ISL1539IVEZ [RENESAS]

ISL1539IVEZ;
ISL1539IVEZ
型号: ISL1539IVEZ
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

ISL1539IVEZ

文件: 总11页 (文件大小:760K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL1539  
FN7516  
Rev 4.00  
June 21, 2013  
Dual Channel Differential VDSL2 Line Driver  
The ISL1539 is to be used for high performance long reach  
and high speed applications, including ADSL2, ADSL2+, and  
VDSL2 20dBm.  
Features  
• 450mA output drive capability  
• 44.1V  
differential output drive into 100  
• -85dBc THD @ 1MHz 2V  
P-P  
The ISL1539 is an integral part of the signal chain. The driver  
has been optimized for flat gain response and reduced  
harmonic distortion and noise in the bands of interest to  
improve the overall signal to noise in the system.  
P-P  
• High slew rate of 1200V/µs differential  
• Bandwidth - 80MHz @ A = 10  
V
These drivers achieve a total harmonic distortion (THD)  
measurement of typically -60dB MTPR @ 1.1MHz, while  
consuming typically 10mA per DSL channel of total supply  
current. This supply current can be set using a resistor on the  
• Current control pins  
• Channel separation  
- 80dB @ 500kHz  
- 75dB @ 1MHz  
I
pin. Two other pins (C and C ) can also be used to adjust  
ADJ  
supply current to one of four pre-set modes (full-I , 3/4-I ,  
0 1  
S
S
- 60dB @ 4MHz  
1/2-I , and full power-down). The ISL1539 operates on ±5V to  
S
±15V supplies and retains its bandwidth and linearity over the  
complete supply range.  
• Pb-free (RoHS compliant)  
Applications  
• VDSL2 20dBm  
• ADSL2++  
The device is supplied in the small footprint (4mmx5mm) 24 Ld  
QFN package and is specified for operation over the full  
-40°C to +85°C temperature range.  
Ordering Information  
Pin Configuration  
PART NUMBER  
PART  
PACKAGE  
ISL1539  
(24 LD QFN)  
TOP VIEW  
(Notes 2, 3)  
MARKING  
(Pb-free)  
PKG. DWG. #  
MDP0046  
ISL1539IRZ  
1539 IRZ  
1539 IRZ  
24 Ld QFN  
ISL1539IRZ-T7  
(Note 1)  
24 Ld QFN  
MDP0046  
ISL1539IRZ-T13 1539 IRZ  
(Note 1)  
24 Ld QFN  
MDP0046  
VINA+  
VINB+  
GND  
1
2
3
4
5
6
7
19 VINA-  
NOTES:  
18 VINB-  
1. Please refer to TB347 for details on reel specifications.  
17 VOUTB  
16 NC/SHIELD  
15 VOUTC  
14 VINC-  
2. These Intersil Pb-free plastic packaged products employ special Pb-  
free material sets, molding compounds/die attach materials, and  
100% matte tin plate plus anneal (e3 termination finish, which is  
RoHS compliant and compatible with both SnPb and Pb-free  
soldering operations). Intersil Pb-free products are MSL classified  
at Pb-free peak reflow temperatures that meet or exceed the Pb-  
free requirements of IPC/JEDEC J STD-020.  
THERMAL  
PAD  
IADJ  
NC  
VINC+  
VIND+  
13 VIND-  
3. For Moisture Sensitivity Level (MSL), please see device information  
page for ISL1539. For more information on MSL, please see tech  
brief TB363  
FN7516 Rev 4.00  
June 21, 2013  
Page 1 of 11  
 
 
 
ISL1539  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
V + to V - Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +30V  
Thermal Resistance (Typical)  
24 Ld QFN Package . . . . . . . . . . . . . . . . . . .  
JA (°C/W)  
38  
JC (°C/W)  
S
S
V + Voltage to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +30V  
N/A  
S
V - Voltage to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -30V to +0.3V  
S
Power Dissipation. . . . . . . . . . . . . . . . . . .See curves on page 8 and page 8  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . .-40°C to +150°C  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Driver V + Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V - to V +  
IN  
S
S
C , C Voltage to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6V  
0
1
I
Voltage to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +4V  
ADJ  
Current into any Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8mA  
Output Current from Driver (Static) . . . . . . . . . . . . . . . . . . . . . . . . . . . 50mA  
ESD Rating  
Human Body Model (Per MIL-STD-883 Method 3015.7) . . . . . . . . . 3kV  
Machine Model (Per EIAJ ED-4701 Method C-111) . . . . . . . . . . . . 250V  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted,  
all tests are at the specified temperature and are pulsed tests, therefore: T = T = T  
J
C
A
Electrical Specifications  
V
= ±12V, R = 3kΩ, R = 65Ω, I  
= C = C = 0V, T = +25°C. Amplifiers tested separately.  
S
F
L
ADJ  
0
1
A
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 4)  
TYP  
(Note 4) UNIT  
SUPPLY CHARACTERISTICS  
I + (Full I )  
Positive Supply Current per Amplifier  
Negative Supply Current per Amplifier  
Positive Supply Current per Amplifier  
Negative Supply Current per Amplifier  
Positive Supply Current per Amplifier  
Negative Supply Current per Amplifier  
Positive Supply Current per Amplifier  
Negative Supply Current per Amplifier  
GND Supply Current per Amplifier  
All outputs at 0V, C = C = 0V, R  
= 0  
= 0  
7.5  
10  
-9.9  
7.5  
-7.4  
5.1  
-5  
12.5  
-7.4  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
S
S
0
1
ADJ  
ADJ  
I - (Full I )  
All outputs at 0V, C = C = 0V, R  
-12.4  
S
S
0
1
I + (3/4 I )  
All outputs at 0V, C = 5V, C = 0V, R  
= 0  
= 0  
= 0  
= 0  
S
S
0
1
ADJ  
ADJ  
ADJ  
I - (3/4 I )  
All outputs at 0V, C = 5V, C = 0V, R  
0 1  
S
S
I + (1/2 I )  
All outputs at 0V, C = 0V, C = 5V, R  
3.7  
6.3  
-3.5  
1.0  
S
S
0
1
I - (1/2 I )  
All outputs at 0V, C = 0V, C = 5V, R  
-6.2  
S
S
0
1
ADJ  
I + (Power-down)  
All outputs at 0V, C = C = 5V, R  
= 0  
0.1  
0
S
0
1
ADJ  
ADJ  
I - (Power-down)  
All outputs at 0V, C = C = 5V, R  
= 0  
-1.0  
S
0
1
I
All outputs at 0V  
0.1  
GND  
INPUT CHARACTERISTICS  
Input Offset Voltage  
V
-2  
-5  
+1  
0
+2  
+5  
mV  
mV  
µA  
OS  
V  
V
Mismatch  
OS  
I +  
OS  
Non-Inverting Input Bias Current  
Inverting Input Bias Current  
-10  
-75  
-15  
+10  
+60  
+15  
B
I -  
µA  
B
I -  
I - Mismatch  
B
0
3
µA  
B
R
Transimpedance  
MΩ  
nV/Hz  
pA/Hz  
V
OL  
N
e
Input Noise Voltage  
-Input Noise Current  
Input High Voltage  
2.7  
19  
i
N
V
C
C
C
C
C
and C inputs, with signal  
1.8  
1.6  
IH  
IL  
0
0
0
0
0
1
and C inputs, without signal  
V
1
V
Input Low Voltage  
and C inputs  
0.8  
40  
V
1
I
I
I
Input High Current for C  
C
= 5V, C = 5V  
10  
µA  
IH0 , IH1  
0,  
1
1
I
Input Low Current for C or C  
= 0V, C = 0V  
-15  
-4.0  
µA  
IL0, IL1  
0
1
1
FN7516 Rev 4.00  
June 21, 2013  
Page 2 of 11  
ISL1539  
Electrical Specifications  
V
= ±12V, R = 3kΩ, R = 65Ω, I  
= C = C = 0V, T = +25°C. Amplifiers tested separately. (Continued)  
S
F
L
ADJ 0 1 A  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 4)  
TYP  
(Note 4) UNIT  
OUTPUT CHARACTERISTICS  
V
Loaded Output Swing  
R = 100Ω  
±11.1  
10.95  
V
V
OUT  
L
(R Single-ended to GND)  
L
R = 50Ω(+)  
10.65  
9.8  
L
R = 50Ω (-)  
-10.95 -10.55  
10.7  
V
V
L
R = 25Ω (+)  
L
R = 25Ω (-)  
-10.7  
450  
-9.2  
V
L
I
I
Linear Output Current  
Output Current  
A = 5, R = 10Ω f = 100kHz, THD = -60dBc (10Ω  
mA  
OL  
V
L
single-ended)  
V
= 1V, R = 1Ω  
1
A
OUT  
OUT  
L
DYNAMIC PERFORMANCE  
BW  
-3dB Bandwidth  
A
= +10  
80  
-90  
-94  
-89  
-86  
-80  
-90  
-75  
-85  
-70  
MHz  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
V
HD2 at 200kHz  
HD3 at 200kHz  
THD at 200kHz  
HD2 at 1MHz  
2nd Harmonic Distortion at 200kHz  
3rd Harmonic Distortion at 200kHz  
Total Harmonic Distortion at 200kHz  
2nd Harmonic Distortion at 1MHz  
f
f
f
f
f
f
f
f
= 200kHz, R = 100Ω, V  
= 2V  
= 2V  
= 2V  
C
C
C
C
C
C
C
C
L
OUT  
OUT  
OUT  
P-P  
P-P  
P-P  
= 200kHz, R = 100Ω, V  
L
= 200kHz, R = 100Ω, V  
L
= 1MHz, R = 100ΩV  
OUT  
= 2V  
P-P  
L
= 1MHz, R = 25ΩV  
OUT  
= 2V  
P-P  
L
HD3 at 1MHz  
3rd Harmonic Distortion at 1MHz  
= 1MHz, R = 100ΩV = 2V  
OUT  
L
P-P  
= 1MHz, R = 25ΩV  
OUT  
= 2V  
L
P-P  
THD at 1MHz  
MTPR  
Total Harmonic Distortion at 1MHz  
Multi-Tone Power Ratio  
= 1MHz, R = 100Ω V = 2V  
OUT  
L
P-P  
26kHz to 1.1MHz, R  
LINE  
= 100Ω,  
P
= 20.4dBM  
LINE  
SR  
Slewrate (single-ended)  
V
from -8V to +8V measured at ±4V  
500  
V/µs  
OUT  
NOTE:  
4. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
FN7516 Rev 4.00  
June 21, 2013  
Page 3 of 11  
ISL1539  
Pin Descriptions  
ISL1539IR  
(QFN24)  
PIN NAME  
VINA+  
FUNCTION  
CIRCUIT  
1
Amplifier A non-inverting input  
V +  
S
V -  
S
CIRCUIT 1  
2
3
4
VINB+  
GND  
Amplifier B non-inverting input  
Ground connection  
(Reference Circuit 1)  
IADJ (Note 5)  
Supply current control pin for both  
DSL channels #1 and #2  
V +  
S
I
ADJ  
V -  
S
GND  
CIRCUIT 2  
5
6
7
8
NC  
VINC+  
Not connected  
Amplifier C non-inverting input  
Amplifier D non-inverting input  
DSL channel #2 current control pin  
(Reference Circuit 1)  
(Reference Circuit 1)  
VIND+  
C1CD (Note 6)  
V +  
V +  
S
S
1K  
C
OAB  
V -  
S
I
ADJ  
CIRCUIT 3  
9
10, 22  
11, 21  
12  
C0CD (Note 6)  
VS-  
DSL channel #2 current control pin (Reference Circuit 3)  
Negative supply  
Positive supply  
VS+  
VOUTD  
VIND-  
Amplifier D output  
(Reference Circuit 1)  
(Reference Circuit 1)  
(Reference Circuit 1)  
(Reference Circuit 1)  
13  
Amplifier D inverting input  
Amplifier C inverting input  
Amplifier C output  
14  
VINC-  
15  
VOUTC  
NC/SHIELD  
VOUTB  
16  
17  
Amplifier B output  
(Reference Circuit 1)  
FN7516 Rev 4.00  
June 21, 2013  
Page 4 of 11  
ISL1539  
Pin Descriptions(Continued)  
ISL1539IR  
(QFN24)  
PIN NAME  
VINB-  
FUNCTION  
Amplifier B inverting input  
Amplifier A inverting input  
Amplifier A output  
CIRCUIT  
(Reference Circuit 1)  
(Reference Circuit 1)  
(Reference Circuit 1)  
18  
19  
VINA-  
20  
VOUTA  
23  
C0AB (Note 7)  
C1AB (Note 7)  
DSL channel #1 current control pin (Reference Circuit 3)  
DSL channel #1 current control pin (Reference Circuit 3)  
24  
NOTES:  
5. I  
ADJ  
controls bias current (I ) setting for both DSL channels.  
S
6. Amplifiers C and D comprise DSL channel #2. C  
and C  
control I settings for DSL channel #2.  
S
control I settings for DSL channel #1.  
S
0CD  
0AB  
1CD  
1AB  
7. Amplifiers A and B comprise DSL channel #1. C  
and C  
Typical Performance Curves  
V
C
= ±12V  
= 1.8pF  
= +12.4  
S
L
V
C
= ±12V  
= 1.8pF  
= +12.4  
S
L
R = 2kΩ  
F
R
= 2kΩ  
F
A
V
A
V
R
= 100Ω  
L
R
= 100Ω  
L
R
= 3kΩ  
R
= 3kΩ  
F
F
R
= 5kΩ  
R = 5kΩ  
F
F
FIGURE 1. FREQUENCY RESPONSE FOR VARIOUS R (FULL  
F
FIGURE 2. FREQUENCY RESPONSE FOR VARIOUS R (HALF  
F
POWER MODE)  
POWER MODE)  
V
= ±12V  
= +12.4  
= 27pF  
V
R
= ±12V  
= 5kΩ  
= +12.4  
S
S
F
A
V
R
= 3.48kΩ  
F
C
R
A
L
V
= 100Ω  
R
= 100Ω  
L
L
C
= 100pF  
L
C
= 47pF  
L
R
= 4.99kΩ  
F
C
= 22pF  
L
C
= 1.8pF  
L
FIGURE 3. FREQUENCY RESPONSE FOR VARIOUS C  
(FULL POWER MODE)  
FIGURE 4. COMMON MODE FREQUENCY RESPONSE FOR  
VARIOUS R (FULL POWER MODE)  
L
F
FN7516 Rev 4.00  
June 21, 2013  
Page 5 of 11  
 
ISL1539  
Typical Performance Curves (Continued)  
V
R
= ±12V  
= 3kΩ  
= +12.4  
S
F
V
R
= ±12V  
= 5kΩ  
= +12.4  
S
F
A
V
A
V
R
= 100Ω  
L
R
= 100Ω  
L
2ND HD  
3RD HD  
2ND HD  
3RD HD  
FIGURE 5. 200KHz 2ND AND 3RD HARMONIC DISTORTION vs  
VOLTAGE OUTPUT (FULL POWER MODE)  
FIGURE 6. 200kHz 2ND AND 3RD HARMONIC DISTORTION vs  
VOLTAGE OUTPUT (HALF POWER MODE)  
V
R
= ±12V  
= 3kΩ  
= +12.4  
S
F
V
R
= ±12V  
= 5kΩ  
= +12.4  
S
F
A
V
A
V
R
= 100Ω  
L
R
= 100Ω  
L
3RD HD  
2ND HD  
2ND HD  
3RD HD  
FIGURE 7. 1MHz 2ND AND 3RD HARMONIC DISTORTION vs  
OUTPUT VOLTAGE (FULL POWER MODE)  
FIGURE 8. 1MHz 2ND AND 3RD HARMONIC DISTORTION vs  
OUPUT VOLTAGE (HALF POWER MODE)  
V
R
= ±12V  
= 5kΩ  
= +12.4  
V
R
= ±12V  
= 3kΩ  
= +12.4  
S
F
S
F
A
A
V
V
3RD HD  
R
= 100Ω  
R
= 100Ω  
L
L
3RD HD  
2ND HD  
2ND HD  
FIGURE 9. 3.75MHz 2ND AND 3RD HARMONIC DISTORTION vs  
OUTPUT VOLTAGE (FULL POWER MODE)  
FIGURE 10. 3.75MHz 2ND AND 3RD HARMONIC DISTORTION vs  
OUTPUT VOLTAGE (HALF POWER MODE)  
FN7516 Rev 4.00  
June 21, 2013  
Page 6 of 11  
ISL1539  
Typical Performance Curves (Continued)  
V
R
= ±12V  
= 3kΩ  
= +12.4  
V
R
= ±12V  
= 3kΩ  
= +12.4  
S
F
S
F
A
A
V
V
R
= 100Ω  
R
= 100Ω  
L
L
3.75MHz  
1MHz  
10MHz  
3RD HD  
2ND HD  
200kHz  
FIGURE 11. 10MHz 2ND AND 3RD HARMONIC DISTORTION vs  
OUTPUT VOLTAGE (FULL POWER MODE)  
FIGURE 12. TOTAL HARMONIC DISTORTION FOR VARIOUS  
FREQUENCIES (FULL POWER MODE)  
V
R
= ±12V  
= 3kΩ  
= +12.4  
V = ±12V  
S
S
F
FULL +I  
S
R
= 2kΩ  
ADJ  
A
V
R
= 475Ω  
ADJ  
R
= 100Ω  
L
3/4 +I  
S
FULL -I  
S
1/2 +I  
S
R
= 0Ω  
ADJ  
3/4 -I  
S
1/2 -I  
S
R
()  
ADJ  
FIGURE 13. FREQUENCY RESPONSE FOR VARIOUS R  
FIGURE 14. SUPPLY CURRENT vs R  
MODE  
FOR VARIOUS POWER  
ADJ  
ADJ  
0
-10  
-20  
-30  
AB ≥ CD  
-40  
-50  
-60  
-70  
CD ≥ AB  
-80  
-90  
-100  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 15. CHANNEL SEPARATION vs FREQUENCY  
FIGURE 16. TRANSIMPEDANCE  
FN7516 Rev 4.00  
June 21, 2013  
Page 7 of 11  
ISL1539  
Typical Performance Curves (Continued)  
JEDEC JESD51-7 HIGH EFFECTIVE  
THERMAL CODCTIVITY TEST BOARD  
V
R
= ±12V  
= 1kΩ  
S
L
4.5  
4.0  
3.5  
PSRR-  
3.0  
2.5  
2.0  
1.5  
3.378W  
QFN-24  
PSRR+  
= +38°C/W  
1.0  
0.5  
0.0  
JA  
25  
85 100  
75  
125  
50  
0
150  
AMBIENT TEMPERATURE (°C)  
FIGURE 17. PSRR vs FREQUENCY  
FIGURE 18. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
JEDEC JESD51-3 LOW EFFECTIVE  
THERMAL CODCTIVITY TEST BOARD  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
893mW  
QFN-24  
= +140°C/W  
JA  
25  
AMBIENT TEMPERATURE (°C)  
75  
85 100  
125  
50  
0
150  
FIGURE 19. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE  
FN7516 Rev 4.00  
June 21, 2013  
Page 8 of 11  
ISL1539  
Application Information  
Power Supplies and Dissipation  
The ISL1539 consists of two sets of high-power line driver  
amplifiers that can be connected for full duplex differential line  
transmission. The amplifiers are designed to be used with signals  
up to 30MHz and produce low distortion levels. A typical interface  
circuit is shown in Figure 20.  
Due to the high power drive capability of the ISL1539, much  
attention needs to be paid to power dissipation. The power that  
needs to be dissipated in the ISL1539 has two main contributors.  
The first is the quiescent current dissipation. The second is the  
dissipation of the output stage.  
The quiescent power in the ISL1539 is not constant with varying  
outputs. In reality, 7mA of the 15mA needed to power the drivers  
is converted in to output current. Therefore, in the equation below  
DRIVER  
INPUT  
R
LINE +  
OUT  
+
-
we should subtract the average output current, I , or 7mA,  
O
R
R
F
F
whichever is the lowest. We’ll call this term I .  
X
R
G
Therefore, we can determine a quiescent current with  
Equation 1:  
Z
LINE  
R
OUT  
P
= V  I 2I   
S S X  
-
+
Dquiescent  
(EQ. 1)  
LINE -  
where:  
• V is the supply voltage (V + to V -)  
R
R
F
S
S
S
-
RECEVIE  
OUT+  
R
+
IN  
• I is the maximum quiescent supply current (I + + I -)  
S
S
S
RECEVIE  
AMPLIFIERS  
• I is the lesser of I or 7mA (generally I = 7mA)  
+
-
X
O
X
R
The dissipation in the output stage has two main contributors.  
Firstly, we have the average voltage drop across the output  
transistor and secondly, the average output current. For minimal  
power dissipation, the user should select the supply voltage and  
the line transformer ratio accordingly. The supply voltage should  
be kept as low as possible, while the transformer ratio should be  
selected so that the peak voltage required from the ISL1539 is  
close to the maximum available output swing. There is a trade  
off, however, with the selection of transformer ratio. As the ratio  
is increased, the receive signal available to the receivers is  
reduced.  
RECEVIE  
OUT-  
R
R
F
IN  
FIGURE 20. TYPICAL LINE INTERFACE CONNECTION  
The amplifiers are wired with one in positive gain and the other in  
a negative gain configuration to generate a differential output for  
a single-ended input. They will exhibit very similar frequency  
responses for gains of three or greater and thus generate very  
small common-mode outputs over frequency, but for low gains  
the two drivers RF's need to be adjusted to give similar frequency  
responses. The positive-gain driver will generally exhibit more  
bandwidth and peaking than the negative-gain driver.  
Once the user has selected the transformer ratio, the dissipation  
in the output stages can be selected with Equation 2:  
V
S
2
If a differential signal is available to the drive amplifiers, they  
may be wired so:  
-------  
P
= 2 I  
V  
O
Dtransistors  
O
(EQ. 2)  
where:  
• V is the supply voltage (V + to V -)  
+
-
S
S
S
R
F
• V is the average output voltage per channel  
O
• I is the average output current per channel  
2R  
O
G
R
F
The overall power dissipation (P  
) is obtained by adding  
DISS  
P
and P  
.
Dtransistor  
Dquiescent  
-
+
Then, the requirement needs to be calculated. This is done  
JA  
using Equation 3:  
FIGURE 21. DRIVERS WIRED FOR DIFFERENTIAL INPUT  
T  
T  
AMB  
JUNCT  
-------------------------------------------------  
=
Each amplifier has identical positive gain connections, and  
optimum common-mode rejection occurs. Further, DC input  
errors are duplicated and create common-mode rather than  
differential line errors.  
JA  
P
DISS  
(EQ. 3)  
FN7516 Rev 4.00  
June 21, 2013  
Page 9 of 11  
 
 
 
 
ISL1539  
where:  
Power Supplies  
• T  
• T  
is the maximum die temperature (+150°C)  
The power supplies should be well bypassed close to the  
ISL1539. A 3.3µF tantalum capacitor for each supply works well.  
Since the load currents are differential, they should not travel  
through the board copper and set up ground loops that can  
return to amplifier inputs. Due to the class AB output stage  
design, these currents have heavy harmonic content. If the  
ground terminal of the positive and negative bypass capacitors  
are connected to each other directly and then returned to circuit  
ground, no such ground loops will occur. This scheme is  
employed in the layout of the EL1537 demonstration board, and  
documentation can be obtained from the factory.  
JUNCT  
is the maximum ambient temperature  
is the dissipation calculated above  
AMB  
• P  
DISS  
is the junction to ambient thermal resistance for the  
package when mounted on the PCB  
JA  
This value is then used to calculate the area of copper  
needed on the board to dissipate the power.  
JA  
The IRE and QFN power packages are designed so that heat may  
be conducted away from the device in an efficient manner. To  
disperse this heat, the bottom diepad is internally connected to  
the mounting platform of the die. Heat flows through the diepad  
into the circuit board copper, then spreads and convects to air.  
Thus, the ground plane on the component side of the board  
becomes the heatsink. This has proven to be a very effective  
Power Control Function  
The ISL1539 contains two forms of power control operation. Two  
digital inputs, C and C , can be used to control the supply  
0
1
current of the ISL1539 drive amplifiers. As the supply current is  
reduced, the ISL1539 will start to exhibit slightly higher levels of  
distortion and the frequency response will be limited. The four  
power modes of the ISL1539 are set up as shown in the table1  
below.  
technique. of +30°C/W can be achieved.  
JA  
Single Supply Operation  
The ISL1539 can also be powered from a single supply voltage.  
When operating in this mode, the GND pins can still be  
connected directly to GND. To calculate power dissipation, the  
equations in the previous section should be used, with V equal  
to half the supply rail.  
TABLE 1. POWER MODES OF THE EL15371  
C
C
Operation  
I Full Power Mode  
S
1
0
S
0
0
0
1
1
1
0
1
3/4-I Power Mode  
S
Output Loading  
1/2-I Power Mode  
S
While the drive amplifiers can output in excess of 450mA  
transiently, the internal metallization is not designed to carry  
more than 75mA of steady DC current and there is no  
current-limit mechanism. This allows safely driving rms  
sinusoidal currents of 2mAx75mA, or 150mA. This current is  
more than that required to drive line impedances to large output  
levels, but output short circuits cannot be tolerated. The series  
output resistor will usually limit currents to safe values in the  
event of line shorts. Driving lines with no series resistor is a  
serious hazard.  
Power Down  
© Copyright Intersil Americas LLC 2006-2013. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7516 Rev 4.00  
June 21, 2013  
Page 10 of 11  
 
ISL1539  
QFN (Quad Flat No-Lead) Package  
Family  
MDP0046  
QFN (QUAD FLAT NO-LEAD) PACKAGE FAMILY  
(COMPLIANT TO JEDEC MO-220)  
MILLIMETERS  
A
SYMBOL QFN44 QFN38  
QFN32  
TOLERANCE  
±0.10  
NOTES  
D
B
A
A1  
b
0.90  
0.02  
0.25  
0.20  
7.00  
5.10  
0.90 0.90  
0.90  
0.02  
0.22  
0.20  
5.00  
-
-
0.02 0.02  
0.25 0.23  
0.20 0.20  
5.00 8.00  
+0.03/-0.02  
±0.02  
-
1
2
3
c
Reference  
Basic  
-
PIN #1  
I.D. MARK  
D
-
E
D2  
3.80 5.80 3.60/2.4  
8
Reference  
8
E
7.00  
5.10  
7.00 8.00  
6.00  
Basic  
-
E2  
5.80 5.80 4.60/3.4  
0
Reference  
8
2X  
0.075 C  
e
L
0.50  
0.55  
44  
0.50 0.80  
0.40 0.53  
0.50  
0.50  
32  
7
Basic  
-
2X  
0.075 C  
±0.05  
-
TOP VIEW  
N
38  
7
32  
8
Reference  
Reference  
Reference  
4
6
5
ND  
NE  
11  
0.10 M C A B  
b
11  
12  
8
9
L
PIN #1 I.D.  
MILLIMETERS  
SYMBOL QFN28 QFN24 QFN20  
TOLER-  
ANCE  
3
QFN16  
0.90  
NOTES  
1
2
3
A
0.90  
0.02  
0.90 0.90  
0.90  
0.02  
±0.10  
-
-
A1  
0.02 0.02  
0.02  
+0.03/  
-0.02  
(E2)  
b
c
0.25  
0.20  
4.00  
2.65  
5.00  
3.65  
0.50  
0.40  
28  
0.25 0.30  
0.20 0.20  
4.00 5.00  
2.80 3.70  
5.00 5.00  
3.80 3.70  
0.50 0.65  
0.40 0.40  
0.25  
0.20  
4.00  
2.70  
4.00  
2.70  
0.50  
0.40  
20  
0.33  
0.20  
4.00  
2.40  
4.00  
2.40  
0.65  
0.60  
16  
±0.02  
Reference  
Basic  
-
-
5
NE  
D
-
D2  
E
Reference  
Basic  
-
-
7
(D2)  
E2  
e
Reference  
Basic  
-
BOTTOM VIEW  
-
L
±0.05  
-
0.10 C  
e
N
24  
5
20  
5
Reference  
Reference  
Reference  
4
6
5
C
ND  
NE  
6
5
4
SEATING  
PLANE  
8
7
5
5
4
Rev 11 2/07  
0.08 C  
SEE DETAIL "X"  
NOTES:  
N LEADS  
& EXPOSED PAD  
SIDE VIEW  
1. Dimensioning and tolerancing per ASME Y14.5M-1994.  
2. Tiebar view shown is a non-functional feature.  
3. Bottom-side pin #1 I.D. is a diepad chamfer as shown.  
4. N is the total number of terminals on the device.  
5. NE is the number of terminals on the “E” side of the package  
(or Y-direction).  
(c)  
2
A
C
6. ND is the number of terminals on the “D” side of the package  
(or X-direction). ND = (N/2)-NE.  
(L)  
7. Inward end of terminal may be square or circular in shape with radius  
(b/2) as shown.  
A1  
DETAIL X  
N LEADS  
8. If two values are listed, multiple exposed pad options are available. Refer  
to device-specific datasheet.  
FN7516 Rev 4.00  
June 21, 2013  
Page 11 of 11  

相关型号:

ISL1539IVEZ-T13

ISL1539IVEZ-T13
RENESAS

ISL1539IVEZ-T7

ISL1539IVEZ-T7
RENESAS

ISL1539_07

Dual Channel Differential VDSL2 Line Driver
INTERSIL

ISL1540

-52V Dual Channel Differential DSL Line Driver
INTERSIL

ISL1540IRZ

-52V Dual Channel Differential DSL Line Driver
INTERSIL

ISL1540IRZ-T13

-52V Dual Channel Differential DSL Line Driver
INTERSIL

ISL1540IRZ-T7

-52V Dual Channel Differential DSL Line Driver
INTERSIL

ISL1541

-52V Dual Channel Differential DSL Line Driver
INTERSIL

ISL1541IRZ

-52V Dual Channel Differential DSL Line Driver
INTERSIL

ISL1541IRZ-T13

-52V Dual Channel Differential DSL Line Driver
INTERSIL

ISL1541IRZ-T7

-52V Dual Channel Differential DSL Line Driver
INTERSIL

ISL1541_06

-52V Dual Channel Differential DSL Line Driver
INTERSIL