ISL28214FBZ [RENESAS]

Single, Dual, Quad General Purpose Micropower, RRIO Operational Amplifiers;
ISL28214FBZ
型号: ISL28214FBZ
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Single, Dual, Quad General Purpose Micropower, RRIO Operational Amplifiers

放大器 光电二极管
文件: 总23页 (文件大小:1543K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL28114, ISL28214, ISL28414  
Single, Dual, Quad General Purpose Micropower, RRIO Operational Amplifiers  
FN6800  
Rev 10.00  
December 8, 2016  
The ISL28114, ISL28214, and ISL28414 are single, dual, and  
Features  
quad channel general purpose micropower, rail-to-rail input  
• Low current consumption . . . . . . . . . . . . . . . . . . . . . . . . 390µA  
• Wide supply range . . . . . . . . . . . . . . . . . . . . . . . . . 1.8V to 5.5V  
• Gain-bandwidth product . . . . . . . . . . . . . . . . . . . . . . . . . . 5MHz  
• Input bias current. . . . . . . . . . . . . . . . . . . . . . . . . . . 20pA, Max.  
• Operating temperature range. . . . . . . . . . . .-40°C to +125°C  
and output operational amplifiers with supply voltage range of  
1.8V to 5.5V. Key features are a low supply current of 390µA  
maximum per channel at room temperature, a low bias  
current, and a wide input voltage range, which enables the  
ISL28x14 devices to be excellent general purpose op amps for  
a wide range of applications.  
The ISL28114 is available in the SC70-5 and SOT23-5  
packages, the ISL28214 is in the MSOP8, SO8, and SOT23-8  
packages, and the ISL28414 is in the TSSOP14 and SOIC14  
packages. All devices operate across the extended  
temperature range of -40°C to +125°C.  
• Packages  
- ISL28114 (single). . . . . . . . . . . . . . . . . . . . SC70-5, SOT23-5  
- ISL28214 (dual) . . . . . . . . . . . . . . . . MSOP8, SO8, SOT23-8  
- ISL28414 (quad) . . . . . . . . . . . . . . . . . . . SOIC14, TSSOP14  
Applications  
• Power supply control/regulation  
• Process control  
Related Literature  
• For a full list of related documents, visit our website  
- ISL28114, ISL28214 and ISL28414 product pages  
• Signal gain/buffers  
• Active filters  
• Current shunt sensing  
• Transimpedance amp  
R
F
100kΩ  
LOAD  
+5V  
R
-
IN  
IN-  
-
V
OUT  
V+  
R
SENSE  
10kΩ  
ISL28x14  
V-  
+
R
+
IN  
IN+  
10kΩ  
GAIN = 10  
R
+
REF  
100kΩ  
VREF  
SINGLE-SUPPLY, LOW-SIDE CURRENT SENSE AMPLIFIER  
FIGURE 1. TYPICAL APPLICATION  
FN6800 Rev 10.00  
December 8, 2016  
Page 1 of 23  
ISL28114, ISL28214, ISL28414  
Ordering Information  
PART NUMBER  
PART  
MARKING  
TAPE AND REEL  
(UNITS)  
PACKAGE  
(RoHS COMPLIANT)  
PKG.  
DWG. #  
(Note 4)  
ISL28114FEZ-T7 (Notes 1, 2)  
ISL28114FEZ-T7A (Notes 1, 2)  
ISL28114FHZ-T7 (Notes 1, 2)  
ISL28114FHZ-T7A (Notes 1, 2)  
ISL28214FUZ (Note 2)  
BKA (Note 5)  
BKA (Note 5)  
3k  
250  
3k  
250  
-
5 Ld SC-70  
P5.049  
P5.049  
P5.064A  
P5.064A  
5 Ld SC-70  
5 Ld SOT-23  
5 Ld SOT-23  
8 Ld MSOP  
8 Ld MSOP  
8 Ld SOIC  
BDBA (Note 5)  
BDBA (Note 5)  
8214Z  
M8.118A  
M8.118A  
M8.15E  
ISL28214FUZ-T7 (Notes 1, 2)  
ISL28214FBZ (Note 2)  
8214Z  
1.5k  
-
28214 FBZ  
ISL28214FBZ-T7 (Notes 1, 2)  
ISL28214FBZ-T13 (Notes 1, 2)  
ISL28214FHZ-T7 (Notes 1, 3)  
ISL28214FHZ-T7A (Notes 1, 3)  
ISL28414FVZ (Note 2)  
28214 FBZ  
1k  
2.5k  
3k  
250  
-
8 Ld SOIC  
M8.15E  
28214 FBZ  
8 Ld SOIC  
M8.15E  
BELA (Note 5)  
BELA (Note 5)  
28414 FVZ  
8 Ld SOT-23  
8 Ld SOT-23  
14 Ld TSSOP  
14 Ld TSSOP  
14 Ld TSSOP  
14 Ld SOIC  
14 Ld SOIC  
14 Ld SOIC  
P8.064  
P8.064  
MDP0044  
MDP0044  
MDP0044  
MDP0027  
MDP0027  
MDP0027  
ISL28414FVZ-T7 (Notes 1, 2)  
ISL28414FVZ-T13 (Notes 1, 2)  
ISL28414FBZ (Note 2)  
28414 FVZ  
1k  
2.5k  
-
28414 FVZ  
28414 FBZ  
ISL28414FBZ-T7 (Notes 1, 2)  
ISL28414FBZ-T13 (Notes 1, 2)  
ISL28114SOT23EVAL1Z  
ISL28214MSOPEVAL2Z  
28414 FBZ  
1k  
2.5k  
28414 FBZ  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Evaluation Board  
ISL28214SOICEVAL2Z  
ISL28414TSSOPEVAL1Z  
NOTES:  
1. Refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and NiPdAu plate-e4  
termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
4. For Moisture Sensitivity Level (MSL), see device information page for ISL28114, ISL28214, ISL28414. For more information on MSL, see Tech Brief  
TB363.  
5. The part marking is located on the bottom of the part.  
FN6800 Rev 10.00  
December 8, 2016  
Page 2 of 23  
ISL28114, ISL28214, ISL28414  
Pin Configurations  
ISL28114FEZ  
(5 LD SC-70)  
TOP VIEW  
ISL28114  
(5 LD SOT-23)  
TOP VIEW  
ISL28214  
(8 LD MSOP, 8 LD SOIC, 8 LD SOT-23)  
TOP VIEW  
1
2
8
7
V +  
S
OUT_A  
IN-_A  
V +  
S
V +  
S
IN+  
1
2
3
5
4
OUT  
1
2
3
5
OUT_B  
IN-_B  
V -  
S
V -  
S
IN+_A  
3
4
6
5
OUT  
IN-  
IN-  
IN+  
4
IN+_B  
V -  
S
ISL28414  
(14 LD TSSOP, 14 LD SOIC)  
TOP VIEW  
OUT_A  
1
2
3
4
5
6
7
14 OUT_D  
IN-_A  
IN+_A  
13 IN-_D  
12 IN+_D  
V +  
S
11 V -  
S
IN+_B  
IN-_B  
10 IN+_C  
9
8
IN-_C  
OUT_C  
OUT_B  
Pin Descriptions  
PIN NUMBER  
8 Ld MSOP,  
8 Ld SOIC,  
8 Ld SOT-23  
14 Ld TSSOP,  
14 LD SOIC  
PIN NAME 5 Ld SC-70 5 Ld SOT-23  
DESCRIPTION  
Output  
CIRCUITS  
V+  
OUT  
V-  
OUT  
4
1
OUT_A  
OUT_B  
OUT_C  
OUT_D  
1
7
1
7
8
14  
CIRCUIT 1  
V -  
S
2
2
4
11  
Negative supply voltage  
V+  
V-  
CAPACITIVELY  
TRIGGERED  
ESD CLAMP  
CIRCUIT 2  
IN+  
1
3
5
3
4
5
Positive Input  
V+  
IN+_A  
IN+_B  
IN+_C  
IN+_D  
3
5
3
5
10  
12  
IN-  
IN+  
V-  
IN-  
Negative Input  
IN-_A  
IN-_B  
IN-_C  
IN-_D  
2
6
2
6
9
CIRCUIT 3  
13  
V +  
8
4
Positive supply voltage  
See “CIRCUIT 2”  
S
FN6800 Rev 10.00  
December 8, 2016  
Page 3 of 23  
ISL28114, ISL28214, ISL28414  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.5V  
Supply Turn-on Voltage Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1V/µs  
Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . .V - 0.5V to V + 0.5V  
Thermal Resistance (Typical)  
JA (°C/W)  
250  
JC (°C/W)  
N/A  
N/A  
100  
90  
5 Ld SC-70 (Notes 6) . . . . . . . . . . . . . . . . . .  
5 Ld SOT-23 (Notes 6) . . . . . . . . . . . . . . . . .  
8 Ld MSOP (Notes 6, 7) . . . . . . . . . . . . . . . .  
8 Ld SOIC Package (Notes 6, 7) . . . . . . . . .  
8 Ld SOT-23 Package (Notes 6, 7) . . . . . . .  
14 Ld TSSOP Package (Notes 6, 7) . . . . . .  
14 Ld SOIC Package (Notes 6, 7) . . . . . . . .  
Ambient Operating Temperature Range . . . . . . . . . . . . . .-40°C to +125°C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . .+125°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493  
225  
180  
126  
240  
120  
90  
-
+
Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V - 0.5V to V + 0.5V  
-
+
ESD Rating  
168  
40  
50  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4kV  
Machine Model (ISL28114, ISL28214) . . . . . . . . . . . . . . . . . . . . . . . 350V  
Machine Model (ISL28414). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400V  
Charged Device Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2kV  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
6. is measured with the component mounted on a high-effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
7. For , the “case temp” location is taken at the package top center.  
JC  
Electrical Specifications V + = 5V, V - = 0V, R = Open, V = V /2, T = +25°C, unless otherwise specified. Boldface limits apply across  
S
S
L
CM  
S
A
the operating temperature range, -40°C to +125°C, unless otherwise specified.  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
TEST CONDITIONS  
(Note 8)  
TYP  
0.5  
5
(Note 8)  
UNIT  
DC SPECIFICATIONS  
V
Input Offset Voltage  
-4  
4
mV  
mV  
OS  
-40°C to +125°C  
-5  
5
TCV  
OS  
Input Offset Voltage Temperature  
Coefficient  
-40°C to +125°C  
µV/°C  
I
I
Input Offset Current  
Input Bias Current  
1
3
30  
20  
pA  
pA  
pA  
pA  
pA  
V
OS  
ISL28114  
-20  
-100  
-20  
B
100  
20  
ISL28214, ISL28414  
3
-50  
50  
Common-Mode Input Voltage Range  
Common-Mode Rejection Ratio  
- 0.1  
5.1  
CMRR  
PSRR  
V
= -0.1V to 5.1V  
72  
70  
dB  
dB  
dB  
dB  
V
CM  
-40°C to +125°C  
= 1.8V to 5.5V  
Power Supply Rejection Ratio  
Output Voltage Swing, High  
Output Voltage Swing, Low  
V
71  
S
-40°C to +125°C  
R = 10kΩ  
70  
V
V
V
4.985  
4.993  
OH  
OL  
+
L
4.98  
V
R = 10kΩ  
13  
15  
20  
mV  
mV  
V
L
Supply Voltage  
1.8  
5.5  
390  
475  
I
Supply Current per Amplifier  
R = OPEN  
300  
µA  
µA  
mA  
mA  
S
L
I
I
Output Source Short-Circuit Current R = 10Ω to V-  
-31  
26  
SC+  
L
Output Sink Short-Circuit Current  
R = 10Ω to V+  
L
SC-  
FN6800 Rev 10.00  
December 8, 2016  
Page 4 of 23  
ISL28114, ISL28214, ISL28414  
Electrical Specifications V + = 5V, V - = 0V, R = Open, V = V /2, T = +25°C, unless otherwise specified. Boldface limits apply across  
S
S
L
CM  
S
A
the operating temperature range, -40°C to +125°C, unless otherwise specified. (Continued)  
MIN  
MAX  
PARAMETER  
AC SPECIFICATIONS  
GBWP  
DESCRIPTION  
TEST CONDITIONS  
(Note 8)  
TYP  
5
(Note 8)  
UNIT  
MHz  
Gain-Bandwidth Product  
V = ±2.5V  
S
A = 100, R = 100kΩ, R = 1kΩ,  
V
F
G
R
= 10kΩ to V  
L
CM  
e
e
V
Peak-to-Peak Input Noise Voltage  
Input Noise Voltage Density  
V
= ±2.5V  
12  
40  
16  
8
µV  
P-P  
N
N
P-P  
S
f = 0.1Hz to 10Hz  
V
= ±2.5V  
nV/(Hz)  
nV/(Hz)  
fA/(Hz)  
S
f = 1kHz  
V
= ±2.5V  
S
f = 10kHz  
i
Input Noise Current Density  
V
S
= ±2.5V  
N
f = 1kHz  
12  
10  
Z
Input Impedance  
Ω
IN  
C
Differential Input Capacitance  
Common-Mode Input Capacitance  
V
= ±2.5V  
1.0  
pF  
pF  
in  
S
f = 1MHz  
1.3  
TRANSIENT RESPONSE  
SR  
Slew Rate  
V
V
= 0.5V to 4.5V  
2.5  
37  
42  
V/µs  
ns  
OUT  
t , t , Small Signal  
Rise Time, t 10% to 90%  
r
= ±2.5V  
r
f
S
A
= +1, V  
OUT  
= 0.05V  
P-P  
V
Fall Time, t 10% to 90%  
f
ns  
R = 0Ω, R = 10kΩC = 15pF  
F
L
L
t
Settling Time to 0.1%, 4V  
Step  
V
= ±2.5V  
5.6  
µs  
s
P-P  
S
A
= +1, R = 0ΩR = 10kΩ  
V
F L  
C = 1.2pF  
L
NOTE:  
8. Compliance to datasheet limits is assured by one or more methods: production test, characterization, and/or design.  
FN6800 Rev 10.00  
December 8, 2016  
Page 5 of 23  
ISL28114, ISL28214, ISL28414  
Typical Performance Curves  
V
= ±2.5V, V = 0V, R = Open, unless otherwise specified.  
S
CM  
L
50  
40  
30  
20  
10  
0
10,000  
V+ = ±2.5V  
= 1  
A
V
1000  
100  
10  
-10  
-20  
-30  
-40  
SIMULATION  
-50  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
1
10  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
FIGURE 3. INPUT NOISE VOLTAGE SPECTRAL DENSITY  
FIGURE 2. INPUT BIAS CURRENT vs TEMPERATURE  
120  
100  
80  
20  
120  
100  
80  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-20  
GAIN  
GAIN  
60  
60  
-40  
40  
40  
-60  
20  
20  
-80  
0
0
-100  
-120  
-140  
-160  
-180  
V
= ±0.9V  
= 100k  
= 10pF  
V
= ±0.9V  
= 100k  
= 10pF  
+
+
-20  
-40  
-60  
-80  
-20  
-40  
-60  
-80  
PHASE  
PHASE  
R
C
R
C
L
L
L
L
SIMULATION  
SIMULATION  
0.1  
1
10  
100  
1k  
10k 100k 1M 10M 100M  
0.1  
1
10  
100  
1k  
10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 5. OPEN-LOOP GAIN, PHASE vs FREQUENCY, R = 100k,  
FIGURE 4. OPEN-LOOP GAIN, PHASE vs FREQUENCY, R = 100k,  
L
L
C
= 10pF, V = ±2.5V  
C
= 10pF, V = ±0.9V  
L
S
L
S
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PSRR+ V = ±0.9V  
S
PSRR+ V = ±2.5V  
S
PSRR- V = ±2.5V  
S
PSRR- V = ±0.9V  
S
R
C
= INF  
= 4pF  
= +1  
L
L
A
V
SIMULATION  
V
= 100mV  
1k  
CM  
P-P  
0.01 0.1  
1
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
100  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FIGURE 6. CMRR vs FREQUENCY (SIMULATED DATA)  
FIGURE 7. PSRR vs FREQUENCY, V = ±0.9V, ±2.5V  
S
FN6800 Rev 10.00  
December 8, 2016  
Page 6 of 23  
ISL28114, ISL28214, ISL28414  
Typical Performance Curves  
V
= ±2.5V, V = 0V, R = Open, unless otherwise specified. (Continued)  
CM  
S
L
70  
1
R
= 100, R = 100k  
f
g
A
= 1000  
V
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
60  
50  
40  
30  
20  
10  
0
R
= 1k, R = 100k  
f
g
A
= 100  
V
= ±2.5V  
V
+
C
= 4pF  
L
R
= 10k  
L
V
= 10mV  
= 50mV  
V
= 50mV  
OUT  
P-P  
OUT  
P-P  
A
= 10  
R
V
V
V
OUT  
P-P  
= 100mV  
= 200mV  
V
= ±2.5V  
= 4pF  
= +1  
= 10k, R = 100k  
f
OUT  
P-P  
S
g
V
C
A
OUT  
OUT  
P-P  
L
A
= 1  
V
V
= 500mV  
V
P-P  
R
= OPEN, R = 0  
R
= 10k  
g
f
V
= 1V  
P-P  
L
OUT  
-10  
10  
10k  
100  
1k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 9. FREQUENCY RESPONSE vs V  
FIGURE 8. FREQUENCY RESPONSE vs CLOSED-LOOP GAIN  
OUT  
14  
12  
10  
8
1
0
V
R
= ±2.5V  
= 10k  
= +1  
S
L
A
V
V
-1  
-2  
-3  
-4  
= 50mV  
P-P  
C
= 1004pF  
OUT  
L
C
= 474pF  
L
6
C
= 224pF  
L
4
R
= 4.99k  
L
-5  
-6  
-7  
-8  
-9  
C
= 104pF  
L
2
R
R
= 1k  
V
= ±2.5V  
= 4pF  
= +1  
L
L
+
0
C
L
= 499  
C
= 26pF  
= 4pF  
L
A
V
-2  
-4  
V
= 50mV  
R
= 100  
C
OUT  
P-P  
10k  
FREQUENCY (Hz)  
L
L
100  
1k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
FIGURE 11. GAIN vs FREQUENCY vs C  
FIGURE 10. GAIN vs FREQUENCY vs R  
L
L
1
140  
120  
100  
80  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
C
R
= 4pF  
= 10k  
= +1  
L
L
A
V
V
= 50mV  
P-P  
OUT  
V
= ±2.5V  
S
60  
R -DRIVER = INF  
L
V
= ±2.5V  
S
R -RECEIVER = 10k  
L
40  
C
= 4pF  
= +1  
V
= ±1.75V  
= ±1.25V  
L
S
A
V
V
20  
S
V
= 1V  
P-P  
SOURCE  
V
= ±0.9V  
1M  
S
0
10  
10k  
100k  
10M  
100M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 12. GAIN vs FREQUENCY vs SUPPLY VOLTAGE  
FIGURE 13. CROSSTALK, V = ±2.5V  
S
FN6800 Rev 10.00  
December 8, 2016  
Page 7 of 23  
ISL28114, ISL28214, ISL28414  
Typical Performance Curves  
V
= ±2.5V, V = 0V, R = Open, unless otherwise specified. (Continued)  
S
CM  
L
30  
3
20  
10  
V
= ±2.5V  
2
1
S
V
= ±2.5V  
S
V
= ±0.9V  
0
-10  
-20  
-30  
-40  
S
R
C
A
= 10k  
= 15pF  
= +1  
L
L
0
R
C
= 10k  
= 15pF  
= +1  
V
V
L
L
= 50mV  
OUT  
P-P  
-1  
-2  
-3  
A
V
OUT  
V
= RAIL  
0
1
2
3
4
5
6
7
8
9
10  
0
80 160 240 320 400 480 560 640 720 800  
TIME (ns)  
TIME (µs)  
FIGURE 15. LARGE SIGNAL TRANSIENT RESPONSE vs  
R , V = ±0.9V, ±2.5V  
FIGURE 14. SMALL SIGNAL TRANSIENT RESPONSE, V = ±2.5V  
S
L
S
0.5  
0.1  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
INPUT  
OUTPUT AT V = ±2.5V  
S
0
R
C
= INF  
= 15pF  
=10  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
L
L
OUTPUT AT V = ±0.9V  
S
A
V
R = 9.09k, R = 1k  
R
C
A
= INF  
= 15pF  
= 10  
f
g
L
L
V
OUTPUT AT V = ±0.9V  
S
R = 9.09k, R = 1k  
f
g
OUTPUT AT V = ±2.5V  
S
INPUT  
-0.5  
-0.1  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.3 3.6 4.0  
TIME (ms)  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.3 3.6 4.0  
TIME (ms)  
FIGURE 17. POSITIVE OUTPUT OVERLOAD RESPONSE TIME,  
FIGURE 16. NEGATIVE OUTPUT OVERLOAD RESPONSE TIME,  
= ±0.9V, ±2.5V  
V
= ±0.9V, ±2.5V  
V
S
S
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= ±2.5V  
= 10k  
= 1  
S
L
R
A
V
V
= 50mV  
P-P  
OUT  
1
10  
100  
1k  
10k  
CAPACITANCE (pF)  
FIGURE 18. % OVERSHOOT vs LOAD CAPACITANCE, V = ±2.5V  
S
FN6800 Rev 10.00  
December 8, 2016  
Page 8 of 23  
ISL28114, ISL28214, ISL28414  
Power Dissipation  
It is possible to exceed the +125°C maximum junction  
temperatures under certain load, power supply conditions, and  
ambient temperature conditions. It is therefore important to  
Applications Information  
Functional Description  
The ISL28114, ISL28214 and ISL28414 are single, dual, and  
quad, CMOS rail-to-rail input, output (RRIO) micropower  
calculate the maximum junction temperature (T  
) for all  
JMAX  
operational amplifiers. They are designed to operate from single  
supply (1.8V to 5.5V) or dual supply (±0.9V to ±2.75V). The parts  
have an input common-mode range that extends 100mV above  
and below the power supply voltage rails. The output stage can  
swing to within 15mV of the supply rails with a 10kΩ load.  
applications to determine if power supply voltages, load  
conditions, or package types need to be modified to remain in  
the safe operating area. These parameters are related using  
Equation 1:  
(EQ. 1)  
T
= T  
+ xPD  
MAX JA MAXTOTAL  
JMAX  
Input ESD Diode Protection  
where:  
• P  
All input terminals have internal ESD protection diodes to both  
positive and negative supply rails, limiting the input voltage to  
within one diode beyond the supply rails. For applications where  
the input differential voltage is expected to exceed 0.5V, an  
external series resistor must be used to ensure the input currents  
never exceed 20mA (see Figure 19).  
is the sum of the maximum power dissipation of  
DMAXTOTAL  
each amplifier in the package (PD  
)
MAX  
• PD  
PD  
for each amplifier can be calculated using Equation 2:  
MAX  
V
OUTMAX  
R
L
------------------------  
= V I  
+ V - V  
   
MAX  
S
qMAX  
S
OUTMAX  
(EQ. 2)  
where:  
R
F
• T  
= Maximum ambient temperature  
V+  
MAX  
= Thermal resistance of the package  
JA  
R
R
-
IN  
-
V
-
IN  
• PD  
= Maximum power dissipation of 1 amplifier  
• V = Total supply voltage  
MAX  
+
IN  
+
S
R
L
• I  
qMAX  
= Maximum quiescent supply current of 1 amplifier  
= Maximum output voltage swing of the application  
R
G
V-  
• V  
OUTMAX  
• R = Load resistance  
L
FIGURE 19. INPUT ESD DIODE CURRENT LIMITING  
ISL28114, ISL28214, and ISL28414 SPICE  
Model  
Output Phase Reversal  
Figure 21 on page 11 shows the SPICE model schematic and  
Figure 22 on page 12 shows the net list for the SPICE model. The  
model is a simplified version of the actual device and simulates  
important AC and DC parameters. AC parameters incorporated  
into the model are: 1/f and flatband noise, Slew Rate, CMRR, Gain,  
and Phase. The DC parameters are IOS, total supply current, and  
output voltage swing. The model uses typical parameters given in  
the “Electrical Specifications” Table beginning on page 4. The  
AVOL is adjusted for 90dB with the dominate pole at 125Hz. The  
CMRR is set 72dB, f = 80kHz. The input stage models the actual  
device to present an accurate AC representation. The model is  
configured for ambient temperature of +25°C.  
Output phase reversal is a change of polarity in the amplifier  
transfer function when the input voltage exceeds the supply  
voltage. The ISL28114, ISL28214, and ISL28414 are immune to  
output phase reversal, even when the input voltage is 1V beyond  
the supplies.  
Unused Channels  
If the application requires less than all amplifiers on one  
channel, the user must configure the unused channel(s) to  
prevent oscillation. The unused channel(s) will oscillate if the  
input and output pins are floating. This will result in higher than  
expected supply currents and possible noise injection into the  
channel being used. The proper way to prevent this oscillation is  
to short the output to the inverting input and ground the positive  
input (as shown in Figure 20).  
Figures 23 through 30 show the characterization vs simulation  
results for the Noise Voltage, Closed Loop Gain vs Frequency,  
Large Signal 5V Step Response, and CMRR and Open-Loop Gain  
Phase.  
-
+
FIGURE 20. PREVENTING OSCILLATIONS IN UNUSED CHANNELS  
FN6800 Rev 10.00  
December 8, 2016  
Page 9 of 23  
ISL28114, ISL28214, ISL28414  
LICENSE STATEMENT  
The information in this SPICE model is protected under the  
United States copyright laws. Intersil Corporation hereby grants  
users of this macro-model hereto referred to as “Licensee”, a  
nonexclusive, nontransferable license to use this model as long  
as the Licensee abides by the terms of this agreement. Before  
using this macro-model, the Licensee should read this license. If  
the Licensee does not accept these terms, permission to use the  
model is not granted.  
The Licensee may not sell, loan, rent, or license the  
macro-model, in whole, in part, or in modified form, to anyone  
outside the Licensee’s company. The Licensee may modify the  
macro-model to suit his/her specific applications, and the  
Licensee may make copies of this macro-model for use within  
their company only.  
This macro-model is provided “AS IS, WHERE IS, AND WITH NO  
WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED,  
INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF  
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.”  
In no event will Intersil be liable for special, collateral, incidental,  
or consequential damages in connection with or arising out of  
the use of this macro-model. Intersil reserves the right to make  
changes to the product and the macro-model without prior  
notice.  
FN6800 Rev 10.00  
December 8, 2016  
Page 10 of 23  
.
V1  
1e-6  
D3  
D1  
R10  
1e9  
G1A  
+
2
I2  
5e-3  
G1  
+
-
-
R1  
4.0004  
R2  
4.0004  
GAIN = 351  
RA1  
R11  
1
GAIN = 334.753e-3  
1
R9  
17  
V3  
15  
.61  
IN+  
Vin+  
En  
100  
D2  
R5  
10  
14  
3
4
8R6  
En  
GAIN = 1  
M15  
16  
NCHANNELMOSFET  
9
10  
10  
12  
IN-  
R21  
30  
PMOSISIL  
M16 PMOSISIL  
M17  
M14  
NCHANNELMOSFET  
28  
R22  
R23  
EOS  
5e11  
+
-
+
-
D13  
GAIN = 1e-3  
5
6
11  
CinDif  
1.02E-12  
0
IOS1  
25e-12  
.61  
1
V4  
V9  
0
29  
5e11  
Vcm  
R24  
10  
R25  
10  
R7  
4
R8  
4
7
0.425  
G2A  
-
RA2  
G2  
-
R12  
18  
1
Vin-  
13  
+
+
GAIN = 351  
GAIN = 334.753e-3  
V2  
I1  
5e-3  
1e-6  
Voltage Noise Stage  
D4  
Cin2  
Cin1  
1.26e-12  
1.26e-12  
Input Stage  
1st Gain Stage  
V+  
E2  
+
-
+
-
GAIN = 1  
0
V++  
L1  
G11  
-
D5  
D9  
D10  
+
G7  
+
-
C2  
2E-9  
15.9159E-3  
R17  
1591.596  
C4  
R19  
50  
G3  
+
-
G5  
+
-
GAIN = 0.02  
10e-12  
19  
R13  
21  
R15  
GAIN = 6.283e-4  
V7  
GAIN = 24.89e-3  
D7  
DX  
.604  
636.6588k  
GAIN = 2.5118E-08  
24  
25  
V5  
10e3  
.08  
VOUT  
Vg  
Vc  
23  
26  
27  
Vmid  
ISY  
300e-6  
V8  
D8  
.604  
D X  
V6  
E4  
+
-
+
.08  
-
R16  
20  
R14  
G8  
-
+
10e3  
R18  
G4  
-
+
636.6588k  
C5  
G6  
-
+
22  
1591.596  
G12  
-
+
R20  
50  
G9  
+
-
G10  
+
-
GAIN = 6.283e-4  
10e-12  
D6  
L2  
D11  
D12  
GAIN = 24.89e-3  
C3  
2E-9  
GAIN = 2.5118E-08  
15.9159E-3  
GAIN = 0.02  
GAIN = 0.02  
GAIN = 0.02  
V--  
V-  
Correction Current  
Sources  
E3  
+
-
+
-
Common Mode  
Gain Stage  
with Zero  
Output Stage  
2nd Gain Stage  
Mid Supply ref  
V
Pole Stage  
GAIN = 1  
0
FIGURE 21. SPICE SCHEMATIC  
ISL28114, ISL28214, ISL28414  
*ISL28114 Macromodel - covers following  
*products  
*
R_R15 VC 21 10e3  
R_R16 22 VC 10e3  
*Voltage Noise  
*ISL28114  
*ISL28214  
*ISL28414  
**  
E_En VIN+ EN 28 0 1  
D_D13 29 28 DN  
V_V9 29 0 0.425  
R_R21 28 0 30  
*
R_R22 EN VCM 5e11  
R_R23 VCM VIN- 5e11  
L_L1 21 V++ 15.9159e-3  
L_L2 22 V-- 15.9159e-3  
*
*Revision History:  
*Revision C, LaFontaine October 20th 2011  
*Model for Noise to match measured part,  
* quiescent supply currents,  
*CMRR 72dB  
*fcm=100kHz, AVOL 90dB f=125Hz, SR =  
*2.5V/us, GBWP 5MHz, 2nd pole 10Mhz  
output voltage clamp and short ckt current  
*limit.  
*Input Stage  
*Pole Stage  
M_M14 3 1 5 5 NCHANNELMOSFET  
M_M15 4 VIN- 6 6 NCHANNELMOSFET  
M_M16 11 VIN- 9 9 PMOSISIL  
M_M17 12 1 10 10 PMOSISIL  
I_I1 7 V-- DC 5e-3  
I_I2 V++ 8 DC 5e-3  
I_IOS VIN- 1 DC 25e-12  
G_G1A V++ 14 4 3 351  
G_G2A V-- 14 11 12 351  
V_V1 V++ 2 1e-6  
G_G7 V++ 23 VG VMID 6.283e-4  
G_G8 V-- 23 VG VMID 6.283e-4  
R_R17 23 V++ 1591.596  
R_R18 V-- 23 1591.596  
C_C4 23 V++ 10e-12  
C_C5 V-- 23 10e-12  
*
**  
*Output Stage with Correction Current  
Sources  
*Copyright 2011 by Intersil Corporation  
*Refer to data sheet "LICENSE  
*STATEMENT" Use of this model indicates  
*your acceptance with the terms and  
*provisions in the License Statement.  
*
G_G9 26 V-- VOUT 23 0.02  
G_G10 27 V-- 23 VOUT 0.02  
G_G11 VOUT V++ V++ 23 0.02  
G_G12 V-- VOUT 23 V-- 0.02  
V_V7 24 VOUT .08  
V_V2 13 V-- 1e-6  
R_R1 3 2 4.0004  
R_R2 4 2 4.0004  
R_R3 5 7 10  
*Intended use:  
R_R4 7 6 10  
V_V8 VOUT 25 .08  
*This Pspice Macromodel is intended to give  
*typical DC and AC performance  
*characteristics under a wide range of  
*external circuit configurations using  
*compatible simulation platforms - such as  
*iSim PE.  
R_R5 9 8 10  
R_R6 8 10 10  
R_R7 13 11 4  
R_R8 13 12 4  
R_RA1 14 V++ 1  
R_RA2 V-- 14 1  
D_D7 23 24 DX  
D_D8 25 23 DX  
D_D9 V++ 26 DX  
D_D10 V++ 27 DX  
D_D11 V-- 26 DY  
D_D12 V-- 27 DY  
*
C_CinDif VIN- EN 1.02E-12  
C_Cin1 V-- EN 1.26e-12  
C_Cin2 V-- VIN- 1.26e-12  
*
R_R19 VOUT V++ 50  
R_R20 V-- VOUT 50  
.model pmosisil pmos (kp=16e-3 vto=-0.6)  
.model NCHANNELMOSFET nmos (kp=3e-3  
vto=0.6)  
.model DN D(KF=6.69e-9 AF=1)  
.MODEL DX D(IS=1E-12 Rs=0.1)  
.MODEL DY D(IS=1E-15 BV=50 Rs=1)  
.ends ISL28114  
*Device performance features supported by  
*this model:  
*Typical, room temp., nominal power supply  
*voltages used to produce the following  
*characteristics:  
*Open and closed loop I/O impedances  
*Open loop gain and phase  
*Closed loop bandwidth and frequency  
*response  
*Loading effects on closed loop frequency  
*response  
*1st Gain Stage  
G_G1 V++ 16 15 VMID 334.753e-3  
G_G2 V-- 16 15 VMID 334.753e-3  
V_V3 17 16 .61  
V_V4 16 18 .61  
D_D1 15 VMID DX  
D_D2 VMID 15 DX  
D_D3 17 V++ DX  
*Input noise terms including 1/f effects  
*Slew rate  
D_D4 V-- 18 DX  
R_R9 15 14 100  
*Input and Output Headroom limits to I/O  
*voltage swing  
R_R10 15 VMID 1e9  
R_R11 16 V++ 1  
*Supply current at nominal specified supply  
*voltages  
R_R12 V-- 16 1  
*
**  
*2nd Gain Stage  
*Device performance features NOT  
*supported by this model  
*Harmonic distortion effects  
*Disable operation (if any)  
*Thermal effects and/or over temperature  
*parameter variation  
G_G3 V++ VG 16 VMID 24.893e-3  
G_G4 V-- VG 16 VMID 24.893e-3  
V_V5 19 VG .604  
V_V6 VG 20 .604  
D_D5 19 V++ DX  
D_D6 V-- 20 DX  
*Limited performance variation vs. supply  
*voltage is modeled  
*Part to part performance variation due to  
*normal process parameter spread  
*Any performance difference arising from  
*different packaging  
R_R13 VG V++ 636.658e3  
R_R14 V-- VG 636.658e3  
C_C2 VG V++ 2E-09  
C_C3 V-- VG 2E-09  
*
*Mid supply Ref  
* source  
* Connections: +input  
E_E4 VMID V-- V++ V-- 0.5  
E_E2 V++ 0 V+ 0 1  
E_E3 V-- 0 V- 0 1  
I_ISY V+ V- DC 300e-6  
*
*Common Mode Gain Stage with Zero  
G_G5 V++ VC VCM VMID 2.5118E-8  
G_G6 V-- VC VCM VMID 2.5118E-8  
E_EOS 1 EN VC VMID 1e-3  
*
*
*
*
*
|
|
|
|
|
-input  
|
|
|
|
+Vsupply  
|
|
|
-Vsupply  
|
|
output  
|
.subckt ISL28114 Vin+ Vin- V+ V- VOUT  
* source ISL28114_DS rev2  
FIGURE 22. SPICE NET LIST  
FN6800 Rev 10.00  
December 8, 2016  
Page 12 of 23  
ISL28114, ISL28214, ISL28414  
Characterization vs Simulation Results  
10,000  
10,000  
V
= ±2.5V  
= 1  
V
= ±2.5V  
A = 1  
V
+
+
A
V
1000  
1000  
100  
10  
100  
10  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 23. CHARACTERIZED INPUT NOISE VOLTAGE  
FIGURE 24. SIMULATED INPUT NOISE VOLTAGE  
(A) AC sims.dat (active)  
70  
60  
70  
R
= 100, R = 100k  
R = 100, R = 100k  
g f  
g
f
A
= 1000  
A
= 1000  
= 100  
= 10  
V
V
60  
50  
40  
30  
20  
10  
0
R
= 1k, R = 100k  
f
R
= 1k, R = 100k  
f
g
g
A
= 100  
= 10  
V
A
V
C
R
V
= ±2.5V  
= 4pF  
= 10k  
V
+
L
L
40  
20  
= 50mV  
A
OUT  
P-P  
V
A
V
R
= 10k, R = 100k  
f
R
= 10k, R = 100k  
f
g
g
A
= 1  
0
V
R
= 100k, R = 100k  
f
g
R
= OPEN, R = 0  
f
-10  
g
-10  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
1.0M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 25. CHARACTERIZED CLOSED-LOOP GAIN vs FREQUENCY  
FIGURE 26. SIMULATED CLOSED-LOOP GAIN vs FREQUENCY  
(A) AC sims.dat (active)  
3
3
V
= ±2.5V  
V
S
OUT  
2
1
V
= ±2.5V  
2
1
S
V
IN  
V
= ±0.9V  
S
V(VIN+)/VOUT)  
-0  
-1  
-2  
-3  
0
R
C
= 10k  
= 15pF  
= +1  
L
L
-1  
-2  
-3  
R
C
= 10k  
= 15pF  
= +10  
L
L
A
V
OUT  
V
= RAIL  
A
V
OUT  
V
= RAIL  
0
1
2
3
4
5
6
7
8
9
10  
0
5
10  
15  
TIME (µs)  
20  
25  
30  
TIME (µs)  
FIGURE 27. CHARACTERIZED LARGE SIGNAL TRANSIENT  
RESPONSE vs R , V = ±0.9V, ±2.5V  
FIGURE 28. SIMULATED LARGE SIGNAL TRANSIENT RESPONSE vs  
R , V = ±0.9V, ±2.5V  
L
S
L
S
FN6800 Rev 10.00  
December 8, 2016  
Page 13 of 23  
ISL28114, ISL28214, ISL28414  
Characterization vs Simulation Results(Continued)  
(A) AC2.dat (active)  
PHASE  
120  
100  
80  
200  
160  
120  
80  
20  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
GAIN  
60  
40  
20  
0
GAIN  
V
= ±0.9V  
= 100k  
= 10pF  
-20  
-40  
-60  
-80  
+
PHASE  
R
C
= 10k  
= 10pF  
L
L
40  
R
C
L
L
MODEL VOS SET TO ZERO  
FOR THIS TEST  
SIMULATION  
0
0.1  
1
10  
100  
1k  
10k 100k 1M 10M 100M  
0.01 0.1 1.0  
10 100 1.0k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 30. SIMULATED (SPICE) OPEN-LOOP GAIN, PHASE vs  
FREQUENCY  
FIGURE 29. SIMULATED (DESIGN) OPEN-LOOP GAIN, PHASE vs  
FREQUENCY  
(A) AC sims.dat (active)  
80  
80  
70  
60  
50  
40  
30  
20  
70  
60  
50  
40  
30  
20  
10  
0
10  
SIMULATION  
0
0.01 0.1  
1
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
0.01 0.1  
1
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
FIGURE 31. SIMULATED (DESIGN) CMRR  
FIGURE 32. SIMULATED (SPICE) CMRR  
FN6800 Rev 10.00  
December 8, 2016  
Page 14 of 23  
ISL28114, ISL28214, ISL28414  
Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted.  
Please visit our website to make sure you have the latest revision.  
DATE  
REVISION  
CHANGE  
December 8, 2016  
FN6800.10  
Updated Related Literature section.  
Updated third Applications bullet.  
Updated Ordering Information table on page 2.  
June 11, 2015  
FN6800.9  
FN6800.8  
Electrical Spec table, page 5 - Input Noise Voltage Density (eN) added a spec at 10kHz (typical  
spec).  
October 26, 2012  
Added SOT23-8 package on page 1 to description and features.  
Ordering Information on page 2 - Added ISL28214FHZ parts and Note 5 reference.  
Added Lead Finish Note to Ordering information for 8 LD SOT-23 parts.  
Thermal Information on page 4 - Added 8 LD SOT-23 package with Tja and Tjc  
Added P8.064 POD on page 23.  
April 13, 2012  
FN6800.7  
Changed the low supply current in “Features” and description on page 1 from 360µA to 390µA.  
Removed ISL28114FEV1Z-T7 Coming Soon parts from “Ordering Information” on page 2.  
Removed applicable pinout from page 3.  
On page 4, changed MIN/MAX limits for “V ” at 25°C from -5/5mV to -4/4mV.  
OS  
On page 4, changed MIN/MAX limits for “V ” at -40°C to 125°C from -6/6mV to -5/5mV.  
OS  
On page 4, changed “TCV ” TYP from 2µV/°C to 5µV/°C.  
OS  
On page 4, changed MAX limit for “I ” MAX at 25°C from 360µA to 390µA.  
S
On page 4, changed MAX limit for “I ” MAX at -40°C to 125°C from 400µA to 475µA.  
S
Revised Figure 8 on page 7.  
Revised Figure 11 on page 7.  
Revised Figure 18 on page 8.  
January 3, 2012  
May 18, 2011  
FN6800.6  
FN6800.5  
Revised “SPICE SCHEMATIC” on page 11 and “SPICE NET LIST” on page 12.  
- On page 3, Pin Descriptions: Circuit 3 diagram, removed anti-parallel diodes from the IN+ to IN-  
terminals.  
- On page 4, Absolute Maximum Ratings: changed Differential Input Voltage from "0.5V" to "V- -  
0.5V to V+ + 0.5V"  
- On page 4, updated CMRR and PSRR parameters in Electrical Specifications table with test  
condition specifying -40°C to 125°C typical parameter.  
- On page 5, updated Note 8, referenced in MIN and MAX column headings of Electrical  
Specifications table, from "Parameters with MIN and/or MAX limits are 100% tested at +25°C,  
unless otherwise specified. Temperature limits established by characterization and are not  
production tested." to new standard "Compliance to datasheet limits is assured by one or more  
methods: production test, characterization and/or design."  
- On page 9, under “Input ESD Diode Protection,” removed “They also contain back to-back  
diodes across the input terminals.” Removed “Although the amplifier is fully protected, high  
input slew rates that exceed the amplifier slew rate (±2.5V/µs) may cause output distortion.”  
- On page 9, Figure 19: updated circuit schematic by removing back-to-back input protection  
diodes.  
- On page 11 replaced SPICE schematic (Figure 21)  
- On page 12 replaced SPICE Netlist (Figure 22)  
- On page 13 replaced Figure 24  
- On page 14 replaced Figure 32  
FN6800 Rev 10.00  
December 8, 2016  
Page 15 of 23  
ISL28114, ISL28214, ISL28414  
Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted.  
Please visit our website to make sure you have the latest revision. (Continued)  
DATE  
REVISION  
FN6800.4  
CHANGE  
September 23, 2010  
Added new SC70 pinout package extension as follows:  
Added to Related Literature on page 1 “See AN1547 for “ISL28414TSSOPEVAL1Z Evaluation  
Board User’s Guide”.  
Added to ordering information ISL28114FEV1Z-T7 and ISL28114FEV1Z-T7A and Evaluation  
boards.  
Added to Pin Configurations new pinout for ISL28114FEV1Z.  
Added in Pin Descriptions ISL28114FEV1Z SC70 pin description column.  
Changed Note 7 on page page 4 from “For , the “case temp” location is the center of the  
JC  
exposed metal pad on the package underside.” to  
“For , the “case temp” location is taken at the package top center.”  
JC  
Added “Related Literature” on page 1.  
Changed package outline drawing from MDP0038 to P5.064A on page 2 and page 18.  
MDP0038 package contained 2 packages for both the 5 and 6 Ld SOT-23. MDP0038 was  
obsoleted and the packages were separated and made into 2 separate package outline  
drawings; P5.064A and P6.064A. Changes to the 5 Ld SOT-23 were to move dimensions from  
table onto drawing, add land pattern and add JEDEC reference number.  
Added Note 5 to “Ordering Information” on page 2.  
December 16, 2009  
November 17, 2009  
November 12, 2009  
October 23, 2009  
FN6800.3  
FN6800.2  
FN6800.1  
FN6800.0  
Removed “Coming Soon” from MSOP package options in the “Ordering Information” on page 2.  
Updated the Theta JA for the MSOP package option from 170°C/W to 180°C/W on page 4.  
Removed “Coming Soon” from SC70 and SOT-23 package options in the “Ordering Information”  
on page 2.  
Changed theta Ja to 250 from 300. Added license statement (page 10) and reference in spice  
model (page 12).  
Initial Release  
About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing, and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation, and related parts, please see the respective product  
information page found at www.intersil.com.  
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support.  
FN6800 Rev 10.00  
December 8, 2016  
Page 16 of 23  
ISL28114, ISL28214, ISL28414  
Small Outline Transistor Plastic Packages (SC70-5)  
D
P5.049  
VIEW C  
5 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE  
e1  
INCHES  
MIN  
MILLIMETERS  
SYMBOL  
MAX  
0.043  
0.004  
0.039  
0.012  
0.010  
0.009  
0.009  
0.085  
0.094  
0.053  
MIN  
0.80  
0.00  
0.80  
0.15  
0.15  
0.08  
0.08  
1.85  
1.80  
1.15  
MAX  
1.10  
0.10  
1.00  
0.30  
0.25  
0.22  
0.20  
2.15  
2.40  
1.35  
NOTES  
5
1
4
A
A1  
A2  
b
0.031  
0.000  
0.031  
0.006  
0.006  
0.003  
0.003  
0.073  
0.071  
0.045  
-
-
-
-
E
C
L
C
L
E1  
2
3
b
b1  
c
e
6
6
3
-
C
L
c1  
D
0.20 (0.008) M  
C
C
C
L
E
E1  
e
3
-
SEATING  
PLANE  
A2  
0.0256 Ref  
0.0512 Ref  
0.010 0.018  
0.65 Ref  
1.30 Ref  
0.26 0.46  
A1  
A
e1  
L
-
-C-  
4
-
L1  
L2  
0.017 Ref.  
0.420 Ref.  
0.10 (0.004)  
C
0.006 BSC  
o
0.15 BSC  
o
o
o
0
8
0
8
-
N
b
WITH  
5
5
5
PLATING  
b1  
R
0.004  
0.004  
-
0.10  
0.15  
-
R1  
0.010  
0.25  
c
c1  
Rev. 3 7/07  
NOTES:  
BASE METAL  
1. Dimensioning and tolerances per ASME Y14.5M-1994.  
2. Package conforms to EIAJ SC70 and JEDEC MO-203AA.  
4X 1  
3. Dimensions D and E1 are exclusive of mold flash, protrusions,  
or gate burrs.  
R1  
4. Footlength L measured at reference to gauge plane.  
5. “N” is the number of terminal positions.  
R
6. These Dimensions apply to the flat section of the lead between  
0.08mm and 0.15mm from the lead tip.  
GAUGE PLANE  
SEATING  
PLANE  
7. Controlling dimension: MILLIMETER. Converted inch dimen-  
sions are for reference only.  
L
C
L2  
L1  
4X 1  
VIEW C  
0.4mm  
For the most recent package outline drawing, see P5.049.  
0.75mm  
2.1mm  
0.65mm  
TYPICAL RECOMMENDED LAND PATTERN  
FN6800 Rev 10.00  
December 8, 2016  
Page 17 of 23  
ISL28114, ISL28214, ISL28414  
For the most recent package outline drawing, see P5.064A.  
Package Outline Drawing  
P5.064A  
5 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE  
Rev 0, 2/10  
1.90  
0-3°  
D
A
0.08-0.20  
5
4
PIN 1  
INDEX AREA  
2.80  
3
1.60  
5
3
0.15 C D  
2x  
(0.60)  
2
0.20 C  
2x  
0.95  
SEE DETAIL X  
END VIEW  
B
0.40 ±0.05  
3
0.20 M C A-B D  
TOP VIEW  
10° TYP  
(2 PLCS)  
H
5
0.15 C A-B  
2x  
2.90  
1.45 MAX  
C
1.14 ±0.15  
GAUGE  
PLANE  
(0.25)  
SEATING PLANE  
DETAIL "X"  
0.10  
C
0.45±0.1  
4
SIDE VIEW  
0.05-0.15  
(0.60)  
(1.20)  
NOTES:  
1. Dimensions are in millimeters.  
(2.40)  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5M-1994.  
3.  
4. Foot length is measured at reference to guage plane.  
Dimension is exclusive of mold flash, protrusions or gate burrs.  
This dimension is measured at Datum “H”.  
Package conforms to JEDEC MO-178AA.  
5.  
6.  
(0.95)  
(1.90)  
TYPICAL RECOMMENDED LAND PATTERN  
FN6800 Rev 10.00  
December 8, 2016  
Page 18 of 23  
ISL28114, ISL28214, ISL28414  
For the most recent package outline drawing, see M8.118A.  
Package Outline Drawing  
M8.118A  
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE (MSOP)  
Rev 0, 9/09  
A
3.0±0.1  
8
0.25 CAB  
4.9±0.15  
DETAIL "X"  
3.0±0.1  
1.10 Max  
PIN# 1 ID  
B
0.18 ± 0.05  
SIDE VIEW 2  
1
2
0.65 BSC  
TOP VIEW  
0.95 BSC  
0.86±0.09  
GAUGE  
H
PLANE  
0.25  
C
SEATING PLANE  
0.10 ± 0.05  
0.33 +0.07/ -0.08  
0.08 C AB  
3°±3°  
0.10 C  
0.55 ± 0.15  
DETAIL "X"  
SIDE VIEW 1  
5.80  
NOTES:  
1. Dimensions are in millimeters.  
4.40  
3.00  
2. Dimensioning and tolerancing conform to JEDEC MO-187-AA  
and AMSE Y14.5m-1994.  
3.  
Plastic or metal protrusions of 0.15mm max per side are not  
included.  
0.65  
0.40  
4. Plastic interlead protrusions of 0.25mm max per side are not  
included.  
1.40  
TYPICAL RECOMMENDED LAND PATTERN  
5. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
6. This replaces existing drawing # MDP0043 MSOP 8L.  
FN6800 Rev 10.00  
December 8, 2016  
Page 19 of 23  
ISL28114, ISL28214, ISL28414  
For the most recent package outline drawing, see M8.15E.  
Package Outline Drawing  
M8.15E  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 0, 08/09  
4
4.90 ± 0.10  
A
DETAIL "A"  
0.22 ± 0.03  
B
6.0 ± 0.20  
3.90 ± 0.10  
4
PIN NO.1  
ID MARK  
5
(0.35) x 45°  
4° ± 4°  
0.43 ± 0.076  
1.27  
0.25 M C A B  
SIDE VIEW “B”  
TOP VIEW  
1.75 MAX  
1.45 ± 0.1  
0.25  
GAUGE PLANE  
C
SEATING PLANE  
0.175 ± 0.075  
SIDE VIEW “A  
0.10 C  
0.63 ±0.23  
DETAIL "A"  
(0.60)  
(1.27)  
NOTES:  
(1.50)  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
(5.40)  
4. Dimension does not include interlead flash or protrusions.  
Interlead flash or protrusions shall not exceed 0.25mm per side.  
The pin #1 identifier may be either a mold or mark feature.  
Reference to JEDEC MS-012.  
5.  
6.  
TYPICAL RECOMMENDED LAND PATTERN  
FN6800 Rev 10.00  
December 8, 2016  
Page 20 of 23  
ISL28114, ISL28214, ISL28414  
For the most recent package outline drawing, see MDP0027.  
Small Outline Package Family (SO)  
A
D
h X 45°  
(N/2)+1  
N
A
PIN #1  
I.D. MARK  
E1  
E
c
SEE DETAIL “X”  
1
(N/2)  
B
L1  
0.010 M  
C A B  
e
H
C
A2  
A1  
GAUGE  
PLANE  
SEATING  
PLANE  
0.010  
L
4° ±4°  
0.004 C  
b
0.010 M  
C
A
B
DETAIL X  
MDP0027  
SMALL OUTLINE PACKAGE FAMILY (SO)  
INCHES  
SO16  
(0.150”)  
SO16 (0.300”)  
(SOL-16)  
SO20  
SO24  
(SOL-24)  
SO28  
(SOL-28)  
SYMBOL  
SO-8  
0.068  
0.006  
0.057  
0.017  
0.009  
0.193  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
8
SO-14  
0.068  
0.006  
0.057  
0.017  
0.009  
0.341  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
14  
(SOL-20)  
0.104  
0.007  
0.092  
0.017  
0.011  
0.504  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
20  
TOLERANCE  
MAX  
NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.057  
0.017  
0.009  
0.390  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.406  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.606  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
24  
0.104  
0.007  
0.092  
0.017  
0.011  
0.704  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
28  
-
0.003  
0.002  
0.003  
0.001  
0.004  
0.008  
0.004  
Basic  
-
-
-
c
-
D
1, 3  
E
-
E1  
e
2, 3  
-
L
0.009  
Basic  
-
L1  
h
-
Reference  
Reference  
-
N
-
Rev. M 2/07  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not included.  
2. Plastic interlead protrusions of 0.010” maximum per side are not included.  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994  
FN6800 Rev 10.00  
December 8, 2016  
Page 21 of 23  
ISL28114, ISL28214, ISL28414  
Thin Shrink Small Outline Package Family (TSSOP)  
0.25 M C A B  
MDP0044  
D
A
THIN SHRINK SMALL OUTLINE PACKAGE FAMILY  
(N/2)+1  
N
MILLIMETERS  
SYMBOL 14 LD 16 LD 20 LD 24 LD 28 LD TOLERANCE  
PIN #1 I.D.  
A
A1  
A2  
b
1.20  
0.10  
0.90  
0.25  
0.15  
5.00  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
5.00  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
6.50  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
7.80  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
9.70  
6.40  
4.40  
0.65  
0.60  
1.00  
Max  
±0.05  
E
E1  
B
±0.05  
0.20 C B A  
+0.05/-0.06  
+0.05/-0.06  
±0.10  
2X  
1
(N/2)  
N/2 LEAD TIPS  
c
TOP VIEW  
D
E
Basic  
E1  
e
±0.10  
0.05  
H
e
Basic  
C
L
±0.15  
SEATING  
PLANE  
L1  
Reference  
Rev. F 2/07  
0.10 M C A B  
b
NOTES:  
0.10 C  
N LEADS  
1. Dimension “D” does not include mold flash, protrusions or gate  
burrs. Mold flash, protrusions or gate burrs shall not exceed  
0.15mm per side.  
SIDE VIEW  
2. Dimension “E1” does not include interlead flash or protrusions.  
Interlead flash and protrusions shall not exceed 0.25mm per  
side.  
SEE DETAIL “X”  
3. Dimensions “D” and “E1” are measured at dAtum Plane H.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
c
END VIEW  
L1  
A2  
A
GAUGE  
PLANE  
0.25  
For the most recent package outline drawing, see MDP0044.  
L
A1  
0° - 8°  
DETAIL X  
FN6800 Rev 10.00  
December 8, 2016  
Page 22 of 23  
ISL28114, ISL28214, ISL28414  
Small Outline Transistor Plastic Packages (SOT23-8)  
P8.064  
0.20 (0.008) M  
C
VIEW C  
8 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE  
C
L
e
INCHES  
MIN  
MILLIMETERS  
b
8
SYMBOL  
MAX  
0.057  
0.0059  
0.051  
0.015  
0.013  
0.009  
0.008  
0.118  
0.118  
0.067  
MIN  
0.90  
0.00  
0.90  
0.22  
0.22  
0.08  
0.08  
2.80  
2.60  
1.50  
MAX  
1.45  
0.15  
1.30  
0.38  
0.33  
0.22  
0.20  
3.00  
3.00  
1.70  
NOTES  
A
A1  
A2  
b
0.036  
0.000  
0.036  
0.009  
0.009  
0.003  
0.003  
0.111  
0.103  
0.060  
-
-
-
-
7
2
6
5
4
C
E1  
L
C
L
E
1
3
b1  
c
6
6
3
-
e1  
D
c1  
D
C
C
L
E
E1  
e
3
-
SEATING  
PLANE  
0.0256 Ref  
0.0768 Ref  
0.014 0.022  
0.65 Ref  
1.95 Ref  
0.35 0.55  
A2  
A1  
A
e1  
L
-
-C-  
4
L1  
L2  
N
0.024 Ref.  
0.010 Ref.  
8
0.60 Ref.  
0.25 Ref.  
8
0.10 (0.004)  
C
5
b
WITH  
R
0.004  
-
0.10  
-
PLATING  
b1  
R1  
0.004  
0.010  
0.10  
0.25  
o
o
o
o
0
8
0
8
-
c
c1  
Rev. 2 9/03  
NOTES:  
BASE METAL  
1. Dimensioning and tolerance per ASME Y14.5M-1994.  
2. Package conforms to EIAJ SC-74 and JEDEC MO178BA.  
4X 1  
3. Dimensions D and E1 are exclusive of mold flash, protrusions,  
or gate burrs.  
R1  
4. Footlength L measured at reference to gauge plane.  
5. “N” is the number of terminal positions.  
R
6. These Dimensions apply to the flat section of the lead between  
0.08mm and 0.15mm from the lead tip.  
GAUGE PLANE  
SEATING  
PLANE  
7. Controlling dimension: MILLIMETER. Converted inch dimen-  
sions are for reference only  
L
C
L2  
L1  
For the most recent package outline drawing, see P8.064.  
4X 1  
VIEW C  
© Copyright Intersil Americas LLC 2009-2016. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6800 Rev 10.00  
December 8, 2016  
Page 23 of 23  

相关型号:

ISL28214FBZ-T13

Single, Dual, Quad General Purpose Micropower, RRIO Operational Amplifiers
INTERSIL

ISL28214FBZ-T13

Single, Dual, Quad General Purpose Micropower, RRIO Operational Amplifiers
RENESAS

ISL28214FBZ-T7

Single, Dual, Quad General Purpose Micropower, RRIO Operational Amplifiers
INTERSIL

ISL28214FBZ-T7

Single, Dual, Quad General Purpose Micropower, RRIO Operational Amplifiers
RENESAS

ISL28214FHZ-T7

Single, Dual, Quad General Purpose Micropower, RRIO Operational Amplifiers
RENESAS

ISL28214FHZ-T7A

Single, Dual, Quad General Purpose Micropower, RRIO Operational Amplifiers
RENESAS

ISL28214FUZ

Single, Dual, Quad General Purpose Micropower, RRIO Operational Amplifiers
INTERSIL

ISL28214FUZ

Single, Dual, Quad General Purpose Micropower, RRIO Operational Amplifiers
RENESAS

ISL28214FUZ-T7

Single, Dual, Quad General Purpose Micropower, RRIO Operational Amplifiers
INTERSIL

ISL28214FUZ-T7

Single, Dual, Quad General Purpose Micropower, RRIO Operational Amplifiers
RENESAS

ISL28214MSOPEVAL2Z

Single, Dual, Quad General Purpose Micropower, RRIO Operational Amplifiers
RENESAS

ISL28214SOICEVAL2Z

Single, Dual, Quad General Purpose Micropower, RRIO Operational Amplifiers
RENESAS