ISL28177FBZ-T7A [RENESAS]

40V General Purpose Precision Operational Amplifier; SOIC8; Temp Range: -40° to 125°C;
ISL28177FBZ-T7A
型号: ISL28177FBZ-T7A
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

40V General Purpose Precision Operational Amplifier; SOIC8; Temp Range: -40° to 125°C

放大器 光电二极管
文件: 总16页 (文件大小:1469K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL28177  
FN7859  
Rev 2.00  
April 5, 2012  
40V General Purpose Precision Operational Amplifier  
The ISL28177 is an OP07 replacement featuring low input  
offset voltage, low input bias current, and competitive noise  
and AC performance. The ESD ratings are best among  
competitive parts at 5kV HBM, 300V MM, and 2.2kV CDM. The  
amplifier operates over the 6V (±3V) to 40V (±20V) range.  
Features  
• Wide Supply Range . . . . . . . . . . . . . . . . 6V (±3V) to 40V (±20V)  
• Low Input Offset Voltage. . . . . . . . . . . . . . . . . . . . 150µV, Max  
• Input Bias Current . . . . . . . . . . . . . . . . . . . . . . . . . . . .1nA, Max  
• Low Noise . . . . . . . . . . . . . . . . . . . . . . . . . . .9.5nV/Hz @ 1kHz  
• Gain Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600kHz  
Applications include precision active filters, medical and  
analytical instrumentation, precision power supply controls,  
and industrial sensors.  
• Exceptional ESD Performance . . . . . . . . . 5kV HBM, 300V MM,  
2.2kV CDM  
The ISL28177 is available in the SOT23-5 and SOIC-8  
packages and operates over the extended temperature range  
to -40°C to +125°C.  
• Operating Temperature Range. . . . . . . . . . .-40°C to +125°C  
• Packages  
- ISL28177 (Single) . . . . . . . . . . . . . . . . . . . SOT23-5, SOIC-8  
Applications  
• Precision Active Filters  
• Medical and Analytical Instrumentation  
• Precision Power Supply Controls  
• Industrial Sensors  
C
1
10000  
10000  
1000  
V
= ±18V  
S
8.2nF  
1000  
100  
10  
V
+
INPUT NOISE CURRENT  
INPUT NOISE VOLTAGE  
-
100  
10  
1
OUTPUT  
R
R
2
1
V
IN  
+
1.84k  
4.93k  
3.3nF  
C
2
V
-
1
0.1  
1
10  
100  
1k  
10k  
100k  
SALLEN-KEY LOW PASS FILTER (10kHz)  
FREQUENCY (Hz)  
FIGURE 1. TYPICAL APPLICATION  
FIGURE 2. INPUT NOISE PERFORMANCE  
FN7859 Rev 2.00  
April 5, 2012  
Page 1 of 15  
ISL28177  
Ordering Information  
PART NUMBER  
TEMP RANGE  
(°C)  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
(Note 2, 3)  
PART MARKING  
28177 FBZ  
ISL28177FBZ  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
8 Ld SOIC  
M8.15E  
ISL28177FBZ-T13 (Note 1)  
ISL28177FBZ-T7 (Note 1)  
ISL28177FBZ-T7A (Note 1)  
28177 FBZ  
28177 FBZ  
28177 FBZ  
TBD  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
SOT23-5  
M8.15E  
M8.15E  
M8.15E  
P5.064A  
Coming Soon  
ISL28177FHZ  
NOTES:  
1. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL28177. For more information on MSL please see techbrief TB363.  
Pin Configurations  
ISL28177  
(8 LD SOIC)  
TOP VIEW  
ISL28177  
(5 LD SOT-23)  
TOP VIEW  
V+  
IN-  
OUT  
V-  
1
2
3
5
NC  
IN-  
IN+  
V -  
1
2
3
4
8
7
6
5
NC  
V+  
+
-
V
OUT  
IN+  
4
NC  
Pin Descriptions  
ISL28177  
ISL28177  
(8 LD SOIC)  
(5 LD SOT-23)  
PIN NAME  
EQUIVALENT CIRCUIT  
Circuit 1  
Circuit 3  
Circuit 1  
Circuit 3  
Circuit 2  
-
DESCRIPTION  
3
3
2
4
5
1
-
IN+  
V-  
Amplifier non-inverting input  
Negative power supply  
Amplifier inverting input  
Positive power supply  
Amplifier output  
4
2
7
IN-  
V+  
6
V
OUT  
1, 5, 8  
NC  
No internal connection  
V+  
V+  
V-  
V+  
500Ω  
500Ω  
CAPACITIVELY  
COUPLED  
IN-  
IN+  
OUT  
ESD CLAMP  
V-  
V-  
CIRCUIT 1  
CIRCUIT 2  
CIRCUIT 3  
FN7859 Rev 2.00  
April 5, 2012  
Page 2 of 15  
ISL28177  
Absolute Maximum Ratings  
Thermal Information  
Maximum Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44V  
Maximum Differential Input Voltage . . . . . . . 44V or V - 0.5V to V + 0.5V  
Thermal Resistance (Typical)  
5 Ld SOT-23 Package (Notes 4, 5). . . . . . . .  
8 Ld SOIC Package (Notes 4, 5) . . . . . . . . . .  
JA (°C/W)  
TBD  
JC (°C/W)  
TBD  
73  
-
+
Min/Max Input Voltage . . . . . . . . . . . . . . . . . . 44V or V - 0.5V to V + 0.5V  
125  
-
+
Min/Max Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA  
Output Short-Circuit Duration (1 output at a time) . . . . . . . . . . . . . . Indefinite  
ESD Ratings  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Human Body Model (Tested per JESD22-A114F). . . . . . . . . . . . . . . . 5kV  
Machine Model (Tested per JESD22-A115-A). . . . . . . . . . . . . . . . . . 300V  
Charged Device Model (Tested per CDM-22CI0ID). . . . . . . . . . . . . .2.2kV  
Operating Conditions  
Ambient Operating Temperature Range . . . . . . . . . . . . . .-40°C to +125°C  
Maximum Operating Junction Temperature . . . . . . . . . . . . . . . . . .+150°C  
Operating Voltage Range . . . . . . . . . . . . . . . . . . . . 6V (±3V) to 40V (±20V)  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
5. For , the “case temp” location is taken at the package top center.  
JC  
Electrical Specifications V = ±5V to ±15V, R = Open, V = 0V, T = +25°C, unless otherwise specified. Boldface limits apply over the  
S
L
CM  
A
operating temperature range, -40°C to +125°C.  
MIN  
(Note 6)  
MAX  
(Note 6)  
PARAMETER  
DESCRIPTION  
Input Offset Voltage  
CONDITIONS  
TYP  
UNIT  
µV  
V
150  
250  
350  
1.4  
OS  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +125°C  
µV  
µV  
TCV  
Input Offset Voltage Temperature  
Coefficient  
0.5  
µV/°C  
OS  
V /Time  
OS  
Long Term V Stability  
OS  
0.4  
0.2  
µV/mo  
nA  
I
Input Bias Current  
1
1
1
1
B
-40°C to +125°C  
nA  
I
Input Offset Current  
0.2  
nA  
OS  
-40°C to +125°C  
f = 0.1Hz to 10Hz  
f = 10Hz  
nA  
e
Input Noise Voltage  
0.38  
13  
µV  
P-P  
N
Input Noise Voltage Density  
Input Noise Voltage Density  
Input Noise Voltage Density  
Input Noise Current Density  
Common Mode Input Voltage Range  
nV/Hz  
nV/Hz  
nV/Hz  
fA/Hz  
V
f = 100Hz  
9.6  
9.5  
87  
f = 1kHz  
i
f = 1kHz  
N
V
Guaranteed by CMRR test  
V +2  
-
V -2  
+
CMIR  
CMRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Voltage Low,  
V
= V +2V to V - 2V  
120  
120  
115  
115  
140  
130  
1.2  
dB  
dB  
dB  
dB  
V
CM  
-
+
PSRR  
V = ±3V to ±20V  
S
V
R = 2kΩ  
1.25  
1.3  
OL  
L
V
to V  
OUT  
-
R = 2kΩ, -40°C to +125°C  
V
L
V
Output Voltage High,  
to V  
R = 2kΩ  
1.2  
1.25  
1.3  
V
OH  
L
V
+
OUT  
R = 2kΩ, -40°C to +125°C  
V
L
SR  
Slew Rate  
R = 2kΩ, C = 100pF  
0.2  
600  
140  
V/µs  
kHz  
dB  
dB  
L
L
GBWP  
AVOL  
Gain Bandwidth Product  
Large Signal Gain  
R = 100kΩ, C = 60pF  
L
L
V
= ±3V to ±13V, R = 10kΩ  
120  
120  
OUT  
L
FN7859 Rev 2.00  
April 5, 2012  
Page 3 of 15  
ISL28177  
Electrical Specifications V = ±5V to ±15V, R = Open, V = 0V, T = +25°C, unless otherwise specified. Boldface limits apply over the  
S
L
CM  
A
operating temperature range, -40°C to +125°C. (Continued)  
MIN  
(Note 6)  
MAX  
(Note 6)  
PARAMETER  
DESCRIPTION  
CONDITIONS  
TYP  
UNIT  
mA  
mA  
V
I
Supply Current  
1.18  
1.4  
1.7  
S
V
Supply Voltage  
±3V  
±20V  
S
I
Short Circuit Current  
30  
mA  
SC  
NOTE:  
6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
Typical Performance Curves  
V
= ±15V, V = 0V, R = Open, unless otherwise specified.  
S
CM  
L
100  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= ±15V  
S
V
= ±15V  
S
80  
60  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 3. INPUT OFFSET VOLTAGE (V ) vs TEMPERATURE  
OS  
FIGURE 4. POWER SUPPLY CURRENT (I ) vs TEMPERATURE  
S
500  
500  
V
= ±15V  
V = ±15V  
S
S
400  
300  
200  
100  
0
400  
300  
200  
100  
0
-100  
-200  
-300  
-400  
-500  
-100  
-200  
-300  
-400  
-500  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 5. POSITIVE INPUT BIAS CURRENT (I ) vs TEMPERATURE  
IB+  
FIGURE 6. NEGATIVE INPUT BIAS CURRENT (I ) vs TEMPERATURE  
IB-  
FN7859 Rev 2.00  
April 5, 2012  
Page 4 of 15  
ISL28177  
Typical Performance Curves  
V
= ±15V, V = 0V, R = Open, unless otherwise specified. (Continued)  
S
CM  
L
14.5  
-13.5  
-13.6  
-13.7  
-13.8  
-13.9  
-14.0  
-14.1  
-14.2  
-14.3  
-14.4  
-14.5  
V
R
= ±15V  
= 2k  
V
= ±15V  
R = 2k  
L
S
S
14.4  
14.3  
14.2  
14.1  
14.0  
13.9  
13.8  
13.7  
13.6  
13.5  
L
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 7. POSITIVE OUTPUT VOLTAGE (V ) vs TEMPERATURE  
OH  
FIGURE 8. POSITIVE OUTPUT VOLTAGE (V ) vs TEMPERATURE  
OL  
1
0
15  
+25°C  
+150°C  
10  
-1  
0°C  
R
L
=  
L
+125°C  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-40°C  
-55°C  
R
= 100k  
5
+75°C  
R
= 10k  
= 1k  
L
R
0
0
L
R
R
= 499  
= 100  
L
L
V
A
R
= ±15V  
= 2  
= R = 100k  
S
C
A
V
V
= 4pF  
= +1  
L
-5  
-10  
-15  
V
F
V
G
= 50mV  
OUT  
= ±15V  
P-P  
V
= ±7.5V-DC  
IN  
S
10  
100  
1k  
10k  
100k  
1M  
10M  
0
10  
20  
30  
40  
50  
60  
70  
80  
CURRENT (mA)  
FREQUENCY (Hz)  
FIGURE 9. POSITIVE OUTPUT VOLTAGE (V  
) vs OUTPUT CURRENT  
OUT  
FIGURE 10. UNITY GAIN FREQUENCY RESPONSE vs R  
L
(I  
) vs TEMPERATURE  
OUT  
70  
180  
160  
140  
120  
100  
80  
R
= 100kΩ, R = 100  
G
A
= 1001  
F
CL  
60  
50  
40  
30  
20  
10  
0
R
= 100kΩ, R = 1k  
G
F
PHASE  
V
= ±15V  
S
A
= 101  
= 10  
CL  
C
R
= 4pF  
= OPEN  
L
L
V
= 50mV  
OUT  
P-P  
60  
A
CL  
40  
GAIN  
20  
R
= 100kΩ, R = 11kΩ  
G
F
0
V
R
= ±15V  
= 1MΩ  
SIMULATION  
S
L
A
= 1  
CL  
-20  
R
= 0, R = ∞  
G
F
-40  
0.01 0.1  
-10  
10  
1
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FIGURE 11. OPEN LOOP GAIN-PHASE vs FREQUENCY  
FIGURE 12. FREQUENCY RESPONSE vs CLOSED LOOP GAIN  
FN7859 Rev 2.00  
April 5, 2012  
Page 5 of 15  
ISL28177  
Typical Performance Curves  
V
= ±15V, V = 0V, R = Open, unless otherwise specified. (Continued)  
S
CM  
L
70  
60  
50  
40  
30  
20  
10  
0
8
A
= 1  
V
C
= 22nF  
= 10nF  
L
R = 10k  
L
S
OUT  
6
4
V
V
= ±15V  
= 50mV  
C
L
+OVERSHOOT  
P-P  
C
= 4700pF  
L
2
0
-2  
-4  
-6  
-8  
-10  
-OVERSHOOT  
R
A
V
V
= 10k  
= +1  
L
C
= 2200pF  
L
V
= 50mV  
OUT  
P-P  
C
= 1000pF  
L
= ±15V  
S
C
= 4pF  
L
0.001  
0.01  
0.1  
1
10  
100  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
LOAD CAPACITANCE (nF)  
FIGURE 13. UNITY GAIN FREQUENCY RESPONSE vs C  
FIGURE 14. OVERSHOOT vs LOAD CAPACITANCE  
L
10000  
1000  
100  
10  
10000  
1000  
100  
500  
400  
300  
200  
100  
0
V
= ±18V  
S
V
A
= ±18V  
= 10k  
S
V
INPUT NOISE CURRENT  
INPUT NOISE VOLTAGE  
-100  
-200  
-300  
-400  
-500  
10  
1
1
0.1  
1
10  
100  
1k  
10k  
100k  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (Hz)  
TIME (s)  
FIGURE 15. INPUT NOISE VOLTAGE AND CURRENT SPECTRAL DENSITY  
FIGURE 16. INPUT NOISE VOLTAGE 0.1Hz TO 10Hz  
40  
30  
6
5
A
R
C
= 1  
V
= 2k AND 10k  
= 4pF  
L
L
4
20  
3
V
= ±5V  
S
2
10  
1
0
0
-1  
-2  
-10  
-20  
-30  
-40  
V
= ±15V  
S
V
A
R
C
= ±15V  
= 1  
= 2k AND 10k  
= 4pF  
S
V
-3  
-4  
-5  
-6  
L
L
0
1
2
3
4
5
6
7
8
9
10  
0
100 200 300 400 500 600 700 800 900 1k  
TIME (µs)  
TIME (µs)  
FIGURE 17. LARGE SIGNAL TRANSIENT RESPONSE  
FIGURE 18. SMALL SIGNAL TRANSIENT RESPONSE  
FN7859 Rev 2.00  
April 5, 2012  
Page 6 of 15  
ISL28177  
Typical Performance Curves  
V
= ±15V, V = 0V, R = Open, unless otherwise specified. (Continued)  
S
CM  
L
16  
14  
12  
10  
8
280  
240  
200  
160  
120  
80  
2
80  
40  
0
0
-2  
-4  
-40  
INPUT  
OUTPUT  
INPUT  
V
= ±15V  
= 100  
= 10k  
= 200mV  
V
= ±15V  
= 100  
= 10k  
= 200mV  
S
S
-6  
-80  
-120  
-160  
-200  
-240  
-280  
A
R
V
A
R
V
V
L
V
L
6
-8  
IN  
P-P  
IN  
P-P  
4
40  
-10  
-12  
-14  
-16  
OVERDRIVE = 1V  
OVERDRIVE = 1V  
OUTPUT  
2
0
0
-40  
-80  
-2  
0
40  
80 120 160 200 240 280 320 360 400  
0
40  
80 120 160 200 240 280 320 360 400  
TIME (µs)  
TIME (µs)  
FIGURE 19. POSITIVE OUTPUT OVERLOAD RESPONSE TIME  
FIGURE 20. NEGATIVE OUTPUT OVERLOAD RESPONSE TIME  
Applications Information  
V+  
Functional Description  
The ISL28177 is a low noise op amp fabricated in a 40V  
complementary bipolar DI process designed for general purpose  
low power applications. It utilizes a super-beta NPN input stage  
with input bias current cancellation for low input bias current and  
low input noise voltage. A complimentary bipolar output stage  
enables high capacitive load drive without external  
compensation.  
500Ω  
500Ω  
V
OUT  
V
R
IN  
L
V-  
FIGURE 21. INPUT ESD DIODE CURRENT LIMITING  
Operating Voltage Range  
The series resistors limit the high feed-through currents that can  
occur in pulse applications when the input dv/dt exceeds the  
0.2V/µs slew rate of the amplifier. Without the series resistors, the  
input can forward-bias the anti-parallel diodes causing current to  
flow to the output, resulting in severe distortion and possible diode  
failure. Figure 17 provides an example of distortion free large signal  
The ISL28177 is designed to operate over the 6V (±3V) to 40V  
(±20V) range. The common mode input voltage range extends to  
2V from each rail, and the output voltage swings to 1.3V of  
each rail.  
Input Performance  
response using a 10V input pulse with an input rise time of <1ns.  
P-P  
The super-beta NPN input pair reduces input bias current while  
maintaining good frequency response, low input bias current and  
low noise. Input bias cancellation circuits provide additional bias  
current reduction to <1nA, and excellent temperature  
The series resistors enable the input differential voltage to be equal  
to the maximum power supply voltage (40V) without damage.  
In applications where one or both amplifier input terminals are at  
risk of exposure to high voltages beyond the power supply rails,  
current limiting resistors may be needed at the input terminal to  
limit the current through the power supply ESD diodes to  
20mA max.  
stabilization and low TCV  
.
OS  
Input ESD Diode Protection  
The input terminals (IN+ and IN-) have internal ESD protection  
diodes to the positive and negative supply rails, series connected  
500Ω current limiting resistors and an anti-parallel diode pair  
across the inputs (Figure 21).  
Output Current Limiting  
The output current is internally limited to approximately ±30mA  
at +25°C and can withstand a short circuit to either rail as long  
as the power dissipation limits are not exceeded. Continuous  
operation under these conditions may degrade long term  
reliability.  
Output Phase Reversal  
Output phase reversal is a change of polarity in the amplifier  
transfer function when the input voltage exceeds the supply  
voltage. The ISL28177 is immune to output phase reversal.  
FN7859 Rev 2.00  
April 5, 2012  
Page 7 of 15  
ISL28177  
Power Dissipation  
ISL28177 SPICE Model  
It is possible to exceed the +150°C maximum junction  
temperature under certain load and power supply conditions. It is  
therefore important to calculate the maximum junction  
Figure 22 shows the SPICE model schematic and Figure 23 shows  
the net list for the SPICE model. The model is a simplified version  
of the actual device and simulates important AC and DC  
temperature (T  
) for all applications to determine if power  
parameters. AC parameters incorporated into the model are: 1/f  
and flatband noise voltage, Slew Rate, CMRR, Gain and Phase. The  
JMAX  
supply voltages, load conditions, or package type need to be  
modified to remain in the safe operating area. These parameters  
are related using Equation 1:  
DC parameters are, VOS, I , total supply current and output  
OS  
voltage swing. The model uses typical parameters given in the  
“Electrical Specifications” table beginning on page 3. The AVOL is  
adjusted for 140dB with the dominant pole at 0.075Hz. The CMRR  
(EQ. 1)  
T
= T  
+ xPD  
MAX JA MAXTOTAL  
JMAX  
is set 145dB, f = 500kHz. The input stage models the actual  
device to present an accurate AC representation. The model is  
configured for ambient temperature of +25°C.  
cm  
where:  
• PD  
is the sum of the maximum power dissipation of  
MAXTOTAL  
each amplifier in the package (PD  
)
MAX  
Figures 24 through 37 show the characterization vs simulation  
results for the Noise Voltage, Closed Loop Gain vs Frequency,  
Small Signal 0.1V Step, Large Signal 5V Step Response, Open  
• PD  
MAX  
for each amplifier can be calculated using Equation 2:  
V
(EQ. 2)  
OUTMAX  
R
L
----------------------------  
PD  
= V I  
+ V - V    
OUTMAX  
MAX  
S
qMAX  
S
Loop Gain Phase, CMRR, Unity Gain Frequency Response vs C  
L
and Output Voltage Swing for ±15V supplies.  
where:  
LICENSE STATEMENT  
• T  
= Maximum ambient temperature  
MAX  
The information in this SPICE model is protected under the  
United States copyright laws. Intersil Corporation hereby grants  
users of this macro-model hereto referred to as “Licensee”, a  
nonexclusive, nontransferable license to use this model as long  
as the Licensee abides by the terms of this agreement. Before  
using this macro-model, the Licensee should read this license. If  
the Licensee does not accept these terms, permission to use the  
model is not granted.  
= Thermal resistance of the package  
JA  
• PD  
= Maximum power dissipation of 1 amplifier  
MAX  
• V = Total supply voltage  
S
• I  
qMAX  
= Maximum quiescent supply current of 1 amplifier  
• V  
OUTMAX  
= Maximum output voltage swing of the application  
The Licensee may not sell, loan, rent, or license the macro-model,  
in whole, in part, or in modified form, to anyone outside the  
Licensee’s company. The Licensee may modify the macro-model  
to suit his/her specific applications, and the Licensee may make  
copies of this macro-model for use within their company only.  
This macro-model is provided “AS IS, WHERE IS, AND WITH NO  
WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED,  
INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF  
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.”  
In no event will Intersil be liable for special, collateral, incidental,  
or consequential damages in connection with or arising out of  
the use of this macro-model. Intersil reserves the right to make  
changes to the product and the macro-model without prior  
notice.  
FN7859 Rev 2.00  
April 5, 2012  
Page 8 of 15  
V++  
IEE1  
96e-6  
R4  
4.45e3  
R3  
4.45e3  
6
Q4  
7
Q5  
V++  
8
D3  
D5  
L1  
Cascode  
C4  
Cascode  
318.31927e-6  
1e-9  
G1  
+
-
16  
G3  
+
-
G5  
+
-
C2  
2e-12  
5
D2  
R9  
1
R7  
4
R5  
GAIN = 0.06  
12  
1
2122.196e6  
18  
GAIN = 4.712E-3  
GAIN = 0.1e-6  
V2  
Q1  
Q2  
0
V4  
1.7  
Vin-  
SuperB  
SuperB  
1.7  
R11  
1
V1  
R1  
5e11  
0.07  
9
10  
13  
15  
VCM  
3
1
IOS  
1e-9  
EOS  
Vc  
+
-
+
D1  
-
Mirror  
C1  
1.2e-12  
R2  
5e11  
R12  
1
0
GAIN = 1E-9  
Vmid  
19  
Q3  
2
11  
V3  
V5  
R19  
5000  
1.7  
1.7  
L2  
150E-6  
VOS  
R10  
1
318.31927e-6  
En  
IEE  
200e-6  
0
R8  
14  
G2  
-
+
R6  
G4  
-
+
17  
Vin+  
In+  
1
2122.196e6  
G6  
-
+
C3  
2e-12  
C5  
GAIN = 0.06  
D4  
GAIN = 4.712E-3  
D6  
GAIN = 0.1e-6  
1e-9  
V--  
0
COMMON MODE  
GAIN STAGE  
WITH ZERO  
NOISE STAGE  
INPUT STAGE  
V+  
1ST GAIN STAGE  
2ND GAIN STAGE MID SUPPLY  
REF VOLTAGE  
E1  
+
+
-
-
GAIN = 1  
0
D9  
D10  
G11  
-
+
C6  
10e-12  
C8  
10e-12  
GAIN = 1.11e-2  
R17  
9E1  
G7  
+
G9  
+
R13  
R15  
-
-
V6  
D7  
DX  
23  
GAIN = 502.64e-6 1989.49546  
1989.49546  
GAIN = 502.64e-6  
0.18  
VOUT  
20  
21  
22  
25  
ISY  
V7  
D8  
24  
1.18e-3  
0.18  
R14  
1989.49546  
G8  
-
G10  
-
+
R16  
G14  
1989.49546  
D12  
G13  
+
-
+
G12  
-
+
R18  
9E1  
+
-
D11  
C7  
C9  
GAIN = 502.64e-6  
GAIN = 1.11e-2  
GAIN = 502.64e-6  
10e-12  
10e-12  
GAIN = 1.11e-2  
GAIN = 1.11e-2  
V--  
V- E2  
+
-
+
-
CORRECTION CURRENT OUTPUT STAGE  
SOURCES  
2ND POLE STAGE  
GAIN = 1  
0
FIGURE 22. SPICE MODEL SCHEMATIC  
ISL28177  
*ISL28177 Macromodel  
**Revision History:  
*Input Stage  
IN+ VIN- DC 1e-9  
*
I_IOS  
C_C1  
C_C2  
C_C3  
R_R1  
R_R2  
R_R3  
R_R4  
Q_Q1  
Q_Q2  
Q_Q3  
Q_Q4  
Q_Q5  
I_IEE  
I_IEE1  
D_D2  
E_EOS  
V_VOS  
*
*Output Stage with Correction Current  
Sources  
*Revision A, LaFontaine December 14, 2011  
*Model for Noise, quiescent supply currents,  
*CMRR 145dB, fcm=500kHz, AVOL 140dB  
*f=0.075Hz SR = 0.2V/us, GBWP 600kHz,  
*2nd pole 8Mhz, output voltage clamp  
*and short ckt current limit.  
*
*Copyright 2011 by Intersil Corporation  
*Refer to data sheet "LICENSE  
*STATEMENT", Use of this model indicates  
*your acceptance with the terms and  
*provisions in the License Statement.  
*
IN+ VIN- 1.2e-12  
0 VIN- 2e-12  
0 IN+ 2e-12  
VCM VIN- 5e11  
IN+ VCM 5e11  
6 V++ 4.45e3  
7 V++ 4.45e3  
4 VIN- 3 SuperB  
5 10 3 SuperB  
V-- 3 9 Mirror  
6 8 4 Cascode  
7 8 5 Cascode  
3 V-- DC 200e-6  
V++ 8 DC 96e-6  
8 9 DX  
G_G11  
G_G12  
G_G13  
G_G14  
D_D7  
D_D8  
D_D9  
D_D10  
D_D11  
D_D12  
V_V6  
VOUT V++ V++ 21 1.11e-2  
V-- VOUT 21 V-- 1.11e-2  
22 V-- VOUT 21 1.11e-2  
25 V-- 21 VOUT 1.11e-2  
21 23 DX  
24 21 DX  
V++ 22 DX  
V++ 25 DX  
V-- 22 DY  
V-- 25 DY  
23 VOUT 0.18  
V_V7  
VOUT 24 0.18  
R_R17  
R_R18  
*
VOUT V++ 9E1  
V-- VOUT 9E1  
*Intended use:  
*This Pspice Macromodel is intended to give  
*typical DC and AC performance  
*characteristics under a wide range of  
*external circuit configurations using  
*compatible simulation platforms - such as  
*iSim PE.  
10 11 VC VMID 1E-9  
11 IN+ 30E-6  
.model SuperB npn  
+ is=184E-15 bf=30e3 va=15 ik=70E-3 rb=50  
+ re=0.065 rc=35 cje=1.5E-12 cjc=2E-12  
+ kf=0 af=0  
*1st Gain Stage  
G_G1  
G_G2  
R_R5  
R_R6  
V_V2  
V_V3  
D_D3  
D_D4  
*
V++ 13 6 7 0.06  
.model Cascode npn  
*
V-- 13 6 7 0.06  
13 V++ 1  
V-- 13 1  
12 13 1.7  
13 14 1.7  
+ is=502E-18 bf=150 va=300 ik=17E-3  
+rb=140 re=0.011 rc=900 cje=0.2E-12  
+cjc=0.16E-12f kf=0 af=0  
*Device performance features supported by  
*this model  
*Typical, room temp., nominal power supply  
*voltages used to produce the following  
*characteristics:  
*Open and closed loop I/O impedances  
*Open loop gain and phase  
*Closed loop bandwidth and frequency  
*response  
*Loading effects on closed loop frequency  
*response  
*Input noise terms including 1/f effects  
*Slew rate  
*Input and Output Headroom limits to I/O  
*voltage swing  
*Supply current at nominal specified supply  
*voltages  
**  
.model Mirror pnp  
+ is=4E-15 bf=150 va=50 ik=138E-3 rb=185  
+ re=0.101 rc=180 cje=1.34E-12  
+ cjc=0.44E-12  
12 V++ DX  
V-- 14 DX  
*2nd Gain Stage  
+ kf=0 af=0  
G_G3  
G_G4  
R_R7  
R_R8  
V_V4  
V_V5  
D_D5  
D_D6  
C_C4  
C_C5  
*
V++ 15 13 VMID 4.712E-3  
.model DN D(KF=6.69e-9 AF=1)  
.MODEL DX D(IS=1E-12 Rs=0.1)  
.MODEL DY D(IS=1E-15 BV=50 Rs=1)  
.ends subckt ISL28177  
V-- 15 13 VMID 4.712E-3  
15 V++ 2122.196e6  
V-- 15 2122.196e6  
16 15 1.7  
15 17 1.7  
16 V++ DX  
V-- 17 DX  
15 V++ 1e-9  
V-- 15 1e-9  
*Device performance features NOT  
*supported by this model:  
*Mid supply Ref  
*Harmonic distortion effects  
*Disable operation (if any)  
*Thermal effects and/or over temperature  
*parameter variation  
*Limited performance variation vs. supply  
*voltage is modeled  
R_R9  
R_R10  
E_E1  
E_E2  
I_ISY  
*
VMID V++ 1  
V-- VMID 1  
V++ 0 V+ 0 1  
V-- 0 V- 0 1  
V+ V- DC 1.18e-3  
*Part to part performance variation due to  
*normal process parameter spread  
*Any performance difference arising from  
*different packaging  
* source  
:
*Common Mode Gain Stage with Zero  
G_G5  
G_G6  
R_R11  
R_R12  
L_L1  
L_L2  
*
V++ VC VCM VMID 0.1e-6  
V-- VC VCM VMID 0.1e-6  
VC 18 1  
19 VC 1  
18 V++ 318.31927e-6  
19 V-- 318.31927e-6  
*
*
*
*
*
*
+input  
|
|
|
|
|
-input  
| +Vsupply  
*2nd Pole Stage  
|
|
|
|
|
|
-Vsupply  
G_G7  
G_G8  
G_G9  
G_G10  
R_R13  
R_R14  
R_R15  
R_R16  
C_C6  
V++ 20 15 VMID 502.64e-6  
|
|
output  
|
V-- 20 15 VMID 502.64e-6  
V++ 21 20 VMID 502.64e-6  
V-- 21 20 VMID 502.64e-6  
20 V++ 1989.49546  
V-- 20 1989.49546  
21 V++ 1989.49546  
V-- 21 1989.49546  
20 V++ 10e-12  
.subckt ISL28177 Vin+ Vin- V+ V- VOUT  
* source ISL28177_SPICEMODEL  
*
*Voltage Noise  
E_En  
D_D1  
V_V1  
R_R19  
*
IN+ VIN+ 2 0 1  
1 2 DN  
1 0 0.07  
C_C7  
V-- 20 10e-12  
2 0 5000  
C_C8  
21 V++ 10e-12  
C_C9  
V-- 21 10e-12  
FIGURE 23. SPICE NET LIST  
FN7859 Rev 2.00  
April 5, 2012  
Page 10 of 15  
ISL28177  
Characterization vs Simulation Results  
10000  
1000  
100  
10  
10000  
1000  
100  
10  
10000  
1000  
100  
10  
V
= ±18V  
V
= ±15V  
S
S
INPUT NOISE CURRENT  
INPUT NOISE VOLTAGE  
INPUT NOISE VOLTAGE  
1
0.1  
1
100k  
1
0.1  
1
10  
100  
1k  
10k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 24. CHARACTERIZED INPUT NOISE VOLTAGE  
FIGURE 25. SIMULATED INPUT NOISE VOLTAGE  
70  
70  
60  
50  
40  
30  
20  
10  
0
R
= 100kΩ, R = 100  
R = 100kΩ, R = 100  
F G  
A
= 1001  
A
= 1001  
F
G
CL  
CL  
60  
50  
40  
30  
20  
10  
0
R
= 100kΩ, R = 1k  
R = 100kΩ, R = 1k  
F G  
F
G
V
= ±15V  
= 4pF  
= OPEN  
V
= ±15V  
S
S
A
= 101  
= 10  
A
= 101  
= 10  
CL  
CL  
C
R
C
R
= 4pF  
= OPEN  
L
L
L
L
V
= 50mV  
V
= 50mV  
OUT  
P-P  
OUT  
P-P  
A
A
CL  
CL  
R
= 100kΩ, R = 11kΩ  
R
= 100kΩ, R = 11kΩ  
F
G
F
G
A
= 1  
A
= 1  
CL  
CL  
R
= 0, R = ∞  
R = 0, R = ∞  
F G  
F
G
-10  
10  
-10  
10  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 26. CHARACTERIZED CLOSED LOOP GAIN vs FREQUENCY  
FIGURE 27. SIMULATED CLOSED LOOP GAIN vs FREQUENCY  
40  
40  
A
R
C
= 1  
A
R
C
= 1  
= 10k  
= 4pF  
V
V
= 2k AND 10k  
= 4pF  
30  
20  
L
L
30  
20  
L
L
V
= ±5V  
S
10  
10  
0
0
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
V
= ±15V  
S
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
TIME (µs)  
TIME (µs)  
FIGURE 28. CHARACTERIZED SMALL SIGNAL TRANSIENT  
RESPONSE vs R , V = ±0.9V, ±2.5V  
FIGURE 29. SIMULATED SMALL SIGNAL TRANSIENT  
RESPONSE V = ±15V  
L
S
S
FN7859 Rev 2.00  
April 5, 2012  
Page 11 of 15  
ISL28177  
Characterization vs Simulation Results(Continued)  
6
5
6
5
4
4
3
3
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-2  
-3  
-4  
-5  
-6  
V
A
R
C
= ±15V  
= 1  
= 2k AND 10k  
= 4pF  
V
A
R
C
= ±15V  
= 1  
= 2k AND 10k  
= 4pF  
S
V
S
V
L
L
L
L
0
100 200 300 400 500 600 700 800 900 1k  
TIME (µs)  
0
100 200 300 400 500 600 700 800 900 1k  
TIME (µs)  
FIGURE 30. CHARACTERIZED LARGE SIGNAL TRANSIENT  
RESPONSE vs R , V = ±15V  
FIGURE 31. SIMULATED LARGE SIGNAL TRANSIENT  
RESPONSE, V = ±14V  
L
S
S
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
PHASE  
PHASE  
60  
60  
40  
40  
GAIN  
= ±15V  
GAIN  
20  
20  
0
0
V
R
V
R
= ±15V  
S
= 1MΩ  
SIMULATION  
S
L
= 1MΩ  
L
-20  
-40  
-20  
-40  
0.01 0.1  
SIMULATION  
0.01 0.1  
1
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
1
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
FIGURE 32. SIMULATED (DESIGN) OPEN-LOOP GAIN, PHASE vs  
FREQUENCY  
FIGURE 33. SIMULATED (SPICE) OPEN-LOOP GAIN, PHASE vs  
FREQUENCY  
8
10  
C
= 22nF  
= 10nF  
C
= 22nF  
C = 10nF  
L
L
L
6
4
8
6
C
L
C
= 4700pF  
L
C
= 4700pF  
4
2
0
L
2
0
-2  
-4  
-6  
-8  
-10  
C
= 2200pF  
= 1000pF  
L
-2  
-4  
-6  
R
A
V
V
= 10k  
= +1  
L
C
C
= 2200pF  
L
L
V
= 50mV  
OUT  
= ±15V  
P-P  
C
= 1000pF  
L
S
-8  
C
= 4pF  
C = 4pF  
L
L
-10  
10  
10  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 34. CHARACTERIZEDUNITY GAIN  
FREQUENCY RESPONSE vs C  
FIGURE 35. SIMULATED UNITY GAIN FREQUENCY RESPONSE vs C  
L
L
FN7859 Rev 2.00  
April 5, 2012  
Page 12 of 15  
ISL28177  
Characterization vs Simulation Results(Continued)  
15  
200  
10  
13.79V  
160  
5
120  
0
80  
-5  
40  
-13.8V  
0.8  
-10  
0
-15  
0.01 0.1 1.0 10 100 1k 10k 100k 1M 10M 100M 1G  
0.2  
0.4  
0.6  
1.0  
0
FREQUENCY (Hz)  
TIME (ms)  
FIGURE 36. SIMULATED (SPICE) CMRR  
FIGURE 37. SIMULATED OUTPUT VOLTAGE SWING ±15V  
.
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest Rev.  
DATE  
REVISION  
FN7859.2  
CHANGE  
March 29, 2012  
Changed Note 1 in “Ordering Information” on page 2 from:  
“Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.”  
to:  
“Please refer to TB347 for details on reel specifications.”  
Listed out tape and reel parts individually in “Ordering Information” on page 2 (ISL28177FBZ-T13,  
ISL28177FBZ-T7, ISL28177FBZ-T7A)  
January 5, 2012  
October 31, 2011  
FN7859.1  
FN7859.0  
Added SPICE model to data sheet.  
Added ESD Ratings to description on page 1.  
Initial Release  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on  
intersil.com: ISL28177  
To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff  
FITs are available from our website at: http://rel.intersil.com/reports/sear  
FN7859 Rev 2.00  
April 5, 2012  
Page 13 of 15  
ISL28177  
Package Outline Drawing (M8.15E)  
M8.15E  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 0, 08/09  
4
4.90 ± 0.10  
A
DETAIL "A"  
0.22 ± 0.03  
B
6.0 ± 0.20  
3.90 ± 0.10  
4
PIN NO.1  
ID MARK  
5
(0.35) x 45°  
4° ± 4°  
0.43 ± 0.076  
1.27  
0.25 M C A B  
SIDE VIEW “B”  
TOP VIEW  
1.75 MAX  
1.45 ± 0.1  
0.25  
GAUGE PLANE  
C
SEATING PLANE  
0.175 ± 0.075  
SIDE VIEW “A  
0.10 C  
0.63 ±0.23  
DETAIL "A"  
(0.60)  
(1.27)  
NOTES:  
(1.50)  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
(5.40)  
4. Dimension does not include interlead flash or protrusions.  
Interlead flash or protrusions shall not exceed 0.25mm per side.  
The pin #1 identifier may be either a mold or mark feature.  
Reference to JEDEC MS-012.  
5.  
6.  
TYPICAL RECOMMENDED LAND PATTERN  
FN7859 Rev 2.00  
April 5, 2012  
Page 14 of 15  
ISL28177  
Package Outline Drawing  
P5.064A  
5 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE  
Rev 0, 2/10  
1.90  
0-3°  
0.08-0.20  
D
A
5
4
PIN 1  
INDEX AREA  
2.80  
3
1.60  
5
3
0.15 C D  
2x  
(0.60)  
2
0.20 C  
2x  
0.95  
SEE DETAIL X  
END VIEW  
B
0.40 ±0.05  
3
0.20 M C A-B D  
TOP VIEW  
10° TYP  
(2 PLCS)  
H
5
0.15 C A-B  
2x  
2.90  
1.45 MAX  
C
1.14 ±0.15  
GAUGE  
PLANE  
(0.25)  
SEATING PLANE  
0.10  
C
0.45±0.1  
4
SIDE VIEW  
0.05-0.15  
(0.60)  
DETAIL "X"  
(1.20)  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
(2.40)  
2. Dimensioning and tolerancing conform to ASME Y14.5M-1994.  
3. Dimension is exclusive of mold flash, protrusions or gate burrs.  
4. Foot length is measured at reference to gauge plane.  
This dimension is measured at Datum “H”.  
Package conforms to JEDEC MO-178AA.  
5.  
6.  
(0.95)  
(1.90)  
TYPICAL RECOMMENDED LAND PATTERN  
FN7859 Rev 2.00  
April 5, 2012  
Page 15 of 15  
IMPORTANT NOTICE AND DISCLAIMER  
RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL  
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING  
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND  
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,  
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A  
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible  
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)  
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These  
resources are subject to change without notice. Renesas grants you permission to use these resources only for  
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly  
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.  
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,  
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject  
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources  
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.  
(Rev.1.0 Mar 2020)  
Corporate Headquarters  
Contact Information  
TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com  
For further information on a product, technology, the most  
up-to-date version of a document, or your nearest sales  
office, please visit:  
www.renesas.com/contact/  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas  
Electronics Corporation. All trademarks and registered  
trademarks are the property of their respective owners.  
© 2020 Renesas Electronics Corporation. All rights reserved.  

相关型号:

ISL28177FHZ-T

Operational Amplifier, 1 Func, 350uV Offset-Max, BIPolar, PDSO5
RENESAS

ISL28190

Single and Dual Ultra-Low Noise, Ultra-Low Distortion, Rail-to-Rail, Op Amp
INTERSIL

ISL28190FHZ-T7

Single and Dual Ultra-Low Noise, Ultra-Low Distortion, Rail-to-Rail, Op Amp
INTERSIL

ISL28190FRUZ-T7

Single and Dual Ultra-Low Noise, Ultra-Low Distortion, Rail-to-Rail Output, Op Amp
INTERSIL

ISL28190FRUZ-TK

Single and Dual Ultra-Low Noise, Ultra-Low Distortion, Rail-to-Rail, Op Amp
INTERSIL

ISL28190_08

Single and Dual Ultra-Low Noise, Ultra-Low Distortion, Rail-to-Rail Output, Op Amp
INTERSIL

ISL28190_0808

Rail-to-Rail Output, Op Amp
INTERSIL

ISL28191

Single and Dual Ultra-Low Noise, Rail-to-Rail, Op Amp
INTERSIL

ISL28191FHZ-T7

Single and Dual Ultra-Low Noise, Rail-to-Rail, Op Amp
INTERSIL

ISL28191FHZ-TK

OP-AMP, 840uV OFFSET-MAX, PDSO6, ROHS COMPLIANT, SOT-23, 6 PIN
RENESAS

ISL28191FRUZ

Single and Dual Single Supply Ultra-Low Noise, Low Distortion Rail-to-Rail Output, Op Amp
INTERSIL

ISL28191FRUZ-T7

Single and Dual Single Supply Ultra-Low Noise, Low Distortion Rail-to-Rail Output, Op Amp
INTERSIL