HM64YLB36512 [RENESAS]

16M Synchronous Late Write Fast Static RAM (512-kword × 36-bit); 16M同步后写高速静态RAM ( 512千字× 36位)
HM64YLB36512
型号: HM64YLB36512
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

16M Synchronous Late Write Fast Static RAM (512-kword × 36-bit)
16M同步后写高速静态RAM ( 512千字× 36位)

文件: 总31页 (文件大小:360K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HM64YLB36512 Series  
16M Synchronous Late Write Fast Static RAM  
(512-kword × 36-bit)  
REJ03C0270-0300  
Rev.3.00  
Jan.13.2006  
Description  
The HM64YLB36512 is a synchronous fast static RAM organized as 512-kword × 36-bit. It has realized high speed  
access time by employing the most advanced CMOS process and high speed circuit designing technology. It is most  
appropriate for the application which requires high speed, high density memory and wide bit width configuration, such  
as cache and buffer memory in system. It is packaged in standard 119-bump BGA.  
Note: All power supply and ground pins must be connected for proper operation of the device.  
Features  
2.5 V ± 5% operation and 1.5 V (VDDQ)  
16M bit density  
Byte write control (4 byte write selects, one for each 9-bit)  
Optional ×18 configuration  
HSTL compatible I/O  
Programmable impedance output drivers  
Asynchronous G output control  
Asynchronous sleep mode  
FC-BGA 119pin package with SRAM JEDEC standard pinout  
Limited set of boundary scan JTAG IEEE 1149.1 compatible  
Mode selectable among late write, associative late write (late select) and register-latch  
Late select mode:  
Synchronous register to register operation  
Late SAS select, selects which half of 72-bit core data to return on reads  
SAS serves as way select  
Differential HSTL clock inputs  
Late write mode:  
Synchronous register to register operation  
Differential HSTL clock inputs  
Register-latch mode:  
Synchronous register to latch operation  
Differential pseudo-HSTL clock inputs  
Rev.3.00 Jan 13, 2006 page 1 of 29  
HM64YLB36512 Series  
Ordering Information  
Type No.  
Organization  
Modes  
Access time Cycle time  
Package  
HM64YLB36512BP-28 512k × 36  
Late select mode  
Late write mode  
1.6 ns  
2.8 ns  
3.3 ns  
6.5 ns  
119-bump 1.27 mm  
14 mm × 22 mm BGA  
PRBG0119DB-A (BP-119E)  
HM64YLB36512BP-33 512k × 36  
Late select mode  
Late write mode  
1.6 ns  
Register-latch mode 5.5 ns  
Note: HM: Hitachi Memory prefix, 64: External Cache SRAM, Y: VDD = 2.5 V, L: Dual Mode SRAM, B: VDDQ = 1.5 V  
Pin Arrangement  
1
2
3
4
NC  
5
6
7
A
B
C
D
E
F
VDDQ  
NC  
SA14  
SA15  
SA16  
DQc8  
DQc6  
DQc4  
DQc2  
DQc0  
VDD  
SA13  
SA12  
SA11  
VSS  
SA6  
SA5  
SA4  
VSS  
SA7  
VDDQ  
NC  
NC  
SA9  
NC  
VDD  
ZQ  
SA8  
NC  
DQc7  
DQc5  
VDDQ  
DQc3  
DQc1  
VDDQ  
DQd1  
DQd3  
VDDQ  
DQd5  
DQd7  
NC  
DQb8  
DQb6  
DQb4  
DQb2  
DQb0  
VDD  
DQb7  
DQb5  
VDDQ  
DQb3  
DQb1  
VDDQ  
DQa1  
DQa3  
VDDQ  
DQa5  
DQa7  
NC  
VSS  
SS  
G
VSS  
VSS  
VSS  
G
H
J
SWEc  
VSS  
NC  
SWEb  
VSS  
NC  
VREF  
VSS  
VDD  
K
VREF  
VSS  
K
L
DQd0  
DQd2  
DQd4  
DQd6  
DQd8  
SA10  
NC  
DQa0  
DQa2  
DQa4  
DQa6  
DQa8  
SA1  
SWEd  
VSS  
K
SWEa  
VSS  
M
N
P
R
T
SWE  
SA17  
SAS/SA0  
VDD  
SA3  
TCK  
VSS  
VSS  
VSS  
VSS  
M1  
M2  
NC  
SA18  
TDI  
SA2  
TDO  
NC  
ZZ  
U
VDDQ  
TMS  
NC  
VDDQ  
(Top view)  
Note: 4P pin is SAS in both the late select mode and the late write mode, or is SA0 in the register-latch mode.  
Rev.3.00 Jan 13, 2006 page 2 of 29  
HM64YLB36512 Series  
Block Diagram (Late Select Mode)  
Read  
add. reg.  
SA1 to SA18  
Write  
add. reg.  
1
0
Memory array  
(way0)  
256k × 36  
Memory array  
(way1)  
256k × 36  
SA1 to SA18  
compare  
Match0  
0
1
0
1
0 1  
Read  
Write  
SAS  
add. reg.  
Match1  
add. reg.  
SWEx  
1st reg.  
SWEx  
2nd reg.  
Byte write  
control  
(x: a to d)  
Output  
reg.  
Din  
reg.  
Output  
reg.  
SS  
reg.  
Way select  
0
1
SWE  
reg.  
Output enable  
K
Impedance  
control  
ZQ  
DQxn  
(x: a to d,  
n: 0 to 8)  
Block Diagram (Late Write Mode)  
Read  
add. reg.  
SAS  
SA1 to SA18  
Write  
add. reg.  
1
0
Memory array  
(way0)  
512k × 36  
SAS  
SA1 to SA18  
compare  
Match0  
0
1
SWEx  
1st reg.  
SWEx  
2nd reg.  
Byte write  
control  
(x: a to d)  
Din  
reg.  
Output  
reg.  
SS  
reg.  
SWE  
reg.  
Output enable  
K
Impedance  
control  
ZQ  
DQxn  
(x: a to d,  
n: 0 to 8)  
Rev.3.00 Jan 13, 2006 page 3 of 29  
HM64YLB36512 Series  
Block Diagram (Register-Latch Mode)  
Read  
add. reg.  
SA0 to SA18  
Write  
add. reg.  
1
0
Memory array  
(way0)  
512k × 36  
SA0 to SA18  
compare  
Match0  
0
1
SWEx  
1st reg.  
SWEx  
2nd reg.  
Byte write  
control  
(x: a to d)  
Din  
reg.  
Output  
latch  
SS  
reg.  
SWE  
reg.  
Output enable  
K
Impedance  
control  
ZQ  
DQxn  
(x: a to d,  
n: 0 to 8)  
Rev.3.00 Jan 13, 2006 page 4 of 29  
HM64YLB36512 Series  
Pin Descriptions  
Name I/O type  
Descriptions  
Notes  
VDD  
VSS  
VDDQ  
VREF  
K
Supply  
Supply  
Supply  
Supply  
Input  
Core power supply  
Ground  
Output power supply  
Input reference, provides input reference voltage  
Clock input, active high  
K
SS  
SWE  
SAn  
Input  
Clock input, active low  
Input  
Synchronous chip select  
Input  
Synchronous write enable  
Input  
Synchronous address input  
n: 1 to 18  
(Late select mode)  
(Late write mode)  
n: 0 to 18  
(Register-latch mode)  
SAS  
Input  
Late select: Synchronous way select  
Late write: Synchronous address input  
SA0 in the register-latch  
mode  
SWEx  
G
Input  
Input  
Input  
Input  
I/O  
Synchronous byte write enables  
Asynchronous output enable  
Power down mode select  
x: a to d  
ZZ  
ZQ  
Output impedance control  
Synchronous data input/output  
1
DQxn  
x: a to d  
n: 0 to 8  
M1, M2 Input  
Output protocol mode select  
Boundary scan test mode select  
Boundary scan test clock  
Boundary scan test data input  
Boundary scan test data output  
No connection  
TMS  
TCK  
TDI  
Input  
Input  
Input  
Output  
TDO  
NC  
M1  
M2  
VSS  
Protocol  
Notes  
VSS  
VSS  
VDD  
Synchronous register to register operation (late select mode)  
Synchronous register to register operation (late write mode)  
Synchronous register to latch operation (register-latch mode)  
2
3
2
VDD  
VSS  
Notes: 1. ZQ is to be connected to VSS via a resistance RQ where 175 Ω ≤ RQ 300 . If ZQ = VDDQ or open, output  
buffer impedance will be maximum.  
2. Mode control pins M1 and M2 are used to select different read protocols.  
These mode control input pins are set at power-up and will not change the states during the SRAM operates.  
Late select mode: Single clock, late SAS select, pipelined read protocol  
Late write mode: Single clock, pipelined read protocol  
Register-latch mode: Single differential clock register-latch mode protocol  
3. Mode control pin M2 can be set to VDDQ instead of VDD  
.
Rev.3.00 Jan 13, 2006 page 5 of 29  
HM64YLB36512 Series  
Truth Table  
Late select mode  
Late write mode  
Register-latch mode  
ZZ  
SS  
G
SWE  
SWEa  
SWEb  
SWEc  
SWEd  
K
K
Operation  
DQ (n)  
DQ (n+1)  
DQ (n)  
DQ (n+1)  
H
×
×
×
×
×
×
×
×
×
Sleep  
mode  
High-Z  
High-Z  
High-Z  
High-Z  
L
L
L
H
×
L
×
H
L
×
H
H
×
×
×
×
×
×
×
×
×
×
×
×
L-H H-L Dead  
(not  
×
High-Z  
High-Z  
High-Z  
×
selected)  
Dead  
×
×
High-Z  
×
High-Z  
(dummy  
read)  
L-H H-L Read  
×
DOUT  
(a, b, c,  
d)  
DOUT  
(a, b, c,  
d)  
×
0 to 8  
0 to 8  
L
L
×
L
L
L
L
L
L-H H-L Write  
High-Z  
DIN  
High-Z  
DIN  
a, b, c, d  
(a, b, c,  
d)  
(a, b, c,  
d)  
byte  
0 to 8  
0 to 8  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
×
×
×
×
×
×
×
×
L
L
L
L
L
L
L
L
H
L
L
H
L
L
L
L
L
L-H H-L Write  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
DIN  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
DIN  
b, c, d  
byte  
(b, c, d)  
0 to 8  
(b, c, d)  
0 to 8  
L-H H-L Write  
DIN  
DIN  
a, c, d  
byte  
(a, c, d)  
0 to 8  
(a, c, d)  
0 to 8  
L
H
L
L
L-H H-L Write  
DIN  
DIN  
a, b, d  
byte  
(a, b, d)  
0 to 8  
(a, b, d)  
0 to 8  
L
L
H
L
L-H H-L Write  
DIN  
DIN  
a, b, c  
byte  
(a, b, c)  
0 to 8  
(a, b, c)  
0 to 8  
H
L
H
H
L
L
L-H H-L Write  
DIN  
DIN  
c, d byte  
(c, d)  
0 to 8  
(c, d)  
0 to 8  
H
H
L
L
L-H H-L Write  
a, d byte  
DIN  
DIN  
(a, d)  
0 to 8  
(a, d)  
0 to 8  
L
H
H
L-H H-L Write  
a, b byte  
DIN  
DIN  
(a, b)  
0 to 8  
(a, b)  
0 to 8  
H
L
L-H H-L Write  
b, c byte  
DIN  
DIN  
(b, c)  
0 to 8  
(b, c)  
0 to 8  
L
L
L
L
L
L
L
L
×
×
×
×
L
L
L
L
H
H
H
L
H
H
L
H
L
L
H
H
H
L-H H-L Write  
d byte  
High-Z  
High-Z  
High-Z  
High-Z  
DIN (d)  
0 to 8  
High-Z  
High-Z  
High-Z  
High-Z  
DIN (d)  
0 to 8  
L-H H-L Write  
c byte  
DIN (c)  
0 to 8  
DIN (c)  
0 to 8  
H
H
L-H H-L Write  
b byte  
DIN (b)  
0 to 8  
DIN (b)  
0 to 8  
H
L-H H-L Write  
a byte  
DIN (a)  
0 to 8  
DIN (a)  
0 to 8  
Notes: 1. H: VIH, L: VIL, ×: VIH or VIL  
2. SWE, SS, SWEa to SWEd, SA and SAS are sampled at the rising edge of K clock.  
Rev.3.00 Jan 13, 2006 page 6 of 29  
HM64YLB36512 Series  
Programmable Impedance Output Drivers  
Output buffer impedance can be programmed by terminating the ZQ pin to VSS through a precision resistor (RQ). The  
value of RQ is five times the output impedance desired. The allowable value of RQ to guarantee impedance matching  
with a tolerance of 15% is 250 . If the status of ZQ pin is open, output impedance is maximum value. Maximum  
impedance also occurs with ZQ connected to VDDQ. The impedance update of the output driver occurs when the SRAM  
is in high-Z. Write and deselect operations will synchronously switch the SRAM into and out of high-Z, therefore will  
trigger an update. At power up, the output buffer is in high-Z. It will take 4,096 cycles for the impedance to be  
completely updated.  
Absolute Maximum Ratings  
Parameter  
Symbol  
VIN  
Rating  
0.5 to VDDQ + 0.5  
0.5 to +3.13  
0.5 to +2.1  
0 to +85  
Unit  
Notes  
1, 4  
Input voltage on any pin  
Core supply voltage  
Output supply voltage  
Operating temperature  
Storage temperature  
Output short-circuit current  
Latch up current  
V
V
V
VDD  
1
VDDQ  
TOPR  
TSTG  
IOUT  
1, 4  
°C  
55 to +125  
25  
°C  
mA  
ILI  
200  
mA  
Package junction to top thermal resistance  
Package junction to board thermal resistance  
θJ-top  
θJ-board  
6.5  
°C/W  
°C/W  
5
5
12  
Notes: 1. All voltage is referenced to VSS  
.
2. Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation  
should be restricted the operation conditions. Exposure to higher voltages than recommended voltages for  
extended periods of time could affect device reliability.  
3. These CMOS memory circuits have been designed to meet the DC and AC specifications shown in the  
tables after thermal equilibrium has been established.  
4. The following supply voltage application sequence is recommended: VSS, VDD, VDDQ, VREF then VIN.  
Remember, according to the absolute maximum ratings table, VDDQ is not to exceed 2.1 V, whatever the  
instantaneous value of VDDQ  
5. See figure below.  
.
θJ-top  
θJ-board  
Thermocouple  
Thermo grease  
Teflon block  
Thermocouple  
Water  
Water  
Cold plate  
SRAM  
SRAM  
Water  
Water  
Cold plate  
JEDEC/2S2P BGA  
Thermal board  
JEDEC/2S2P  
Thermal board  
BGA  
Thermo grease  
Teflon block  
Rev.3.00 Jan 13, 2006 page 7 of 29  
HM64YLB36512 Series  
Note: The following DC and AC specifications shown in the tables, this device is tested under the minimum transverse  
air flow exceeding 500 linear feet per minute.  
Recommended DC Operating Conditions  
(Ta = 0 to +85°C)  
Late select mode  
Late write mode  
Register-latch mode  
Parameter  
Symbol  
VDD  
Unit Notes  
Min  
2.38  
Typ  
Max  
2.63  
Min  
2.38  
Typ Max  
Power supply  
voltage: core  
2.50  
1.50  
0.75  
2.50  
1.50  
0.75  
2.63  
V
Power supply  
voltage: I/O  
VDDQ  
VREF  
1.40  
0.60  
1.60  
0.90  
1.40  
0.70  
1.60  
0.80  
V
Input reference  
voltage: I/O  
V
1
Input high voltage VIH  
Input low voltage VIL  
VREF + 0.10  
0.30  
VDDQ + 0.30 VREF + 0.15  
REF 0.10 0.50  
VDDQ + 0.30 0.10  
VDDQ + 0.50 V  
REF 0.15 V  
VDDQ + 0.30 V  
4
V
V
4
Clock differential VDIF  
voltage  
0.10  
2, 3  
Clock common  
mode voltage  
VCM  
0.60  
0.90  
0.90  
1.30  
V
3
Notes: 1. Peak to peak AC component superimposed on VREF may not exceed 5% of VREF  
2. Minimum differential input voltage required for differential input clock operation.  
3. See figure below.  
.
4. VREF = 0.75 V (typ).  
Differential Voltage / Common Mode Voltage  
VDDQ  
VDIF  
VCM  
VSS  
Rev.3.00 Jan 13, 2006 page 8 of 29  
HM64YLB36512 Series  
DC Characteristics  
(Ta = 0 to +85°C, VDD = 2.5 V ± 5%)  
Late select mode  
Late write mode  
Register-latch  
mode  
Parameter  
Symbol  
ILI  
Unit Notes  
Min  
Max  
Min  
Max  
Input leakage current  
2
5
2
5
µA  
1
2
3
4
5
6
Output leakage current  
ILO  
µA  
mA  
mA  
mA  
W
Standby current  
ISBZZ  
IDD  
150  
450  
200  
2.3  
150  
350  
200  
2.3  
VDD operating current, excluding output drivers  
Quiescent active power supply current  
IDD2  
Maximum power dissipation, including output drivers P  
Parameter  
Output low voltage  
Output high voltage  
Symbol  
VOL  
Min  
Typ  
Max  
Unit Notes  
VSS  
VSS + 0.4  
V
7
VOH1  
VOH2  
RQ  
IOL  
VDDQ 0.4  
VDDQ  
VDDQ  
V
V
8
1.3  
12  
ZQ pin connect resistance  
Output “Low” current  
Output “High” current  
250  
(VDDQ/2) / {(RQ/5) 15%}  
(VDDQ/2) / {(RQ/5) + 15%}  
mA 9, 11  
IOH  
(VDDQ/2) / {(RQ/5) + 15%}  
(VDDQ/2) / {(RQ/5) 15%}  
mA 10, 11  
Notes: 1. 0 VIN VDDQ for all input pins (except VREF, ZQ, M1, M2 pin)  
2. 0 VOUT VDDQ, DQ in high-Z  
3. All inputs (except clock) are held at either VIH or VIL, ZZ is held at VIH, IOUT = 0 mA. Specification is  
guaranteed at +75°C junction temperature.  
4. IOUT = 0 mA, read 50% / write 50%, VDD = VDD max, frequency = min. cycle  
5. IOUT = 0 mA, read 50% / write 50%, VDD = VDD max, frequency = 3 MHz  
6. Output drives a 12 pF load and switches every cycle. This parameter should be used by the SRAM designer  
to determine electrical and package requirements for the SRAM device.  
7. RQ = 250 , IOL = 6.8 mA  
8. RQ = 250 , IOH = 6.8 mA  
9. Measured at VOL = 1/2 VDDQ  
10.Measured at VOH = 1/2 VDDQ  
11.The total external capacitance of ZQ pin must be less than 7.5 pF.  
12.RQ = 250 , IOH = 100 µA  
Rev.3.00 Jan 13, 2006 page 9 of 29  
HM64YLB36512 Series  
AC Characteristics  
(Ta = 0 to +85°C, VDD = 2.5 V ± 5%)  
Late Select Mode, Late Write Mode  
HM64YLB36512BP  
-28 -33  
Parameter  
CK clock cycle time  
Symbol  
tKHKH  
Unit  
ns  
Notes  
Min  
2.8  
Max  
Min  
3.3  
Max  
CK clock high width  
tKHKL  
tKLKH  
tAVKH  
tDVKH  
tKHAX  
tKHDX  
tKHQV  
tKHQX  
tKHQX2  
tKHQZ  
tGLQX  
tGLQV  
tGHQZ  
tZZR  
1.2  
1.2  
0.3  
0.3  
0.6  
0.6  
1.3  
1.3  
0.3  
0.3  
0.6  
0.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CK clock low width  
Address setup time  
2
2
Data setup time  
Address hold time  
Data hold time  
Clock high to output valid  
Clock high to output hold  
Clock high to output low-Z (SS control)  
Clock high to output high-Z  
Output enable low to output low-Z  
Output enable low to output valid  
Output enable high to output high-Z  
Sleep mode recovery time  
Sleep mode enable time  
1.6  
1.6  
1
0.65  
0.65  
0.65  
0.65  
1, 6  
1, 4, 6  
1, 3, 6  
1, 4, 6  
1, 4  
0.65 2.0  
0.1  
0.65 2.0  
0.1  
2.0  
2.0  
2.0  
2.0  
1, 3  
20.0  
20.0  
5
tZZE  
15.0  
15.0 ns  
1, 3, 5  
Register-Latch Mode  
HM64YLB36512BP  
-33  
Parameter  
CK clock cycle time  
Symbol  
Unit  
ns  
Notes  
Min  
Max  
tKHKH  
tKHKL  
tKLKH  
tAVKH  
tDVKH  
tKHAX  
tKHDX  
tKHQV  
tKLQV  
tKLQX  
tKLQX2  
tKHQZ  
tGLQX  
tGLQV  
tGHQZ  
tZZR  
6.5  
1.2  
1.2  
0.4  
0.4  
1.0  
1.0  
1.7  
0.5  
0.5  
0.5  
0.5  
0.1  
CK clock high width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CK clock low width  
Address setup time  
2
2
Data setup time  
Address hold time  
Data hold time  
Clock high to output valid  
Clock low to output valid  
Clock low to output hold  
Clock low to output low-Z (SS control)  
Clock high to output high-Z  
Output enable low to output low-Z  
Output enable low to output valid  
Output enable high to output high-Z  
Sleep mode recovery time  
Sleep mode enable time  
Notes: 1. See figure in ”AC Test Conditions”.  
5.5  
2.3  
1
1, 4, 6  
1, 3, 6  
1, 4, 6  
1, 4  
2.3  
2.3  
2.3  
1, 3  
20.0  
5
tZZE  
15.0  
1, 3, 5  
2. Parameters may be guaranteed by design, i.e., without tester guardband.  
3. Transitions are measured ±50 mV of output high impedance from output low impedance.  
4. Transitions are measured ±50 mV from steady state voltage.  
5. When ZZ is switching, clock input K must be at the same logic level for the reliable operation.  
6. Minimum value is verified by design and tested without guardband.  
Rev.3.00 Jan 13, 2006 page 10 of 29  
HM64YLB36512 Series  
Timing Waveforms (Late Select Mode)  
Read Cycle-1  
tKHKH  
tKHKL  
tKLKH  
K,  
tAVKH  
tKHAX  
A1  
A2  
A3  
A4  
SA  
A00  
A10  
A20  
A30  
SAS  
tAVKH  
tKHAX  
tAVKH  
tKHAX  
tKHQX  
Q0  
DQ  
Q1  
Q2  
tKHQV  
Read Cycle-2 (SS Controlled)  
tKHKH  
tKHKL  
tKLKH  
K,  
tKHAX  
A1  
A4  
SA  
A3  
tAVKH  
tKHAX  
A10  
A30  
SAS  
tAVKH  
tKHAX  
tAVKH  
tKHAX  
tKHQX2  
tKHQZ  
DQ  
Q0  
Q1  
Q3  
Notes: G, ZZ = VIL, x: a to d  
Rev.3.00 Jan 13, 2006 page 11 of 29  
HM64YLB36512 Series  
Read Cycle-3 (G Controlled)  
tKHKH  
tKHKL  
tKLKH  
K,  
tAVKH  
tKHAX  
A1  
A2  
A3  
A4  
SA  
A00  
A10  
A20  
A30  
SAS  
tAVKH  
tKHAX  
tAVKH  
tKHAX  
tGLQX  
tGHQZ  
Q1  
DQ  
Q0  
Q3  
tGLQV  
Read operation (late select mode)  
During read cycle, N-1 bits of address (SA) are registered during the first rising clock edge. The Nth bit of address  
(SAS) is registered one clock edge later (the second edge). The setup time requirements for all address bits are the  
same. SAS is used as the Nth bit of address on both read and write.  
The internal array is read between this first edge and second edge, and data is captured in the output register at the  
second clock edge. This requires the Nth address bit (SAS) to be used as the MUX select before the output register.  
Alternatively, the Nth address bit can be registered, and used as the MUX select during the data drive cycle. In that  
case, the output drive should still have a monotonic edge transition (no glitches due to logic switch).  
Rev.3.00 Jan 13, 2006 page 12 of 29  
HM64YLB36512 Series  
Write Cycle  
tKHKH  
tKHKL tKLKH  
K,  
tAVKH  
tAVKH  
tAVKH  
tAVKH  
tAVKH  
tKHAX  
tKHAX  
A1  
A2  
A3  
A4  
SA  
SAS  
A10  
A20  
A30  
A40  
tKHAX  
tKHAX  
tKHAX  
tDVKH  
tKHDX  
D0  
D1  
D2  
D3  
DQ  
Notes: ZZ = VIL, x: a to d  
Write operation (late write and late select mode)  
During writes, the write data follows the write address by one cycle. All N bits of address are presented during the  
same cycle. Any subsequent read to this address should get the latest data. Because in the actual implementation the  
data will be written into the SRAM array only after the next write address is received, a one-entry buffer is needed to  
hold the write data and to allow bypassing of data from the write buffer to the output if there is a read of the same  
address.  
Rev.3.00 Jan 13, 2006 page 13 of 29  
HM64YLB36512 Series  
Read-Write Cycle  
READ  
DEAD  
( control)  
READ  
tKHKH  
WRITE  
READ  
WRITE  
(
control)  
tKHKL tKLKH  
K,  
tAVKH  
tKHAX  
tKHAX  
tKHAX  
tKHAX  
tKHAX  
SA  
A1  
A3  
A4  
A6  
A7  
tAVKH  
tAVKH  
tAVKH  
tAVKH  
SAS  
A10  
A30  
A40  
A60  
tGHQZ tDVKH tKHDX  
D3  
tGLQV  
tKHQV  
DQ  
Q0  
Q1  
Q4  
D6  
tKHQX  
tGLQX  
tKHQZ  
Notes: ZZ = VIL, x: a to d  
ZZ Control  
tKHKH  
tKHKL tKLKH  
K,  
tAVKH  
tKHAX  
SA  
A1  
tAVKH  
tKHAX  
tKHAX  
tKHAX  
SAS  
A10  
tAVKH  
tAVKH  
ZZ  
Sleep active  
Sleep off  
Sleep active  
Q1  
DQ  
tZZE  
tZZR  
Notes: G = VIL, x: a to d  
When ZZ is switching, clock input K must be at the same logic level for the reliable operation.  
Rev.3.00 Jan 13, 2006 page 14 of 29  
HM64YLB36512 Series  
Timing Waveforms (Late Write Mode)  
Read Cycle-1  
tKHKH  
tKHKL  
tKLKH  
K,  
tAVKH  
tKHAX  
A1  
A2  
A3  
A4  
SA  
tAVKH  
tKHAX  
tAVKH  
tKHAX  
tKHQX  
DQ  
Q1  
Q2  
tKHQV  
Read Cycle-2 (SS Controlled)  
tKLKH  
tKHKH  
tKHKL  
K,  
tAVKH  
tKHAX  
A1  
A3  
A4  
SA  
tAVKH  
tKHAX  
tAVKH  
tKHAX  
tKHQX2  
tKHQZ  
Q0  
Q1  
Q3  
DQ  
Rev.3.00 Jan 13, 2006 page 15 of 29  
HM64YLB36512 Series  
Read Cycle-3 (G Controlled)  
tKHKH  
tKHKL tKLKH  
K,  
tAVKH  
tKHAX  
tKHAX  
tKHAX  
A1  
A2  
A3  
A4  
SA  
tAVKH  
tAVKH  
tGLQX  
tGHQZ  
Q1  
DQ  
Q0  
Q3  
tGLQV  
Read operation (late write mode)  
During read cycle, the address is registered during the first rising clock edge, the internal array is read between this  
first edge and second edge, and data is captured in the output register.  
Rev.3.00 Jan 13, 2006 page 16 of 29  
HM64YLB36512 Series  
Write Cycle  
tKHKH  
tKHKL  
tKLKH  
K,  
tAVKH  
tAVKH  
tAVKH  
tAVKH  
tKHAX  
A1  
A2  
A3  
A4  
SA  
tKHAX  
tKHAX  
tKHAX  
tDVKH  
tKHDX  
D0  
D1  
D2  
D3  
DQ  
Notes: ZZ = VIL, x: a to d  
Write operation (late write and late select mode)  
During write cycle, the write data follows the write address by one cycle. All N bits of address are presented during  
the same cycle. Any subsequent read to this address should get the latest data. Because in the actual implementation  
the data will be written into the SRAM array only after the next write address is received, a one-entry buffer is  
needed to hold the write data and to allow bypassing of data from the write buffer to the output if there is a read of  
the same address.  
Rev.3.00 Jan 13, 2006 page 17 of 29  
HM64YLB36512 Series  
Read-Write Cycle  
READ  
DEAD  
( control)  
READ  
tKHKH  
WRITE  
READ  
WRITE  
(
control)  
tKHKL tKLKH  
K,  
tAVKH  
tKHAX  
tKHAX  
tKHAX  
tKHAX  
SA  
A1  
A3  
A4  
A6  
A7  
tAVKH  
tAVKH  
tAVKH  
tKHQV  
tGHQZ tDVKH tKHDX  
D3  
tGLQV  
DQ  
Q0  
Q1  
Q4  
D6  
tGLQX  
tKHQX  
tKHQZ  
Notes: ZZ = VIL, x: a to d  
ZZ Control  
tKHKL  
tKLKH  
tKHKH  
tAVKH  
K,  
tKHAX  
SA  
A1  
tAVKH  
tKHAX  
tAVKH  
tKHAX  
ZZ  
DQ  
Sleep active  
Sleep off  
Q1  
Sleep active  
tZZE  
tZZR  
Notes: G = VIL, x: a to d  
When ZZ is switching, clock input K must be at the same logic level for the reliable operation.  
Rev.3.00 Jan 13, 2006 page 18 of 29  
HM64YLB36512 Series  
Timing Waveforms (Register-Latch Mode)  
Read Cycle-1  
tKHKH  
tKHKL  
tKLKH  
K,  
tAVKH  
tKHAX  
tKHAX  
tKHAX  
A1  
A2  
A3  
A4  
SA  
tAVKH  
tAVKH  
tKHQV  
DQ  
Q0  
Q1  
tKLQX  
Q2  
Q3  
tKLQV  
Note: ZZ = VIL  
Read Cycle-2 (SS Controlled)  
tKHKH  
tKHKL  
tKLKH  
K,  
tAVKH  
tKHAX  
A1  
A4  
SA  
A3  
tKHAX  
tAVKH  
tKHAX  
tAVKH  
tKLQX2  
tKHQV  
Q0  
tKHQZ  
Q1  
Q3  
DQ  
Note: ZZ = VIL  
Rev.3.00 Jan 13, 2006 page 19 of 29  
HM64YLB36512 Series  
Read Cycle-3 (G Controlled)  
tKHKH  
tKHKL  
tKLKH  
K,  
tAVKH  
tKHAX  
A1  
A2  
A3  
A4  
SA  
tAVKH  
tKHAX  
tAVKH  
tKHAX  
tGLQX  
tGHQZ  
Q2  
DQ  
Q0  
Q1  
Q3  
tGLQV  
Note: ZZ = VIL  
Write Cycle  
tKHKH  
tKHKL  
tKLKH  
K,  
tAVKH  
tAVKH  
tAVKH  
tAVKH  
tKHAX  
A1  
A2  
A3  
A4  
SA  
tKHAX  
tKHAX  
tKHAX  
tDVKH  
tKHDX  
D0  
D1  
D2  
D3  
DQ  
Note: ZZ = VIL  
Rev.3.00 Jan 13, 2006 page 20 of 29  
HM64YLB36512 Series  
Read-Write Cycle-1  
DEAD  
WRITE  
READ  
tKHKH  
READ  
WRITE  
READ  
(
control)  
tKHKL tKLKH  
K,  
tAVKH  
tKHAX  
tKHAX  
tKHAX  
tKHAX  
SA  
A1  
A2  
A3  
A4  
A6  
A7  
tAVKH  
tAVKH  
tAVKH  
tGHQZ tDVKH tKHDX tGLQV  
Q2  
tKHQV  
DQ  
Q0  
tKLQX  
tKLQV  
Q1  
D6  
D3  
Q4  
tGLQX  
tKHQZ  
Note: ZZ = VIL  
Read-Write Cycle-2  
DEAD  
WRITE  
READ  
tKHKH  
READ  
WRITE  
READ  
(
control)  
tKHKL tKLKH  
K,  
tAVKH  
tKHAX  
tKHAX  
tKHAX  
tKHAX  
SA  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
tAVKH  
tAVKH  
tAVKH  
Low fixed  
tKHQZ tDVKH tKHDX  
tKHQV  
DQ  
Q0  
tKLQX  
tKLQV  
Q1  
Q2  
D3  
Q4  
tKLQV tKHQZ  
D6  
Note: G, ZZ = VIL  
During this period DQ pins are in the output state so that the input signal of opposite phase to the  
outputs must not be applied.  
Rev.3.00 Jan 13, 2006 page 21 of 29  
HM64YLB36512 Series  
ZZ Control  
tKHKH  
tKHKL tKLKH  
K,  
tAVKH  
tAVKH  
tAVKH  
tKHAX  
SA  
A1  
tKHAX  
tKHAX  
ZZ  
Sleep off  
Sleep active  
Sleep active  
Q1  
DQ  
tZZE  
tZZR  
Rev.3.00 Jan 13, 2006 page 22 of 29  
HM64YLB36512 Series  
Input Capacitance  
(VDD = 2.5 V, VDDQ = 1.5 V, Ta = +25°C, f = 1 MHz)  
Parameter  
Input capacitance  
Symbol  
CIN  
Min Max Unit  
Pin name  
Notes  
1, 3  
4
5
5
pF  
pF  
pF  
SAn, SAS, SS, SWE, SWEx  
Clock input capacitance  
I/O capacitance  
CCLK  
CIO  
K, K  
DQxn  
1, 2, 3  
1, 3  
Notes: 1. This parameter is sampled and not 100% tested.  
2. Exclude G  
3. Connect pins to GND, except VDD, VDDQ, and the measured pin.  
AC Test Conditions  
Conditions  
Register-latch mode  
Late select mode  
Late write mode  
Parameter  
Symbol  
Unit Note  
Input and output timing reference levels VREF  
0.75  
0.75  
V
Input signal amplitude  
Input rise / fall time  
Clock input timing reference level  
VDIF to clock  
VIL, VIH  
tr, tf  
0.25 to 1.25  
0.5 (10% to 90%)  
Differential cross point  
0.75  
0.25 to 1.25  
0.5 (10% to 90%)  
Differential cross point  
0.75  
V
ns  
V
V
VCM to clock  
0.75  
1.10  
Output loading conditions  
See figure below  
See figure below  
Note: Parameters are tested with RQ = 250 and VDDQ = 1.5 V.  
Output Loading Conditions  
50 Ω  
16.7 Ω  
16.7 Ω  
50 Ω  
50 Ω  
0.75 V  
16.7 Ω  
5 pF  
DQ  
50 Ω  
0.75 V  
5 pF  
0.75 V  
Rev.3.00 Jan 13, 2006 page 23 of 29  
HM64YLB36512 Series  
Boundary Scan Test Access Port Operations  
Overview  
In order to perform the interconnect testing of the modules that include this SRAM, the serial boundary scan test access  
port (TAP) is designed to operate in a manner consistent with IEEE Standard 1149.1 - 1990. But does not implement all  
of the functions required for 1149.1 compliance. The HM64YLB series contains a TAP controller. Instruction register,  
boundary scans register, bypass register and ID register.  
Test Access Port Pins  
Symbol I/O  
Name  
TCK  
TMS  
TDI  
Test clock  
Test mode select  
Test data in  
TDO  
Test data out  
Note: This device does not have a TRST (TAP reset) pin. TRST is optional in IEEE 1149.1.  
To disable the TAP, TCK must be connected to VSS. TDO should be left unconnected.  
To test boundary scan, the ZZ pin needs to be kept below VREF 0.4 V.  
TAP DC Operating Characteristics  
(Ta = 0 to +85°C)  
Max Notes  
Parameter  
Boundary scan input high voltage  
Symbol  
Min  
1.4 V  
VIH  
VIL  
ILI  
3.6 V  
0.8 V  
+10 µA  
0.2 V  
Boundary scan input low voltage  
Boundary scan input leakage current  
Boundary scan output low voltage  
Boundary scan output high voltage  
Boundary scan output leakage current  
Notes: 1. 0 VIN 3.6 V for all logic input pins  
2. IOL = 2 mA at VDD = 2.5 V.  
0.3 V  
10 µA  
1
2
3
4
VOL  
VOH  
ILO  
2.1 V  
5 µA  
+5 µA  
3. IOH = 2 mA at VDD = 2.5 V.  
4. 0 VOUT VDD, TDO in high-Z  
Rev.3.00 Jan 13, 2006 page 24 of 29  
HM64YLB36512 Series  
TAP AC Operating Characteristics  
(Ta = 0 to +85°C)  
Unit Note  
Parameter  
Test clock cycle time  
Symbol  
Min  
Max  
tTHTH  
tTHTL  
tTLTH  
tMVTH  
tTHMX  
tCS  
67  
30  
30  
10  
10  
10  
10  
10  
10  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Test clock high pulse width  
Test clock low pulse width  
Test mode select setup  
Test mode select hold  
Capture setup  
1
1
Capture hold  
tCH  
TDI valid to TCK high  
TCK high to TDI don’t care  
TCK low to TDO unknown  
TCK low to TDO valid  
tDVTH  
tTHDX  
tTLQX  
tTLQV  
20  
Note: 1. tCS + tCH defines the minimum pause in RAM I/O pad transitions to assure pad data capture.  
TAP AC Test Conditions  
(VDD = 2.5 V)  
Temperature  
0°C Ta +85°C  
1.1 V  
Input timing measurement reference level  
Input pulse levels  
0 to 2.5 V  
Input rise/fall time  
1.5 ns typical (10% to 90%)  
1.25 V  
Output timing measurement reference level  
Test load termination supply voltage (VT)  
Output load  
1.25 V  
See figure below  
Boundary Scan AC Test Load  
VT  
DUT  
50 Ω  
Z0 = 50 Ω  
TDO  
Rev.3.00 Jan 13, 2006 page 25 of 29  
HM64YLB36512 Series  
TAP Controller Timing Diagram  
tTHTH  
tTHTL tTLTH  
TCK  
TMS  
tMVTH tTHMX  
tDVTH tTHDX  
TDI  
tTLQV  
tTLQX  
TDO  
tCS tCH  
RAM  
ADDRESS  
Test Access Port Registers  
Register name  
Instruction register  
Length  
Symbol  
Note  
3 bits  
1 bit  
IR [2:0]  
BP  
Bypass register  
ID register  
32 bits  
70 bits  
ID [31:0]  
Boundary scan register  
BS [70:1]  
TAP Controller Instruction Set  
IR2 IR1 IR0  
Instruction  
SAMPLE-Z  
Operation  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Tristate all data drivers and capture the pad value  
Tristate all data drivers and capture the pad value  
IDCODE  
SAMPLE-Z  
BYPASS  
SAMPLE  
BYPASS  
PRIVATE  
BYPASS  
Do not use. They are reserved for vendor use only  
Note: This device does not perform EXTEST, INTEST or the preload portion of the PRELOAD command in IEEE  
1149.1.  
Rev.3.00 Jan 13, 2006 page 26 of 29  
HM64YLB36512 Series  
Boundary Scan Order (HM64YLB36512)  
Bit #  
Bump ID  
Signal name  
Bit #  
Bump ID  
Signal name  
1
5R  
4P  
4T  
6R  
5T  
7T  
6P  
7P  
6N  
7N  
6M  
6L  
M2  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
3B  
2B  
3A  
3C  
2C  
2A  
2D  
1D  
2E  
1E  
2F  
2G  
1G  
2H  
1H  
3G  
4D  
4E  
4G  
4H  
4M  
3L  
SA12  
SA15  
SA13  
SA11  
SA16  
SA14  
DQc8  
DQc7  
DQc6  
DQc5  
DQc4  
DQc2  
DQc3  
DQc0  
DQc1  
SWEc  
ZQ  
2
SAS/SA0  
SA3  
3
4
SA1  
5
SA2  
6
ZZ  
7
DQa8  
DQa7  
DQa6  
DQa5  
DQa4  
DQa2  
DQa3  
DQa0  
DQa1  
SWEa  
K
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
7L  
6K  
7K  
5L  
4L  
4K  
4F  
5G  
7H  
6H  
7G  
6G  
6F  
7E  
6E  
7D  
6D  
6A  
6C  
5C  
5A  
6B  
5B  
K
SS  
NC  
G
SWEb  
DQb1  
DQb0  
DQb3  
DQb2  
DQb4  
DQb5  
DQb6  
DQb7  
DQb8  
SA7  
NC  
SWE  
SWEd  
DQd1  
DQd0  
DQd3  
DQd2  
DQd4  
DQd5  
DQd6  
DQd7  
DQd8  
SA18  
SA10  
SA17  
M1  
1K  
2K  
1L  
2L  
2M  
1N  
2N  
1P  
2P  
3T  
2R  
4N  
3R  
SA8  
SA4  
SA6  
SA9  
SA5  
Notes: 1. Bit#1 is the first scan bit to exit the chip.  
2. Bit#2 is SAS in both the late select mode and the late write mode, or is SA0 in the register-latch mode.  
3. The NC pads listed in this table are indeed no connects, but are represented in the boundary scan register  
by a “Place Holder”. Place holder registers are internally connected to VSS  
.
4. In boundary scan mode, differential input K and K are referenced to each other and must be at the opposite  
logic levels for the reliable operation.  
5. ZZ must remain VIL during boundary scan.  
6. In boundary scan mode, ZQ must be driven to VDDQ or VSS supply rail to ensure consistent results.  
7. M1 and M2 must be driven to VDD, VDDQ or VSS supply rail to ensure consistent results.  
Rev.3.00 Jan 13, 2006 page 27 of 29  
HM64YLB36512 Series  
ID Register  
Revision  
number  
(31:28)  
Device density  
and configuration  
(27:18)  
Vendor  
definition  
(17:12)  
Vendor JEDEC  
code (11:1)  
Start  
bit (0)  
Part  
HM64YLB36512  
0000  
0011100100  
xxxxxx  
00000000111  
1
TAP Controller State Diagram  
Test-logic-  
1
reset  
0
1
1
1
Run-test/  
idle  
Select-  
DR-scan  
Select-  
IR-scan  
0
0
0
1
1
Capture-DR  
Capture-IR  
0
0
Shift-DR  
1
Shift-IR  
1
0
0
0
0
1
1
Exit1-DR  
0
Exit1-IR  
0
Pause-DR  
1
Pause-IR  
1
0
0
Exit2-DR  
Exit2-IR  
1
1
Update-DR  
Update-IR  
1
0
1
0
Note: The value adjacent to each state transition in this figure represents the signal present at TMS at the  
time of a rising edge at TCK.  
No matter what the original state of the controller, it will enter Test-logic-reset when TMS is held high  
for at least five rising edges of TCK.  
Rev.3.00 Jan 13, 2006 page 28 of 29  
HM64YLB36512 Series  
Package Dimensions  
HM64YLB36512BP Series (PRBG0119DB-A / Previous Code: BP-119E)  
JEITA Package Code  
P-BGA119-14x22-1.27  
RENESAS Code  
PRBG0119DB-A  
Previous Code  
BP-119E  
MASS[Typ.]  
1.1g  
D
A
11.08  
B
×4  
v
y1  
S
S
y
S
e
U
T
Dimension in Millimeters  
Reference  
Symbol  
R
P
N
M
L
Min  
Nom  
14.00  
22.00  
Max  
D
E
v
0.20  
K
J
w
H
G
F
A
1.80  
0.61  
2.02  
0.69  
1.27  
0.88  
2.24  
0.77  
A1  
e
E
D
C
B
A
b
0.82  
0.94  
0.30  
0.20  
0.35  
x
y
y1  
SD  
SE  
ZD  
ZE  
1
2
3
4
5
6
7
φ b  
φ
×
M
S
A
S
B
φ
0.15  
M
Rev.3.00 Jan 13, 2006 page 29 of 29  
Revision History  
HM64YLB36512 Series Data Sheet  
Description  
Summary  
Rev.  
0.0  
Date  
Page  
May. 6, 2002  
Aug. 30, 2002  
Initial issue  
0.1  
5
Truth Table  
Deletion of Notes3  
Input Capacitance  
Addition of Notes3  
18  
6
1.0  
Feb. 7, 2003  
Jul. 19, 2005  
Change of  
Programmable Impedance  
Output Drivers  
2.00  
Change format issued by Renesas Technology Corp.  
The Former HM64YLB36512BP-33 and the former HM64YLB36514BP-6H are  
integrated into the new HM64YLB36512BP-33  
Change of Features, adding register-latch mode  
Ordering Information  
1
2
Addition of Modes  
Addition of Renesas package codes  
Pin Arrangement  
2
4P: SAS to SAS/SA0  
Addition of Note  
4
5
Addition of Block Diagram in register-latch mode  
Pin Descriptions  
Change of SAn, SAS Notes, adding register-latch mode  
Addition of M1, M2 Protocol in register-latch mode  
Change of Notes2, adding register-latch mode  
Truth Table: Addition of DQ (n), DQ (n+1) in register-latch mode  
Change of  
6
7
Programmable Impedance  
Output Drivers  
8
Recommended DC Operating Conditions  
Addition of the values in register-latch mode  
DC Characteristics: Addition of the values in register-latch mode  
AC Characteristics: Addition of the table in register-latch mode  
9
10  
19-22 Addition of Timing Waveforms in register-latch mode  
23  
27  
AC Test Conditions: Addition of the values in register-latch mode  
Boundary Scan Order  
Bit#2: SAS to SAS/SA0  
Notes2-6 to Notes3-7  
Addition of Notes2  
29  
9
Package Dimensions  
Addition of Renesas package codes  
Changed to Renesas formats  
3.00  
Jan. 13, 2006  
DC Characteristics: VOH to VOH1, addition of VOH2  
Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
Keep safety first in your circuit designs!  
1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble  
may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.  
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary  
circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's  
application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.  
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data,  
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.  
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of  
publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is  
therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product  
information before purchasing a product listed herein.  
The information described here may contain technical inaccuracies or typographical errors.  
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.  
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor  
home page (http://www.renesas.com).  
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to  
evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes  
no responsibility for any damage, liability or other loss resulting from the information contained herein.  
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life  
is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a  
product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater  
use.  
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.  
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and  
cannot be imported into a country other than the approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.  
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.  
RENESAS SALES OFFICES  
http://www.renesas.com  
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.  
Renesas Technology America, Inc.  
450 Holger Way, San Jose, CA 95134-1368, U.S.A  
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501  
Renesas Technology Europe Limited  
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.  
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900  
Renesas Technology (Shanghai) Co., Ltd.  
Unit 205, AZIA Center, No.133 Yincheng Rd (n), Pudong District, Shanghai 200120, China  
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898  
Renesas Technology Hong Kong Ltd.  
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong  
Tel: <852> 2265-6688, Fax: <852> 2730-6071  
Renesas Technology Taiwan Co., Ltd.  
10th Floor, No.99, Fushing North Road, Taipei, Taiwan  
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999  
Renesas Technology Singapore Pte. Ltd.  
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632  
Tel: <65> 6213-0200, Fax: <65> 6278-8001  
Renesas Technology Korea Co., Ltd.  
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea  
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145  
Renesas Technology Malaysia Sdn. Bhd  
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia  
Tel: <603> 7955-9390, Fax: <603> 7955-9510  
© 2006. Renesas Technology Corp., All rights reserved. Printed in Japan.  
Colophon .5.0  

相关型号:

HM64YLB36512BP-28

16M Synchronous Late Write Fast Static RAM (512-kword × 36-bit)
RENESAS

HM64YLB36512BP-33

16M Synchronous Late Write Fast Static RAM (512-kword × 36-bit)
RENESAS

HM64YLB36514

16M Synchronous Late Write Fast Static RAM (512-kword 】 36-bit, Register-Latch Mode)
RENESAS

HM64YLB36514BP-6H

16M Synchronous Late Write Fast Static RAM (512-kword 】 36-bit, Register-Latch Mode)
RENESAS

HM65

High Current Low Profile Surface Mount Inductors
TTELEC

HM65-1001-DT25

Fixed Resistor, Metal Film, 0.5W, 1000ohm, 300V, 0.5% +/-Tol, 25ppm/Cel, Through Hole Mount, AXIAL LEADED
RCD

HM65-1001-DT50

Fixed Resistor, Metal Film, 0.5W, 1000ohm, 300V, 0.5% +/-Tol, 50ppm/Cel, Through Hole Mount, AXIAL LEADED
RCD

HM65-1003-FB50

Fixed Resistor, Metal Film, 0.5W, 100000ohm, 300V, 1% +/-Tol, 50ppm/Cel, Through Hole Mount, AXIAL LEADED
RCD

HM65-1004-FT25Q

Fixed Resistor, Metal Film, 0.5W, 1000000ohm, 300V, 1% +/-Tol, 25ppm/Cel, Through Hole Mount, AXIAL LEADED
RCD

HM65-1005-DB50

Fixed Resistor, Metal Film, 0.5W, 10000000ohm, 300V, 0.5% +/-Tol, 50ppm/Cel, Through Hole Mount, AXIAL LEADED
RCD

HM65-100LF

High Current Low Profile Surface Mount Inductors
TTELEC