ISL22343WFR20Z-TK [RENESAS]

Quad Digitally Controlled Potentiometer (XDCP™), Low Noise, Low Power, I2C® Bus, 256 Taps; QFN20, TSSOP20; Temp Range: -40° to 125°C;
ISL22343WFR20Z-TK
型号: ISL22343WFR20Z-TK
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Quad Digitally Controlled Potentiometer (XDCP™), Low Noise, Low Power, I2C® Bus, 256 Taps; QFN20, TSSOP20; Temp Range: -40° to 125°C

转换器 电阻器
文件: 总19页 (文件大小:1138K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL22343  
FN6423  
Rev 2.00  
August 17, 2015  
Data Sheet  
August 17, 2015  
2
Quad Digitally Controlled Potentiometer (XDCP™) Low Noise, Low Power, I C  
Bus, 256 Taps  
The ISL22343 integrates four digitally controlled  
potentiometers (DCP), control logic and non-volatile memory  
on a monolithic CMOS integrated circuit.  
Features  
• Four potentiometers in one package  
• 256 resistor taps  
The digitally controlled potentiometer is implemented with a  
combination of resistor elements and CMOS switches. The  
position of the wipers are controlled by the user through the  
2
• I C serial interface  
- Three address pins, up to eight devices per bus  
• Non-volatile EEPROM storage of wiper position  
• 11 General Purpose non-volatile registers  
2
I C bus interface. The potentiometer has an associated  
volatile Wiper Register (WRi) and a non-volatile Initial Value  
Register (IVRi) that can be directly written to and read by the  
user. The contents of the WRi control the position of the  
corresponding wiper. At power up the device recalls the  
contents of the DCP’s IVRi to the correspondent WRi.  
• High reliability  
- Endurance: 1,000,000 data changes per bit per register  
- Register data retention: 50 years @ T 55°C  
The ISL22343 also has 11 general purpose non-volatile  
registers that can be used as storage of lookup table for  
multiple wiper position or any other valuable information.  
• Wiper resistance: 70typical @ 1mA  
• Standby current <4µA max  
• Shutdown current <4µA max  
The ISL22343 features a dual supply, that is beneficial for  
applications requiring a bipolar range for DCP terminals  
between V- and VCC.  
• Dual power supply  
- VCC = 2.25V to 5.5V  
- V- = -2.25V to -5.5V  
Each DCP can be used as three-terminal potentiometers or  
as two-terminal variable resistors in a wide variety of  
applications including control, parameter adjustments, and  
signal processing.  
• 10k 50kor 100ktotal resistance  
• Extended industrial temperature range: -40°C to +125°C  
• 20 Ld TSSOP or 20 Ld QFN  
• Pb-free (RoHS compliant)  
Ordering Information  
RESISTANCE  
OPTION  
(k)  
TEMP.  
RANGE  
(°C)  
PART NUMBER  
(Notes 1, 2)  
PART  
MARKING  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
ISL22343TFV20Z  
22343 TFVZ  
22343 TFRZ  
22343 UFVZ  
22343 UFRZ  
100  
100  
50  
-40 to +125 20 Ld TSSOP M20.173  
(No longer available, recommended replacement: ISL22343WFR20Z-TK)  
ISL22343TFR20Z  
-40 to +125 20 Ld QFN  
L20.5x5  
(No longer available, recommended replacement: ISL22343WFR20Z-TK  
ISL22343UFV20Z  
-40 to +125 20 Ld TSSOP M20.173  
(No longer available, recommended replacement: ISL22343WFR20Z-TK  
ISL22343UFR20Z  
50  
-40 to +125 20 Ld QFN  
L20.5x5  
(No longer available, recommended replacement: ISL22343WFR20Z-TK  
ISL22343WFV20Z  
ISL22343WFR20Z  
NOTES:  
22343 WFVZ  
22343 WFRZ  
10  
10  
-40 to +125 20 Ld TSSOP M20.173  
-40 to +125 20 Ld QFN L20.5x5  
1. These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte  
tin plate PLUS ANNEAL - e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations.  
Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J  
STD-020.  
2. Add “-TK” suffix for tape and reel. Please refer to TB347 for details on reel specifications  
FN6423 Rev 2.00  
August 17, 2015  
Page 1 of 19  
 
 
 
ISL22343  
Block Diagram  
VCC  
V-  
RH3  
RW3  
WR3  
WR2  
SCL  
SDA  
A0  
POWER-UP,  
CONTROL  
AND  
STATUS  
LOGIC  
RL3  
RH2  
2
I C  
INTERFACE  
A1  
A2  
RW2  
RL2  
RH1  
WR1  
WR0  
RW1  
RL1  
RH0  
NON-VOLATILE  
REGISTERS  
RW0  
RL0  
GND  
Pinouts  
ISL22343  
ISL22343  
(20 LEAD TSSOP)  
(20 LEAD QFN)  
TOP VIEW  
TOP VIEW  
1
RW0  
RL0  
RH3  
20  
19  
RL3  
RW3  
A2  
2
3
4
5
6
7
8
9
20 19 18 17 16  
18 RH0  
17 V-  
RW3  
1
2
3
4
5
15  
14  
13  
12  
11  
V-  
A2  
SCL  
SDA  
GND  
VCC  
A1  
SCL  
SDA  
GND  
RW2  
RL2  
16 VCC  
15 A1  
14 A0  
A0  
13 RH1  
12  
RH1  
RL1  
RH2 10  
11 RW1  
6
7
8
9
10  
FN6423 Rev 2.00  
August 17, 2015  
Page 2 of 19  
ISL22343  
Pin Descriptions  
TSSOP PIN  
QFN PIN  
SYMBOL  
RH3  
RL3  
RW3  
A2  
DESCRIPTION  
1
2
19  
20  
1
“High” terminal of DCP3  
“Low” terminal of DCP3  
“Wiper” terminal of DCP3  
3
2
4
2
Device address input for the I C interface  
2
5
3
SCL  
SDA  
GND  
RW2  
RL2  
RH2  
RW1  
RL1  
RH1  
A0  
Open drain I C interface clock input  
2
6
4
Open drain Serial data I/O for the I C interface  
7
5
Device ground pin  
8
6
“Wiper” terminal of DCP2  
“Low” terminal of DCP2  
“High” terminal of DCP2  
“Wiper” terminal of DCP1  
“Low” terminal of DCP1  
“High” terminal of DCP1  
9
7
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
EPAD*  
2
Device address input for the I C interface  
2
A1  
Device address input for the I C interface  
VCC  
V-  
Positive power supply pin  
Negative power supply pin  
“High” terminal of DCP0  
RH0  
RL0  
RW0  
“Low” terminal of DCP0  
“Wiper” terminal of DCP0  
Exposed Die Pad internally connected to V-  
NOTE: *PCB thermal land for QFN EPAD should be connected to V- plane or left floating. For more information refer to  
http://www.intersil.com/data/tb/TB389.pdf  
FN6423 Rev 2.00  
August 17, 2015  
Page 3 of 19  
ISL22343  
Absolute Maximum Ratings  
Thermal Information  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Voltage at any Digital Interface Pin  
Thermal Resistance (Typical, Note 3)  
(°C/W)  
(°C/W)  
JC  
JA  
20 Lead TSSOP. . . . . . . . . . . . . . . . . . . . . . . .95  
20 Lead QFN (Note 4) . . . . . . . . . . . . . . . . . . .32  
Maximum Junction Temperature (Plastic Package) . . . . . . . +150°C  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
N/A  
3.0  
with Respect to GND . . . . . . . . . . . . . . . . . . . . . -0.3V to V +0.3  
CC  
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3V to +6V  
CC  
V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -6V to 0.3V  
Voltage at any DCP Pin with  
respect to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V- to V  
CC  
(10s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±6mA  
I
W
Recommended Operating Conditions  
Latchup . . . . . . . . . . . . . . . . . . . . . . . . . Class II, Level A at +125°C  
Temperature Range (Full Industrial) . . . . . . . . . . . .-40°C to +125°C  
Power Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15mW  
ESD  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5kV  
Machine Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .400V  
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.25V to 5.5V  
CC  
V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-2.25V to -5.5V  
Max Wiper Current Iw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±3.0mA  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
NOTE:  
3. is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
4. For , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Analog Specifications Over recommended operating conditions unless otherwise stated.  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
RHi to RLi Resistance  
TEST CONDITIONS  
(Note 21) (Note 5) (Note 21)  
UNIT  
k  
R
W option  
U option  
T option  
10  
50  
TOTAL  
k  
100  
k  
RHi to RLi Resistance tolerance  
-20  
V-  
+20  
%
End-to-End Temperature Coefficient  
W option  
±85  
±45  
ppm/°C  
ppm/°C  
V
U, T option  
V
, V  
RHi RLi  
DCP Terminal Voltage  
Wiper Resistance  
V
and V to GND  
RL  
V
RH  
CC  
R
RH - floating, V = V-, force Iw current to  
RL  
the wiper, I = (V  
70  
10/10/25  
0.1  
250  
W
- V )/R  
W
CC  
RL TOTAL  
C /C /C  
W
(Note 19)  
Potentiometer Capacitance  
Leakage on DCP pins  
See Macro Model below.  
pF  
µA  
H
L
I
Voltage at pin from V- to V  
@ RHi; measured at RWi, unloaded)  
W option  
1
LkgDCP  
CC  
VOLTAGE DIVIDER MODE (V- @ RLi; V  
CC  
INL  
Integral Non-linearity  
-1.5  
-1.0  
-1.0  
-0.5  
±0.5  
±0.2  
1.5  
1.0  
1.0  
0.5  
LSB  
(Note 6)  
(Note 10)  
U, T option  
LSB  
(Note 6)  
DNL  
Differential Non-linearity  
Monotonic over all tap positions,  
W option  
±0.4  
LSB  
(Note 6)  
(Note 9)  
U, T option  
±0.15  
LSB  
(Note 6)  
ZSerror  
(Note 7)  
Zero-scale Error  
Full-scale Error  
W option  
0
0
1
5
2
0
0
LSB  
(Note 6)  
U, T option  
W option  
0.1  
-2  
FSerror  
(Note 8)  
-5  
-2  
LSB  
(Note 6)  
U, T option  
-0.2  
FN6423 Rev 2.00  
August 17, 2015  
Page 4 of 19  
 
 
ISL22343  
Analog Specifications Over recommended operating conditions unless otherwise stated. (Continued)  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 21) (Note 5) (Note 21)  
UNIT  
V
DCP-to-DCP Matching  
Wipers at the same tap position, the same  
voltage at all RH terminals and the same  
voltage at all RL terminals  
-2  
2
LSB  
(Note 6)  
MATCH  
(Note 11)  
TC (Note 12) Ratiometric Temperature Coefficient  
DCP register set to 80 hex  
±4  
1000  
250  
120  
ppm/°C  
kHz  
V
f
-3dB Cut Off Frequency  
Wiper at midpoint (80hex) W option (10k)  
Wiper at midpoint (80hex) U option (50k)  
Wiper at midpoint (80hex) T option (100k)  
cutoff  
(Note 19)  
kHz  
kHz  
RESISTOR MODE (Measurements between RWi and RLi with RHi not connected, or between RWi and RHi with RLi not connected)  
RINL  
(Note 16)  
Integral Non-linearity  
Differential Non-linearity  
Offset  
W option  
-3  
±1  
±0.3  
±0.5  
±0.04  
1
3
MI  
(Note 13)  
U, T option  
W option  
-1  
1
MI  
(Note 13)  
RDNL  
(Note 15)  
-1.5  
-0.5  
0
1.5  
0.5  
5
MI  
(Note 13)  
U, T option  
W option  
MI  
(Note 13)  
Roffset  
MI  
(Note 14)  
(Note 13)  
U, T option  
0
0.25  
2
MI  
(Note 13)  
R
DCP-to-DCP matching  
Wipers at the same tap position with the  
same terminal voltages  
-3  
3
MI  
(Note 13)  
MATCH  
(Note 17)  
TC  
Resistance Temperature Coefficient  
DCP register set between 32 hex and FFhex  
±40  
ppm/°C  
R
(Notes 18, 19)  
Operating Specifications Over the recommended operating conditions unless otherwise specified.  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 21) (Note 5) (Note 21)  
UNIT  
2
I
V
Supply Current  
V
= 5.5V, f  
= 400kHz; (for I C Active, Read and  
0.006  
0.003  
-0.012  
-0.045  
1.0  
0.5  
mA  
CC1  
CC  
CC  
SCL  
(Volatile Write/Read)  
Volatile Write states only)  
2
V
= 2.25V, f = 400kHz; (for I C Active, Read and  
0.25  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
CC  
SCL  
Volatile Write states only)  
2
I
V- Supply Current (Volatile V- = -5.5V, V  
Write/Read)  
= 5.5V, f  
= 400kHz; (for I C Active,  
Read and Volatile Write states only)  
-0.5  
V-1  
CC  
SCL  
2
V- = -2.25V, V = 2.25V, f = 400kHz; (for I C  
Active, Read and Volatile Write states only)  
-0.25  
CC  
SCL  
2
I
V
Supply Current (Non-  
V = 5.5V, V- = 5.5V, f  
CC SCL  
= 400kHz; (for I C Active,  
Read and Non-volatile Write states only)  
2.0  
1.0  
CC2  
CC  
volatile Write/Read)  
2
V
= 2.25V, V- = -2.25V, f = 400kHz; (for I C  
Active, Read and Non-volatile Write states only)  
0.3  
CC  
SCL  
2
I
V- Supply Current  
V- = -5.5V, V  
= 5.5V, f = 400kHz; (for I C Active,  
SCL  
(Non-Volatile Write/Read) Read and Non-volatile Write states only)  
-2.0  
-1.0  
-1.2  
V-2  
CC  
2
V- Supply Current V- = -2.25V, V = 2.25V, f = 400kHz; (for I C  
-0.4  
CC  
SCL  
(Non-Volatile Write/Read) Active, Read and Non-volatile Write states only)  
FN6423 Rev 2.00  
August 17, 2015  
Page 5 of 19  
ISL22343  
Operating Specifications Over the recommended operating conditions unless otherwise specified. (Continued)  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 21) (Note 5) (Note 21)  
UNIT  
2
I
V
Current (Standby)  
V
= +5.5V, V- = -5.5V @ +85°C, I C interface in  
0.5  
1.0  
2.0  
4.0  
1.0  
2.0  
µA  
SB  
CC  
CC  
standby state  
2
V
= +5.5V, V- = -5.5V @ +125°C, I C interface in  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µs  
CC  
standby state  
2
V
= +2.25V, V- = -2.25V @ +85°C, I C interface in  
0.2  
CC  
standby state  
2
V
= +2.25V, V- = -2.25V @ +125°C, I C interface in  
0.5  
CC  
standby state  
2
I
V- Current (Standby)  
V- = -5.5V, V  
CC  
standby state  
= +5.5V @ +85°C, I C interface in  
-4.0  
-5.0  
-2.0  
-3.0  
-0.7  
-1.5  
-0.3  
-0.4  
0.5  
V-SB  
2
V- = -5.5V, V  
standby state  
= +5.5V @ +125°C, I C interface in  
CC  
2
V- = -2.25V, V  
standby state  
= +2.25V @ +85°C, I C interface in  
CC  
CC  
2
V- = -2.25V, V  
standby state  
= +2.25V @ +125°C, I C interface in  
2
I
V
Current (Shutdown)  
V
= +5.5V, V- = -5.5V @ +85°C, I C interface in  
2.0  
4.0  
1.0  
2.0  
SD  
CC  
CC  
standby state  
2
V
= +5.5V, V- = -5.5V @ +125°C, I C interface in  
1.0  
CC  
standby state  
2
V
= +2.25V, V- = -2.25V @ +85°C, I C interface in  
0.2  
CC  
standby state  
2
V
= +2.25V, V- = -2.25V @ +125°C, I C interface in  
0.5  
CC  
standby state  
2
I
V- Current (Shutdown)  
V- = -5.5V, V  
= +5.5V @ +85°C, I C interface in  
-4.0  
-5.0  
-2.0  
-3.0  
-1  
-0.7  
-1.5  
-0.3  
-0.4  
V-SD  
CC  
standby state  
2
V- = -5.5V, V  
CC  
standby state  
= +5.5V @ +125°C, I C interface in  
2
V- = -2.25V, V  
standby state  
= +2.25V @ +85°C, I C interface in  
CC  
CC  
2
V- = -2.25V, V  
standby state  
= +2.25V @ +125°C, I C interface in  
I
Leakage Current, at Pins Voltage at pin from GND to V  
A0, A1, A2, SDA, and SCL  
1
LkgDig  
CC  
t
DCP Wiper Response  
SCL falling edge of last bit of DCP data byte to wiper  
new position  
1.5  
1.5  
WRT  
(Note 19) Time  
t
DCP Recall Time from  
SCL falling edge of last bit of ACR data byte to wiper  
stored position and RH connection  
µs  
ShdnRec  
(Note 19) Shutdown Mode  
Vpor  
Power-on Recall Voltage  
Ramp Rate  
Minimum V  
at which memory recall occurs  
1.9  
0.2  
2.1  
5
V
CC  
VCCRamp  
V
V/ms  
ms  
CC  
t
Power-up Delay  
V
above Vpor, to DCP Initial Value Register recall  
2
D
CC  
completed, and I C Interface in standby state  
EEPROM SPECIFICATION  
EEPROM Endurance  
1,000,000  
50  
Cycles  
Years  
ms  
EEPROM Retention  
Temperature T +55°C  
t
Non-volatile Write Cycle  
12  
20  
WC  
(Note 20) Time  
FN6423 Rev 2.00  
August 17, 2015  
Page 6 of 19  
ISL22343  
Operating Specifications Over the recommended operating conditions unless otherwise specified. (Continued)  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 21) (Note 5) (Note 21)  
UNIT  
SERIAL INTERFACE SPECS  
V
A1, A0, A2, SDA, and SCL  
Input Buffer LOW Voltage  
0.3*V  
V
V
IL  
CC  
V
A1, A0, A2, SDA, and SCL  
Input Buffer HIGH Voltage  
0.7*V  
CC  
IH  
Hysteresis SDA and SCL Input Buffer  
(Note 19) Hysteresis  
0.05*V  
0
V
CC  
V
SDA Output Buffer LOW  
0.4  
10  
V
OL  
(Note 19) Voltage, Sinking 4mA  
Cpin  
A1, A0, A2, SDA, and SCL  
pF  
(Note 19) Pin Capacitance  
f
SCL Frequency  
400  
50  
kHz  
ns  
SCL  
t
Pulse Width Suppression Any pulse narrower than the max spec is suppressed  
sp  
Time at SDA and SCL  
Inputs  
t
SCL Falling Edge to SDA SCL falling edge crossing 30% of V , until SDA exits  
CC  
900  
ns  
ns  
AA  
(Note 19) Output Data Valid  
the 30% to 70% of V  
window  
CC  
t
Time the Bus Must be Free SDA crossing 70% of V  
CC  
during a STOP condition, to  
during the following START  
1300  
BUF  
(Note 19) Before the Start of a New SDA crossing 70% of V  
CC  
Transmission  
condition  
t
Clock LOW Time  
Clock HIGH Time  
Measured at the 30% of V  
Measured at the 70% of V  
crossing  
crossing  
1300  
600  
ns  
ns  
ns  
LOW  
CC  
CC  
t
HIGH  
t
START Condition Setup  
Time  
SCL rising edge to SDA falling edge; both crossing 70%  
of V  
600  
SU:STA  
HD:STA  
SU:DAT  
HD:DAT  
SU:STO  
HD:STO  
CC  
From SDA falling edge crossing 30% of V  
t
t
START Condition Hold  
Time  
to SCL  
600  
100  
0
ns  
ns  
ns  
ns  
ns  
CC  
falling edge crossing 70% of V  
CC  
Input Data Setup Time  
From SDA exiting the 30% to 70% of V  
SCL rising edge crossing 30% of V  
window, to  
CC  
CC  
t
Input Data Hold Time  
From SCL rising edge crossing 70% of V  
entering the 30% to 70% of V  
to SDA  
CC  
window  
CC  
t
STOP Condition Setup  
Time  
From SCL rising edge crossing 70% of V , to SDA  
rising edge crossing 30% of V  
600  
1300  
CC  
CC  
t
STOP Condition Hold  
From SDA rising edge to SCL falling edge; both  
Time for Read, or Volatile crossing 70% of V  
Only Write  
CC  
t
Output Data Hold Time  
SDA and SCL Rise Time  
SDA and SCL Fall Time  
From SCL falling edge crossing 30% of V , until SDA  
CC  
0
ns  
ns  
ns  
DH  
(Note 19)  
enters the 30% to 70% of V  
window  
CC  
t
From 30% to 70% of V  
From 70% to 30% of V  
20 +  
0.1*Cb  
250  
250  
R
CC  
CC  
(Note 19)  
t
20 +  
F
(Note 19)  
0.1*Cb  
FN6423 Rev 2.00  
August 17, 2015  
Page 7 of 19  
ISL22343  
Operating Specifications Over the recommended operating conditions unless otherwise specified. (Continued)  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 21) (Note 5) (Note 21)  
UNIT  
Cb  
CapacitiveLoadingofSDA Total on-chip and off-chip  
10  
1
400  
pF  
(Note 19) or SCL  
Rpu  
SDA and SCL Bus Pull-up Maximum is determined by t and t  
k  
R
F
(Note 19) Resistor Off-chip  
For Cb = 400pF, max is about 2~2.5k  
For Cb = 40pF, max is about 15~20k  
t
A1 and A0 Setup Time  
A1 and A0 Hold Time  
Before START condition  
After STOP condition  
600  
600  
ns  
ns  
SU:A  
t
HD:A  
NOTES:  
5. Typical values are for T = +25°C and 3.3V supply voltage.  
A
6. LSB: [V(R  
)
– V(R ) ]/255. V(R  
)
and V(R ) are V(R ) for the DCP register set to FF hex and 00 hex respectively. LSB is the  
W 0  
W 255  
W 0 W 255  
W
incremental voltage when changing from one tap to an adjacent tap.  
7. ZS error = V(RW) /LSB.  
0
8. FS error = [V(RW)  
255  
– V ]/LSB.  
CC  
9. DNL = [V(RW) – V(RW) ]/LSB-1, for i = 1 to 255. i is the DCP register setting.  
i-1  
i
10. INL = [V(RW) – i • LSB – V(RW) ]/LSB for i = 1 to 255.  
i
0
11. V  
= [V(RWx)i -V(RWy)i]/LSB, for i = 0 to 255, x = 0 to 3, y = 0 to 3.  
MATCH  
MaxVRW  MinVRW   
6
10  
i
i
12.  
for i = 16 to 240 decimal, T = -40°C to +125°C. Max( ) is the maximum value of the wiper  
MaxVRW  + MinVRW   2 165°C voltage and Min ( ) is the minimum value of the wiper voltage over the temperature range.  
--------------------------------------------------------------------------------------------- ----------------  
TC  
=
V
+
i
i
13. MI = |RW  
– RW |/255. MI is a minimum increment. RW  
and RW are the measured resistances for the DCP register set to FF hex and  
255 0  
255  
0
00 hex respectively.  
14. Roffset = RW /MI, when measuring between RW and RL.  
0
Roffset = RW  
/MI, when measuring between RW and RH.  
255  
15. RDNL = (RW – RW )/MI -1, for i = 16 to 255.  
i
i-1  
16. RINL = [RW – (MI • i) – RW ]/MI, for i = 16 to 255.  
i
0
17. R  
18.  
= [(Rx)i -(Ry)i]/MI, for i = 0 to 255, x = 0 to 3, y = 0 to 3.  
6
MATCH  
for i = 16 to 240, T = -40°C to +125°C. Max( ) is the maximum value of the resistance and Min ( ) is  
the minimum value of the resistance over the temperature range.  
MaxRiMinRi  
10  
--------------------------------------------------------------- ----------------  
TC  
=
R
165°C  
MaxRi+ MinRi  2 +  
19. This parameter is not 100% tested.  
2
20. t  
is the time from a valid STOP condition at the end of a Write sequence of I C serial interface, to the end of the self-timed internal non-  
WC  
volatile write cycle.  
21. Parts are 100% tested at +25°C. Temperature limits established by characterization and are not production tested.  
FN6423 Rev 2.00  
August 17, 2015  
Page 8 of 19  
 
ISL22343  
DCP Macro Model  
R
TOTAL  
RH  
RL  
C
L
C
H
C
W
10pF  
10pF  
25pF  
RW  
SDA vs SCL Timing  
t
sp  
t
t
t
t
R
F
HIGH  
LOW  
SCL  
t
SU:DAT  
t
t
t
SU:STO  
SU:STA  
HD:DAT  
t
HD:STA  
SDA  
(INPUT TIMING)  
t
t
t
BUF  
AA  
DH  
SDA  
(OUTPUT TIMING)  
A2, A1 and A0 Pin Timing  
STOP  
START  
SCL  
CLK 1  
SDA  
t
t
HD:A  
SU:A  
A2, A1, A0  
FN6423 Rev 2.00  
August 17, 2015  
Page 9 of 19  
ISL22343  
Typical Performance Curves  
80  
2.0  
1.5  
1.0  
0.5  
0
T = +125°C  
70  
60  
50  
40  
30  
20  
10  
0
T = +25°C  
T = -40°C  
I
CC  
-0.5  
-1.0  
-1.5  
-2.0  
I
V-  
0
50  
100  
150  
200  
250  
-40  
0
40  
TEMPERATURE (°C)  
80  
120  
TAP POSITION (DECIMAL)  
FIGURE 2. STANDBY I  
and I vs TEMPERATURE  
V-  
FIGURE 1. WIPER RESISTANCE vs TAP POSITION  
[ I(RW) = V /R ] FOR 10k(W)  
CC  
CC TOTAL  
0.50  
0.50  
0.25  
0
V
= 5.5V  
CC  
T = +25°C  
T = +25°C  
V
= 2.25V  
CC  
0.25  
0
-0.25  
-0.50  
-0.25  
-0.50  
V
= 5.5V  
V
= 2.25V  
100  
CC  
100  
TAP POSITION (DECIMAL)  
CC  
0
50  
150  
200  
250  
0
50  
150  
200  
250  
TAP POSITION (DECIMAL)  
FIGURE 3. DNL vs TAP POSITION IN VOLTAGE DIVIDER  
FIGURE 4. INL vs TAP POSITION IN VOLTAGE DIVIDER  
MODE FOR 10k(W)  
MODE FOR 10k(W)  
2.0  
0
10k  
1.6  
1.2  
-1  
V
= 2.25V  
CC  
50k  
V
= 5.5V  
CC  
-2  
0.8  
-3  
-4  
50k  
10k  
V
= 2.25V  
V
= 5.5V  
CC  
CC  
0.4  
0
-5  
-40  
0
40  
80  
120  
-40  
0
40  
TEMPERATURE (ºC)  
80  
120  
TEMPERATURE (ºC)  
FIGURE 6. FS ERROR vs TEMPERATURE  
FIGURE 5. ZS ERROR vs TEMPERATURE  
FN6423 Rev 2.00  
August 17, 2015  
Page 10 of 19  
ISL22343  
Typical Performance Curves (Continued)  
0.5  
2.0  
T = +25°C  
T = +25°C  
V
= 5.5V  
1.5  
1.0  
CC  
V
= 2.25V  
0.25  
0
CC  
0.5  
0
-0.25  
-0.50  
V
= 2.25V  
100  
CC  
V
= 5.5V  
CC  
-0.5  
0
50  
150  
200  
250  
0
50  
100  
150  
200  
250  
TAP POSITION (DECIMAL)  
TAP POSITION (DECIMAL)  
FIGURE 7. DNL vs TAP POSITION IN RHEOSTAT MODE FOR  
FIGURE 8. INL vs TAP POSITION IN RHEOSTAT MODE FOR  
10k(W)  
10k(W)  
200  
160  
1.60  
10k  
1.20  
10k  
120  
0.80  
5.5V  
80  
0.40  
0.00  
50k  
40  
0
50k  
2.25V  
-0.40  
-40  
16  
66  
116  
166  
216  
266  
0
40  
80  
120  
TAP POSITION (DECIMAL)  
TEMPERATURE (ºC)  
FIGURE 10. TC FOR VOLTAGE DIVIDER MODE IN ppm  
FIGURE 9. END TO END R  
% CHANGE vs  
TOTAL  
TEMPERATURE  
500  
400  
300  
INPUT  
OUTPUT  
10k  
200  
100  
50k  
WIPER AT MID POINT (POSITION 80h)  
R
= 10k  
TOTAL  
0
16  
66  
116  
166  
216  
TAP POSITION (DECIMAL)  
FIGURE 12. FREQUENCY RESPONSE (1MHz)  
FIGURE 11. TC FOR RHEOSTAT MODE IN ppm  
FN6423 Rev 2.00  
August 17, 2015  
Page 11 of 19  
ISL22343  
Typical Performance Curves (Continued)  
CS  
SCL  
WIPER UNLOADED,  
MOVEMENT FROM 0h to FFh  
WIPER  
FIGURE 13. MIDSCALE GLITCH, CODE 7Fh TO 80h  
FIGURE 14. LARGE SIGNAL SETTLING TIME  
2
maximum of eight ISL22343 devices may occupy the I C serial  
bus (See Table 3).  
Pin Description  
Potentiometers Pins  
RHI AND RLI  
Principles of Operation  
The ISL22343 is an integrated circuit incorporating four DCPs  
with its associated registers, non-volatile memory and an I C  
The high (RHi) and low (RLi) terminals of the ISL22343 are  
equivalent to the fixed terminals of a mechanical  
potentiometer. RHi and RLi are referenced to the relative  
position of the wiper and not the voltage potential on the  
terminals. With WRi set to 255 decimal, the wiper will be  
closest to RHi, and with the WRi set to 0, the wiper is closest to  
RLi.  
2
serial interface providing direct communication between a host  
and the potentiometer and memory. The resistor arrays are  
comprised of individual resistors connected in a series. At  
either end of the array and between each resistor is an  
electronic switch that transfers the potential at that point to the  
wiper.  
RWI  
The electronic switches on the device operate in a “make  
before break” mode when the wiper changes tap positions.  
RWi is the wiper terminal and is equivalent to the movable  
terminal of a mechanical potentiometer. The position of the  
wiper within the array is determined by the WRi register.  
When the device is powered down, the last value stored in IVRi  
will be maintained in the non-volatile memory. When power is  
restored, the contents of the IVRi are recalled and loaded into  
the corresponding WRi to set the wipers to their initial  
positions.  
Bus Interface Pins  
SERIAL DATA INPUT/OUTPUT (SDA)  
2
The SDA is a bidirectional serial data input/output pin for I C  
interface. It receives device address, operation code, wiper  
address and data from an I C external master device at the  
DCP Description  
2
The DCP is implemented with a combination of resistor  
elements and CMOS switches. The physical ends of each DCP  
are equivalent to the fixed terminals of a mechanical  
rising edge of the serial clock SCL, and it shifts out data after  
each falling edge of the serial clock.  
SDA requires an external pull-up resistor, since it is an open  
drain input/output.  
potentiometer (RHi and RLi pins). The RWi pin of the DCP is  
connected to intermediate nodes, and is equivalent to the  
wiper terminal of a mechanical potentiometer. The position of  
the wiper terminal within the DCP is controlled by an 8-bit  
volatile Wiper Register (WRi). When the WRi of a DCP  
contains all zeroes (WRi[7:0]= 00h), its wiper terminal (RWi) is  
closest to its “Low” terminal (RLi). When the WRi register of a  
DCP contains all ones (WRi[7:0] = FFh), its wiper terminal  
(RWi) is closest to its “High” terminal (RHi). As the value of the  
WRi increases from all zeroes (0) to all ones (255 decimal), the  
wiper moves monotonically from the position closest to RLi to  
the position closest to RHi. At the same time, the resistance  
SERIAL CLOCK (SCL)  
2
This input is the serial clock of the I C serial interface. SCL  
requires an external pull-up resistor, since it is an open drain  
input.  
DEVICE ADDRESS (A2, A1, A0)  
The address inputs are used to set three least significant bits of  
2
the 7-bit I C interface slave address. A match in the slave  
address serial data stream must match with the Address input  
pins in order to initiate communication with the ISL22343. A  
FN6423 Rev 2.00  
August 17, 2015  
Page 12 of 19  
ISL22343  
between RWi and RLi increases monotonically, while the  
resistance between RHi and RWi decreases monotonically.  
The VOL bit (ACR[7]) determines whether the access to wiper  
registers WRi or initial value registers IVRi.  
TABLE 2. ACCESS CONTROL REGISTER (ACR)  
While the ISL22343 is being powered up, the WRi is reset to  
80h (128 decimal), which locates RWi roughly at the center  
between RLi and RHi. After the power supply voltage becomes  
large enough for reliable non-volatile memory reading, the WRi  
will be reloaded with the value stored in corresponding non-  
volatile Initial Value Register (IVRi).  
BIT #  
7
6
5
4
0
3
0
2
0
1
0
0
0
NAME  
VOL  
SHDN WIP  
If VOL bit is 0, the non-volatile IVRi registers are accessible. If  
VOL bit is 1, only the volatile WRi are accessible.  
Note: value is written to IVRi register also is written to the  
corresponding WRi. The default value of this bit is 0.  
The WRi and IVRi can be read or written to directly using the  
I C serial interface as described in the following sections.  
2
The SHDN bit (ACR[6]) disables or enables Shutdown mode.  
When this bit is 0, DCPs are in Shutdown mode. Default value of  
the SHDN bit is 1.  
Memory Description  
The ISL22343 contains four non-volatile 8-bit Initial Value Register  
(IVRi), eleven General Purpose non-volatile 8-bit registers and  
five volatile 8-bit registers: four Wiper Registers (WRi) and Access  
Control Register (ACR). Memory map of ISL22343 is in Table 1.  
The non-volatile registers (IVRi) at address 0, 1, 2 and 3 contain  
initial wiper position and volatile registers (WRi) contain current  
wiper position.  
RHi  
RWi  
TABLE 1. MEMORY MAP  
RLi  
ADDRESS  
FIGURE 15. DCP CONNECTION IN SHUTDOWN MODE  
(hex)  
10  
F
NON-VOLATILE  
VOLATILE  
N/A  
ACR  
The WIP bit (ACR[5]) is a read-only bit. It indicates that non-  
volatile write operation is in progress. It is impossible to write to  
the WRi or ACR while WIP bit is 1.  
Reserved  
E
D
C
B
A
9
General Purpose  
General Purpose  
General Purpose  
General Purpose  
General Purpose  
General Purpose  
General Purpose  
General Purpose  
General Purpose  
General Purpose  
General Purpose  
IVR3  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
WR3  
WR2  
WR1  
WR0  
2
I C Serial Interface  
2
The ISL22343 supports an I C bidirectional bus oriented  
protocol. The protocol defines any device that sends data onto  
the bus as a transmitter and the receiving device as the receiver.  
The device controlling the transfer is a master and the device  
being controlled is the slave. The master always initiates data  
transfers and provides the clock for both transmit and receive  
operations. Therefore, the ISL22343 operates as a slave device  
in all applications.  
8
7
6
2
All communication over the I C interface is conducted by  
5
sending the MSB of each byte of data first.  
4
Protocol Conventions  
3
Data states on the SDA line must change only during SCL  
LOW periods. SDA state changes during SCL HIGH are  
reserved for indicating START and STOP conditions  
(see Figure 16). On power-up of the ISL22343, the SDA pin is  
in the input mode.  
2
IVR2  
1
IVR1  
0
IVR0  
2
All I C interface operations must begin with a START  
The non-volatile IVRi and volatile WRi registers are accessible  
with the same address.  
condition, which is a HIGH to LOW transition of SDA while SCL  
is HIGH. The ISL22343 continuously monitors the SDA and  
SCL lines for the START condition and does not respond to  
any command until this condition is met (See Figure 16). A  
START condition is ignored during the power-up of the device.  
The Access Control Register (ACR) contains information and  
control bits described below in Table 2.  
2
All I C interface operations must be terminated by a STOP  
condition, which is a LOW to HIGH transition of SDA while SCL  
is HIGH (see Figure 16). A STOP condition at the end of a read  
FN6423 Rev 2.00  
August 17, 2015  
Page 13 of 19  
 
 
ISL22343  
operation, or at the end of a write operation places the device  
in its standby mode.  
A valid Identification Byte contains 1010 as four MSBs, and the  
following three bits matching the logic values present at pins  
A2, A1 and A0. The LSB is the Read/Write bit. Its value is “1”  
for a Read operation and “0” for a Write operation (See Table  
3).  
An ACK (Acknowledge) is a software convention used to  
indicate a successful data transfer. The transmitting device,  
either master or slave, releases the SDA bus after transmitting  
eight bits. During the ninth clock cycle, the receiver pulls the  
SDA line LOW to acknowledge the reception of the eight bits of  
data (see Figure 17).  
TABLE 3. IDENTIFICATION BYTE FORMAT  
LOGIC VALUES AT PINS A2, A1 AND A0, RESPECTIVELY  
The ISL22343 responds with an ACK after recognition of a  
START condition followed by a valid Identification Byte, and  
once again after successful receipt of an Address Byte. The  
ISL22343 also responds with an ACK after receiving a Data  
Byte of a write operation. The master must respond with an  
ACK after receiving a Data Byte of a read operation  
1
0
1
0
A2  
A1  
A0  
R/W  
(MSB)  
(LSB)  
SCL  
SDA  
START  
DATA  
DATA  
DATA  
STOP  
STABLE  
CHANGE STABLE  
FIGURE 16. VALID DATA CHANGES, START AND STOP CONDITIONS  
SCL FROM  
MASTER  
1
8
9
SDA OUTPUT FROM  
TRANSMITTER  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
SDA OUTPUT FROM  
RECEIVER  
START  
ACK  
FIGURE 17. ACKNOWLEDGE RESPONSE FROM RECEIVER  
WRITE  
S
SIGNALS FROM  
THE MASTER  
T
A
R
T
S
T
O
P
IDENTIFICATION  
BYTE  
ADDRESS  
BYTE  
DATA  
BYTE  
SIGNAL AT SDA  
1 0 1 0 A2A1A0 0  
0 0 0 0  
SIGNALS FROM  
THE SLAVE  
A
C
K
A
C
K
A
C
K
FIGURE 18. BYTE WRITE SEQUENCE  
FN6423 Rev 2.00  
August 17, 2015  
Page 14 of 19  
 
 
 
ISL22343  
S
T
A
R
T
S
T
A
R
T
SIGNALS  
FROM THE  
MASTER  
S
T
O
P
A
C
K
A
C
K
IDENTIFICATION  
BYTE WITH  
R/W = 0  
IDENTIFICATION  
BYTE WITH  
R/W = 1  
A
C
K
ADDRESS  
BYTE  
SIGNAL AT SDA  
1 0 1 0 A2 A1A0 0  
0 0 0 0  
1 0 1 A2A1A0 1  
0
A
C
K
A
C
K
A
C
K
SIGNALS FROM  
THE SLAVE  
FIRST READ  
DATA BYTE  
LAST READ  
DATA BYTE  
FIGURE 19. READ SEQUENCE  
circuit, thus this may not be a good solution for some  
Write Operation  
applications. It may be a good idea, in that case, to use fast  
amplifiers in a signal chain for fast recovery.  
A Write operation requires a START condition, followed by a  
valid Identification Byte, a valid Address Byte, a Data Byte, and  
a STOP condition. After each of the three bytes, the ISL22343  
responds with an ACK. At this time, the device enters its  
standby state (see Figure 18).  
Application Example  
Figure 20 shows an example of using ISL22343 for gain setting  
and offset correction in a high side current measurement  
application. DCP0 applies a programmable offset voltage of  
±25mV to the FB+ pin of the Instrumentation Amplifier  
ISL28272 to adjust output offset to zero voltages. DCP1  
programs the gain of the ISL28272 from 90 to 110 with 5V  
output for 10A current through current sense resistor. DCP2  
and DCP3 are used for another channel of dual ISL28272  
correspondently (not shown in Figure 20).  
The non-volatile write cycle starts after STOP condition is  
determined and it requires up to 20ms delay for the next non-  
volatile write. Thus, non-volatile registers must be written  
individually.  
Read Operation  
A Read operation consist of a three byte instruction followed by  
one or more Data Bytes (see Figure 19). The master initiates  
the operation issuing the following sequence: a START, the  
Identification byte with the R/W bit set to “0”, an Address Byte,  
a second START, and a second Identification byte with the R/W  
bit set to “1”. After each of the three bytes, the ISL22343  
responds with an ACK. Then the ISL22343 transmits Data  
Bytes as long as the master responds with an ACK during the  
SCL cycle following the eighth bit of each byte. The Data Bytes  
are from the registers indicated by an internal pointer. This  
pointers initial value is determined by the Address Byte in the  
Read operation instruction, and increments by one during  
transmission of each Data Byte. After reaching the memory  
location 0Fh, the pointer “rolls over” to 00h, and the device  
continues to output data for each ACK received.The master  
terminates the read operation issuing a NACK (ACK) and a  
STOP condition following the last bit of the last Data Byte (See  
Figure 19).  
More application examples can be found at  
http://www.intersil.com/data/an/AN1145.pdf  
Applications Information  
When stepping up through each tap in voltage divider mode,  
some tap transition points can result in noticeable voltage  
transients (or overshoot/undershoot) resulting from the sudden  
transition from a very low impedance “make” to a much higher  
impedance “break within an extremely short period of time  
(<50ns). Two such code transitions are EFh to F0h, and 0Fh to  
10h. Note that all switching transients will settle well within the  
settling time as stated on the datasheet. A small capacitor can  
be added externally to reduce the amplitude of these voltage  
transients, but that will also reduce the useful bandwidth of the  
FN6423 Rev 2.00  
August 17, 2015  
Page 15 of 19  
 
ISL22343  
1.2V  
DC/DC CONVERTER  
OUTPUT  
PROCESSOR LOAD  
10A, MAX  
0.005  
+5V  
10k  
10k  
0.1µF  
16  
V+  
1/2 ISL28272  
7
6
5
3
4
IN+  
EN  
IN-  
2
V
V
= 0V TO +5V TO ADC  
OUT  
OUT  
FB+  
+5V  
R
4
FB-  
V-  
150k, 1%  
R
1
8
50k, 1%  
RH1  
RL1  
RH0  
RW1  
R
5
309, 1%  
R
2
1k, 1%  
RW0  
RL0  
50k  
50k  
DCP0 (1/4 ISL22343U)  
PROGRAMMABLE OFFSET ±25mV  
DCP1 (1/4 ISL22343U)  
PROGRAMMABLE GAIN 90 TO 110  
R
6
R
3
1.37k, 1%  
50k, 1%  
-5V  
ISL22343UFV20Z  
16  
18  
19  
20  
+5V  
I C bus  
VCC  
RH0  
RL0  
RW0  
DCP0  
DCP1  
5
6
4
15  
SCL  
SDA  
A2  
A1  
A0  
2
13  
12  
11  
RH1  
RL1  
RW1  
14  
10  
9
8
7
RH2  
RL2  
RW2  
GND  
DCP2  
DCP3  
17  
-5V  
V-  
1
2
3
RH3  
RL3  
RW3  
FIGURE 20. CURRENT SENSING WITH GAIN AND OFFSET CONTROL  
FN6423 Rev 2.00  
August 17, 2015  
Page 16 of 19  
ISL22343  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that  
you have the latest revision.  
DATE  
REVISION  
FN6423.2  
CHANGE  
August 17, 2015  
Updated Ordering Information Table on page 1.  
Added Revision History and About Intersil sections.  
Updated POD M20.173 to current revision. Changes: Converted to new POD format and added land pattern.  
No dimension changes.  
About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com.  
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support  
© Copyright Intersil Americas LLC 2007-2015. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6423 Rev 2.00  
August 17, 2015  
Page 17 of 19  
ISL22343  
Quad Flat No-Lead Plastic Package (QFN)  
Micro Lead Frame Plastic Package (MLFP)  
L20.5x5  
20 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
MILLIMETERS  
SYMBOL  
MIN  
NOMINAL  
MAX  
1.00  
0.05  
1.00  
NOTES  
A
A1  
A2  
A3  
b
0.80  
0.90  
-
-
-
0.02  
-
0.65  
9
0.20 REF  
9
0.23  
2.95  
2.95  
0.30  
0.38  
3.25  
3.25  
5, 8  
D
5.00 BSC  
-
D1  
D2  
E
4.75 BSC  
9
3.10  
7, 8  
5.00 BSC  
-
E1  
E2  
e
4.75 BSC  
9
3.10  
7, 8  
0.65 BSC  
-
k
0.20  
0.35  
-
0.60  
20  
5
-
-
L
0.75  
8
N
2
Nd  
Ne  
P
3
5
3
-
-
-
0.60  
12  
9
-
9
Rev. 4 11/04  
NOTES:  
1. Dimensioning and tolerancing conform to ASME Y14.5-1994.  
2. N is the number of terminals.  
3. Nd and Ne refer to the number of terminals on each D and E.  
4. All dimensions are in millimeters. Angles are in degrees.  
5. Dimension b applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
6. The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
7. Dimensions D2 and E2 are for the exposed pads which provide  
improved electrical and thermal performance.  
8. Nominal dimensionsare provided toassistwith PCBLandPattern  
Design efforts, see Intersil Technical Brief TB389.  
9. Features and dimensions A2, A3, D1, E1, P & are present when  
Anvil singulation method is used and not present for saw  
singulation.  
10. Compliant to JEDEC MO-220VHHC Issue I except for the "b"  
dimension.  
FN6423 Rev 2.00  
August 17, 2015  
Page 18 of 19  
ISL22343  
Package Outline Drawing  
M20.173  
20 LEAD THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP)  
Rev 2, 5/10  
A
1
3
6.50 ±0.10  
SEE DETAIL "X"  
10  
20  
6.40  
PIN #1  
I.D. MARK  
4.40 ±0.10  
2
3
0.20 C B A  
1
9
B
0.65  
0.09-0.20  
TOP VIEW  
END VIEW  
1.00 REF  
H
- 0.05  
C
0.90 +0.15/-0.10  
1.20 MAX  
SEATING  
PLANE  
GAUGE  
PLANE  
0.25  
0.25 +0.05/-0.06  
5
0.10  
C B A  
M
0.10 C  
0°-8°  
0.60 ±0.15  
0.05 MIN  
0.15 MAX  
SIDE VIEW  
DETAIL "X"  
(1.45)  
NOTES:  
1. Dimension does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusions or gate burrs shall not exceed 0.15 per side.  
2. Dimension does not include interlead flash or protrusion. Interlead  
flash or protrusion shall not exceed 0.25 per side.  
3. Dimensions are measured at datum plane H.  
(5.65)  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
5. Dimension does not include dambar protrusion. Allowable protrusion  
shall be 0.08mm total in excess of dimension at maximum material  
condition. Minimum space between protrusion and adjacent lead  
is 0.07mm.  
(0.65 TYP)  
(0.35 TYP)  
6. Dimension in ( ) are for reference only.  
TYPICAL RECOMMENDED LAND PATTERN  
7. Conforms to JEDEC MO-153.  
FN6423 Rev 2.00  
August 17, 2015  
Page 19 of 19  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY