ISL28110FBZ-T7A [RENESAS]

Precision Low Noise JFET Operational Amplifiers; SOIC8; Temp Range: -40° to 125°C;
ISL28110FBZ-T7A
型号: ISL28110FBZ-T7A
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Precision Low Noise JFET Operational Amplifiers; SOIC8; Temp Range: -40° to 125°C

放大器 光电二极管
文件: 总23页 (文件大小:893K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Low Noise JFET Operational Amplifiers  
ISL28110, ISL28210  
Features  
The ISL28110, ISL28210, are single and dual JFET amplifiers  
featuring low noise, high slew rate, low input bias current and  
offset voltage, making them the ideal choice for high  
impedance applications where precision and low noise are  
important. The combination of precision, low noise, and high  
speed combined with a small footprint provides the user with  
outstanding value and flexibility relative to similar competitive  
parts.  
• Wide supply range . . . . . . . . . . . . . . . . . . . . . . . . . . . 9V to 40V  
• Low voltage noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6nV/Hz  
• Input bias current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2pA  
• High slew rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23V/µs  
• High bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5MHz  
• Low input offset . . . . . . . . . . . . . . . . . . . . . . . . . . . 300µV, Max  
• Offset drift. . . . . . . . . . . . . . . . . . . . . . . . . . . Grade C 10µV/°C  
• Low current consumption . . . . . . . . . . . . . . . . . . . . . . .2.55mA  
• Operating temperature range. . . . . . . . . . . .-40°C to +125°C  
• Small package offerings in single, and dual  
Applications for these amplifiers include precision medical  
and analytical instrumentation, sensor conditioning, precision  
power supply controls, industrial controls and photodiode  
amplifiers.  
The ISL28110 single amplifier and the ISL28210 dual  
amplifiers are available in the 8 Ld SOIC package. All devices  
are offered in standard pin configurations and operate over the  
extended temperature range from -40°C to +125°C.  
• No phase reversal  
• Pb-Free (RoHS compliant)  
Applications  
• Precision instruments  
• Photodiode amplifiers  
• High impedance buffers  
• Medical instrumentation  
• Active filter blocks  
• Industrial controls  
Related Literature  
AN1594 ISL28210SOICEVAL1Z Evaluation Board User’s  
Guide  
R
F
10  
V
= ±15V  
S
8
6
C
F
4
V
2
+
0
-
-2  
-4  
-6  
-8  
-10  
PHOTO  
DIODE  
R
C
OUTPUT  
SH  
T
+
V
-
-15  
-10  
-5  
0
5
10  
15  
V
(V)  
BASIC APPLICATION CIRCUIT - PHOTODIODE AMPLIFIER  
CM  
FIGURE 1. TYPICAL APPLICATION  
FIGURE 2. INPUT BIAS CURRENT vs COMMON MODE INPUT  
VOLTAGE  
November 29, 2012  
FN6639.3  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas Inc. 2010-2012. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISL28110, ISL28210  
Pin Configuration  
ISL28110  
ISL28210  
(8 LD SOIC)  
TOP VIEW  
(8 LD SOIC)  
TOP VIEW  
NC  
-IN A  
+IN A  
1
2
3
4
8
7
6
5
NC  
V
A
1
2
3
4
8
7
6
5
V
V
OUT  
+
V
+
-IN A  
B
OUT  
-
+
- +  
V
A
OUT  
+IN A  
-IN B  
-
+
V
NC  
-
V
+IN B  
-
Pin Descriptions  
ISL28110  
ISL28210  
PIN  
(8 LD SOIC)  
(8 LD SOIC)  
NAME  
EQUIVALENT CIRCUIT  
Circuit 1  
DESCRIPTION  
3
2
6
4
3
2
1
4
5
6
7
8
+IN A  
-IN A  
Amplifier A non-inverting input  
Amplifier A inverting input  
Amplifier A output  
Circuit 1  
VOUT A  
Circuit 2  
V-  
Circuit 3  
Negative power supply  
Amplifier B non-inverting input  
Amplifier B inverting input  
Amplifier B output  
+IN B  
-IN B  
Circuit 1  
Circuit 1  
VOUT B  
Circuit 2  
7
V+  
Circuit 3  
Positive power supply  
No connect  
1, 5, 8  
NC  
PAD  
Thermal Pad is electrically isolated from active  
circuitry. Pad can float, connect to Ground or to a  
potential source that is free from signals or noise  
sources.  
V
+
V
+
V
+
CAPACITIVELY  
TRIGGERED  
ESD CLAMP  
OUT  
IN-  
IN+  
V
-
V
-
V
-
CIRCUIT 1  
CIRCUIT 2  
CIRCUIT 3  
FN6639.3  
November 29, 2012  
2
ISL28110, ISL28210  
Ordering Information  
PART NUMBER  
PART  
TCVOS  
(µV/°C)  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
(Notes 1, 2, 3)  
MARKING  
ISL28110FBZ  
28110 FBZ -C  
10 (C Grade)  
10 (C Grade)  
8 Ld SOIC  
8 Ld SOIC  
M8.15E  
M8.15E  
ISL28210FBZ  
ISL28210SOICEVAL1Z  
NOTES:  
28210 FBZ -C  
Evaluation Board  
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications..  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL28110, ISL28210. For more information on MSL please see techbrief  
TB363.  
FN6639.3  
November 29, 2012  
3
ISL28110, ISL28210  
Absolute Voltage Ratings  
Thermal Information  
Maximum Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42V  
Maximum Supply Turn On Voltage Slew Rate. . . . . . . . . . . . . . . . . . . 1V/µs  
Maximum Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33V  
Min/Max Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . V- - 0.5V to V+ + 0.5V  
Max/Min Input Current for Input Voltage >V+ or <V- . . . . . . . . . . . . . . . ±20mA  
Output Short-Circuit Duration  
(1 output at a time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Indefinite  
ESD Ratings  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4000V  
Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400V  
Charged Device Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2000V  
Thermal Resistance (Typical)  
8 Ld SOIC (Notes 5, 6)  
θ
JA (°C/W)  
θ
JC (°C/W)  
ISL28110. . . . . . . . . . . . . . . . . . . . . . . . . .  
ISL28210. . . . . . . . . . . . . . . . . . . . . . . . . .  
125  
120  
70  
50  
Ambient Operating Temperature Range . . . . . . . . . . . . . .-40°C to +125°C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. θJA is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
Brief TB379.  
5. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
6. For θJC, the “case temp” location is taken at the package top center.  
Electrical Specifications VS = ±5V, VCM = 0, VOUT = 0V, TA = +25°C, unless otherwise noted. Boldface limits apply over the operating  
temperature range, -40°C to +125°C.  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 7)  
TYP  
(Note 7)  
UNITS  
INPUT CHARACTERISTICS  
VOS  
Input Offset Voltage  
-300  
300  
1300  
10  
µV  
µV  
-40°C < TA < +125°C  
-1300  
TCVOS  
IB  
Input Offset Voltage Temperature  
Coefficient  
-40°C < TA < +125°C  
1
µV/°C  
Input Bias Current  
ISL28110  
-2  
-5.3  
-36  
±0.3  
2
5.3  
36  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pF  
-40°C < TA < +60°C  
-40°C < TA < +85°C  
-40°C < TA < +125°C  
-235  
-2  
235  
2
Input Bias Current  
ISL28210  
±0.3  
±0.15  
±0.15  
-40°C < TA < +60°C  
-40°C < TA < +85°C  
-40°C < TA < +125°C  
-4.5  
-50  
4.5  
50  
-245  
-1  
245  
1
IOS  
Input Offset Current  
ISL28110  
-40°C < TA < +60°C  
-40°C < TA < +85°C  
-40°C < TA < +125°C  
-2.25  
-30  
2.25  
30  
-105  
-1  
105  
1
Input Offset Current  
ISL28210  
-40°C < TA < +60°C  
-40°C < TA < +85°C  
-40°C < TA < +125°C  
-3.5  
-32  
3.5  
32  
-245  
245  
CIN-DIFF  
CIN-CM  
RIN-DIFF  
RIN-CM  
Differential Input Capacitance  
Common Mode Input Capacitance  
Differential Input Resistance  
Common Mode Input Resistance  
8.3  
11.8  
530  
560  
pF  
GΩ  
GΩ  
FN6639.3  
November 29, 2012  
4
ISL28110, ISL28210  
Electrical Specifications VS = ±5V, VCM = 0, VOUT = 0V, TA = +25°C, unless otherwise noted. Boldface limits apply over the operating  
temperature range, -40°C to +125°C. (Continued)  
MIN  
MAX  
PARAMETER  
VCMIR  
DESCRIPTION  
CONDITIONS  
(Note 7)  
TYP  
(Note 7)  
UNITS  
V
Common Mode Input Voltage Range Guaranteed by CMRR test  
V- + 1.5  
V+ - 1.5  
V- + 2.5  
V+ - 2.5  
V
CMRR  
AVOL  
Common Mode Rejection Ratio  
Open-loop Gain  
V
CM = -3.5V to +3.5V  
90  
dB  
dB  
dB  
dB  
VCM = -2.5V to +2.5V  
88  
100  
108  
RL = 10kΩ to ground  
VO = -3V to +3V  
104  
103  
DYNAMIC PERFORMANCE  
GBWP  
SR  
Gain-bandwidth Product  
G = 100, RL = 100kΩ, CL = 4pF  
G = -1, RL = 2kΩ, 4V Step  
11  
12.5  
20  
MHz  
V/µs  
%
Slew Rate, VOUT 20% to 80%  
THD+N  
Total Harmonic Distortion + Noise  
G = 1, f = 1kHz, 4VP-P, RL = 2kΩ  
G = 1, f = 1kHz, 4VP-P, RL = 600Ω  
AV = 1, VOUT = 4VP-P, RL = 2kΩ to VCM  
0.0002  
0.0003  
0.4  
%
ts  
Settling Time to 0.1%  
4V Step; 10% to VOUT  
µs  
Settling Time to 0.01%  
4V Step; 10% to VOUT  
AV = 1, VOUT = 4VP-P, RL =2kΩ to VCM  
1
µs  
NOISE PERFORMANCE  
enP-P Peak-to-Peak Input Voltage Noise  
en  
0.1Hz to 10Hz  
580  
14  
7
nVP-P  
Input Voltage Noise Spectral Density f = 10Hz  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
fA/Hz  
f = 100Hz  
f = 1kHz  
f = 10kHz  
f = 1kHz  
6
6
in  
Input Current Noise Spectral Density  
9
OUTPUT CHARACTERISTICS  
VOL Output Voltage Low, VOUT to V-  
RL = 10kΩ  
0.8  
0.9  
0.8  
0.9  
±50  
1.0  
1.1  
1.1  
1.2  
1.0  
1.1  
1.1  
1.2  
V
V
RL = 2kΩ  
V
V
VOH  
Output Voltage High, V+ to VOUT  
Output Short Circuit Current  
RL to GND = 10kΩ  
RL to GND = 2kΩ  
RL = 10Ω to V+. V-  
V
V
V
V
ISC  
POWER SUPPLY  
VSUPPLY  
mA  
Supply Voltage Range  
Guaranteed by PSRR  
VS = ± 4.5V to ±5V  
±4.5  
102  
100  
±20V  
V
PSRR  
Power Supply Rejection Ratio  
115  
2.5  
dB  
dB  
mA  
mA  
IS  
Supply Current/Amplifier  
2.9  
3.8  
FN6639.3  
November 29, 2012  
5
ISL28110, ISL28210  
Electrical Specifications VS = ±15V, VCM = 0, VO = 0V, TA = +25°C, unless otherwise noted. Boldface limits apply over the operating  
temperature range, -40°C to +125°C.  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 7)  
TYP  
(Note 7)  
UNITS  
INPUT CHARACTERISTICS  
VOS  
Input Offset Voltage  
-300  
300  
1300  
10  
µV  
µV  
-40°C < TA < +125°C  
-40°C < TA < +125°C  
-1300  
TCVOS  
Input Offset Voltage Temperature  
Coefficient (Grade C)  
1
µV/°C  
IB  
Input Bias Current  
ISL28110  
4.5  
-25  
±2  
4.5  
25  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pF  
pF  
GΩ  
GΩ  
V
-40°C < TA < +60°C  
-40°C < TA < +85°C  
-40°C < TA < +125°C  
-85  
85  
-950  
5
950  
5
IB  
Input Bias Current  
ISL28210  
±2  
-40°C < TA < +60°C  
-40°C < TA < +85°C  
-40°C < TA < +125°C  
-350  
-700  
-3600  
-2.5  
-25  
350  
700  
3600  
2.5  
IOS  
Input Offset Current  
ISL28110  
±0.5  
±0.5  
-40°C < TA < +60°C  
-40°C < TA < +85°C  
-40°C < TA < +125°C  
25  
-85  
85  
-650  
-2.5  
-285  
-445  
-2000  
650  
2.5  
IOS  
Input Offset Current  
ISL28210  
-40°C < TA < +60°C  
-40°C < TA < +85°C  
-40°C < TA < +125°C  
285  
445  
2000  
CIN-DIFF  
CIN-CM  
RIN-DIFF  
RIN-CM  
VCMIR  
Differential Input Capacitance  
Common Mode Input Capacitance  
Differential Input Resistance  
Common Mode Input Resistance  
Common Mode Input Voltage Range  
Common Mode Rejection Ratio  
Open-loop Gain  
8.3  
11.8  
530  
560  
Guaranteed by CMRR test  
V- + 1.5  
80  
V+ - 1.5  
CMRR  
AVOL  
VCM = -13.5V to +13.5V  
100  
109  
dB  
dB  
RL = 10kΩ to ground  
107  
VO = -12.5V to +12.5V  
-40°C < TA < +125°C  
106  
dB  
DYNAMIC PERFORMANCE  
GBWP  
SR  
Gain-bandwidth Product  
G = 100, RL = 100kΩ, CL = 4pF  
G = -1, RL = 2kΩ, 10V Step  
11  
12.5  
20  
MHz  
V/µs  
%
Slew Rate, VOUT 20% to 80%  
THD+N  
Total Harmonic Distortion + Noise  
G = 1, f = 1kHz,  
0.00025  
10VP-P, RL = 2kΩ  
G = 1, f = 1kHz,  
10VP-P, RL = 600Ω  
0.0003  
1.3  
%
µs  
µs  
ts  
Settling Time to 0.1%  
10V Step; 10% to VOUT  
AV = 1, VOUT = 10VP-P, RL = 2kΩ to VCM  
Settling Time to 0.01%  
10V Step; 10% to VOUT  
AV = 1, VOUT = 10VP-P, RL = 2kΩ to VCM  
1.6  
FN6639.3  
November 29, 2012  
6
ISL28110, ISL28210  
Electrical Specifications VS = ±15V, VCM = 0, VO = 0V, TA = +25°C, unless otherwise noted. Boldface limits apply over the operating  
temperature range, -40°C to +125°C. (Continued)  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 7)  
TYP  
(Note 7)  
UNITS  
NOISE PERFORMANCE  
enP-P  
en  
Peak-to-Peak Input Voltage Noise  
Input Voltage Noise Spectral Density  
0.1Hz to 10Hz  
600  
18  
7.8  
6
nVP-P  
f = 10Hz  
f = 100Hz  
f = 1kHz  
f = 10kHz  
f = 1kHz  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
fA/Hz  
6
in  
Input Current Noise Spectral Density  
9
OUTPUT CHARACTERISTICS  
VOL Output Voltage Low,  
RL = 10kΩ  
0.8  
0.9  
1.0  
1.1  
1.1  
1.2  
1.0  
1.1  
1.1  
1.2  
V
V
VOUT to V-  
RL = 2kΩ  
V
V
VOH  
Output Voltage High,  
V+ to VOUT  
RL to GND = 10kΩ  
RL to GND = 2kΩ  
RL = 10Ω to V+. V-  
VS = ±4.5V to ±20V  
0.8  
V
V
0.9  
V
V
ISC  
Output Short Circuit Current  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
±50  
115  
2.55  
mA  
POWER SUPPLY  
PSRR  
102  
dB  
100  
dB  
IS  
3.1  
mA  
mA  
3.9  
NOTE:  
7. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
FN6639.3  
November 29, 2012  
7
ISL28110, ISL28210  
Typical Performance Curves  
VS = ±15V, VCM = 0V, RL = Open, T = +25°C, unless otherwise specified.  
25  
20  
15  
10  
5
250  
V
= ±15V  
T
= -40°C TO +125°C  
S
V
= ±15V  
A
S
200  
150  
100  
50  
0
0
-10 -8  
-6  
-4  
-2  
0
2
4
6
8
10  
-150 -100 -50  
0
50  
(µV)  
100  
150  
200  
250  
TCV (µV/C)  
V
OS  
OS  
FIGURE 3. INPUT OFFSET VOLTAGE (VOS) DISTRIBUTION  
FIGURE 4. TCVOS DISTRIBUTION, -40°C to +125°C  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
V
= ±5V  
S
V
= ±15V  
S
5
6
7
8
9
10  
11  
12  
13  
14  
15  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
±V  
(±V)  
TEMPERATURE (°C)  
SUPPLY  
FIGURE 5. INPUT BIAS CURRENT (IB) vs SUPPLY VOLTAGE  
FIGURE 6. ISL28110 INPUT BIAS CURRENT (IB) vs TEMPERATURE  
100  
0
20  
-100  
-200  
10  
0
V
= ±5V  
S
V
= ±5V  
S
-300  
-400  
-500  
-600  
-700  
-800  
-900  
-1000  
-1100  
V
= ±15V  
S
-10  
-20  
V
= ±15V  
40  
S
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
60  
80  
100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 7. ISL28210 INPUT BIAS CURRENT (IB) vs TEMPERATURE  
FIGURE 8. ISL28110 INPUT OFFSET CURRENT (IOS) vs  
TEMPERATURE  
FN6639.3  
November 29, 2012  
8
ISL28110, ISL28210  
Typical Performance Curves  
VS = ±15V, VCM = 0V, RL = Open, T = +25°C, unless otherwise specified. (Continued)  
20  
300  
250  
200  
150  
100  
50  
V
= ±15V  
S
V
= ±5V  
S
I
CHA  
CHB  
OS  
10  
0
I
CHA  
OS  
S
I
O
OS  
-10  
I
CHB  
OS  
0
-20  
-40  
-50  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 9. ISL28210 INPUT OFFSET CURRENT (IOS) vs  
TEMPERATURE, VS = ±5V  
FIGURE 10. ISL28210 INPUT OFFSET CURRENT (IOS) vs  
TEMPERATURE, VS = ±15V  
10  
4.0  
V
= ±5V  
V
= ±15V  
S
S
8
6
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4
2
0
-2  
-4  
-6  
-8  
-10  
-0.5  
-1.0  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
4
5
-15  
-10  
-5  
0
5
10  
15  
V
(V)  
V
(V)  
CM  
CM  
FIGURE 11. NORMALIZED INPUT BIAS CURRENT (IB) vs INPUT  
COMMON MODE VOLTAGE (VCM), VS = ±5V  
FIGURE 12. NORMALIZED INPUT BIAS CURRENT (IB) vs INPUT  
COMMON MODE VOLTAGE (VCM), VS = ±15V  
500  
500  
V
= ±5V  
V
= ±15V  
S
S
400  
300  
200  
100  
0
400  
300  
200  
100  
0
-100  
-200  
-300  
-400  
-500  
-100  
-200  
-300  
-400  
-500  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
4
5
-15  
-10  
-5  
0
CM  
5
10  
15  
V
(V)  
V
(V)  
CM  
FIGURE 13. NORMALIZED INPUT OFFSET VOLTAGE (VOS) vs INPUT  
COMMON MODE VOLTAGE (VCM), VS = ±5V  
FIGURE 14. NORMALIZED INPUT OFFSET VOLTAGE (VOS) vs INPUT  
COMMON MODE VOLTAGE (VCM), VS = ±15V  
FN6639.3  
November 29, 2012  
9
ISL28110, ISL28210  
Typical Performance Curves  
VS = ±15V, VCM = 0V, RL = Open, T = +25°C, unless otherwise specified. (Continued)  
1000  
100  
10  
1000  
100  
10  
1000  
100  
10  
1000  
100  
10  
V
= ±5V  
V
= ±18V  
S
S
INPUT NOISE VOLTAGE  
INPUT NOISE CURRENT  
INPUT NOISE VOLTAGE  
INPUT NOISE CURRENT  
1
0.1  
1
1
0.1  
1
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 15. INPUT NOISE VOLTAGE (en) AND CURRENT (in) vs  
FREQUENCY, VS = ±5V  
FIGURE 16. INPUT NOISE VOLTAGE (en) AND CURRENT (in) vs  
FREQUENCY, VS = ±18V  
1000  
1000  
V
= ±5V  
= 10k  
V
A
= ±18V  
= 10k  
S
S
800  
600  
800  
600  
A
V
V
400  
400  
200  
200  
0
0
-200  
-400  
-600  
-800  
-1000  
-200  
-400  
-600  
-800  
-1000  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
TIME (s)  
TIME (s)  
FIGURE 17. 0.1Hz TO 10Hz VP-P NOISE VOLTAGE, VS =±5V  
FIGURE 18. 0.1Hz TO 10Hz VP-P NOISE VOLTAGE, VS = ±18V  
0.1  
0.1  
V
= ±15V  
= 4pF  
= 600  
= 10V  
C-WEIGHTED  
22Hz to 500kHz  
C-WEIGHTED  
22Hz to 500kHz  
V
= ±15V  
= 4pF  
= 2k  
S
S
C
R
V
C
R
V
L
L
L
L
= 10V  
OUT  
P-P  
OUT  
P-P  
0.01  
0.001  
0.01  
0.001  
-40°C  
-40°C  
+125°C  
+125°C  
+125°C  
+125°C  
+25°C  
+25°C  
+25°C  
+25°C  
A
= 10  
V
A
= 10  
V
-40°C  
100  
-40°C  
A
= 1  
V
A
= 1  
V
0.0001  
0.0001  
10  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FIGURE 19. THD+N vs FREQUENCY vs TEMPERATURE, AV = 1, 10,  
FIGURE 20. THD+N vs FREQUENCY vs TEMPERATURE, VOUT = 10VP-P  
,
VOUT = 10VP-P, RL = 600Ω  
RL = 2kΩ  
FN6639.3  
November 29, 2012  
10  
ISL28110, ISL28210  
Typical Performance Curves  
VS = ±15V, VCM = 0V, RL = Open, T = +25°C, unless otherwise specified. (Continued)  
1
1
0.1  
A
= 1  
V
C
R
= ±15V  
= 4pF  
= 600  
V = ±15V  
S
A
= 1  
V
S
V
C = 4pF  
L
L
L
R = 2k  
L
f = 1kHz  
f = 1kHz  
0.1  
0.01  
C-WEIGHTED  
22Hz to 22kHz  
C-WEIGHTED  
22Hz to 22kHz  
0.01  
+25°C  
+25°C  
0.001  
0.0001  
0.001  
0.0001  
+125°C  
20  
+125°C  
20  
-40°C  
30  
-40°C  
0
5
10  
15  
(V  
25  
0
5
10  
15  
(V  
25  
30  
V
)
V
)
P-P  
OUT  
P-P  
OUT  
FIGURE 21. THD+N vs OUTPUT VOLTAGE (VOUT) vs TEMPERATURE,  
FIGURE 22. THD+N vs OUTPUT VOLTAGE (VOUT) vs TEMPERATURE,  
AV = 1 f = 1kHz, RL = 600Ω  
AV = 1 f =1kHz, RL = 2kΩ  
60  
0
V
V
= ±15V  
V
C
V
= ±15V  
= 4pF  
= 1V  
S
S
= 100mV  
OUT  
P-P  
L
-20  
-40  
50  
40  
30  
20  
10  
0
R -  
= 2k  
CM  
P-P  
L TRANSMIT  
R _  
= 10k  
RECEIVE  
L
A
= 10  
V
-60  
A
= -1  
V
-80  
R -  
=  
L TRANSMIT  
A
= 1  
V
R _  
= ∞  
RECEIVE  
L
-100  
-120  
-140  
0.001  
0.01  
0.1  
1
10  
100  
1
10  
100  
1k  
10k  
100k 1M  
10M 100M  
FREQUENCY (Hz)  
LOAD CAPACITANCE (nF)  
FIGURE 23. CROSSTALK vs FREQUENCY  
FIGURE 24. SMALL SIGNAL OVERSHOOT vs LOAD CAPACITANCE (CL)  
200  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
70  
A
= 1000  
R
= 100k, R = 100Ω  
G
CL  
F
60  
50  
40  
30  
20  
10  
0
PHASE  
R
= 100k, R = 1kΩ  
G
F
A
A
= 100  
= 10  
CL  
V
= ±5V & ±15V  
= 4pF  
= OPEN  
S
C
R
V
L
L
= 100mV  
CL  
OUT  
P-P  
GAIN  
R
A
= 100k, R = 10kΩ  
G
F
= 1  
CL  
V
= ±15V  
S
R =1MΩ  
L
R
= 0, R = ∞  
F
G
-10  
0.1  
1
10 100 1k 10k 100k 1M 10M 100M 1G  
FREQUENCY (Hz)  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 25. OPEN LOOP GAIN-PHASE vs FREQUENCY  
FIGURE 26. CLOSED LOOP GAIN vs FREQUENCY  
FN6639.3  
November 29, 2012  
11  
ISL28110, ISL28210  
Typical Performance Curves  
VS = ±15V, VCM = 0V, RL = Open, T = +25°C, unless otherwise specified. (Continued)  
120  
110  
100  
130  
120  
110  
100  
90  
PSRR-  
90  
80  
70  
60  
50  
80  
70  
60  
50  
V
A
C
R
V
= ±15V  
= 1  
S
40  
30  
20  
10  
0
40  
V
PSRR+  
30  
= 4pF  
= 10k  
= 1V  
L
L
V
= ±15V  
20  
S
SIMULATION  
CM  
P-P  
10  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
0.1  
1
10  
100  
1k  
10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 27. POWER SUPPLY REJECTION RATIO (PSRR) vs  
FREQUENCY  
FIGURE 28. COMMON-MODE REJECTION RATIO (CMRR) vs  
FREQUENCY  
5
4
15  
14  
13  
12  
11  
-40°C  
-40°C  
3
2
125°C  
= ±15V  
25°C  
+125°C  
+25°C  
+85°C  
V
S
V
A
R
V
= ±5V  
= 2  
= R = 100k  
S
1
-1  
A = 2  
10  
-10  
V
R
V
V
= R = 100k  
F
G
F
G
= 7.5V  
-11  
-12  
-13  
IN  
P-P  
= 2.5V  
P-P  
-2  
-3  
-4  
-5  
IN  
85°C  
0°C  
60  
-14  
-15  
0°C  
60  
0
10  
20  
30  
40  
50  
70  
0
10  
20  
30  
40  
50  
70  
I-FORCE (mA)  
I-FORCE (mA)  
FIGURE 29. OUTPUT VOLTAGE (VOUT) vs OUTPUT CURRENT (IOUT) vs  
TEMPERATURE, VS = ±5V  
FIGURE 30. OUTPUT VOLTAGE (VOUT) vs OUTPUT CURRENT (IOUT) vs  
TEMPERATURE, VS = ±15V  
0
200  
160  
120  
80  
20  
16  
12  
8
0
V
= ±15V  
= 100  
= 10k  
S
INPUT  
INPUT  
A
V
R
-4  
-40  
L
V
= 100mV  
IN  
P-P  
OVERDRIVE = 1V  
-8  
-80  
OUTPUT  
A
= 1  
-12  
V
-120  
V
= ±15V  
OUTPUT  
S
A
R
= 100  
= 10k  
= 100mV  
V
-16  
-20  
40  
4
-160  
-200  
L
V
IN  
P-P  
OVERDRIVE = 1V  
0
0
0
2
4
6
8
10  
12  
14 16 18 20  
0
2
4
6
8
10  
TIME (µs)  
12  
14  
16  
18  
20  
TIME (µs)  
FIGURE 31. POSITIVE OUTPUT OVERLOAD RECOVERY TIME  
FIGURE 32. NEGATIVE OUTPUT OVERLOAD RECOVERY TIME  
FN6639.3  
November 29, 2012  
12  
ISL28110, ISL28210  
Typical Performance Curves  
VS = ±15V, VCM = 0V, RL = Open, T = +25°C, unless otherwise specified. (Continued)  
30  
30  
25  
20  
15  
10  
5
-SR  
-SR  
25  
20  
+SR  
+SR  
15  
10  
V
V
R
C
= ±5V  
V
= ±15V  
S
S
= 4V  
V
= 10V  
OUT-PP  
OUT-PP  
5
= 2k  
= 4pF  
R
C
= 2k  
= 4pF  
L
L
L
L
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
GAIN  
GAIN  
FIGURE 33. SLEW RATE vs INVERTING CLOSED LOOP GAIN, VS = ±5V  
FIGURE 34. SLEW RATE vs INVERTING CLOSED LOOP GAIN,  
VS = ±15V  
30  
25  
30  
-SR  
25  
20  
-SR  
20  
+SR  
15  
15  
+SR  
10  
10  
V
V
= ±5V  
V
= ±15V  
S
S
= 4V  
V
= 10V  
OUT-PP  
OUT-PP  
5
0
5
0
R
C
= 2k  
= 4pF  
R
C
= 2k  
= 4pF  
L
L
L
L
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
5
6
7
8
9
10  
GAIN  
GAIN  
FIGURE 35. SLEW RATE vs NON-INVERTING CLOSED LOOP GAIN,  
VS = ±5V  
FIGURE 36. SLEW RATE vs NON-INVERTING CLOSED LOOP GAIN,  
VS = ±15V  
6
0.15  
V
A
R
C
= ±15V  
= 1  
= 2k  
S
V
= ±15V  
A = 1  
V
S
V
4
2
0.10  
0.05  
0
R
C
= 2k  
L
L
L
L
= 4pF  
= 4pF  
0
-2  
-4  
-6  
-0.05  
-0.10  
-0.15  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
TIME (µs)  
1.0  
0
1
2
3
4
5
6
7
8
9
10  
TIME (µs)  
FIGURE 37. SMALL SIGNAL TRANSIENT RESPONSE  
FIGURE 38. LARGE SIGNAL UNITY GAIN TRANSIENT RESPONSE  
FN6639.3  
November 29, 2012  
13  
ISL28110, ISL28210  
Typical Performance Curves  
VS = ±15V, VCM = 0V, RL = Open, T = +25°C, unless otherwise specified. (Continued)  
6
6
4
V
= ±15V  
= -1  
= 2k  
V
= ±15V  
A = +10  
V
S
S
A
V
4
2
R
C
R
C
= 2k  
L
L
L
L
= 4pF  
= 4pF  
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
TIME (µs)  
TIME (µs)  
FIGURE 39. LARGE SIGNAL 10V STEP RESPONSE AV = -1  
FIGURE 40. LARGE SIGNAL 10V STEP RESPONSE AV = +10  
1000  
100  
10  
100  
10  
1
V
= ±15V  
V
V
R
= ±15V  
S
S
= 10V  
OUT  
P-P  
= 2kΩ  
L
G = 10  
0.01%  
G = 100  
0.1%  
1
0.1  
G = 1  
1M  
0.1  
0.01  
1
10  
CLOSED LOOP GAIN (V/V)  
100  
10  
100  
1k  
10k  
100k  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 41. SETTLING TIME (tS) vs CLOSED LOOP GAIN  
FIGURE 42. ZOUT vs FREQUENCY  
Input ESD Diode Protection  
The JFET gate is a reverse-biased diode with >33V reverse  
Applications Information  
Functional Description  
breakdown voltage which enables the device to function reliably in  
large signal pulse applications without the need for anti-parallel  
clamp diodes required on MOSFET and most bipolar input stage  
op amps. No special input signal restrictions are needed for  
power supply operation up to ±15V, and input signal distortion  
caused by nonlinear clamps under high slew rate conditions are  
avoided. For power supply operation greater than ±16V (>32V),  
the internal ESD clamp diodes alone cannot clamp the maximum  
input differential signal to the power supply rails without the risk  
of exceeding the 33V breakdown of the JFET gate. Under these  
conditions, differential input voltage limiting is necessary to  
prevent damage to the JFET input stage.  
The ISL28110 and ISL28210 are single and dual 12.5 MHz  
precision JFET input op amps. These devices are fabricated in the  
PR40 Advanced Silicon-on-Insulator (SOI) bipolar-JFET process to  
ensure latch-free operation. The precision JFET input stage  
provides low input offset voltage (300µV max @ +25°C), low  
input voltage noise (6nV/Hz), and input current noise that is  
very low with virtually no 1/f component. A high current  
complementary NPN/PNP emitter-follower output stage provides  
high slew rate and maintains excellent THD+N performance into  
heavy loads (0.0003% @ 10VP-P @ 1kHz into 600Ω).  
Operating Voltage Range  
In applications where one or both amplifier input terminals are at  
risk of exposure to voltages beyond the supply rails, current  
limiting resistors may be needed at each input terminal (see  
Figure 43 RIN+, RIN-) to limit current through the power supply  
ESD diodes to 20mA.  
The devices are designed to operate over the 9V (±4.5V) to 40V  
(±20V) range and are fully characterized at 10V (±5V) and 30V  
(±15V). The JFET input stage maintains high impedance over a  
maximum input differential voltage range of ±33V. Internal ESD  
protection diodes clamp the non-inverting and inverting inputs to  
one diode drop above and below the V+ and V- the power supply  
rails (“Pin Descriptions” on page 2, CIRCUIT 1).  
FN6639.3  
November 29, 2012  
14  
ISL28110, ISL28210  
Output Drive Capability  
The complementary bipolar emitter follower output stage features  
low output impedance (Figure 42) and is capable of substantial  
current drive over the full temperature range (Figures 29, 30) while  
driving the output voltage close to the supply rails. The output  
current is internally limited to approximately ±50mA at +25°C.  
The amplifiers can withstand a short circuit to either rail as long as  
the power dissipation limits are not exceeded. This applies to only  
1 amplifier at a time for the dual op amp. Continuous operation  
under these conditions may degrade long term reliability.  
V+  
R
-
IN  
-
V
-
IN  
R
+
IN  
+
V
+
R
IN  
L
V-  
Output Phase Reversal  
FIGURE 43. INPUT ESD DIODE CURRENT LIMITING  
Output phase reversal is a change of polarity in the amplifier  
transfer function when the input voltage exceeds the supply  
voltage. The ISL28110 and ISL28210 are immune to output  
phase reversal, out to 0.5V beyond the rail (VABS MAX) limit.  
Beyond these limits, the device is still immune to reversal to 1V  
beyond the rails but damage to the internal ESD protection  
diodes can result unless these input currents are limited.  
JFET Input Stage Performance  
The ISL28110, ISL28210 JFET input stage has the linear gain  
characteristics of the MOSFET but can operate at high frequency  
with much lower noise. The reversed-biased gate PN gate junction  
has significantly lower gate capacitance than the MOSFET,  
enabling input slew rates that rival op amps using bipolar input  
stages. The added advantage for high impedance, precision  
amplifiers is the lack of a significant 1/f component of current  
noise (Figures 15, 16) as there is virtually no gate current.  
Maximizing Dynamic Signal Range  
The amplifiers maximum undistorted output swing is a figure of  
merit for precision, low distortion applications. Audio amplifiers  
are a good example of amplifiers that require low noise and low  
signal distortion over a wide output dynamic range. When these  
applications operate from batteries, raising the amplifier supply  
voltage to overcome poor output voltage swing has the penalty of  
increased power consumption and shorter battery life. Amplifiers  
whose input and output stages can swing closest to the power  
supply rails while providing low noise and undistorted  
The input stage JFETs are bootstrapped to maintain a constant  
JFET drain to source voltage which keeps the JFET gate currents  
and input stage frequency response nearly constant over the  
common mode input range of the device. These enhancements  
provide excellent CMRR, AC performance and very low input  
distortion over a wide temperature range. The common mode input  
performance for offset voltage and bias current is shown in  
Figure 44. Note that the input bias current remains low even after  
the maximum input stage common mode voltage is exceeded (as  
indicated by the abrupt change in input offset voltage).  
performance, will provide maximum useful dynamic signal range  
and longer battery life.  
Rail-to-rail input and output (RRIO) amplifiers have the highest  
dynamic signal range but their added complexity degrades input  
noise and amplifier distortion. Many contain two input pairs, one  
pair operating to each supply rail. The trade-offs for these are  
increased input noise and distortion caused by non-linear input  
bias current and capacitance when amplifying high impedance  
sources. Their rail-to-rail output stages swing to within a few  
millivolts of the rail, but output impedances are high so that their  
output swing decreases and distortion increases rapidly with  
increasing load current. At heavy load currents the maximum  
output voltage swing of RRO op amps can be lower than a good  
emitter follower output stage.  
10  
8
500  
400  
300  
200  
100  
0
V
= ±15V  
S
INPUT OFFSET VOLTAGE (V  
)
OS  
T = +25°C  
6
4
2
0
-2  
-4  
-6  
-8  
-10  
-100  
-200  
-300  
-400  
-500  
INPUT BIAS (I )  
B
The ISL28110 and ISL28210 low noise input stage and high  
performance output stage are optimized for low THD+N into  
moderate loads over the full -40°C to +125°C temperature  
range. Figures 21 and 22 show the 1kHz THD+N unity gain  
performance vs output voltage swing at load resistances of 2k  
and 600. Figure 45 shows the unity-gain THD+N performance  
driving 600from ±5V supplies.  
-15  
-10  
-5  
0
5
10  
15  
V
(V)  
CM  
FIGURE 44. INPUT OFFSET VOLTAGE AND BIAS CURRENT vs  
COMMON MODE INPUT VOLTAGE  
FN6639.3  
November 29, 2012  
15  
ISL28110, ISL28210  
ISL28110 and ISL28210 SPICE Model  
1
0.1  
V
= ±5V  
= 600Ω  
= 1  
S
Figure 46 shows the SPICE model schematic and Figure 47 shows  
the net list for the SPICE model. The model is a simplified version  
of the actual device and simulates important AC and DC  
parameters. AC parameters incorporated into the model are: 1/f  
and flatband noise voltage, Slew Rate, CMRR, Gain and Phase. The  
DC parameters are IOS, total supply current and output voltage  
swing. The model uses typical parameters given in the “Electrical  
Specifications” Table beginning on page 4. The AVOL is adjusted  
for 125dB with the dominant pole at 7Hz. The CMRR is set 120dB,  
f = 280kHz. The input stage models the actual device to present  
an accurate AC representation. The model is configured for  
ambient temperature of +25°C.  
R
L
A
V
+125°C  
+85°C  
0.01  
+25°C  
0.001  
0.0001  
0°C  
-40°C  
0
1
2
3
4
5
6
7
8
9
10  
V
(V)  
P-P  
Figures 48 through 61 show the characterization vs simulation  
results for the Noise Voltage, Closed Loop Gain vs Frequency,  
Small Signal 0.1V Step, Large Signal 5V Step Response, Open  
Loop Gain Phase, CMRR and Output Voltage Swing for ±5V and  
±15V supplies.  
FIGURE 45. UNITY-GAIN THD+N vs OUTPUT VOLTAGE vs  
TEMPERATURE AT VS = ±5V FOR 600Ω LOAD  
Power Dissipation  
It is possible to exceed the +150°C maximum junction  
LICENSE STATEMENT  
The information in this SPICE model is protected under the  
United States copyright laws. Intersil Corporation hereby grants  
users of this macro-model hereto referred to as “Licensee”, a  
nonexclusive, nontransferable licence to use this model as long  
as the Licensee abides by the terms of this agreement. Before  
using this macro-model, the Licensee should read this license. If  
the Licensee does not accept these terms, permission to use the  
model is not granted.  
temperatures under certain load and power supply conditions. It  
is therefore important to calculate the maximum junction  
temperature (TJMAX) for all applications to determine if power  
supply voltages, load conditions, or package type need to be  
modified to remain in the safe operating area. These parameters  
are related using Equation 1:  
T
= T  
+ θ xPD  
MAX JA MAXTOTAL  
(EQ. 1)  
JMAX  
where:  
• PDMAXTOTAL is the sum of the maximum power dissipation of  
The Licensee may not sell, loan, rent, or license the macro-model,  
in whole, in part, or in modified form, to anyone outside the  
Licensee’s company. The Licensee may modify the macro-model  
to suit his/her specific applications, and the Licensee may make  
copies of this macro-model for use within their company only.  
each amplifier in the package (PDMAX  
)
• PDMAX for each amplifier can be calculated using Equation 2:  
V
OUTMAX  
R
L
----------------------------  
PD  
= V × I  
+ (V - V ) ×  
OUTMAX  
(EQ. 2)  
This macro-model is provided “AS IS, WHERE IS, AND WITH NO  
WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED,  
INCLUDING BUY NOT LIMITED TO ANY IMPLIED WARRANTIES OF  
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.”  
MAX  
S
qMAX  
S
where:  
• TMAX = Maximum ambient temperature  
In no event will Intersil be liable for special, collateral, incidental,  
or consequential damages in connection with or arising out of  
the use of this macro-model. Intersil reserves the right to make  
changes to the product and the macro-model without prior  
notice.  
θJA = Thermal resistance of the package  
• PDMAX = Maximum power dissipation of 1 amplifier  
• VS = Total supply voltage  
• IqMAX = Maximum quiescent supply current of 1 amplifier  
• VOUTMAX = Maximum output voltage swing of the application  
• RL = Load resistance  
FN6639.3  
November 29, 2012  
16  
C3  
6e-12  
V++  
V++  
V++  
V2  
V3  
D9  
0.7Vdc  
I1  
240E-6  
0.7Vdc  
D5  
10  
R5  
5.5k  
21  
R6  
5.5k  
G1  
26  
+
-
G3  
+
C4  
2.5e-12  
C1  
R9  
R13  
200k  
-
G
1
D7  
4e-12  
G
22  
9
20  
R12  
GAIN = 33  
Vmid  
V4  
1e10  
GAIN = 181.819E-6  
PNP_MIRROR  
Q7  
PNP_MIRROR  
11  
1.18  
Vin-  
Q6  
V6  
buffer1  
buffer2  
1.18  
R11  
1k  
+
+
-
+
Vg  
+
23  
25  
Vg  
Vmid  
VC  
-
-
-
D2 DBREAK  
0.4  
E
E
12  
Vmid  
Vc  
19  
EOS  
8
C2  
4e-12  
+
-
+
-
1
V1  
D3 DBREAK  
NPN_CASCODE  
Q5  
R2  
5e11  
Vmid  
13  
E
R8  
NPN_CASCODE  
100  
GAIN = 1  
D1  
3
Q2  
NPN_CASCODE  
Q1  
NPN_CASCODE  
D8  
V7  
E2  
+
0
CinDif  
5.87E-40  
V5  
R4  
Q4  
18  
D4  
1.18  
+
-
IOS  
0.3E-12  
1.18  
DBREAK  
250  
-
110  
R1  
R3  
5e11  
2
E
J2  
R7  
GAIN = 0.5  
16  
17  
Vmid  
G4  
5
J1  
6
14  
C5  
E
En  
0
24  
27  
G2  
5-  
+
R10  
250  
-
pj110_input  
PJ110_INPUT  
1
R14  
200k  
2.5e-12  
Vin+  
4
+
7
15  
J3  
GAIN = 33  
D6  
G
J4  
GAIN = 1  
PJ110_CASCODE  
GAIN = 181.819E-6  
PJ110_CASCODE  
D10  
Cin2  
Cin1  
7.27e-40  
7.27e-40  
V--  
V--  
V--  
VCM  
MID SUPPLY REF V  
INPUT STAGE  
GAIN STAGE  
V+  
E3  
+
-
+
-
E
V++  
0
V++  
V++  
GAIN = 1  
R19  
R21  
318.319274232055  
L1  
L3  
D14  
D15  
G
-
318.319274232055  
+
+
5.30532e-10  
5.30532e-10  
VCM  
G9  
+
G11  
R23  
50  
+
-
G5  
G7  
G15  
GAIN = 20e-3  
Vout  
+
-
G
+
-
28  
R15  
0.001  
31  
R17  
0.001  
-
G
G
G
Vout  
V8  
GAIN = 0.0031415  
Vout  
D11  
GAIN = 0.0031415  
DX  
GAIN = 1  
GAIN = 1  
35  
36  
C6  
C8  
.523  
29  
VOUT  
10e-12  
10e-12  
Vc  
33  
34  
Vg  
Vmid  
37  
38  
ISY  
VC  
2.5E-3  
D12  
D X  
V9  
Vout  
.523  
R16  
R18  
0.001  
0.001  
Vmid  
C7  
C9  
G10  
-
G12  
-
30  
G8  
-
10e-12  
10e-12  
Vout  
Vout  
32  
+
+
G13  
+
G14  
+
G6  
-
D16  
+
GAIN = 0.0031415  
R20  
GAIN = 0.0031415  
R22  
R24  
50  
L4  
G
-
+
-
-
GAIN = 1  
D13  
V--  
+
L2  
G
G
5.30532e-10  
5.30532e-10  
GAIN = 1  
GAIN = 1.11e-2 GAIN = 1.11e-2  
G16  
318.319274232055  
318.319274232055  
GAIN = 20e-3  
V--  
V--  
V--  
V-  
E4  
+
VCM  
+
-
COMMON MODE  
GAIN STAGE  
WITH ZERO  
CORRECTION CURRENT OUTPUT STAGE  
SOURCES  
-
E
GAIN = 1  
0
FIGURE 46. SPICE NET LIST  
ISL28110, ISL28210  
* source ISL28110_210_presubckt_0  
* Revision A, LaFontaine Nov 4th 2010  
* Model for Noise 200nV/rtHz@0.1Hx  
*11nV/rtHz base band, supply current 2.5mA,  
*CMRR 120dB fcm=281kHz ,AVOL 125dB  
*fd=7Hz  
* SR = 20V/us, GBWP 12.6MHz, Output  
*voltage clamp  
*Copyright 2010 by Intersil Corporation  
V_V5  
G_G1  
G_G2  
R_R9  
R_R10  
R_R11  
D_D7  
D_D8  
R_R12  
G_G3  
G_G4  
D_D9  
D_D10  
V_V6  
V_V7  
R_R13  
R_R14  
C_C3  
C_C4  
C_C5  
*
23 24 1.18  
V_V8  
V_V9  
R_R23  
R_R24  
*
35 VOUT -.384  
VOUT 36 -.384  
VOUT V++ 50  
V-- VOUT 50  
V++ 23 19 8 33  
V-- 23 19 8 33  
23 V++ 1  
V-- 23 1  
25 23 1k  
25 VMID DX  
VMID 25 DX  
25 VMID 1e10  
V++ VG 25 VMID 181.819E-6  
V-- VG 25 VMID 181.819E-6  
26 V++ DX  
V-- 27 DX  
26 VG 1.18  
VG 27 1.18  
VG V++ 200k  
V-- VG 200k  
8 VG 6e-12  
VG V++ 2.5e-12  
V-- VG 2.5e-12  
*
.model pj110_input pjf  
+ vto=-1.4  
+ beta=0.0025  
+ lambda=0.03  
+ is=2.68e-015  
+ pb=0.73  
+ cgd=8.6e-012  
+ cgs=9.05e-012  
+ fc=0.5 kf=0  
+ af=1  
+ tnom=35  
*
.model NPN_CASCODE npn  
+ is=5.02e-016  
+ bf=150  
*Refer to data sheet “LICENSE  
STATEMENT” *Use of this model indicates  
your acceptance *with the terms and  
provisions in the License *Statement.  
* Connections:  
*
*
*
*
*
*
+input  
|
|
|
|
|
-input  
| +Vsupply  
|
|
|
|
|
|
-Vsupply  
| output  
|
|
.subckt ISL28110subckt Vin+ Vin- V+ V-  
VOUT  
* source ISL28110_210_PRESUBCKT_0  
* Mid Supply Reference  
*
+ va=300  
+ ik=0.017  
+ rb=0.01  
+ re=0.011  
*
*Voltage Noise  
*
E_E2  
E_E3  
E_E4  
I_ISY  
*
VMID V-- V++ V-- 0.5  
V++ 0 V+ 0 1  
V-- 0 V- 0 1  
E_En  
V_V1  
D_D1  
R_R1  
*
VIN+ 4 2 0 1  
1 0 0.4  
1 2 DN  
+ rc=900  
V+ V- DC 2.5E-3  
+ cje=2e-013  
+ cjc=1.6e-028  
+ kf=0  
+ af=1  
*
.model PJ110_CASCODE pjf  
+ vto=-1.4  
+ beta=0.000617  
+ lambda=0.03  
+ is=3.96e-016  
+ pb=0.73  
+ cgd=2.2e-012  
+ cgs=3e-012  
+ fc=0.5  
+ kf=0  
+ af=1  
+ tnom=35  
*
.model DBREAK d  
+ bv=43  
+ rs=1  
2 0 110  
*Common Mode Gain Stage 40dB/dec  
*
*Input Stage  
*
G_G5  
G_G6  
G_G7  
G_G8  
L_L1  
L_L2  
L_L3  
L_L4  
R_R15  
R_R16  
R_R17  
R_R18  
*
V++ 29 3 VMID 1  
V-- 29 3 VMID 1  
V++ VC 29 VMID 1  
V-- VC 29 VMID 1  
28 V++ 5.30532e-11  
30 V-- 5.30532e-11  
31 V++ 5.30532e-11  
32 V-- 5.30532e-11  
29 28 0.001  
R_R2  
R_R3  
C_CinDif  
C_Cin1  
C_Cin2  
I_IOS  
R_R4  
J_J1  
VIN- 3 5e11  
3 4 5e11  
4 VIN- 5.87E-12  
V-- VIN- 7.27e-12  
V-- 4 7.27e-12  
4 VIN- DC 0.3E-12  
5 VIN- 250  
7 5 6 pj110_input  
15 16 14 pj110_input  
V-- 14 15 PJ110_CASCODE  
V-- 6 7 PJ110_CASCODE  
19 13 14 NPN_CASCODE  
12 13 6 NPN_CASCODE  
8 13 6 NPN_CASCODE  
12 13 14 NPN_CASCODE  
19 11 20 PNP_MIRROR  
8 11 9 PNP_MIRROR  
V++ 10 0.7Vdc  
V++ 21 0.7Vdc  
9 10 5.5k  
20 21 5.5k  
11 V++ 8 V++ 1  
13 V-- 12 V-- 1  
8 19 DBREAK  
19 8 DBREAK  
30 29 0.001  
VC 31 0.001  
32 VC 0.001  
J_J2  
J_J3  
J_J4  
Q_Q1  
Q_Q2  
Q_Q4  
Q_Q5  
Q_Q6  
Q_Q7  
V_V2  
V_V3  
R_R5  
R_R6  
E_buffer1  
E_buffer2  
D_D2  
D_D3  
I_I1  
*Second Pole Stage 40dB/dec  
*
G_G9  
G_G10  
G_G11  
G_G12  
R_R19  
R_R20  
R_R21  
R_R22  
C_C6  
C_C7  
C_C8  
C_C9  
*
V++ 33 VG VMID 0.0031415  
V-- 33 VG VMID 0.0031415  
V++ 34 33 VMID 0.0031415  
V-- 34 33 VMID 0.0031415  
33 V++ 318.319274232055  
V-- 33 318.319274232055  
34 V++ 318.319274232055  
V-- 34 318.319274232055  
33 V++ 10e-12  
*
.model PNP_MIRROR pnp  
+ is=4e-015  
+ bf=150  
+ va=50  
+ ik=0.138  
+ rb=0.01  
+ re=0.101  
+ rc=180  
+ cje=1.34e-012  
+ cjc=4.4e-013  
+ kf=0  
+ af=1  
*
.model DN D(KF=6.69e-12 AF=1)  
.MODEL DX D(IS=1E-12 Rs=0.1)  
.MODEL DY D(IS=1E-15 BV=50 Rs=1)  
.ends ISL28110subckt  
V-- 33 10e-12  
34 V++ 10e-12  
V-- 34 10e-12  
V++ 12 DC 240E-6  
19 V++ 4e-12  
V-- 19 4e-12  
16 17 250  
17 4 VC VMID 1  
C_C1  
C_C2  
R_R7  
E_EOS  
*
* Output Stage  
*
D_D11  
D_D12  
D_D13  
D_D14  
D_D15  
D_D16  
G_G13  
G_G14  
G_G15  
G_G16  
34 35 DX  
36 34 DX  
V-- 37 DY  
V++ 37 DX  
V++ 38 DX  
V-- 38 DY  
37 V-- VOUT 34 1.11e-2  
38 V-- 34 VOUT 1.11e-2  
VOUT V++ V++ 34 20e-3  
V-- VOUT 34 V-- 20e-3  
*1st Gain Stage  
*
R_R8  
D_D4  
D_D5  
D_D6  
V_V4  
18 V++ 100  
V-- 18 DBREAK  
22 V++ DX  
V-- 24 DX  
22 23 1.18  
FIGURE 47. SPICE NET LIST  
FN6639.3  
November 29, 2012  
18  
ISL28110, ISL28210  
Characterization vs Simulation Results  
1000  
100  
10  
1000  
100  
10  
1000  
V
= ±18V  
S
V
= ±18V  
S
INPUT NOISE VOLTAGE  
INPUT NOISE VOLTAGE  
100  
1
0.1  
1
10  
1
10  
100  
1k  
10k  
100k  
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 48. CHARACTERIZED INPUT NOISE VOLTAGE  
FIGURE 49. SIMULATED INPUT NOISE VOLTAGE  
70  
60  
50  
40  
30  
20  
10  
0
70  
A
= 1000  
A
= 1000  
R = 100k, R = 100Ω  
F G  
R
= 100k, R = 100Ω  
CL  
CL  
F
G
60  
50  
40  
30  
20  
10  
0
R
= 100k, R = 1kΩ  
G
R
= 100k, R = 1kΩ  
G
F
F
A
A
= 100  
= 10  
A
A
= 100  
= 10  
CL  
CL  
V
= ±5V & ±15V  
= 4pF  
= OPEN  
V
= ±5V & ±15V  
S
S
C
R
V
C
R
V
= 4pF  
= OPEN  
L
L
L
L
CL  
R
= 100mV  
CL  
= 100mV  
OUT  
P-P  
OUT  
P-P  
= 100k, R = 10kΩ  
R
A
= 100k, R = 10kΩ  
F
G
F
G
A
= 1  
= 1  
CL  
CL  
R
= 0, R = ∞  
R
= 0, R = ∞  
F
G
F
G
-10  
1k  
-10  
1k  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 50. CHARACTERIZED CLOSED LOOP GAIN vs FREQUENCY  
FIGURE 51. SIMULATED CLOSED LOOP GAIN vs FREQUENCY  
0.15  
0.15  
V
= ±15V  
= 1  
= 2k  
V
A
R
C
= ±15V  
= 1  
= 2k  
S
S
A
V
V
0.10  
0.05  
0
0.10  
0.05  
0
R
C
L
L
L
L
= 4pF  
= 4pF  
-0.05  
-0.10  
-0.15  
-0.05  
-0.10  
-0.15  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
TIME (µs)  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
TIME (µs)  
FIGURE 52. CHARACTERIZED SMALL SIGNAL TRANSIENT RESPONSE  
vs RL, VS = ±0.9V, ±2.5V  
FIGURE 53. SIMULATED SMALL SIGNAL TRANSIENT RESPONSE vs  
RL, VS = ±0.9V, ±2.5V  
FN6639.3  
November 29, 2012  
19  
ISL28110, ISL28210  
Characterization vs Simulation Results(Continued)  
6
6
V
= ±15V  
= 1  
V
= ±15V  
= 1  
S
S
A
A
4
4
V
V
R
C
= 2k  
= 4pF  
R
C
= 2k  
= 4pF  
L
L
L
L
2
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
0
1
2
3
4
5
6
7
8
9
10  
0
2
4
6
8
10  
TIME (µs)  
TIME (µs)  
FIGURE 54. CHARACTERIZED LARGE SIGNAL TRANSIENT RESPONSE  
vs RL, VS = ±0.9V, ±2.5V  
FIGURE 55. SIMULATED LARGE SIGNAL TRANSIENT RESPONSE vs  
RL, VS = ±0.9V, ±2.5V  
200  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
200  
180  
160  
PHASE  
PHASE  
140  
120  
100  
80  
60  
40  
20  
0
-20  
-40  
-60  
-80  
GAIN  
GAIN  
-20  
-40  
-60  
-80  
V
= ±15V  
S
V
= ±15V  
S
R =1MΩ  
L
R =1MΩ  
L
-100  
-100  
0.1  
1
10 100 1k 10k 100k 1M 10M 100M 1G  
FREQUENCY (Hz)  
0.1  
1
10 100 1k 10k 100k 1M 10M 100M 1G  
FREQUENCY (Hz)  
FIGURE 56. SIMULATED (DESIGN) OPEN-LOOP GAIN, PHASE vs  
FREQUENCY  
FIGURE 57. SIMULATED (SPICE) OPEN-LOOP GAIN, PHASE vs  
FREQUENCY  
130  
120  
110  
100  
90  
130  
120  
110  
100  
90  
80  
80  
70  
70  
60  
60  
50  
50  
40  
40  
30  
30  
V
= ±15V  
V = ±15V  
S
SIMULATION  
20  
10  
0
20  
10  
0
S
SIMULATION  
0.1  
1
10  
100  
1k  
10k 100k 1M 10M 100M  
0.1  
1
10  
100  
1k  
10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 58. SIMULATED (DESIGN) CMRR  
FIGURE 59. SIMULATED (SPICE) CMRR  
FN6639.3  
November 29, 2012  
20  
ISL28110, ISL28210  
Characterization vs Simulation Results(Continued)  
15V  
10V  
5V  
5.0  
0V  
0
-5V  
-10V  
-15V  
V
= ±5V  
S
-5.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0
0
TIME (m s)  
TIME (m s)  
FIGURE 60. SIMULATED OUTPUT VOLTAGE SWING ±5V  
FIGURE 61. SIMULATED OUTPUT VOLTAGE SWING ±15V  
FN6639.3  
November 29, 2012  
21  
ISL28110, ISL28210  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest Rev.  
DATE  
REVISION  
FN6639.3  
CHANGE  
8/31/12  
Removed from ordering info MSOP parts ISL28110FUBZ, ISL28110FUZ on page 3.  
Removed all instances of MSOP throughout document (front page, thermal information, pin descriptions and  
POD  
8/30/12  
Added "No Phase Reversal" to Features on page 1  
Removed from ordering info TDFN parts ISL28110FRTZ, ISL28210FRTZ, ISL28110FRTBZ, ISL28210FRTBZ,  
ISL28110FBBZ, ISL28210FBBZ on page 3.  
Figure 47 on page 18 Spice Net List changed -40 to -12 in Input Stage C_CinDif, C_Cin1 and C_Cin2  
Removed all instances of TDFN throughout document (front page, thermal information, pin descriptions and  
POD)  
7/14/11  
FN6639.2  
FN6639.1  
Converted to new datasheet template.  
Page 1 Added "Related Literature" and "AN1594: ISL28210SOICEVAL1Z Evaluation Board User’s Guide"  
Page 3 Ordering Information table: Added ISL28210SOICEVAL1Z Evaluation Board  
11/29/10  
11/23/10  
Removed label on right side of characterization curve, Figure 48 (Input Noise Current).  
Page 1 Updated Trademark statement  
Page 3 Ordering Information: Removed "coming soon" from ISL28110FBZ  
Page 4 Electrical Specifications: Added ISL28110 IB and IOS specs @ VS=±5V.  
Page 5 Electrical Specifications: Changed AVOL limits fro V/mV to dB  
Page 5 Electrical Specifications, Dynamic Performance, Slew Rate: Added "4V Step" to conditions; changed TYP  
limit from 23V/µs to 20V/µs  
Page 6 Electrical Specifications, Dynamic Performance, Slew Rate:  
Added "10V Step" to conditions; changed TYP limit from 23V/µs to 20V/µs  
Page 6 Electrical Specifications: Added ISL28110 IB and IOS specs @ VS= ±15V.  
Changed AVOL limits from V/mV to dB. Changed ts, settling time to 0.1% from 0.9µs to 1.3µs and changed ts,  
settling time to 0.01% from 1.2µs to 1.6µs.  
Page 7 Replaced Elect Spec table Notes 8 & 9 (Note 8 "Parameters with MIN and/or MAX limits are 100%  
tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not  
production tested./Note 9 Limits established by characterization and are not production tested.)" With:  
"Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or  
design."  
Page 8 Characteristic Curves: Added ISL28110 IB vs Temperature (Fig 4)  
Page 8 Characteristic Curves: Added ISL28110 IOS vs Temperature (Fig 6)  
Pages 17-21: Added PSPICE model section  
9/13/10  
FN6639.0  
Initial Release.  
About Intersil  
Intersil Corporation is a leader in the design and manufacture of high-performance analog, mixed-signal and power management  
semiconductors. The company's products address some of the fastest growing markets within the industrial and infrastructure,  
personal computing and high-end consumer markets. For more information about Intersil or to find out how to become a member of  
our winning team, visit our website and career page at www.intersil.com.  
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective product information page.  
Also, please check the product information page to ensure that you have the most updated datasheet: ISL28110, ISL28210  
To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff  
Reliability reports are available from our website at: http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6639.3  
November 29, 2012  
22  
ISL28110, ISL28210  
Package Outline Drawing  
M8.15E  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 0, 08/09  
4
4.90 ± 0.10  
A
DETAIL "A"  
0.22 ± 0.03  
B
6.0 ± 0.20  
3.90 ± 0.10  
4
PIN NO.1  
ID MARK  
5
(0.35) x 45°  
4° ± 4°  
0.43 ± 0.076  
1.27  
0.25 M C A B  
SIDE VIEW “B”  
TOP VIEW  
1.75 MAX  
1.45 ± 0.1  
0.25  
GAUGE PLANE  
C
SEATING PLANE  
0.175 ± 0.075  
SIDE VIEW “A  
0.10 C  
0.63 ±0.23  
DETAIL "A"  
(0.60)  
(1.27)  
NOTES:  
(1.50)  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
(5.40)  
4. Dimension does not include interlead flash or protrusions.  
Interlead flash or protrusions shall not exceed 0.25mm per side.  
The pin #1 identifier may be either a mold or mark feature.  
Reference to JEDEC MS-012.  
5.  
6.  
TYPICAL RECOMMENDED LAND PATTERN  
FN6639.3  
November 29, 2012  
23  

相关型号:

ISL28110FRTBZ

Precision Low Noise JFET Operational Amplifiers
INTERSIL

ISL28110FRTBZ-T

OP-AMP, 1300uV OFFSET-MAX, 12.5MHz BAND WIDTH, PDSO8, 3 X 3 MM, ROHS COMPLIANT, PLASTIC, MO-229WEEC-2, TDFN-8
RENESAS

ISL28110FRTBZ-T13

OP-AMP, 1300uV OFFSET-MAX, 12.5MHz BAND WIDTH, PDSO8, 3 X 3 MM, ROHS COMPLIANT, PLASTIC, MO-229WEEC-2, TDFN-8
RENESAS

ISL28110FRTBZ-T7

OP-AMP, 1300uV OFFSET-MAX, 12.5MHz BAND WIDTH, PDSO8, 3 X 3 MM, ROHS COMPLIANT, PLASTIC, MO-229WEEC-2, TDFN-8
RENESAS

ISL28110FRTZ

Precision Low Noise JFET Operational Amplifiers
INTERSIL

ISL28110FRTZ-T7

OP-AMP, 1300uV OFFSET-MAX, 12.5MHz BAND WIDTH, PDSO8, 3 X 3 MM, ROHS COMPLIANT, PLASTIC, MO-229WEEC-2, TDFN-8
RENESAS

ISL28110FUBZ

Precision Low Noise JFET Operational Amplifiers
INTERSIL

ISL28110FUBZ-T13

OP-AMP, 1300uV OFFSET-MAX, 12.5MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, PLASTIC, MO-187AA, MSOP-8
RENESAS

ISL28110FUBZ-T7A

OP-AMP, 1300uV OFFSET-MAX, 12.5MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, PLASTIC, MO-187AA, MSOP-8
RENESAS

ISL28110FUZ

Precision Low Noise JFET Operational Amplifiers
INTERSIL

ISL28110FUZ-T7

OP-AMP, 1300uV OFFSET-MAX, 12.5MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, PLASTIC, MO-187AA, MSOP-8
RENESAS

ISL28110_1012

Precision Low Noise JFET Operational Amplifiers
INTERSIL