HD66753TB0 [RENESAS]

132X168 DOTS DOT MAT LCD DRVR AND DSPL CTLR, UUC352, BENDING TCP-352;
HD66753TB0
型号: HD66753TB0
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

132X168 DOTS DOT MAT LCD DRVR AND DSPL CTLR, UUC352, BENDING TCP-352

时钟 驱动 CD 外围集成电路
文件: 总102页 (文件大小:823K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HD66753  
(168 x 132-dot Graphics LCD Controller/Driver with  
Bit-operation Functions)  
ADE-207-347(Z)  
Rev. 1.0  
Jan. 31. 2003  
Description  
The HD66753, dot-matrix graphics LCD controller and driver LSI, displays 168-by-132-dot graphics for  
four monochrome grayscales. When 12-by-13-dot size fonts are used, up to 13 lines x 11 characters (143  
characters) can be simultaneously displayed. Since the HD66753 incorporates bit-operation functions and a  
16-bit high-speed bus interface, it enables efficient data transfer and high-speed rewriting of data in the  
graphics RAM.  
The HD66753 has various functions for reducing the power consumption of an LCD system, such as low-  
voltage operation of 1.7 V/min., a step-up circuit to generate a maximum of seven-times the LCD drive  
voltage from the input-supplied voltage, and voltage followers to decrease the direct current flow in the  
LCD drive bleeder-resistors. Combining these hardware functions with software functions, such as a  
partial display with low-duty drive and standby and sleep modes, allows precise power control. The  
HD66753 is suitable for any mid-sized or small portable battery-driven product requiring long-term driving  
capabilities, such as digital cellular phones supporting a WWW browser.  
Features  
168 × 132-dot graphics display LCD controller/driver for four monochrome grayscales  
16-/8-bit high-speed bus interface  
Clock-synchronized serial interface (transfer rate: 10 MHz max.)  
I2C bus interface (transfer rate: 1.3 MHz max.)  
Bit-operation functions for graphics processing:  
Write-data mask function in bit units  
Bit rotation function  
Bit logic-operation function  
Low-power operation supports:  
Vcc = 1.7 to 3.6 V (low voltage)  
VLPS = 5 to 19.5 V (liquid crystal drive voltage)  
Internal three-, five-, six-, or seven-times step-up circuit for liquid crystal drive voltage to be  
selected by software  
128-step contrast adjuster and voltage followers to decrease direct current flow in the LCD drive  
bleeder-resistors  
HD66753  
Power-save functions such as the standby mode and sleep mode  
Programmable drive duty ratios and bias values displayed on LCD  
Internal LCD-drive-voltage regulator circuits  
168-segment × 132-common liquid crystal display driver  
n-raster-row AC liquid-crystal drive (C-pattern waveform drive)  
Duty ratio and drive bias (selectable by program)  
Window cursor display supported by hardware  
Black-and-white reversed display  
Internal oscillation and hardware reset  
Shift change of segment and common driver  
Table 1  
Progammable Display Sizes and Duty Ratios  
Graphics Display  
Duty Optimum Bit-map  
12 x 13-dot 12 x 14-dot 16 x 16-dot 16 x 17-dot 8 x 10-dot  
Ratio Drive Bias Display Area Font Width Font Width Font Width Font Width Font Width  
1/96 1/10 168 x 96 dots 12 lines x 8 12 lines x 8 10 lines x 6 10 lines x 5 21 lines x 9  
characters characters characters characters characters  
168 x 104 dots 12 lines x 8 12 lines x 8 10 lines x 6 10 lines x 6 21 lines x 10  
characters characters characters characters characters  
168 x 112 dots 12 lines x 9 12 lines x 9 10 lines x 7 10 lines x 6 21 lines x 11  
characters characters characters characters characters  
168 x 120 dots 12 lines x 10 12 lines x 10 10 lines x 7 10 lines x 7 21 lines x 12  
characters characters characters characters characters  
168 x 128 dots 12 lines x 10 12 lines x 10 10 lines x 8 10 lines x 7 21 lines x 12  
characters characters characters characters characters  
168 x 132 dots 12 lines x 11 12 lines x 11 10 lines x 8 10 lines x 7 21 lines x 13  
characters characters characters characters characters  
1/104 1/11  
1/112 1/11  
1/120 1/11  
1/128 1/11  
1/132 1/11  
Note: When 12 x 13-dot fonts are used for display, the spaces between characters on the last line are not  
displayed.  
Rev. 1.0, Jan. 2003, page 2 of 102  
HD66753  
Total Current Consumption Characteristics (Vcc = 3 V, TYP Conditions, LCD  
Drive Power Current Included)  
Total Power Consumption  
Normal Display Operation  
Character  
R-C  
Display Dot Duty Oscillation Frame  
Internal  
(60 µA)  
(60 µA)  
(70 µA)  
(70 µA)  
(80 µA)  
(80 µA)  
LCD  
Power  
Sleep Standby  
Mode Mode  
Size  
Ratio Frequency Frequency Logic  
Total*  
96 x 168 dots 1/96  
100 kHz  
69 Hz  
69 Hz  
69 Hz  
69 Hz  
71 Hz  
69 Hz  
(20 µA)  
(20 µA)  
(25 µA)  
(25 µA)  
(25 µA)  
(25 µA)  
Five-times (12 µA) 0.1 µA  
(160 µA)  
104 x 168 dots 1/104 100 kHz  
112 x 168 dots 1/112 100 kHz  
120 x 168 dots 1/120 100 kHz  
128 x 168 dots 1/128 100 kHz  
132 x 168 dots 1/132 100 kHz  
Five-times (12 µA)  
(160 µA)  
Six-times (12 µA)  
(220 µA)  
Six-times (12 µA)  
(220 µA)  
Six-times (12 µA)  
(230 µA)  
Six-times (12 µA)  
(230 µA)  
Note: When a three-, five-, six-, or seven-times step-up is used:  
the total current consumption = internal logic current + LCD power current x 3 (three-times step-up),  
the total current consumption = internal logic current + LCD power current x 5 (five-times step-up),  
the total current consumption = internal logic current + LCD power current x 6 (six-times step-up),  
and  
the total current consumption = internal logic current + LCD power current x 7 (seven-times step-up)  
Type Name  
Types  
External Dimensions  
Bending TCP  
MPU Interface  
COM Driver Arrangement  
Display  
HD66753TB0  
HCD66753BP  
HWD66753BP  
8-bit or 16-bit  
parallel or clock-  
synchronized serial  
interface  
Both sides of COM  
(Output from left and right  
sides of the chip)  
Four  
monochrome  
grayscales  
Au-bump chip  
Au-bump wafer  
Rev. 1.0, Jan. 2003, page 3 of 102  
HD66753  
LCD Family Comparison  
Items  
HD66724  
HD66725  
HD66726  
Character display sizes  
Graphic display sizes  
Grayscale display  
12 characters x 3 lines  
16 characters x 3 lines  
16 characters x 5 lines  
72 x 26 dots  
96 x 26 dots  
96 x 42 dots  
Multiplexing icons  
144  
192  
192  
Annunciator  
1/2 duty: 144  
1/2 duty: 192  
1/2 duty: 192  
Key scan control  
8 x 4  
8 x 4  
8 x 4  
LED control ports  
General output ports  
Operating power voltages  
Liquid crystal drive voltages  
Serial bus  
3
3
3
1.8 V to 5.5 V  
3 V to 6.5 V  
1.8 V to 5.5 V  
3 V to 6.5 V  
1.8 V to 5.5 V  
4.5 V to 11 V  
Clock-synchronized serial  
4 bits, 8 bits  
Clock-synchronized serial  
4 bits, 8 bits  
1/2, 10, 18, 26  
1/4 to 1/6.5  
Clock-synchronized serial  
4 bits, 8 bits  
1/2, 10, 18, 26  
1/4 to 1/6.5  
Parallel bus  
Liquid crystal drive duty ratios  
Liquid crystal drive biases  
Liquid crystal drive waveforms  
Liquid crystal voltage step-up  
1/2, 10, 18, 26, 34, 42  
1/2 to 1/8  
B
B
B
Single, two-, or three-times  
Single, two-, or three-times  
Single, two-, three-, or four-  
times  
Bleeder-resistor for liquid crystal drive  
Liquid crystal drive operational amplifier  
Liquid crystal contrast adjuster  
Horizontal smooth scroll  
Vertical smooth scroll  
Double-height display  
DDRAM  
Incorporated (external)  
Incorporated  
Incorporated (32 steps)  
3-dot unit  
Line unit  
Incorporated (external)  
Incorporated  
Incorporated (32 steps)  
3-dot unit  
Line unit  
Incorporated (external)  
Incorporated  
Incorporated (32 steps)  
Line unit  
Yes  
Yes  
Yes  
80 x 8  
80 x 8  
80 x 8  
20,736  
480 x 8  
96 x 8  
240 + 192  
64  
CGROM  
20,736  
20,736  
CGRAM  
384 x 8  
384 x 8  
SEGRAM  
72 x 8  
96 x 8  
No. of CGROM fonts  
No. of CGRAM fonts  
Font sizes  
240 + 192  
64  
240 + 192  
64  
6 x 8  
6 x 8  
6 x 8  
Bit map areas  
72 x 26  
96 x 26  
96 x 42  
R-C oscillation resistor/  
oscillation frequency  
External resistor,  
incorporated (32 kHz)  
External resistor,  
incorporated (32 kHz)  
External resistor  
(50 kHz)  
Reset function  
External  
External  
External  
Low power control  
Partial display off,  
Oscillation off,  
Partial display off,  
Oscillation off,  
Partial display off,  
Oscillation off,  
Liquid crystal power off,  
Key wake-up interrupt  
Liquid crystal power off,  
Key wake-up interrupt  
Liquid crystal power off,  
Key wake-up interrupt  
SEG/COM direction switching  
QFP package  
TQFP package  
TCP package  
Bare chip  
SEG, COM  
SEG, COM  
SEG, COM  
TCP-146  
TCP-170  
TCP-188  
Yes  
Bumped chip  
Yes  
Yes  
Yes  
Chip sizes  
10.34 x 2.51  
80 µm  
10.97 x 2.51  
80 µm  
13.13 x 2.51  
100 µm  
Pad intervals  
Rev. 1.0, Jan. 2003, page 4 of 102  
HD66753  
LCD Family Comparison (cont)  
Items  
HD66728  
HD66729  
HD66740  
Character display sizes  
Graphic display sizes  
Grayscale display  
Multiplexing icons  
Annunciator  
16 characters x 10 lines  
112 x 80 dots  
105 x 68 dots  
112 x 80 dots  
Key scan control  
8 x 4  
LED control ports  
General output ports  
Operating power voltages  
Liquid crystal drive voltages  
Serial bus  
3
1.8 V to 5.5 V  
4.5 V to 15 V  
Clock-synchronized serial  
4 bits, 8 bits  
1.8 V to 5.5 V  
4.0 V to 13 V  
Clock-synchronized serial  
4 bits, 8 bits  
1.8 V to 3.6 V  
4.5 V to 15 V  
Clock-synchronized serial  
4 bits, 8 bits  
Parallel bus  
Liquid crystal drive duty ratios  
1/8, 16, 24, 32, 40, 48, 56,  
64, 72, 80  
1/8, 16, 24, 32, 40, 48, 56,  
64, 68  
1/8, 16, 24, 32, 40, 48, 56,  
64, 72, 80  
Liquid crystal drive biases  
1/4 to 1/10  
1/4 to 1/9  
B, C  
1/4 to 1/10  
Liquid crystal drive waveforms  
Liquid crystal voltage step-up  
B, C  
B, C  
Three-, four-, or five-times  
Two-, three-, four-, or five-  
times  
Three-, four-, or five-times  
Bleeder-resistor for liquid crystal drive  
Liquid crystal drive operational amplifier  
Liquid crystal contrast adjuster  
Horizontal smooth scroll  
Vertical smooth scroll  
Double-height display  
DDRAM  
Incorporated (external)  
Incorporated (external)  
Incorporated (external)  
Incorporated  
Incorporated  
Incorporated  
Incorporated (64 steps)  
Incorporated (64 steps)  
Incorporated (64 steps)  
Line unit  
Yes  
Line unit  
Line unit  
Yes  
Yes  
160 x 8  
20,736  
1,120 x 8  
CGROM  
CGRAM  
1,050 x 8  
1,120 x 8  
SEGRAM  
No. of CGROM fonts  
No. of CGRAM fonts  
Font sizes  
240 + 192  
64  
6 x 8  
Bit map areas  
112 x 80  
105 x 68  
112 x 80  
R-C oscillation resistor/  
oscillation frequency  
External resistor  
(70–90 kHz)  
External resistor  
(75 kHz)  
External resistor  
(70–90 kHz)  
Reset function  
External  
External  
External  
Low power control  
Partial display off,  
Oscillation off,  
Partial display off,  
Oscillation off,  
Partial display off,  
Oscillation off,  
Liquid crystal power off,  
Key wake-up interrupt  
Liquid crystal power off  
Liquid crystal power off  
SEG/COM direction switching  
QFP package  
TQFP package  
TCP package  
Bare chip  
SEG, COM  
SEG, COM  
SEG, COM  
TCP-241  
TCP-213  
TCP-236  
Bumped chip  
Yes  
Yes  
Yes  
Chip sizes  
13.67 x 2.78  
70 µm  
12.23 x 2.52  
70 µm  
9.40 x 2.18  
50 µm  
Pad intervals  
Rev. 1.0, Jan. 2003, page 5 of 102  
HD66753  
LCD Family Comparison (cont)  
Items  
HD66741  
HD66751S  
HD66750S  
Character display sizes  
Graphic display sizes  
Grayscale display  
128 x 80 dots  
128 x 128 dots  
128 x 128 dots  
Four monochrome  
Four monochrome  
grayscales (5 levels)  
grayscales (5 levels)  
Multiplexing icons  
Annunciator  
Key scan control  
LED control ports  
General output ports  
Operating power voltages  
Liquid crystal drive voltages  
Serial bus  
3
1.8 V to 5.5 V  
4.5 V to 15 V  
Clock-synchronized serial  
4 bits, 8 bits  
1.7 V to 3.6 V  
5.0 V to 16.5V  
1.7 V to 3.6 V  
5.0 V to 16.5V  
Clock-synchronized serial  
8 bits, 16 bits  
Parallel bus  
8 bits, 16 bits  
Liquid crystal drive duty ratios  
1/8, 16, 24, 32, 40, 48, 56,  
64, 72, 80  
1/16, 24, 72, 80, 88, 96, 104, 1/16, 24, 72, 80, 88, 96, 104,  
112, 120, 128  
1/4 to 1/11  
B, C  
112, 120, 128  
1/4 to 1/11  
B, C  
Liquid crystal drive biases  
1/4 to 1/10  
Liquid crystal drive waveforms  
Liquid crystal voltage step-up  
B, C  
Three-, four-, or five-times  
Two-, five-, six-, or seven-  
times  
Two-, five-, six-, or seven-  
times  
Bleeder-resistor for liquid crystal drive  
Liquid crystal drive operational amplifier  
Liquid crystal contrast adjuster  
Horizontal smooth scroll  
Vertical smooth scroll  
Double-height display  
DDRAM  
Incorporated (external)  
Incorporated (external)  
Incorporated (external)  
Incorporated  
Incorporated  
Incorporated  
Incorporated (64 steps)  
Incorporated (64 steps)  
Incorporated (64 steps)  
Line unit  
Line unit  
Line unit  
Yes  
Yes  
Yes  
CGROM  
CGRAM  
1,280 x 8  
4,096 x 8  
4,096 x 8  
SEGRAM  
No. of CGROM fonts  
No. of CGRAM fonts  
Font sizes  
Bit map areas  
128 x 80  
128 x 128  
128 x 128  
R-C oscillation resistor/  
oscillation frequency  
External resistor  
(70–90 kHz)  
External resistor  
(70 kHz)  
External resistor  
(70 kHz)  
Reset function  
External  
External  
External  
Low power control  
Partial display off,  
Oscillation off,  
Partial display off,  
Oscillation off,  
Partial display off,  
Oscillation off,  
Liquid crystal power off  
Liquid crystal power off  
Liquid crystal power off  
SEG/COM direction switching  
QFP package  
TQFP package  
TCP package  
Bare chip  
SEG, COM  
SEG, COM  
SEG, COM  
TCP-254  
TCP-308  
TCP-308  
Bumped chip  
Yes  
Yes  
Yes  
Chip sizes  
14.30 x 2.78  
70 µm  
8.42 x 3.18  
50 µm  
8.44 x 2.95  
50 µm  
Pad intervals  
Rev. 1.0, Jan. 2003, page 6 of 102  
HD66753  
LCD Family Comparison (cont)  
Items  
HD66752  
HD66753  
Character display sizes  
Graphic display sizes  
Grayscale display  
168 x 132 dots  
168 x 132 dots  
Four monochrome  
Four monochrome  
grayscales (7 levels)  
grayscales (7 levels)  
Multiplexing icons  
Annunciator  
Key scan control  
LED control ports  
General output ports  
Operating power voltages  
Liquid crystal drive voltages  
Serial bus  
2.0 V to 3.6 V  
5.0 V to 15.5V  
1.7 V to 3.6 V  
5 V to 19.5V  
Clock-synchronized serial  
8 bits, 16 bits  
Parallel bus  
8 bits, 16 bits  
Liquid crystal drive duty ratios  
1/80, 88, 96, 104, 112, 120, 1/80, 88, 96, 104, 112, 120,  
128, 132  
1/4 to 1/11  
B, C  
128, 132  
1/4 to 1/11  
B, C  
Liquid crystal drive biases  
Liquid crystal drive waveforms  
Liquid crystal voltage step-up  
Two-, five-, six-, or seven-  
times  
Two-, five-, six-, or seven-  
times  
Bleeder-resistor for liquid crystal drive  
Liquid crystal drive operational amplifier  
Liquid crystal contrast adjuster  
Horizontal smooth scroll  
Vertical smooth scroll  
Double-height display  
DDRAM  
Incorporated (external)  
Incorporated  
Incorporated  
Incorporated  
Incorporated (128 steps)  
Incorporated (128 steps)  
Line unit  
Line unit  
Yes  
Yes  
CGROM  
CGRAM  
5,544 x 8  
5,544 x 8  
SEGRAM  
No. of CGROM fonts  
No. of CGRAM fonts  
Font sizes  
Bit map areas  
168 x 132, 132 x 168  
168 x 132, 132 x 168  
R-C oscillation resistor/  
oscillation frequency  
External resistor  
(70 kHz)  
External resistor  
(70 kHz)  
Reset function  
External  
External  
Low power control  
2-screen division partial  
drive, Partial display off,  
Oscillation off,  
2-screen division partial  
drive, Partial display off,  
Oscillation off,  
Liquid crystal power off  
Liquid crystal power off  
SEG/COM direction switching  
QFP package  
TQFP package  
TCP package  
Bare chip  
SEG, COM  
SEG, COM  
TCP-352  
Bumped chip  
Yes  
Yes  
Chip sizes  
12.68 x 4.31  
60 µm  
15.90 x 2.02  
50 µm  
Pad intervals  
Rev. 1.0, Jan. 2003, page 7 of 102  
HD66753  
HD66753 Block Diagram  
OSC1 OSC2  
CPG  
Vcc  
RESET*  
TEST  
Timing generator  
Instruction  
decoder  
Instruction register (IR)  
IM2-1  
16  
132-bit  
COM1/132-COM132/1  
IM0ID  
CS*  
Address counter (AC)  
bidirectional  
common shift  
register  
Common  
driver  
System  
RS  
E/WR*/SCL  
interface  
·Synchronized  
serial  
16  
Bit operation  
·16-bit bus  
·8-bit bus  
RW/RD*/SDA  
SEG1/168-SEG168/1  
16  
16  
12  
DB0-DB15  
16  
168-bit  
latch circuit  
Read data  
latch  
16  
Segment driver  
Vci  
C1+  
16  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
C6+  
C6-  
Graphic RAM  
(CGRAM)  
5,544 bytes  
LCD drive voltage  
selector  
Three-, five-, six-,  
and seven-times  
step-up  
Four-grayscale control circuit  
Window cursor control  
VLOUT  
VSW1  
VSW2  
VREG  
V1REF  
LCD drive voltage  
regulator  
Drive bias controller  
Contrast  
adjuster  
VTEST  
+ -  
VR  
+ -  
+ -  
+ -  
+ -  
R
0
R
R
R
R
VLREF  
OPOFF  
V1OUT  
V2OUT  
V3OUT  
V4OUT  
V5OUT  
GND  
Rev. 1.0, Jan. 2003, page 8 of 102  
HD66753  
HD66753 Pad Arrangement  
Chip size: 15.90 m m  
x 2.02 m m  
µ
Chip thickness: 400  
m (typ.)  
Pad coordinates: pad centers  
Coordinate origin: chip center  
No. 1  
No. 417  
Au bum p size:  
Dummy8  
GNDDU M3  
DB15  
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
Dummy1  
µ
µ
µ
(m in 100- m  
(1) 80  
m
x
80  
m
pitch)  
Dummy1, Dummy2 to GNDDUM2, Dummy8,  
GNDDUM3, DB15 to V4OUT, V5OUT,  
Dum my9, Dummy10 to Dum my19, Dummy20  
COM1/132  
COM2/131  
µ
µ
µ
(m in 60- m  
(2) 45  
m
x
80  
m
pitch)  
pitch)  
COM 14/119  
COM 15/118  
COM 16/117  
COM 65/68  
COM 66/67  
COM1/132 to C OM 14/119,  
COM17/116 to COM 30/103  
Type code  
µ
(3) 35 um x 80 um (min 50- ‚  
SEG1/168 to SEG168/1,  
COM15/118, COM16/117,  
COM65/68 to C OM 112/21,  
COM31/102 to COM 132/1  
Au bum p pitch: see the pad coordinates  
µ
Height of the Au bump: 15  
m (typ.)  
DB8  
Numbers in the figure correspond to pad no.  
DB7  
Alignment m ark  
COM 111/22  
COM 112/21  
SEG168/1  
SEG167/2  
(1) Alignment: two points  
@@ Coordinates (X, Y)  
DB6  
i±7642, 613j  
DB5  
µ
190  
m
95  
DB4  
DB3  
DB2  
DB1  
DB0  
GNDDU M4  
RESET*  
CS*  
45 30 40 30 45  
(2-b) Coordinates (X, Y)  
=
i7668, 406j  
RS  
20  
µ
50  
m
E/WR*/SCL  
RW/RD*/SDA  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
OSC2  
OSC1  
Vcc  
(3-a) Coordinates (X, Y)  
=
i-7548, 406j  
5
10 25  
25 10  
5
HD66753  
(Top view)  
Y
Vcc  
Vcc  
Vcc  
Vcc  
µ
µ
70  
80  
m
m
X
Vcc  
Vci  
Vci  
(3-b) Coordinates (X, Y)  
10 25  
=
i7548, 406j  
25 10  
Vci  
Vci  
Vci  
Vci  
VREG  
C6+  
C6+  
C6+  
C6-  
C6-  
C6-  
µ
70  
m
C5+  
C5+  
C5+  
C5-  
Update histo ry  
C5-  
C5-  
C4+  
C4+  
C4+  
C4-  
Rev 0 .0 : new ly created  
Rev 0 .1 : pad coo rd in ate no. updated,  
@@@@@ type co de a dde d  
Rev 0 .2 : pin nam e m odified in Au b um p  
@@@@@  
size (3)  
C4-  
C4-  
C3+  
C3+  
C3+  
C3-  
C3-  
C3-  
C2+  
C2+  
C2+  
C2-  
C2-  
C2-  
C1+  
C1+  
C1+  
C1-  
SEG2/167  
SEG1/168  
COM 132/1  
COM 131/2  
C1-  
C1-  
VLOUT  
VLOUT  
VLOUT  
VLOUT  
VLOUT  
VLPS  
VLPS  
VLPS  
VLPS  
VLPS  
V1REF  
VLREF  
V1OUT  
V2OUT  
V3OUT  
V4OUT  
V5OUT  
COM 114/19  
COM 113/20  
COM 64/69  
COM 63/70  
COM 31/102  
COM 30/103  
COM 18/115  
COM 17/116  
Dummy9  
Dummy20  
No. 116  
No. 101  
Rev. 1.0, Jan. 2003, page 9 of 102  
HD66753  
HD66753 Pad Coordinates  
No. Pad Name  
X
Y
No. Pad Name  
-848 38 Vcc  
X
Y
1
2
3
4
5
6
7
8
9
Dummy8  
GNDDUM3  
DB15  
-7788  
-7610  
-7395  
-7071  
-6747  
-6423  
-6099  
-5775  
-5451  
-5126  
-4802  
-4478  
-4154  
-3830  
-3506  
-3181  
-2857  
-2533  
-2319  
-2105  
-1781  
-1456  
-1132  
-808  
1233  
1333  
1433  
1576  
1676  
1776  
1876  
1976  
2076  
2176  
2319  
2419  
2519  
2619  
2719  
2819  
2920  
3020  
3120  
3220  
3320  
3420  
3520  
3620  
3720  
3820  
3921  
4021  
4121  
4221  
4321  
4421  
4521  
4621  
4721  
4821  
4922  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848  
-848 39 Vcc  
-848 40 Vcc  
-848 41 Vci  
-848 42 Vci  
-848 43 Vci  
-848 44 Vci  
-848 45 Vci  
-848 46 Vci  
-848 47 VREG  
-848 48 C6+  
-848 49 C6+  
-848 50 C6+  
-848 51 C6-  
-848 52 C6-  
-848 53 C6-  
-848 54 C5+  
-848 55 C5+  
-848 56 C5+  
-848 57 C5-  
-848 58 C5-  
-848 59 C5-  
-848 60 C4+  
-848 61 C4+  
-848 62 C4+  
-848 63 C4-  
-848 64 C4-  
-848 65 C4-  
-848 66 C3+  
-848 67 C3+  
-848 68 C3+  
-848 69 C3-  
-848 70 C3-  
-848 71 C3-  
-848 72 C2+  
-848 73 C2+  
-848 74 C2+  
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
10 DB8  
11 DB7  
12 DB6  
13 DB5  
14 DB4  
15 DB3  
16 DB2  
17 DB1  
18 DB0  
19 GNDDUM4  
20 RESET*  
21 CS*  
22 RS  
23 E/WR*/SCL  
24 RW/RD*/SDA  
25 GND  
26 GND  
27 GND  
28 GND  
29 GND  
30 GND  
31 GND  
32 GND  
33 OSC2  
34 OSC1  
35 Vcc  
-594  
-494  
-394  
-294  
-193  
-93  
7
107  
358  
682  
932  
36 Vcc  
1032  
1132  
37 Vcc  
Rev. 1.0, Jan. 2003, page 10 of 102  
HD66753  
HD66753 Pad Coordinates (cont)  
No. Pad Name  
75 C2-  
X
Y
No. Pad Name  
-848 112 Dummy16  
-848 113 Dummy17  
-848 114 Dummy18  
-848 115 Dummy19  
-848 116 Dummy20  
-848 117 COM17/116  
-848 118 COM18/115  
-848 119 COM19/114  
-848 120 COM20/113  
-848 121 COM21/112  
-848 122 COM22/111  
-848 123 COM23/110  
-848 124 COM24/109  
-848 125 COM25/108  
-848 126 COM26/107  
-848 127 COM27/106  
-848 128 COM28/105  
-848 129 COM29/104  
-848 130 COM30/103  
-848 131 COM31/102  
-848 132 COM32/101  
-848 133 COM33/100  
-848 134 COM34/99  
-848 135 COM35/98  
-848 136 COM36/97  
-848 137 COM37/96  
-848 138 COM38/95  
-635 139 COM39/94  
-535 140 COM40/93  
-435 141 COM41/92  
-335 142 COM42/91  
-235 143 COM43/90  
-135 144 COM44/89  
-34 145 COM45/88  
66 146 COM46/87  
X
Y
5022  
5122  
5222  
5322  
5422  
5522  
5622  
5722  
5823  
5965  
6065  
6166  
6266  
6366  
6466  
6566  
6666  
6766  
6866  
7009  
7109  
7209  
7309  
7409  
7510  
7610  
7788  
7788  
7788  
7788  
7788  
7788  
7788  
7788  
7788  
7788  
7788  
7788  
7788  
7788  
7788  
7788  
7628  
7568  
7508  
7448  
7388  
7328  
7268  
7207  
7147  
7087  
7027  
6967  
6907  
6847  
6792  
6742  
6691  
6641  
6591  
6541  
6491  
6441  
6391  
6341  
6290  
6240  
6190  
6140  
6090  
6040  
5990  
5940  
366  
466  
566  
666  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
76 C2-  
77 C2-  
78 C1+  
79 C1+  
80 C1+  
81 C1-  
82 C1-  
83 C1-  
84 VLOUT  
85 VLOUT  
86 VLOUT  
87 VLOUT  
88 VLOUT  
89 VLPS  
90 VLPS  
91 VLPS  
92 VLPS  
93 VLPS  
94 V1REF  
95 VLREF  
96 V1OUT  
97 V2OUT  
98 V3OUT  
99 V4OUT  
100 V5OUT  
101 Dummy9  
102 Dummy10  
103 Dummy11  
104 Dummy12  
105 Dummy13  
106 VTEST  
107 GNDDUM5  
108 VSW1  
109 VSW2  
110 Dummy14  
111 Dummy15  
166 147 COM47/86  
266 148 COM48/85  
Rev. 1.0, Jan. 2003, page 11 of 102  
HD66753  
HD66753 Pad Coordinates (cont)  
No. Pad Name  
149 COM49/84  
150 COM50/83  
151 COM51/82  
152 COM52/81  
153 COM53/80  
154 COM54/79  
155 COM55/78  
156 COM56/77  
157 COM57/76  
158 COM58/75  
159 COM59/74  
160 COM60/73  
161 COM61/72  
162 COM62/71  
163 COM63/70  
164 COM64/69  
165 COM113/20  
166 COM114/19  
167 COM115/18  
168 COM116/17  
169 COM117/16  
170 COM118/15  
171 COM119/14  
172 COM120/13  
173 COM121/12  
174 COM122/11  
175 COM123/10  
176 COM124/9  
177 COM125/8  
178 COM126/7  
179 COM127/6  
180 COM128/5  
181 COM129/4  
182 COM130/3  
183 COM131/2  
184 COM132/1  
185 SEG1/168  
X
Y
No. Pad Name  
880 186 SEG2/167  
880 187 SEG3/166  
880 188 SEG4/165  
880 189 SEG5/164  
880 190 SEG6/163  
880 191 SEG7/162  
880 192 SEG8/161  
880 193 SEG9/160  
880 194 SEG10/159  
880 195 SEG11/158  
880 196 SEG12/157  
880 197 SEG13/156  
880 198 SEG14/155  
880 199 SEG15/154  
880 200 SEG16/153  
880 201 SEG17/152  
880 202 SEG18/151  
880 203 SEG19/150  
880 204 SEG20/149  
880 205 SEG21/148  
880 206 SEG22/147  
880 207 SEG23/146  
880 208 SEG24/145  
880 209 SEG25/144  
880 210 SEG26/143  
880 211 SEG27/142  
880 212 SEG28/141  
880 213 SEG29/140  
880 214 SEG30/139  
880 215 SEG31/138  
880 216 SEG32/137  
880 217 SEG33/136  
880 218 SEG34/135  
880 219 SEG35/134  
880 220 SEG36/133  
880 221 SEG37/132  
880 222 SEG38/131  
X
Y
5889  
5839  
5789  
5739  
5689  
5639  
5589  
5539  
5488  
5438  
5388  
5338  
5288  
5238  
5188  
5138  
5087  
5037  
4987  
4937  
4887  
4837  
4787  
4737  
4686  
4636  
4586  
4536  
4486  
4436  
4386  
4336  
4285  
4235  
4185  
4135  
4085  
4035  
3985  
3935  
3885  
3834  
3784  
3734  
3684  
3634  
3584  
3534  
3484  
3433  
3383  
3333  
3283  
3233  
3183  
3133  
3083  
3032  
2982  
2932  
2882  
2832  
2782  
2732  
2682  
2631  
2581  
2531  
2481  
2431  
2381  
2331  
2281  
2230  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
Rev. 1.0, Jan. 2003, page 12 of 102  
HD66753  
HD66753 Pad Coordinates (cont)  
No. Pad Name  
223 SEG39/130  
224 SEG40/129  
225 SEG41/128  
226 SEG42/127  
227 SEG43/126  
228 SEG44/125  
229 SEG45/124  
230 SEG46/123  
231 SEG47/122  
232 SEG48/121  
233 SEG49/120  
234 SEG50/119  
235 SEG51/118  
236 SEG52/117  
237 SEG53/116  
238 SEG54/115  
239 SEG55/114  
240 SEG56/113  
241 SEG57/112  
242 SEG58/111  
243 SEG59/110  
244 SEG60/109  
245 SEG61/108  
246 SEG62/107  
247 SEG63/106  
248 SEG64/105  
249 SEG65/104  
250 SEG66/103  
251 SEG67/102  
252 SEG68/101  
253 SEG69/100  
254 SEG70/99  
255 SEG71/98  
256 SEG72/97  
257 SEG73/96  
258 SEG74/95  
259 SEG75/94  
X
Y
No. Pad Name  
880 260 SEG76/93  
880 261 SEG77/92  
880 262 SEG78/91  
880 263 SEG79/90  
880 264 SEG80/89  
880 265 SEG81/88  
880 266 SEG82/87  
880 267 SEG83/86  
880 268 SEG84/85  
880 269 SEG85/84  
880 270 SEG86/83  
880 271 SEG87/82  
880 272 SEG88/81  
880 273 SEG89/80  
880 274 SEG90/79  
880 275 SEG91/78  
880 276 SEG92/77  
880 277 SEG93/76  
880 278 SEG94/75  
880 279 SEG95/74  
880 280 SEG96/73  
880 281 SEG97/72  
880 282 SEG98/71  
880 283 SEG99/70  
880 284 SEG100/69  
880 285 SEG101/68  
880 286 SEG102/67  
880 287 SEG103/66  
880 288 SEG104/65  
880 289 SEG105/64  
880 290 SEG106/63  
880 291 SEG107/62  
880 292 SEG108/61  
880 293 SEG109/60  
880 294 SEG110/59  
880 295 SEG111/58  
880 296 SEG112/57  
X
Y
2180  
2130  
2080  
2030  
1980  
1930  
1880  
1829  
1779  
1729  
1679  
1629  
1579  
1529  
1479  
1428  
1378  
1328  
1278  
1228  
1178  
1128  
1078  
1028  
977  
326  
276  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
226  
175  
125  
75  
25  
-25  
-75  
-125  
-175  
-226  
-276  
-326  
-376  
-426  
-476  
-526  
-576  
-627  
-677  
-727  
-777  
-827  
-877  
-927  
-977  
-1028  
-1078  
-1128  
-1178  
-1228  
-1278  
-1328  
-1378  
-1428  
-1479  
927  
877  
827  
777  
727  
677  
627  
576  
526  
476  
426  
376  
Rev. 1.0, Jan. 2003, page 13 of 102  
HD66753  
HD66753 Pad Coordinates (cont)  
No. Pad Name  
297 SEG113/56  
298 SEG114/55  
299 SEG115/54  
300 SEG116/53  
301 SEG117/52  
302 SEG118/51  
303 SEG119/50  
304 SEG120/49  
305 SEG121/48  
306 SEG122/47  
307 SEG123/46  
308 SEG124/45  
309 SEG125/44  
310 SEG126/43  
311 SEG127/42  
312 SEG128/41  
313 SEG129/40  
314 SEG130/39  
315 SEG131/38  
316 SEG132/37  
317 SEG133/36  
318 SEG134/35  
319 SEG135/34  
320 SEG136/33  
321 SEG137/32  
322 SEG138/31  
323 SEG139/30  
324 SEG140/29  
325 SEG141/28  
326 SEG142/27  
327 SEG143/26  
328 SEG144/25  
329 SEG145/24  
330 SEG146/23  
331 SEG147/22  
332 SEG148/21  
333 SEG149/20  
X
Y
No. Pad Name  
880 334 SEG150/19  
880 335 SEG151/18  
880 336 SEG152/17  
880 337 SEG153/16  
880 338 SEG154/15  
880 339 SEG155/14  
880 340 SEG156/13  
880 341 SEG157/12  
880 342 SEG158/11  
880 343 SEG159/10  
880 344 SEG160/9  
880 345 SEG161/8  
880 346 SEG162/7  
880 347 SEG163/6  
880 348 SEG164/5  
880 349 SEG165/4  
880 350 SEG166/3  
880 351 SEG167/2  
880 352 SEG168/1  
880 353 COM112/21  
880 354 COM111/22  
880 355 COM110/23  
880 356 COM109/24  
880 357 COM108/25  
880 358 COM107/26  
880 359 COM106/27  
880 360 COM105/28  
880 361 COM104/29  
880 362 COM103/30  
880 363 COM102/31  
880 364 COM101/32  
880 365 COM100/33  
880 366 COM99/34  
880 367 COM98/35  
880 368 COM97/36  
880 369 COM96/37  
880 370 COM95/38  
X
Y
-1529  
-1579  
-1629  
-1679  
-1729  
-1779  
-1829  
-1880  
-1930  
-1980  
-2030  
-2080  
-2130  
-2180  
-2230  
-2281  
-2331  
-2381  
-2431  
-2481  
-2531  
-2581  
-2631  
-2682  
-2732  
-2782  
-2832  
-2882  
-2932  
-2982  
-3032  
-3083  
-3133  
-3183  
-3233  
-3283  
-3333  
-3383  
-3433  
-3484  
-3534  
-3584  
-3634  
-3684  
-3734  
-3784  
-3834  
-3885  
-3935  
-3985  
-4035  
-4085  
-4135  
-4185  
-4235  
-4285  
-4336  
-4386  
-4436  
-4486  
-4536  
-4586  
-4636  
-4686  
-4737  
-4787  
-4837  
-4887  
-4937  
-4987  
-5037  
-5087  
-5138  
-5188  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
Rev. 1.0, Jan. 2003, page 14 of 102  
HD66753  
HD66753 Pad Coordinates (cont)  
No. Pad Name  
371 COM94/39  
372 COM93/40  
373 COM92/41  
374 COM91/42  
375 COM90/43  
376 COM89/44  
377 COM88/45  
378 COM87/46  
379 COM86/47  
380 COM85/48  
381 COM84/49  
382 COM83/50  
383 COM82/51  
384 COM81/52  
385 COM80/53  
386 COM79/54  
387 COM78/55  
388 COM77/56  
389 COM76/57  
390 COM75/58  
391 COM74/59  
392 COM73/60  
393 COM72/61  
394 COM71/62  
395 COM70/63  
396 COM69/64  
397 COM68/65  
398 COM67/66  
399 COM66/67  
400 COM65/68  
401 COM16/117  
X
Y
No. Pad Name  
880 402 COM15/118  
880 403 COM14/119  
880 404 COM13/120  
880 405 COM12/121  
880 406 COM11/122  
880 407 COM10/123  
880 408 COM9/124  
880 409 COM8/125  
880 410 COM7/126  
880 411 COM6/127  
880 412 COM5/128  
880 413 COM4/129  
880 414 COM3/130  
880 415 COM2/131  
880 416 COM1/132  
880 417 Dummy1  
880 418 Dummy2  
880 419 Dummy3  
880 420 Dummy4  
880 421 Dummy5  
880 422 Dummy6  
880 423 Dummy7  
880 424 IM2  
X
Y
-5238  
-5288  
-5338  
-5388  
-5438  
-5488  
-5539  
-5589  
-5639  
-5689  
-5739  
-5789  
-5839  
-5889  
-5940  
-5990  
-6040  
-6090  
-6140  
-6190  
-6240  
-6290  
-6341  
-6391  
-6441  
-6491  
-6541  
-6591  
-6641  
-6691  
-6742  
-6792  
-6847  
-6907  
-6967  
-7027  
-7087  
-7147  
-7207  
-7268  
-7328  
-7388  
-7448  
-7508  
-7568  
-7628  
-7788  
-7788  
-7788  
-7788  
-7788  
-7788  
-7788  
-7788  
-7788  
-7788  
-7788  
-7788  
-7788  
-7788  
-7788  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
880  
666  
566  
466  
366  
266  
166  
66  
880 425 GNDDUM1  
880 426 IM1  
-34  
-135  
-235  
-335  
-435  
-535  
-635  
880 427 IM0ID  
880 428 VccDUM1  
880 429 OPOFF  
880 430 TEST  
880 431 GNDDUM2  
880  
Rev. 1.0, Jan. 2003, page 15 of 102  
HD66753  
Alignment Mark  
X
Y
Cross  
-7642  
7642  
-7668  
7668  
-7548  
7548  
613  
613  
406  
406  
406  
406  
Circle (positive)  
Circle (negative)  
L type (positive)  
L type (negative)  
Rev. 1.0, Jan. 2003, page 16 of 102  
HD66753  
TCP External Dimensions (HD66753TB0L/R)  
Bending slit  
3.8 mm  
Dummy  
Dummy  
COM1/132  
COM2/131  
0.14P x (66-1)  
9.10 mm  
=
NC  
IM2  
IM1  
IM0/ID  
OPOFF  
TEST  
COM15/118  
COM16/117  
COM65/68  
COM66/67  
COM  
64  
DB15  
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
0.14-mm  
pitch  
COM111/22  
COM112/21  
0.14 mm  
0.65-mm  
pitch  
SEG168/1  
SEG167/2  
DB8  
RESET*  
CS*  
RS  
35.74 mm  
E/WR*/SCL  
RW/RD*/SDA  
GND  
0.10-mm  
pitch  
OSC2  
OSC1  
Vcc  
Vci  
LCD drive  
VREG  
I/O, Power supply  
C6+  
C6-  
C5+  
C5-  
C4+  
C4-  
0.10P x (168-1)  
=
16.7 mm  
0.65P x (50-1)  
=31.85 mm  
C3+  
C3-  
C2+  
C2-  
C1+  
C1-  
VLOUT  
SEG2/167  
SEG1/168  
VLPS  
V1REF  
VLREF  
V1OUT  
V2OUT  
V3OUT  
V4OUT  
V5OUT  
VTEST  
VSW1  
VSW2  
NC  
0.14 mm  
COM132/1  
COM131/2  
0.14-mm  
pitch  
COM114/19  
COM113/20  
COM64/69  
COM63/70  
COM  
68  
0.14P x (70-1)  
9.66 mm  
=
COM18/111  
COM17/112  
Dummy  
Dummy  
Rev. 1.0, Jan. 2003, page 17 of 102  
HD66753  
Pin Functions  
Table 2  
Pin Functional Description  
Number of  
Pins  
Signals  
I/O  
Connected to Functions  
GND or VCC Selects the MPU interface mode:  
IM2, IM1,  
IM0/ID  
3
I
IM2  
GND  
GND  
GND  
GND  
Vcc  
IM1  
GND  
GND  
Vcc  
Vcc  
GND  
Vcc  
IM0  
GND 68-system 16-bit bus interface  
Vcc 68-system 8-bit bus interface  
GND 80-system 16-bit bus interface  
MPU interface mode  
Vcc  
ID  
80-system 8-bit bus interface  
Clock-synchronized serial interface  
I2C bus interface  
Vcc  
ID  
When a serial interface is selected, the IM0 pin is  
used for setting the device code ID.  
CS*  
1
I
MPU  
Selects the HD66753:  
Low: HD66753 is selected and can be accessed  
High: HD66753 is not selected and cannot be  
accessed  
Must be fixed at GND level when not in use.  
RS  
1
1
I
I
MPU  
MPU  
Selects the register.  
Low: Index/status  
High: Control  
Must be fixed at Vcc or GND level for a clock-  
synchronized interface.  
E/WR*/SCL  
For a 68-system bus interface, serves as an enable  
signal to activate data read/write operation.  
For an 80-system bus interface, serves as a write  
strobe signal and writes data at the low level.  
For a clock-synchronized interface, serves as a  
synchronized clock signal.  
RW/RD*/  
SDA  
1
I/O  
MPU  
For a 68-system bus interface, serves as a signal to  
select data read/write operation.  
Low: Write  
High: Read  
For an 80-system bus interface, serves as a read  
strobe signal and reads data at the low level.  
For a clock-synchronized interface, serves as a  
bidirectional serial transfer data to receive and send  
the data.  
DB0–DB15 16  
I/O  
MPU  
Serves as a 16-bit bidirectional data bus.  
For an 8-bit bus interface, data transfer uses DB15-  
DB8; fix unused DB7-DB0 to the Vcc or GND level.  
For a clock-synchronized interface, fix DB15-DB0 to  
the Vcc or GND level.  
Rev. 1.0, Jan. 2003, page 18 of 102  
HD66753  
Table 2  
Pin Functional Description (cont)  
Number  
Signals  
of Pins  
I/O  
Connected to Functions  
LCD Output signals for common drive: All the unused pins  
output unselected waveforms. In the display-off  
COM1/132 132  
O
COM132/1  
period (D = 0), sleep mode (SLP = 1), or standby  
mode (STB = 1), all pins output GND level.  
The CMS bit can change the shift direction of the  
common signal. For example, if CMS = 0, COM1/132  
is COM1, and COM132/1 is COM132. If CMS = 1,  
COM1/132 is COM132, and COM132/1 is COM1.  
SEG1/168– 168  
SEG168/1  
O
O
LCD  
Output signals for segment drive. In the display-off  
period (D = 0), sleep mode (SLP = 1), or standby  
mode (STB = 1), all pins output GND level.  
The SGS bit can change the shift direction of the  
segment signal. For example, if SGS = 0, SEG1/168  
is SEG1. If SGS = 1, SEG1/168 is SEG168.  
V1OUT–  
V5OUT  
5
Stabilization  
capacitance  
Built-in op-amp output. This should be stabilized by  
connecting a capacitor.  
VLPS  
1
2
2
Power supply  
Power supply  
Power supply for LCD drive. VLPS = 19.5 V max.  
VCC: +1.7 V to + 3.6 V; GND (logic): 0 V  
VCC, GND  
OSC1,  
OSC2  
I or O Oscillation-  
For R-C oscillation using an external resistor,  
resistor or clock connect an external resistor. For external clock  
supply, input clock pulses to OSC1.  
Vci  
1
I
Power supply  
Inputs a reference voltage and supplies power to the  
step-up circuit; generates the liquid crystal display  
drive voltage from the operating voltage. The step-  
up output voltage must not be larger than the  
absolute maximum ratings.  
Must be left disconnected when the step-up circuit is  
not used.  
VLOUT  
1
O
VLPS pin/step-up Potential difference between Vci and GND is two- to  
capacitance  
seven-times-stepped up and then output. Magnitude  
of step-up is selected by instruction.  
C1+, C1–  
C2+, C2–  
C3+, C3–  
C4+, C4–  
C5+, C5–  
C6+, C6–  
2
2
2
2
2
2
Step-up  
capacitance  
External capacitance should be connected here  
when using the five-times or more step-up.  
Step-up  
capacitance  
External capacitance should be connected here for  
step-up.  
Step-up  
capacitance  
External capacitance should be connected here for  
step-up.  
Step-up  
capacitance  
External capacitance should be connected here  
when using the five-times or more step-up.  
Step-up  
capacitance  
External capacitance should be connected here for  
step-up.  
Step-up  
capacitance  
External capacitance should be connected here for  
step-up.  
Rev. 1.0, Jan. 2003, page 19 of 102  
HD66753  
Table 2  
Pin Functional Description (cont)  
Number of  
Pins  
Signals  
I/O  
Connected to Functions  
RESET*  
1
I
MPU or  
Reset pin. Initializes the LSI when low. Must be reset  
external R-C  
circuit  
after power-on.  
OPOFF  
VSW1  
VSW2  
VREG  
1
1
1
1
I
GND  
GND  
Test pin. Must be fixed at GND level.  
Test pin. Must be fixed at GND level.  
Test pin. Must be left disconnected.  
I
I
Input pin  
Input pin for the reference voltage of the LCD-drive-  
voltage regulator circuit. Connect Vci or external  
power supply.  
V1REF  
VLREF  
1
1
O
I
Stabilization  
Output pin for the LCD-drive-voltage regulator circuit.  
capacitance or Must be left disconnected when not in use.  
open  
Input pin  
Connected to the top electrode of the internal  
bleeder-resistor. Use this pin to supply the LCD  
voltage externally.  
VccDUM  
1
5
O
O
Input pins  
Input pins  
Outputs the internal VCC level; shorting this pin sets  
the adjacent input pin to the VCC level.  
GNDDUM  
Outputs the internal GND level; shorting this pin sets  
the adjacent input pin to the GND level.  
Dummy  
TEST  
4
1
1
I
Dummy pad. Must be left disconnected.  
Test pin. Must be fixed at GND level.  
Test pin. Must be left disconnected.  
GND  
VTEST  
Rev. 1.0, Jan. 2003, page 20 of 102  
HD66753  
Block Function Description  
System Interface  
The HD66753 has five high-speed system interfaces: an 80-system 16-bit/8-bit bus, a 68-system 16-bit/8-  
bit bus, and a clock-synchronized serial interface. The interface mode is selected by the IM2-0 pins.  
The HD66753 has three 16-bit registers: an index register (IR), a write data register (WDR), and a read data  
register (RDR). The IR stores index information from the control registers and the CGRAM. The WDR  
temporarily stores data to be written into control registers and the CGRAM, and the RDR temporarily  
stores data read from the CGRAM. Data written into the CGRAM from the MPU is first written into the  
WDR and then is automatically written into the CGRAM by internal operation. Data is read through the  
RDR when reading from the CGRAM, and the first read data is invalid and the second and the following  
data are normal (for the serial interface, the 5-byte data is invalid). When a logic operation is performed  
inside of the HD66753 by using the display data set in the CGRAM and the data written from the MPU, the  
data read through the RDR is used. Accordingly, the MPU does not need to read data twice nor to fetch the  
read data into the MPU. This enables high-speed processing.  
Execution time for instruction excluding oscillation start is 0 clock cycle and instructions can be written in  
succession.  
Table 3  
Register Selection  
R/W Bits  
RS Bits  
Operations  
0
1
0
1
0
0
1
1
Writes indexes into IR  
Status read  
Writes into control registers and CGRAM through WDR  
Reads from CGRAM through RDR  
Bit Operation  
The HD66753 supports the following functions: a bit rotation function that writes the data written from the  
MPU into the CGRAM by moving the display position in bit units, a write data mask function that selects  
and writes data into the CGRAM in bit units, and a logic operation function that performs logic operations  
on the display data set in the CGRAM and writes into the CGRAM. With the 16-bit bus interface, these  
functions can greatly reduce the processing loads of the MPU graphics software and can rewrite the display  
data in the CGRAM at high speed. For details, see the Graphics Operation Function section.  
Address Counter (AC)  
The address counter (AC) assigns addresses to the CGRAM. When an address set instruction is written into  
the IR, the address information is sent from the IR to the AC.  
After writing into the CGRAM, the AC is automatically incremented by 1 (or decremented by 1). After  
reading from the data, the RDM bit automatically updates or does not update the AC.  
Rev. 1.0, Jan. 2003, page 21 of 102  
HD66753  
Graphic RAM (CGRAM)  
The graphic RAM (CGRAM) stores bit-pattern data of 168 x 132 dots. It has two bits/pixel and 5,544-byte  
capacity.  
Grayscale Control Circuit  
The grayscale control circuit performs four-grayscale control with the frame rate control (FRC) method for  
four-monochrome grayscale display. For details, see the Four Grayscale Display Function section.  
Timing Generator  
The timing generator generates timing signals for the operation of internal circuits such as the CGRAM.  
The RAM read timing for display and internal operation timing by MPU access are generated separately to  
avoid interference with one another.  
Oscillation Circuit (OSC)  
The HD66753 can provide R-C oscillation simply through the addition of an external oscillation-resistor  
between the OSC1 and OSC2 pins. The appropriate oscillation frequency for operating voltage, display  
size, and frame frequency can be obtained by adjusting the external-resistor value. Clock pulses can also be  
supplied externally. Since R-C oscillation stops during the standby mode, current consumption can be  
reduced. For details, see the Oscillation Circuit section.  
Liquid Crystal Display Driver Circuit  
The liquid crystal display driver circuit consists of 132 common signal drivers (COM1 to COM132) and  
168 segment signal drivers (SEG1 to SEG168). When the number of lines are selected by a program, the  
required common signal drivers automatically output drive waveforms, while the other common signal  
drivers continue to output unselected waveforms.  
Display pattern data is latched when 168-bit data has arrived. The latched data then enables the segment  
signal drivers to generate drive waveform outputs. The shift direction of 168-bit data can be changed by the  
SGS bit. The shift direction for the common driver can also be changed by the CMS bit by selecting an  
appropriate direction for the device mounting configuration.  
When multiplexing drive is not used, or during the standby or sleep mode, all the above common and  
segment signal drivers output the GND level, halting the display.  
Step-up Circuit (DC-DC Converter)  
The step-up generates three-, five-, six-, or seven-times voltage input to the Vci pin. With this, both the  
internal logic units and LCD drivers can be controlled with a single power supply. Step-up output level  
from three-times to seven-times step-up can be selected by software. For details, see the Liquid Crystal  
Display Voltage Generator section.  
Rev. 1.0, Jan. 2003, page 22 of 102  
HD66753  
V-Pin Voltage Follower  
A voltage follower for each voltage level (V1 to V5) reduces current consumption by the LCD drive power  
supply circuit. No external resistors are required because of the internal bleeder-resistor, which generates  
different levels of LCD drive voltage. This internal bleeder-resistor can be software-specified from 1/4 bias  
to 1/11 bias, according to the liquid crystal display drive duty value. The voltage followers can be turned  
off while multiplexing drive is not being used. For details, see the Power Supply for Liquid Crystal Display  
Drive section.  
Contrast Adjuster  
The contrast adjuster can be used to adjust LCD contrast in 128 steps by varying the LCD drive voltage by  
software. This can be used to select an appropriate LCD brightness or to compensate for temperature.  
LCD-Drive Power-Supply Regulator Circuit  
The LCD-drive power-supply regulator circuit generates an LCD-drive voltage from the reference voltage  
that does not depend on the LCD load current. Change of the LCD-drive voltage is controlled for the LCD  
load current. For details, see the Liquid Crystal Display Voltage Generator section.  
Rev. 1.0, Jan. 2003, page 23 of 102  
HD66753  
CGRAM Address Map  
Table 4  
Relationships between the CGRAM Address and the Display Screen Position  
Table 5  
Relationships between the CGRAM Data and the Display Contents  
Upper Bit  
Lower Bit  
LCD  
0
0
1
1
0
1
0
1
Non-selection display (unlit)  
1/4-, 1/3- or 2/4-level grayscale display (selected by the GSL1-0 bits)  
2/4-, 2/3-, or 3/4-level grayscale display (selected by the GSH1-0 bits)  
Selection display (lit)  
Note: Upper bits: DB15, DB13, DB11, DB9, DB7, DB5, DB3, DB1  
Lower bits: DB14, DB12, DB10, DB8, DB6, DB4, DB2, DB0  
Rev. 1.0, Jan. 2003, page 24 of 102  
HD66753  
Instructions  
Outline  
The HD66753 uses the 16-bit bus architecture. Before the internal operation of the HD66753 starts, control  
information is temporarily stored in the registers described below to allow high-speed interfacing with a  
high-performance microcomputer. The internal operation of the HD66753 is determined by signals sent  
from the microcomputer. These signals, which include the register selection signal (RS), the read/write  
signal (R/W), and the data bus signals (DB15 to DB0), make up the HD66753 instructions. There are seven  
categories of instructions that:  
Specify the index  
Read the status  
Control the display  
Control power management  
Process the graphics data  
Set internal CGRAM addresses  
Transfer data to and from the internal CGRAM  
Normally, instructions that write data are used the most. However, an auto-update of internal CGRAM  
addresses after each data write can lighten the microcomputer program load.  
Because instructions are executed in 0 cycles, they can be written in succession.  
Rev. 1.0, Jan. 2003, page 25 of 102  
HD66753  
Instruction Descriptions  
Index (IR)  
The index instruction specifies the RAM control and control register indexes (R00 to R12). It sets the  
register number in the range of 00000 to 10010 in binary form.  
R/W  
0
RS  
0
DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
*
*
*
*
*
*
*
*
*
*
*
ID4 ID3 ID2 ID1 ID0  
Figure 1 Index Instruction  
Status Read (SR)  
The status read instruction reads the internal status of the HD66753.  
L7–0: Indicate the driving raster-row position where the liquid crystal display is being driven.  
C6–0: Read the contrast setting values (CT6–0).  
R/W  
1
RS  
0
DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
L7  
L6  
L5  
L4  
L3  
L2  
L1  
L0  
0
C6  
C5  
C4 C3  
C2  
C1 C0  
Figure 2 Status Read Instruction  
Start Oscillation (R00)  
The start oscillation instruction restarts the oscillator from the halt state in the standby mode. After issuing  
this instruction, wait at least 10 ms for oscillation to stabilize before issuing the next instruction. (See the  
Standby Mode section.)  
If this register is read forcibly as R/W = 1, 0753H is read.  
R/W  
0
RS  
1
DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
1
0
1
1
0
0
0
0
0
1
1
1
0
1
0
1
0
0
0
Figure 3 Start Oscillation Instruction  
Rev. 1.0, Jan. 2003, page 26 of 102  
HD66753  
Driver Output Control (R01)  
CMS: Selects the output shift direction of a common driver. When CMS = 0, COM1/132 shifts to COM1,  
and COM132/1 to COM132. When CMS = 1, COM1/132 shifts to COM132, and COM132/1 to COM1.  
SGS: Selects the output shift direction of a segment driver. When SGS = 0, SEG1/168 shifts to SEG1, and  
SEG168/1 to SEG168. When SGS = 1, SEG1/168 shifts to SEG128, and SEG168/1 to SEG1.  
NL4-0: Specify the LCD drive duty ratio. The duty ratio can be adjusted for every eight raster-rows.  
CGRAM address mapping does not depend on the setting value of the drive duty ratio.  
R/W  
0
RS  
1
DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
*
*
*
*
*
*
CMS SGS  
*
*
*
NL4 NL3 NL2 NL1 NL0  
Figure 4 Driver Output Control Instruction  
NL Bits and Drive Duty  
Table 6  
NL4 NL3 NL2 NL1 NL0 Display Size  
LCD Drive Duty  
1/8 Duty  
Common Driver Used  
COM1–COM8  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
168 x 8 dots  
168 x 16 dots  
168 x 24 dots  
168 x 32 dots  
168 x 40 dots  
168 x 48 dots  
168 x 56 dots  
168 x 64 dots  
168 x 72 dots  
168 x 80 dots  
168 x 88 dots  
168 x 96 dots  
168 x 104 dots  
168 x 112 dots  
168 x 120 dots  
168 x 128 dots  
168 x 132 dots  
1/16 Duty  
1/24 Duty  
1/32 Duty  
1/40 Duty  
1/48 Duty  
1/56 Duty  
1/64 Duty  
1/72 Duty  
1/80 Duty  
1/88 Duty  
1/96 Duty  
1/104 Duty  
1/112 Duty  
1/120 Duty  
1/128 Duty  
1/132 Duty  
COM1–COM16  
COM1–COM24  
COM1–COM32  
COM1–COM40  
COM1–COM48  
COM1–COM56  
COM1–COM64  
COM1–COM72  
COM1–COM80  
COM1–COM88  
COM1–COM96  
COM1–COM104  
COM1–COM112  
COM1–COM120  
COM1–COM128  
COM1–COM132  
Rev. 1.0, Jan. 2003, page 27 of 102  
HD66753  
LCD-Driving-Waveform Control (R02)  
B/C: When B/C = 0, a B-pattern waveform is generated and alternates in every frame for LCD drive.  
When B/C = 1, a C-pattern waveform is generated and alternates in each raster-row specified by bits EOR  
and NW4–NW0 in the LCD-driving-waveform control register. For details, see the n-raster-row Reversed  
AC Drive section.  
EOR: When the C-pattern waveform is set (B/C = 1) and EOR = 1, the odd/even frame-select signals and  
the n-raster-row reversed signals are EORed for alternating drive. EOR is used when the LCD is not  
alternated by combining the set values of the LCD drive duty ratio and the n raster-row. For details, see the  
n-raster-row Reversed AC Drive section.  
NW4–0: Specify the number of raster-rows n that will alternate at the C-pattern waveform setting (B/C =  
1). NW4–NW0 alternate for every set value + 1 raster-row, and the first to the 32nd raster-rows can be  
selected.  
R/W  
0
RS  
1
DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1  
DB0  
*
*
*
*
*
*
*
*
*
B/C EOR NW4 NW3 NW2 NW1 NW0  
Figure 5 LCD-Driving-Waveform Control Instruction  
Power Control (R03)  
BS2–0: The LCD drive bias value is set within the range of a 1/4 to 1/11 bias. The LCD drive bias value  
can be selected according to its drive duty ratio and voltage. For details, see the Liquid Crystal Display  
Drive Bias Selector section.  
BT1-0: The output factor of VLOUT between two-times, three-times, four-times, five-times, six-times, and  
seven-times step-up is switched. The LCD drive voltage level can be selected according to its drive duty  
ratio and bias. Lower amplification of the step-up circuit consumes less current.  
PS1-0: Using the internal or external power supply is selected as the reference voltage for the LCD drive  
voltage generator.  
DC1-0: The operating frequency in the step-up circuit is selected. When the step-up operating frequency is  
high, the driving ability of the step-up circuit and the display quality become high, but the current  
consumption is increased. Adjust the frequency considering the display quality and the current  
consumption.  
AP1-0: The amount of fixed current from the fixed current source in the operational amplifier for V pins  
(V1 to V5) is adjusted. When the amount of fixed current is large, the LCD driving ability and the display  
quality become high, but the current consumption is increased. Adjust the fixed current considering the  
display quality and the current consumption.  
During no display, when AP1–0 = 00, the current consumption can be reduced by ending the operational  
amplifier and step-up circuit operation.  
Rev. 1.0, Jan. 2003, page 28 of 102  
HD66753  
Table 7  
BS Bits and LCD Drive Bias Value  
BS2  
0
BS1  
BS0  
0
LCD Drive Bias Value  
0
0
1
1
0
0
1
1
1/11 bias drive  
1/10 bias drive  
1/9 bias drive  
1/8 bias drive  
1/7 bias drive  
1/6 bias drive  
1/5 bias drive  
1/4 bias drive  
0
1
0
0
0
1
1
0
1
1
1
0
1
1
Table 8  
BT Bits and Output Level  
BT1  
0
BT0  
0
VLOUT Output Level  
Three-times step-up  
Five-times step-up  
Six-times step-up  
0
1
1
0
1
1
Seven-times step-up  
Table 9  
DC Bits and Operating Clock Frequency  
DC1  
DC0  
Operating Clock Frequency in the Step-up Circuit  
0
0
1
1
0
1
0
1
32-divided clock  
16-divided clock  
8-divided clock  
Setting inhibited  
Table 10  
AP Bits and Amount of Fixed Current  
AP1  
AP0  
Amount of Fixed Current in the Operational Amplifier  
0
0
1
1
0
1
0
1
Operational amplifier and booster do not operate.  
Small  
Middle  
Large  
Rev. 1.0, Jan. 2003, page 29 of 102  
HD66753  
Table 11  
PS Bits and Reference Power Supply  
Switching the Reference Power Supply for the LCD Voltage Generator  
VLREF  
V1REF-VLREF  
PS1  
PS0  
VREG Pin  
V1REF Pin  
VLREF Pin  
Regulator  
Switch  
0
0
Input  
Output from  
regulator  
Input (internal short  
between V1REF  
and VLREF)  
Used  
On  
0
1
1
1
0
1
Input  
Open  
Output from  
regulator  
Input  
Used  
Halt  
Off  
Off  
Open  
Input (from external  
power supply)  
Setting inhibited  
SLP: When SLP = 1, the HD66753 enters the sleep mode, where the internal display operations are halted  
except for the R-C oscillator, thus reducing current consumption. For details, see the Sleep Mode section.  
Only the following instructions can be executed during the sleep mode.  
Power control (BS2–0, BT1–0, DC1–0, AP1–0, SLP, and STB bits)  
During the sleep mode, the other CGRAM data and instructions cannot be updated although they are  
retained.  
STB: When STB = 1, the HD66753 enters the standby mode, where display operation completely stops,  
halting all the internal operations including the internal R-C oscillator. Further, no external clock pulses  
are supplied. For details, see the Standby Mode section.  
Only the following instructions can be executed during the standby mode.  
a. Standby mode cancel (STB = 0)  
b. Start oscillation  
c. Power control (BS2–0, BT1–0, DC1–0, AP1–0, SLP, and STB bits)  
During the standby mode, the CGRAM data and instructions may be lost. To prevent this, they must be set  
again after the standby mode is canceled.  
R/W  
0
RS  
1
DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
*
*
*
BS2 BS1 BS0 BT1 BT0 PS1 PS0 DC1 DC0 AP1 AP0 SLP STB  
Figure 6 Power Control Instruction  
Rev. 1.0, Jan. 2003, page 30 of 102  
HD66753  
Contrast Control (R04)  
CT6–0: These bits control the LCD drive voltage (potential difference between V1 and GND) to adjust  
128-step contrast. For details, see the Contrast Adjuster section.  
R/W  
0
RS  
1
DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
*
*
*
*
*
VR2 VR1 VR0  
*
CT6 CT5 CT4 CT3 CT2 CT1 CT0  
Figure 7 Contrast Control Instruction  
HD66753  
V
LREF  
VR  
+
-
V1  
V2  
V3  
R
R
+
-
+
-
R0  
+
-
V4  
V5  
R
R
+
-
GND  
GND  
Figure 8 Contrast Adjuster  
CT Bits and Variable Resistor Value of Contrast Adjuster  
Table 12  
CT Set Value  
Variable  
CT6  
0
CT5  
CT4  
0
CT3  
0
CT2  
0
CT1  
0
CT0  
0
Resistor (VR)  
0
0
0
0
0
6.40 x R  
6.35 x R  
6.30 x R  
6.25 x R  
6.20 x R  
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
1
1
0
0
0
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
1.20 x R  
0.15 x R  
0.10 x R  
0.05 x R  
1
1
1
Rev. 1.0, Jan. 2003, page 31 of 102  
HD66753  
VR2–0: These bits adjust the output voltage (V1REF) for the LCD-drive reference voltage generator  
within the 2.8- to 6.5-times ranges of Vreg (Vci or VREG pin input voltage).  
Table 13  
VR Bits and V1REF Voltages  
VR2  
0
VR1  
VR0  
0
V1REF Voltage Setting  
0
0
1
1
0
0
1
1
Vreg x 2.8  
Vreg x 3.5  
Vreg x 4.0  
Vreg x 4.5  
Vreg x 5.0  
Vreg x 5.5  
Vreg x 6.0  
Vreg x 6.5  
0
1
0
0
0
1
1
0
1
1
1
0
1
1
Entry Mode (R05)  
Rotation (R06)  
The write data sent from the microcomputer is modified in the HD66753 and written to the CGRAM. The  
display data in the CGRAM can be quickly rewritten to reduce the load of the microcomputer software  
processing. For details, see the Graphics Operation Function section.  
I/D: When I/D = 1, the address counter (AC) is automatically incremented by 1 after the data is written to  
the CGRAM. When I/D = 0, the AC is automatically decremented by 1 after the data is written to the  
CGRAM.  
AM1–0: Set the automatic update method of the AC after the data is written to the CGRAM. When AM1–  
0 = 00, the data is continuously written in parallel. When AM1–0 = 01, the data is continuously written  
vertically. When AM1–0 = 10, the data is continuously written vertically with two-word width (32-bit  
length).  
LG1–0: Write again the data read from the CGRAM and the data written from the microcomputer to the  
CGRAM by a logical operation. When LG1–0 = 00, replace (no logical operation) is done. ORed when  
LG1–0 = 01, ANDed when LG1–0 = 10, and EORed when LG1–0 = 11.  
RT2–0: Write the data sent from the microcomputer to the CGRAM by rotating in a bit unit. RT3–0  
specify rotation. For example, when RT2–0 = 001, the data is rotated in the upper side by two bits. When  
RT2–0 = 111, the data is rotated in the upper side by 14 bits. The upper bit overflown in the most  
significant bit (MSB) side is rotated in the least significant bit (LSB) side.  
Rev. 1.0, Jan. 2003, page 32 of 102  
HD66753  
R/W  
0
RS  
1
DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1  
DB0  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
I/D AM1 AM0 LG1 LG0  
0
1
*
*
RT2 RT1 RT0  
Figure 9 Entry Mode and Rotation Instructions  
DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Write data sent  
from the  
0
0
0
1
1
1
0
0
1
1
1
0
0
0
1
1
microcomputer  
(DB15-0)  
Rotation  
(RT2-0 = 001)  
1
1
1
0
0
1
1
1
0
0
0
1
1
0
0
0
Logical operation LG1-0 = 00: Replace  
LG1-0 = 01: ORed  
Logical operation  
(LG1-0)  
LG1-0 = 10: ANDed  
LG1-0 = 11: EORed  
Write data mask*  
(WM15-0)  
Write data mask (WM15-0)  
CGRAM  
Note: The write data mask (WM15-0) is set by the register in the RAM Write Data Mask section.  
Figure 10 Logical Operation and Rotation for the CGRAM  
Display Control (R07)  
SPT: When SPT = 01, the 2-division LCD drive is performed. For details, see the Division Screen Drive  
section.  
GSH1-0: When GS = 0, the grayscale level at a brightly-colored display (when DB = 10) is selected. For  
details, see the 4-Grayscale Display Function section.  
GSL1-0: The grayscale level at a weakly-colored display (when DB = 01) is selected.  
Rev. 1.0, Jan. 2003, page 33 of 102  
HD66753  
Table 14  
GSH Bits and Output Level  
GSH1  
GSH0  
Grayscale Output Level (DB = 10)  
0
0
1
1
0
1
0
1
3/4 level grayscale control  
2/3 level grayscale control  
2/4 level grayscale control  
Lit (No grayscale control)  
Table 15  
GSL Bits and Output Level  
GSL1  
GSL0  
Grayscale Output Level (DB = 01)  
0
0
1
1
0
1
0
1
1/4 level grayscale control  
1/3 level grayscale control  
2/4 level grayscale control  
Lit (No grayscale control)  
REV: Displays all character and graphics display sections with black-and-white reversal when REV = 1.  
For details, see the Reversed Display Function section.  
D: Display is on when D = 1 and off when D = 0. When off, the display data remains in the CGRAM, and  
can be displayed instantly by setting D = 1. When D is 0, the display is off with the SEG1 to SEG168  
outputs and COM1 to COM132 outputs set to the GND level. Because of this, the HD66753 can control the  
charging current for the LCD with AC driving.  
R/W  
0
RS  
1
DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2  
GS GS GS GS  
DB1 DB0  
*
*
*
*
*
*
*
SPT  
*
*
REV  
D
H1 H0  
L1  
L0  
Figure 11 Display Control Instruction  
Cursor Control (R08)  
C: When C = 1, the window cursor display is started. The display mode is selected by the CM1–0 bits, and  
the display area is specified in a dot unit by the horizontal cursor position register (HS6–0 and HE6–0 bits)  
and vertical cursor position register (VS6–0 and VE6–0 bits). For details, see the Window Cursor Display  
section.  
CM1–0: The display mode of the window cursor is selected. These bits can display a white-blink cursor,  
black-blink cursor, black-and-white reversed cursor, and black-and-white-reversed blink cursor.  
Rev. 1.0, Jan. 2003, page 34 of 102  
HD66753  
R/W  
0
RS  
1
DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5  
DB4 DB3 DB2 DB1 DB0  
*
*
*
*
*
*
*
*
*
*
*
*
*
C
CM1 CM0  
Figure 12 Cursor Control Instruction  
Table 16  
CM Bits and Window Cursor Display Mode  
CM1 CM0 Window Cursor Display Mode  
0
0
1
1
0
1
0
1
White-blink cursor (alternately blinking between the normal display and an all-white  
display (all unlit))  
Black-blink cursor (alternately blinking between the normal display and an all-black  
display (all lit))  
Black-and-white reversed cursor (black-and-white-reversed normal display (no  
blinking))  
Black-and-white-reversed blink cursor (alternately blinking the black-and-white-  
reversed normal display)  
Horizontal Cursor Position (R0B)  
Vertical Cursor Position (R0C)  
HS7-0: Specify the start position for horizontally displaying the window cursor in a dot unit. The cursor is  
displayed from the 'set value + 1' dot. Ensure that HS7–0 HE7–0.  
HE7-0: Specify the end position for horizontally displaying the window cursor in a dot unit. The cursor is  
displayed to the 'set value + 1' dot. Ensure that HS7–0 HE7–0.  
VS7-0: Specify the start position for vertically displaying the window cursor in a dot unit. The cursor is  
displayed from the 'set value + 1' dot. Ensure that VS7–0 VE7–0.  
VE7-0: Specify the end position for vertically displaying the window cursor in a dot unit. The cursor is  
displayed to the 'set value + 1' dot. Ensure that VS7–0 VE7–0.  
R/W  
0
RS  
1
DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
HE7 HE6 HE5 HE4 HE3 HE2 HE1 HE0 HS7 HS6 HS5 HS4 HS3 HS2 HS1 HS0  
0
1
VE7 VE6 VE5 VE4 VE3 VE2 VE1 VE0 VS7 VS6 VS5 VS4 VS3 VS2 VS1 VS0  
Figure 13 Horizontal Cursor Position and Vertical Cursor Position Instructions  
Rev. 1.0, Jan. 2003, page 35 of 102  
HD66753  
HS1+1  
HE1+1  
VS1+1  
VE1+1  
Window  
cursor  
Figure 14 Window Cursor Position  
1st Screen Driving Position (R0D)  
2nd Screen Driving Position (R0E)  
SS17-10: Specify the driving start position for the first screen in a line unit. The LCD driving starts from  
the 'set value + 1' common driver.  
SE17-10: Specify the driving end position for the first screen in a line unit. The LCD driving is performed  
to the 'set value + 1' common driver. For instance, when SS17-10 = 07H and SE17-10 = 10H are set, the  
LCD driving is performed from COM8 to COM17, and non-selection driving is performed for COM1 to  
COM7, COM18, and others. Ensure that SS17–10 SE17–10 83H. For details, see the Screen Division  
Driving Function section.  
SS27-20: Specify the driving start position for the second screen in a line unit. The LCD driving starts  
from the 'set value + 1' common driver. The second screen is driven when SPT = 1.  
SE27-20: Specify the driving end position for the second screen in a line unit. The LCD driving is  
performed to the 'set value + 1' common driver. For instance, when SPT = 1, SS27-20 = 20H, and SE27-20  
= 5FH are set, the LCD driving is performed from COM33 to COM96 and the non-selected driving is  
performed from COM1 to COM7 and COM18 and followings. Ensure that SS17–10 SE17–10 < SS27–  
20 SE27–20 83H. For details, see the Screen Division Driving Function section.  
R/W  
0
RS  
1
DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
SE17 SE16 SE15 SE14 SE13 SE12 SE11 SE10 SS17 SS16 SS15 SS14 SS13 SS12 SS11 SS10  
SE27 SE26 SE25 SE24 SE23 SE22 SE21 SE20 SS27 SS26 SS25 SS24 SS23 SS22 SS21 SS20  
0
1
Figure 15 1st Screen Driving Position and 2nd Screen Driving Position  
Rev. 1.0, Jan. 2003, page 36 of 102  
HD66753  
RAM Write Data Mask (R10)  
WM15-0: In writing to the CGRAM, these bits mask writing in a bit unit. When WM15 = 1, this bit masks  
the write data of DB15 and does not write to the CGRAM. Similarly, the WM14–0 bits mask the write  
data of DB14–0 in a bit unit. However, when AM = 10, the write data is masked with the set values of  
WM15–0 for the odd-times CGRAM write. It is also masked automatically with the reversed set values of  
WM15–0 for the even-times CGRAM write. For details, see the Graphics Operation Function section.  
R/W  
0
RS  
1
DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
WM WM WM WM WM WM WM WM WM WM WM WM WM WM WM WM  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Figure 16 RAM Write Data Mask Instruction  
RAM Address Set (R11)  
AD12-0: Initially set CGRAM addresses to the address counter (AC). Once the CGRAM data is written,  
the AC is automatically updated according to the AM1–0 and I/D bit settings. This allows consecutive  
accesses without resetting addresses. Once the CGRAM data is read, the AC is not automatically updated.  
CGRAM address setting is not allowed in the sleep mode or standby mode.  
R/W  
0
RS  
1
DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
AD AD AD  
*
*
*
AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0  
12  
11  
10  
Figure 17 RAM Address Set Instruction  
Table 17  
AD Bits and CGRAM Settings  
AD12–AD0  
CGRAM Setting  
"0000"H–"0014"H  
"0020"H–"0034"H  
"0040"H–"0054"H  
"0060"H–"0074"H  
"0080"H–"0094"H  
"00A0"H–"00B4"H  
:
Bitmap data for COM1  
Bitmap data for COM2  
Bitmap data for COM3  
Bitmap data for COM4  
Bitmap data for COM5  
Bitmap data for COM6  
:
"0FC0"H–"0FD4"H  
"0FE0"H–"0FF4"H  
"1000"H–"1014"H  
"1020"H–"1034"H  
"1040"H–"1054"H  
"1060"H–"1074"H  
Bitmap data for COM127  
Bitmap data for COM128  
Bitmap data for COM129  
Bitmap data for COM130  
Bitmap data for COM131  
Bitmap data for COM132  
Rev. 1.0, Jan. 2003, page 37 of 102  
HD66753  
Write Data to CGRAM (R12)  
WD15-0 : Write 16-bit data to the CGRAM. After a write, the address is automatically updated according  
to the AM1–0 and I/D bit settings. During the sleep and standby modes, the CGRAM cannot be accessed.  
R/W  
0
RS  
1
DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Figure 18 Write Data to CGRAM Instruction  
Read Data from CGRAM (R12)  
RD15-0 : Read 16-bit data from the CGRAM. When the data is read to the microcomputer, the first-word  
read immediately after the CGRAM address setting is latched from the CGRAM to the internal read-data  
latch. The data on the data bus (DB15–0) becomes invalid and the second-word read is normal.  
When bit processing, such as a logical operation, is performed within the HD66753, only one read can be  
processed since the latched data in the first word is used.  
For the clock-synchronized serial interface, the 5-byte data is invalid. For details, see the Serial Data  
Transfer section.  
R/W  
1
RS  
1
DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6  
DB5 DB4 DB3 DB2 DB1 DB0  
RD RD RD RD RD RD RD RD RD RD RD RD RD RD RD RD  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Figure 19 Read Data from CGRAM Instruction  
Rev. 1.0, Jan. 2003, page 38 of 102  
HD66753  
Sets the I/D and AM1-0 bits  
Address: N set  
Sets the I/D and AM1-0 bits  
Address: N set  
Dummy read (invalid data)  
CGRAM -> Read-data latch  
Dummy read (invalid data)  
CGRAM -> Read-data latch  
First word  
First word  
Read (data of address n)  
Read-data latch -> DB15-0  
Read (data of address n)  
DB15-0 -> CGRAM  
Second word  
Second word  
Address: M set  
Automatic address update: N + α  
Dummy read (invalid data)  
CGRAM -> Read-data latch  
Dummy read (invalid data)  
CGRAM -> Read-data latch  
First word  
First word  
Read (data of address)  
Write (data of address N + α)  
Second word  
Second word  
Read-data latch -> DB15-0  
DB15-0 -> CGRAM  
i) Data read to the microcomputer  
ii) Logical operation processing in the HD66753  
Figure 20 CGRAM Read Sequence  
Rev. 1.0, Jan. 2003, page 39 of 102  
HD66753  
Table 18 Instruction List  
Upper Code  
Lower Code  
Reg. Register  
DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB  
No.  
Name  
R/W RS 15 14 13 12 11 10  
9
8
7
*
6
5
4
3
2
1
0
IR  
Index  
0
1
0
0
0
1
*
*
*
*
*
*
*
*
*
*
ID4 ID3 ID2 ID1 ID0  
SR Status read  
L7 L6 L5 L4 L3 L2 L1 L0  
0
*
C6 C5 C4 C3 C2 C1 C0  
R00 Start  
oscillation  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
1
Device code  
read  
1
0
0
1
1
1
0
*
0
*
0
*
0
*
0
*
1
*
1
1
0
1
*
0
*
1
0
0
1
1
R01 Driver output  
control  
CMS SGS *  
NL4 NL3 NL2 NL1 NL0  
R02 LCD-driving-  
waveform  
*
*
*
*
*
*
*
*
*
B/C EOR NW NW NW NW NW  
4
3
2
1
0
control  
R03 Power control  
0
0
0
0
1
1
1
*
*
*
*
*
*
*
*
*
BS2 BS1 BS0 BT1 BT0 PS1 PS0 DC DC AP1 AP0 SLP STB  
1
0
R04 Contrast  
control  
*
*
*
*
VR2 VR1 VR0 *  
CT6 CT5 CT4 CT3 CT2 CT1 CT0  
R05 Entry mode  
*
*
*
*
*
*
I/D AM AM LG1 LG0  
1
0
R06 Rotation  
1
1
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RT2 RT1 RT0  
R07 Display control 0  
SPT *  
GSH GSH GSL GSL REV D  
1
0
1
0
R08 Cursor control  
0
1
*
*
*
*
*
*
*
*
*
*
*
*
*
C
CM CM  
1
0
R09 NOOP  
R0A NOOP  
0
0
0
1
1
1
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
R0B Horizontal  
cursor position  
HE7 HE6 HE5 HE4 HE3 HE2 HE1 HE0 HS7 HS6 HS5 HS4 HS3 HS2 HS1 HS0  
R0C Vertical cursor 0  
position  
1
1
1
1
1
1
1
VE7 VE6 VE5 VE4 VE3 VE2 VE1 VE0 VS7 VS6 VS5 VS4 VS3 VS2 VS1 VS0  
R0D 1st screen  
driving position  
0
0
0
0
0
1
SE SE SE SE SE SE SE SE SS SS SS SS SS SS SS SS  
17 16 15 14 13 12 11 10 17 16 15 14 13 12 11 10  
R0E 2nd screen  
driving position  
SE SE SE SE SE SE SE SE SS SS SS SS SS SS SS SS  
27 26 25 24 23 22 21 20 27 26 25 24 23 22 21 20  
R10 RAM write  
data mask  
WM WM WM WM WM WM WM WM WM WM WM WM WM WM WM WM  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
R11 RAM address  
set  
*
*
*
AD12-8  
(upper))  
AD7-0 (lower)  
R12 RAM data  
write  
Write data (upper)  
Write data (lower)  
Read data (lower)  
RAM data  
read  
Read data (upper)  
Note: '*' means 'doesn't matter'.  
Rev. 1.0, Jan. 2003, page 40 of 102  
HD66753  
Table 18 Instruction List (cont)  
Reg. Register Name  
Execution  
Cycle  
No.  
Description  
IR  
Index  
Sets the index register value.  
0
SR Status read  
Reads the driving raster-row position (L7-0) and contrast setting (C6-0). 0  
Starts the oscillation mode. 10 ms  
R00 Start  
oscillation  
Device code Reads 0753H.  
read  
0
0
0
R01 Driver output Sets the common driver shift direction (CMS), segment driver shift  
control direction (SGS), and driving duty ratio (NL4-0).  
R02 LCD-driving- Sets the LCD drive AC waveform (B/C), and EOR output (EOR) or the  
waveform  
control  
number of n-raster-rows (NW4-0) at C-pattern AC drive.  
R03 Power control Sets the sleep mode (SLP), standby mode (STB), LCD power on (AP1-  
0), boosting cycle (DC1-0), boosting output multiplying factor (BT1-0),  
0
reference power supply (PS1-0), and LCD drive bias value (BS2-0).  
R04 Contrast  
control  
Sets the contrast adjustment (CT6-0) and regulator adjustment (VR2-0). 0  
R05 Entry mode  
Specifies the logical operation (LG1-0), AC counter mode (AM1-0), and  
increment/decrement mode (I/D).  
0
R06 Rotation  
Specifies the amount of write-data rotation (RT2-0).  
0
0
R07 Display  
control  
Specifies display on (D), black-and-white reversed display (REV),  
grayscale mode (GS), double-height display on (DHE), and partial scroll  
(PS1-0).  
R08 Cursor control Specifies cursor display on (C) and cursor display mode (CM1-0).  
0
0
0
0
R09 NOOP  
R0A NOOP  
No operation  
No operation  
R0B Horizontal  
cursor  
Sets horizontal cursor start (HS6-0) and end (HE6-0).  
position  
R0C Vertical cursor Sets vertical cursor start (VS6-0) and end (VE6-0).  
position  
0
0
R0D 1st screen  
driving  
Sets 1st screen driving start (SS17-10) and end (SE17-10).  
Sets 2nd screen driving start (SS27-20) and end (SE27-20).  
Specifies write data mask (WM15-0) at RAM write.  
position  
R0E 2nd screen  
driving  
0
position  
R10 RAM write  
data mask  
0
0
0
0
R11 RAM address Initially sets the RAM address to the address counter (AC).  
set  
R12 RAM data  
write  
Writes data to the RAM.  
RAM data  
read  
Reads data from the RAM.  
Rev. 1.0, Jan. 2003, page 41 of 102  
HD66753  
Reset Function  
The HD66753 is internally initialized by RESET input. Because the busy flag (BF) indicates a busy state  
(BF = 1) during the reset period, no instruction or CGRAM data access from the MPU is accepted. The  
reset input must be held for at least 1 ms. Do not access the CGRAM or initially set the instructions until  
the R-C oscillation frequency is stable after power has been supplied (10 ms).  
Instruction Set Initialization:  
1. Start oscillation executed  
2. Driver output control (NL4–0 = 10000, SGS = 0, CMS = 0)  
3. B-pattern waveform AC drive (B/C = 0, ECR = 0, NW4–0 = 00000)  
4. Power control (PS1–0 = 00, DC1–0 = 00, AP1–0 = 00: LCD power off, SLP = 0: Sleep mode off, STB  
= 0: Standby mode off)  
5. 1/11 bias drive (BS2–0 = 000), Three-times step-up (BT1–0 = 00), Weak contrast (CT6–0 = 0000000),  
2.8-times output voltage for LCD-drive reference voltage generator (VR2–0 = 000)  
6. Entry mode set (I/D = 1: Increment by 1, AM1–0 = 00: Horizontal move, LG1–0 = 00: Replace mode)  
7. Rotation (RT2–0 = 000: No shift)  
8. Display control (SPT = 0: GSH1-0 = GSL1-0 = 00, REV = 0, GS = 0, D = 0: Display off)  
9. Cursor control (C = 0: Cursor display off, CM1–0 = 00)  
10. 1st screen division (SS17–10 = 00000000, SE17–10 = 00000000)  
11. 2nd screen division (SS27–20 = 00000000, SE27–20 = 00000000)  
12. Window cursor display position (HS7–0 = HE7–0 = VS7–0 = VE7–0 = 00000000)  
13. RAM write data mask (WM15–0 = 0000H: No mask)  
14. RAM address set (AD12–0 = 000H)  
CGRAM Data Initialization:  
This is not automatically initialized by reset input but must be initialized by software while display is off  
(D = 0).  
Output Pin Initialization:  
1. LCD driver output pins (SEG/COM): Outputs GND level  
2. Step-up circuit output pins (VLOUT): Outputs Vcc level  
3. Oscillator output pin (OSC2): Outputs oscillation signal  
Rev. 1.0, Jan. 2003, page 42 of 102  
HD66753  
Parallel Data Transfer  
16-bit Bus Interface  
Setting the IM2/1/0 (interface mode) to the GND/GND/GND level allows 68-system E-clock-synchronized  
16-bit parallel data transfer. Setting the IM2/1/0 to the GND/Vcc/GND level allows 80-system 16-bit  
parallel data transfer. When the number of buses or the mounting area is limited, use an 8-bit bus interface.  
CSn*  
A1  
CS*  
RS  
H8/2245  
HD66753  
HWR*  
(RD*)  
WR*  
(RD*)  
DB15 - DB0  
D15 - D0  
16  
Figure 21 Interface to 16-bit Microcomputer  
8-bit Bus Interface  
Setting the IM2/1/0 (interface mode) to the GND/GND/Vcc level allows 68-system E-clock-synchronized  
8-bit parallel data transfer using pins DB15–DB8. Setting the IM2/1/0 to the GND/Vcc/Vcc level allows  
80-system 8-bit parallel data transfer. The 16-bit instructions and RAM data are divided into eight  
upper/lower bits and the transfer starts from the upper eight bits. Fix unused pins DB7–DB0 to the Vcc or  
GND level. Note that the upper bytes must also be written when the index register is written to.  
CSn*  
A1  
CS*  
RS  
H8/2245  
HD66753  
HWR*  
(RD*)  
WR*  
(RD*)  
D15 - D8  
DB15 - DB8  
DB7 - 0  
8
8
GND  
Figure 22 Interface to 8-bit Microcomputer  
Note: Transfer synchronization function for an 8-bit bus interface  
The HD66753 supports the transfer synchronization function which resets the upper/lower counter  
to count upper/lower 8-bit data transfer in the 8-bit bus interface. Noise causing transfer mismatch  
between the eight upper and lower bits can be corrected by a reset triggered by consecutively  
writing a 00H instruction four times. The next transfer starts from the upper eight bits. Executing  
synchronization function periodically can recover any runaway in the display system.  
Rev. 1.0, Jan. 2003, page 43 of 102  
HD66753  
RS  
R/W  
E
00H  
(1)  
00H  
(2)  
00H  
(3)  
00H  
(4)  
Upper/  
lower  
DB15-DB8  
Upper  
Lower  
(8-bit transfer synchronization)  
Figure 23 8-bit Transfer Synchronization  
Rev. 1.0, Jan. 2003, page 44 of 102  
HD66753  
Serial Data Transfer  
Setting the IM1 and IM2 pins (interface mode pins) to the Vcc or GND level allows standard clock-  
synchronized serial data transfer, using the chip select line (CS*), serial data line (SDA), and serial transfer  
clock line (SCL). For a serial interface, the IM0/ID pin function uses an ID pin.  
The HD66753 initiates serial data transfer by transferring the start byte at the falling edge of CS* input. It  
ends serial data transfer at the rising edge of CS* input.  
The HD66753 is selected when the 6-bit chip address in the start byte transferred from the transmitting  
device matches the 6-bit device identification code assigned to the HD66753. The HD66753, when  
selected, receives the subsequent data string. The least significant bit of the identification code can be  
determined by the ID pin. The five upper bits must be 01110. Two different chip addresses must be  
assigned to a single HD66753 because the seventh bit of the start byte is used as a register select bit (RS):  
that is, when RS = 0, an index register can be written to or the status can be read from, and when RS = 1, an  
instruction can be written to or the data can be written to or read from RAM. Read or write is selected  
according to the eighth bit of the start byte (R/W bit) as shown in table 19.  
After receiving the start byte, the HD66753 receives or transmits the subsequent data byte-by-byte. The  
data is transferred with the MSB first. Since all the instructions in the HD66753 are configured by 16 bits,  
they are internally executed after two bytes have been transferred with the MSB first (DB15-0). The  
HD66753 internally receives the first byte as upper eight bits of instructions, and the second byte as lower  
eight bits.  
Five bytes of RAM read data after the start byte are invalid. The HD66753 starts to read correct RAM data  
from the sixth byte.  
Table 19  
Start Byte Format  
Transfer Bit  
S
1
2
3
4
5
6
7
8
Start byte format  
Transfer start  
Device ID code  
RS  
R/W  
0
1
1
1
0
ID  
Note: ID bit is selected by the IM0/ID pin.  
Table 20  
RS and R/W Bit Functions  
RS  
0
R/W  
Function  
0
1
0
1
Writes index register  
Reads status  
0
1
Writes instructions and RAM data  
Reads RAM data  
1
Rev. 1.0, Jan. 2003, page 45 of 102  
HD66753  
a) Basic Data-transfer Timing through Clock-synchronized Serial Bus Interface  
Transfer end  
Transfer start  
CS*  
(Input)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
SCL  
(Input)  
MSB  
LSB  
SDA  
(Input)  
DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB  
15 14 13 12 11 10  
DB  
0
"0" "1" "1" "1" "0" ID RS RW  
9
8
7
6
5
4
3
2
1
Device ID code  
Start byte  
RS RW  
Instruction register set,  
instruction, RAM data write  
b) Consecutive Data-transfer Timing through Clock-synchronized Serial Bus Interface  
CS*  
(Input)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
17 18 19 20 21 22 23 24  
25 26 27 28 29 30 31 32  
SCL  
(Input)  
SDA  
(Input)  
Upper 8 bits of  
instruction 1  
Lower 8 bits of  
instruction 1  
Upper 8 bits of  
instruction 2  
Start byte  
Execution time for  
instruction 1  
Start  
End  
Note: The first byte after the start byte should be upper 8 bits.  
c) RAM Data Read-transfer Timing  
CS*  
(Input)  
SCL  
(Input)  
Start byte  
RS="1",  
R/W="1"  
SDA  
(Input)  
Upper 8 bits of  
RAM read  
Lower 8 bits of  
RAM read  
Dummy read 1  
Dummy read 2 Dummy read 3  
Dummy read 4  
Dummy read 5  
Start  
End  
Note: Five bytes of the RAM read data after the start byte are invalid. The HD66753 starts to read  
the correct RAM data from the sixth byte.  
d) Status Read/Instruction Read Timing  
CS*  
(Input)  
SCL  
(Input)  
Start byte  
RS="1",  
R/W="1"  
Start  
SDA  
(Input)  
Upper 8 bits of  
status read  
Lower 8 bits of  
status read  
Dummy read 1  
End  
Note: One byte of the read after the start byte is invalid. The HD66753 starts to read  
the correct data from the second byte.  
Figure 24 Clock-synchronized Serial Interface Timing Sequence  
Rev. 1.0, Jan. 2003, page 46 of 102  
HD66753  
Graphics Operation Function  
The HD66753 can greatly reduce the load of the microcomputer graphics software processing through the  
16-bit bus architecture and graphics-bit operation function. This function supports the following:  
1. A write data mask function that selectively rewrites some of the bits in the 16-bit write data.  
2. A bit rotation function that shifts and writes the data sent from the microcomputer in a bit unit.  
3. A logical operation function that writes the data sent from the microcomputer and the original RAM  
data by a logical operation.  
Since the display data in the graphics RAM (CGRAM) can be quickly rewritten, the load of the  
microcomputer processing can be reduced in the large display screen when a font pattern, such as kanji  
characters, is developed for any position (BiTBLT processing).  
The graphics bit operation can be controlled by combining the entry mode register, the bit set value of the  
RAM-write-data mask register, and the read/write from the microcomputer.  
Table 21  
Graphics Operation  
Bit Setting  
Operation Mode  
I/D  
AM  
LG  
Operation and Usage  
Write mode 1  
0/1  
00  
00  
Horizontal data replacement, horizontal-border  
drawing  
Write mode 2  
0/1  
0/1  
0/1  
0/1  
0/1  
01  
10  
00  
01  
10  
00  
Vertical data replacement, font development, vertical-  
border drawing  
Write mode 3  
00  
Vertical data replacement with two-word width, kanji-  
font development  
Read/write mode 1  
Read/write mode 2  
Read/write mode 3  
01 10 11  
01 10 11  
01 10 11  
Horizontal data replacement with logical operation,  
horizontal-border drawing  
Vertical data replacement with logical operation,  
vertical-border drawing  
Horizontal data replacement with two-word-width  
logical operation  
Rev. 1.0, Jan. 2003, page 47 of 102  
HD66753  
Microcomputer  
16  
16  
HD66753  
Write-data latch  
16  
Read-  
data  
atch  
+1/-1  
+16  
Rotation bit  
(RT2-0 )  
3
2
Bit rotation  
16  
16  
00: through  
Address  
counter  
(AC)  
Logical  
operation  
01: OR  
Logical operation  
10: AND  
11: EOR  
bit  
16  
(LG1-0)  
16  
Write-mask register  
(WM15-0)  
Write bit mask  
16  
11  
Graphics RAM  
(CGRAM)  
Figure 25 Data Processing Flow of the Graphics Bit Operation  
Rev. 1.0, Jan. 2003, page 48 of 102  
HD66753  
1. Write mode 1: AM1–0 = 00, LG1–0 = 00  
This mode is used when the data is horizontally written at high speed. It can also be used to initialize  
the graphics RAM (CGRAM) or to draw borders. The rotation function (RT2–0) or write-data mask  
function (WM15–0) are also enabled in these operations. After writing, the address counter (AC)  
automatically increments by 1 (I/D = 1) or decrements by 1 (I/D = 0), and automatically jumps to the  
counter edge one-raster-row below after it has reached the left edge of the graphics RAM.  
Operation Examples:  
1) I/D = 1, AM1-0 = 00, LG1-0 = 00, RT2-0 = 000  
2) WM15-0 = 0000H  
3) AC = 0000H  
WM0  
WM15  
DB15  
Write data mask:  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
DB0  
Write data (1) :  
Write data (2) :  
Write data (3) :  
1 0 0 1 1 0 0 1 0 1 0 0 0 0 1 1  
1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0  
0 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1  
0000H  
0001H  
0002H  
1 0 0 1 1 0 0 1 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1  
Write data (2)  
Write data (3)  
Write data (1)  
CGRAM  
Figure 26 Writing Operation of Write Mode 1  
Rev. 1.0, Jan. 2003, page 49 of 102  
HD66753  
2. Write mode 2: AM1–0 = 01, LG1–0 = 00  
This mode is used when the data is vertically written at high speed. It can also be used to initialize the  
graphics RAM (CGRAM), develop the font pattern in the vertical direction, or draw borders. The  
rotation function (RT2–0) or write-data mask function (WM15–0) are also enabled in these operations.  
After writing, the address counter (AC) automatically increments by 20, and automatically jumps to the  
upper-right edge (I/D = 1) or upper-left edge (I/D = 0) following the I/D bit after it has reached the  
lower edge of the graphics RAM.  
Operation Examples:  
1) I/D = 1, AM1-0 = 01, LG1-0 = 00, RT2-0 = 010  
2) WM15-0 = F007H  
3) AC = 0000H  
WM0  
WM15  
Write data mask: 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1  
DB0  
DB15  
4-bit rotation  
4-bit rotation  
4-bit rotation  
Write data (1) : 1 0 0 1 1 0 0 1 0 1 0 0 0 0 1 1  
0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 0  
1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0  
1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 1  
Write data (2) : 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0  
Write data (3) :  
0 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1  
0000H  
0020H  
* * * 1 1 0 0 1 1 0 0 1 * * * *  
* * * 0 1 1 0 0 0 0 1 1 * * * *  
Write data (1)  
Write data (2)  
0040H  
:
1060H  
1 0 1 1 1 0 1 0 0  
* * *  
* * * * Write data (3)  
CGRAM  
Notes: 1. The bit area data in the RAM indicated by "*" is not changed.  
2. After writing to address 1060H, the AC jumps to 0001H.  
Figure 27 Writing Operation of Write Mode 2  
Rev. 1.0, Jan. 2003, page 50 of 102  
HD66753  
3. Write mode 3: AM1–0 = 10, LG1–0 = 00  
This mode is used when the data is written at high speed by vertically shifting bits. It can also be used  
to write the 16-bit data for two words into the graphics RAM (CGRAM), develop the font pattern, or  
transfer the BiTBLT as a bit unit. The rotation function (RT2–0) or write-data mask function (WM15–  
0) are also enabled in these operation. However, although the write-data mask function masks the bit  
position set with the write-data mask register (WM15–0) at the odd-times (such as the first or third)  
write, the function masks the bit position that reversed the setting value of the write-data mask register  
(WM15–0) at the even-times (such as the second or fourth) write. After the odd-times writing, the  
address counter (AC) automatically increments by 1 (I/D = 1) or decrements by 1 (I/D = 0). After the  
even-times writing, the AC automatically increments or decrements by –1 + 20 (I/D = 1) or +1 + 20  
(I/D = 0). The AC automatically jumps to the upper edge after it has reached the lower edge of the  
graphics RAM.  
Operation Examples:  
1) I/D = 1, AM1-0 = 10, LG1-0 = 00, RT2-0 = 010  
2) WM15-0 = 000FH  
3) AC = 0000H  
WM0  
WM15  
DB15  
Write data mask:  
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0  
DB0  
4-bit rotation  
4-bit rotation  
4-bit rotation  
4-bit rotation  
4-bit rotation  
4-bit rotation  
Write data (1) :  
Write data (2) :  
Write data (3) :  
Write data (4) :  
Write data (5) :  
Write data (6) :  
1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0  
1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1  
1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1  
1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0  
1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0  
1 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1  
1 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1  
1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0  
0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1  
0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1  
0 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0  
0 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0  
0000H  
0001H  
0000H * * * * 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 * * * * * * * * * * * *  
0020H * * * * 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 * * * * * * * * * * * *  
Write data (1), (2)  
Write data (3), (4)  
0 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0  
0040H * * * *  
* * * * * * * * * * * * Write data (5), (6)  
CGRAM  
1060H  
Notes: 1. The bit area data in the RAM indicated by "*" is not changed.  
2. After writing to address 1061H, the AC jumps to 0001H.  
Figure 28 Writing Operation of Write Mode 3  
Rev. 1.0, Jan. 2003, page 51 of 102  
HD66753  
4. Read/Write mode 1: AM1–0 = 00, LG1–0 = 01/10/11  
This mode is used when the data is horizontally written at high speed by performing a logical operation  
with the original data. It reads the display data (original data), which has already been written in the  
graphics RAM (CGRAM), performs a logical operation with the write data sent from the  
microcomputer, and rewrites the data to the CGRAM. This mode can read the data during the same bus  
cycle as for the write operation since the read operation of the original data does not latch the read data  
into the microcomputer and temporarily holds it in the read-data latch. (However, the bus cycle must be  
the same as the read cycle.) The rotation function (RT2–0) or write-data mask function (WM15–0) are  
also enabled in these operations. After writing, the address counter (AC) automatically increments by 1  
(I/D = 1) or decrements by 1 (I/D = 0), and automatically jumps to the counter edge one-raster-row  
below after it has reached the left or right edges of the graphics RAM.  
Operation Examples:  
1) I/D = 1, AM1-0 = 00, LG1-0 = 01 (OR), RT2-0 = 000  
2) WM15-0 = 0000H  
3) AC = 0000H  
WM0  
WM15  
DB15  
Write data mask:  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
DB0  
Read data (1):  
Write data (1):  
1 0 0 1 1 0 0 1 0 1 0 0 0 0 1 1  
Logical operation  
(OR)  
1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1  
1 0 1 1 1 1 0 1 0 1 1 0 0 0 1 1  
Read data (2):  
Write data (2):  
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0  
1 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0  
Logical operation  
(OR)  
1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 0  
Read data (3):  
Write data (3):  
0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 0  
0 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1  
Logical operation  
(OR)  
0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1  
0000H  
0001H  
0002H  
1 0 1 1 1 1 0 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1  
Read data (1) + Write data (1) Read data (2) + Write data (2) Read data (3) + Write data (3)  
CGRAM  
Figure 29 Writing Operation of Read/Write Mode 1  
Rev. 1.0, Jan. 2003, page 52 of 102  
HD66753  
5. Read/Write mode 2: AM1–0 = 01, LG1–0 = 01/10/11  
This mode is used when the data is vertically written at high speed by performing a logical operation  
with the original data. It reads the display data (original data), which has already been written in the  
graphics RAM (CGRAM), performs a logical operation with the write data sent from the  
microcomputer, and rewrites the data to the CGRAM. This mode can read the data during the same bus  
cycle as for the write operation since the read operation of the original data does not latch the read data  
into the microcomputer and temporarily holds it in the read-data latch. The rotation function (RT2–0)  
or write-data mask function (WM15–0) are also enabled in these operations. After writing, the address  
counter (AC) automatically increments by 20, and automatically jumps to the upper-right edge (I/D = 1)  
or upper-left edge (I/D = 0) following the I/D bit after it has reached the lower edge of the graphics  
RAM.  
Operation Examples:  
1) I/D = 1, AM1-0 = 01, LG1-0 = 01 (OR), RT2-0 = 010  
2) WM15-0 = FC03H  
3) AC = 0000H  
WM0  
WM15  
DB15  
Write data mask:  
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1  
DB0  
1 0 0 1 1 0 0 1 0 1 0 0 0 0 1 1  
Read data (1):  
Write data (1):  
4-bit rotation  
1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1  
0 0 0 1 1 0 1 1 1 1 0 0 0 1 1 0  
Logical operation (OR)  
1 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1  
1 1 0 0 1 1 0 0 0 0 1 1 1 0 0 0  
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0  
1 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0  
Read data (2):  
Write data (2):  
4-bit rotation  
4-bit rotation  
Logical operation (OR)  
1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 0  
1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 1  
Read data (3):  
Write data (3):  
0 0 0 0 1 1 1 0 1 1 1 0 0 1 1 0  
0 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1  
Logical operation (OR)  
1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1  
0000H  
0000H * * 0 1 1 0 1 1 1 1 * * * * * *  
0001H  
Read data (1) + Write data (1)  
0020H  
0040H  
0 0 1 1 1 1 0 0  
1 1 1 1 1 1 1 1  
* *  
* *  
* * * * * * Read data (2) + Write data (2)  
Read data (3) + Write data (3)  
* * * * * *  
CGRAM  
1060H  
Notes: 1. The bit area data in the RAM indicated by "*" is not changed.  
2. After writing to address 1060H, the AC jumps to 0001H.  
Figure 30 Writing Operation of Read/Write Mode 2  
Rev. 1.0, Jan. 2003, page 53 of 102  
HD66753  
6. Read/Write mode 3: AM1–0 = 10, LG1–0 = 01/10/11  
This mode is used when the data is written with high speed by vertically shifting bits and by performing  
logical operation with the original data. It can be also used to write the 16-bit data for two words into  
the graphics RAM (CGRAM), develop the font pattern, or transfer the BiTBLT as a bit unit. This mode  
can read the data during the same bus cycle as for the write operation since the read operation of the  
original data does not latch the read data into the microcomputer and temporarily holds it in the read-  
data latch. The rotation function (RT2–0) or write-data mask function (WM15–0) are also enabled in  
these operations. However, although the write-data mask function masks the bit position set with the  
write-data mask register (WM15–0) at the odd-times (such as the first or third) write, the function  
masks the bit position which reversed the setting value of the write-data mask register (WM15–0) at the  
even-times (such as the second or fourth) write. After the odd-times writing, the address counter (AC)  
automatically increments by 1 (I/D = 1) or decrements by 1 (I/D = 0). After the even-times writing, the  
AC automatically increments or decrements by –1 + 20 (I/D = 1) or +1 + 20 (I/D = 0). The AC  
automatically jumps to the upper edge after it has reached the lower edge of the graphics RAM.  
Rev. 1.0, Jan. 2003, page 54 of 102  
HD66753  
Operation Examples:  
1) I/D = 1, AM1-0 = 10, LG1-0 = 01, RT2-0 = 010  
2) WM15-0 = 000FH  
3) AC = 0000H  
WM0  
WM15  
DB15  
Write data mask:  
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0  
DB0  
Read data (1):  
Write data (1):  
0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0  
4-bit rotation  
4-bit rotation  
4-bit rotation  
1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0  
1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1  
Logical operation (OR)  
1 0 0 1 1 1 1 1 1 1 0 0 1 1 0 1  
Read data (2):  
Write data (2):  
0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1  
1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0  
1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1  
Logical operation (OR)  
1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1  
Read data (3):  
Write data (3):  
0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0  
0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1  
1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0  
Logical operation (OR)  
1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 0  
Read data (4):  
Write data (4):  
1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1  
0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1  
4-bit rotation  
1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0  
Logical operation (OR)  
1 1 1 1 0 0 0 0 0 1 1 1 0 1 0 1  
0000H  
0001H  
1 0  
1 1 * * * * * * * * * * * *  
0000H  
* * * * 1 1 1 1 1 1 0 0 1 1 0 1  
0 0 1 1 0 1 1 1 0 1 1 0  
Write data (1), (2)  
0020H  
* * * *  
1 1 1 1 * * * * * * * * * * * * Write data (3), (4)  
CGRAM  
1060H  
Notes: 1. The bit area data in the RAM indicated by "*" is not changed.  
2. After writing to address 1060H, the AC jumps to 0001H.  
Figure 31 Writing Operation of Read/Write Mode 3  
Rev. 1.0, Jan. 2003, page 55 of 102  
HD66753  
Oscillation Circuit  
The HD66753 can either be supplied with operating pulses externally (external clock mode) or oscillate  
using an internal R-C oscillator with an external oscillator-resistor (external resistor oscillation mode).  
Note that in R-C oscillation, the oscillation frequency is changed according to the internal capacitance  
value, the external resistance value, or operating power-supply voltage.  
1) External clock mode  
Clock  
2) External resistor oscillation mode  
OSC1  
The oscillator frequency can be  
adjusted by oscillator resistor (Rf).  
If Rf is increased or power supply  
voltage is decreased, the  
oscillation frequency decreases.  
For the relationship between Rf  
resistor value and oscillation  
frequency, see the Electric  
OSC1  
(100 kHz)  
Rf  
OSC2  
Dumping  
resistance  
HD66753  
HD66753  
(2 k)  
Characteristics Notes section.  
Figure 32 Oscillation Circuits  
Table 22  
Relationship between Liquid Crystal Drive Duty Ratio and Frame Frequency  
Recommended  
Drive Bias Value  
Frame  
Frequency  
LCD Duty  
1/24  
NL4–0 Set Value  
02H  
One-frame Clock  
1392  
1/6  
72 Hz  
71 Hz  
71 Hz  
72 Hz  
71 Hz  
71 Hz  
69 Hz  
69 Hz  
71 Hz  
69 Hz  
69 Hz  
69 Hz  
69 Hz  
71 Hz  
69 Hz  
1/32  
03H  
1/6  
1408  
1/40  
04H  
1/7  
1400  
1/48  
05H  
1/8  
1392  
1/56  
06H  
1/8  
1400  
1/64  
07H  
1/9  
1408  
1/72  
08H  
1/9  
1440  
1/80  
09H  
1/10  
1/10  
1/10  
1/11  
1/11  
1/11  
1/11  
1/11  
1440  
1/88  
0AH  
1408  
1/96  
0BH  
1440  
1/104  
1/112  
1/120  
1/128  
1/132  
0CH  
1456  
0DH  
1456  
0EH  
1440  
0FH  
1408  
10H  
1452  
Note: The frame frequency above is for 100-kHz operation and proportions the oscillation frequency (fosc).  
Rev. 1.0, Jan. 2003, page 56 of 102  
HD66753  
1
2
3
4
131 132  
1
2
3
131 132  
V1  
V2  
COM1  
COM2  
V5  
GND  
V1  
V2  
V5  
GND  
V1  
V2  
COM131  
COM132  
V5  
GND  
V1  
V2  
V5  
GND  
1 frame  
1 frame  
Figure 33 LCD Drive Output Waveform (B-pattern AC Drive with 1/132 Multiplexing Duty Ratio)  
Rev. 1.0, Jan. 2003, page 57 of 102  
HD66753  
n-raster-row Reversed AC Drive  
The HD66753 supports not only the LCD reversed AC drive in a one-frame unit (B-pattern waveform) but  
also the n-raster-row reversed AC drive which alternates in an n-raster-row unit from one to 32 raster-rows  
(C-pattern waveform). When a problem affecting display quality occurs, such as crosstalk at high-duty  
driving of more than 1/64 duty, the n-raster-row reversed AC drive (C-pattern waveform) can improve the  
quality. Determine the number of raster-rows n (NW bit set value + 1) for alternating after confirmation of  
the display quality with the actual LCD panel. However, if the number of AC raster-rows is reduced, the  
LCD alternating frequency becomes high. Because of this, the charge or discharge current is increased in  
the LCD cells.  
1 frame  
1 frame  
1
2
3
4
5
6
7
8
9 10 11 12 13  
79 80 1  
2
3
4
5
6
7
8
9 10 11 12 13  
79 80 1 2 3  
B-pattern  
waveform drive  
· 1/80 duty  
C-pattern  
waveform drive  
· 1/80 duty  
· 11-raster-row  
reversal  
· Without EORs  
C-pattern  
waveform drive  
· 1/80 duty  
· 11-raster-row  
reversal  
· With EORs  
Note: Specify the number of AC drive raster-rows and the necessity of EOR so that the DC bias is not generated for  
the liquid crystal.  
Figure 34 Example of an AC Signal under n-raster-row Reversed AC Drive  
Rev. 1.0, Jan. 2003, page 58 of 102  
HD66753  
Liquid Crystal Display Voltage Generator  
When External Power Supply and Internal Operational Amplifiers are Used  
To supply LCD drive voltage directly from the external power supply without using the internal step-up  
circuit, circuits should be connected as shown in figure 35. Here, contrast can be adjusted by software  
through the CT bits of the contrast adjustment register. Since the VLREF input is the reference voltage to  
determine the LCD drive voltage, fluctuation of the voltage must be minimized.  
The HD66753 incorporates a voltage-follower operational amplifier for each V1 to V5 to reduce current  
flowing through the internal bleeder-resistors, which generate different levels of liquid-crystal drive  
voltages. Thus, potential difference between VLPS and V1 must be 0.1 V or higher, and that between V4 and  
GND must be 1.4 V or higher. Place a capacitor of about 0.47 µF (B characteristics) between each internal  
operational amplifier (V1OUT to V5OUT outputs) and GND and stabilize the output level of the  
operational amplifier. Adjust the capacitance value of the stabilized capacitor after the LCD panel has been  
mounted and the screen quality has been confirmed.  
Rev. 1.0, Jan. 2003, page 59 of 102  
HD66753  
VLPS  
PS1-0 = "10"  
SEG1-SEG168  
VLREF  
V1OUT  
V2OUT  
HD66753  
(+)  
*2 0.1 µF  
(B characteristics)  
GND  
VR  
R
+
V1  
-
+
-
V2  
R
+
-
V3  
V3OUT  
V4OUT  
LCD  
driver  
R
0
+
-
V4  
V5  
COM1-COM132  
R
*2 0.47 µF (*)  
(B characteristics)  
+
-
V5OUT  
GND  
R
GND  
GND  
Vci  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
Step-up  
circuit  
C6+  
C6-  
VLOUT  
Notes: 1. Adjust the capacitance value of the capacitor after the LCD panel has been mounted.  
2. Use the capacitors with breakdown voltages equal to or higher than the VLPS voltage  
for connecting to V1OUT through V5OUT. Determine the capacitor breakdown voltages  
by checking VLPS voltage fluctuation.  
Figure 35 External Power Supply Circuit for LCD Drive Voltage Generation  
Rev. 1.0, Jan. 2003, page 60 of 102  
HD66753  
When an Internal Booster and Internal Operational Amplifiers are Used  
To supply LCD drive voltage using the internal step-up circuit, circuits should be connected as shown in  
figure 36. Generate a higher voltage (VLPS) of the internal operational amplifier than the output voltage  
(V1REF) of the LCD drive voltage regulator. Here, contrast can be adjusted through the CT bits of the  
contrast control instruction.  
The HD66753 incorporates a voltage-follower operational amplifier for each of V1 to V5 to reduce current  
flowing through the internal bleeder-resistors, which generate different liquid-crystal drive voltages. Thus,  
potential difference between VLPS and V1 must be 0.1 V or higher, and that between V4 and GND must be  
1.4 V or higher. Place a capacitor of about 0.47 µF (B characteristics) between each internal operational  
amplifier (V1OUT to V5OUT outputs) and GND and stabilize the output level of the operational amplifier.  
Adjust the capacitance value of the stabilized capacitor after the LCD panel has been mounted and the  
screen quality has been confirmed.  
Rev. 1.0, Jan. 2003, page 61 of 102  
HD66753  
V
LPS  
PS1-0 = "00"  
V
REG  
LCD drive  
voltage regulator  
HD66753  
V
1REF  
ON  
(+)  
*5  
0.1 µF  
V
LREF  
VR  
(B characteristics)  
+
-
V1  
V2  
GND  
V1OUT  
R
R
+
-
V2OUT  
V3OUT  
V4OUT  
SEG1-SEG168  
COM1-COM132  
+
-
V3  
LCD  
driver  
R
0
+
-
V4  
V5  
*5, *8, *9  
0.47 µF (*)  
(B characteristics)  
R
R
+
-
V5OUT  
GND  
GND  
GND  
Vci  
Vci  
C1+  
C1-  
(+)  
*7 1-2 µF  
(B characteristics)  
C2+  
C2-  
(+)  
*7 1-2 µF  
(B characteristics)  
C3+  
C3-  
(+)  
*6 1-2 µF  
(B characteristics)  
C4+  
C4-  
Step-up  
circuit  
(+)  
*7 1-2 µF  
(B characteristics)  
C5+  
C5-  
C6+  
C6-  
*7 1-2 µF (+)  
(B characteristics)  
*6 1-2 µF (+)  
(B characteristics)  
(+)  
*8 1-2 µF  
(B characteristics)  
VLOUT  
GND  
Notes: 1. The reference voltage input (Vci) must be adjusted so that the output voltage after boosting will not  
exceed the absolute maximum rating for the liquid-crystal power supply voltage (20.5 V).  
2. Vci is both a reference voltage and power supply for the step-up circuit; obtain sufficient current.  
3. Polarized capacitors must be connected correctly.  
4. Circuits for temperature compensation should be based on the sample circuits in figures 37 and 38.  
5. Adjust the capacitance value of the stabilized capacitor after the LCD panel has been mounted.  
6. The breakdown voltages of the capacitors connected to C3+/C3- and C6+/C6- should be three times or  
higher than the Vci voltage.  
7. The breakdown voltages of the capacitors connected to C1+/C1-, C2+/C2-, C4+/C4-, and C5+/C5-  
should be equal to or higher than the Vci voltage.  
8. The breakdown voltages of the capacitors connected to VLOUT and V1OUT through V5OUT should be  
n times or higher than the Vci voltage (n: step-up magnification).  
9. Determine thebreakdown voltages of the capacitors used in 6 to 8 above by checking Vci voltage  
fluctuation.  
Figure 36 Internal Step-up Circuit for LCD Drive Voltage Generation  
Rev. 1.0, Jan. 2003, page 62 of 102  
HD66753  
Temperature can be compensated either through the CT bits by software, by controlling the reference  
voltage for the LCD drive voltage regulator (VREG pin) using a thermistor, or by controlling the reference  
output voltage of the LCD drive voltage regulator (V1REF pin).  
Vcc  
PS1-0 = "00"  
V
V
REG  
Thermistor  
Tr  
LCD drive  
voltage regulator  
HD66753  
GND  
1REF  
ON  
*5  
0.1 µF  
V
LREF  
(+)  
(B characteristics)  
VR  
+
-
V1  
V2  
GND  
V1OUT  
V2OUT  
R
R
+
-
SEG1-SEG168  
COM1-COM132  
+
-
V3  
V3OUT  
V4OUT  
LCD  
driver  
R
0
+
-
V4  
R
R
+
-
V5  
V5OUT  
GND  
GND  
Figure 37 Temperature Compensation Circuits (1)  
Rev. 1.0, Jan. 2003, page 63 of 102  
HD66753  
PS1-0 = "01"  
V
REG  
LCD drive  
voltage regulator  
HD66753  
V
1REF  
0.1 µF  
OFF  
Thermistor  
Tr  
V
LREF  
VR  
R
+
-
V1  
V2  
V1OUT  
V2OUT  
GND  
(or Vcc)  
+
-
SEG1-SEG168  
COM1-COM132  
R
+
-
V3  
V3OUT  
V4OUT  
LCD  
driver  
R
0
+
-
V4  
R
R
+
-
V5  
V5OUT  
GND  
GND  
Figure 38 Temperature Compensation Circuits (2)  
Rev. 1.0, Jan. 2003, page 64 of 102  
HD66753  
Picture quality provision in case of high-load display  
The HD66753 is an on-chip LCD driver that has an LCD power supply for high duty. Screen quality is  
affected by the load current of the high-duty LCD panel used. When the bias (1/11 bias, 1/10 bias, 1/9 bias,  
etc.) is high and the displayed pattern is completely or almost completely white, the white sections may  
appear dark.  
If this happens, execute the following countermeasures to improve screen quality.  
(1) After the change in the V4OUT/V3OUT level is verified, insert about 1 Mbetween V4OUT and  
GND or VLPS and V3OUT and then adjust the screen quality (see the following figures). By inserting  
resistance, the current consumption increases as much as the boosting factor of the resistance current.  
Adjust the resistance after checking the screen quality and the increase in current consumption.  
(2) Decrease the drive bias and use the new bias level after verifying that the potential differences between  
V4OUT and GND or VLPS and V3OUT are sufficient.  
VLPS  
Driver  
V4OUT  
Fixed  
current  
source  
C
Vbn  
Rv4  
GND  
Figure 39 Countermeasure for V4OUT Output  
VLPS  
Fixed  
current  
Rv3  
Vbp  
source  
V3OUT  
C
Driver  
GND  
Figure 40 Countermeasure for V3OUT Output  
Note: The actual LCD drive voltage VLREF used must not exceed 16.5 V.  
Rev. 1.0, Jan. 2003, page 65 of 102  
HD66753  
Switching the Step-up Factor  
Instruction bits (BT1/0 bits) can optionally select the step-up factor of the internal step-up circuit.  
According to the display status, power consumption can be reduced by changing the LCD drive duty and  
the LCD drive bias, and by controlling the step-up factor for the minimum requirements. For details, see  
the Partial-display-on Function section.  
According to the maximum step-up factor, external capacitors need to be connected. For example, when  
the maximum step-up is six times or five times, capacitors between C6+ and C6– or between C5+ and C5–  
are needed as in the case of the seven-times step-up. When the step-up is three-times, capacitors between  
C1+ and C1– or between C4+ and C4– are not needed.  
Place a capacitor with a breakdown voltage of three times or more the Vci-GND voltage between C6+ and  
C6– and between C3+ and C3–, a capacitor with a breakdown voltage larger than the Vci-GND voltage  
between C1+ and C1–, C2+ and C2–, C4+ and C4–, and C5+ and C5–, and a capacitor with a breakdown  
voltage of n times or more the Vci-GND voltage to VLOUT (n: step-up factor) (see figure 37).  
Note: Determine the capacitor breakdown voltages by checking Vci voltage fluctuation.  
Table 23  
VLOUT Output Status  
BT1  
0
BT0  
0
VLOUT Output Status  
Three-times step-up output  
Five-times step-up output  
Six-times step-up output  
Seven-times step-up output  
0
1
1
0
1
1
Rev. 1.0, Jan. 2003, page 66 of 102  
HD66753  
i) Maximum seven-times step-up  
ii) Maximum six-times step-up  
Vci  
Vci  
Vci  
Vci  
(+)  
1 µF  
1 µF  
(+)  
(B Charac-  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
C6+  
C6-  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
(B Charac-  
teristics)  
teristics)  
(+)  
(+)  
1 µF  
1 µF  
(B Charac-  
teristics)  
(B Charac-  
teristics)  
(+)  
(+)  
1 µF  
1 µF  
(B Charac-  
teristics)  
(B Charac-  
teristics)  
(+)  
(+)  
1 µF  
1 µF  
(B Charac-  
teristics)  
(B Charac-  
teristics)  
(+)  
(+)  
1 µF  
1 µF  
C5+  
C5-  
C6+  
C6-  
(B Charac-  
teristics)  
(B Charac-  
teristics)  
(+)  
(+)  
1 µF  
1 µF  
(B Charac-  
teristics)  
(B Charac-  
teristics)  
VLOUT  
VLOUT  
(+)  
1 µF  
(B Charac-  
teristics)  
(+)  
1 µF  
(B Charac-  
teristics)  
GND  
GND  
iv) Maximum three-times step-up  
iii) Maximum five-times step-up  
Vci  
Vci  
Vci  
Vci  
(+)  
1 µF  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
C6+  
C6-  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
C6+  
C6-  
(B Charac-  
teristics)  
(+)  
(+)  
1 µF  
1 µF  
(B Charac-  
teristics)  
(B Charac-  
teristics)  
(+)  
(+)  
1 µF  
1 µF  
(B Charac-  
teristics)  
(B Charac-  
teristics)  
(+)  
1 µF  
(B Charac-  
teristics)  
(+)  
(+)  
1 µF  
1 µF  
(B Charac-  
teristics)  
(B Charac-  
teristics)  
(+)  
(+)  
1 µF  
1 µF  
(B Charac-  
teristics)  
(B Charac-  
teristics)  
VLOUT  
VLOUT  
1 µF  
(B Charac-  
teristics)  
(+)  
1 µF  
(B Charac-  
teristics)  
(+)  
GND  
GND  
Figure 41 Step-up Circuit Output Factor Switching  
Rev. 1.0, Jan. 2003, page 67 of 102  
HD66753  
Example of Power-supply Voltage Generator for More Than Seven-times Step-up Output  
The HD66753 incorporates a step-up circuit for up to seven-times step-up. However, the LCD drive  
voltage (VLREF) will not be enough for seven-times step-up from Vcc when the power-supply voltage of  
Vcc is low or when the LCD drive voltage is high for the high-contrast LCD display. In this case, the  
reference voltage (Vci) for step-up can be set higher than the power-supply voltage of Vcc.  
When the step-up factor is high, the current driving ability is lowered and insufficient display quality may  
result. In this case, the step-up ability can be improved by decreasing the step-up factor as shown in the  
step-up circuit in figure 42.  
Set the Vci input voltage for the step-up circuit to 3.6 V or less. Control the Vci voltage so that the step-up  
output voltage (VLOUT) should be less than the absolute maximum ratings (20.5 V).  
HD66753  
2.0 V  
2.2 V  
Regulator  
(1)  
Logic circuit  
Vcc  
1 µF  
(B Charac-  
teristics)  
(+)  
(+)  
(+)  
(+)  
(+)  
(+)  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
Battery  
3.6 V  
Regulator  
(2)  
Vci  
1 µF  
(B Charac-  
teristics)  
1 µF  
(B Charac-  
teristics)  
Step-up circuit  
GND  
1 µF  
(B Charac-  
teristics)  
VLPS (= 15.4V)  
1 µF  
(B Charac-  
teristics)  
C5+  
C5-  
2.2 V x 7 = 15.4 V  
VLOUT  
1 µF  
(B Charac-  
teristics)  
C6+  
C6-  
SEG1-SEG 168  
COM1-COM132  
LCD driver  
GND  
VLPS  
(+)  
1 µF  
(B Charac-  
teristics)  
GND  
Vci (= 2.2 V)  
Vcc (= 2.0 V)  
GND  
GND (= 0 V)  
Note: In practice, the LCD drive current lowers  
the voltage in the step-up output voltage.  
Figure 42 Usage Example of Step-up Circuit at Vci > Vcc  
Rev. 1.0, Jan. 2003, page 68 of 102  
HD66753  
Precautions when Switching Boosting Circuit  
The boosting factor of the HD66753 can be switched between 3, 5, 6, and 7 times by instruction. When the  
factor is switched, there is a transition period before the voltage from VLOUT stabilizes. When VLOUT is  
used as the VLPS, the boosting factor is changed by switching the BT bit, and the supply voltage for the  
VLPS is changed, a direct current may be applied to the LCD display if the display is on during the  
transition period.  
When the output voltage of the VLOUT pin is changed, the display must be switched off and on after the  
output voltage stabilizes.  
Table 24  
Instructions Accompanying Change in Boosting Factor (example)  
Display Contents  
Instructions  
All display drive in 1/128 duty to 1/48 duty drive  
(1) Display control (R7)  
(2) Power control (R1)  
(3) 10-ms wait  
0x0000  
0x1914  
(4) Contrast control (R4)  
(5) Driver output control (R1)  
(6) Display control (R7)  
0x0006  
0x0245  
0x0005  
Rev. 1.0, Jan. 2003, page 69 of 102  
HD66753  
Contrast Adjuster  
Software can adjust 128-step contrast for an LCD by varying the liquid-crystal drive voltage (potential  
difference between VLREF and V1) through the CT bits of the contrast adjustment register (electron volume  
function). The value of a variable resistor between VLREF and V1 (VR) can be precisely adjusted in a 0.05 x  
R unit within a range from 0.05 x R through 6.40 x R, where R is a reference resistance obtained by  
dividing the total resistance.  
The HD66753 incorporates a voltage-follower operational amplifier for each of V1 to V5 to reduce current  
flowing through the internal bleeder resistors, which generate different liquid-crystal drive voltages. Thus,  
CT5-0 bits must be adjusted so that potential difference between VLPS and V1 is 0.1 V or higher and that  
between V4 and GND is 1.4 V or higher when liquid-crystal drives, particularly when the VR is small.  
HD66753  
V
LREF  
CT  
VR  
+
-
V1  
R
R
+
-
V2  
V3  
+
-
R0  
+
-
V4  
V5  
R
R
+
-
GND  
GND  
Figure 43 Contrast Adjuster  
Rev. 1.0, Jan. 2003, page 70 of 102  
HD66753  
Table 25  
Contrast Adjustment Bits (CT) and Variable Resistor Values  
CT Set Value  
Variable Resistor  
Valu e (VR)  
Potential Difference  
between V1 and GND  
Display Color  
CT3 CT2 CT1 CT0  
CT6 CT5 CT4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
6.40 x R  
6.35 x R  
6.30 x R  
6.25 x R  
6.20 x R  
6.15 x R  
6.10 x R  
6.05 x R  
6.00 x R  
5.95 x R  
5.90 x R  
5.85 x R  
5.80 x R  
(Small)  
(Weak)  
0
1
1
1
1
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
3.25 x R  
3.20 x R  
3.15 x R  
3.10 x R  
3.05 x R  
3.00 x R  
2.95 x R  
2.90 x R  
2.85 x R  
2.80 x R  
2.75 x R  
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0.20 x R  
0.15 x R  
0.10 x R  
0.05 x R  
(Large)  
(Bright)  
Rev. 1.0, Jan. 2003, page 71 of 102  
HD66753  
Table 26  
Contrast Adjustment per Bias Drive Voltage  
Bias  
LCD Drive Voltage: VDR  
Contrast Adjustment Range  
- LCD drive voltage  
adjustment range  
:
:
0.775 x (VLREF-GND) VDR  
0.995 x (VLREF-GND)  
1/11  
bias  
drive  
2 x R  
11 x R  
11 x R + VR  
- Limit of potential  
difference between V4 and GND  
x (VLREF-GND)  
x (VLREF-GND)  
1.4 [V]  
x (VLREF-GND)  
11 x R + VR  
VR  
- Limit if potential  
difference between VLPS and V1  
0.1 [V]  
:
11 x R + VR  
- LCD drive voltage  
adjustment range  
: 0.757 x (VLREF-GND) VDR  
0.995 x (VLREF-GND)  
1/10  
bias  
drive  
2 x R  
10 x R  
- Limit of potential  
difference between V4 and GND  
x (VLREF-GND)  
x (VLREF-GND)  
1.4 [V]  
x (VLREF-GND)  
:
:
10 x R + VR  
VR  
10 x R + VR  
- Limit if potential  
difference between VLPS and V1  
0.1 [V]  
10 x R + VR  
- LCD drive voltage  
adjustment range  
: 0.737 x (VLREF-GND) VDR  
0.994 x (VLREF-GND)  
1/9  
bias  
drive  
9 x R  
9 x R + VR  
2 x R  
9 x R + VR  
VR  
9 x R + VR  
- Limit of potential  
difference between V4 and GND  
x (VLREF-GND)  
1.4 [V]  
0.1 [V]  
:
:
x (VLREF-GND)  
x (VLREF-GND)  
x (VLREF-GND)  
x (VLREF-GND)  
- Limit if potential  
difference between VLPS and V1  
x (VLREF-GND)  
- LCD drive voltage  
adjustment range  
: 0.714 x (VLREF-GND) VDR  
0.993 x (VLREF-GND)  
1/8  
bias  
drive  
2 x R  
8 x R + VR  
VR  
8 x R  
- Limit of potential  
difference between V4 and GND  
x (VLREF-GND)  
x (VLREF-GND)  
1.4 [V]  
:
:
8 x R + VR  
- Limit if potential  
difference between VLPS and V1  
0.1 [V]  
8 x R + VR  
- LCD drive voltage  
adjustment range  
:
0.686 x (VLREF-GND) VDR  
0.993 x (VLREF-GND)  
1/7  
bias  
drive  
2 x R  
7 x R + VR  
VR  
7 x R + VR  
7 x R  
7 x R + VR  
- Limit of potential  
difference between V4 and GND  
x (VLREF-GND)  
1.4 [V]  
:
:
- Limit if potential  
difference between VLPS and V1  
x (VLREF-GND)  
0.1 [V]  
- LCD drive voltage  
adjustment range  
: 0.652 x (VLREF-GND) VDR  
0.992 x (VLREF-GND)  
1/6  
bias  
drive  
2 x R  
6 x R + VR  
VR  
6 x R  
- Limit of potential  
difference between V4 and GND  
x (VLREF-GND)  
x (VLREF-GND)  
1.4 [V]  
0.1 [V]  
:
:
6 x R + VR  
- Limit if potential  
difference between VLPS and V1  
6 x R + VR  
- LCD drive voltage  
adjustment range  
:
0.610 x (VLREF-GND ) VDR  
0.990 x (VLREF-GND)  
1/5  
bias  
drive  
2 x R  
5 x R + VR  
5 x R  
5 x R + VR  
- Limit of potential  
difference between V4 and GND  
x (VLREF-GND )  
1.4 [V]  
:
:
x (VLREF-GND)  
x (VLREF-GND)  
VR  
- Limit if potential  
difference between VLPS and V1  
x (VLREF-GND )  
5 x R + VR  
0.1 [V]  
- LCD drive voltage  
adjustment range  
:
:
0.556 x (VLREF-GND) VDR  
0.988 x (VLREF-GND)  
1/4  
bias  
drive  
4 x R  
2 x R  
4 x R + VR  
VR  
- Limit of potential  
difference between V4 and GND  
x (VLREF-GND)  
x (VLREF-GND)  
1.4 [V]  
4 x R + VR  
- Limit if potential  
difference between VLPS and V1  
0.1 [V]  
:
4 x R + VR  
Rev. 1.0, Jan. 2003, page 72 of 102  
HD66753  
Liquid-crystal-display Drive-bias Selector  
An optimum liquid-crystal-display bias value can be selected using the BS2-0 bits, according to the liquid  
crystal drive duty ratio setting (NL4-0 bits). The liquid-crystal-display drive duty ratio and bias value can  
be displayed while switching software applications to match the LCD panel display status. The optimum  
bias value calculated using the following expression is a logical optimum value. Driving by using a lower  
value than the optimum bias value provides lower logical contrast and lower liquid-crystal-display voltage  
(the potential difference between V1 and GND), which results in better image quality. When the liquid-  
crystal-display voltage is insufficient even if a seven-times step-up circuit is used, when the step-up driving  
ability is lowered by setting a high factor for the step-up circuit, or when the output voltage is lowered  
because the battery life has been reached, the display can be made easier to see by lowering the liquid-  
crystal-display bias.  
The liquid crystal display can be adjusted by using the contrast adjustment register (CT6-0 bits) and  
selecting the step-up output level (BT1/0 bits).  
1
Optimum bias value for 1/N duty ratio drive voltage =  
N + 1  
Table 27  
Optimum Drive Bias Values  
LCD drive  
duty ratio  
1/132 1/128 1/120 1/112 1/104 1/96 1/88 1/80 1/72 1/64 1/32 1/24 1/16  
(NL4-0 set  
value)  
10H  
1/11  
0FH  
1/11  
0EH  
1/11  
0DH  
1/11  
0CH  
1/11  
0BH 0AH 09H 08H 07H 03H 02H 01H  
Optimum  
drive bias  
value  
1/10 1/10 1/10 1/9  
1/9  
1/6  
1/6  
1/5  
(BS2-0 set  
value)  
000  
000  
000  
000  
000  
001  
001  
001  
010  
010  
101  
101  
110  
Rev. 1.0, Jan. 2003, page 73 of 102  
HD66753  
VLREF  
VLREF  
VLREF  
VLREF  
VLREF  
VR  
VR  
VR  
VR  
VR  
V1  
V1  
V1  
V1  
V1  
V2  
V3  
V4  
R
R
R
R
R
R
R
R
R
R
V2  
V2  
V2  
V2  
V3  
V3  
V3  
V3  
7R  
R
5R  
R
3R  
R
6R  
R
4R  
R
V4  
V4  
V4  
V4  
V5  
V5  
V5  
V5  
V5  
R
R
R
R
R
GND  
GND  
GND  
GND  
GND  
GND  
GND  
ii) 1/ 10 bias  
GND  
iii) 1/ 9 bias  
GND  
GND  
i) 1/ 11 bias  
iv) 1/ 8 bias  
(BS2Ð0 = 011)  
v) 1/7 bias  
(BS2Ð0 = 100)  
(BS2Ð0 = 000)  
(BS2Ð0 = 001)  
(BS2Ð0 = 010)  
VLREF  
VLREF  
VLREF  
VR  
VR  
V1  
V1  
VR  
R
R
R
R
R
R
R
V1  
V2  
V2  
R
R
R
R
V2  
V3  
V3  
2R  
R
V3,V4  
V5  
V4  
V4  
V5  
V5  
Note: R = Reference resistor  
R
GND  
GND  
GND  
GND  
GND  
GND  
v) 1/6 bias  
(BS2Ð0 = 101)  
v) 1/5 bias  
(BS2Ð0 = 110)  
vi) 1/ 4 bias  
(BS2Ð0 = 111)  
Figure 44 Liquid Crystal Display Drive Bias Circuit  
Rev. 1.0, Jan. 2003, page 74 of 102  
HD66753  
Four-grayscale Display Function  
The HD66753 supports the four-grayscale monochrome display function. The four-grayscale monochrome  
display is used for the display data of the two-bit pixel set sent to the CGRAM. There are four grayscale  
levels: always unlit, weak middle level, bright middle level, and always lit. In the middle-level grayscale  
display, the GSL1-0 and GSH1-0 bits can select the grayscale level, respectively.  
The frame rate control (FRC) method, which is used for grayscale control, can reduce charge/discharge  
current in the LCD glass during grayscale display.  
Table 28  
Relationships between the CGRAM Data and the Display Contents  
Upper Bit  
Lower Bit  
Liquid Crystal Display  
0
0
0
1
Non-selected (unlit)  
GSL1-0 = 00: 1/4-level grayscale (one frame lit during a four-frame  
period)  
GSL1-0 = 01: 1/3-level grayscale (one frame lit during a three-frame  
period)  
GSL1-0 = 10: 2/4-level grayscale (two frames lit during a four-frame  
period)  
GSL1-0 = 11: Lit (no grayscale control)  
1
0
GSH1-0 = 00: 3/4-level grayscale (three frames lit during a four-  
frame period)  
GSH1-0 = 01: 2/3-level grayscale (two frames lit during a three-  
frame period)  
GSH1-0 = 10: 2/4-level grayscale (two frames lit during a four-frame  
period)  
GSH1-0 = 11: Lit (no grayscale control)  
Selected (lit)  
1
1
Note: Upper bits: DB15, DB13, DB11, DB9, DB7, DB5, DB3, and DB1  
Lower bits: DB14, DB12, DB10, DB8, DB6, DB4, DB2, and DB0  
Rev. 1.0, Jan. 2003, page 75 of 102  
HD66753  
LSB  
DB0  
MSB LSB  
DB15 DB0  
MSB  
DB15  
0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1  
CGRAM  
Grayscale  
control circuit  
LCD panel display  
Figure 45 Four-grayscale Monochrome Display  
Rev. 1.0, Jan. 2003, page 76 of 102  
HD66753  
Window Cursor Display Function  
The HD66753 displays the window cursor by specifying a window area. The horizontal display position of  
the window cursor is specified with the horizontal cursor position register (HS6-0 to HE6-0), and the  
vertical display position is specified with the vertical cursor position register (VS6-0 or VE6-0). In these  
display position setting registers, ensure that HS6-0 HE6-0 and VS6-0 VE6-0. If these relationships are  
not satisfied, normal display cannot be attained. In addition, if the setting is VS6-0 = VE6-0 = 00H, a  
cursor is displayed on a raster-row at the most-upper edge of the screen.  
This window cursor can automatically display the hardware-supported block cursor, highlight window, or  
menu bar. The CM1-0 bits select the following four displays in each window cursor:  
1. White-blink cursor (CM1-0 = 00): Alternately blinks between the normal display and an all-white  
(unlit) display  
2. Black-blink cursor (CM1-0 = 01): Alternately blinks between the normal display and an all-black (all  
lit) display  
3. Black-and-white reversed cursor (CM1-0 = 10): Normal black-and-white-reversed display (without  
blinking)  
4. Black-and-white reversed blinking cursor (CM1-0 = 11): Alternately blinks between the normal display  
and a black-and-white-reversed display  
The above blinking display is switched in a 32-frame unit. To set a range of the window cursor, specify the  
display area.  
Figure 46 White Blink Cursor Display  
Rev. 1.0, Jan. 2003, page 77 of 102  
HD66753  
Figure 47 Black Blink Cursor Display  
Figure 48 Black-and-white Reversed Cursor Display  
Figure 49 Black-and-white Reversed Blink Cursor Display  
Rev. 1.0, Jan. 2003, page 78 of 102  
HD66753  
Reversed Display Function  
The HD66753 can display graphics display sections by black-and-white reversal. Black-and-white reversal  
can be easily displayed when the REV bit in the display control register is set to 1.  
Figure 50 Reversed Display  
Rev. 1.0, Jan. 2003, page 79 of 102  
HD66753  
Screen-division Driving Function  
The HD66753 can select and drive two screens at any position with the screen-driving position registers  
(R0D and R0E). Any two screens required for display are selectively driven and a duty ratio is lowered by  
LCD-driving duty setting (NL4-0), thus reducing LCD-driving voltage and power consumption.  
For the 1st division screen, start line (SS17-10) and end line (SE17-10) are specified by the 1st screen-  
driving position register (R0D). For the 2nd division screen, start line (SS27-20) and end line (SE27-20)  
are specified by the 2nd screen-driving position register (R0E). The 2nd screen control is effective when  
the SPT bit is 1. The total count of selection-driving lines for the 1st and 2nd screens must correspond to  
the LCD-driving duty set value.  
Figure 51 Display Example in 2-screen Division Driving  
Rev. 1.0, Jan. 2003, page 80 of 102  
HD66753  
Restrictions on the 1st/2nd Screen Driving Position Register Settings  
The following restrictions must be satisfied when setting the start line (SS17-10) and end line (SE17-10) of  
the 1st screen driving position register (R0D) and the start line (SS27-20) and end line (SE27-20) of the  
2nd screen driving position register (R0D) for the HD66753. Note that incorrect display may occur if the  
restrictions are not satisfied.  
Table 29 Restrictions on the 1st/2nd Screen Driving Position Register Settings  
1st Screen Driving (STP = 0)  
2nd Screen Driving (STP = 1)  
Register setting  
SS17-10 SE17-0 83H  
SS17-10 SE17-10 < SS17-10 ≤  
SE17-0 83H  
Display operation  
Time-sharing driving for COM pins  
(SS1+1) to (SE1+1)  
Time-sharing driving for COM pins  
(SS1+1) to (SE1+1) and (SS2+1) to  
(SE2+1)  
Non-selection level driving for others  
Non-selection level driving for others  
Notes: 1. When the total line count in screen division driving settings is less than the duty setting, non-  
selection level driving is performed without the screen division driving setting range.  
2. When the total line count in screen division driving settings is larger than the duty setting, the  
start line, the duty-setting line, and the lines between them are displayed and non-selection level  
driving is performed for other lines.  
3. For the 1st screen driving, the SS27-20 and SE27-20 settings are ignored.  
Rev. 1.0, Jan. 2003, page 81 of 102  
HD66753  
Sleep Mode  
Setting the sleep mode bit (SLP) to 1 puts the HD66753 in the sleep mode, where the device stops all  
internal display operations, thus reducing current consumption. Specifically, LCD operation is completely  
halted. Here, all the SEG (SEG1 to SEG168) and COM (COM1 to COM132) pins output the GND level,  
resulting in no display. If the AP1-0 bits in the power control register are set to 00 in the sleep mode, the  
LCD drive power supply can be turned off, reducing the total current consumption of the LCD module.  
Table 30 Comparison of Sleep Mode and Standby Mode  
Function  
Sleep Mode (SLP = 1)  
Turned off  
Standby Mode (STB = 1)  
Turned off  
LCD control  
R-C oscillation circuit  
Operates normally  
Operation stopped  
Standby Mode  
Setting the standby mode bit (STB) to 1 puts the HD66753 in the standby mode, where the device stops  
completely, halting all internal operations including the R-C oscillation circuit, thus further reducing  
current consumption compared to that in the sleep mode. Specifically, all the SEG (SEG1 to SEG168) and  
COM (COM1 to COM132) pins for the time-sharing drive output the GND level, resulting in no display. If  
the AP1-0 bits are set to 00 in the standby mode, the LCD drive power supply can be turned off.  
During the standby mode, no instructions can be accepted other than the start-oscillation instruction. To  
cancel the standby mode, issue the start-oscillation instruction to stabilize R-C oscillation before setting the  
STB bit to 0.  
Turn off the LCD power supply: AP1 to 0 = 00  
Set standby mode: STB = 1  
Standby mode  
Issue the start-oscillation instruction  
Wait at least 10 ms  
Cancel standby mode: STB = 0  
Turn on the LCD power supply: AP1 to 0 = 01 / 10 / 11  
Figure 52 Procedure for Setting and Canceling Standby Mode  
Rev. 1.0, Jan. 2003, page 82 of 102  
HD66753  
Absolute Maximum Ratings  
Item  
Symbol  
Unit  
V
Value  
Notes*  
1, 2  
1, 3  
1
Power supply voltage (1) VCC  
–0.3 to +4.6  
–0.3 to +20.5  
–0.3 to VCC + 0.3  
–40 to +85  
–55 to +110  
Power supply voltage (2) VLPS – GND  
V
Input voltage  
Vt  
V
Operating temperature  
Storage temperature  
Topr  
Tstg  
°C  
°C  
1, 4  
1, 5  
Notes: 1. If the LSI is used above these absolute maximum ratings, it may become permanently damaged.  
Using the LSI within the following electrical characteristics limits is strongly recommended for  
normal operation. If these electrical characteristic conditions are also exceeded, the LSI will  
malfunction and cause poor reliability.  
2. VCC > GND must be maintained.  
3. VLPS > GND must be maintained.  
4. For bare die and wafer products, specified up to 85•C.  
5. This temperature specifications apply to the TCP package.  
Rev. 1.0, Jan. 2003, page 83 of 102  
HD66753  
DC Characteristics (VCC = 1.7 to 3.6 V, Ta = –40 to +85°C*1)  
Item  
Symbol Min  
Typ  
Max  
Unit Test Condition  
Notes  
2, 3  
2, 3  
2, 3  
2
Input high voltage  
Input low voltage  
VIH  
VIL  
0.7 VCC  
VCC  
V
–0.3  
0.15 VCC  
0.15 VCC  
V
V
V
VCC = 1.7 to 2.4 V  
VCC = 2.4 to 3.6 V  
IOH = –0.1 mA  
–0.3  
Output high voltage (1) VOH1  
(DB0-15 and SDA pins)  
0.75 VCC  
Output low voltage (1) VOL1  
(DB0-15 and SDA pins)  
3
0.2 VCC  
0.15 VCC  
10  
V
V
VCC = 1.7 to 2.4 V,  
2
2
4
4
I
OL = 0.1 mA  
VCC = 2.4 to 3.6 V,  
IOL = 0.1 mA  
Driver ON resistance  
(COM pins)  
RCOM  
RSEG  
k±Id = 0.05 mA,  
VLPS = 10 V  
Driver ON resistance  
(SEG pins)  
3
10  
k±Id = 0.05 mA,  
VLPS = 10 V  
I/O leakage current  
ILi  
–1  
1
µA Vin = 0 to VCC  
5
Current consumption  
during normal operation  
(VCC – GND)  
IOP  
100  
150  
µA R-C oscillation,  
6, 7  
VCC = 3 V, Ta = 25 °C, fOSC  
= 100 kHz (1/132 duty),  
RAM write: checker  
pattern  
Current consumption  
during standby mode  
(VCC – GND)  
IST  
0.1  
40  
5
µA VCC = 3 V, Ta = 25°C  
6, 7  
LCD drive power supply ILPS  
current (VLPS – GND)  
60  
µA  
V = 3 V, V = 15 V, 1/11 7  
bias,  
Ta = 25 °C, fOSC = 100  
kHz, amount of fixed  
current in the operational  
amplifier: small  
LCD drive voltage  
(VLPS – GND)  
VLPS  
VREG  
5.0  
19.5  
2.5  
V
V
V
8
VREG input voltage  
(VREG pin)  
1.3  
13.0  
VREG external input  
(PS1-0 = 10), Ta = 25 °C  
V1REF output voltage V1REF  
(V1REF pin)  
VREG = 1.3 V,  
Ta = 25 °C, 11 times of  
VREG (VR2-0 = 111),  
V1REF VLPS – 0.5 V  
Note: For the numbered notes, refer to the Electrical Characteristics Notes section following these tables.  
Rev. 1.0, Jan. 2003, page 84 of 102  
HD66753  
Step-up Circuit Characteristics  
Item  
Symbol Min  
Typ  
Max  
Unit Test Condition  
Notes  
Three-times  
step-up output  
voltage (VLOUT  
pin)  
VUP3  
7.6  
8.0  
8.1  
V
VCC = Vci = 2.7 V,  
IO = 30 µA, C = 1 µF,  
fOSC = 100 kHz, Ta = 25°C  
11  
Five-times step-  
up output voltage  
(VLOUT pin)  
VUP5  
13.0  
15.7  
18.4  
13.3  
16.0  
18.7  
13.5  
16.2  
18.9  
V
V
V
VCC = Vci = 2.7 V,  
IO = 30 µA, C = 1 µF,  
fOSC = 100 kHz, Ta = 25°C  
11  
11  
11  
Six-times step-up VUP6  
output voltage  
(VLOUT pin)  
VCC = Vci = 2.7 V,  
IO = 30 µA, C = 1 µF,  
fOSC = 100 kHz, Ta = 25°C  
Seven-times  
step-up output  
voltage (VLOUT  
pin)  
VUP7  
VCC = Vci = 2.7 V,  
IO = 30 µA, C = 1 µF,  
fOSC = 100 kHz, Ta = 25°C  
Use range of  
step-up output  
voltages  
VUP3  
VUP5  
VUP6  
VUP7  
Vcc  
19.5  
V
For three- to seven-times  
step-up  
11  
Note: For the numbered notes, refer to the Electrical Characteristics Notes section following these tables.  
Rev. 1.0, Jan. 2003, page 85 of 102  
HD66753  
AC Characteristics (VCC = 1.7 to 3.6 V, Ta = –40 to +85°C*1)  
Clock Characteristics (VCC = 1.7 to 3.6 V)  
Item  
Symbol  
Min  
Typ  
Max  
Unit  
Test Condition  
Notes  
External clock  
frequency  
fcp  
50  
75  
150  
kHz  
9
External clock duty  
ratio  
Duty  
trcp  
tfcp  
fOSC  
45  
80  
50  
55  
%
9
External clock rise  
time  
0.2  
0.2  
120  
µs  
9
External clock fall  
time  
µs  
9
R-C oscillation clock  
100  
kHz  
Rf = 220 k,  
VCC = 3 V  
10  
Note: For the numbered notes, refer to the Electrical Characteristics Notes section following these tables.  
68-system Bus Interface Timing Characteristics  
(Vcc = 1.7 to 2.4 V)  
Item  
Symbol Min  
Typ  
Max  
Unit  
Test Condition  
Enable cycle time  
Write tCYCE  
600  
800  
120  
350  
300  
400  
ns  
Figure 60  
Read tCYCE  
Write PWEH  
Read PWEH  
Write PWEL  
Read PWEL  
tEr, tEf  
Enable high-level pulse width  
Enable low-level pulse width  
ns  
ns  
Figure 60  
Figure 60  
Enable rise/fall time  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Figure 60  
Figure 60  
Figure 60  
Figure 60  
Figure 60  
Figure 60  
Figure 60  
Setup time (RS, R/W to E, CS*)  
Address hold time  
tASE  
50  
tAHE  
20  
Write data setup time  
Write data hold time  
Read data delay time  
Read data hold time  
tDSWE  
60  
tHE  
20  
tDDRE  
300  
tDHRE  
5
Rev. 1.0, Jan. 2003, page 86 of 102  
HD66753  
(Vcc = 2.4 to 3.6 V)  
Item  
Symbol Min  
Typ  
Max  
Unit  
ns  
Test Condition  
Enable cycle time  
Write tCYCE  
380  
500  
70  
Figure 60  
Figure 60  
Figure 60  
Read tCYCE  
Write PWEH  
Read PWEH  
Write PWEL  
Read PWEL  
tEr, tEf  
Enable high-level pulse width  
Enable low-level pulse width  
ns  
ns  
250  
150  
200  
Enable rise/fall time  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Figure 60  
Figure 60  
Figure 60  
Figure 60  
Figure 60  
Figure 60  
Figure 60  
Setup time (RS, R/W to E, CS*)  
Address hold time  
tASE  
50  
tAHE  
20  
Write data setup time  
Write data hold time  
Read data delay time  
Read data hold time  
tDSWE  
60  
tHE  
20  
tDDRE  
200  
tDHRE  
5
Rev. 1.0, Jan. 2003, page 87 of 102  
HD66753  
80-system Bus Interface Timing Characteristics  
(Vcc = 1.7 to 2.4 V)  
Item  
Symbol Min  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Test Condition  
Figure 61  
Figure 61  
Figure 61  
Figure 61  
Figure 61  
Figure 61  
Figure 61  
Figure 61  
Figure 61  
Figure 61  
Figure 61  
Figure 61  
Figure 61  
Bus cycle time  
Write tCYCW  
Read tCYCR  
PWLW  
600  
800  
120  
350  
300  
400  
Write low-level pulse width  
Read low-level pulse width  
Write high-level pulse width  
Read high-level pulse width  
Write/Read rise/fall time  
Setup time (RS to CS*, WR*, RD*)  
Address hold time  
PWLR  
PWHW  
PWHR  
tWRr  
tAS  
,
25  
WRf  
50  
tAH  
20  
Write data setup time  
tDSW  
tH  
tDDR  
tDHR  
60  
Write data hold time  
20  
Read data delay time  
300  
Read data hold time  
5
(Vcc = 2.4 to 3.6 V)  
Item  
Symbol Min  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Test Condition  
Figure 61  
Figure 61  
Figure 61  
Figure 61  
Figure 61  
Figure 61  
Figure 61  
Figure 61  
Figure 61  
Figure 61  
Figure 61  
Figure 61  
Figure 61  
Bus cycle time  
Write tCYCW  
Read tCYCR  
PWLW  
380  
500  
70  
Write low-level pulse width  
Read low-level pulse width  
Write high-level pulse width  
Read high-level pulse width  
Write/Read rise/fall time  
Setup time (RS to CS*, WR*, RD*)  
Address hold time  
PWLR  
PWHW  
PWHR  
tWRr, WRf  
tAS  
250  
150  
200  
25  
50  
tAH  
20  
Write data setup time  
tDSW  
60  
Write data hold time  
tH  
20  
Read data delay time  
tDDR  
200  
Read data hold time  
tDHR  
5
Rev. 1.0, Jan. 2003, page 88 of 102  
HD66753  
Clock-synchronized Serial Interface Timing Characteristics  
(Vcc = 1.7 to 2.4 V)  
Item  
Symbol Min  
Typ  
Max  
Unit  
Test Condition  
Figure 62  
Figure 62  
Figure 62  
Figure 62  
Figure 62  
Figure 62  
Figure 62  
Figure 62  
Figure 62  
Figure 62  
Figure 62  
Figure 62  
Figure 62  
Serial clock cycle time  
Write (receive) tSCYC  
Read (send) tSCYC  
Serial clock high-level width Write (receive) tSCH  
Read (send) tSCH  
Write (receive) tSCL  
100  
250  
40  
120  
40  
120  
2000 ns  
2000 ns  
20  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial clock low-level width  
Read (send)  
tSCL  
Serial clock rise/fall time  
Chip-select setup time  
tscf , tscr  
tCSU  
tCH  
20  
60  
30  
30  
Chip-select hold time  
Serial input data setup time  
Serial input data hold time  
Serial output data delay time  
Serial output data hold time  
tSISU  
tSIH  
tSCD  
tSCH  
5
(Vcc = 2.4 to 3.6 V)  
Item  
Symbol Min  
Typ  
Max  
Unit  
Test Condition  
Figure 62  
Figure 62  
Figure 62  
Figure 62  
Figure 62  
Figure 62  
Figure 62  
Figure 62  
Figure 62  
Figure 62  
Figure 62  
Figure 62  
Figure 62  
Serial clock cycle time  
Write (receive) tSCYC  
Read (send) tSCYC  
Serial clock high-level width Write (receive) tSCH  
Read (send) tSCH  
Write (receive) tSCL  
100  
250  
40  
120  
40  
120  
2000 ns  
2000 ns  
20  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial clock low-level width  
Read (send)  
tSCL  
Serial clock rise/fall time  
Chip-select setup time  
tscf , tscr  
tCSU  
tCH  
20  
60  
30  
30  
Chip-select hold time  
Serial input data setup time  
Serial input data hold time  
Serial output data delay time  
Serial output data hold time  
tSISU  
tSIH  
tSCD  
tSCH  
5
Reset Timing Characteristics (VCC = 1.7 to 3.6 V)  
Item  
Symbol  
tRES  
Min  
1
Typ  
Max  
Unit  
Test Condition  
Figure 63  
Reset low-level width  
Reset rise time  
ms  
TrRES  
10  
µs  
Figure 63  
Rev. 1.0, Jan. 2003, page 89 of 102  
HD66753  
Electrical Characteristics Notes  
1. For bare die products, specified up to +85°C.  
2. The following three circuits are I/O pin configurations (figure 53).  
Pins: RESET*, CS*, E/WR/SCL,RS,  
OSC1, OPOFF, IM2-1, IM0/ID, TEST  
Pin: OSC2  
Vcc  
Vcc  
PMOS  
NMOS  
PMOS  
NMOS  
GND  
GND  
Pins: DB15 to DB0, RW/RD/SDA  
Vcc  
PMOS  
NMOS  
PMOS  
(Input circuit)  
Vcc  
(Tri-state output circuit)  
Output enable  
Output data  
PMOS  
NMOS  
GND  
Figure 53 I/O Pin Configuration  
Rev. 1.0, Jan. 2003, page 90 of 102  
HD66753  
3. The TEST pin must be grounded and the IM1/0 and OPOFF pins must be grounded or connected to  
Vcc.  
4. Applies to the resistor value (RCOM) between power supply pins V1OUT, V2OUT, V5OUT, GND and  
common signal pins, and resistor value (RSEG) between power supply pins V1OUT, V3OUT, V4OUT,  
GND and segment signal pins.  
5. This excludes the current flowing through output drive MOSs.  
6. This excludes the current flowing through the input/output units. The input level must be fixed high or  
low because through current increases if the CMOS input is left floating.  
7. The following shows the relationship between the operation frequency (fosc) and current consumption  
(Icc) (figure 54).  
Vcc = 3.0 V  
Vcc = 3.0 V, fosc = 100 kHz  
100  
80  
80  
60  
Display on (typ.)  
40  
typ.  
60  
20  
0
40  
0
Sleep (typ.)  
Standby (typ.)  
80 100 120  
20  
40 60  
11.0  
13.0  
15.0  
17.0  
R-C oscillation frequencies: fosc (kHz)  
LCD drive voltage: VLCD (V)  
Figure 54 Relationship between the Operation Frequency and Current Consumption  
8. Each COM and SEG output voltage is within ±0.15 V of the LCD voltage (Vcc, V1, V2, V3, V4, V5)  
when there is no load.  
9. Applies to the external clock input (figure 55).  
Th  
Tl  
2 k  
0.7Vcc  
0.5Vcc  
0.3Vcc  
Oscillator  
OSC1  
OSC2  
Th  
Duty =  
x 100%  
Th + Tl  
Open  
t
t
rcp  
fcp  
Figure 55 External Clock Supply  
Rev. 1.0, Jan. 2003, page 91 of 102  
HD66753  
10. Applies to the internal oscillator operations using external oscillation resistor Rf (figure 56 and table  
31).  
OSC1  
Since the oscillation frequency varies depending on the OSC1 and OSC2 pin capacitance,  
the wiring length to these pins should be minimized.  
OSC2  
Rf  
Figure 56 Internal Oscillation  
Table 31 External Resistance Value and R-C Oscillation Frequency (Referential Data)  
External  
Resistance (Rf)  
200 kΩ  
R-C Oscillation Frequency: fosc  
Vcc = 1.8 V  
89 kHz  
70 kHz  
65 kHz  
60 kHz  
55 kHz  
52 kHz  
48 kHz  
44 kHz  
Vcc = 2.2 V  
103 kHz  
80 kHz  
73 kHz  
68 kHz  
62 kHz  
58 kHz  
53 kHz  
48 kHz  
Vcc = 3.0 V  
115 kHz  
88 kHz  
80 kHz  
74 kHz  
68 kHz  
64 kHz  
58 kHz  
52 kHz  
Vcc = 3.6 V  
121 kHz  
92 kHz  
83 kHz  
77 kHz  
71 kHz  
66 kHz  
60 kHz  
54 kHz  
270 kΩ  
300 kΩ  
330 kΩ  
360 kΩ  
390 kΩ  
430 kΩ  
470 kΩ  
11. The step-up characteristics test circuit is shown in figure 57.  
(5 to 7-times step-up)  
Vcc  
Vci  
+
+
C1+  
1 µF  
1 µF  
1 µF  
C1-  
C2+  
C2-  
+
+
C3+  
C3-  
C4+  
C4-  
1 µF  
1 µF  
1 µF  
+
+
C5+  
C5-  
C6+  
C6-  
VLOUT  
V
+
LCD  
GND  
1 µF  
Figure 57 Step-up Characteristics Test Circuit  
Rev. 1.0, Jan. 2003, page 92 of 102  
HD66753  
(i) Relation between the obtained voltage and input voltage  
Six-times step-up  
Seven-times step-up  
typ.  
typ.  
18.0  
18.0  
15.0  
12.0  
9.0  
13.0  
8.0  
1.5  
2.0  
2.5  
3.0  
1.5  
2.0  
2.5  
3.0  
Vci (V)  
Vci (V)  
Vci = Vcc, fosc = 100 kHz, Ta = 25˚C, DC1 to 0= 00  
Vci = Vcc, fosc = 100 kHz, Ta = 25˚C, DC1 to 0 = 00  
(ii) Relation between the obtained voltage and temperature  
Six-times step-up  
20.0  
Seven-times step-up  
typ.  
21.0  
18.0  
typ.  
100  
16.0  
14.0  
19.0  
17.0  
-60  
-20 0 20  
˚C  
Ta ( )  
60  
-60  
-20  
0
20  
60  
100  
˚C  
)
Ta (  
Vci = Vcc = 2.7 V, fosc = 100 kHz, Io = 30 µA,  
DC1 to 0= 00  
Vci = Vcc = 2.7 V, fosc = 100 kHz, Io = 30 µA,  
DC1 to 0 = 00  
Figure 58 Step-up  
Rev. 1.0, Jan. 2003, page 93 of 102  
HD66753  
(iii) Relation between the obtained voltage and capacity  
Six-times step-up  
18.0  
Seven-times step-up  
20.0  
typ.  
typ.  
17.0  
19.0  
18.0  
17.0  
16.0  
15.0  
14.0  
16.0  
0.5  
1.0  
C (µF)  
1.5  
0.5  
1.0  
C (µF)  
1.5  
Vci = Vcc = 2.7 V, fosc = 100 kHz, Io = 30 µA,  
DC1 to 0 = 00  
Vci = Vcc = 2.7 V, fosc = 100 kHz, Io = 30 µA,  
DC1 to 0 = 00  
(iv) Relation between the obtained voltage and current  
Seven-times step-up  
Six-times step-up  
16.4  
19.2  
16.2  
19.0  
18.8  
18.6  
18.4  
18.2  
18.0  
typ.  
typ.  
16.0  
15.8  
15.6  
15.4  
15.2  
0
10 20 30 40  
Io (µA)  
50  
0
10 20 30 40  
Io (µA)  
50  
Vci = Vcc = 2.7 V, fosc = 100 kHz, Ta = 25˚C,  
DC1 to 0 = 00  
Vci = Vcc = 2.7 V, fosc = 100 kHz, Ta = 25˚C,  
DC1 to 0 = 00  
Figure 58 Step-up (cont)  
AC Characteristics Test Load Circuits  
Data bus: DB15 to DB0  
Test Point  
50 pF  
Figure 59 Load Circuit  
Rev. 1.0, Jan. 2003, page 94 of 102  
HD66753  
Timing Characteristics  
68-system Bus Operation  
RS  
R/W  
VIH  
VIL  
VIH  
VIL  
t ASE  
t AHE  
CS*  
E
VIL  
VIL  
*
PWEH  
PWEL  
VIH  
VIL  
VIH  
VIL  
VIL  
tEf  
tEr  
t CYCE  
t HE  
t DSWE  
DB0  
to DB15  
VIH  
VIH  
Write data  
VIL  
VIL  
tDDRE  
t DHRE  
DB0  
to DB15  
VOH1  
VOL1  
VOH1  
VOL1  
Read data  
Note: PWEH is specified in the overlapped period when CS* is low and E is high.  
Figure 60 68-system Bus Timing  
Rev. 1.0, Jan. 2003, page 95 of 102  
HD66753  
80-system Bus Operation  
VIH  
VIL  
VIH  
VIL  
RS  
t AS  
t AH  
VIH  
CS*  
VIL  
PWHW PWHR  
PWLW, PWLR  
VIH  
VIL  
VIH  
VIL  
WR*  
RD*  
VIH  
tWRf  
tWRr  
t CYCW, t CYCR  
t DSW  
t H  
DB0  
to DB15  
VIH  
VIL  
VIH  
VIL  
Write data  
tDDR  
t DHR  
DB0  
to DB15  
VOH1  
VOL1  
VOH1  
VOL1  
Read data  
Note: PWLW and PWLR are specified in the overlapped period when CS* is low and WR* or RD* is low.  
Figure 61 80-system Bus Timing  
Rev. 1.0, Jan. 2003, page 96 of 102  
HD66753  
Clock-synchronized Serial Operation  
Start: S  
End: P  
VIH  
CS*  
VIL  
VIL  
tSCYC  
tscf  
tCSU  
tscr  
tSCH  
tSCL  
VIL  
tCH  
VIH  
VIH  
VIH  
VIH  
VIL  
SCL  
VIL  
VIL  
tSISU  
tSIH  
VIH  
VIL  
VIH  
VIL  
SDA  
Input data  
Input data  
tSOD  
tSOH  
VOH1  
VOL1  
VOH1  
VOL1  
SDA  
Output data  
Output data  
Figure 62 Clock-synchronized Serial Interface Timing  
Reset Operation  
t rRES  
t RES  
VIH  
VIL  
RESET*  
VIL  
Figure 63 Reset Timing  
Rev. 1.0, Jan. 2003, page 97 of 102  
HD66753  
Power-on/off Sequence  
To prevent pulse lighting of LCD screens at power-on/off, the power-on/off sequence is activated as shown  
below. However, since the sequence depends on LCD materials to be used, confirm the conditions by  
using your own system.  
Power-on Sequence  
Turn on power voltages Vcc and Vci, RESET = "Low"  
Wait for 1 ms or longer (power-on time)  
Wait for 10 ms or longer (oscillation stabilization time)  
Issue LCD power instruction  
Wait for 10-150 ms or longer  
Note: Depends on the external  
(op-amplifier output  
stabilization time)  
Issue use-state instruction  
capacitance of V1OUT to V5OUT.  
Turned on display: D = 1  
Figure 64 Power-on Sequence  
Rev. 1.0, Jan. 2003, page 98 of 102  
HD66753  
Vcc  
Power voltage: Vcc  
Power-on reset time: 1 ms  
GND  
Vcc  
RESET  
GND  
Oscillation state  
Oscillation stabilization time: 10 ms  
Vcc  
Signal-input  
instruction issued  
GND  
Note: CR oscillation starts by power-on and input reset.  
The standby mode is cleared by input reset.  
Figure 65 Power-on Timing  
Rev. 1.0, Jan. 2003, page 99 of 102  
HD66753  
Power-off Sequence  
Normal state  
Turn off display: D = 0  
Issue LCD power instruction  
Turn off power voltages Vcc and Vci  
To the power-on sequence  
Abnormal state  
Turn off power voltages Vcc and Vci  
RESET = "Low"  
Driver SEG/COM output: GND  
To the power-on sequence  
Figure 66 Power-off Sequence  
Rev. 1.0, Jan. 2003, page 100 of 102  
HD66753  
Vcc  
Power is turned off.  
Power voltage: Vcc  
GND  
RESET is input as soon as possible.  
Vcc  
RESET  
GND  
V1OUT  
Driver  
SEG/COM  
output  
GND  
Note: When hardware reset is input during the power-off period, the D bit is  
cleared to 0 and SEG/COM output is forcibly lowered to the GND level.  
Figure 67 Power-off Timing  
Rev. 1.0, Jan. 2003, page 101 of 102  
HD66753  
Cautions  
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,  
copyright, trademark, or other intellectual property rights for information contained in this document.  
Hitachi bears no responsibility for problems that may arise with third party’s rights, including  
intellectual property rights, in connection with use of the information contained in this document.  
2. Products and product specifications may be subject to change without notice. Confirm that you have  
received the latest product standards or specifications before final design, purchase or use.  
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,  
contact Hitachi’s sales office before using the product in an application that demands especially high  
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,  
traffic, safety equipment or medical equipment for life support.  
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly  
for maximum rating, operating supply voltage range, heat radiation characteristics, installation  
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used  
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable  
failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-  
safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other  
consequential damage due to operation of the Hitachi product.  
5. This product is not designed to be radiation resistant.  
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without  
written approval from Hitachi.  
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor  
products.  
Sales Offices  
Hitachi, Ltd.  
Semiconductor & Integrated Circuits  
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
Tel: (03) 3270-2111 Fax: (03) 3270-5109  
URL  
http://www.hitachisemiconductor.com/  
For further information write to:  
Hitachi Semiconductor  
(America) Inc.  
Hitachi Europe Ltd.  
Hitachi Asia Ltd.  
Hitachi Asia (Hong Kong) Ltd.  
Group III (Electronic Components)  
7/F., North Tower  
Electronic Components Group  
Hitachi Tower  
179 East Tasman Drive Whitebrook Park  
16 Collyer Quay #20-00  
Singapore 049318  
Tel : <65>-6538-6533/6538-8577  
Fax : <65>-6538-6933/6538-3877  
URL : http://semiconductor.hitachi.com.sg  
San Jose,CA 95134  
Lower Cookham Road  
World Finance Centre,  
Tel: <1> (408) 433-1990 Maidenhead  
Fax: <1>(408) 433-0223 Berkshire SL6 8YA, United Kingdom  
Tel: <44> (1628) 585000  
Harbour City, Canton Road  
Tsim Sha Tsui, Kowloon Hong Kong  
Tel : <852>-2735-9218  
Fax : <852>-2730-0281  
URL : http://semiconductor.hitachi.com.hk  
Fax: <44> (1628) 778322  
Hitachi Asia Ltd.  
(Taipei Branch Office)  
4/F, No. 167, Tun Hwa North Road  
Hung-Kuo Building  
Taipei (105), Taiwan  
Hitachi Europe GmbH  
Electronic Components Group  
Dornacher Str 3  
D-85622 Feldkirchen  
Postfach 201, D-85619 Feldkirchen  
Germany  
Tel : <886>-(2)-2718-3666  
Fax : <886>-(2)-2718-8180  
Telex : 23222 HAS-TP  
Tel: <49> (89) 9 9180-0  
Fax: <49> (89) 9 29 30 00  
URL : http://semiconductor.hitachi.com.tw  
Copyright © Hitachi, Ltd., 2002. All rights reserved. Printed in Japan.  
Colophon 7.0  
Rev. 1.0, Jan. 2003, page 102 of 102  

相关型号:

HD66753WTB0

132X168 DOTS DOT MAT LCD DRVR AND DSPL CTLR, UUC352, TCP-352
RENESAS

HD66760

104 X 80-dot Graphics LCD Controller/Driver for 256 Colors
HITACHI

HD66760TB0

80X104 DOTS DOT MAT LCD DRVR AND DSPL CTLR, UUC475, BENDING TCP
RENESAS

HD66760WTXX

80X104 DOTS DOT MAT LCD DRVR AND DSPL CTLR, UUC475, BENDING TCP
RENESAS

HD66764TB0

LIQUID CRYSTAL DISPLAY DRIVER, UUC240, 10.2 X 3.3 MM, TCP-240
HITACHI

HD66765

396-channel Segment Driver with Internal RAM for 4096-color Displays
HITACHI

HD66765TB0

396-channel Segment Driver with Internal RAM for 4096-color Displays
HITACHI

HD66766

Current cosumption is increased for stabilizing internal amplifier. Technical Update/Device
ETC

HD66766R

132 x 176-dot Graphics LCD Controller/Driver for 65K Colors
HITACHI

HD66768

IC,LCD DISPLAY DRIVER,312-SEG,84-BP,CMOS,TAB
RENESAS

HD66773R

262,144-color, 132 x 176-dot Graphics Controller Driver for TFT LCD panels
RENESAS

HD66780

Dot Matrix Liquid Crystal Display Controller and Driver
HITACHI