ISL28256FUZ-T7 [RENESAS]

DUAL OP-AMP, 0.25MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MSOP-8;
ISL28256FUZ-T7
型号: ISL28256FUZ-T7
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

DUAL OP-AMP, 0.25MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MSOP-8

放大器 光电二极管
文件: 总13页 (文件大小:821K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL28156, ISL28256  
®
Data Sheet  
December 16, 2008  
FN6154.5  
39µA Micropower Single and Dual  
Precision Rail-to-Rail Input-Output (RRIO)  
Low Input Bias Current Op Amps  
Features  
• 39µA typical supply current  
• 5nA max input bias current  
The ISL28156 and ISL28256 are micropower precision  
operational amplifiers optimized for single supply operation  
at 5V and can operated down to 2.4V.  
• 250kHz gain bandwidth product (A = 1)  
V
• 2.4V to 5.5V single supply voltage range  
• Rail-to-rail input and output  
These devices feature an Input Range Enhancement Circuit  
(IREC), which enables them to maintain CMRR performance  
for input voltages greater than the positive supply. The input  
signal is capable of swinging 0.5V above a 5.0V supply  
(0.25V for a 2.5V supply) and to within 10mV from ground.  
The output operation is rail-to-rail.  
• Enable pin (ISL28156 only)  
• Pb-free (RoHS compliant)  
Applications  
• Battery- or solar-powered systems  
• 4mA to 20mA current loops  
• Handheld consumer products  
• Medical devices  
The 1/f corner of the voltage noise spectrum is at 1kHz. This  
results in low frequency noise performance, which can only  
be found on devices with an order of magnitude higher than  
the supply current.  
ISL28156 and ISL28256 can be operated from one lithium  
cell or two Ni-Cd batteries. The input range includes both  
positive and negative rail. The output swings to both rails.  
• Sensor amplifiers  
• ADC buffers  
• DAC output amplifiers  
Ordering Information  
PART NUMBER  
(Note)  
PART  
MARKING  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
Pinouts  
ISL28156  
ISL28156  
(6 LD SOT-23)  
TOP VIEW  
(8 LD SOIC)  
TOP VIEW  
ISL28156FHZ-T7*  
ISL28156FBZ  
GABV  
6 Ld SOT-23  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
MDP0038  
MDP0027  
MDP0027  
MDP0027  
28156 FBZ  
28156 FBZ  
28256 FBZ  
NC  
IN-  
IN+  
V-  
1
2
3
4
8
7
6
5
ENABLE  
V+  
OUT  
V-  
1
2
3
6
5
4
V+  
ISL28156FBZ-T7*  
ENABLE  
IN-  
-
+
Coming Soon  
ISL28256FBZ  
+
-
OUT  
NC  
IN+  
Coming Soon  
ISL28256FBZ-T7*  
28256 FBZ  
8256Z  
8 Ld SOIC  
8 Ld MSOP  
8 Ld MSOP  
MDP0027  
MDP0043  
MDP0043  
Coming Soon  
ISL28256FUZ  
Coming Soon  
ISL28256FUZ-T7*  
8256Z  
ISL28256  
(8 LD SOIC)  
TOP VIEW  
ISL28256  
(8 LD MSOP)  
TOP VIEW  
*Please refer to TB347 for details on reel specifications.  
NOTE: These Intersil Pb-free plastic packaged products employ  
special Pb-free material sets; molding compounds/die attach  
materials and 100% matte tin plate PLUS ANNEAL - e3 termination  
finish, which is RoHS compliant and compatible with both SnPb and  
Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed  
the Pb-free requirements of IPC/JEDEC J STD-020.  
OUT_A  
IN-_A  
IN+_A  
V-  
1
2
3
4
8
7
6
5
V+  
OUT_A  
1
2
3
4
8
7
6
5
V+  
OUT_B IN-_A  
OUT_B  
IN-_B  
IN+_B  
-
+
- +  
IN-_B  
IN+_B  
IN+_A  
V-  
+
-
+ -  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2006, 2007, 2008. All Rights Reserved.  
All other trademarks mentioned are the property of their respective owners.  
ISL28156, ISL28256  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5V  
Supply Turn On Voltage Slew Rate . . . . . . . . . . . . . . . . . . . . . 1V/µs  
Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . V- - 0.5V to V+ + 0.5V  
ESD Rating  
Thermal Resistance  
θ
(°C/W)  
JA  
6 Ld SOT-23 Package . . . . . . . . . . . . . . . . . . . . . . .  
6 Ld SO Package . . . . . . . . . . . . . . . . . . . . . . . . . .  
8 Ld MSOP Package . . . . . . . . . . . . . . . . . . . . . . . .  
Output Short-Circuit Duration . . . . . . . . . . . . . . . . . . . . . . .Indefinite  
Ambient Operating Temperature Range . . . . . . . . .-40°C to +125°C  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . +125°C  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
230  
110  
115  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3kV  
Machine Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300V  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications  
V
= 5V, V = 0V,V  
= 2.5V, T = +25°C unless otherwise specified.  
CM A  
+
-
Boldface limits apply over the operating temperature range, -40°C to +125°C. Temperature data  
established by characterization.  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
Input Offset Voltage  
CONDITIONS  
(Note 1)  
TYP  
(Note 1) UNIT  
V
8 Ld SOIC  
-120  
-7  
120  
µV  
OS  
-200  
250  
6 Ld SOT-23  
-400  
-7  
400  
µV  
-450  
450  
ΔV  
Input Offset Drive vs Temperature  
Input Offset Current  
1.5  
µV/°C  
nA  
OS  
---------------  
ΔT  
I
I
-1.5  
-5  
0.34  
1.14  
1.2  
2.5  
OS  
Input Bias Current  
-2  
5
nA  
B
-3.5  
5
E
Input Noise Voltage Density  
F
F
= 1kHz  
= 1kHz  
46  
nV/Hz  
pA/Hz  
V
N
O
O
I
Input Noise Current Density  
0.14  
N
CMIR  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
0
5
CMRR  
V
V
V
V
= 0V to 5V  
80  
75  
110  
104  
412  
70  
dB  
CM  
PSRR  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
= 2.4V to 5V  
90  
75  
dB  
V/mV  
V/mV  
mV  
mV  
V
S
A
= 0.5V to 4.5V, R = 100kΩ  
200  
175  
VOL  
O
O
L
= 0.5V to 4.5V, R = 1kΩ  
35  
30  
L
V
Maximum Output Voltage Swing  
Output low, R = 100kΩ  
3
6
8
OUT  
L
Output low, R = 1kΩ  
130  
4.985  
4.88  
150  
200  
L
Output high, R = 100kΩ  
4.992  
4.99  
L
Output high, R = 1kΩ  
4.85  
V
L
4.8  
SR  
Slew Rate  
0.05  
250  
39  
V/µs  
kHz  
µA  
GBW  
Gain Bandwidth Product  
Supply Current, Enabled  
A = 1  
V
I
29  
47  
S,ON  
18  
56  
FN6154.5  
December 16, 2008  
2
ISL28156, ISL28256  
Electrical Specifications  
V
= 5V, V = 0V,V = 2.5V, T = +25°C unless otherwise specified.  
CM A  
+
-
Boldface limits apply over the operating temperature range, -40°C to +125°C. Temperature data  
established by characterization. (Continued)  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
Supply Current, Disabled  
CONDITIONS  
(Note 1)  
TYP  
(Note 1) UNIT  
I
10  
14  
µA  
mA  
mA  
S,OFF  
16  
I +  
Short-Circuit Output Current  
Short-Circuit Output Current  
R
R
= 10Ω  
= 10Ω  
28  
23  
31  
26  
O
L
L
I -  
24  
O
18  
V
V
V
Supply Operating Range  
Enable Pin High Level  
Enable Pin Low Level  
Enable Pin Input Current  
Guaranteed by PSRR test  
2.4  
5
V
V
SUPPLY  
ENH  
2
0.8  
V
ENL  
I
I
t
t
V
V
V
= 5V  
= 0V  
1
1.2  
1.2  
µA  
ENH  
EN  
EN  
Enable Pin Input Current  
16  
25  
30  
nA  
µs  
µs  
ENL  
EN  
Enable to Output On-state Delay Time  
(ISL28156)  
= 1V (enable state); V  
= High to  
10.8  
0.1  
OUT  
EN  
= 0V (disabled state) V = Low to  
EN  
Low  
Enable to Output Off-state Delay Time  
(ISL28156)  
V
EN  
OUT  
High  
NOTE:  
1. Parts are 100% tested at +25°C. Temperature limits established by characterization and are not production tested.  
Typical Performance Curves  
8
7
3
2
R
= 1k  
C
= 63.3pF  
L
6
L
L
1
5
C
= 55.3pF  
= 49.3pF  
= 43.3pF  
= 38.3pF  
4
0
C
L
3
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
R
L
= 10k  
= 100k  
2
C
L
1
C
L
R
0
L
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
C
= 34.3pF  
L
A
= 1  
A
= 1  
V
V
C
V
= 16.3pF  
= 10mV  
R
V
= 10k  
L
L
= 10mV  
OUT  
P-P  
OUT  
P-P  
10k  
FREQUENCY (Hz)  
1k  
100k  
1M  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FIGURE 2. GAIN vs FREQUENCY vs C  
L
FIGURE 1. GAIN vs FREQUENCY vs RL  
1
0
70  
60  
50  
40  
30  
20  
10  
0
V
= 2.4V  
= 5V  
Rf = 1M, Rg = 1k, R = 10k  
R
C
V
= 10k  
S
L
L
L
= 16.3pF  
= 10mV  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
V
S
OUT  
P-P  
Rf = 100k, Rg = 1k, R = 10k  
L
Rf = 9.09, Rg = 1k, R = INF  
L
A
= 1  
V
R
= 10k  
L
V
= 10mV  
P-P  
OUT  
Rf = 0, Rg = INF, R = 10k  
L
-10  
100  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 4. GAIN vs FREQUENCY vs V  
FIGURE 3. CLOSED LOOP GAIN vs FREQUENCY  
S
FN6154.5  
December 16, 2008  
3
ISL28156, ISL28256  
Typical Performance Curves (Continued)  
3
2
1
0
V
= 10mV  
OUT  
V
= 50mV  
OUT  
1
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
V
= 1V  
OUT  
0
V
= 10mV  
OUT  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
V
= 100mV  
OUT  
V
= 1V  
OUT  
V
= 50mV  
OUT  
A
= 1  
A = 1  
V
V
R
C
= 1k  
R
C
= 10k  
L
L
L
L
V
= 100mV  
= 16.3pF  
= 16.3pF  
OUT  
1k  
10k  
100k  
1M  
1M  
1M  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
FREQUENCY (Hz)  
FIGURE 6. GAIN vs FREQUENCY vs V  
OUT  
FIGURE 5. GAIN vs FREQUENCY vs V  
OUT  
10  
0
1
0
A
= 1  
V
= 10mV  
V
OUT  
R
= 10k  
= 16.3pF  
= 1V  
L
L
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
C
V
= 1V  
V
= 2.4V  
OUT  
S
-10  
-20  
-30  
-40  
-50  
-60  
-70  
V
CM  
P-P  
V
= 50mV  
OUT  
V
= 5V  
S
V
= 100mV  
OUT  
A
= 1  
V
R
C
= 100k  
L
L
= 16.3pF  
1k  
10k  
100k  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
FREQUENCY (Hz)  
FIGURE 7. GAIN vs FREQUENCY vs V  
FIGURE 8. CMRR vs FREQUENCY  
OUT  
10  
0
10  
0
A
= 1  
A
= 1  
V
V
R
= 1k  
R
= 1k  
L
L
L
L
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
C
= 16.3pF  
= 1V  
C
V
= 16.3pF  
= 1V  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
PSRR-  
PSRR-  
V
V
OUT  
P-P  
OUT  
P-P  
= 2.4V  
V
= 5V  
S
S
PSRR+  
PSRR+  
100k  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
100  
1k  
10k  
FREQUENCY (Hz)  
FIGURE 10. PSRR vs FREQUENCY, VS = 5V  
FIGURE 9. PSRR vs FREQUENCY, VS = 2.4V  
FN6154.5  
December 16, 2008  
4
ISL28156, ISL28256  
Typical Performance Curves (Continued)  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
160  
140  
120  
100  
80  
60  
40  
20  
0
1
10  
100  
1k  
10k  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 11. INPUT VOLTAGE NOISE vs FREQUENCY  
FIGURE 12. INPUT CURRENT NOISE vs FREQUENCY  
24  
0
A
= 1000  
= 100k  
F
R
A
= R = R = 10k  
i L  
= 2  
V
F
R
22  
20  
18  
16  
14  
12  
10  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-1.4  
V
R = 100  
C
= 16.3pF  
= 10mV  
i
L
R
= 10k  
V
L
OUT  
P-P  
0
1
2
3
4
5
6
7
8
9
10  
0
50  
100  
150  
200  
250  
300  
350  
400  
TIME (s)  
TIME (µs)  
FIGURE 14. SMALL SIGNAL STEP RESPONSE  
FIGURE 13. 1Hz TO 10Hz INPUT NOISE  
0.6  
6
5
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.4  
0.2  
0
V-ENABLE  
4
3
R
= R =R = 10k  
i L  
= 2  
F
A
V
2
C = 16.3pF  
V = 10mV  
OUT  
L
-0.2  
-0.4  
-0.6  
R
= R = R = 10k  
i L  
= 2  
F
1
P-P  
A
V
C
= 16.3pF  
= 1V  
0
L
V
V
OUT  
OUT  
P-P  
-1  
-0.2  
90 100  
0
100  
200  
TIME (µs)  
300  
400  
0
10  
20  
30  
40  
50  
60  
70  
80  
TIME (µs)  
FIGURE 15. LARGE SIGNAL STEP RESPONSE  
FIGURE 16. ENABLE TO OUTPUT DELAY  
FN6154.5  
December 16, 2008  
5
ISL28156, ISL28256  
Typical Performance Curves (Continued)  
58  
53  
48  
43  
38  
33  
28  
23  
14.5  
13.5  
12.5  
11.5  
10.5  
9.5  
n = 1000  
n = 1000  
MAX  
MAX  
MEDIAN  
MEDIAN  
8.5  
MIN  
60  
7.5  
MIN  
80  
6.5  
-40  
-40  
-20  
0
20  
40  
80  
100  
120  
-20  
0
20  
40  
60  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 17. SUPPLY CURRENT ENABLED vs TEMPERATURE  
= ±2.5V  
FIGURE 18. SUPPLY CURRENT DISABLED vs  
V
TEMPERATURE V = ±2.5V  
S
S
380  
280  
180  
80  
400  
n = 1000  
n = 1000  
MAX  
MAX  
300  
200  
MEDIAN  
100  
MEDIAN  
-20  
0
-100  
-200  
-120  
-220  
-320  
-420  
MIN  
MIN  
-300  
-400  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (  
°
C)  
FIGURE 19. VIO SO8 PACKAGE vs TEMPERATURE V = ±2.5V  
S
FIGURE 20. VIO SO8 PACKAGE vs TEMPERATURE V = ±1.2V  
S
380  
280  
400  
n = 1000  
300  
200  
100  
0
MAX  
MAX  
n = 1000  
MEDIAN  
180  
80  
MEDIAN  
-20  
-120  
-220  
-320  
-420  
-100  
-200  
-300  
-400  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 21. VIO SOT-23 PACKAGE vs TEMPERATURE  
= ±2.5V  
FIGURE 22. VIO SOT-23 PACKAGE vs TEMPERATURE  
= ±1.2V  
V
V
S
S
FN6154.5  
December 16, 2008  
6
ISL28156, ISL28256  
Typical Performance Curves (Continued)  
5
4
5
4
n = 1000  
n = 1000  
MAX  
3
MAX  
3
2
1
2
MEDIAN  
0
1
MEDIAN  
MIN  
-1  
-2  
-3  
MIN  
0
-1  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 23. I  
vs TEMPERATURE V = ±2.5V  
S
FIGURE 24. I  
vs TEMPERATURE V = ±2.5V  
S
BIAS+  
BIAS-  
10  
2
n = 1000  
8
6
n = 1000  
1
MAX  
MAX  
0
MEDIAN  
4
-1  
MEDIAN  
2
-2  
-3  
-4  
0
-2  
MIN  
MIN  
-4  
-40  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 26. I  
vs TEMPERATURE V = ±1.2V  
S
FIGURE 25. I  
vs TEMPERATURE V = ±1.5V  
S
BIAS-  
BIAS+  
4
4
2
0
n = 1000  
n = 1000  
3
2
MAX  
MAX  
1
0
-2  
-1  
-2  
-3  
-4  
-5  
-6  
MEDIAN  
-4  
-6  
MEDIAN  
MIN  
MIN  
-8  
-10  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 28. IOS vs TEMPERATURE V = ±1.5V  
FIGURE 27. IOS vs TEMPERATURE V = ±2.5V  
S
S
FN6154.5  
December 16, 2008  
7
ISL28156, ISL28256  
Typical Performance Curves (Continued)  
130  
125  
120  
115  
110  
105  
100  
95  
135  
130  
125  
120  
115  
110  
105  
100  
95  
n = 1000  
MAX  
n = 1000  
MAX  
MEDIAN  
MEDIAN  
MIN  
90  
MIN  
85  
90  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 29. CMRR vs TEMPERATURE V+ = ±2.5V, ±1.5V  
FIGURE 30. PSRR vs TEMPERATURE ±1.2V to ±2.5V  
4.900  
4.9984  
n = 1000  
n = 1000  
4.895  
MAX  
4.9982  
4.9980  
4.9978  
4.9976  
4.9974  
4.9972  
4.9970  
4.9968  
4.890  
4.885  
4.880  
4.875  
4.870  
4.865  
4.860  
4.855  
4.850  
MAX  
MEDIAN  
MEDIAN  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 31. V  
HIGH vs TEMPERATURE V = ±2.5V, R = 1k  
FIGURE 32. V  
HIGH V = ±2.5V, R = 100k  
OUT S L  
OUT  
S
L
4.9984  
4.9982  
4.9980  
4.9978  
4.9976  
4.9974  
4.9972  
4.9970  
4.9968  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
n = 1000  
n = 1000  
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 33. V  
LOW V = ±2.5V, R = 1k  
FIGURE 34. V  
LOW V = ±2.5V, R = 100k  
OUT S L  
OUT  
S
L
FN6154.5  
December 16, 2008  
8
ISL28156, ISL28256  
Pin Descriptions  
ISL28156  
ISL28156  
ISL28256  
(6 Ld SOT-23)  
(8 Ld SOIC)  
(8 Ld MSOP)  
PIN NAME  
FUNCTION  
EQUIVALENT CIRCUIT  
1, 5  
2
NC  
Not connected  
Inverting input  
4
IN-  
2 (A)  
6 (B)  
IN-_A  
IN-_B  
V+  
IN-  
IN+  
V-  
Circuit 1  
3
3
IN+  
IN+_A  
IN+_B  
Non-inverting  
input  
(See Circuit 1)  
3 (A)  
5 (B)  
2
1
4
6
4
V-  
Negative supply  
Output  
V+  
OUT  
1 (A)  
7 (B)  
OUT_A  
OUT_B  
OUT  
V-  
Circuit 2  
6
5
7
8
8
V+  
Positive supply  
Chip enable  
V+  
ENABLE  
CE  
V-  
Circuit 3  
Input Protection  
Applications Information  
All input terminals have internal ESD protection diodes to both  
positive and negative supply rails, limiting the input voltage to  
within one diode beyond the supply rails. They also contain  
back-to-back diodes across the input terminals. For  
applications where the input differential voltage is expected to  
exceed 0.5V, external series resistors must be used to ensure  
the input currents never exceed 5mA (Figure 35).  
Introduction  
The ISL28156 is a single BiMOS rail-to-rail input, output  
(RRIO) operational amplifier with an enable feature. The  
ISL28256 is a dual version without the enable feature. Both  
devices are designed to operate from single supply (2.4V to  
5.0V) or dual supplies (±1.2V to ±2.5V) while drawing only  
39µA of supply current per amplifier. This combination of low  
power and precision performance makes this device suitable  
for a variety of low power applications including battery  
powered systems.  
-
V
R
OUT  
IN  
V
R
IN  
+
L
Rail-to-Rail Input/Output  
These devices feature bi-polar inputs, which have an input  
common mode range that extends up to 0.5V beyond the V+  
rail, and to within 10mV of the V- rail. The CMOS outputs  
typically swing to within about 4mV of the supply rails with a  
100kΩ load. The NMOS sinks current to swing the output in  
the negative direction. The PMOS sources current to swing the  
output in the positive direction.  
FIGURE 35. INPUT CURRENT LIMITING  
Enable/Disable Feature  
The ISL28156 offers an EN pin that disables the device when  
pulled up to at least 2.0V. In the disabled state (output in a  
high impedance state), the part consumes typically 10µA. By  
disabling the part, multiple ISL28156 parts can be connected  
together as a MUX. In this configuration, the outputs are tied  
together in parallel and a channel can be selected by the EN  
FN6154.5  
December 16, 2008  
9
ISL28156, ISL28256  
pin. The EN pin also has an internal pull-down. If left open, the  
Power Dissipation  
EN pin will pull to the negative rail and the device will be  
enabled by default.  
It is possible to exceed the +125°C maximum junction  
temperatures under certain load and power-supply  
conditions. It is therefore important to calculate the  
The loading effects of the feedback resistors of the disabled  
amplifier must be considered when multiple amplifier outputs  
are connected together.  
maximum junction temperature (T  
) for all applications  
JMAX  
to determine if power supply voltages, load conditions, or  
package type need to be modified to remain in the safe  
operating area. These parameters are related using  
Equation 1:  
Using Only One Channel  
The ISL28256 is a dual op amp. If the application only  
requires one channel, the user must configure the unused  
channel to prevent it from oscillating. The unused channel  
will oscillate if the input and output pins are floating. This will  
result in higher than expected supply currents and possible  
noise injection into the channel being used. The proper way  
to prevent this oscillation is to short the output to the  
negative input and ground the positive input (as shown in  
Figure 36).  
(EQ. 1)  
T
= T  
+ xPD  
)
MAXTOTAL  
JMAX  
MAX  
JA  
where:  
• P  
is the sum of the maximum power  
MAX  
DMAXTOTAL  
dissipation of each amplifier in the package (PD  
)
PD  
MAX  
for each amplifier can be calculated using Equation 2:  
V
OUTMAX  
----------------------------  
PD  
= 2*V × I  
+ (V - V ) ×  
OUTMAX  
MAX  
S
SMAX  
S
R
L
-
(EQ. 2)  
+
where:  
• T  
= Maximum ambient temperature  
FIGURE 36. PREVENTING OSCILLATIONS IN UNUSED  
CHANNELS  
MAX  
θ = Thermal resistance of the package  
JA  
Current Limiting  
• PD  
= Maximum power dissipation of 1 amplifier  
MAX  
These devices have no internal current-limiting circuitry. If  
the output is shorted, it is possible to exceed the Absolute  
Maximum Rating for output current or power dissipation,  
potentially resulting in the destruction of the device.  
• V = Supply voltage  
S
• I  
= Maximum supply current of 1 amplifier  
MAX  
• V  
= Maximum output voltage swing of the  
OUTMAX  
application  
• R = Load resistance  
L
FN6154.5  
December 16, 2008  
10  
ISL28156, ISL28256  
SOT-23 Package Family  
MDP0038  
e1  
D
SOT-23 PACKAGE FAMILY  
A
MILLIMETERS  
SOT23-5  
6
4
N
SYMBOL  
SOT23-6  
1.45  
0.10  
1.14  
0.40  
0.14  
2.90  
2.80  
1.60  
0.95  
1.90  
0.45  
0.60  
6
TOLERANCE  
MAX  
A
A1  
A2  
b
1.45  
0.10  
1.14  
0.40  
0.14  
2.90  
2.80  
1.60  
0.95  
1.90  
0.45  
0.60  
5
±0.05  
E1  
E
±0.15  
2
3
±0.05  
0.15  
2X  
C
D
c
±0.06  
1
2
3
0.20  
2X  
C
D
Basic  
5
e
E
Basic  
E1  
e
Basic  
0.20  
C
A-B  
D
M
B
b
NX  
Basic  
e1  
L
Basic  
±0.10  
L1  
N
Reference  
Reference  
Rev. F 2/07  
0.15  
2X  
C
A-B  
1
3
D
NOTES:  
C
1. Plastic or metal protrusions of 0.25mm maximum per side are not  
included.  
A2  
SEATING  
PLANE  
2. Plastic interlead protrusions of 0.25mm maximum per side are not  
included.  
A1  
0.10  
NX  
C
3. This dimension is measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
5. Index area - Pin #1 I.D. will be located within the indicated zone  
(SOT23-6 only).  
6. SOT23-5 version has no center lead (shown as a dashed line).  
(L1)  
H
A
GAUGE  
PLANE  
0.25  
c
+3°  
-0°  
L
0°  
FN6154.5  
December 16, 2008  
11  
ISL28156, ISL28256  
Small Outline Package Family (SO)  
A
D
h X 45°  
(N/2)+1  
N
A
PIN #1  
I.D. MARK  
E1  
E
c
SEE DETAIL “X”  
1
(N/2)  
B
L1  
0.010 M  
C A B  
e
H
C
A2  
A1  
GAUGE  
PLANE  
SEATING  
PLANE  
0.010  
L
4° ±4°  
0.004 C  
b
0.010 M  
C
A
B
DETAIL X  
MDP0027  
SMALL OUTLINE PACKAGE FAMILY (SO)  
INCHES  
SO16  
(0.150”)  
SO16 (0.300”)  
(SOL-16)  
SO20  
SO24  
(SOL-24)  
SO28  
(SOL-28)  
SYMBOL  
SO-8  
0.068  
0.006  
0.057  
0.017  
0.009  
0.193  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
8
SO-14  
0.068  
0.006  
0.057  
0.017  
0.009  
0.341  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
14  
(SOL-20)  
0.104  
0.007  
0.092  
0.017  
0.011  
0.504  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
20  
TOLERANCE  
MAX  
NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.057  
0.017  
0.009  
0.390  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.406  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.606  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
24  
0.104  
0.007  
0.092  
0.017  
0.011  
0.704  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
28  
-
±0.003  
±0.002  
±0.003  
±0.001  
±0.004  
±0.008  
±0.004  
Basic  
-
-
-
c
-
D
1, 3  
E
-
E1  
e
2, 3  
-
L
±0.009  
Basic  
-
L1  
h
-
Reference  
Reference  
-
N
-
Rev. M 2/07  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not included.  
2. Plastic interlead protrusions of 0.010” maximum per side are not included.  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994  
FN6154.5  
December 16, 2008  
12  
ISL28156, ISL28256  
Mini SO Package Family (MSOP)  
MDP0043  
0.25 M C A B  
A
MINI SO PACKAGE FAMILY  
D
(N/2)+1  
MILLIMETERS  
N
SYMBOL  
MSOP8  
1.10  
0.10  
0.86  
0.33  
0.18  
3.00  
4.90  
3.00  
0.65  
0.55  
0.95  
8
MSOP10  
1.10  
0.10  
0.86  
0.23  
0.18  
3.00  
4.90  
3.00  
0.50  
0.55  
0.95  
10  
TOLERANCE  
Max.  
NOTES  
A
A1  
A2  
b
-
±0.05  
-
E
E1  
PIN #1  
I.D.  
±0.09  
-
+0.07/-0.08  
±0.05  
-
c
-
D
±0.10  
1, 3  
1
B
(N/2)  
E
±0.15  
-
E1  
e
±0.10  
2, 3  
Basic  
-
e
H
C
L
±0.15  
-
SEATING  
PLANE  
L1  
N
Basic  
-
Reference  
-
M
C A B  
b
0.08  
0.10 C  
Rev. D 2/07  
N LEADS  
NOTES:  
1. Plastic or metal protrusions of 0.15mm maximum per side are not  
included.  
L1  
2. Plastic interlead protrusions of 0.25mm maximum per side are  
not included.  
A
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
c
SEE DETAIL "X"  
A2  
GAUGE  
PLANE  
0.25  
L
DETAIL X  
A1  
3° ±3°  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6154.5  
December 16, 2008  
13  

相关型号:

ISL28258

34レA Micro-power Single and Dual Precision Rail-to-Rail Input-Output (RRIO) Low Input Bias Current Op Amps
INTERSIL

ISL28258FAZ-T7

DUAL OP-AMP, 650uV OFFSET-MAX, 0.2MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MSOP-8
RENESAS

ISL28258FBZ

34レA Micro-power Single and Dual Precision Rail-to-Rail Input-Output (RRIO) Low Input Bias Current Op Amps
INTERSIL

ISL28258FBZ-T7

34レA Micro-power Single and Dual Precision Rail-to-Rail Input-Output (RRIO) Low Input Bias Current Op Amps
INTERSIL

ISL28258FUZ

34レA Micro-power Single and Dual Precision Rail-to-Rail Input-Output (RRIO) Low Input Bias Current Op Amps
INTERSIL

ISL28258FUZ-T7

34レA Micro-power Single and Dual Precision Rail-to-Rail Input-Output (RRIO) Low Input Bias Current Op Amps
INTERSIL

ISL28266

39uA Micropower Single and Dual Rail-to-Rail Input-Output Low Input Bias Current (RRIO) Op Amps
INTERSIL

ISL28266FAZ-T7

39uA Micropower Single and Dual Rail-to-Rail Input-Output Low Input Bias Current (RRIO) Op Amps
INTERSIL

ISL28266FBZ

39レA Micropower Single and Dual Rail-to-Rail Input-Output Low Input Bias Current (RRIO) Op Amps
INTERSIL

ISL28266FBZ-T7

39レA Micropower Single and Dual Rail-to-Rail Input-Output Low Input Bias Current (RRIO) Op Amps
INTERSIL

ISL28266FUZ

39レA Micropower Single and Dual Rail-to-Rail Input-Output Low Input Bias Current (RRIO) Op Amps
INTERSIL

ISL28266FUZ-T7

39レA Micropower Single and Dual Rail-to-Rail Input-Output Low Input Bias Current (RRIO) Op Amps
INTERSIL