HI5813JIJ [RENESAS]

1-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, CDIP24, CERDIP-24;
HI5813JIJ
型号: HI5813JIJ
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

1-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, CDIP24, CERDIP-24

CD 转换器
文件: 总11页 (文件大小:152K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HI5813  
CMOS 3.3V, 25 Microsecond, 12-Bit, Sampling  
A/D Converter with Internal Track and Hold  
August 1997  
[ /Title  
(HI581  
3)  
/Sub-  
ject  
(CMO  
S
3.3V,  
25  
Micro-  
sec-  
ond,  
12-  
Bit,  
Sam-  
pling  
A/D  
Con-  
verter  
with  
Inter-  
nal  
Track  
and  
Features  
Description  
• Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 25µs The HI5813 is a 3.3V, very low power, 12-bit, successive  
approximation analog-to-digital converter. It can operate  
from a single 3V to 6V supply and typically draws a maxi-  
mum of 1.0mA (at 25 C) when operating at 3.3V. The  
HI5813 features a built-in track and hold. The conversion  
time is as low as 25µs with a 3.3V supply.  
• Throughput Rate . . . . . . . . . . . . . . . . . . . . . . . .40 KSPS  
o
• Built-In Track and Hold  
• Single Supply Voltage . . . . . . . . . . . . . . . . . . . . . . +3.3V  
o
• Maximum Power Consumption at 25 C. . . . . . . . 3.3mW  
The twelve data outputs feature full high speed CMOS three-  
state bus driver capability, and are latched and held through  
a full conversion cycle. The output is user selectable: (i.e.)  
12-bit , 8-bit (MSBs), and/or 4-bit (LSBs). A data ready flag  
and conversion start input complete the digital interface.  
Applications  
• Remote Low Power Data Acquisition Systems  
• Battery Operated Systems  
Ordering Information  
• Pen Based PC Handheld Scanners  
• DSP Modems  
INL (LSB)  
TEMP.  
PART  
(MAX OVER RANGE  
PKG.  
NO.  
o
• General Purpose DSP Front End  
µP Controlled Measurement Systems  
• PCMCIA Type II Compliant  
NUMBER  
TEMP.)  
±4.0  
±2.5  
±4.0  
±2.5  
±4.0  
±2.5  
( C)  
PACKAGE  
HI5813JIP  
HI5813KIP  
HI5813JIB  
HI5813KIB  
HI5813JIJ  
HI5813KIJ  
-40 to 85 24 Ld PDIP  
-40 to 85 24 Ld PDIP  
-40 to 85 24 Ld SOIC  
-40 to 85 24 Ld SOIC  
E24.3  
E24.3  
M24.3  
M24.3  
• PC Based Industrial Controls/DAQ Systems  
-40 to 85 24 Ld CERDIP F24.3  
-40 to 85 24 Ld CERDIP F24.3  
Hold)  
/Autho  
r ()  
/Key-  
words  
(Inter-  
sil  
Corpo-  
ration,  
Semi-  
con-  
ductor,  
A/D,  
ADC,  
flash,  
Pinout  
HI5813 (PDIP, CERDIP, SOIC)  
TOP VIEW  
DRDY  
(LSB) D0  
D1  
1
2
3
4
5
6
7
8
9
24  
V
DD  
23 OEL  
22 CLK  
21 STRT  
D2  
D3  
20 V  
19 V  
-
REF  
REF  
D4  
+
D5  
18  
V
IN  
D6  
17 V  
+
AA  
D7  
16  
V
-
AA  
D8 10  
D9 11  
15 OEM  
14 D11 (MSB)  
13 D10  
V
12  
SS  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
File Number 3634.1  
6-1802  
HI5813  
Functional Block Diagram  
STRT  
V
DD  
TO INTERNAL LOGIC  
V
SS  
V
IN  
CLK  
CLOCK  
CONTROL  
AND  
TIMING  
DRDY  
32C  
OEM  
V
+
REF  
16C  
8C  
D11 (MSB)  
50  
SUBSTRATE  
D10  
D9  
D8  
D7  
D6  
4C  
2C  
V
+
AA  
C
V
-
32C  
AA  
64C  
63  
16C  
12-BIT  
12-BIT EDGE  
TRIGGERED  
“D” LATCHED  
SUCCESSIVE  
APPROXIMATION  
REGISTER  
8C  
4C  
2C  
D5  
D4  
D3  
C
C
P1  
D2  
D1  
V
-
REF  
D0 (LSB)  
OEL  
6-1803  
HI5813  
Absolute Maximum Ratings  
Thermal Information  
o
o
Supply Voltage  
Thermal Resistance (Typical, Note 1)  
PDIP Package . . . . . . . . . . . . . . . . . . .  
SOIC Package. . . . . . . . . . . . . . . . . . .  
CERDIP Package . . . . . . . . . . . . . . . .  
Maximum Junction Temperature  
θ
( C/W)  
θ
( C/W)  
JA  
JC  
V
to V  
. . . . . . . . . . . . . . . . . . . .(V -0.5V) < V < +6.5V  
SS DD  
80  
75  
60  
N/A  
N/A  
12  
DD  
SS  
V
+ to V -. . . . . . . . . . . . . . . . . . . . (V -0.5V) to (V +6.5V)  
AA AA SS SS  
V
+ to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±0.3V  
DD  
AA  
Analog and Reference Inputs  
, V +, V - . . . . . . . . . (V -0.3V) < V  
o
V
< (V  
+0.3V)  
+0.3V)  
PDIP and SOIC Packages. . . . . . . . . . . . . . . . . . . . . . . . . . 150 C  
CERDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 C  
Maximum Storage Temperature Range . . . . . . . . . .-65 C to 150 C  
Maximum Lead Temperature (Soldering, 10s) . . . . . . . . . . . . 300 C  
IN REF REF SS INA  
DD  
DD  
o
Digital I/O Pins . . . . . . . . . . . . . . (V -0.3V) < VI/O < (V  
SS  
ο
o
o
Operating Conditions  
(SOIC - Lead Tips Only)  
Temperature Range  
PDIP, SOIC, and CERDIP Packages . . . . . . . . . . . -40 C to 85 C  
o
o
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation  
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
Electrical Specifications  
V
= V + = V  
AA  
+ = 3.3V, V = V - = V  
REF SS AA  
- = GND, CLK = 600kHz (J suffix),  
REF  
DD  
CLK = 500kHz (K suffix), Unless Otherwise Specified  
o
o
o
25 C  
-40 C TO 85 C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
ACCURACY  
Resolution  
12  
-
-
-
-
-
-
-
-
-
-
-
12  
-
-
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
Integral Linearity Error, INL  
(End Point)  
J
±4.0  
±2.5  
±4.0  
±2.0  
±2.0  
±2.0  
±3.0  
±2.5  
±4.0  
±2.5  
±4.0  
±2.0  
±2.0  
±2.0  
±3.0  
±2.5  
K
J
-
-
Differential Linearity Error, DNL  
-
-
K
J
-
-
Gain Error, FSE  
(Adjustable to Zero)  
-
-
K
J
-
-
Offset Error, V  
OS  
(Adjustable to Zero)  
-
-
K
-
-
DYNAMIC CHARACTERISTICS  
Signal to Noise Ratio, SINAD  
RMS Signal  
J
f
f
= 600kHz, f = 1kHz  
IN  
-
-
61.5  
63.9  
-
-
-
-
-
-
dB  
dB  
S
K
= 500kHz, f = 1kHz  
IN  
S
RMS Noise + Distortion  
Signal to Noise Ratio, SNR  
RMS Signal  
J
f
f
= 600kHz, f = 1kHz  
IN  
-
-
63.2  
65.1  
-
-
-
-
-
-
dB  
dB  
S
K
= 500kHz, f = 1kHz  
IN  
S
RMS Noise  
Total Harmonic Distortion, THD  
J
f
f
f
f
= 750kHz, f = 1kHz  
IN  
-
-
-
-
-68.4  
-70.8  
69.0  
71.8  
-
-
-
-
-
-
-
-
-
-
-
-
dBc  
dBc  
dB  
S
S
S
S
K
J
= 750kHz, f = 1kHz  
IN  
Spurious Free Dynamic Range,  
SFDR  
= 600kHz, f = 1kHz  
IN  
K
= 500kHz, f = 1kHz  
IN  
dB  
ANALOG INPUT  
Input Current, Dynamic  
Input Current, Static  
At V = V  
IN  
+, 0V  
-
-
±50  
±100  
±10  
-
-
±100  
±10  
µA  
µA  
REF  
Conversion Stopped  
±0.4  
6-1804  
HI5813  
Electrical Specifications  
V
= V + = V  
AA  
+ = 3.3V, V = V - = V  
- = GND, CLK = 600kHz (J suffix),  
REF  
DD  
REF  
SS  
AA  
CLK = 500kHz (K suffix), Unless Otherwise Specified (Continued)  
o
o
o
25 C  
-40 C TO 85 C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1
MAX  
MIN  
MAX  
UNITS  
MHz  
µA  
Input Bandwidth -3dB  
-
-
-
-
-
-
-
-
-
Reference Input Current  
160  
420  
-
-
Input Series Resistance, R  
In Series with Input  
S
C
SAMPLE  
Input Capacitance, C  
Input Capacitance, C  
During Sample State  
During Hold State  
-
-
380  
20  
-
-
-
-
-
-
pF  
pF  
SAMPLE  
HOLD  
DIGITAL INPUTS OEL, OEM, STRT  
High-Level Input Voltage, V  
IH  
2.4  
-
-
-
2.4  
-
0.8  
±10  
-
V
V
Low-Level Input Voltage, V  
-
-
-
0.8  
±10  
-
-
-
IL  
Input Leakage Current, I  
IL  
Except CLK, V = 0V, 5V  
IN  
-
µA  
pF  
Input Capacitance, C  
10  
IN  
DIGITAL OUTPUTS  
High-Level Output Voltage, V  
I
I
= -400µA  
2.6  
-
-
-
-
2.6  
-
V
V
OH  
SOURCE  
Low-Level Output Voltage, V  
= 1.6mA  
-
-
0.4  
±10  
-
-
0.4  
±10  
OL  
SINK  
Three-State Leakage, I  
Except DRDY, V  
3.3V  
= 0V,  
OUT  
µA  
OZ  
Output Capacitance, C  
Except DRDY  
-
20  
-
-
-
pF  
OUT  
TIMING  
Conversion Time (t  
(Includes Acquisition Time)  
+ t  
)
J
25  
-
-
-
-
25  
-
-
µs  
µs  
MHz  
ns  
CONV  
ACQ  
K
30  
30  
Clock Frequency  
(Note 2)  
(Note 2)  
(Note 2)  
(Note 2)  
(Note 2)  
(Note 2)  
(Note 2)  
(Note 2)  
(Note 2)  
(Note 2)  
(Note 2)  
0.05  
-
0.75  
-
0.05  
0.75  
-
Clock Pulse Width, t  
, t  
LOW HIGH  
100  
-
100  
Aperture Delay, t APR  
-
-
35  
180  
180  
30  
60  
15  
110  
65  
95  
50  
210  
220  
-
-
-
70  
240  
250  
-
ns  
D
Clock to Data Ready Delay, t DRDY  
D1  
ns  
Clock to Data Ready Delay, t DRDY  
D2  
-
-
ns  
Start Removal Time, t STRT  
75  
85  
-
75  
30  
-
ns  
R
Start Setup Time, t STRT  
SU  
-
-
ns  
Start Pulse Width, t STRT  
25  
130  
75  
110  
25  
160  
80  
130  
ns  
W
Start to Data Ready Delay, t DRDY  
D3  
-
-
ns  
Output Enable Delay, t  
-
-
ns  
EN  
Output Disabled Delay, t  
-
-
ns  
DIS  
POWER SUPPLY CHARACTERISTICS  
Supply Current, I  
NOTE:  
+ I  
AA  
-
0.5  
1
-
2.5  
mA  
DD  
2. Parameter guaranteed by design or characterization, not production tested.  
6-1805  
HI5813  
Timing Diagrams  
5 - 14  
4
15  
1
3
1
2
2
3
CLK  
t
LOW  
t
DRDY  
D1  
t
HIGH  
STRT  
DRDY  
t
DRDY  
D2  
DATA N - 1  
D0 - D11  
DATA N  
HOLD N  
V
IN  
TRACK N  
TRACK N + 1  
OEL = OEM = V  
SS  
FIGURE 1. CONTINUOUS CONVERSION MODE  
2
2
3
15  
2
4
1
5
CLK  
t
STRT  
t STRT  
SU  
R
t
STRT  
W
STRT  
t
DRDY  
D3  
DRDY  
HOLD  
HOLD  
TRACK  
V
IN  
FIGURE 2. SINGLE SHOT MODE  
6-1806  
HI5813  
Timing Diagrams (Continued)  
OEL OR OEM  
t
t
DIS  
EN  
1.6mA  
90%  
50%  
D0 - D3 OR D4 - D11  
HIGH IMPEDANCE  
TO HIGH  
+2.1V  
TO  
OUTPUT  
PIN  
50pF  
HIGH  
IMPEDANCE  
50%  
TO LOW  
10%  
-1.6mA  
FIGURE 3A.  
FIGURE 3. OUTPUT ENABLE/DISABLE TIMING DIAGRAM  
FIGURE 3B.  
INPUT FREQUENCY = 1kHz  
SAMPLING RATE = 33kHz  
SNR = 65.55dB  
1.6mA  
SINAD = 64.18dB  
EFFECTIVE BITS = 10.37  
THD = -70.02dBc  
PEAK NOISE = -70.9dB  
SFDR = 71.1dB  
+2.1V  
50pF  
-400µA  
FREQUENCY  
FIGURE 4. GENERAL TIMING LOAD CIRCUIT  
FIGURE 5. FFT SPECTRUM  
Typical Performance Curves  
4.00  
4.00  
3.60  
3.20  
2.80  
V
= V + = V + = 3.3V  
AA REF  
V
= V + = V  
AA  
+ = 3.3V  
REF  
3.60  
3.20  
2.80  
DD  
DD  
CLK = 600kHz  
CLK = 500kHz  
CLK = 600kHz  
CLK = 500kHz  
2.40  
2.00  
1.60  
1.20  
0.80  
0.40  
0.00  
2.40  
2.00  
1.60  
1.20  
0.80  
0.40  
0.0  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
o
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
o
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 7. DNL vs TEMPERATURE  
FIGURE 6. INL vs TEMPERATURE  
6-1807  
HI5813  
Typical Performance Curves  
1.20  
0.00  
-0.10  
-0.20  
-0.30  
V
= V + = V  
AA  
+ = 3.3V  
REF  
V
= V + = V  
AA  
+ = 3.3V  
REF  
DD  
DD  
1.10  
CLK = 500kHz  
CLK = 600kHz  
1.00  
0.90  
0.80  
-0.40  
-0.50  
-0.60  
-0.70  
CLK = 600kHz  
CLK = 500kHz  
0.70  
0.60  
0.50  
-0.80  
-0.90  
-1.00  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
o
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
o
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 9. FULL SCALE ERROR vs TEMPERATURE  
FIGURE 8. OFFSET ERROR vs TEMPERATURE  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
V
= V + = V +  
AA REF  
V
= V + = V  
AA  
+ = 3.3V  
REF  
DD  
DD  
CLK = 600kHz  
CLK = 500kHz  
CLK = 500kHz  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
o
SUPPLY VOLTAGE (V)  
TEMPERATURE ( C)  
FIGURE 10. SUPPLY CURRENT vs TEMPERATURE  
FIGURE 11. DNL vs SUPPLY VOLTAGE  
Pin Descriptions  
PIN # NAME  
DESCRIPTION  
PIN # NAME  
DESCRIPTION  
1
DRDY Output flag signifying new data is available. Goes  
high at end of clock period 15. Goes low when new  
conversion is started.  
14  
15  
16  
17  
18  
19  
D11  
Bit 11 (Most significant bit, MSB)  
OEM Three-State enable for D4-D11. Active Low Input.  
V
-
Analog Ground, (0V).  
AA  
2
3
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
Bit 0 (Least Significant Bit, LSB).  
V
+
Analog Positive Supply. (+3.3V) (See text.)  
Analog Input.  
AA  
Bit 1.  
V
IN  
4
Bit 2.  
V
+
Reference Voltage Positive Input, sets 4095  
code end of input range.  
REF  
5
Bit 3.  
6
Bit 4.  
20  
21  
22  
V
-
Reference Voltage Negative Input, sets 0 code  
end of input range.  
REF  
7
Bit 5.  
8
Bit 6.  
STRT Start Conversion Input active low, recognized af-  
ter end of clock period 15.  
9
Bit 7.  
CLK  
CLK Input. Conversion functions are synchronized  
to positive going edge. (See text)  
10  
11  
12  
13  
Bit 8.  
Bit 9.  
23  
24  
OEL  
Three-State Enable for D0 - D3. Active low input.  
Digital Positive Supply (+3.3V).  
V
Digital Ground, (0V).  
Bit 10.  
SS  
V
DD  
D10  
6-1808  
HI5813  
constants or 1.4µs. The maximum source impedance  
(R Max) for a 6µs acquisition time settling to within  
0.5 LSB is 1.3k.  
Theory of Operation  
SOURCE  
HI5813 is a CMOS 12-Bit, Analog-to-Digital Converter that  
uses capacitor charge balancing to successively  
approximate the analog input. A binary weighted capacitor  
network forms the A/D heart of the device. See the block  
diagram for the HI5813.  
If the clock frequency was slower, or the converter was not  
restarted immediately (causing a longer sample time), a  
higher source impedance could be tolerated.  
V
IN  
R
SW 420Ω  
The capacitor network has a common node which is  
connected to a comparator. The second terminal of each  
C
SAMPLE 380pF  
capacitor is individually switchable to the input, V  
+ or  
REF  
R
SOURCE  
V
-.  
REF  
-t  
ACQ  
- R  
SW  
R
=
C
During the first three clock periods of a conversion cycle, the  
switchable end of every capacitor is connected to the input  
and the comparator is being auto balanced at the capacitor  
common node.  
SOURCE (MAX)  
-(N + 1)  
ln [2  
]
SAMPLE  
FIGURE 12. ANALOG INPUT MODEL IN TRACK MODE  
Reference Input  
During the fourth period, all capacitors are disconnected  
from the input; the one representing the MSB (D11) is  
The reference input V  
REF  
impedance source and be well decoupled.  
+ should be driven from a low  
connected to the V  
+ terminal; and the remaining  
REF  
-. The capacitor common node, after the  
capacitors to V  
REF  
charges balance out, will indicate whether the input was  
Current spikes are generated on the reference pin during  
each bit test of the successive approximation part of the con-  
version cycle as the charge balancing capacitors are  
1
above  
period, the comparator output is stored and the MSB  
capacitor is either left connected to V + (if the comparator  
/
of (V  
+ - V  
-). At the end of the fourth  
2
REF  
REF  
switched between V  
- and V + (clock periods 5 - 14).  
REF  
-. This allows the next  
REF  
REF  
was high) or returned to V  
These current spikes must settle completely during each bit  
test of the conversion to not degrade the accuracy of the  
REF  
3
1
comparison to be at either / or / of (V  
+ - V  
-).  
4
4
REF  
REF  
converter. Therefore V  
bypassed. Reference input V  
+ and V  
- should be well  
REF  
REF  
- is normally connected  
directly to the analog ground plane. If V - is biased for  
At the end of periods 5 through 14, capacitors representing  
D10 through D1 are tested, the result stored, and each  
REF  
REF  
capacitor either left at V  
+ or at V  
-.  
REF  
REF  
nulling the converters offset it must be stable during the  
At the end of the 15th period, when the LSB (D0) capacitor is  
tested, (D0) and all the previous results are shifted to the  
output registers and drivers. The capacitors are reconnected  
to the input, the comparator returns to the balance state, and  
the data ready output goes active. The conversion cycle is  
now complete.  
conversion cycle.  
Full Scale and Offset Adjustment  
In many applications the accuracy of the HI5813 would be  
sufficient without any adjustments. In applications where  
accuracy is of utmost importance full scale and offset errors  
may be adjusted to zero.  
Analog Input  
The V  
REF  
+ and V - pins reference the two ends of the  
REF  
The analog input pin is a predominately capacitive load that  
changes between the track and hold periods of the  
conversion cycle. During hold, clock period 4 through 15, the  
input loading is leakage and stray capacitance, typically less  
than 5µA and 20pF.  
analog input range and may be used for offset and full scale  
adjustments. In a typical system the V - might be  
REF  
returned to a clean ground, and the offset adjustment done  
on an input amplifier. V + would then be adjusted to null  
REF  
out the full scale error. When this is not possible, the V  
input can be adjusted to null the offset error, however, V  
must be well decoupled.  
-
-
REF  
REF  
At the start of input tracking, clock period 1, some charge is  
dumped back to the input pin. The input source must have  
low enough impedance to dissipate the current spike by the  
end of the tracking period. The amount of charge is depen-  
dent on supply and input voltages. The average current is  
also proportional to clock frequency.  
Full scale and offset error can also be adjusted to zero in the  
signal conditioning amplifier driving the analog input (V ).  
IN  
Control Signal  
As long as these current spikes settle completely by end of  
the signal acquisition period, converter accuracy will be  
preserved. The analog input is tracked for 3 clock cycles.  
With a clock of 500kHz the track period is 6µs.  
The HI5813 may be synchronized from an external source  
by using the STRT (Start Conversion) input to initiate conver-  
sion, or if STRT is tied low, may be allowed to free run. Each  
conversion cycle takes 15 clock periods.  
A simplified analog input model is presented in Figure 12.  
The input is tracked from clock period 1 through period 3,  
then disconnected as the successive approximation takes  
During tracking, the A/D input (V ) typically appears as a  
IN  
380pF capacitor being charged through a 420internal  
switch resistance. The time constant is 160ns. To charge  
this capacitor from an external “zero ” source to 0.5 LSB  
(1/8192), the charging time must be at least 9 time  
place. After the start of the next period 1 (specified by t  
data), the output is updated.  
D
6-1809  
HI5813  
The DRDY (Data Ready) status output goes high (specified noise. A 10µF capacitor from V + to ground would  
AA  
by t DRDY) after the start of clock period 1, and returns attenuate 30kHz noise by approximately 40dB. Note that  
D1  
low (specified by t DRDY) after the start of clock period 2.  
D2  
back to back diodes should be placed from V  
DD  
to V + to  
AA  
handle supply to capacitor turn-on or turn-off current spikes.  
The 12 data bits are available in parallel on three-state bus  
driver outputs. When low, the OEM input enables the most Dynamic Performance  
significant byte (D4 through D11) while the OEL input  
Fast Fourier Transform (FFT) techniques are used to  
evaluate the dynamic performance of the A/D. A low distor-  
tion sine wave is applied to the input of the A/D converter.  
enables the four least significant bits (D0 - D3). t  
specify the output enable and disable times.  
and t  
EN  
DIS  
If the output data is to be latched externally, either the trailing The input is sampled by the A/D and its output stored in  
edge of data ready or the next falling edge of the clock after RAM. The data is than transformed into the frequency  
data ready goes high can be used.  
domain with a 4096 point FFT and analyzed to evaluate the  
converters dynamic performance such as SNR and THD.  
See typical performance characteristics.  
Figure 2 shows operation of the HI5813 when the STRT pin  
is used to initate a conversion. If STRT is taken high at least  
t STRT before clock period 1 and is not reapplied during Signal-To-Noise Ratio  
R
that period, the converter will stay in the track mode and the  
The signal to noise ratio (SNR) is the measured RMS signal  
DRDY output will remain high. A low signal applied to STRT  
will bring the DRDY flag low and the conversion will continue  
with clock period 3 on the first positive going clock edge that  
to RMS sum of noise at a specified input and sampling  
frequency. The noise is the RMS sum of all except the  
fundamental and the first five harmonic signals. The SNR is  
dependent on the number of quantization levels used in the  
converter. The theoretical SNR for an N-bit converter with  
no differential or integral linearity error is: SNR = (6.02N +  
1.76)dB. For an ideal 12-bit converter the SNR is 74dB. Dif-  
ferential and integral linearity errors will degrade SNR:  
meets the t STRT setup time.  
SU  
Clock  
The clock used to drive the HI5813 can range in frequency  
from 50kHz up to 750kHz. All converter functions are syn-  
chronized with the rising edge of the clock signal. The clock  
can be shut off only during the sample (track) portion of the  
conversion cycle. At other times it must be above the mini-  
mum frequency shown in the specifications. In the above two  
cases, a further restriction applies in that the clock should  
not be shut off during the third sample period for more than  
1ms. This might cause an internal charge pump voltage to  
decay.  
Sinewave Signal Power  
SNR = 10 Log  
Total Noise Power  
Signal-To-Noise + Distortion Ratio  
SINAD is the measured RMS signal to RMS sum of noise  
plus harmonic power and is expressed by the following:  
Sinewave Signal Power  
SINAD = 10 Log  
If the clock is shut off during the conversion time (clock  
cycles 4 through 15) of the A/D, the output might be invalid  
due to balancing capacitor droop.  
Noise + Harmonic Power (2nd - 6th)  
Effective Number of Bits  
The clock must also meet the minimum t  
and t  
HIGH  
LOW  
The effective number of bits (ENOB) is derived from the  
SINAD data:  
times shown in the specifications. A violation may cause an  
internal miscount and invalidate the results.  
Power Supplies and Grounding  
SINAD - 1.76  
ENOB =  
6.02  
V
and V are the digital supply pins: they power all  
SS  
DD  
internal logic and the output drivers. Because the output  
drivers can cause fast current spikes in the V and V  
Total Harmonic Distortion  
DD  
SS  
lines, V  
ground and V  
should have a low impedance path to digital  
The total harmonic distortion (THD) is the ratio of the RMS  
sum of the second through sixth harmonic components to  
the fundamental RMS signal for a specified input and  
sampling frequency.  
SS  
should be well bypassed.  
DD  
Except for V +, which is a substrate connection to V , all  
pins have protection diodes connected to V  
AA  
DD  
and V  
.
DD  
SS  
Input transients above V  
the digital supplies.  
or below V will get steered to  
DD  
SS  
Total Harmonic Power (2nd - 6th Harmonic)  
THD = 10 Log  
Sinewave Signal Power  
The V + and V - terminals supply the charge balancing  
AA AA  
comparator only. Because the comparator is autobalanced  
between conversions, it has good low frequency supply  
rejection. It does not reject well at high frequencies however;  
Spurious-Free Dynamic Range  
The spurious-free dynamic range (SFDR) is the ratio of the  
fundamental RMS amplitude to the rms amplitude of the next  
largest spur or spectral component. If the harmonics are  
buried in the noise floor it is the largest peak.  
V
- should be returned to a clean analog ground and V +  
AA AA  
should be RC decoupled from the digital supply as shown in  
Figure 13.  
Sinewave Signal Power  
SFDR = 10 Log  
There is approximately 50of substrate impedance  
between V  
and V +. This can be used, for example, as  
Highest Spurious Signal Power  
DD  
AA  
part of a low pass RC filter to attenuate switching supply  
6-1810  
HI5813  
TABLE 2. CODE TABLE  
INPUT  
BINARY OUTPUT CODE  
VOLTAGE  
V
+ = 3.3V  
- = 0.0V  
(V)  
MSB  
LSB  
D0  
1
REF  
CODE  
DESCRIPTION  
V
DECIMAL  
COUNT  
REF  
D11  
1
D10  
1
D9  
1
D8  
1
D7  
1
D6  
1
D5  
1
D4  
1
D3  
1
D2  
1
D1  
1
Full Scale (FS)  
3.2992  
4095  
4094  
3072  
2048  
1024  
1
FS - 1 LSB  
3
3.2984  
2.4750  
1.6500  
0.8250  
1
1
1
1
1
1
1
1
1
1
1
0
/
/
/
FS  
FS  
FS  
1
1
0
0
0
0
0
0
0
0
0
0
4
2
4
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1 LSB  
Zero  
0.00080566  
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
The voltages listed above represent the ideal lower transition of each output code shown as a function of the reference voltage.  
+3.3V  
0.1µF  
4.7µF  
10µF  
0.1µF  
0.01µF  
V
+
V
DD  
AA  
D11  
OUTPUT  
DATA  
.
.
.
D0  
V
+
REF  
DRDY  
OEM  
OEL  
ANALOG  
INPUT  
V
V
IN  
STRT  
CLK  
500kHz CLOCK  
-
V
-
V
SS  
REF  
AA  
FIGURE 13. GROUND AND SUPPLY DECOUPLING  
6-1811  
HI5813  
Die Characteristics  
DIE DIMENSIONS:  
PASSIVATION:  
3200µm x 3940µm  
Type: PSG  
Thickness: 13kÅ ±2.5kÅ  
METALLIZATION:  
WORST CASE CURRENT DENSITY:  
Type: AlSi  
Thickness: 11kÅ ±1kÅ  
5
2
1.84 x 10 A/cm  
Metallization Mask Layout  
HI5813  
D0  
(LSB)  
D1  
DRDY  
V
OEL  
DD  
CLK  
D2  
D3  
STRT  
V
-
REF  
D4  
D5  
D6  
V
+
REF  
D7  
D8  
V
IN  
V
+
-
AA  
V
AA  
D9  
V
D10  
D11  
OEM  
SS  
(MSB)  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate  
and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
6-1812  

相关型号:

HI5813JIP

CMOS 3.3V, 25 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5813JIP

1-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDIP24, PLASTIC, DIP-24
RENESAS

HI5813JIP

1-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDIP24, DIP-24
ROCHESTER

HI5813KIB

CMOS 3.3V, 25 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5813KIB

12-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDSO24
RENESAS

HI5813KIB

1-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDSO24, SOIC-24
ROCHESTER

HI5813KIJ

CMOS 3.3V, 25 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5813KIJ

1-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, CDIP24, CERDIP-24
RENESAS

HI5813KIJ

1-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, CDIP24, DIP-24
ROCHESTER

HI5813KIP

CMOS 3.3V, 25 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5813KIP

12-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDIP24
RENESAS

HI5813KIP

1-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDIP24, DIP-24
ROCHESTER