1”  
“1”  
“0”  
D0  
D1  
D7  
0/1  
“1”  
“0”  
D0  
D1  
D7  
0/1  
“0”  
Mark (idle)  
state  
RDRF  
FER  
RXI  
request  
RXI interrupt handler  
reads data in RDR and  
clears RDRF to “0”  
Framing error,  
ERI request  
1 frame  
Figure 8-8. Example of SCI Receive Operation (8-Bit Data with Parity and One Stop Bit)  
193  
(4) Multiprocessor Communication  
The multiprocessor communication function enables several processors to share a single serial  
communication line. The processors communicate in asynchronous mode using a format with an  
additional multiprocessor bit (multiprocessor format).  
In multiprocessor communication, each receiving processor is addressed by an ID.  
A serial communication cycle consists of two cycles: an ID-sending cycle that identifies the  
receiving processor, and a data-sending cycle. The multiprocessor bit distinguishes ID-sending  
cycles from data-sending cycles.  
The transmitting processor starts by sending the ID of the receiving processor with which it wants  
to communicate as data with the multiprocessor bit set to “1.” Next the transmitting processor  
sends transmit data with the multiprocessor bit cleared to “0.”  
Receiving processors skip incoming data until they receive data with the multiprocessor bit set to  
“1.”  
After receiving data with the multiprocessor bit set to “1,” the receiving processor with an ID  
matching the received data continues to receive further incoming data. Multiple processors can  
send and receive data in this way.  
Four formats are available. Parity-bit settings are ignored when a multiprocessor format is selected.  
For details see table 8-7.  
Transmitting  
processor  
Serial communication line  
Receiving  
processor A  
Receiving  
processor B  
Receiving  
processor C  
Receiving  
processor D  
(ID = 01)  
(ID = 02)  
(ID = 03)  
(ID = 04)  
Serial data  
H'01  
H'AA  
(MPB = 0)  
(MPB = 1)  
ID-sending cycle:  
receiving processor address  
Data-sending cycle:  
data sent to receiving  
processor specified by ID  
MPB: multiprocessor bit  
Figure 8-9. Example of Communication among Processors Using Multiprocessor Format  
(Sending Data H'AA to Receiving Processor A)  
194  
Transmitting Multiprocessor Serial Data: See figures 8-5 and 8-6.  
Receiving Multiprocessor Serial Data: Follow the procedure below for receiving  
multiprocessor serial data.  
1
Initialize  
1. SCI initialization: the receive data function of the RxD pin is  
selected automatically.  
2. ID receive cycle: Set the MPIE bit in the serial control register  
(SCR) to “1.”  
Start receiving  
3. SCI status check and ID check: read the serial status register  
(SSR), check that RDRF is set to “1,” then read receive data  
from the receive data register (RDR) and compare with the  
processor’s own ID. Transition of the RDRF bit from “0” to  
“1” can be reported by an RXI interrupt. If the ID does not match  
the receive data, set MPIE to “1” again and clear RDRF to “0.”  
If the ID matches the receive data, clear RDRF to “0.”  
2
3
Set MPIE bit to “1” in SCR  
Read RDRF bit in SSR  
No  
RDRF = “1”?  
Yes  
4. SCI status check and data receiving: read SSR, check that  
RDRF is set to “1,” then read data from the receive data register  
(RDR) and write “0” in the RDRF bit. Transition of the RDRF bit  
from “0” to “1” can be reported by an RXI interrupt.  
Read receive data from RDR  
5. Receive error handling and break detection: if a receive error  
occurs, read the ORER and FER bits in SSR to identify the error.  
After executing the necessary error handling, clear both ORER  
and FER to “0.” Receiving cannot resume while ORER or FER  
remains set to “1.” When a framing error occurs, the RxD pin  
can be read to detect the break state.  
No  
Own ID?  
Yes  
Read ORER and FER  
bits in SSR  
FER  
Yes  
ORER = “1”?  
No  
4
Read RDRF bit in SSR  
No  
RDRF = “1”?  
Yes  
Read ORER and FER  
bits in SSR  
Read receive data from RDR  
Start error handling  
Yes  
FER +  
ORER = “1”?  
5
No  
Error handling  
Yes  
Yes  
FER = “1”?  
No  
Break?  
No  
No  
Finished  
receiving?  
Yes  
Clear RE bit to  
“0” in SCR  
Clear error flags  
Return  
Clear RE to “0” in SCR  
End  
End  
Figure 8-10. Sample Flowchart for Receiving Multiprocessor Serial Data  
195  
Figure 8-11 shows an example of SCI receive operation using a multiprocessor format.  
Start  
bit  
Stop Start  
MPB bit bit  
Stop  
MPB bit  
Data (ID1)  
D1  
Data (Data2)  
D1  
“1”  
“1”  
“0”  
D0  
D7  
“1”  
“1”  
“0”  
D0  
D7  
“0”  
“1”  
Mark (idle)  
state  
MPIE  
RDRF  
RDR value  
ID1  
RXI request,  
MPIE = “0”  
RXI handler reads  
RDR data and clears  
RDRF to “0”  
Not own ID, so  
MPIE is set to  
“1” again  
No RXI request,  
RDR not updated  
(Multiprocessor interrupt)  
(a) Own ID does not match data  
Start  
bit  
Stop Start  
Stop  
MPB bit  
Data (ID2)  
D1  
MPB bit  
“1” “1”  
bit  
“0”  
Data (Data2)  
D1  
“1”  
“1”  
“0”  
D0  
D7  
D0  
D7  
“0” “1”  
Mark (idle)  
state  
MPIE  
RDRF  
RDR value  
ID1  
ID2  
Data 2  
RXI request,  
MPIE = “0”  
RXI handler reads  
RDR data and clears  
RDRF to “0”  
Own ID, so receiving  
continues, with data  
received at each RXI  
MPIE set to  
“1” again  
(Multiprocessor interrupt)  
(b) Own ID matches data  
Figure 8-11. Example of SCI Receive Operation  
(Eight-Bit Data with Multiprocessor Bit and One Stop Bit)  
196  
8.3.3 Clocked Synchronous Operation  
(1) Overview: In clocked synchronous mode, the SCI transmits and receives data in  
synchronization with clock pulses. This mode is suitable for high-speed serial communication.  
The SCI transmitter and receiver share the same clock but are otherwise independent, so full duplex  
communication is possible. The transmitter and receiver are also double buffered, so continuous  
transmitting or receiving is possible by reading or writing data while transmitting or receiving is in  
progress.  
Figure 8-12 shows the general format in clocked synchronous serial communication.  
One unit (character or frame) of serial data  
*
*
Serial clock  
Data  
LSB  
Bit 0  
MSB  
Bit 7  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Don’t care  
Don’t care  
Note: * High except in continuous transmitting or receiving  
Figure 8-12. Data Format in Clocked Synchronous Communication  
In clocked synchronous serial communication, each data bit is sent on the communication line from  
one falling edge of the serial clock to the next. Data are received in synchronization with the rising  
edge of the serial clock.  
In each character, the serial data bits are transmitted in order from LSB (first) to MSB (last). After  
output of the MSB, the communication line remains in the state of the MSB until the next falling  
edge of the serial clock.  
197  
Communication Format: The data length is fixed at eight bits. No parity bit or multiprocessor  
bit can be added.  
• Clock: An internal clock generated by the on-chip baud rate generator or an external clock input  
from the SCK pin can be selected by clearing or setting the CKE1 bit in the serial control register  
(SCR). See table 8-5.  
When the SCI operates on an internal clock, it outputs the clock signal at the SCK pin. Eight clock  
pulses are output per transmitted or received character. When the SCI is not transmitting or  
receiving, the clock signal remains at the high level.  
(2) Transmitting and Receiving Data  
SCI Initialization: The SCI must be initialized in the same way as in asynchronous mode. See  
figure 8-4. When switching from asynchronous mode to clocked synchronous mode, check that the  
ORER, FER, and PER bits are cleared to “0.” Transmitting and receiving cannot begin if ORER,  
FER, or PER is set to “1.”  
198  
Transmitting Serial Data: Follow the procedure below for transmitting serial data.  
1.  
2.  
SCI initialization: the transmit data output function of the TxD pin is  
selected automatically.  
1
2
Initialize  
SCI status check and transmit data write: read the serial status  
register (SSR), check that the TDRE bit is “1,” then write transmit  
data in the transmit data register (TDR) and clear TDRE to “0.”  
Transition of the TDRE bit from “0” to “1” can be reported by a  
TXI interrupt.  
Start transmitting  
Read TDRE bit in SSR  
3. (a) To continue transmitting serial data: read the TDRE bit to check  
whether it is safe to write; if TDRE = “1,” write data in TDR, then  
clear TDRE to “0.”  
No  
TDRE = “1”?  
Yes  
(b) To end serial transmission: end of transmission can be confirmed  
by checking transition of the TEND bit from “0” to “1.” This can be  
reported by a TEI interrupt.  
Write transmit data in  
TDR and clear TDRE bit to  
“0” in SSR  
Serial transmission  
End of  
transmission?  
No  
3
Yes  
Read TEND bit in SSR  
No  
TEND = “1”?  
Yes  
Clear TE bit to “0” in SCR  
End  
Figure 8-13. Sample Flowchart for Serial Transmitting  
199  
In transmitting serial data, the SCI operates as follows.  
1. The SCI monitors the TDRE bit in SSR. When TDRE is cleared to “0” the SCI recognizes that  
the transmit data register (TDR) contains new data, and loads this data from TDR into the  
transmit shift register (TSR).  
2. After loading the data from TDR into TSR, the SCI sets the TDRE bit to “1” and starts  
transmitting. If the TIE bit (TDR-empty interrupt enable) in SCR is set to “1,” the SCI requests  
a TXI interrupt (TDR-empty interrupt) at this time.  
If clock output is selected the SCI outputs eight serial clock pulses, triggered by the clearing of  
the TDRE bit to “0.” If an external clock source is selected, the SCI outputs data in  
synchronization with the input clock.  
Data are output from the TxD pin in order from LSB (bit 0) to MSB (bit 7).  
3. The SCI checks the TDRE bit when it outputs the MSB (bit 7). If TDRE is “0,” the SCI loads  
data from TDR into TSR, then begins serial transmission of the next frame. If TDRE is “1,” the  
SCI sets the TEND bit in SSR to “1,” transmits the MSB, then holds the output in the MSB  
state. If the TEIE bit (transmit-end interrupt enable) in SCR is set to “1,” a TEI interrupt (TSR-  
empty interrupt) is requested at this time.  
4. After the end of serial transmission, the SCK pin is held at the high level.  
200  
Figure 8-14 shows an example of SCI transmit operation.  
Serial clock  
Data  
Bit 0  
Bit 1  
Bit 7  
Bit 0  
Bit 1  
Bit 6  
Bit 7  
TDRE  
TEND  
TXI  
TXI interrupt  
TXI  
request  
request handler writes  
data in TDR and  
TEI  
request  
clears TDRE to “0”  
1 frame  
Figure 8-14. Example of SCI Transmit Operation  
201  
Receiving Serial Data: Follow the procedure below for receiving serial data. When switching  
from asynchronous mode to clocked synchronous mode, be sure to check that PER and FER are  
cleared to “0.” If PER or FER is set to “1” the RDRF bit will not be set and both transmitting and  
receiving will be disabled.  
1
2
Initialize  
1. SCI initialization: the receive data function of the RxD pin is  
selected automatically.  
Start receiving  
2. SCI status check and receive data read: read the serial status  
register (SSR), check that RDRF is set to “1,” then read receive  
data from the receive data register (RDR) and clear RDRF to “0.”  
Transition of the RDRF bit from “0” to “1” can be reported by an  
RXI interrupt.  
Read RDRF bit in SSR  
No  
3. To continue receiving serial data: read RDR and clear RDRF to  
“0” before the MSB (bit 7) of the current frame is received.  
RDRF = “1”?  
Yes  
4. Receive error handling: if a receive error occurs, read the ORER  
bit in SSR then, after executing the necessary error handling,  
clear ORER to “0.” Neither transmitting nor receiving can  
resume while ORER remains set to “1.” When clock output  
mode is selected, receiving can be halted temporarily by  
receiving one dummy byte and causing an overrun error.  
When preparations to receive the next data are completed, clear  
the ORER bit to “0.” This causes receiving to resume, so  
return to the step marked 2 in the flowchart.  
3
Read receive data  
from RDR, and clear  
RDRF bit to “0” in SSR  
Read ORER in SSR  
Yes  
No  
ORER = “1”?  
No  
4
Error handling  
Finished  
receiving?  
Yes  
Clear RE to “0” in SCR  
End  
Start error handling  
Overrun error handling  
Clear ORER to “0” in SSR  
Return  
Figure 8-15. Sample Flowchart for Serial Receiving  
202  
In receiving, the SCI operates as follows.  
1. If an external clock is selected, data are input in synchronization with the input clock. If clock  
output is selected, as soon as the RE bit is set to “1” the SCI begins outputting the serial clock  
and inputting data. If clock output is stopped because the ORER bit is set to “1,” output of the  
serial clock and input of data resume as soon as the ORER bit is cleared to “0.”  
2. Receive data are shifted into RSR in order from LSB to MSB.  
After receiving the data, the SCI checks that RDRF is “0” so that receive data can be loaded  
from RSR into RDR. If this check passes, the SCI sets RDRF to “1” and stores the received  
data in RDR. If the check does not pass (receive error), the SCI operates as indicated in  
table 8-8.  
Note: Both transmitting and receiving are disabled while a receive error flag is set. The RDRF bit  
is not set to “1.” Be sure to clear the error flag.  
3. After setting RDRF to “1,” if the RIE bit (receive-end interrupt enable) is set to “1” in SCR, the  
SCI requests an RXI (receive-end) interrupt. If the ORER bit is set to “1” and the RIE bit in  
SCR is set to “1,” the SCI requests an ERI (receive-error) interrupt.  
When clock output mode is selected, clock output stops when the RE bit is cleared to “0” or the  
ORER bit is set to “1.” To prevent clock count errors, it is safest to receive one dummy byte  
and generate an overrun error.  
203  
Figure 8-16 shows an example of SCI receive operation.  
Serial clock  
Data  
Bit 0  
Bit 1  
Bit 7  
Bit 0  
Bit 1  
Bit 6  
Bit 7  
RDRF  
ORER  
RXI  
request  
RXI interrupt  
handler reads  
data in RDR and  
clears RDRF to “0”  
RXI  
request  
Overrun error,  
ERI request  
1 frame  
Figure 8-16. Example of SCI Receive Operation  
204  
Transmitting and Receiving Serial Data Simultaneously: Follow the procedure below for  
transmitting and receiving serial data simultaneously. If clock output mode is selected, output of  
the serial clock begins simultaneously with serial transmission.  
1
2
Initialize  
Start  
1. SCI initialization: the transmit data output function of the TxD pin  
and receive data input function of the RxD pin are selected,  
enabling simultaneous transmitting and receiving.  
2. SCI status check and transmit data write: read the serial status  
register (SSR), check that the TDRE bit is “1,” then write transmit  
data in the transmit data register (TDR) and clear TDRE to “0.”  
Transition of the TDRE bit from “0” to “1” can be reported by a  
TXI interrupt.  
Read TDRE bit in SSR  
No  
TDRE = “1”?  
Yes  
3. SCI status check and receive data read: read the serial status  
register (SSR), check that the RDRF bit is “1,” then read receive  
data from the receive data register (RDR) and clear RDRF to “0.”  
Transition of the RDRF bit from “0” to “1” can be reported by an  
RXI interrupt.  
3
Write transmit data  
in TDR and clear TDRE  
bit to “0” in SSR  
4. To continue transmitting and receiving serial data: read RDR  
and clear RDRF to “0” before the MSB (bit 7) of the current  
frame is received. Also read the TDRE bit and check that it is  
set to “1,” indicating that it is safe to write; then write data  
in TDR and clear TDRE to “0” before the MSB (bit 7) of the  
current frame is transmitted.  
Read RDRF bit in SSR  
No  
RDRF = “1”?  
Yes  
5. Receive error handling: if a receive error occurs, read the ORER  
bit in SSR then, after executing the necessary error handling,  
clear ORER to “0.” Neither transmitting nor receiving can resume  
while ORER remains set to “1.”  
4
Read receive data  
from RDR and clear  
RDRF bit to “0” in SSR  
Read ORER bit in SSR  
Yes  
No  
ORER = “1”?  
No  
5
Error handling  
End of  
transmitting and receiv-  
ing?  
Yes  
Clear TE and RE bits  
to “0” in SCR  
End  
Figure 8-17. Sample Flowchart for Serial Transmitting and Receiving  
Note: In switching from transmitting or receiving to simultaneous transmitting and receiving,  
clear both TE and RE to “0,” then set both TE and RE to “1.”  
205  
8.4 SCI Interrupts  
The SCI can request four types of interrupts: ERI, RXI, TXI, and TEI. Table 8-9 indicates the  
source and priority of these interrupts. The interrupt sources can be enabled or disabled by the TIE,  
RIE, and TEIE bits in the SCR. Independent signals are sent to the interrupt controller for each  
interrupt source, except that the receive-error interrupt (ERI) is the logical OR of three sources:  
overrun error, framing error, and parity error.  
The TXI interrupt indicates that the next transmit data can be written. The TEI interrupt indicates  
that the SCI has stopped transmitting data.  
Table 8-9. SCI Interrupt Sources  
Interrupt  
ERI  
Description  
Priority  
Receive-error interrupt (ORER, FER, or PER) High  
Receive-end interrupt (RDRF)  
RXI  
TXI  
TDR-empty interrupt (TDRE)  
TEI  
TSR-empty interrupt (TEND)  
Low  
8.5 Application Notes  
Application programmers should note the following features of the SCI.  
(1) TDR Write: The TDRE bit in the SSR is simply a flag that indicates that the TDR contents  
have been transferred to the TSR. The TDR contents can be rewritten regardless of the TDRE  
value. If a new byte is written in the TDR while the TDRE bit is “0,” before the old TDR contents  
have been moved into the TSR, the old byte will be lost. Software should check that the TDRE bit  
is set to “1” before writing to the TDR.  
206  
(2) Multiple Receive Errors: Table 8-10 lists the values of flag bits in the SSR when multiple  
receive errors occur, and indicates whether the RSR contents are transferred to the RDR.  
Table 8-10. SSR Bit States and Data Transfer When Multiple Receive Errors Occur  
SSR bits  
RSR →  
RDR*2  
No  
Receive error  
RDRF ORER FER  
PER  
Overrun error  
1*1  
1
0
0
1
1
0
1
0
1
0
1
0
1
1
0
0
1
0
1
1
1
Framing error  
0
Yes  
Parity error  
0
Yes  
Overrun and framing errors  
Overrun and parity errors  
Framing and parity errors  
Overrun, framing, and parity errors  
1*1  
1*1  
0
No  
No  
Yes  
1*1  
No  
Notes: *1 Set to “1” before the overrun error occurs.  
*2 Yes: The RSR contents are transferred to the RDR.  
No: The RSR contents are not transferred to the RDR.  
(3) Line Break Detection: When the RxD pin receives a continuous stream of 0’s in asynchronous  
mode (line-break state), a framing error occurs because the SCI detects a “0” stop bit. The value  
H'00 is transferred from the RSR to the RDR. Software can detect the line-break state as a framing  
error accompanied by H'00 data in the RDR.  
The SCI continues to receive data, so if the FER bit is cleared to “0” another framing error will  
occur.  
(4) Sampling Timing and Receive Margin in Asynchronous Mode: The serial clock used by  
the SCI in asynchronous mode runs at 16 times the baud rate. The falling edge of the start bit is  
detected by sampling the RxD input on the falling edge of this clock. After the start bit is detected,  
each bit of receive data in the frame (including the start bit, parity bit, and stop bit or bits) is  
sampled on the rising edge of the serial clock pulse at the center of the bit. See figure 8-18.  
It follows that the receive margin can be calculated as in equation (1).  
When the absolute frequency deviation of the clock signal is 0 and the clock duty factor is 0.5, data  
can theoretically be received with distortion up to the margin given by equation (2). This is a  
theoretical limit, however. In practice, system designers should allow a margin of 20% to 30%.  
207  
0 1 2 3 4 5 6 7 89 10111213141516 1 2 3 4 5 6 7 8 9101112131415161 2 3 4 5  
Basic clock  
–7.5 pulses  
+7.5 pulses  
Receive data  
D0  
D1  
Start bit  
Sync sampling  
Data sampling  
Figure 8-18. Sampling Timing (Asynchronous Mode)  
M = {(0.5 – 1/2N) – (D – 0.5)/N – (L – 0.5)F} × 100 [%]  
(1)  
M: Receive margin  
N: Ratio of basic clock to baud rate (N=16)  
D: Duty factor of clock—ratio of High pulse width to Low width (0.5 to 1.0)  
L: Frame length (9 to 12)  
F: Absolute clock frequency deviation  
When D = 0.5 and F = 0  
M=(0.5 –1/2 × 16) × 100 [%] = 46.875%  
(2)  
208  
Section 9. A/D Converter  
9.1 Overview  
The H8/329 Series includes an analog-to-digital converter module with eight input channels. A/D  
conversion is performed by the successive approximations method with 8-bit resolution.  
9.1.1 Features  
The features of the on-chip A/D module are:  
• 8-bit resolution  
• Eight analog input channels  
• Rapid conversion  
Conversion time is 12.2µs per channel (minimum) with a 10MHz system clock  
• External triggering can be selected  
• Single and scan modes  
— Single mode: A/D conversion is performed once.  
— Scan mode: A/D conversion is performed in a repeated cycle on one to four channels.  
• Sample-and-hold function  
• Four 8-bit data registers  
These registers store A/D conversion results for up to four channels.  
• A CPU interrupt (ADI) can be requested at the completion of each A/D conversion cycle.  
209  
9.1.2 Block Diagram  
Internal  
data bus  
Module data bus  
AVCC  
A
D
D
R
A
A
D
D
R
B
A
D
D
R
C
A
D
D
R
D
A
D
C
S
R
A
D
C
R
8 Bit  
D/A  
AVSS  
AN0  
Ø/8  
Ø/16  
AN1  
AN2  
+
Analog  
multi-  
plexer  
AN3  
AN4  
AN5  
Control circuit  
Comparator  
AN6  
AN7  
Sample and  
hold circuit  
ADI  
Interrupt signal  
ADTRG  
ADCR: A/D Control Register (8 bits)  
ADCSR: A/D Control/Status Register (8 bits)  
ADDRA: A/D Data Register A (8 bits)  
ADDRB: A/D Data Register B (8 bits)  
ADDRC: A/D Data Register C (8 bits)  
ADDRD: A/D Data Register D (8 bits)  
Figure 9-1. Block Diagram of A/D Converter  
210  
9.1.3 Input Pins  
Table 9-1 lists the input pins used by the A/D converter module.  
The eight analog input pins are divided into two groups, consisting of analog inputs 0 to 3 (AN0 to  
AN3) and analog inputs 4 to 7 (AN4 to AN7), respectively.  
Table 9-1. A/D Input Pins  
Name  
Abbreviation I/O  
Function  
Analog supply voltage  
AVCC  
Input  
Power supply and reference voltage for the  
analog circuits.  
Analog ground  
AVSS  
Input  
Ground and reference voltage for the  
analog circuits.  
Analog input 0  
Analog input 1  
Analog input 2  
Analog input 3  
Analog input 4  
Analog input 5  
Analog input 6  
Analog input 7  
A/D external trigger  
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
ADTRG  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Analog input pins, group 0  
Analog input pins, group 1  
External trigger for starting A/D conversion  
9.1.4 Register Configuration  
Table 9-2 lists the registers of the A/D converter module.  
Table 9-2. A/D Registers  
Name  
Abbreviation R/W  
Initial value Address  
A/D data register A  
A/D data register B  
A/D data register C  
A/D data register D  
A/D control/status register  
A/D control register  
ADDRA  
ADDRB  
ADDRC  
ADDRD  
ADCSR  
ADCR  
R
R
R
R
H'00  
H'00  
H'00  
H'00  
H'FFE0  
H'FFE2  
H'FFE4  
H'FFE6  
H'FFE8  
H'FFEA  
R/(W)* H'00  
R/W H'7E  
Note: * Software can write a “0” to clear bit 7, but cannot write a “1” in this bit.  
211  
9.2 Register Descriptions  
9.2.1 A/D Data Registers (ADDR)—H'FFE0 to H'FFE6  
Bit  
7
6
5
4
3
2
1
0
ADDRn  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
(n = A to D)  
The four A/D data registers (ADDRA to ADDRD) are 8-bit read-only registers that store the results  
of A/D conversion. Each data register is assigned to two analog input channels as indicated in  
table 9-3.  
The A/D data registers are always readable by the CPU.  
The A/D data registers are initialized to H'00 at a reset and in the standby modes.  
Table 9-3. Assignment of Data Registers to Analog Input Channels  
Analog input channel  
Group 0 Group 1 A/D data register  
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
ADDRA  
ADDRB  
ADDRC  
ADDRD  
9.2.2 A/D Control/Status Register (ADCSR)—H'FFE8  
Bit  
7
ADF  
0
6
ADIE  
0
5
4
3
2
1
0
ADST SCAN  
CKS  
0
CH2  
0
CH1  
0
CH0  
0
Initial value  
Read/Write  
0
0
R/(W)*  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Note: * Software can write a “0” in bit 7 to clear the flag, but cannot write a “1” in this bit.  
The A/D control/status register (ADCSR) is an 8-bit readable/writable register that controls the  
operation of the A/D converter module.  
212  
The ADCSR is initialized to H'00 at a reset and in the standby modes.  
Bit 7—A/D End Flag (ADF): This status flag indicates the end of one cycle of A/D conversion.  
Bit 7  
ADF  
Description  
0
To clear ADF, the CPU must read ADF after  
it has been set to “1,” then write a “0” in this bit.  
This bit is set to 1 at the following times:  
(1) Single mode: when one A/D conversion is completed.  
(2) Scan mode: when inputs on all selected channels have been  
converted.  
(Initial value)  
1
Bit 6—A/D Interrupt Enable (ADIE): This bit selects whether to request an A/D interrupt (ADI)  
when A/D conversion is completed.  
Bit 6  
ADIE  
Description  
0
1
The A/D interrupt request (ADI) is disabled.  
The A/D interrupt request (ADI) is enabled.  
(Initial value)  
Bit 5—A/D Start (ADST): The A/D converter operates while this bit is set to “1.” This bit can be  
set to “1” by the external trigger signal ADTRG.  
Bit 5  
ADST  
Description  
0
1
A/D conversion is halted.  
(Initial value)  
(1) Single mode: One A/D conversion is performed. The ADST bit is  
automatically cleared to “0” at the end of the conversion.  
(2) Scan mode: A/D conversion starts and continues cyclically on the  
selected channels until the ADST bit is cleared to “0” by software (or  
a reset, or by entry to a standby mode).  
213  
Bit 4—Scan Mode (SCAN): This bit selects the scan mode or single mode of operation.  
See section 9.3, “Operation” for descriptions of these modes.  
The mode should be changed only when the ADST bit is cleared to “0.”  
Bit 4  
SCAN  
Description  
Single mode  
Scan mode  
0
1
(Initial value)  
Bit 3—Clock Select (CKS): This bit controls the A/D conversion time.  
The conversion time should be changed only when the ADST bit is cleared to “0.”  
Bit 3  
CKS  
Description  
0
1
Conversion time = 242 states (max)  
Conversion time = 122 states (max)  
(Initial value)  
Bits 2 to 0—Channel Select 2 to 0 (CH2 to CH0): These bits and the SCAN bit combine to select  
one or more analog input channels.  
The channel selection should be changed only when the ADST bit is cleared to “0.”  
Group select  
Channel select  
Selected channels  
Single mode Scan mode  
CH2  
CH1  
CH0  
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
AN0 (Initial value)  
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
AN0, AN1  
AN0 to AN2  
AN0 to AN3  
AN4  
1
AN4, AN5  
AN4 to AN6  
AN4 to AN7  
214  
9.2.3 A/D Control Register (ADCR)—H'FFEA  
Bit  
7
TRGE  
0
6
1
5
1
4
1
3
1
2
1
1
1
0
CHS  
0
Initial value  
Read/Write  
R/W  
R/W  
The A/D control register (ADCR) is an 8-bit readable/writable register that enables or disables the  
A/D external trigger signal.  
The ADCR is initialized to H'7E at a reset and in the standby modes.  
Bit 7—Trigger Enable (TRGE): This bit enables the ADTRG (A/D external trigger) signal to set  
the ADST bit and start A/D conversion.  
Bit 7  
TRGE  
Description  
0
A/D external trigger is disabled. ADTRG does not set  
the ADST bit.  
(Initial value)  
1
A/D external trigger is enabled. ADTRG sets the ADST bit.  
(The ADST bit can also be set by software.)  
Bits 6 to 1—Reserved: These bits cannot be modified and are always read as “1.”  
Bit 0—Channel Set Select (CHS): This bit is reserved. It does not affect the operation of the  
chip.  
215  
9.3 Operation  
The A/D converter performs 8 successive approximations to obtain a result ranging from H'00  
(corresponding to AVSS) to H'FF (corresponding to AVCC).  
The A/D converter module can be programmed to operate in single mode or scan mode as  
explained below.  
9.3.1 Single Mode (SCAN = 0)  
The single mode is suitable for obtaining a single data value from a single channel. A/D  
conversion starts when the ADST bit is set to “1,” either by software or by a High-to-Low  
transition of the ADTRG signal (if enabled). During the conversion process the ADST bit remains  
set to “1.” When conversion is completed, the ADST bit is automatically cleared to “0.”  
When the conversion is completed, the ADF bit is set to “1.” If the interrupt enable bit (ADIE) is  
also set to “1,” an A/D conversion end interrupt (ADI) is requested, so that the converted data can  
be processed by an interrupt-handling routine. The ADF bit is cleared when software reads the  
A/D control/status register (ADCSR), then writes a “0” in this bit.  
Before selecting the single mode, clock, and analog input channel, software should clear the ADST  
bit to “0” to make sure the A/D converter is stopped. Changing the mode, clock, or channel  
selection while A/D conversion is in progress can lead to conversion errors. A/D conversion begins  
when the ADST bit is set to “1” again. The same instruction can be used to alter the mode and  
channel selection and set ADST to “1.”  
216  
The following example explains the A/D conversion process in single mode when channel 1 (AN1)  
is selected and the external trigger is disabled. Figure 9-2 shows the corresponding timing chart.  
(1) Software clears the ADST bit to “0,” then selects the single mode (SCAN = “0”) and channel 1  
(CH2 to CH0 = “001”), enables the A/D interrupt request (ADIE = “1”), and sets the ADST bit  
to “1” to start A/D conversion.  
Coding Example: (when using the slow clock, CKS = “0”)  
BCLR #5, @H'FFE8  
MOV.B #H'7F, ROL  
;Clear ADST  
MOV.B ROL, @H'FFEA;Disable external trigger  
MOV.B #H'61, ROL  
MOV.B ROL, @H'FFE8;Select mode and channel and set ADST to “1”  
Value set in ADCSR:  
ADF  
0
ADIE  
1
ADST SCAN  
CKS  
0
CH2  
0
CH1  
0
CH0  
1
1
0
(2) The A/D converter converts the voltage level at the AN1 input pin to a digital value. At the end  
of the conversion process the A/D converter transfers the result to register ADDRB, sets the  
ADF bit to “1,” clears the ADST bit to “0,” and halts.  
(3) ADF = “1” and ADIE = “1,” so an A/D interrupt is requested.  
(4) The user-coded A/D interrupt-handling routine is started.  
(5) The interrupt-handling routine reads the ADCSR value, then writes a “0” in the ADF bit to  
clear this bit to “0.”  
(6) The interrupt-handling routine reads ADDRB and processes the A/D conversion result.  
(7) The routine ends.  
Steps (2) to (7) can now be repeated by setting the ADST bit to “1” again.  
217  
Interrupt (ADI)  
ADIE  
Set*  
Set*  
Set*  
A/D conversion starts  
ADST  
ADF  
Clear*  
Clear*  
Channel 0 (AN 0)  
Waiting  
Waiting  
Waiting  
Waiting  
Channel 1 (AN 1)  
A/D conver-  
sion  
Waiting  
Waiting  
A/D conver-  
sion ➁  
Channel 2 (AN 2)  
Channel 3 (AN 3)  
ADDRA  
ADDRB  
ADDRC  
ADDRD  
Read result  
Read result  
A/D conversion result  
A/D conversion result  
Note: * indicates execution of a software instruction  
Figure 9-2. A/D Operation in Single Mode (when Channel 1 is Selected)  
9.3.2 Scan Mode (SCAN = 1)  
The scan mode can be used to monitor analog inputs on one or more channels. When the ADST bit  
is set to “1,” either by software or by a High-to-Low transition of the ADTRG signal (if enabled),  
A/D conversion starts from the first channel selected by the CH bits. When CH2 = “0” the first  
channel is AN0. When CH2 = “1” the first channel is AN4.  
If the scan group includes more than one channel (i.e., if bit CH1 or CH0 is set), conversion of the  
next channel (AN1 or AN5)begins as soon as conversion of the first channel ends.  
Conversion of the selected channels continues cyclically until the ADST bit is cleared to “0.” The  
conversion results are placed in the data registers corresponding to the selected channels. The A/D  
data registers are readable by the CPU.  
Before selecting the scan mode, clock, and analog input channels, software should clear the ADST  
bit to “0” to make sure the A/D converter is stopped. Changing the mode, clock, or channel  
selection while A/D conversion is in progress can lead to conversion errors. A/D conversion begins  
from the first selected channel when the ADST bit is set to “1” again. The same instruction can be  
used to alter the mode and channel selection and set ADST to “1.”  
The following example explains the A/D conversion process when three channels in group 0 are  
selected (AN0, AN1, and AN2) and the external trigger is disabled. Figure 9-3 shows the  
corresponding timing chart.  
(1) Software clears the ADST bit to “0,” then selects the scan mode (SCAN = “1”), scan group 0  
(CH2 = “0”), and analog input channels AN0 to AN2 (CH1 = “1”, CH0 = “0”) and sets the  
ADST bit to “1” to start A/D conversion.  
Coding Example: (with slow clock and ADI interrupt enabled)  
BCLR #5, @H'FFE8  
MOV.B #H'7F, ROL  
;Clear ADST  
MOV.B ROL, @H'FFEA;Disable external trigger  
MOV.B #H'72, ROL  
MOV.B ROL, @H'FFE8;Select mode and channels and set ADST to “1”  
Value set in ADCSR  
ADF  
0
ADIE  
1
ADST SCAN  
CKS  
0
CH2  
0
CH1  
1
CH0  
0
1
1
219  
(2) The A/D converter converts the voltage level at the AN0 input pin to a digital value, and  
transfers the result to register ADDRA.  
(3) Next the A/D converter converts AN1 and transfers the result to ADDRB. Then it converts  
AN2 and transfers the result to ADDRC.  
(4) After all selected channels (AN0 to AN2) have been converted, the AD converter sets the ADF  
bit to “1.” If the ADIE bit is set to “1,” an A/D interrupt (ADI) is requested. Then the A/D  
converter begins converting AN0 again.  
(5) Steps (2) to (4) are repeated cyclically as long as the ADST bit remains set to “1.”  
To stop the A/D converter, software must clear the ADST bit to “0.”  
Regardless of which channel is being converted when the ADST bit is cleared to “0,” when the  
ADST bit is set to “1” again, conversion begins from the the first selected channel (AN0).  
220  
Continuous A/D conversion  
1
Clear *  
Set*  
1
ADST  
1
*
Clear  
ADF  
A/D conversion  
time  
Channel 0 (AN 0)  
A/D conver-  
A/D conver-  
Waiting  
Waiting  
Waiting  
Waiting  
Waiting  
sion  
sion  
Waiting  
Waiting  
A/D conver- * 2  
sion ➄  
Channel 1 (AN 1)  
A/D conver-  
sion ➁  
Channel 2 (AN 2)  
Channel 3 (AN 3)  
ADDRA  
Waiting  
A/D conver-  
sion  
Waiting  
Transfer  
A/D conversion result  
A/D conver-  
sion result  
ADDRB  
ADDRC  
A/D conversion result  
A/D conversion result  
ADDRD  
Notes: *1 indicates execution of a software instruction  
*2 Data undergoing conversion when ADST bit is cleared are ignored.  
Figure 9-3. A/D Operation in Scan Mode (when Channels 0 to 2 are Selected)  
9.3.3 Input Sampling Time and A/D Conversion Time  
The A/D converter includes a built-in sample-and-hold circuit. Sampling of the input starts at a  
time tD after the ADST bit is set to “1.” The sampling process lasts for a time tSPL. The actual A/D  
conversion begins after sampling is completed. Figure 9-4 shows the timing of these steps.  
Table 9-4 (a) lists the conversion times for the single mode. Table 9-4 (b) lists the conversion times  
for the scan mode.  
The total conversion time (tCONV) includes tD and tSPL. The purpose of tD is to synchronize the  
ADCSR write time with the A/D conversion process, so the length of tD is variable. The total  
conversion time therefore varies within the minimum to maximum ranges indicated in table 9-4 (a)  
and (b).  
In the scan mode, the ranges given in table 9-4 (b) apply to the first conversion. The length of the  
second and subsequent conversion processes is fixed at 256 states (when CKS = “0”) or 128 states  
(when CKS = “1”).  
(1)  
Ø
Internal address bus  
(2)  
Write signal  
Input sampling timing  
ADF  
tD  
tSPL  
tCONV  
(1):  
(2):  
tD:  
ADCSR write cycle  
ADCSR address  
Synchronization delay  
Input sampling time  
tSPL:  
tCONV: Total A/D conversion time  
Figure 9-4. A/D Conversion Timing  
222  
Table 9-4 (a). A/D Conversion Time (Single Mode)  
CKS = “0”  
Typ  
CKS = “1”  
Item  
Symbol Min  
Max  
33  
Min  
10  
Typ  
Max  
17  
Synchronization delay  
Input sampling time  
tD  
18  
63  
tSPL  
31  
Total A/D conversion time tCONV  
227  
242  
115  
122  
Table 9-4 (b). A/D Conversion Time (Scan Mode)  
CKS = “0”  
Typ  
CKS = “1”  
Item  
Symbol Min  
Max  
33  
Min  
10  
Typ  
Max  
17  
Synchronization delay  
Input sampling time  
tD  
18  
63  
tSPL  
31  
Total A/D conversion time tCONV  
259  
274  
131  
138  
Note: Values in the tables above are numbers of states.  
9.3.4 External Trigger Input Timing  
A/D conversion can be started by external trigger input at the ADTRG pin. This input is enabled or  
disabled by the TRGE bit in the A/D control register (ADCR). If the TRGE bit is set to “1,” when  
a falling edge of ADTRG is detected the ADST bit is set to “1” and A/D conversion begins.  
Subsequent operation in both single and scan modes is the same as when the ADST bit is set to “1”  
by software.  
Figure 9-5 shows the trigger timing.  
223  
Ø
ADTRG  
Internal trigger signal  
ADST  
A/D conversion  
Figure 9-5. External Trigger Input Timing  
9.4 Interrupts  
The A/D conversion module generates an A/D-end interrupt request (ADI) at the end of A/D  
conversion.  
The ADI interrupt request can be enabled or disabled by the ADIE bit in the A/D control/status  
register (ADCSR).  
224  
Section 10. RAM  
10.1 Overview  
The H8/329 and H8/328 include 1k byte of on-chip static RAM. The H8/327 has 512 bytes. The  
H8/326 has 256 bytes. The on-chip RAM is connected to the CPU by a 16-bit data bus. Both byte  
and word access to the on-chip RAM are performed in two states, enabling rapid data transfer and  
instruction execution.  
The on-chip RAM is assigned to addresses H'FB80 to H'FF7F in the H8/329 and H8/328, addresses  
H'FD80 to H'FF7F in the H8/327, and addresses H'FE80 to H'FF7F in the H8/326. The RAME bit  
in the system control register (SYSCR) can enable or disable the on-chip RAM, permitting these  
addresses to be allocated to external memory instead, if so desired.  
10.2 Block Diagram  
Figure 10-1 is a block diagram of the on-chip RAM.  
Internal data bus (upper 8 bits)  
Internal data bus (lower 8 bits)  
H'FB80  
H'FB82  
H'FB81  
H'FB83  
On-chip RAM  
H'FF7E  
H'FF7F  
Even address  
Odd address  
Figure 10-1. Block Diagram of On-Chip RAM (H8/329 and H8/328)  
225  
10.3 RAM Enable Bit (RAME) in System Control Register (SYSCR)  
The on-chip RAM is enabled or disabled by the RAME (RAM Enable) bit in the system control  
register (SYSCR).  
Bit  
7
SSBY  
0
6
STS2  
0
5
STS1  
0
4
STS0  
0
3
1
2
NMIEG  
0
1
1
0
RAME  
1
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The only bit in the system control register that concerns the on-chip RAM is the RAME bit. See  
section 2.2, “System Control Register” for the other bits.  
Bit 0—RAM Enable (RAME): This bit enables or disables the on-chip RAM.  
The RAME bit is initialized to “1” on the rising edge of the RES signal, so a reset enables the on-  
chip RAM. The RAME bit is not initialized in the software standby mode.  
Bit 7  
RAME  
Description  
0
1
On-chip RAM is disabled.  
On-chip RAM is enabled.  
(Initial value)  
10.4 Operation  
10.4.1 Expanded Modes (Modes 1 and 2)  
If the RAME bit is set to “1,” accesses to addresses H'FB80 to H'FF7F in the H8/329 and H8/328,  
addresses H'FD80 to H'FF7F in the H8/327, and addresses H'FE80 to H'FF7F in the H8/326 are  
directed to the on-chip RAM. If the RAME bit is cleared to “0,” accesses to these addresses are  
directed to the external data bus.  
10.4.2 Single-Chip Mode (Mode 3)  
If the RAME bit is set to “1,” accesses to addresses H'FB80 to H'FF7F in the H8/329 and H8/328,  
addresses H'FD80 to H'FF7F in the H8/327, and addresses H'FE80 to H'FF7F in the H8/326 are  
directed to the on-chip RAM.  
If the RAME bit is cleared to “0,” the on-chip RAM data cannot be accessed. Attempted write  
access has no effect. Attempted read access always results in H'FF data being read.  
226  
Section 11. ROM  
11.1 Overview  
The H8/329 includes 32k bytes of high-speed, on-chip ROM. The H8/328 has 24k bytes. The  
H8/327 has 16k bytes. The H8/326 has 8k bytes. The on-chip ROM is connected to the CPU via a  
16-bit data bus. Both byte data and word data are accessed in two states, enabling rapid data  
transfer and instruction fetching.  
The H8/329 and H8/327 are available with electrically programmable ROM (PROM). The PROM  
version has a PROM mode in which the chip can be programmed with a standard PROM writer.  
The on-chip ROM is enabled or disabled depending on the MCU operating mode, which is  
determined by the inputs at the mode pins (MD1 and MD0). See table 11-1.  
Table 11-1. On-Chip ROM Usage in Each MCU Mode  
Mode pins  
Mode  
MD1  
MD0  
On-Chip ROM  
Disabled (external addresses)  
Enabled  
Mode 1 (expanded mode)  
Mode 2 (expanded mode)  
Mode 3 (single-chip mode)  
0
1
1
1
0
1
Enabled  
227  
11.1.1 Block Diagram  
Figure 11-1 is a block diagram of the on-chip ROM.  
Internal data bus (upper 8 bits)  
Internal data bus (lower 8 bits)  
H'0000  
H'0002  
H'0001  
H'0003  
On-chip ROM  
H'7FFE  
H'7FFF  
Even addresses Odd addresses  
Figure 11-1. Block Diagram of On-Chip ROM (H8/329)  
11.2 PROM Mode (H8/329, H8/327)  
11.2.1 PROM Mode Setup  
In the PROM mode of the PROM version of the H8/329 and H8/327, the usual microcomputer  
functions are halted to allow the on-chip PROM to be programmed. The programming method is  
the same as for the HN27C256.  
To select the PROM mode, apply the signal inputs listed in table 11-2.  
Table 11-2. Selection of PROM Mode  
Pin  
Input  
Low  
Low  
Low  
High  
Mode pin MD1  
Mode pin MD0  
STBY pin  
Pins P63 and P64  
228  
11.2.2 Socket Adapter Pin Assignments and Memory Map  
The H8/329 and H8/327 can be programmed with a general-purpose PROM writer. Since the  
package has more than 32 pins, a socket adapter is necessary. Table 11-3 lists recommended socket  
adapters. Figure 11-2 shows the socket adapter pin assignments by giving the correspondence  
between H8/329 or H8/327 pins and HN27C256 pin functions. The same socket adapter can be  
used for both the H8/329 and H8/327.  
Figures 11-3 and 11-4 show memory maps in the PROM mode. Since the H8/329 has only 32k  
bytes of on-chip PROM, its address range should be specified as H'0000 to H'7FFF. Since the  
H8/327 has only 16k bytes of on-chip PROM, its address range should be specified as H'0000 to  
H'3FFF. H'FF data should be specified for unused address areas.  
It is important to limit the program address range to H'0000 to H'7FFF for the H8/329, and to  
H'0000 to H'3FFF for the H8/327, and specify H'FF data for H'8000 or H'4000 and higher  
addresses. If data (other than H'FF) are written by mistake in addresses equal to or greater than  
H'8000 in the H8/329, or H'4000 in the H8/327, it may become impossible to program or verify the  
PROM data. With a windowed package, it is possible to erase the data and reprogram, but this  
cannot be done with a plastic package, so particular care is required.  
Table 11-3. Recommended Socket Adapters  
Package  
Recommended socket adapter  
64-pin windowed shrink DIP (DC-64S)  
64-pin shrink DIP (DP-64S)  
64-pin QFP (FP-64A)  
HS328ESS02H  
HS328ESH02H  
HS328ESC02H  
68-pin PLCC (DP-68)  
229  
H8/329 or H8/327  
DC-64S  
EPROM Socket  
HN27C256  
CP-68  
13  
14  
61  
62  
63  
64  
65  
66  
67  
68  
60  
59  
58  
57  
56  
55  
54  
53  
50  
49  
48  
47  
46  
45  
44  
43  
37  
38  
32  
15  
42  
22  
21  
16  
23  
17  
51  
1
FP-64A  
DP-64S Pin  
Pin  
(28 pins)  
4
12  
13  
57  
58  
59  
60  
61  
62  
63  
64  
56  
55  
54  
53  
52  
51  
50  
49  
47  
46  
45  
44  
43  
42  
41  
40  
34  
35  
30  
14  
39  
20  
19  
15  
21  
16  
48  
RES  
NMI  
P30  
P31  
P32  
P33  
P34  
P35  
P36  
P37  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
P63  
P64  
AVCC  
VCC  
VCC  
MD0  
MD1  
STBY  
AVSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VPP  
1
5
EA9  
EO0  
EO1  
EO2  
EO3  
EO4  
EO5  
EO6  
EO7  
EA0  
EA1  
EA2  
EA3  
EA4  
EA5  
EA6  
EA7  
EA8  
OE  
24  
11  
12  
13  
15  
16  
17  
18  
19  
10  
9
49  
50  
51  
52  
53  
54  
55  
56  
48  
47  
46  
45  
44  
43  
42  
41  
39  
38  
37  
36  
35  
34  
33  
32  
26  
27  
22  
8
8
7
6
5
4
3
25  
22  
21  
23  
2
EA10  
EA11  
EA12  
EA13  
EA14  
CE  
26  
27  
20  
28  
VCC  
31  
12  
11  
7
VSS  
14  
13  
8
40  
PP  
V
:
Program voltage (12.5 V)  
EO 7 to EO0: Data input/output  
EA 14 to EA0: Address input  
18  
35  
52  
OE:  
CE:  
Output enable  
Chip enable  
Note: All pins not listed in this figure should be left open.  
Figure 11-2. Socket Adapter Pin Assignments  
230  
Address in MCU mode  
H'0000  
Address in PROM mode  
H'0000  
On-chip  
PROM  
H'7FFF  
H'7FFF  
Figure 11-3. Memory Map of H8/329 in PROM Mode  
Address in MCU mode  
Address in PROM mode  
H'0000  
H'0000  
On-chip  
PROM  
H'3FFF  
H'3FFF  
Note: * If this area is read in PROM mode,  
“1” output *  
the output data are H'FF.  
H'7FFF  
Figure 11-4. Memory Map of H8/327 in PROM Mode  
231  
11.3 Programming  
The write, verify, and other sub-modes of the PROM mode are selected as shown in table 11-4.  
Table 11-4. Selection of Sub-Modes in PROM Mode  
Sub-Mode  
Write  
CE  
Low High VPP  
High Low  
OE  
VPP  
VCC  
VCC  
VCC  
VCC  
EO7 to EO0  
Data input  
EA14 to EA0  
Address input  
Address input  
Address input  
Verify  
VPP  
Data output  
High impedance  
Programming High High VPP  
inhibited  
Note: The VPP and VCC pins must be held at the VPP and VCC voltage levels.  
The H8/329 and H8/327 PROM has the same standard read/write specifications as the HN27C256  
and HN27256 EPROM.  
11.3.1 Writing and Verifying  
An efficient, high-speed programming procedure can be used to write and verify PROM data. This  
procedure writes data quickly without subjecting the chip to voltage stress and without sacrificing  
data reliability. It leaves the data H'FF written in unused addresses. Figure 11-5 shows the basic  
high-speed programming flowchart. Tables 11-5 and 11-6 list the electrical characteristics of the  
chip in the PROM mode. Figure 11-6 shows a write/verify timing chart.  
232  
START  
Set program/verify mode  
VCC = 6.0V ±0.25V, VPP = 12.5V ±0.3V  
Address = 0  
n = 0  
n + 1 n  
Write time tPW = 1 ms ±5%  
Yes  
n < 25?  
No  
No  
Verify OK?  
Yes  
Write tOPW = 3n ms  
Address + 1  
Address  
No  
Last address?  
Yes  
Set read mode  
VCC = 5.0V ±0.5V, VPP = VCC  
No  
Error  
All addresses read?  
Yes  
END  
Figure 11-5. High-Speed Programming Flowchart  
233  
Table 11-5. DC Characteristics  
(when VCC = 6.0V ±0.25V, VPP = 12.5V ±0.3V, VSS = 0V, Ta = 25˚C ±5˚C)  
Measurement  
Unit conditions  
VCC + 0.3 V  
Item  
Symbol Min Typ Max  
Input High voltage  
EO7 – EO0,  
EA14 – EA0,  
OE, CE  
VIH  
2.4  
Input Low voltage  
EO7 – EO0,  
EA14 – EA0,  
OE, CE  
VIL  
–0.3  
0.8  
V
Output High voltage EO7 – EO0  
Output Low voltage EO7 – EO0  
VOH  
VOL  
|ILI|  
2.4  
0.45  
2
V
V
IOH = –200µA  
IOL = 1.6mA  
Input leakage  
current  
EO7 – EO0,  
EA14 – EA0,  
OE, CE  
µA Vin = 5.25V/  
0.5V  
VCC current  
VPP current  
ICC  
IPP  
40  
40  
mA  
mA  
Table 11-6. AC Characteristics  
(when VCC = 6.0V ±0.25V, VPP = 12.5V ±0.3V, Ta = 25˚C ±5˚C)  
Measurement  
Max Unit conditions  
Item  
Symbol Min  
Typ  
Address setup time  
OE setup time  
tAS  
2
µs  
µs  
µs  
µs  
µs  
ns  
See figure 11-6*  
tOES  
tDS  
2
Data setup time  
Address hold time  
Data hold time  
2
tAH  
tDH  
tDF  
0
2
Data output disable time  
Vpp setup time  
Program pulse width  
2
130  
tVPS  
tPW  
µs  
ms  
0.95  
1.0  
1.05  
Note: * Input pulse level: 0.8V to 2.2V  
Input rise/fall time 20ns  
Timing reference levels: input—1.0V, 2.0V; output—0.8V, 2.0V  
234  
Table 11-6. AC Characteristics (cont.)  
(when VCC = 6.0V ±0.25V, VPP = 12.5V ±0.3V, Ta = 25˚C ±5˚C)  
Measurement  
Max Unit conditions  
78.75 ms See figure 11-6*  
Item  
Symbol Min  
Typ  
OE pulse width for  
overwrite-programming  
VCC setup time  
tOPW  
2.85  
tVCS  
tOE  
2
0
µs  
ns  
Data output delay time  
500  
Note: * Input pulse level: 0.8V to 2.2V  
Input rise/fall time 20ns  
Timing reference levels: input—1.0V, 2.0V; output—0.8V, 2.0V  
Write  
Verify  
Address  
Data  
tAS  
tAH  
tDF  
Input data  
Output data  
tDS  
tDH  
VPP  
VPP  
VCC  
tVPS  
VCC  
tVCS  
GND  
CE  
OE  
tPW  
tOES  
tOE  
tOPW  
Figure 11-6. PROM Write/Verify Timing  
235  
11.3.2 Notes on Writing  
(1) Write with the specified voltages and timing. The programming voltage (VPP) is 12.5V.  
Caution: Applied voltages in excess of the specified values can permanently destroy the chip. Be  
particularly careful about the PROM writer’s overshoot characteristics.  
If the PROM writer is set to Hitachi HN27256 or HN27C256 specifications, or to Intel  
specifications, VPP will be 12.5V.  
(2) Before writing data, check that the socket adapter and chip are correctly mounted in the  
PROM writer. Overcurrent damage to the chip can result if the index marks on the PROM writer,  
socket adapter, and chip are not correctly aligned.  
(3) Don’t touch the socket adapter or chip while writing. Touching either of these can cause  
contact faults and write errors.  
11.3.3 Reliability of Written Data  
An effective way to assure the data holding characteristics of the programmed chips is to bake them  
at 150˚C, then screen them for data errors. This procedure quickly eliminates chips with PROM  
memory cells prone to early failure.  
Figure 11-7 shows the recommended screening procedure.  
236  
Write and verify program  
Bake with power off  
+ 8 Hr *  
– 0 Hr  
150°± 10°C, 48 Hr  
Read and check program  
VCC = 4.5V and 5.5V  
Install  
Note: * Baking time should be measured from the point when the baking oven reaches 150°C.  
Figure 11-7. Recommended Screening Procedure  
If a series of write errors occurs while the same PROM writer is in use, stop programming and  
check the PROM writer and socket adapter for defects, using a microcomputer chip with a  
windowed package and on-chip EPROM.  
Please inform Hitachi of any abnormal conditions noted during programming or in screening of  
program data after high-temperature baking.  
11.3.4 Erasing of Data  
The windowed package enables data to be erased by illuminating the window with ultraviolet light.  
Table 11-7 lists the erasing conditions.  
Table 11-7. Erasing Conditions  
Item  
Value  
Ultraviolet wavelength  
Minimum illumination  
253.7 nm  
15W·s/cm2  
The conditions in table 11-7 can be satisfied by placing a 12000µW/cm2 ultraviolet lamp 2 or 3  
centimeters directly above the chip and leaving it on for about 20 minutes.  
237  
11.4 Handling of Windowed Packages  
(1) Glass Erasing Window: Rubbing the glass erasing window of a windowed package with a  
plastic material or touching it with an electrically charged object can create a static charge on the  
window surface which may cause the chip to malfunction.  
If the erasing window becomes charged, the charge can be neutralized by a short exposure to  
ultraviolet light. This returns the chip to its normal condition, but it also reduces the charge stored  
in the floating gates of the PROM, so it is recommended that the chip be reprogrammed afterward.  
Accumulation of static charge on the window surface can be prevented by the following  
precautions:  
When handling the package, ground yourself. Don’t wear gloves. Avoid other possible  
sources of static charge.  
Avoid friction between the glass window and plastic or other materials that tend to accumulate  
static charge.  
Be careful when using cooling sprays, since they may have a slight ion content.  
Cover the window with an ultraviolet-shield label, preferably a label including a conductive  
material. Besides protecting the PROM contents from ultraviolet light, the label protects the  
chip by distributing static charge uniformly.  
(2) Handling after Programming: Fluorescent light and sunlight contain small amounts of  
ultraviolet, so prolonged exposure to these types of light can cause programmed data to invert. In  
addition, exposure to any type of intense light can induce photoelectric effects that may lead to chip  
malfunction. It is recommended that after programming the chip, you cover the erasing window  
with a light-proof label (such as an ultraviolet-shield label).  
238  
Section 12. Power-Down State  
12.1 Overview  
The H8/329 Series has a power-down state that greatly reduces power consumption by stopping  
some or all of the chip functions. The power-down state includes three modes:  
(1) Sleep mode – a software-triggered mode in which the CPU halts but the rest of the chip  
remains active  
(2) Software standby mode – a software-triggered mode in which the entire chip is inactive  
(3) Hardware standby mode – a hardware-triggered mode in which the entire chip is inactive  
Table 12-1 lists the conditions for entering and leaving the power-down modes. It also indicates the  
status of the CPU, on-chip supporting modules, etc. in each power-down mode.  
Table 12-1. Power-Down State  
Entering  
procedure  
Execute  
CPU Sup.  
I/O  
Exiting  
Mode  
Sleep  
mode  
Clock CPU Reg’s. Mod. RAM ports methods  
Run  
Halt  
Halt  
Halt  
Held  
Held  
Run  
Held  
Held  
Held  
Held  
• Interrupt  
• RES  
SLEEP  
instruction  
Set SSBY bit  
in SYSCR to  
“1,” then  
• STBY  
• NMI  
Soft-  
Halt  
and  
ware  
• IRQ0 – IRQ2  
• STBY  
• RES  
standby  
mode  
initial-  
ized  
execute SLEEP  
instruction  
Set STBY  
pin to Low  
level  
Hard-  
ware  
Halt  
Halt  
Not  
Halt  
and  
Held  
High  
impe-  
dance  
state  
• STBY High,  
then RES  
held  
standby  
mode  
initialized  
Low High  
Notes: 1. SYSCR: System control register  
2. SSBY: Software standby bit  
239  
12.2 System Control Register: Power-Down Control Bits  
Bits 7 to 4 of the system control register (SYSCR) concern the power-down state. Specifically,  
they concern the software standby mode.  
Table 12-2 lists the attributes of the system control register.  
Table 12-2. System Control Register  
Name  
Abbreviation R/W  
Initial value Address  
System control register  
SYSCR  
R/W  
H'0B  
H'FFC4  
Bit  
7
SSBY  
0
6
5
STS1  
0
4
STS0  
0
3
1
2
1
0
RAME  
1
STS2  
NMIEG  
0
1
Initial value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Bit 7—Software Standby (SSBY): This bit enables or disables the transition to the software  
standby mode.  
On recovery from the software standby mode by an external interrupt, SSBY remains set to “1.”  
To clear this bit, software must write a “0.”  
Bit 7  
SSBY  
Description  
0
1
The SLEEP instruction causes a transition to the sleep mode.  
The SLEEP instruction causes a transition to the software  
standby mode.  
(Initial value)  
Bits 6 to 4—Standby Timer Select 2 to 0 (STS2 to STS0): These bits select the clock settling  
time when the chip recovers from the software standby mode by an external interrupt. During the  
selected time, the clock oscillator runs but clock pulses are not supplied to the CPU or the on-chip  
supporting modules.  
240  
Bit 6  
Bit 5  
Bit 4  
STS2  
STS1  
STS0  
Description  
0
0
0
0
1
0
0
Settling time = 8192 states  
Settling time = 16384 states  
Settling time = 32768 states  
Settling time = 65536 states  
Settling time = 131072 states  
(Initial value)  
0
1
1
0
1
1
When the on-chip clock generator is used, the STS bits should be set to allow a settling time of at  
least 10ms. Table 12-3 lists the settling times selected by these bits at several clock frequencies and  
indicates the recommended settings.  
When the chip is externally clocked, the STS bits can be set to any value. The minimum value  
(STS2 = STS1 = STS0 = “0”) is recommended.  
Table 12-3. Times Set by Standby Timer Select Bits (Unit: ms)  
Settling  
time  
System clock frequency (MHz)  
STS2 STS1 STS0  
(states) 10  
8
6
4
2
1
0.5  
0
0
0
0
1
0
0
8192  
0.8  
1.0  
2.0  
4.1  
8.2  
16.4  
1.3  
2.7  
5.5  
10.9  
21.8  
2.0  
4.1  
8.2  
16.4  
32.8  
4.1  
8.2  
16.4  
32.8  
65.5  
8.2  
16.4  
32.8  
65.5  
131.1  
0
1
16384 1.6  
32768 3.3  
65536 6.6  
131072 13.1  
16.4  
32.8  
65.5  
1
0
1
1
131.1 262.1  
Notes: 1. All times are in milliseconds.  
2. Recommended values are printed in boldface.  
241  
12.3 Sleep Mode  
The sleep mode provides an effective way to conserve power while the CPU is waiting for an  
external interrupt or an interrupt from an on-chip supporting module.  
12.3.1 Transition to Sleep Mode  
When the SSBY bit in the system control register is cleared to “0,” execution of the SLEEP  
instruction causes a transition from the program execution state to the sleep mode. After executing  
the SLEEP instruction, the CPU halts, but the contents of its internal registers remain unchanged.  
The on-chip supporting modules continue to operate normally.  
12.3.2 Exit from Sleep Mode  
The chip wakes up from the sleep mode when it receives an internal or external interrupt request, or  
a Low input at the RES or STBY pin.  
(1) Wake-Up by Interrupt: An interrupt releases the sleep mode and starts the CPU’s interrupt-  
handling sequence.  
If an interrupt from an on-chip supporting module is disabled by the corresponding enable/disable  
bit in the module’s control register, the interrupt cannot be requested, so it cannot wake the chip up.  
Similarly, the CPU cannot be awoken by an interrupt other than NMI if the I (interrupt mask) bit in  
the CCR (condition code register) is set when the SLEEP instruction is executed.  
(2) Wake-Up by RES pin: When the RES pin goes Low, the chip exits from the sleep mode to  
the reset state.  
(3) Wake-Up by STBY pin: When the STBY pin goes Low, the chip exits from the sleep mode to  
the hardware standby mode.  
242  
12.4 Software Standby Mode  
In the software standby mode, the system clock stops and chip functions halt, including both CPU  
functions and the functions of the on-chip supporting modules. Power consumption is reduced to  
an extremely low level. The on-chip supporting modules and their registers are reset to their initial  
states, but as long as a minimum necessary voltage supply is maintained (at least 2V), the contents  
of the CPU registers and on-chip RAM remain unchanged.  
12.4.1 Transition to Software Standby Mode  
To enter the software standby mode, set the standby bit (SSBY) in the system control register  
(SYSCR) to “1,” then execute the SLEEP instruction.  
12.4.2 Exit from Software Standby Mode  
The chip can be brought out of the software standby mode by an input at one of six pins: NMI,  
IRQ0, IRQ1, IRQ2, RES, or STBY.  
(1) Recovery by External Interrupt: When an NMI, IRQ0, IRQ1, or IRQ2 request signal is  
received, the clock oscillator begins operating. After the waiting time set in the system control  
register (bits STS2 to STS0), clock pulses are supplied to the CPU and on-chip supporting modules.  
The CPU executes the interrupt-handling sequence for the requested interrupt, then returns to the  
instruction after the SLEEP instruction. The SSBY bit is not cleared.  
See section 12.2, “System Control Register: Power-Down Control Bits,” for information about the  
STS bits.  
(2) Recovery by RES Pin: When the RES pin goes Low, the clock oscillator starts and clock  
pulses are supplied to the entire chip. Next, when the RES pin goes High, the CPU begins  
executing the reset sequence. The SSBY bit is cleared to “0.”  
The RES pin must be held Low long enough for the clock to stabilize.  
(3) Recovery by STBY Pin: When the STBY pin goes Low, the chip exits from the software  
standby mode to the hardware standby mode.  
243  
12.4.3 Sample Application of Software Standby Mode  
In this example the chip enters the software standby mode when NMI goes Low and exits when  
NMI goes High, as shown in figure 12-1.  
The NMI edge bit (NMIEG) in the system control register is originally cleared to “0,” selecting the  
falling edge. When NMI goes Low, the NMI interrupt handling routine sets NMIEG to “1,” sets  
SSBY to “1” (selecting the rising edge), then executes the SLEEP instruction. The chip enters the  
software standby mode. It recovers from the software standby mode on the next rising edge of  
NMI.  
Clock  
generator  
Ø
NMI  
NMIEG  
SSBY  
Settling time  
Software standby mode  
(power-down state)  
NMI interrupt handler  
NMI interrupt handler  
NMIEG = “1”  
SSBY = “1”  
SLEEP  
Figure 12-1. Software Standby Mode (when) NMI Timing  
12.4.4 Application Note  
The I/O ports retain their current states in the software standby mode. If a port is in the High  
output state, the current dissipation caused by the High output current is not reduced.  
244  
12.5 Hardware Standby Mode  
12.5.1 Transition to Hardware Standby Mode  
Regardless of its current state, the chip enters the hardware standby mode whenever the STBY pin  
goes Low.  
The hardware standby mode reduces power consumption drastically by halting the CPU, stopping  
all the functions of the on-chip supporting modules, and placing I/O ports in the high-impedance  
state. The registers of the on-chip supporting modules are reset to their initial values. Only the on-  
chip RAM is held unchanged, provided the minimum necessary voltage supply is maintained (at  
least 2V).  
Notes: 1. The RAME bit in the system control register should be cleared to “0” before the STBY  
pin goes Low, to disable the on-chip RAM during the hardware standby mode.  
2. Do not change the inputs at the mode pins (MD1, MD0) during hardware standby  
mode. Be particularly careful not to let both mode pins go Low in hardware standby  
mode, since that places the chip in PROM mode and increases current dissipation.  
12.5.2 Recovery from Hardware Standby Mode  
Recovery from the hardware standby mode requires inputs at both the STBY and RES pins.  
When the STBY pin goes High, the clock oscillator begins running. The RES pin should be Low at  
this time and should be held Low long enough for the clock to stabilize. When the RES pin  
changes from Low to High, the reset sequence is executed and the chip returns to the program  
execution state.  
245  
12.5.3 Timing Relationships  
Figure 12-2 shows the timing relationships in the hardware standby mode.  
In the sequence shown, first RES goes Low, then STBY goes Low, at which point the chip enters  
the hardware standby mode. To recover, first STBY goes High, then after the clock settling time,  
RES goes High.  
Clock pulse  
generator  
RES  
STBY  
Clock settling  
time  
Restart  
Figure 12-2. Hardware Standby Mode Timing  
246  
Section 13. Clock Pulse Generator  
13.1 Overview  
The H8/329 Series has a built-in clock pulse generator (CPG) consisting of an oscillator circuit, a  
system (Ø) clock divider, and a prescaler. The prescaler generates clock signals for the on-chip  
supporting modules.  
13.1.1 Block Diagram  
CPG  
XTAL  
Oscillator  
circuit  
Divider  
÷ 2  
Prescaler  
EXTAL  
ø
ø/2 to ø/4096  
Figure 13-1. Block Diagram of Clock Pulse Generator  
13.2 Oscillator Circuit  
If an external crystal is connected across the EXTAL and XTAL pins, the on-chip oscillator circuit  
generates a clock signal for the system clock divider. Alternatively, an external clock signal can be  
applied to the EXTAL pin.  
(1) Connecting an External Crystal  
Circuit Configuration: An external crystal can be connected as in the example in figure 13-2.  
An AT-cut parallel resonating crystal should be used.  
247  
CL1  
CL2  
EXTAL  
XTAL  
CL1 = CL2 = 10 to 22pF  
Figure 13-2. Connection of Crystal Oscillator (Example)  
Crystal Oscillator: Figure 15-3 shows an equivalent circuit of the external crystal. The  
external crystal should have the characteristics listed in table 13-1.  
Table 13-1. External Crystal Parameters  
Frequency (MHz)  
Rs max ()  
C0 (pF)  
2
4
8
12  
40  
16  
30  
20  
20  
500  
120  
60  
7 pF max  
CL  
L
RS  
XTAL  
EXTAL  
C0  
AT-cut parallel resonating crystal  
Figure 13-3. Equivalent Circuit of External Crystal  
Note on Board Design: When an external crystal is connected, other signal lines should be  
kept away from the crystal circuit to prevent induction from interfering with correct oscillation.  
See figure 13-4. The crystal and its load capacitors should be placed as close as possible to the  
XTAL and EXTAL pins.  
248  
Not allowed  
Signal A  
Signal B  
H8/327  
CL2  
XTAL  
EXTAL  
CL1  
Figure 13-4. Notes on Board Design around External Crystal  
(2) Input of External Clock Signal  
Circuit Configuration: An external clock signal can be input as shown in the examples in  
figure 13-5. In example (b), the external clock should be held high during standby.  
EXTAL  
External clock input  
XTAL  
Open  
(a)  
EXTAL  
XTAL  
External clock input  
74HC04  
(b)  
Figure 13-5. External Clock Input (Example)  
249  
External Clock Input  
Frequency  
Duty factor  
Double the system clock (Ø) frequency  
45% to 55%  
13.3 System Clock Divider  
The system clock divider divides the crystal oscillator or external clock frequency by 2 to create the  
system clock (Ø).  
250  
Section 14. Electrical Specifications  
14.1 Absolute Maximum Ratings  
Table 14-1 lists the absolute maximum ratings.  
Table 14-1. Absolute Maximum Ratings  
Item  
Symbol  
VCC  
VPP  
Rating  
Unit  
V
Supply voltage  
–0.3 to +7.0  
Programming voltage  
Input voltage Ports 1 – 6  
Port 7  
–0.3 to +13.5  
V
Vin  
–0.3 to VCC + 0.3  
–0.3 to AVCC + 0.3  
–0.3 to +7.0  
V
Vin  
V
Analog supply voltage  
Analog input voltage  
Operating temperature  
AVCC  
VAN  
Topr  
V
–0.3 to AVCC + 0.3  
Regular specifications: –20 to +75  
V
˚C  
Wide-range specifications: – 40 to +85 ˚C  
–55 to +125 ˚C  
Storage temperature  
Tstg  
Note: Exceeding the absolute maximum ratings shown in table 14-1 can permanently destroy  
the chip.  
14.2 Electrical Characteristics  
14.2.1 DC Characteristics  
Table 14-2 lists the DC characteristics of the 5V versions of the H8/329 Series. Table 14-3 lists the  
DC characteristics of the 3V versions. Table 14-4 gives the allowable current output values of the  
5V versions. Table 14-5 gives the allowable current output values of the 3V versions.  
251  
Table 14-2. DC Characteristics (5V Versions)  
Conditions: VCC = 5.0V ±10%, AVCC = 5.0V ±10%*, VSS = AVSS = 0V,  
Ta = –20 to 75˚C (regular specifications), Ta = –40 to 85˚C (wide-range specifications)  
Measurement  
Item  
Symbol Min  
Typ Max  
Unit conditions  
-
Schmitt trigger  
input voltage  
(1)  
P67 – P62, P60, VT  
1.0  
V
+
P47, P44 – P40 VT  
VCC × 0.7 V  
-
+
VT –VT 0.4  
V
Input High voltage RES, STBY, NMI VIH  
VCC – 0.7 –  
VCC + 0.3 V  
(2)  
MD1, MD0  
EXTAL  
P77 – P70  
2.0  
2.0  
AVCC + 0.3 V  
VCC + 0.3 V  
Input High voltage Input pins  
other than (1)  
VIH  
and (2) above  
Input Low voltage RES, STBY  
VIL  
VIL  
–0.3  
–0.3  
0.5  
0.8  
V
V
(3)  
Input Low voltage Input pins  
other than (1)  
and (3) above  
MD1, MD0  
Output High  
voltage  
All output pins VOH  
VCC – 0.5 –  
V
V
V
V
IOH = –200µA  
IOH = –1.0mA  
IOL = 1.6mA  
IOL = 10.0mA  
3.5  
Output Low  
voltage  
All output pins VOL  
Ports 1 and 2  
0.4  
1.0  
10.0  
1.0  
Input leakage  
current  
RES  
|Iin|  
µA Vin = 0.5V to  
µA VCC – 0.5V  
STBY, NMI,  
MD1, MD0  
P77 – P70  
1.0  
1.0  
250  
µA Vin = 0.5V to  
AVCC – 0.5V  
Leakage current  
Ports 1, 2, 3  
|ITSI|  
µA Vin = 0.5V to  
VCC – 0.5V  
in 3-state (off state) 4, 5, 6  
Input pull-up  
MOS current  
Ports 1, 2, 3  
–Ip  
30  
µA Vin = 0V  
Note: * Connect AVCC to the power supply (VCC) even when the A/D converter is not used.  
252  
Table 14-2. DC Characteristics (5V Versions) (cont.)  
Conditions: VCC = 5.0V ±10%, AVCC = 5.0V ±10%*1, VSS = AVSS = 0V, Ta = 20 to 75˚C (regular  
specifications), Ta = –40 to 85˚C (wide-range specifications)  
Measurement  
Item  
Symbol Min  
Typ  
Max  
60  
Unit conditions  
Input capacitance RES  
NMI  
Cin  
pF  
pF  
pF  
Vin = 0V  
f = 1MHz  
Ta = 25˚C  
30  
All input pins  
15  
except RES  
and NMI  
Normal  
Current  
dissipation*2  
ICC  
12  
16  
20  
8
25  
30  
40  
15  
20  
25  
5.0  
1.5  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
f = 6MHz  
f = 8MHz  
f = 10MHz  
f = 6MHz  
f = 8MHz  
f = 10MHz  
operation  
Sleep mode  
10  
12  
0.01  
0.6  
Standby modes*3  
During A/D  
conversion  
Waiting  
Analog supply  
current  
AICC  
mA  
0.01  
5.0  
µA  
V
RAM standby  
voltage  
VRAM  
2.0  
Notes: *1 Connect AVCC to the power supply (+5V) even when the A/D converter is not used.  
*2 Current dissipation values assume that VIH min = VCC – 0.5V, VIL max = 0.5V, all output  
pins are in the no-load state, and all input pull-up transistors are off.  
*3 For these values it is assumed that VRAM VCC < 4.5V and VIH min = VCC × 0.9,  
VIL max = 0.3V.  
253  
Table 14-3. DC Characteristics (3V Versions)  
Conditions: VCC = 3.0V ±10%, AVCC = 5.0V ±10%*1, VSS = AVSS = 0V, Ta = 20 to 75˚C  
Measurement  
Unit conditions  
Item  
Symbol Min  
Typ  
Max  
Schmitt  
P67 – P62, P60, VT  
VCC × 0.15 –  
V
+
+
trigger input P47, P44 – P40 VT  
VCC × 0.7 V  
voltage*2  
VT –VT 0.2  
V
(1)  
Input High RES, STBY  
VIH  
VCC × 0.9  
VCC + 0.3 V  
voltage*2  
MD1, MD0  
(2)  
EXTAL, NMI  
P77 – P70  
VCC × 0.7  
VCC × 0.7  
AVCC + 0.3 V  
VCC + 0.3 V  
Input pins  
other than (1)  
and (2) above  
Input Low RES, STBY  
VIL  
–0.3  
–0.3  
VCC × 0.1 V  
VCC × 0.15 V  
voltage*2  
MD1, MD0  
(3)  
Input pins  
other than (1)  
and (3) above  
Output High All output pins VOH  
voltage  
VCC – 0.4  
V
V
V
V
IOH = –200µA  
IOH = –1mA  
IOL = 0.8mA  
IOL = 1.6mA  
VCC – 0.9  
Output Low All output pins VOL  
0.4  
0.4  
10.0  
1.0  
voltage  
Input  
Ports 1 and 2  
RES  
|Iin|  
µA Vin = 0.5 to  
µA VCC – 0.5V  
leakage  
current  
STBY, NMI,  
MD1, MD0  
P77 – P70  
1.0  
1.0  
µA Vin = 0.5 to  
AVCC – 0.5V  
Leakage  
current in  
3-state  
Ports 1, 2, 3  
4, 5, 6  
|ITSI|  
–Ip  
µA Vin = 0.5 to  
VCC – 0.5V  
(off state)  
Input  
Ports 1, 2, 3  
3
120  
µA Vin = 0V  
pull-up MOS  
current  
Notes: *1 Connect AVCC to the power supply (VCC) even when the A/D converter is not used.  
*2 In the range 3.3V < VCC < 4.5V, for the input levels of VIH and VT, apply the higher of  
the values given for the 5V and 3V versions. For VIL and VT , apply the lower of the  
values given for the 5V and 3V versions.  
254  
Table 14.3. DC Characteristics (3V Versions) (cont.)  
Conditions: VCC = 3.0V ±10%, AVCC = 5.0V ±10%*1, VSS = AVSS = 0V, Ta = 20 to 70˚C  
Measurement  
Max Unit conditions  
Item  
Symbol  
Min  
Typ  
Input  
RES  
Cin  
60  
30  
15  
pF  
pF  
pF  
Vin = 0V  
f = 1MHz  
Ta = 25˚C  
capacitance  
NMI  
All input pins  
except RES  
and NMI  
Normal  
Current  
dissipation*2  
ICC  
4
mA  
mA  
mA  
mA  
µA  
f = 3MHz  
f = 5MHz  
f = 3MHz  
f = 5MHz  
operation  
Sleep mode  
6
12  
3
4
8
Standby modes*3  
During A/D  
conversion  
Waiting  
0.01  
0.6  
5.0  
1.5  
Analog  
supply  
current  
AICC  
mA  
0.01  
5.0  
µA  
V
RAM backup voltage  
(in standby modes)  
VRAM  
2.0  
Notes: *1 Connect AVCC to the power supply (+3V) even when the A/D converter is not used.  
*2 Current dissipation values assume that VIH min. = VCC – 0.5V, VIL max. = 0.5V, all  
output pins are in the no-load state, and all input pull-up transistors are off.  
*3 For these values it is assumed that VRAM VCC < 2.7V and VIH min = VCC × 0.9,  
VIL max = 0.3V.  
255  
Table 14-4. Allowable Output Current Values (5V Versions)  
Conditions: VCC = 5.0V ±10%, AVCC = 5.0V ±10%, VSS = AVSS = 0V, Ta = 20 to 75˚C (regular  
specifications), Ta = –40 to 85˚C (wide-range specifications)  
Item  
Symbol  
Min  
Typ  
Max  
10  
Unit  
mA  
mA  
mA  
mA  
mA  
Allowable output Low  
current (per pin)  
Allowable output Low  
current (total)  
Ports 1 and 2  
IOL  
Other output pins  
Ports 1 and 2, total  
Total of all output  
2.0  
80  
ΣIOL  
–IOH  
120  
2.0  
Allowable output High All output pins  
current (per pin)  
Allowable output High Total of all output  
Σ–IOH  
40  
mA  
current (total)  
Table 14-5. Allowable Output Current Values (3V Versions)  
Conditions: VCC = 3.0V ±10%, AVCC = 5.0V ±10%, VSS = AVSS = 0V, Ta = 20 to 75˚C  
pins  
Item  
Symbol  
Min  
Typ  
Max  
2
Unit  
mA  
mA  
mA  
mA  
mA  
Allowable output Low  
current (per pin)  
Allowable output Low  
current (total)  
Ports 1 and 2  
IOL  
Other output pins  
Ports 1 and 2, total  
All output pins  
1
ΣIOL  
–IOH  
40  
60  
2
Allowable output High All output pins  
current (per pin)  
Allowable output High Total of all output  
Σ–IOH  
30  
mA  
current (total)  
pins  
Note: To avoid degrading the reliability of the chip, be careful not to exceed the output current  
values in tables 14-4 and 14-5. In particular, when driving a Darlington transistor pair or  
LED directly, be sure to insert a current-limiting resistor in the output path. See figures 14-1  
and 14-2.  
256  
H8/329  
Series  
2 k  
Port  
Darlington  
pair  
Figure 14-1. Example of Circuit for Driving a Darlington Pair (5V Versions)  
H8/329  
Series  
Vcc  
600 Ω  
Port 1 or 2  
LED  
Figure 14-2. Example of Circuit for Driving an LED (5V Versions)  
14.2.2 AC Characteristics  
The AC characteristics of the H8/329 Series are listed in three tables. Bus timing parameters are  
given in table 14-6, control signal timing parameters in table 14-7, and timing parameters of the on-  
chip supporting modules in table 14-8.  
257  
Table 14-6. Bus Timing  
Condition A: VCC = 5.0V ±10%, VSS = 0V, Ø = 0.5MHz to maximum operating frequency,  
Ta = –20 to 75˚C (regular specifications),  
Ta = –40 to 85˚C (wide-range specifications)  
Condition B: VCC = 3.0V ±10%, VSS = 0V, Ø = 0.5MHz to maximum operating frequency,  
Ta = –20 to 75˚C  
Condition B  
5MHz  
Condition A  
8MHz  
6MHz  
10MHz  
Measurement  
Item  
Symbol Min Max Min Max Min Max Min Max Unit conditions  
Clock cycle time  
tcyc  
200 2000 166.7 2000 125 2000 100 2000 ns  
Fig. 14-4  
Fig. 14-4  
Fig. 14-4  
Fig. 14-4  
Fig. 14-4  
Fig. 14-4  
Fig. 14-4  
Fig. 14-4  
Fig. 14-4  
Fig. 14-4  
Fig. 14-4  
Fig. 14-4  
Fig. 14-4  
Fig. 14-4  
Fig. 14-4  
Fig. 14-4  
Fig. 14-4  
Fig. 14-4  
Fig. 14-4  
Fig. 14-5  
Fig. 14-5  
Clock pulse width Low  
Clock pulse width High  
Clock rise time  
tCL  
70  
70  
65  
65  
45  
45  
35  
35  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCH  
tCr  
25  
25  
90  
15  
15  
70  
15  
15  
60  
15  
15  
50  
Clock fall time  
tCf  
Address delay time  
Address hold time  
Address strobe delay time  
Write strobe delay time  
Strobe delay time  
tAD  
tAH  
30  
30  
25  
20  
tASD  
tWSD  
tSD  
80  
80  
90  
70  
70  
70  
60  
60  
60  
40  
50  
50  
Write strobe pulse width*  
Address setup time 1*  
Address setup time 2*  
Read data setup time  
Read data hold time  
Read data access time*  
Write data delay time  
Write data setup time  
Write data hold time  
Wait setup time  
tWSW  
tAS1  
tAS2  
tRDS  
tRDH  
tACC  
tWDD  
tWDS  
tWDH  
tWTS  
tWTH  
200  
25  
105  
90  
0
200  
25  
105  
70  
0
150  
20  
80  
50  
0
120  
15  
65  
35  
0
300  
125  
270  
85  
210  
75  
170 ns  
75  
ns  
ns  
ns  
ns  
ns  
10  
30  
60  
20  
20  
30  
40  
10  
10  
25  
40  
10  
5
20  
40  
10  
Wait hold time  
Note: * Values at maximum operating frequency  
258  
Table 14-7. Control Signal Timing  
Condition A: VCC = 5.0V ±10%, VSS = 0V, Ø = 0.5MHz to maximum operating frequency,  
Ta = –20 to 75˚C (regular specifications),  
Ta = –40 to 85˚C (wide-range specifications)  
Condition B: VCC = 3.0V ±10%, VSS = 0V, Ø = 0.5MHz to maximum operating frequency,  
Ta = –20 to 75˚C  
Condition B  
5MHz  
Condition A  
8MHz  
6MHz  
10MHz  
Measurement  
Item  
Symbol Min Max Min Max Min Max Min Max Unit conditions  
RES setup time  
tRESS  
tRESW  
tNMIS  
300  
10  
200  
10  
200  
10  
200  
10  
ns  
Fig. 14-6  
RES pulse width  
tcyc Fig. 14-6  
NMI setup time  
300  
150  
150  
150  
ns  
ns  
ns  
Fig. 14-7  
Fig. 14-7  
Fig. 14-7  
(NMI, IRQ0 to IRQ2)  
NMI hold time  
tNMIH  
tNMIW  
10  
10  
10  
10  
(NMI, IRQ0 to IRQ2)  
Interrupt pulse width  
for recovery from soft-  
ware standby mode  
(NMI, IRQ0 to IRQ2)  
Crystal oscillator settling  
time (reset)  
300  
200  
200  
200  
tOSC1  
tOSC2  
20  
10  
20  
10  
20  
10  
20  
10  
ms Fig. 14-8  
ms Fig. 14-9  
Crystal oscillator settling  
time (software standby)  
259  
Table 14-8. Timing Conditions of On-Chip Supporting Modules  
Condition A: VCC = 5.0V ±10%, VSS = 0V, Ø = 0.5MHz to maximum operating frequency,  
Ta = –20 to 75˚C (regular specifications),  
Ta = –40 to 85˚C (wide-range specifications)  
Condition B: VCC = 3.0V ±10%, VSS = 0V, Ø = 0.5MHz to maximum operating frequency,  
Ta = –20 to 75˚C  
Condition B  
5MHz  
Condition A  
8MHz  
6MHz  
10MHz  
Measurement  
Item  
Symbol Min Max Min Max Min Max Min Max Unit conditions  
FRT Timer output delay time tFTOD  
Timer input setup time tFTIS  
150  
100  
100  
100 ns  
Fig. 14-10  
Fig. 14-10  
Fig. 14-11  
80  
80  
50  
50  
50  
50  
50  
50  
ns  
ns  
Timer clock input  
setup time  
tFTCS  
Timer clock pulse width tFTCWH 1.5  
1.5  
1.5  
1.5  
tcyc Fig. 14-11  
tFTCWL  
TMR Timer output delay time tTMOD  
150  
100  
100  
100 ns  
Fig. 14-12  
Fig. 14-14  
Timer reset input  
setup time  
tTMRS  
80  
50  
50  
50  
ns  
Timer clock input  
setup time  
tTMCS  
80  
50  
50  
50  
ns  
Fig. 14-13  
Timer clock pulse width tTMCWH 1.5  
(single edge)  
1.5  
2.5  
1.5  
2.5  
1.5  
2.5  
tcyc Fig. 14-13  
tcyc Fig. 14-13  
Timer clock pulse width tTMCWL 2.5  
(both edges)  
SCI Input clock (Async) tscyc  
4
6
4
6
4
6
4
6
tcyc Fig. 14-15  
tcyc Fig. 14-15  
cycle  
(Sync)  
tscyc  
Transmit data delay  
time (Sync)  
tTXD  
200  
100  
100  
100 ns  
Fig. 14-15  
Fig. 14-15  
Fig. 14-15  
Receive data setup time tRXS  
(Sync)  
150  
150  
100  
100  
100  
100  
100  
100  
ns  
ns  
Receive data hold time tRXH  
(Sync)  
Input clock pulse width tSCKW  
Ports Output data delay time tPWD  
0.4 0.6  
0.4  
0.6 0.4  
0.6  
100  
0.4  
0.6 tscyc Fig. 14-16  
150  
100  
100 ns  
Fig. 14-17  
Fig. 14-17  
Fig. 14-17  
Input data setup time  
Input data hold time  
tPRS  
tPRH  
80  
80  
50  
50  
50  
50  
50  
50  
ns  
ns  
260  
• Measurement Conditions for AC Characteristics  
5 V  
RL  
LSI  
output pin  
C = 90 pF: Ports 1 – 4, 6  
30 pF: Port 5  
RL = 2.4 kΩ  
RH  
C
RH = 12 kΩ  
Input/output timing reference levels  
Low: 0.8 V  
High: 2.0 V  
Figure 14-3. Output Load Circuit  
14.2.3 A/D Converter Characteristics  
Table 14-9 lists the characteristics of the on-chip A/D converter.  
Table 14-9. A/D Converter Characteristics  
Condition A: VCC = AVCC = 5.0V ±10%, VSS = AVSS = 0V, Ø = 0.5MHz to maximum operating  
frequency, Ta = –20 to 75˚C (regular specifications),  
Ta = –40 to 85˚C (wide-range specifications)  
Condition B: VCC = 3.0V ±10%, AVCC = 5.0V ±10%, VSS = AVSS = 0V, Ø = 0.5MHz to maximum  
operating frequency, Ta = –20 to 75˚C  
Condition B  
5MHz  
Condition A  
8MHz  
6MHz  
10MHz  
Item  
Min Typ Max Min Typ Max Min Typ Max Min Typ Max Unit  
Resolution  
8
8
8
8
8
8
8
8
8
8
8
8
Bits  
Conversion time (single mode)*  
Analog input capacitance  
Allowable signal  
source impedance  
Nonlinearity error  
Offset error  
24.4 —  
20.4 —  
15.25 —  
12.2 µs  
20  
10  
20  
10  
20  
10  
20  
10  
pF  
k  
±1  
±1  
±1  
±1  
±1  
±1  
±1  
±1  
±1  
±1  
±1  
±1  
LSB  
LSB  
LSB  
Full-scale error  
Quantizing error  
Absolute accuracy  
±0.5 —  
±1.5 —  
±0.5 —  
±1.5 —  
±0.5 —  
±1.5 —  
±0.5 LSB  
±1.5 LSB  
Note: * At maximum operating frequency.  
261  
14.3 MCU Operational Timing  
This section provides the following timing charts:  
14.3.1 Bus Timing  
Figures 14-4 to 14-5  
14.3.2 Control Signal Timing  
14.3.3 16-Bit Free-Running Timer Timing  
14.3.4 8-Bit Timer Timing  
14.3.5 SCI Timing  
Figures 14-6 to 14-9  
Figures 14-10 to 14-11  
Figures 14-12 to 14-14  
Figures 14-15 to 14-16  
Figure 14-17  
14.3.6 I/O Port Timing  
14.3.1 Bus Timing  
(1) Basic Bus Cycle (without Wait States) in Expanded Modes  
T
1
T
2
T
3
tcyc  
tCH  
tCL  
Ø
tCf  
tAD  
tCr  
A15 to A0  
tASD  
tSD  
tAH  
tASI  
AS, RD  
tRDH  
tRDS  
tACC  
D7 to D0  
(Read)  
tWSD  
tSD  
tAS2  
tWSW  
tAH  
WR  
tWDH  
tWDD  
tWDS  
D7 to D0  
(Write)  
Figure 14-4. Basic Bus Cycle (without Wait States) in Expanded Modes  
262  
(2) Basic Bus Cycle (with 1 Wait State) in Expanded Modes  
T
T
T
T
3
2
1
W
Ø
A15 to A0  
AS, RD  
D7 to D0  
(Read)  
WR  
D7 to D0  
(Write)  
tWTS tWTH  
tWTS tWTH  
WAIT  
Figure 14-5. Basic Bus Cycle (with 1 Wait State) in Expanded Modes (Modes 1 and 2)  
14.3.2 Control Signal Timing  
(1) Reset Input Timing  
Ø
tRESS  
tRESS  
RES  
tRESW  
Figure 14-6. Reset Input Timing  
263  
(2) Interrupt Input Timing  
Ø
tNMIS tNMIH  
NMI  
IRQE (Edge)  
tNMIS  
IRQL (Level)  
tNMIW  
NMI  
IRQi  
Note: i = 0 to 2; IRQE: IRQi when edge-sensed; IRQL: IRQi when level-sensed  
Figure 14-7. Interrupt Input Timing  
264  
Ø
VCC  
STBY  
RES  
tOSC1  
tOSC1  
Figure 14-8. Clock Setting Timing  
(4) Clock Settling Timing for Recovery from Software Standby Mode  
Ø
NMI  
IRQi  
tOSC2  
(i = 0, 1, 2)  
Figure 14-9. Clock Settling Timing for Recovery from Software Standby Mode  
14.3.3 16-Bit Free-Running Timer Timing  
(1) Free-Running Timer Input/Output Timing  
Ø
Free-running  
Compare-match  
timer counter  
tFTOD  
FTOA , FTOB  
tFTIS  
FTIA, FTIB,  
FTIC, FTID  
Figure 14-10. Free-Running Timer Input/Output Timing  
266  
(2) External Clock Input Timing for Free-Running Timer  
Ø
t
FTCS  
FTCI  
t
FTCWL  
tFTCWH  
Figure 14-11. External Clock Input Timing for Free-Running Timer  
14.3.4 8-Bit Timer Timing  
(1) 8-Bit Timer Output Timing  
Ø
Timer  
Compare-match  
counter  
tTMOD  
TMO0,  
TMO1  
Figure 14-12. 8-Bit Timer Output Timing  
(2) 8-Bit Timer Clock Input Timing  
Ø
tTMCS  
tTMCS  
TMCI0,  
TMCI1  
tTMCWL  
tTMCWH  
Figure 14-13. 8-Bit Timer Clock Input Timing  
267  
(3) 8-Bit Timer Reset Input Timing  
Ø
tTMRS  
TMRI0,  
TMRI1  
Timer  
counter  
N
H'00  
Figure 14-14. 8-Bit Timer Reset Input Timing  
14.3.5 Serial Communication Interface Timing  
(1) SCI Input/Output Timing  
tScyc  
Serial clock  
(SCK)  
tTXD  
Transmit  
data  
(TxD)  
tRXS tRXH  
Receive  
data  
(RxD)  
Figure 14-15. SCI Input/Output Timing (Synchronous Mode)  
268  
(2) SCI Input Clock Timing  
tSCKW  
SCK  
tScyc  
Figure 14-16. SCI Input Clock Timing  
14.3.6 I/O Port Timing  
T1  
T2  
T3  
Ø
tPRS  
tPRH  
Port 1  
to (Input)  
Port 7  
tPWD  
*
Port 1  
to (Output)  
Port 6  
Note: * Except P46.  
Figure 14-17. I/O Port Input/Output Timing  
269  
Appendix A. CPU Instruction Set  
A.1 Instruction Set List  
Operation Notation  
Rd8/16  
General register (destination) (8 or 16 bits)  
Rs8/16  
General register (source) (8 or 16 bits)  
General register (8 or 16 bits)  
Condition code register  
N (negative) flag in CCR  
Z (zero) flag in CCR  
V (overflow) flag in CCR  
C (carry) flag in CCR  
Program counter  
Rn8/16  
CCR  
N
Z
V
C
PC  
SP  
Stack pointer  
#xx:3/8/16  
Immediate data (3, 8, or 16 bits)  
Displacement (8 or 16 bits)  
Absolute address (8 or 16 bits)  
Addition  
d:8/16  
@aa:8/16  
+
×
÷
Subtraction  
Multiplication  
Division  
AND logical  
OR logical  
Exclusive OR logical  
Move  
Not  
Condition Code Notation  
*
Modified according to the instruction result  
Undetermined (unpredictable)  
Always cleared to “0”  
0
Not affected by the instruction result  
271  
A.2 Operation Code Map  
Table A-2 is a map of the operation codes contained in the first byte of the instruction code (bits 15  
to 8 of the first instruction word).  
Some pairs of instructions have identical first bytes. These instructions are differentiated by the  
first bit of the second byte (bit 7 of the first instruction word).  
Instruction when first bit of byte 2 (bit 7 of first instruction word) is “0.”  
Instruction when first bit of byte 2 (bit 7 of first instruction word) is “1.”  
278  
Table A-2. Operation Code Map  
LO  
0
1
2
3
4
5
6
8
9
A
B
C
E
7
D
F
HI  
ADDS  
0
NOP  
SLEEP  
STC  
LDC  
ORC  
OR  
XORC  
XOR  
ANDC  
AND  
ADD  
SUB  
INC  
DEC  
MOV  
CMP  
ADDX  
SUBX  
DAA  
DAS  
LDC  
SHLL  
SHLR  
SHAR  
ROTXL  
ROTL  
ROTXR  
ROTR  
NOT  
SUBS  
1
2
3
4
5
6
SHAL  
NEG  
MOV  
BRA*2  
MULXU DIVXU  
BRN *2  
BHI  
BLS  
BCC*2  
RTS  
BCS*2  
BSR  
BVS  
BMI  
BNE  
RTE  
BEQ  
BVC  
BPL  
JMP  
BGE  
BLT  
BGT  
JSR  
BLE  
BST  
BLD  
MOV *1  
BIST  
BNOT  
BTST  
BSET  
BCLR  
BOR  
BXOR  
BIXOR  
BAND  
BIAND  
EEPMOV  
Bit manipulation instruction  
7
MOV  
BIOR  
BILD  
ADD  
8
ADDX  
9
CMP  
SUBX  
OR  
A
B
C
D
E
F
XOR  
AND  
MOV  
Notes: *1 The MOVFPE and MOVTPE instructions are identical to MOV instructions in the first byte and first bit of the second byte (bits 15 to 7 of the instruction word).  
The PUSH and POP instructions are identical in machine language to MOV instructions.  
*2 The BT, BF, BHS, and BLO instructions are identical in machine language to BRA, BRN, BCC, and BCS, respectively.  
A.3 Number of States Required for Execution  
The tables below can be used to calculate the number of states required for instruction execution.  
Table A-3 indicates the number of states required for each cycle (instruction fetch, branch address  
read, stack operation, byte data access, word data access, internal operation). Table A-4 indicates  
the number of cycles of each type occurring in each instruction. The total number of states required  
for execution of an instruction can be calculated from these two tables as follows:  
Execution states = I × SI + J × SJ + K × SK + L × SL + M × SM + N × SN  
Examples: Mode 1 (on-chip ROM disabled), stack located in external memory, 1 wait state  
inserted in external memory access.  
1. BSET #0, @FFC7  
From table A-4: I = L = 2, J = K = M = N= 0  
From table A-3: SI = 8, SL = 3  
Number of states required for execution: 2 × 8 + 2 × 3 =22  
2. JSR @@30  
From table A-4: I = 2, J = K = 1, L = M = N = 0  
From table A-3: SI = SJ = SK = 8  
Number of states required for execution: 2 × 8 + 1 × 8 + 1 × 8 = 32  
Table A-3. Number of States Taken by Each Cycle in Instruction Execution  
Execution status  
(instruction cycle)  
Instruction fetch  
Access location  
On-chip memory On-chip reg. field External memory  
SI  
Branch address read SJ  
6
6 + 2m  
Stack operation  
Byte data access  
Word data access  
Internal operation  
SK  
SL  
SM  
SN  
2
3
6
1
3 + m  
6 + 2m  
Note: m: Number of wait states inserted in access to external device.  
280  
Table A-4. Number of Cycles in Each Instruction  
Instruction Branch  
Stack  
Byte data Word data Internal  
fetch  
I
addr. read operation access  
access  
M
operation  
N
Instruction Mnemonic  
J
K
L
ADD  
ADD.B #xx:8, Rd  
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
1
2
2
ADD.B Rs, Rd  
ADD.W Rs, Rd  
ADDS.W #1/2, Rd  
ADDX.B #xx:8, Rd  
ADDX.B Rs, Rd  
AND.B #xx:8, Rd  
AND.B Rs, Rd  
ANDC#xx:8, CCR  
BAND#xx:3, Rd  
BAND#xx:3, @Rd  
BAND#xx:3, @aa:8  
BRAd:8 (BT d:8)  
BRNd:8 (BF d:8)  
BHId:8  
ADDS  
ADDX  
AND  
ANDC  
BAND  
1
1
Bcc  
BLSd:8  
BCCd:8 (BHS d:8)  
BCSd:8 (BLO d:8)  
BNEd:8  
BEQd:8  
BVCd:8  
BVSd:8  
BPLd:8  
BMId:8  
BGEd:8  
BLTd:8  
BGTd:8  
BLEd:8  
BCLR  
BCLR#xx:3, Rd  
BCLR#xx:3, @Rd  
BCLR#xx:3, @aa:8  
BCLRRn, Rd  
BCLRRn, @Rd  
BCLRRn, @aa:8  
2
2
2
2
Note: All values left blank are zero.  
281  
Table A-4. Number of Cycles in Each Instruction (cont.)  
Instruction Branch  
Stack  
Byte data Word data Internal  
fetch  
I
addr. read operation access  
access  
M
operation  
N
Instruction Mnemonic  
BIAND#xx:3, Rd  
J
K
L
BIAND  
BILD  
BIOR  
BIST  
BIXOR  
BLD  
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
BIAND#xx:3, @Rd  
BIAND#xx:3, @aa:8  
BILD#xx:3, Rd  
1
1
BILD#xx:3, @Rd  
BILD#xx:3, @aa:8  
BIOR#xx:3 Rd  
1
1
BIOR#xx:3 @Rd  
BIOR#xx:3 @aa:8  
BIST#xx:3, Rd  
1
1
BIST#xx:3, @Rd  
BIST#xx:3, @aa:8  
BIXOR#xx:3, Rd  
BIXOR#xx:3, @Rd  
BIXOR#xx:3, @aa:8  
BLD #xx:3, Rd  
2
2
1
1
BLD #xx:3, @Rd  
BLD #xx:3, @aa:8  
BNOT #xx:3, Rd  
BNOT #xx:3, @Rd  
BNOT #xx:3, @aa:8  
BNOT Rn, Rd  
1
1
BNOT  
2
2
BNOT Rn, @Rd  
BNOT Rn, @aa:8  
BOR #xx:3, Rd  
2
2
BOR  
BOR #xx:3, @Rd  
BOR #xx:3, @aa:8  
BSET #xx:3, Rd  
BSET #xx:3, @Rd  
BSET #xx:3, @aa:8  
BSET Rn, Rd  
1
1
BSET  
2
2
BSET Rn, @Rd  
BSET Rn, @aa:8  
2
2
Note: All values left blank are zero.  
282  
Table A-4. Number of Cycles in Each Instruction (cont.)  
Instruction Branch  
Stack  
Byte data Word data Internal  
fetch  
I
addr. read operation access  
access  
M
operation  
N
Instruction Mnemonic  
J
K
L
BSR  
BST  
BSR d:8  
2
1
2
2
1
2
2
1
2
2
1
2
2
1
1
1
1
1
1
1
2
1
2
2
2
2
2
2
1
1
1
1
1
2
1
BST #xx:3, Rd  
BST #xx:3, @Rd  
BST #xx:3, @aa:8  
BTST #xx:3, Rd  
BTST #xx:3, @Rd  
BTST #xx:3, @aa:8  
BTST Rn, Rd  
2
2
BTST  
1
1
BTST Rn, @Rd  
BTST Rn, @aa:8  
BXOR #xx:3, Rd  
BXOR #xx:3, @Rd  
BXOR #xx:3, @aa:8  
CMP.B #xx:8, Rd  
CMP.B Rs, Rd  
CMP.W Rs, Rd  
DAA.B Rd  
1
1
BXOR  
CMP  
1
1
DAA  
DAS  
DAS.B Rd  
DEC  
DEC.B Rd  
DIVXU  
DIVXU.B Rs, Rd  
12  
1
EEPMOV EEPMOV  
2n+2*  
INC  
JMP  
INC.B Rd  
JMP @Rn  
JMP @aa:16  
2
2
JMP @@aa:8  
JSR @Rn  
1
1
JSR  
1
1
1
JSR @aa:16  
2
JSR @@aa:8  
LDC #xx:8, CCR  
LDC Rs, CCR  
MOV.B#xx:8, Rd  
MOV.BRs, Rd  
MOV.B@Rs, Rd  
MOV.B@(d:16,Rs), Rd  
LDC  
MOV  
1
1
Notes: All values left blank are zero.  
* n: Initial value in R4L. Source and destination are accessed n + 1 times each.  
283  
Table A-4. Number of Cycles in Each Instruction (cont.)  
Instruction Branch  
Stack  
Byte data Word data Internal  
fetch  
I
addr. read operation access  
access  
M
operation  
N
Instruction Mnemonic  
MOV MOV.B @Rs+, Rd  
J
K
L
1
1
1
1
1
1
1
1
1
1
2
1
2
1
1
2
2
1
1
2
1
2
1
2
1
2
2
MOV.B @aa:8, Rd  
MOV.B @aa:16, Rd  
MOV.B Rs, @Rd  
MOV.B Rs, @(d:16, Rd)  
MOV.B Rs, @–Rd  
MOV.B Rs, @aa:8  
MOV.B Rs, @aa:16  
MOV.W #xx:16, Rd  
MOV.W Rs, Rd  
2
MOV.W @Rs, Rd  
1
1
1
1
1
1
1
1
MOV.W @(d:16, Rs), Rd  
MOV.W @Rs+, Rd  
MOV.W @aa:16, Rd  
MOV.W Rs, @Rd  
2
MOV.W Rs, @(d:16, Rd)  
MOV.W Rs, @–Rd  
MOV.W Rs, @aa:16  
2
MOVFPE MOVFPE @aa:16, Rd  
MOVTPE MOVTPE.Rs, @aa:16  
Not supported  
MULXU  
NEG  
NOP  
NOT  
OR  
MULXU.Rs, Rd  
NEG.B Rd  
NOP  
1
1
1
1
1
1
1
1
1
1
1
1
1
12  
NOT.B Rd  
OR.B #xx:8, Rd  
OR.B Rs, Rd  
ORC #xx:8, CCR  
POP Rd  
ORC  
POP  
1
1
2
2
PUSH  
ROTL  
ROTR  
ROTXL  
ROTXR  
PUSH Rd  
ROTL.B Rd  
ROTR.B Rd  
ROTXL.B Rd  
ROTXR.B Rd  
Note: All values left blank are zero.  
284  
Table A-4. Number of Cycles in Each Instruction (cont.)  
Instruction Branch  
Stack  
Byte data Word data Internal  
fetch  
I
addr. read operation access  
access  
M
operation  
N
Instruction Mnemonic  
J
K
2
L
RTE  
RTE  
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
RTS  
RTS  
1
SHAL  
SHAR  
SHLL  
SHLR  
SLEEP  
STC  
SHAL.B Rd  
SHAR.B Rd  
SHLL.B Rd  
SHLR.B Rd  
SLEEP  
STC CCR, Rd  
SUB.B Rs, Rd  
SUB.W Rs, Rd  
SUBS.W#1/2, Rd  
SUBX.B#xx:8, Rd  
SUBX.BRs, Rd  
XOR.B#xx:8, Rd  
XOR.B Rs, Rd  
XORC#xx:8, CCR  
SUB  
SUBS  
SUBX  
XOR  
XORC  
Note: All values left blank are zero.  
285  
Appendix B. Register Field  
B.1 Register Addresses and Bit Names  
Addr.  
(last Register  
Bit names  
Bit 4 Bit 3  
byte) name Bit 7  
Bit 6  
Bit 5  
Bit 2 Bit 1  
Bit 0  
Module  
External  
addresses  
(in  
H'80  
H'81  
H'82  
H'83  
H'84  
H'85  
H'86  
H'87  
expanded  
modes)  
H'88  
H'89  
H'8A  
H'8B  
H'8C  
H'8D  
H'8E  
H'8F  
H'90  
H'91  
H'92  
H'93  
H'94  
TIER  
TCSR  
FRC (H)  
FRC (L)  
ICIAE  
ICFA  
ICIBE  
ICFB  
ICICE  
ICFC  
ICIDE  
ICFD  
OCIAE OCIBE OVIE  
OCFA OCFB OVF  
FRT  
CCLRA  
OCRA (H)  
OCRB (H)  
OCRA (L)  
OCRB (L)  
TCR  
H'95  
H'96  
H'97  
H'98  
H'99  
H'9A  
H'9B  
H'9C  
H'9D  
H'9E  
H'9F  
IEDGA IEDGB IEDGC IEDGD  
OCRS  
BUFEA BUFEB CKS1  
CKS0  
TOCR  
OEA OEB OLVLA OLVLB  
ICRA (H)  
ICRA (L)  
ICRB (H)  
ICRB (L)  
ICRC (H)  
ICRC (L)  
ICRD (H)  
ICRD (L)  
(Continued on next page)  
Notes: FRT: Free-Running Timer  
286  
(Continued from previous page)  
Addr.  
(last Register  
Bit names  
Bit 4 Bit 3  
byte) name Bit 7  
Bit 6  
Bit 5  
Bit 2 Bit 1  
Bit 0  
Module  
H'A0  
H'A1  
H'A2  
H'A3  
H'A4  
H'A5  
H'A6  
H'A7  
H'A8  
H'A9  
H'AA  
H'AB  
H'AC P1PCR P17PCR P16PCR P15PCR P14PCR  
H'AD P2PCR P27PCR P26PCR P25PCR P24PCR  
H'AE P3PCR P37PCR P36PCR P35PCR P34PCR  
P13PCR P12PCR P11PCR P10PCR  
P23PCR P22PCR P21PCR P20PCR  
P33PCR P32PCR P31PCR P30PCR  
Port 1  
Port 2  
Port 3  
H'AF  
H'B0  
H'B1  
H'B2  
H'B3  
H'B4  
H'B5  
H'B6  
H'B7  
H'B8  
H'B9  
P1DDR P17DDR P16DDR P15DDR P14DDR P13DDR P12DDRP11DDR P10DDR  
P2DDR P27DDR P26DDR P25DDR P24DDR P23DDR P22DDRP21DDR P20DDR  
Port 1  
Port 2  
Port 1  
Port 2  
Port 3  
Port 4  
Port 3  
Port 4  
Port 5  
Port 6  
Port 5  
Port 6  
P1DR  
P2DR  
P17  
P27  
P16  
P26  
P15  
P25  
P14  
P24  
P13  
P23  
P12  
P22  
P11  
P21  
P10  
P20  
P3DDR P37DDR P36DDR P35DDR P34DDR P33DDR P32DDRP31DDR P30DDR  
P4DDR P47DDR P46DDR P45DDR P44DDR P43DDR P42DDRP41DDR P40DDR  
P3DR  
P4DR  
P5DDR  
P37  
P47  
P36  
P46  
P35  
P45  
P34  
P44  
P33  
P43  
P32  
P42  
P31  
P41  
P30  
P40  
P52DDRP51DDR P50DDR  
P6DDR P67DDR P66DDR P65DDR P64DDR P63DDR P62DDRP61DDR P60DDR  
H'BA P5DR  
H'BB P6DR  
P52  
P62  
P51  
P61  
P50  
P60  
P67  
P66  
P65  
P64  
P63  
H'BC  
H'BD  
H'BE  
H'BF  
P7DR  
P77  
P76  
P75  
P74  
P73  
P72  
P71  
P70  
Port 7  
(Continued on next page)  
287  
(Continued from preceding page)  
Addr.  
(last Register  
Bit names  
Bit 4 Bit 3  
byte) name Bit 7  
Bit 6  
Bit 5  
Bit 2 Bit 1  
Bit 0  
Module  
H'C0  
H'C1  
H'C2  
H'C3  
H'C4  
H'C5  
H'C6  
H'C7  
H'C8  
H'C9  
STCR  
MPE  
ICKS1 ICKS0  
SYSCR SSBY  
STS2  
STS1  
STS0  
NMIEG —  
— MDS1  
RAME  
MDS0  
MDCR  
ISCR  
IER  
IRQ2SC IRQ1SC IRQ0SC  
IRQ2E IRQ1E  
IRQ0E  
CKS0  
OS0  
TCR  
CMIEB CMIEA OVIE  
CCLR1  
CCLR0 CKS2 CKS1  
TMR0  
TMR1  
SCI  
TCSR  
CMFB  
CMFA OVF  
OS3  
OS2  
OS1  
H'CA TCORA  
H'CB TCORB  
H'CC TCNT  
H'CD  
H'CE  
H'CF  
H'D0  
H'D1  
H'D2  
H'D3  
H'D4  
H'D5  
H'D6  
H'D7  
H'D8  
H'D9  
TCR  
TCSR  
TCORA  
TCORB  
TCNT  
CMIEB CMIEA OVIE  
CCLR1  
CCLR0 CKS2 CKS1  
CKS0  
OS0  
CMFB  
CMFA OVF  
OS3  
OS2  
OS1  
PE  
SMR  
BRR  
C/A  
CHR  
O/E  
STOP  
MP  
CKS1  
CKS0  
H'DA SCR  
H'DB TDR  
H'DC SSR  
H'DD RDR  
TIE  
RIE  
TE  
RE  
MPIE  
PER  
TEIE  
CKE1  
CKE0  
MPBT  
TDRE  
RDRF  
ORER  
FER  
TEND MPB  
H'DE  
H'DF  
(Continued on next page)  
Notes: TMR0: 8-Bit Timer channel 0  
TMR1: 8-Bit Timer channel 1  
SCI: Serial Communication Interface  
288  
(Continued from preceding page)  
Addr.  
(last Register  
Bit names  
byte) name Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2 Bit 1  
Bit 0  
Module  
H'E0  
H'E1  
H'E2  
H'E3  
H'E4  
H'E5  
H'E6  
H'E7  
H'E8  
H'E9  
ADDRA  
A/D  
ADDRB  
ADDRC  
ADDRD  
ADIE  
ADST  
SCAN  
CKS  
CH2  
CH1  
CH0  
CHS  
ADCSR ADF  
H'EA ADCR TRGE  
H'EB  
H'EC  
H'ED  
H'EE  
H'EF  
H'F0  
H'F1  
H'F2  
H'F3  
H'F4  
H'F5  
H'F6  
H'F7  
H'F8  
H'F9  
H'FA  
H'FB  
H'FC  
H'FD  
H'FE  
H'FF  
Note: A/D: Analog-to-Digital converter  
289  
B.2 Register Descriptions  
Register name  
Address onto which  
register is mapped  
Abbreviation of  
register name  
TIER—Timer Interrupt Enable Register  
H'FF90  
FRT  
Name of on-chip  
supporting module  
Bit No.  
Bit  
7
6
5
4
3
2
1
0
1
ICIAE ICIBE ICICE ICIDE OCIAE OCIBE OVIE  
Initial value  
Initial value  
Read/Write  
0
0
0
0
0
0
0
Bit names (abbreviations).  
Bits marked “—”  
are reserved.  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Overflow Interrupt Enable  
Type of access permitted  
0
1
Overflow interrupt request is disabled.  
Overflow interrupt request is enabled.  
R
Read only  
Write only  
W
R/W Read or write  
Output Compare Interrupt B Enable  
0
1
Output compare interrupt request B is disabled.  
Output compare interrupt request B is enabled.  
Full name of bit  
Output Compare Interrupt A Enable  
0
1
Output compare interrupt request A is disabled.  
Output compare interrupt request A is enabled.  
Description of bit function  
Input Capture Interrupt D Enable  
0
1
Input capture interrupt request D is disabled.  
Input capture interrupt request D is enabled.  
290  
TIER—Timer Interrupt Enable Register  
H'FF90  
FRT  
Bit  
7
6
5
ICICE  
0
4
3
2
1
0
1
ICIAE ICIBE  
ICIDE OCIAE OCIBE OVIE  
Initial value  
Read/Write  
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Overflow Interrupt Enable  
0 Overflow interrupt request is disabled.  
1 Overflow interrupt request is enabled.  
Output Compare Interrupt B Enable  
0 Output compare interrupt request B is disabled.  
1 Output compare interrupt request B is enabled.  
Output Compare Interrupt A Enable  
0 Output compare interrupt request A is disabled.  
1 Output compare interrupt request A is enabled.  
Input Capture Interrupt D Enable  
0 Input capture interrupt request D is disabled.  
1 Input capture interrupt request D is enabled.  
Input Capture Interrupt C Enable  
0 Input capture interrupt request C is disabled.  
1 Input capture interrupt request C is enabled.  
Input Capture Interrupt B Enable  
0 Input capture interrupt request B is disabled.  
1 Input capture interrupt request B is enabled.  
Input Capture Interrupt A Enable  
0 Input capture interrupt request A is disabled.  
1 Input capture interrupt request A is enabled.  
291  
TCSR—Timer Control/Status Register  
H'FF91  
FRT  
Bit  
7
ICFA  
0
6
ICFB  
0
5
ICFC  
0
4
3
2
1
0
ICFD OCFA OCFB  
OVF CCLRA  
Initial value  
0
0
0
0
0
Read/Write R/(W)* R/(W)* R/(W)* R/(W)* R/(W)* R/(W)* R/(W)* R/W  
Counter Clear A  
0 FRC count is not cleared.  
1 FRC count is cleared by compare-match A.  
Timer Overflow Flag  
0 Cleared when CPU reads OVF = “1,” then writes “0” in OVF.  
1 Set when FRC changes from H'FFFF to H'0000.  
Output Compare Flag B  
0 Cleared when CPU reads OCFB = “1”, then writes “0” in OCFB.  
1 Set when FRC = OCRB.  
Output Compare Flag A  
0 Cleared when CPU reads OCFA = “1”, then writes “0” in OCFA.  
1 Set when FRC = OCRA.  
Input Capture Flag D  
0 Cleared when CPU reads ICFD = “1”, then writes “0” in ICFD.  
1 Set by FTID input.  
Input Capture Flag C  
0 Cleared when CPU reads ICFC = “1”, then writes “0” in ICFC.  
1 Set by FTIC input.  
Input Capture Flag B  
0 Cleared when CPU reads ICFB = “1”, then writes “0” in ICFB.  
1 Set when FTIB input causes FRC to be copied to ICRB.  
Input Capture Flag A  
0 Cleared when CPU reads ICFA = “1”, then writes “0” in ICFA.  
1 Set when FTIA input causes FRC to be copied to ICRA.  
Note: * Software can write a “0” in bits 7 to 1 to clear the flags, but cannot write a “1” in these bits.  
292  
FRC (H and L)—Free-Running Counter  
H'FF92, H'FF93  
FRT  
Bit  
7
6
5
4
3
2
1
0
0
Initial value  
Read/Write  
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Count value  
OCRA (H and L)—Output Compare Register A  
H'FF94, H'FF95  
FRT  
Bit  
7
6
5
4
3
2
1
0
1
Initial value  
Read/Write  
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Continually compared with FRC. OCFA is set to “1” when OCRA = FRC.  
OCRB (H and L)—Output Compare Register B  
H'FF94, H'FF95  
FRT  
Bit  
7
6
5
4
3
2
1
0
1
Initial value  
Read/Write  
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Continually compared with FRC. OCFB is set to “1” when OCRB = FRC.  
293  
TCR—Timer Control Register  
H'FF96  
FRT  
Bit  
7
6
5
4
3
2
1
0
IEDGA IEDGB IEDGC IEDGD BUFEA BUFEB CKS1 CKS0  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock Select  
0 0 Internal clock source: Ø/2  
0 1 Internal clock source: Ø/8  
1 0 Internal clock source: Ø/32  
1 1 External clock source: counted on rising edge  
Buffer Enable B  
0 ICRD is used for input capture D.  
1 ICRD is buffer register for input capture B.  
Buffer Enable A  
0 ICRC is used for input capture C.  
1 ICRC is buffer register for input capture A.  
Input Edge Select D  
0 Falling edge of FTID is valid.  
1 Rising edge of FTID is valid.  
Input Edge Select C  
0 Falling edge of FTIC is valid.  
1 Rising edge of FTIC is valid.  
Input Edge Select B  
0 Falling edge of FTIB is valid.  
1 Rising edge of FTIB is valid.  
Input Edge Select A  
0 Falling edge of FTIA is valid.  
1 Rising edge of FTIA is valid.  
294  
TOCR—Timer Output Compare Control Register  
H'FF97  
FRT  
Bit  
7
1
6
1
5
1
4
3
2
1
0
OCRS OEA  
OEB OLVLA OLVLB  
Initial value  
Read/Write  
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
Output Level B  
0 Compare-match B causes “0” output.  
1 Compare-match B causes “1” output.  
Output Level A  
0 Compare-match A causes “0” output.  
1 Compare-match A causes “1” output.  
Output Enable B  
0 Output compare B output is disabled.  
1 Output compare B output is enabled.  
Output Enable A  
0 Output compare A output is disabled.  
1 Output compare A output is enabled.  
Output Compare Register Select  
0 The CPU can access OCRA.  
1 The CPU can access OCRB.  
ICRA (H and L)—Input Capture Register A  
H'FF98, H'FF99  
FRT  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
Contains FRC count captured on FTIA input.  
295  
ICRB (H and L)—Input Capture Register B  
H'FF9A, H'FF9B  
FRT  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
Contains FRC count captured on FTIB input.  
ICRC (H and L)—Input Capture Register C  
H'FF9C, H'FF9D  
FRT  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
Contains FRC count captured on FTIC input, or old ICRA value in buffer mode.  
ICRD (H and L)—Input Capture Register D  
H'FF9E, H'FF9F  
FRT  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
Contains FRC count captured on FTID input, or old ICRB value in buffer mode.  
296  
P1PCR—Port 1 Input Pull-Up Control Register  
H'FFAC  
Port 1  
Bit  
7
6
5
4
3
2
1
0
P17PCR P16PCR P15PCR P14PCR P13PCR P12PCR P11PCR P10PCR  
Initial value  
0
0
0
0
0
0
0
0
Read/Write R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Port 1 Input Pull-Up Control  
0 Input pull-up transistor is off.  
1 Input pull-up transistor is on.  
P2PCR—Port 2 Input Pull-Up Control Register  
H'FFAD  
Port 2  
Bit  
7
6
5
4
3
2
1
0
P27PCR P26PCR P25PCR P24PCR P23PCR P22PCR P21PCR P20PCR  
Initial value  
0
0
0
0
0
0
0
0
Read/Write R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Port 2 Input Pull-Up Control  
0 Input pull-up transistor is off.  
1 Input pull-up transistor is on.  
P3PCR—Port 3 Input Pull-Up Control Register  
H'FFAE  
Port 3  
Bit  
7
6
5
4
3
2
1
0
P37PCR P36PCR P35PCR P34PCR P33PCR P32PCR P31PCR P30PCR  
Initial value  
0
0
0
0
0
0
0
0
Read/Write R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Port 3 Input Pull-Up Control  
0 Input pull-up transistor is off.  
1 Input pull-up transistor is on.  
297  
P1DDR—Port 1 Data Direction Register  
H'FFB0  
Port 1  
Bit  
7
6
5
4
3
2
1
0
P17DDR P16DDR P15DDR P14DDR P13DDR P12DDR P11DDR P10DDR  
Mode 1  
Initial value  
Read/Write  
Modes 2 and 3  
Initial value  
Read/Write  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Port 1 Input/Output Control  
0 Input port  
1 Output port  
P1DR—Port 1 Data Register  
H'FFB2  
Port 1  
Bit  
7
P17  
0
6
P16  
0
5
P15  
0
4
P14  
0
3
P13  
0
2
P12  
0
1
P11  
0
0
P10  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
298  
P2DDR—Port 2 Data Direction Register  
H'FFB1  
Port 2  
Bit  
7
6
5
4
3
2
1
0
P27DDR P26DDR P25DDR P24DDR P23DDR P22DDR P21DDR P20DDR  
Mode 1  
Initial value  
Read/Write  
Modes 2 and 3  
Initial value  
Read/Write  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Port 2 Input/Output Control  
0 Input port  
1 Output port  
P2DR—Port 2 Data Register  
H'FFB3  
Port 2  
Bit  
7
P27  
0
6
P26  
0
5
P25  
0
4
P24  
0
3
P23  
0
2
P22  
0
1
P21  
0
0
P20  
0
Initial value  
Read/Write R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P3DDR—Port 3 Data Direction Register  
H'FFB4  
Port 3  
Bit  
7
6
5
4
3
2
1
0
P37DDR P36DDR P35DDR P34DDR P33DDR P32DDR P31DDR P30DDR  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Port 3 Input/Output Control  
0 Input port  
1 Output port  
299  
P3DR—Port 3 Data Register  
H'FFB6  
Port 3  
Bit  
7
P37  
0
6
P36  
0
5
P35  
0
4
P34  
0
3
P33  
0
2
1
P31  
0
0
P30  
0
P32  
Initial value  
0
Read/Write R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P4DDR—Port 4 Data Direction Register  
H'FFB5  
Port 4  
Bit  
7
6
5
4
3
2
1
0
P47DDR P46DDR P45DDR P44DDR P43DDR P42DDR P41DDR P40DDR  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Port 4 Input/Output Control  
0 Input port  
1 Output port  
P4DR—Port 4 Data Register  
H'FFB7  
Port 4  
Bit  
7
P47  
0
6
P46  
*
5
P45  
0
4
P44  
0
3
P43  
0
2
P42  
0
1
P41  
0
0
P40  
0
Initial value  
Read/Write R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Note: * Determined by the level at pin P46.  
P5DDR—Port 5 Data Direction Register  
H'FFB8  
Port 5  
Bit  
7
1
6
1
5
1
4
1
3
1
2
1
0
P52DDR P51DDR P50DDR  
Initial value  
Read/Write  
0
0
0
W
W
W
Port 5 Input/Output Control  
0 Input port  
1 Output port  
300  
P5DR—Port 5 Data Register  
H'FFBA  
Port 5  
Bit  
7
1
6
1
5
1
4
1
3
1
2
P52  
0
1
P51  
0
0
P50  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
P6DDR—Port 6 Data Direction Register  
H'FFB9  
Port 6  
Bit  
7
6
5
4
3
2
1
0
P67DDR P66DDR P65DDR P64DDR P63DDR P62DDR P61DDR P60DDR  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Port 6 Input/Output Control  
0 Input port  
1 Output port  
P6DR—Port 6 Data Register  
H'FFBB  
Port 6  
Bit  
7
P67  
0
6
P66  
0
5
P65  
0
4
P64  
0
3
P63  
0
2
P62  
0
1
P61  
0
0
P60  
0
Initial value  
Read/Write R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P7DR—Port 7 Data Register  
H'FFBE  
Port 7  
Bit  
7
P77  
*
6
P76  
*
5
P75  
*
4
P74  
*
3
P73  
*
2
P72  
*
1
P71  
*
0
P70  
*
Initial value  
Read/Write  
R
R
R
R
R
R
R
R
Note: * Depends on the levels of pins P77 to P70.  
301  
STCR—Serial/Timer Control Register  
H'FFC3  
TMR0/1  
Bit  
7
1
6
1
5
1
4
1
3
1
2
1
0
MPE  
ICKS1 ICKS0  
Initial value  
Read/Write  
0
0
0
R/W  
R/W  
R/W  
Multiprocessor Enable  
0 Multiprocessor communication function is disabled.  
1 Multiprocessor communication function is enabled.  
Internal Clock Source Select  
See TCR under TMR0 and TMR1.  
SYSCR—System Control Register  
H'FFC4  
System Control  
Bit  
7
SSBY  
0
6
STS2  
0
5
STS1  
0
4
STS0  
0
3
1
2
NMIEG  
0
1
1
0
RAME  
1
Initial value  
Read/Write R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RAM Enable  
0 On-chip RAM is disabled.  
1 On-chip RAM is enabled.  
NMI Edge  
0 Falling edge of NMI is detected.  
1 Rising edge of NMI is detected.  
Standby Timer Select  
0 0 0 Clock settling time = 8192 states  
0 0 1 Clock settling time = 16384 states  
0 1 0 Clock settling time = 32768 states  
0 1 1 Clock settling time = 65536 states  
1 – – Clock settling time = 131072 states  
Software Standby  
0 SLEEP instruction causes transition to sleep mode.  
1 SLEEP instruction causes transition to software standby mode.  
302  
MDCR—Mode Control Register  
H'FFC5  
System Control  
Bit  
7
1
6
1
5
1
4
0
3
0
2
1
1
0
MDS1 MDS0  
Initial value  
Read/Write  
*
*
R
R
Mode Select Bits  
Value at mode pins.  
Note: * Determined by inputs at pins MD1 and MD0.  
ISCR—IRQ Sense Control Register  
H'FFC6  
System Control  
Bit  
7
1
6
1
5
1
4
1
3
1
2
1
0
IRQ2SC IRQ1SC IRQ0SC  
Initial value  
Read/Write  
0
0
0
R/W  
R/W  
R/W  
IRQ0 to IRQ2 Sense Control  
0 IRQi is level-sensed (active Low).  
1 IRQi is edge-sensed (falling edge).  
IER—IRQ Enable Register  
H'FFC7  
System Control  
Bit  
7
1
6
1
5
1
4
1
3
1
2
1
0
IRQ2E IRQ1E IRQ0E  
Initial value  
Read/Write  
0
0
0
R/W  
R/W  
R/W  
IRQ0 to IRQ2 Enable  
0 IRQi is disabled.  
1 IRQi is enabled.  
303  
TCR—Timer Control Register  
H'FFC8  
TMR0  
Bit  
7
6
5
4
3
2
1
0
CMIEB CMIEA OVIE CCLR1 CCLR0 CKS2  
CKS1 CKS0  
Initial value  
0
0
0
0
0
0
0
0
Read/Write R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock Select  
TCR  
STCR  
CKS2 CKS1 CKS0 ICKS1 ICKS0 Description  
0
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
1
1
0
0
1
1
0
1
1
0
0
1
1
0
1
0
1
0
Timer stopped  
Ø/8 internal clock, falling edge  
Ø/2 internal clock, falling edge  
Ø/64 internal clock, falling edge  
Ø/32 internal clock, falling edge  
Ø/1024 internal clock, falling edge  
Ø/256 internal clock, falling edge  
Timer stopped  
1
0
1
0
1
External clock, rising edge  
External clock, falling edge  
External clock, rising and falling  
edges  
Counter Clear  
0 0 Counter is not cleared.  
0 1 Cleared by compare-match A.  
1 0 Cleared by compare-match B.  
1 1 Cleared on rising edge of external reset input.  
Timer Overflow Interrupt Enable  
0 Overflow interrupt request is disabled.  
1 Overflow interrupt request is enabled.  
Compare-Match Interrupt Enable A  
0 Compare-match A interrupt request is disabled.  
1 Compare-match A interrupt request is enabled.  
Compare-Match Interrupt Enable B  
0 Compare-match B interrupt request is disabled.  
1 Compare-match B interrupt request is enabled.  
304  
TCSR—Timer Control/Status Register  
H'FFC9  
TMR0  
Bit  
7
6
5
OVF  
0
4
1
3
2
1
0
CMFB CMFA  
OS3*2 OS2*2  
OS1*2 OS0*2  
Initial value  
0
0
0
0
0
0
Read/Write R/(W)*1 R/(W)*1 R/(W)*1  
R/W  
R/W  
R/W  
R/W  
Output Select  
0 0 No change on compare-match A.  
0 1 Output “0” on compare-match A.  
1 0 Output “1” on compare-match A.  
1 1 Invert (toggle) output on compare-match A.  
Output Select  
0 0 No change on compare-match B.  
0 1 Output “0” on compare-match B.  
1 0 Output “1” on compare-match B.  
1 1 Invert (toggle) output on compare-match B.  
Timer Overflow Flag  
0 Cleared when CPU reads OVF = “1,” then writes “0” in OVF.  
1 Set when TCNT changes from H'FF to H'00.  
Compare-Match Flag A  
0 Cleared when CPU reads CMFA = “1,” then writes “0” in CMFA.  
1 Set when TCNT = TCORA.  
Compare-Match Flag B  
0 Cleared from when CPU reads CMFB = “1,” then writes “0” in CMFB.  
1 Set when TCNT = TCORB.  
Notes: *1 Software can write a “0” in bits 7 to 5 to clear the flags, but cannot write a “1” in these  
bits.  
*2 When all four bits (OS3 to OS0) are cleared to “0,” output is disabled.  
305  
TCORA—Time Constant Register A  
H'FFCA  
TMR0  
Bit  
7
1
6
5
4
3
1
2
1
1
0
Initial value  
1
1
1
1
1
Read/Write R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The CMFA bit is set to “1” when TCORA = TCNT.  
TCORB—Time Constant Register B  
H'FFCB  
TMR0  
Bit  
7
1
6
5
4
3
1
2
1
1
0
Initial value  
1
1
1
1
1
Read/Write R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The CMFB bit is set to “1” when TCORB = TCNT.  
TCNT—Timer Counter  
H'FFCC  
TMR0  
Bit  
7
0
6
5
4
3
0
2
0
1
0
Initial value  
0
0
0
0
0
Read/Write R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Count value  
306  
TCR—Timer Conrol Register  
H'FFD0  
TMR1  
Bit  
7
6
5
4
3
2
1
0
CMIEB CMIEA OVIE CCLR1 CCLR0 CKS2  
CKS1 CKS0  
Initial value  
0
0
0
0
0
0
0
0
Read/Write R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock Select  
TCR  
STCR  
CKS2 CKS1 CKS0 ICKS1 ICKS0 Description  
0
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
1
1
0
0
1
1
0
1
1
0
0
1
1
0
1
0
1
0
Timer stopped  
Ø/8 internal clock, falling edge  
Ø/2 internal clock, falling edge  
Ø/64 internal clock, falling edge  
Ø/128 internal clock, falling edge  
Ø/1024 internal clock, falling edge  
Ø/2048 internal clock, falling edge  
Timer stopped  
1
0
1
0
1
External clock, rising edge  
External clock, falling edge  
External clock, rising and falling  
edges  
Counter Clear  
0 0 Counter is not cleared.  
0 1 Cleared by compare-match A.  
1 0 Cleared by compare-match B.  
1 1 Cleared on rising edge of external reset input.  
Timer Overflow Interrupt Enable  
0 Overflow interrupt request is disabled.  
1 Overflow interrupt request is enabled.  
Compare-Match Interrupt Enable A  
0 Compare-match A interrupt request is disabled.  
1 Compare-match A interrupt request is enabled.  
Compare-Match Interrupt Enable B  
0 Compare-match B interrupt request is disabled.  
1 Compare-match B interrupt request is enabled.  
307  
TCSR—Timer Control/Status Register  
H'FFD1  
TMR1  
Bit  
7
6
5
OVF  
0
4
1
3
2
1
0
CMFB CMFA  
OS3*2 OS2*2  
OS1*2 OS0*2  
Initial value  
0
0
0
0
0
0
Read/Write R/(W)*1 R/(W)*1 R/(W)*1  
R/W  
R/W  
R/W  
R/W  
Notes: Bit functions are the same as for TMR0.  
*1 Software can write a “0” in bits 7 to 5 to clear the flags, but cannot write a “1” in these  
bits.  
*2 When all four bits (OS3 to OS0) are cleared to “0,” output is disabled.  
TCORA—Time Constant Register A  
H'FFD2  
TMR1  
Bit  
7
6
5
4
3
1
2
1
0
Initial value  
1
1
1
1
1
1
1
Read/Write R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Note: Bit functions are the same as for TMR0.  
TCORB—Time Constant Register B  
H'FFD3  
2
TMR1  
Bit  
7
6
5
4
3
1
0
Initial value  
1
1
1
1
1
1
1
1
Read/Write R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Note: Bit functions are the same as for TMR0.  
TCNT—Timer Counter  
H'FFD4  
TMR1  
Bit  
7
6
5
4
3
2
1
0
Initial value  
0
0
0
0
0
0
0
0
Read/Write R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Note: Bit functions are the same as for TMR0.  
308  
SMR—Serial Mode Register  
H'FFD8  
SCI  
Bit  
7
C/A  
0
6
5
PE  
0
4
O/E  
0
3
2
1
0
CHR  
0
STOP  
0
MP  
0
CKS1 CKS0  
Initial value  
0
0
Read/Write R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock Select  
0
0
1
1
0
1
0
1
Ø clock  
Ø/4 clock  
Ø/16 clock  
Ø/64 clock  
Multiprocessor Mode  
0
1
Multiprocessor function disabled  
Multiprocessor format selected  
Stop Bit Length  
0
1
One stop bit  
Two stop bits  
Parity Mode  
0
1
Even parity  
Odd parity  
Parity Enable  
0
Transmit: No parity bit added.  
Receive: Parity bit not checked.  
Transmit: Parity bit added.  
1
Receive: Parity bit checked.  
Character Length  
0
1
8-Bit data length  
7-Bit data length  
Communication Mode  
0
1
Asynchronous  
Synchronous  
309  
BRR—Bit Rate Register  
H'FFD9  
SCI  
Bit  
7
1
6
5
4
3
1
2
1
1
0
Initial value  
1
1
1
1
1
Read/Write R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Constant that determines the bit rate  
310  
SCR—Serial Control Register  
H'FFDA  
SCI  
Bit  
7
TIE  
0
6
RIE  
0
5
TE  
0
4
RE  
0
3
2
1
0
MPIE  
0
TEIE  
0
CKE1 CKE0  
Initial value  
0
0
Read/Write R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock Enable 0  
0
1
Serial clock not output  
Serial clock output at SCK pin  
Clock Enable 1  
0
1
Internal clock  
External clock  
Transmit End Interrupt Enable  
0
1
TSR-empty interrupt request is disabled.  
TSR-empty interrupt request is enabled.  
Multiprocessor Interrupt Enable  
0
1
Multiprocessor receive interrupt function is disabled.  
Multiprocessor receive interrupt function is enabled.  
Receive Enable  
0
1
Receive disabled  
Receive enabled  
Transmit Enable  
0
1
Transmit disabled  
Transmit enabled  
Receive Interrupt Enable  
0
1
Receive interrupt and receive error interrupt requests are disabled.  
Receive interrupt and receive error interrupt requests are enabled.  
Transmit Interrupt Enable  
0
1
TDR-empty interrupt request is disabled.  
TDR-empty interrupt request is enabled.  
311  
TDR—Transmit Data Register  
H’FFDB  
SCI  
Bit  
7
1
6
5
4
3
1
2
1
1
0
Initial value  
1
1
1
1
1
Read/Write R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Transmit data  
312  
SSR—Serial Status Register  
H'FFDC  
SCI  
Bit  
7
6
5
4
FER  
0
3
PER  
0
2
1
0
TDRE RDRF ORER  
TEND  
MPB MPBT  
Initial value  
1
0
0
0
0
0
Read/Write R/(W)* R/(W)* R/(W)* R/(W)* R/(W)*  
R
R
R/W  
Multiprocessor Bit Transfer  
0 Multiprocessor bit = “0” in transmit data.  
1 Multiprocessor bit = “1” in transmit data.  
Multiprocessor Bit  
0 Multiprocessor bit = “0” in receive data.  
1 Multiprocessor bit = “1” in receive data.  
Transmit End  
0 Cleared when CPU reads TDRE = “1,” then writes “0” in TDRE.  
1 Set to “1” when TE = “0,” or when TDRE = “1” at the end of  
character transmission.  
Parity Error  
0 Cleared when CPU reads PER = “1,” then writes “0” in PER.  
1 Set when a parity error occurs (parity of receive data does not match  
parity selected by O/E bit in SMR).  
Framing Error  
0 Cleared when CPU reads FER = “1,” then writes “0” in FER.  
1 Set when a framing error occurs (stop bit is “0”).  
Overrun Error  
0 Cleared when CPU reads ORER = “1,” then writes “0” in ORER.  
1 Set when an overrun error occurs (next data is completely received while  
RDRF bit is set to “1”).  
Receive Data Register Full  
0 Cleared when CPU reads RDRF = “1,” then writes “0” in RDRF.  
1 Set when one character is received normally and transferred from RSR to RDR.  
Transmit Data Register Empty  
0 Cleared when CPU reads TDRE = “1,” then writes “0” in TDRE  
1 Set when:  
1. Data is transferred from TDR to TSR.  
2. TE is cleared while TDRE = “0.”  
Note: * Software can write a “0” in bits 7 to 3 to clear the flags, but cannot write a “1” in these bits.  
313  
RDR—Receive Data Register  
H'FFDD  
SCI  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
Receive data  
ADDRn—A/D Data Register n (n = A, B, C, D) H'FFE0, H'FFE2,  
H'FFE4, H'FFE6  
A/D  
Bit  
7
6
5
4
3
2
1
0
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
A/D conversion result  
314  
ADCSR—A/D Control/Status Register  
H'FFE8  
A/D  
Bit  
7
ADF  
0
6
ADIE  
0
5
4
3
2
1
0
ADST SCAN  
CKS  
0
CH2  
0
CH1  
0
CH0  
0
Initial value  
0
0
Read/Write R/(W)* R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Channel Select  
CH2 CH1 CH0 Single mode Scan mode  
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
AN0  
AN0, AN1  
AN0 to AN2  
AN0 to AN3  
AN4  
AN4, AN5  
AN4 to AN6  
AN4 to AN7  
1
Clock Select  
0 Conversion time = 242 states (max)  
1 Conversion time = 122 states (max)  
Scan Mode  
0 Single mode  
1 Scan mode  
A/D Start  
0 A/D conversion is halted.  
1 1. Single mode: One A/D conversion is performed, then this bit is automatically cleared to “0.”  
2. Scan mode: A/D conversion starts and continues cyclically on all selected channels until “0”  
is written in this bit.  
A/D Interrupt Enable  
0 The A/D interrupt request (ADI) is disabled.  
1 The A/D interrupt request (ADI) is enabled.  
A/D End Flag  
0 Cleared from “1” to “0” when CPU reads ADF = “1,” then writes “0” in ADF.  
1 Set to “1” at the following times:  
1. Single mode: at the completion of A/D conversion  
2. Scan mode: when all selected channels have been converted.  
Note: * Software can write a “0” in bit 7 to clear the flag, but cannot write a “1” in this bit.  
315  
ADCR—A/D Control Register  
H'FFEA  
A/D  
Bit  
7
TRGE  
0
6
1
5
1
4
1
3
1
2
1
1
1
0
CHS  
0
Initial value  
Read/Write R/W  
R/W  
Channel Select  
Reserved bit.  
Trigger Enable  
0 ADTRG is disabled.  
1 ADTRG is enabled. A/D conversion can be started by external trigger,  
or by software.  
316  
Appendix C. Pin States  
C.1 Pin States in Each Mode  
Table C-1. Pin States  
Pin  
MCU  
mode Reset  
Hardware  
standby  
3-State  
Software Sleep  
Normal  
name  
standby  
Low  
mode  
operation  
A7 – A0  
P17 – P10  
A7 – A0  
1
2
Low  
Prev. state  
(Addr.  
3-State  
Low if  
Addr. output  
DDR = 1, output pins: or input port  
Prev. state last address  
if DDR = 0 accessed)  
3
1
2
Prev. state  
Low  
I/O port  
P27 – P20  
A15 – A8  
Low  
3-State  
Prev. state  
(Addr.  
A15–A8 output  
Addr. output  
3-State  
Low if  
DDR = 1, output pins: or input port  
Prev. state last address  
if DDR = 0 accessed)  
3
1
2
3
1
2
3
1
2
3
Prev. state  
3-State  
I/O port  
D7 – D0  
P37 – P30  
D7 – D0  
3-State  
3-State  
3-State  
3-State  
3-State  
3-State  
Prev. state Prev. state  
3-State 3-State  
I/O port  
WAIT  
P47/WAIT  
P46/Ø  
Prev. state Prev. state  
I/O port  
Clock  
Clock  
output  
3-State  
High  
Clock  
output  
output  
High if  
Clock output Clock output  
DDR = 1, if DDR = 1, if DDR = 1,  
3-state if  
3-state if  
input port if  
DDR = 0  
DDR = 0 DDR = 0  
Notes: 1. 3-State: High-impedance state  
2. Prev. state: Previous state. Input ports are in the high-impedance state (with the MOS  
pull-up on if PCR = 1). Output ports hold their previous output level.  
3. I/O port: Direction depends on the data direction (DDR) bit. Note that these pins may  
also be used by the on-chip supporting modules.  
See section 5, “I/O Ports,” for further information.  
317  
Table C-1. Pin States (cont.)  
Pin  
MCU  
Hardware  
standby  
3-State  
Software Sleep  
Normal  
operation  
AS, WR,  
RD  
name  
mode Reset  
standby  
mode  
P45 – P43,  
AS, WR, RD  
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
High  
High  
High  
3-State  
3-State  
Prev. state Prev. state  
Prev. state Prev. state  
I/O port  
I/O port  
P42 – P40  
P52 – P50  
P67 – P60  
P77 – P70  
3-State  
3-State  
3-State  
3-State  
3-State  
3-State  
3-State  
Prev. state* Prev. state  
Prev. state* Prev. state  
I/O port  
I/O port  
Input port  
3-State  
3-State  
Notes: 1. 3-State: High-impedance state  
2. Prev. state: Previous state. Input ports are in the high-impedance state (with the MOS  
pull-up on if PCR = 1). Output ports hold their previous output level.  
3. I/O port: Direction depends on the data direction (DDR) bit. Note that these pins may  
also be used by the on-chip supporting modules.  
See section 5, “I/O Ports,” for further information.  
*
On-chip supporting modules are initialized, so these pins revert to I/O ports according  
to the DDR and DR bits.  
318  
Appendix D. Timing of Transition to and Recovery from  
Hardware Standby Mode  
Timing of Transition to Hardware Standby Mode  
(1) To retain RAM contents with the RAME bit cleared to “0” in SYSCR, drive the RES signal  
low 10 system clock cycles before the STBY signal goes low, as shown below. RES must  
remain low until STBY goes low (minimum delay from STBY low to RES high: 0 ns).  
STBY  
t1 10 tcyc  
t2 0 ns  
RES  
(2) When the RAME bit in SYSCR is set to “1” or it is not necessary to retain RAM contents, RES  
does not have to be driven low as in (1).  
Timing of Recovery From Hardware Standby Mode: Drive the RES signal low approximately  
100 ns before STBY goes high.  
STBY  
t
100 ns  
tOSC  
RES  
319  
Appendix E. Package Dimensions  
Figure E-1 shows the dimensions of the DC-64S package. Figure E-2 shows the dimensions of the  
DP-64S package. Figure E-3 shows the dimensions of the FP-64A package. Figure E-4 shows the  
dimensions of the CP-68 package.  
Unit: mm  
57.30  
64  
1
33  
32  
0.9  
19.05  
+ 0.11  
– 0.05  
0.25  
1.778 ± 0.250  
0.48 ± 0.10  
Figure E-1. Package Dimensions (DC-64S)  
Unit: mm  
57.6  
58.50 Max  
33  
64  
1
32  
1.0  
19.05  
+ 0.11  
– 0.05  
0.25  
1.78 ± 0.25  
0.48 ± 0.10  
0° – 15°  
Figure E-2. Package Dimensions (DP-64S)  
320  
Unit: mm  
17.2 ± 0.3  
14  
33  
48  
32  
17  
49  
64  
1
16  
M
0.35 ± 0.10  
0.15  
1.6  
0 – 5 °  
0.8 – 0.3  
0.1  
Figure E-3. Package Dimensions (FP-64A)  
Unit: mm  
25.15 ± 0.12  
24.20  
60  
44  
61  
43  
68  
1
9
27  
26  
10  
0.75  
1.27  
0.42 ± 0.10  
23.12 ± 0.50  
23.12 ± 0.50  
0.10  
Figure E-4. Package Dimensions (CP-68)  
321  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY