ISL3152EIBZ-T [RENESAS]

Large 3V Output Swing, 16.5kV ESD, Full Fail-Safe, 1/8 Unit Load, RS-485/RS-422 Transceivers;
ISL3152EIBZ-T
型号: ISL3152EIBZ-T
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Large 3V Output Swing, 16.5kV ESD, Full Fail-Safe, 1/8 Unit Load, RS-485/RS-422 Transceivers

驱动 信息通信管理 光电二极管 接口集成电路 驱动器
文件: 总34页 (文件大小:1370K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
Large 3V Output Swing, 16.5kV ESD, Full Fail-Safe, 1/8 Unit Load,  
RS-485/RS-422 Transceivers  
FN6363  
Rev.4.00  
Apr 19, 2018  
The ISL315xE family of 5V powered RS-485/RS-422  
transceivers features high output drive and high ESD  
protection. The devices withstand ±16.5kV IEC61000-4-  
2 ESD strikes without latch-up. The large output voltage  
of 3.1V typical into a 54Ω load provides high noise  
immunity, and enables the drive of up to 8000ft long bus  
segments, or eight 120Ω terminations in a star topology.  
Features  
• High V : 3.1V (Typ) into R = 54Ω  
OD  
D
• Low bus currents: 125µA constitutes a true 1/8 unit  
load  
• Allows for up to 512 transceivers on the bus  
• ±16.5kV ESD protection on bus I/O pins  
• High transient overvoltage tolerance of ±100V  
• Full fail-safe outputs for open or shorted inputs  
These devices possess less than 125µA bus input  
currents, thus constituting a true 1/8 unit load. The high  
output drive combined with the low bus input currents  
allows for connecting up to 512 transceivers on the same  
bus.  
• Hot plug capability - driver and receiver outputs  
remain high-impedance during power-up and  
power-down  
The receiver inputs feature a full fail-safe design that  
turns the receiver outputs high when the bus inputs are  
open or shorted.  
• Supported data rates: 115kbps, 1Mbps, 20Mbps  
• Low supply current (driver disabled): 550µA  
• Ultra-low shutdown current: 70nA  
The ISL315xE family includes half and full-duplex  
transceivers with active-high driver-enable pins and  
active-low receiver enable pins. These transceivers  
support data rates of 115kbps, 1Mbps, and 20Mbps.  
Their performance is characterized from -40°C to +85°C.  
Applications  
• Automated utility e-meter reading systems  
• High node count systems  
Related Literature  
For a full list of related documents, visit our website  
• PROFIBUS and Fieldbus systems in factory  
automation  
ISL3150E, ISL3152E, ISL3153E, ISL3155E,  
ISL3156E, and ISL3158E product pages  
• Security camera networks  
• Lighting, elevator, and HVAC control systems in  
building automation  
• Industrial process control networks  
• Networks with star topology  
• Long-haul networks in coal mines and oil rigs  
140  
130  
3
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6 x 120Ω  
Terms  
ISL3158E  
2
2 x 120Ω  
Terms  
8 x 120Ω  
Terms  
1
0
Standard  
Transceiver  
-1  
1 x 120Ω  
Term  
-2  
20Mbps, 150' UTP, Double 120Ω Termination  
0
1
1.5  
2
3
4
5
-3  
Differential Output Voltage (V)  
20ns/Div  
Figure 1. Typical Driver Output Performance of ISL315xE Transceivers  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 1 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
Contents  
1.  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.1  
1.2  
1.3  
1.4  
Typical Operating Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.  
Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2.1  
2.2  
2.3  
2.4  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Thermal Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.  
4.  
5.  
Test Circuits and Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Device Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.1  
5.2  
5.3  
5.4  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Device Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6.  
Application Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.1  
6.2  
6.3  
Network Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Transient Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
7.  
8.  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Package Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 2 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
1. Overview  
1. Overview  
1.1  
Typical Operating Circuit  
5V  
5V  
100n  
100n  
8
8
R
B
V
CC  
V
10k  
(optional)  
CC  
10k  
R
A
B
B
RO  
RE  
DE  
DI  
RO  
RE  
DE  
DI  
(optional)  
R
R
R
R
T
A/Y  
B/Z  
RL78  
MCU  
RL78  
MCU  
B
R
T
(optional)  
Y
Z
D
D
R
B
10k  
10k  
GND  
5
10k  
10k  
GND  
5
(optional)  
Figure 2. Typical Operating Circuits of Half-Duplex and Full-Duplex Transceivers  
1.2  
Ordering Information  
Tape and Reel  
(Units) (Note 1)  
Package  
(RoHS Compliant)  
Part Number (Notes 2, 3)  
ISL3150EIBZ  
Part Marking  
3150EIBZ  
3150EIBZ  
3150EIBZ  
3150Z  
Temp. Range (°C)  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
Pkg. Dwg. #  
M14.15  
M14.15  
M14.15  
M10.118  
M10.118  
M10.118  
M8.15  
-
14 Ld SOIC  
14 Ld SOIC  
14 Ld SOIC  
10 Ld MSOP  
10 Ld MSOP  
10 Ld MSOP  
8 Ld SOIC  
ISL3150EIBZ-T  
ISL3150EIBZ-T7A  
ISL3150EIUZ  
2.5k  
250  
-
ISL3150EIUZ-T  
ISL3150EIUZ-T7A  
ISL3152EIBZ  
3150Z  
2.5k  
250  
-
3150Z  
3152EIBZ  
3152EIBZ  
3152EIBZ  
3152EIBZ  
ISL3152 EIPZ  
3152Z  
ISL3152EIBZ-T  
ISL3152EIBZ-T7  
ISL3152EIBZ-T7A  
ISL3152EIPZ  
2.5k  
1k  
8 Ld SOIC  
M8.15  
8 Ld SOIC  
M8.15  
250  
-
8 Ld SOIC  
M8.15  
8 Ld PDIP  
E8.3  
ISL3152EIUZ  
-
8 Ld MSOP  
8 Ld MSOP  
8 Ld MSOP  
14 Ld SOIC  
10 Ld MSOP  
10 Ld MSOP  
10 Ld MSOP  
8 Ld SOIC  
M8.118  
M8.118  
M8.118  
M14.15  
M10.118  
M10.118  
M10.118  
M8.15  
ISL3152EIUZ-T  
ISL3152EIUZ-T7A  
ISL3153EIBZ-T  
ISL3153EIUZ  
3152Z  
2.5k  
250  
2.5k  
-
3152Z  
3153EIBZ  
3153Z  
ISL3153EIUZ-T  
ISL3153EIUZ-T7A  
ISL3155EIBZ  
3153Z  
2.5k  
250  
-
3153Z  
3155EIBZ  
3155EIBZ  
3155EIBZ  
3155Z  
ISL3155EIBZ-T  
ISL3155EIBZ-T7A  
ISL3155EIUZ  
2.5k  
250  
-
8 Ld SOIC  
M8.15  
8 Ld SOIC  
M8.15  
8 Ld MSOP  
8 Ld MSOP  
14 Ld SOIC  
M8.118  
M8.118  
M14.15  
ISL3155EIUZ-T  
ISL3156EIBZ  
3155Z  
2.5k  
-
3156EIBZ  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 3 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
1. Overview  
Tape and Reel  
Package  
Part Number (Notes 2, 3)  
ISL3156EIBZ-T  
ISL3156EIBZ-T7A  
ISL3156EIUZ  
Part Marking  
3156EIBZ  
3156EIBZ  
3156Z  
Temp. Range (°C)  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
(Units) (Note 1)  
(RoHS Compliant)  
Pkg. Dwg. #  
2.5k  
250  
-
14 Ld SOIC  
14 Ld SOIC  
10 Ld MSOP  
10 Ld MSOP  
10 Ld MSOP  
8 Ld SOIC  
M14.15  
M14.15  
M10.118  
M10.118  
M10.118  
M8.15  
ISL3156EIUZ-T  
ISL3156EIUZ-T7A  
ISL3158EIBZ  
3156Z  
2.5k  
250  
-
3156Z  
3158EIBZ  
3158EIBZ  
3158EIBZ  
3158Z  
ISL3158EIBZ-T  
ISL3158EIBZ-T7A  
ISL3158EIUZ  
2.5k  
250  
-
8 Ld SOIC  
M8.15  
8 Ld SOIC  
M8.15  
8 Ld MSOP  
8 Ld MSOP  
8 Ld MSOP  
M8.118  
M8.118  
M8.118  
ISL3158EIUZ-T  
ISL3158EIUZ-T7A  
Notes:  
3158Z  
2.5k  
250  
3158Z  
1. Refer to TB347 for details about reel specifications.  
2. These Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and  
100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free  
soldering operations). Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free  
requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), see the product information pages for the ISL3150E, ISL3152E, ISL3153E, ISL3155E,  
ISL3156E, and ISL3158E. For more information about MSL, see TB363.  
Table 1. Key Differences of Device Features  
Part Number  
ISL3150E  
ISL3152E  
ISL3153E  
ISL3155E  
ISL3156E  
ISL3158E  
Duplex  
Full  
Data Rate (Mbps) Rise/Fall Time (ns) Tx/Rx Skew (ns)  
Bus ESD (kV)  
Pin Count  
0.115  
0.115  
1
1100  
1100  
150  
150  
8
12/4  
12/4  
±10  
±16  
±10  
±16  
±10  
±16  
10, 14  
Half  
Full  
8
10, 14  
8
3/4  
Half  
Full  
1
3/4  
20  
0.2/2.5  
0.2/2.5  
10, 14  
8
Half  
20  
8
FN6363 Rev.4.00  
Apr 19, 2018  
Page 4 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
1. Overview  
1.3  
Pin Configurations  
ISL3152E, ISL3155E, ISL3158E  
(8 Ld MSOP, 8 Ld SOIC, 8 Ld PDIP)  
Top View  
ISL3150E, ISL3153E, ISL3156E  
(10 Ld MSOP)  
ISL3150E, ISL3153E, ISL3156E  
(14 Ld SOIC)  
Top View  
Top View  
RO  
RE  
DE  
DI  
1
2
3
4
R
8
7
6
5
V
V
CC  
RO  
RE  
1
2
3
4
5
R
10  
9
V
CC  
NC  
RO  
1
2
3
4
5
6
7
14  
CC  
B/Z  
A
B
Z
R
13 NC  
A/Y  
DE  
8
RE  
12  
11  
10  
9
A
D
GND  
DI  
D
7
DE  
B
GND  
6
Y
DI  
D
Z
GND  
GND  
Y
8
NC  
1.4  
Pin Descriptions  
8 Ld  
SOIC  
10 Ld  
MSOP  
14 Ld  
SOIC  
Pin  
Name  
Function  
1
2
3
4
1
2
3
4
5
RO  
RE  
DE  
DI  
Receiver output: If A-B ≥ -50mV, RO is high; If A-B ≤ -200mV, RO is low. RO is Fail-safe  
High if A and B are unconnected (open) or shorted.  
2
3
4
Receiver output enable. RO is enabled when RE is low; RO is high impedance when RE is  
high.  
Driver output enable. The driver outputs, Y and Z, are enabled by bringing DE high. They  
are high impedance when DE is low.  
Driver input. A low on DI forces output Y low and output Z high. Similarly, a high on DI forces  
output Y high and output Z low.  
5
6
5
6, 7  
GND  
A/Y  
Ground connection.  
Non-inverting receiver input and non-inverting driver output. Pin is an input if DE = 0; pin is  
an output if DE = 1.  
7
B/Z  
Inverting receiver input and inverting driver output. Pin is an input if DE = 0; pin is an output  
if DE = 1.  
8
6
7
9
10  
Y
Z
Non-inverting driver output.  
Inverting driver output.  
8
11  
B
Inverting receiver input.  
9
12  
A
Non-inverting receiver input.  
System power supply input (4.5V to 5.5V).  
No connection.  
10  
VCC  
NC  
1, 8, 13  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 5 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
2. Specifications  
2. Specifications  
2.1  
Absolute Maximum Ratings  
Parameter (Note 4)  
Minimum  
Maximum  
Unit  
V
VCC to Ground  
7
VCC + 0.3  
13  
Input Voltages at DI, DE, RE  
-0.3  
-9  
V
Bus I/O Voltages at A/Y, B/Z, A, B, Y, Z  
V
Transient Pulse Voltages through 100Ω at A/Y, B/Z, A, B, Y, Z (Note 5)  
±100  
V
RO  
-0.3  
VCC + 0.3  
Continuous  
V
Short Circuit Duration at Y, Z  
ESD Rating  
See “Electrical Specifications” on page 8.  
Note:  
4. Absolute Maximum ratings mean the device will not be damaged if operated under these conditions. It does not guarantee  
performance.  
5. Tested according to TIA/EIA-485-A, Section 4.2.6 (±100V for 15µs at a 1% duty cycle).  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may  
adversely impact product reliability and result in failures not covered by warranty.  
2.2  
Thermal Information  
Thermal Resistance (Typical, Note 6)  
θJA (°C/W)  
105  
8 Ld SOIC  
8 Ld MSOP, PDIP  
10 Ld MSOP  
14 Ld SOIC  
Notes:  
140  
130  
130  
6. θJA is measured with the component mounted on a high-effective thermal conductivity test board in free air. See TB379 for  
details.  
Parameter  
Maximum Junction Temperature (Plastic Package)  
Maximum Storage Temperature Range  
Pb-Free Reflow Profile (Note 7)  
Note:  
Minimum  
Maximum  
+150  
Unit  
°C  
-65  
+150  
°C  
See TB493  
7. Pb-free PDIPs can be used for through-hole wave solder processing only. They are not intended for use in Reflow solder  
processing applications.  
2.3  
Recommended Operating Conditions  
Parameter  
Minimum  
Maximum  
5.5  
Unit  
V
Supply Voltage  
4.5  
-40  
-7  
Temperature Range  
+85  
°C  
V
Bus Pin Common-Mode Voltage Range  
+12  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 6 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
2. Specifications  
2.4  
Electrical Specifications  
Test Conditions: VCC = 4.5V to 5.5V; unless otherwise specified. Typical values are at VCC = 5V, TA = +25°C (Note 8). Boldface limits  
apply across the operating temperature range, -40°C to +85°C.  
Temp  
(°C)  
Min  
Parameter  
Symbol  
Test Conditions  
(Note 16) Typ Max (Note 16) Unit  
DC Characteristics  
Driver Differential Output  
Voltage (No load)  
VOD1  
Full  
-
-
VCC  
V
Driver Differential Output  
Voltage (Loaded)  
VOD2  
RL = 100Ω (RS-422) (Figure 3)  
RL = 54Ω (RS-485) (Figure 3)  
Full  
Full  
+25  
2.8  
2.4  
-
3.6  
3.1  
-
VCC  
-
V
V
V
RL = 15Ω (Eight 120Ω terminations)  
(Note 17)  
1.65  
RL = 60Ω, -7V ≤ VCM ≤ 12V (Figure 4)  
RL = 54Ω or 100Ω (Figure 3)  
Full  
Full  
2.4  
3
-
V
V
Change in Magnitude of  
Driver Differential Output  
Voltage  
ΔVOD  
-
0.01  
0.2  
Driver Common-Mode Output  
Voltage  
VOC  
RL = 54Ω or 100Ω (Figure 3)  
RL = 54Ω or 100Ω (Figure 3)  
Full  
Full  
-
-
-
3.15  
0.2  
V
V
Change in Magnitude of  
Driver Common-Mode Output  
Voltage  
ΔVOC  
0.01  
Logic Input High Voltage  
Logic Input Low Voltage  
DI Input Hysteresis Voltage  
Logic Input Current  
VIH  
VIL  
DE, DI, RE  
DE, DI, RE  
Full  
Full  
+25  
Full  
Full  
Full  
Full  
Full  
2
-
-
-
-
0.8  
-
V
V
VHYS  
IIN1  
-
100  
-
mV  
µA  
µA  
µA  
µA  
µA  
DE, DI, RE  
-2  
-
2
Input Current (A, B, A/Y, B/Z)  
IIN2  
DE = 0V, VCC = 0V VIN = 12V  
or 5.5V  
70  
55  
1
125  
-
V
IN = -7V  
-75  
-
Output Leakage Current  
(Y, Z) (Full Duplex Versions  
Only)  
IIN3  
RE = 0V, DE = 0V, VIN = 12V  
CC = 0V or 5.5V  
40  
-
V
VIN = -7V  
-40  
-9  
Output Leakage Current  
(Y, Z) in Shutdown Mode (Full  
Duplex)  
IIN4  
RE = VCC, DE = 0V, VIN = 12V  
CC = 0V or 5.5V  
Full  
Full  
-
1
20  
µA  
µA  
V
VIN = -7V  
-20  
-9  
-
Driver Short-Circuit Current,  
VO = High or Low  
IOSD1  
DE = VCC, -7V ≤ VY or VZ ≤ 12V  
(Note 10)  
Full  
Full  
+25  
-
-200  
-
-
±250  
-50  
-
mA  
mV  
mV  
Receiver Differential  
Threshold Voltage  
VTH  
-7V ≤ VCM ≤ 12V  
-90  
20  
Receiver Input Hysteresis  
ΔVTH  
VCM = 0V  
Receiver Output High Voltage  
Receiver Output Low Voltage  
Receiver Output Low Current  
VOH  
VOL  
IOL  
IO = -8mA, VID = -50mV  
IO = -8mA, VID = -200mV  
VO = 1V, VID = -200mV  
0.4V ≤ VO ≤ 2.4V  
Full  
Full  
Full  
Full  
VCC - 1.2 4.3  
-
0.4  
-
V
V
-
0.25  
28  
20  
-1  
mA  
µA  
Three-State (High  
Impedance) Receiver Output  
Current  
IOZR  
0.03  
1
Receiver Input Resistance  
RIN  
-7V ≤ VCM ≤ 12V  
Full  
96  
160  
-
kΩ  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 7 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
2. Specifications  
Test Conditions: VCC = 4.5V to 5.5V; unless otherwise specified. Typical values are at VCC = 5V, TA = +25°C (Note 8). Boldface limits  
apply across the operating temperature range, -40°C to +85°C. (Continued)  
Temp  
(°C)  
Min  
Parameter  
Symbol  
Test Conditions  
0V ≤ VO ≤ VCC  
(Note 16) Typ Max (Note 16) Unit  
Receiver Short-Circuit  
Current  
IOSR  
Full  
±7  
65  
±85  
mA  
Supply Current  
No-Load Supply Current  
(Note 9)  
ICC  
Half duplex versions, DE = VCC, RE = X,  
DI = 0V or VCC  
Full  
Full  
-
-
650  
550  
800  
700  
µA  
µA  
All versions, DE = 0V, RE = 0V, or full  
duplex versions, DE = VCC, RE = X.  
DI = 0V or VCC  
Shutdown Supply Current  
ISHDN  
DE = 0V, RE = VCC, DI = 0V or VCC  
Full  
-
0.07  
3
µA  
ESD Performance  
RS-485 Pins (A, Y, B, Z, A/Y,  
B/Z)  
IEC61000-4-2,  
Air-Gap Discharge  
Method  
Half duplex  
Full duplex  
+25  
+25  
-
-
±16.5  
±10  
-
-
kV  
kV  
IEC61000-4-2, Contact Discharge  
Method  
+25  
+25  
+25  
+25  
-
-
-
-
±9  
±16.5  
±7  
-
-
-
-
kV  
kV  
kV  
V
Human Body Model, from bus pins to  
GND  
All Pins  
Human Body Model, per MIL-STD-883  
Method 3015  
Machine Model  
400  
Driver Switching Characteristics (115kbps Versions; ISL3150E, ISL3152E)  
Driver Differential Output  
Delay  
t
PLH, tPHL RDIFF = 54Ω, CL = 100pF (Figure 5)  
Full  
Full  
Full  
500  
-
970  
12  
1300  
50  
ns  
ns  
ns  
Driver Differential Output  
Skew  
tSKEW  
RDIFF = 54Ω, CL = 100pF (Figure 5)  
RDIFF = 54Ω, CL = 100pF (Figure 5)  
CD = 820pF (Figure 7, Note 18)  
Driver Differential Rise or  
Fall Time  
tR, tF  
700  
1100  
1600  
Maximum Data Rate  
fMAX  
tZH  
Full  
Full  
115  
2000  
300  
-
kbps  
ns  
Driver Enable to Output High  
RL = 500Ω, CL = 100pF, SW = GND  
(Figure 6, Note 11)  
-
600  
Driver Enable to Output Low  
tZL  
RL = 500Ω, CL = 100pF, SW = VCC  
(Figure 6, Note 11)  
Full  
Full  
Full  
-
-
-
130  
50  
500  
65  
ns  
ns  
ns  
Driver Disable from Output  
Low  
tLZ  
RL = 500Ω, CL = 15pF, SW = VCC  
(Figure 6)  
Driver Disable from Output  
High  
tHZ  
RL = 500Ω, CL = 15pF,  
SW = GND (Figure 6)  
35  
60  
Time to Shutdown  
tSHDN  
(Note 13)  
Full  
Full  
60  
160  
-
600  
ns  
ns  
Driver Enable from Shutdown tZH(SHDN) RL = 500Ω, CL = 100pF, SW = GND  
to Output High (Figure 6, Notes 13, 14)  
-
250  
Driver Enable from Shutdown tZL(SHDN) RL = 500Ω, CL = 100pF, SW = VCC  
to Output Low (Figure 6, Notes 13, 14)  
Full  
Full  
-
-
250  
ns  
ns  
Driver Switching Characteristics (1Mbps Versions; ISL3153E, ISL3155E)  
Driver Differential Output  
Delay  
t
PLH, tPHL RDIFF = 54Ω, CL = 100pF (Figure 5)  
150  
270  
400  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 8 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
2. Specifications  
Test Conditions: VCC = 4.5V to 5.5V; unless otherwise specified. Typical values are at VCC = 5V, TA = +25°C (Note 8). Boldface limits  
apply across the operating temperature range, -40°C to +85°C. (Continued)  
Temp  
(°C)  
Min  
Parameter  
Symbol  
Test Conditions  
(Note 16) Typ Max (Note 16) Unit  
Driver Differential Output  
Skew  
tSKEW  
RDIFF = 54Ω, CL = 100pF (Figure 5)  
Full  
-
3
10  
ns  
Driver Differential Rise or  
Fall Time  
tR, tF  
RDIFF = 54Ω, CL = 100pF (Figure 5)  
Full  
150  
325  
450  
ns  
Maximum Data Rate  
fMAX  
tZH  
CD = 820pF (Figure 7, Note 18)  
Full  
Full  
1
8
-
Mbps  
ns  
Driver Enable to Output High  
RL = 500Ω, CL = 100pF, SW = GND  
(Figure 6, Note 11)  
-
110  
200  
Driver Enable to Output Low  
tZL  
RL = 500Ω, CL = 100pF, SW = VCC  
(Figure 6, Note 11)  
Full  
Full  
Full  
-
-
-
60  
50  
35  
200  
65  
ns  
ns  
ns  
Driver Disable from Output  
Low  
tLZ  
RL = 500Ω, CL = 15pF, SW = VCC  
(Figure 6)  
Driver Disable from Output  
High  
tHZ  
RL = 500Ω, CL = 15pF, SW = GND  
(Figure 6)  
60  
Time to Shutdown  
tSHDN  
(Note 13)  
Full  
Full  
60  
160  
-
600  
250  
ns  
ns  
Driver Enable from Shutdown tZH(SHDN) RL = 500Ω, CL = 100pF, SW = GND  
to Output High (Figure 6, Notes 13, 14)  
-
Driver Enable from Shutdown tZL(SHDN) RL = 500Ω, CL = 100pF, SW = VCC  
to Output Low (Figure 6, Notes 13, 14)  
Full  
-
-
250  
ns  
Driver Switching Characteristics (20Mbps Versions; ISL3156E, ISL3158E)  
Driver Differential Output  
Delay  
t
PLH, tPHL RDIFF = 54Ω, CL = 100pF (Figure 5)  
Full  
Full  
Full  
-
-
-
21  
0.2  
12  
30  
3
ns  
ns  
ns  
Driver Differential Output  
Skew  
tSKEW  
RDIFF = 54Ω, CL = 100pF (Figure 5)  
RDIFF = 54Ω, CL = 100pF (Figure 5)  
CD = 470pF (Figure 7, Note 18)  
Driver Differential Rise or Fall  
Time  
tR, tF  
16  
Maximum Data Rate  
fMAX  
tZH  
Full  
Full  
20  
55  
30  
-
Mbps  
ns  
Driver Enable to Output High  
RL = 500Ω, CL = 100pF, SW = GND  
(Figure 6, Note 11)  
-
45  
Driver Enable to Output Low  
tZL  
RL = 500Ω, CL = 100pF, SW = VCC  
(Figure 6, Note 11)  
Full  
Full  
Full  
-
-
-
28  
50  
38  
45  
65  
60  
ns  
ns  
ns  
Driver Disable from Output  
Low  
tLZ  
RL = 500Ω, CL = 15pF, SW = VCC  
(Figure 6)  
Driver Disable from Output  
High  
tHZ  
RL = 500Ω, CL = 15pF, SW = GND  
(Figure 6)  
Time to Shutdown  
tSHDN  
(Note 13)  
Full  
Full  
60  
160  
-
600  
200  
ns  
ns  
Driver Enable from Shutdown tZH(SHDN) RL = 500Ω, CL = 100pF, SW = GND  
to Output High (Figure 6, Notes 13, 14)  
-
Driver Enable from Shutdown tZL(SHDN) RL = 500Ω, CL = 100pF, SW = VCC  
to Output Low (Figure 6, Notes 13, 14)  
Full  
-
-
200  
ns  
Receiver Switching Characteristics (115kbps and 1Mbps Versions; ISL3150E through ISL3155E)  
Maximum Data Rate  
fMAX  
tPLH  
(Figure 8, Note 18)  
(Figure 8)  
Full  
Full  
1
12  
-
Mbps  
ns  
Receiver Input to Output  
Delay  
,
-
100  
150  
tPHL  
Receiver Skew | tPLH - tPHL  
|
tSKD  
(Figure 8)  
Full  
-
4
10  
ns  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 9 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
2. Specifications  
Test Conditions: VCC = 4.5V to 5.5V; unless otherwise specified. Typical values are at VCC = 5V, TA = +25°C (Note 8). Boldface limits  
apply across the operating temperature range, -40°C to +85°C. (Continued)  
Temp  
(°C)  
Min  
Parameter  
Symbol  
Test Conditions  
(Note 16) Typ Max (Note 16) Unit  
Receiver Enable to Output  
Low  
tZL  
RL = 1kΩ, CL = 15pF, SW = VCC  
(Figure 9, Note 12)  
Full  
Full  
Full  
Full  
-
-
-
-
9
7
8
8
20  
20  
15  
15  
ns  
ns  
ns  
ns  
Receiver Enable to Output  
High  
tZH  
RL = 1kΩ, CL = 15pF, SW = GND  
(Figure 9, Note 12)  
Receiver Disable from Output  
Low  
tLZ  
RL = 1kΩ, CL = 15pF, SW = VCC  
(Figure 9)  
Receiver Disable from Output  
High  
tHZ  
RL = 1kΩ, CL = 15pF, SW = GND  
(Figure 9)  
Time to Shutdown  
tSHDN  
(Note 13)  
Full  
Full  
60  
160  
-
600  
200  
ns  
ns  
Receiver Enable from  
Shutdown to Output High  
tZH(SHDN) RL = 1kΩ, CL = 15pF, SW = GND  
(Figure 9, Notes 13, 15)  
-
Receiver Enable from  
Shutdown to Output Low  
tZL(SHDN) RL = 1kΩ, CL = 15pF, SW = VCC  
(Figure 9, Notes 13, 15)  
Full  
-
-
200  
ns  
Receiver Switching Characteristics (20Mbps Versions; ISL3156E, ISL3158E)  
Maximum Data Rate  
fMAX  
tPLH  
tPHL  
tSKD  
tZL  
(Figure 8, Note 18)  
(Figure 8)  
Full  
Full  
20  
30  
33  
-
Mbps  
ns  
Receiver Input to Output  
Delay  
,
-
45  
Receiver Skew | tPLH - tPHL  
|
(Figure 8)  
Full  
Full  
-
-
2.5  
8
5
ns  
ns  
Receiver Enable to Output  
Low  
RL = 1kΩ, CL = 15pF, SW = VCC  
(Figure 9, Note 12)  
15  
Receiver Enable to Output  
High  
tZH  
RL = 1kΩ, CL = 15pF, SW = GND  
(Figure 9, Note 12)  
Full  
Full  
Full  
-
-
-
7
8
8
15  
15  
15  
ns  
ns  
ns  
Receiver Disable from Output  
Low  
tLZ  
RL = 1kΩ, CL = 15pF, SW = VCC  
(Figure 9)  
Receiver Disable from Output  
High  
tHZ  
RL = 1kΩ, CL = 15pF, SW = GND  
(Figure 9)  
Time to Shutdown  
tSHDN  
(Note 13)  
Full  
Full  
60  
160  
-
600  
200  
ns  
ns  
Receiver Enable from  
Shutdown to Output High  
tZH(SHDN) RL = 1kΩ, CL = 15pF, SW = GND  
(Figure 9), (Notes 13, 15)  
-
Receiver Enable from  
Shutdown to Output Low  
tZL(SHDN) RL = 1kΩ, CL = 15pF, SW = VCC  
(Figure 9), (Notes 13, 15)  
Full  
-
-
200  
ns  
Notes:  
8. All currents in to device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground  
unless otherwise specified.  
9. Supply current specification is valid for loaded drivers when DE = 0V.  
10. Applies to peak current. See “Performance Curves” beginning on page 14 for more information.  
11. Keep RE = 0 to prevent the device from entering SHDN.  
12. The RE signal high time must be short enough (typically <100ns) to prevent the device from entering SHDN.  
13. Transceivers are put into shutdown by bringing RE high and DE low. If the inputs are in this state for less than 60ns, the parts are  
guaranteed not to enter shutdown. If the inputs are in this state for at least 600ns, the parts are guaranteed to have entered  
shutdown. See “Low Current Shutdown Mode” on page 20.  
14. Keep RE = VCC, and set the DE signal low time >600ns to ensure that the device enters SHDN.  
15. Set the RE signal high time >600ns to ensure that the device enters SHDN.  
16. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by  
characterization and are not production tested.  
17. See Figure 11 on page 14 for more information and for performance over temperature.  
18. Limits established by characterization and are not production tested.  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 10 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
3. Test Circuits and Waveforms  
3. Test Circuits and Waveforms  
V
CC  
Y
Z
V
V
OH  
OL  
R /2  
L
Y
Z
DE  
DI  
V
0V or 3V  
D
OD  
R /2  
L
V
OC  
V
OC  
V
OC  
Figure 3. Measurement of Driver Differential Output Voltage with Differential Load  
V
CC  
  
375  
Y
Z
DE  
DI  
V
OD  
R = 60  
  
L
0V or 3V  
D
V
-7V to +12V  
CM  
375  
Figure 4. Measurement of Driver Differential Output Voltage with Common-Mode Load  
3V  
DI  
50%  
50%  
1.5V  
PHL  
V
C = 100pF  
L
CC  
0V  
t
t
PLH  
Y
Z
DE  
Z
Y
V
OH  
DI  
V
R
C
D
OD  
DIFF  
V
OL  
= 100pF  
L
Skew = |t  
- t  
|
PLH PHL  
+V  
OD  
90%  
10%  
90%  
10%  
V
OD  
(Y - Z)  
-V  
OD  
t
R
t
F
Figure 5. Measurement of Driver Propagation Delay and Differential Transition Times  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 11 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
3. Test Circuits and Waveforms  
V
CC  
Y
Z
500  
DI  
SW  
D
3V  
DE  
DE  
C
L
1.5V  
ZH  
1.5V  
0V  
t
ZH(SHDN)  
t
t
HZ  
V
OH  
V
OH  
- 0.5V  
Y, Z  
2.3V  
2.3V  
CL  
(pF)  
Parameter  
tHZ  
Output  
Y/Z  
RE  
X
DI  
1/0 GND  
0/1 VCC  
1/0 GND  
0/1 VCC  
1/0 GND  
0/1 VCC  
SW  
0V  
15  
15  
t
ZL(SHDN)  
t
ZL  
t
LZ  
tLZ  
Y/Z  
X
V
CC  
tZH  
Y/Z  
0 (Note 11)  
0 (Note 11)  
1 (Note 14)  
1 (Note 14)  
100  
100  
100  
100  
Y, Z  
V
OL  
tZL  
Y/Z  
VOL + 0.5V  
tZH(SHDN)  
tZL(SHDN)  
Y/Z  
Y/Z  
Figure 6. Measurement of Driver Enable and Disable Times  
V
CC  
3V  
DI  
Y
DE  
0V  
0V  
DI  
V
OD  
C
D
60  
  
D
Z
+V  
OD  
Y, Z  
-V  
OD  
Figure 7. Measurement of Driver Data Rate  
+1.5V  
A
B
A
0V  
0V  
RO  
-1.5V  
R
t
t
PHL  
PLH  
15pF  
RE  
V
CC  
RO  
1.5V  
1.5V  
0V  
Figure 8. Measurement of Receiver Propagation Delay and Data Rate  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 12 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
3. Test Circuits and Waveforms  
V
CC  
A
B
1k  
RO  
3V  
SW  
R
RE  
1.5V  
ZH  
1.5V  
15pF  
RE  
0V  
t
ZH(SHDN)  
t
t
HZ  
V
OH  
V
OH  
- 0.5V  
RO  
1.5V  
Parameter  
tHZ  
DE  
A
SW  
0V  
0
0
0
0
0
0
+1.5V  
-1.5V  
+1.5V  
-1.5V  
+1.5V  
-1.5V  
GND  
VCC  
t
ZL(SHDN)  
t
ZL  
t
LZ  
tLZ  
VCC  
tZH (Note 12)  
tZL (Note 12)  
GND  
VCC  
RO  
1.5V  
V
OL  
V
OL  
+ 0.5V  
tZH(SHDN) (Note 15)  
tZL(SHDN) (Note 15)  
GND  
VCC  
Figure 9. Measurement of Receiver Enable and Disable Times  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 13 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
4. Performance Curves  
4. Performance Curves  
VCC = 5V, TA = +25°C; Unless otherwise specified  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
54Ω  
V
OH  
T
A
= 25oC  
15Ω  
T
= +85oC  
A
V
OL  
0
20  
40  
60  
80  
100  
120  
140  
0
20  
40  
60  
80  
100  
120  
140  
Driver Output Current – I (mA)  
Driver Output Current – I (mA)  
O
O
Figure 10. Driver Output High and Low Voltages vs  
Output Current  
Figure 11. Driver Differential Output Voltage vs Output  
Current  
5.0  
3.7  
3.6  
Figure 4 Test Circuit  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
VA  
R
DIFF  
= 100Ω  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
VOD  
VOC  
VB  
R
= 54Ω  
60  
DIFF  
-8 -6 -4 -2  
0
2
4
6
8
10 12  
-40  
-20  
0
20  
40  
80  
100  
Temperature (oC)  
Common-Mode Voltage – V  
(V)  
CM  
Figure 12. Driver Output Voltages vs Common-Mode  
Voltage  
Figure 13. Driver Differential Output Voltage vs  
Temperature  
70  
3.5  
D, DE = VCC  
o
R
= 54Ω  
+
V
25 C  
D
60  
50  
40  
30  
20  
10  
0
OL,  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
o
+
V
85 C  
OL,  
o
+
V
25 C  
OH,  
o
+
V
85 C  
OH,  
0
1
2
3
4
5
0
1
2
3
4
5
Supply Voltage – V (V)  
CC  
Supply Voltage – V (V)  
CC  
Figure 15. Receiver Output Voltage vs Output Current  
Figure 14. Driver Output Voltage vs Supply Voltage  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 14 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
4. Performance Curves  
VCC = 5V, TA = +25°C; Unless otherwise specified (Continued)  
70  
60  
50  
RL = 54Ω, CL = 100pF  
DI  
RO  
DE, RE = V  
5V/Div  
1V/Div  
CC  
40  
R
D
L
= 54Ω  
30  
20  
10  
0
C
= 100pF  
B/Z  
A/Y  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Data Rate (kbps)  
Time: 1μs/Div  
Figure 16. Supply Current vs Data Rate  
(ISL3150E, ISL3152E)  
Figure 17. Waveforms (ISL3150E, ISL3152E)  
70  
60  
50  
40  
30  
20  
10  
0
RL = 54Ω, CL = 100pF  
DI  
RO  
DE, RE = V  
CC  
5V/Div  
R
= 54Ω  
D
L
C
= 100pF  
B/Z  
1V/Div  
A/Y  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
Data Rate (Mbps)  
Time: 400ns/Div  
Figure 18. Supply Current vs Data Rate  
(ISL3153E, ISL3155E)  
Figure 19. Waveforms (ISL3153E, ISL3155E)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
RL = 54Ω, CL = 100pF  
DI  
RO  
5V/Div  
DE, RE = V  
CC  
R
= 54Ω  
D
L
C
= 100pF  
B/Z  
1V/Div  
A/Y  
0
2
4
6
8
10 12 14 16 18 20  
Time: 20ns/Div  
Data Rate (Mbps)  
Figure 21. Waveforms (ISL3156E, ISL3158E)  
Figure 20. Supply Current vs Data Rate  
(ISL3156E, ISL3158E)  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 15 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
4. Performance Curves  
VCC = 5V, TA = +25°C; Unless otherwise specified (Continued)  
1010  
1005  
1000  
995  
990  
985  
980  
975  
970  
965  
960  
12  
11  
10  
9
8
tPLH  
7
6
tPHL  
5
4
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (oC)  
Temperature (oC)  
Figure 22. Differential Rise/Fall Times vs Temperature  
(ISL3150E, ISL3152E)  
Figure 23. Differential Propagation Delay vs  
Temperature (ISL3150E, ISL3152E)  
290  
288  
286  
284  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
282  
tPLH  
280  
278  
tPHL  
276  
274  
272  
270  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (oC)  
Temperature (oC)  
Figure 24. Differential Rise/Fall Times vs Temperature  
(ISL3153E, ISL3155E)  
Figure 25. Differential Propagation Delay vs  
Temperature (ISL3153E, ISL3155E)  
0.26  
23.0  
22.5  
22.0  
0.24  
0.22  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
tPLH  
21.5  
21.0  
tPHL  
20.5  
20.0  
19.5  
19.0  
18.5  
18.0  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (oC)  
Temperature (oC)  
Figure 27. Differential Propagation Delay vs  
Temperature (ISL3156E, ISL3158E)  
Figure 26. Differential Rise/Fall Times vs Temperature  
(ISL3156E, ISL3158E)  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 16 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
5. Device Description  
5. Device Description  
5.1  
Overview  
The ISL3150E, ISL3153E, and ISL3156E are full-duplex RS-485 transceivers, and the ISL3152E, ISL3155E, and  
ISL3158E are half-duplex RS-485 transceivers. All transceivers feature a large output signal swing that is 60%  
higher than standard compliant transceivers. The devices are available in three speed grades suitable for data  
transmission up to 115kbps, 1Mbps, and 20Mbps.  
Each transceiver has an active-high driver enable and an active-low receiver enable function. A shutdown current  
as low as 70nA can be accomplished by disabling both the driver and receiver for more than 600ns.  
5.2  
Functional Block Diagram  
V
V
CC  
CC  
A
RO  
RE  
DE  
DI  
R
RO  
RE  
DE  
DI  
R
B
B/Z  
A/Y  
Y
Z
D
D
GND  
GND  
Figure 28. Block Diagram  
Figure 29. Block Diagram  
ISL3150E, ISL3153E, ISL3156E  
ISL3152E, ISL3155E, ISL3158E  
5.3  
5.3.1  
Operating Modes  
Driver Operation  
A logic high at the driver enable pin, DE, activates the driver and causes the differential driver outputs, Y and Z,  
to follow the logic states at the data input, DI.  
A logic high at DI causes Y to turn high and Z to turn low. In this case, the differential output voltage, defined  
as V = V – V , is positive. A logic low at DI reverses the output states reverse, turning Y low and Z high,  
OD  
Y
Z
thus making V negative.  
OD  
A logic low at DE disables the driver, making Y and Z high-impedance. In this condition the logic state at DI is  
irrelevant. To ensure the driver remains disabled after device power-up, it is recommended to connect DE  
through a 1kΩ to 10kΩ pull-down resistor to ground.  
Table 2. Driver Truth Table  
Inputs  
Outputs  
RE  
X
DE  
H
H
L
DI  
H
L
Y
H
L
Z
L
Function  
Actively drives bus high  
X
H
Z
Actively drives bus low  
L
X
X
Z
Driver disabled, outputs high-impedance  
H
L
Z*  
Z*  
Shutdown mode: driver and receiver disabled for  
more than 600ns  
Note:* See Shutdown mode explanation in “Low Current Shutdown Mode” on page 20.  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 17 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
5. Device Description  
5.3.2  
Receiver Operation  
A logic low at the receiver enable pin, RE, activates the receiver and causes its output, RO, to follow the bus  
voltage at the differential receiver inputs, A and B. Here, the bus voltage is defined as V = V - V .  
AB  
A
B
For V ≥ -0.05V, RO turns high, and for V ≤ -0.2V, RO turns low. For input voltages between -50mV and  
AB  
AB  
-200mV, the state of RO is undetermined, and thus could be high or low.  
A logic high at RE disables the receiver, making RO high-impedance. In this condition the polarity and  
magnitude of the input voltage is irrelevant. To ensure the receiver output remains high when the receiver is  
disabled, it is recommended to connect RO, using a 1kΩ to 10kΩ pull-up resistor to V  
.
CC  
To enable the receiver to immediately monitor the bus traffic after device power-up, connect RE through a 1kΩ  
to 10kΩ pull-down resistor to ground.  
Table 3. Receiver Truth Table  
Inputs  
Outputs  
RE  
L
DE  
X
A – B  
RO  
Function  
VAB ≥ -0.05V  
H
RO is data-driven high  
L
X
-0.05V > VAB > -0.2V  
Undetermined Actively drives bus low  
L
X
V
AB ≤ -0.2V  
L
H
Z
RO is data-driven low  
RO is failsafe-high  
L
X
Inputs Open/Shorted  
H
H
H
L
X
X
Receiver disabled, RO is high-impedance  
Z*  
Shutdown mode: driver and receiver disabled for more than  
600ns  
Note:* See Shutdown mode explanation in “Low Current Shutdown Mode” on page 20.  
5.4  
5.4.1  
Device Features  
Large Output Signal Swing  
The ISL315xE family has a 60% larger differential output voltage swing than standard RS-485 transceivers. It  
delivers a minimum V of 2.4V across a 54Ω differential load, or 1.65V across a 15Ω differential load.  
OD  
Figure 30 shows that the V at 54Ω is more than 50% higher than that of a standard transceiver.  
OD  
188Ω  
140  
130  
120  
110  
100  
90  
T
= +25oC  
15Ω  
A
Y
Z
375Ω  
DI  
3V  
60Ω  
D
ISL315xE  
375Ω  
188Ω  
54Ω  
V
-7V to +12V  
CM  
80  
Std.  
XCVR  
70  
60  
50  
40  
R
(Ω)  
1UL  
(Ω)  
1/8UL # Devices  
(Ω)  
CM  
Device  
# UL  
30  
on Bus  
20  
Std. RS-485  
ISL315xE  
375  
12k  
12k  
32  
64  
96k  
256  
10  
0.84  
1.65  
3.1  
3
0
188  
96k  
512  
0
1
2
4
5
Differential Output Voltage – V (V)  
OD  
Figure 30. V-I Characteristic of ISL315xE vs Standard  
RS-485 Transceiver  
Figure 31. Unit Load and Transceiver Drive of ISL315xE  
vs Standard RS-485 Transceiver  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 18 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
5. Device Description  
Figure 31 compares the maximum number of unit loads and bus transceivers when choosing an ISL315xE over  
a standard transceiver. The RS-485 standard specifies a minimum total common-mode load resistance of  
R
= 375Ω between each signal conductor and ground. Because one unit load (1UL) is equivalent to 12kΩ,  
CM  
the total common-mode resistance of 375Ω yields 12kΩ/375Ω = 32 ULs.  
For an ISL315xE transceiver however, R can be as small as 188Ω, resulting in a total common-mode load of  
CM  
12k/188= 64 ULs. This means the driver of an ISL315xE transceiver can drive up to 64 x 1UL transceivers  
or 512 x 1/8UL transceivers.  
The advantages of such superior drive capability are:  
• Up to 900mV higher noise immunity (2.4V vs 1.5V V  
)
OD  
• Up to twice the maximum cable length of standard transceivers (~8000ft vs 4000ft)  
• The design of star configurations or other multi-terminated nonstandard network topologies  
5.4.2  
Driver Overload Protection  
The RS-485 specification requires drivers to survive worst case bus contentions undamaged. The ISL315xE  
transceivers meet this requirement through driver output short circuit current limits and on-chip thermal  
shutdown circuitry.  
The driver output stages incorporate short-circuit current limiters that ensure that the output current never  
exceeds the RS-485 specification, even at the common-mode voltage range extremes.  
In the event of a major short-circuit conditions, the devices also include a thermal shutdown feature that  
disables the drivers whenever the temperature becomes excessive. This eliminates the power dissipation,  
allowing the die to cool. The drivers automatically re-enable after the die temperature drops about 15°C. If the  
contention persists, the thermal shutdown/re-enable cycle repeats until the fault is cleared. The receivers stay  
operational during thermal shutdown.  
5.4.3  
Full-Failsafe Receiver  
The differential receivers of the ISL315xE family are full-failsafe, meaning their outputs turn logic high when:  
• The receiver inputs are open (floating) due to a faulty bus node connector  
• The receiver inputs are shorted due to an insulation break of the bus cable  
• The receiver input voltage is close to 0V due to a terminated bus not being actively driven  
Full-failsafe switching is accomplished by offsetting the maximum receiver input threshold to -50mV.  
Figure 32 shows that, in addition to the threshold offset, the receiver also has an input hysteresis, ΔV , of  
TH  
20mV. The combination of offset and hysteresis allows the receiver to maintain its output high, even in the  
presence of 140mV differential noise, without the need for external failsafe biasing resistors.  
P-P  
+V  
AB  
RO = High  
0V  
V
= 140mV  
n-(P-P)  
-50mV  
V
NTH  
= 20mV  
Undetermined  
RO = Low  
-200mV  
-V  
AB  
Figure 32. Full-Failsafe Performance with High Noise Immunity  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 19 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
5. Device Description  
5.4.4  
Low Current Shutdown Mode  
The ISL315xE transceivers use a fraction of the power required by their bipolar counterparts, but also include a  
shutdown feature that reduces the already low quiescent I to a 70nA trickle. These devices enter shutdown  
CC  
whenever the receiver and the driver are simultaneously disabled (RE = V and DE = GND) for a period of at  
CC  
least 600ns. Disabling both the driver and the receiver for less than 60ns guarantees that the transceiver will not  
enter shutdown.  
Note that driver and receiver enable times increase when the transceiver enables from shutdown. Refer to  
Notes 10 to 14 at the end of “Electrical Specifications” on page 10.  
5.4.5  
Hot Plug Function  
When the equipment powers up, there is a period of time where the controller driving the RS-485 enable lines is  
unable to ensure that the driver and receiver outputs are kept disabled. If the equipment is connected to the bus,  
a driver activating prematurely during power-up may crash the bus. To avoid this scenario, the ISL315xE  
devices incorporate a Hot Plug function. During power-up and power-down, the Hot Plug function disables the  
driver and receiver outputs regardless of the states of DE and RE. When V reaches ~3.4V, the enable pins are  
CC  
released. This gives the controller the chance to stabilize and drive the RS-485 enable lines to the proper states.  
5.4.6  
High ESD Protection  
The bus pins of the ISL315xE transceivers have on-chip ESD protection against ±16.5kV HBM, and ±9kV  
contact and ±16.5kV air-discharge according to IEC61000-4-2. The difference between the HBM and IEC ESD  
ratings lies in the test severity, as both standards aim for different application environments.  
HBM ESD ratings are component level ratings, used in semiconductor manufacturing in which component  
handling can cause ESD damage to a single device. Because component handling is performed in a controlled  
ESD environment, the ESD stress upon a component is drastically reduced. These factors make the HBM test  
the less severe ESD test.  
IEC ESD ratings are system level ratings. These are required in the uncontrolled field environment, where for  
example, a charged end user can subject handheld equipment to ESD levels of more than 40kV by touching  
connector pins when plugging or unplugging cables.  
The main differences between the HBM and the IEC 61000-4-2 standards are the number of strikes applied  
during testing and the generator models (Figure 33), which create differences in the waveforms’ rise times and  
peak currents (Figure 34).  
1M  
1.5k  
30  
25  
20  
15  
10  
5
V
Test  
= 8kV  
50M  
330Ω  
IEC61000-4-2  
HV-DC  
Generator  
100pF  
150pF  
DUT  
HBM  
0
0
50 100 150 200 250 300 350 400 450 500  
Time (ns)  
Human-Body-Model  
IEC61000-4-2 Model  
Figure 34. Difference in Rise-time and Charge Currents  
between HBM and IEC ESD Transients  
Figure 33. Generator Models for HBM and IEC ESD Tests  
The IEC model has 50% higher charge capacitance (C ) and 78% lower discharge resistance (R ) than the  
S
D
HBM model, thus producing shorter transient rise times and higher discharge currents. The ESD ratings of the  
ISL315xE transceivers exceed test level 4 of the IEC61000-4-2 standard, which significantly increases  
equipment robustness.  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 20 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
6. Application Information  
6. Application Information  
6.1  
Network Design  
Designing a reliable RS-485 network requires the consideration of a variety of factors that ultimately determine the  
network performance. These include network topology, cable type, data rate and/or cable length, stub length,  
distance between network nodes, and line termination.  
The main difference between network designs is dictated by their modes of data exchange between bus nodes,  
which can be half-duplex or full-duplex (Figures 35 and 36).  
A
B
Y
Z
Receive  
R
R
RO  
RE  
DE  
DI  
R
R
RO  
RE  
DE  
DI  
RO  
RE  
DE  
DI  
R
Master  
D
D
Slave  
R
DI  
T
T
A/Y  
A/Y  
DE  
RE  
RO  
R
T
R
T
Y
Z
A
B
Transmit  
B/Z  
B/Z  
R
T
D
D
A/Y  
B/Z  
A
B
Y
Z
Slave  
R
R
D
D
RO RE DE DI  
RO RE DE DI  
Figure 35. Half-Duplex Bus  
Figure 36. Full-Duplex Bus  
Half-duplex networks use only a single signal-pair of cables between one master node and multiple slave nodes,  
which allows the nodes to either transmit or receive data, but never both at the same time. Its reduced cabling effort  
makes these networks well suited for covering long distances of up to several thousands of feet. To maintain high  
signal integrity, the applied data rates range from as low as 9.6kbps up to 115kbps. This requires transceivers with  
long driver output transition times, typically in the range of microseconds, to ensure low EMI in the presence of  
large cable inductances.  
To prevent signal reflections of the bus lines, each cable end must be terminated with a resistor, R , whose value  
T
should match the characteristic cable impedance, Z .  
0
Full-duplex networks, on the other hand, aim for high data throughput. These networks use two signal-pairs to  
support the simultaneous transmitting and receiving of data. The signal pair denoted as the transmit path connects  
the driver output of the master node to the receiver inputs of multiple slave nodes. The other pair connects the  
driver outputs of the slave nodes with the receiver input of the master node.  
Because the data flow in the transmit path is unidirectional, the transmit path requires only one termination at the  
remote cable end, opposite the master node. Data flow in the receive path, however, is bidirectional, thus requiring  
line termination at both cable ends. Commonly, high data throughput also calls for higher data rates in the 1Mbps to  
10Mbps range. As cable losses increase with frequency, most full-duplex networks are limited to shorter bus cable  
lengths of a few hundred feet to maintain signal integrity.  
The following sections discuss the aforementioned parameters that impact network performance. This discussion  
applies to both half-and full-duplex network designs.  
6.1.1  
Cable Type  
RS-485 networks use differential signaling over Unshielded Twisted Pair (UTP) cable. The conductors of a  
twisted pair are equally exposed to external noise. They pick up noise and other electromagnetically induced  
voltages as common-mode signals, which are effectively rejected by the differential receivers.  
For best performance use industrial RS-485 cables, which are of the sheathed, shielded, twisted pair type,  
(STP), with a characteristic impedance of 120Ω and conductor sizes of 22 to 24 AWG (equivalent to diameters  
of 0.65mm and 0.51mm, respectively). They are available in single, two, and four signal-pair versions to  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 21 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
6. Application Information  
accommodate the design of half- and full-duplex systems. Figure 37 shows the cross section and cable  
parameters of a typical UTP cable.  
Aluminum Foil  
Polyester Tape  
Polyethylene  
Foam High Density  
PVC Jacket  
Cable: Belden 3105A  
22 AWG  
Type: 1-pair, 22AWG PLCT/CM  
Tinned Copper  
Impedance: 120Ω  
DC Resistance: 14.7mΩ/ft  
Capacitance: 11pF/ft  
Tinned Copper  
Braid  
22 AWG  
Tinned Copper  
Drain Wire  
Velocity: 78% (1.3ns/ft)  
Figure 37. Single Pair STP Cable for RS-485 Applications  
6.1.2  
Cable Length vs Data Rate  
RS-485 and RS-422 are intended for network lengths up to 4000ft, but the maximum system data rate decreases  
as the transmission length increases. Devices operating at 20Mbps are limited to lengths less than 100ft, while  
the 115kbps versions can operate at full data rates with lengths of several 1000ft. Note that ISL315xE  
transceivers can cover almost twice the distance of standard compliant RS-485 transceivers.  
10000  
1000  
100  
10000  
1000  
100  
ISL315xE  
Transceivers  
ISL315xE  
Transceivers  
Standard RS-485  
Transceivers  
Standard RS-485  
Transceivers  
10  
10  
10k 100k  
1M  
10M 100M  
10k 100k  
1M  
10M 100M  
Data Rate (bps)  
Data Rate (bps)  
Figure 38. Data Rate vs Cable Length Guidelines in Feet and Meters  
6.1.3  
Topologies and Stub Lengths  
RS-485 recommends its nodes to be networked in daisy-chain or backbone topology. In these topologies the  
participating drivers, receivers, and transceivers connect to a main cable trunk through “short” stubs. A stub  
being the actual electrical link between transceiver and cable trunk.  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 22 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
6. Application Information  
D
D
R
R
D
D
R
R
A
B
A
B
Stub  
Stub  
A1  
B1 B2  
A2  
A1  
B1 B2  
A2  
Figure 39. Stub Lengths in Daisy Chain (left) and Backbone (right) Topologies  
Because daisy chaining brings the cable trunk much closer to the transceiver bus terminals than a backbone  
design, the stub lengths between the two topologies can differ significantly. To prevent the bus from being  
overloaded by line terminations, stubs are never terminated. A stub therefore, represents a piece of  
unterminated transmission line. To eliminate signal reflections on the stub line, a rule of thumb is to keep its  
propagation delay below 1/5 of the driver output rise time, which leads to the maximum stub length of:  
t
r
5
(EQ. 1)  
---  
L
= v c   
Stub  
where  
• c is the speed of light (m/s)  
• v is the signal velocity in the cable, expressed as a factor of c  
• t is the rise time of the driver output (ns)  
r
Applying Equation 1 to the ISL315xE transceivers assuming a velocity of 78%, results in the maximum stub  
lengths associated with the corresponding transceivers, as shown in Table 4.  
Table 4. Stub Length as Function of Driver Rise Time  
Device  
Data Rate (Mbps)  
Rise Time (ns)  
Maximum Stub Length  
168ft (51m)  
ISL3150E, ISL3152E  
ISL3153E, ISL3155E  
ISL3156E, ISL3158E  
0.115  
1
1100  
150  
8
23ft (7m)  
20  
1.2ft (0.36m)  
Table 4 proves that transceivers with long driver rise times are well suited for applications requiring long stub  
lengths and low radiated emission in the presence of increased stub inductance.  
6.1.4  
Minimum Distance between Nodes  
The electrical characteristics of the RS-485 bus are primarily defined by the distributed inductance and  
capacitance along the bus cable and printed circuit board traces. Adding capacitance to the bus in the form of  
transceivers and connectors lowers the line impedance and causes impedance mismatches at the loaded bus  
section.  
Input signals arriving at these mismatches are partially reflected back to the signal source, distorting the driver  
output signal. Ensuring a valid receiver input voltage during the first signal transition from a driver output  
Z
0.4Z  
anywhere on the bus, requires the bus impedance at the mismatches to be  
or  
load  
nom  
0.4 x 120= 48. This can be achieved by maintaining a minimum distance between bus nodes of:  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 23 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
6. Application Information  
C
L
5.25 C  
-----------------------  
D
(EQ. 2)  
min  
C
where  
• C is the lumped load capacitance  
L
• C is the distributed cable or PCB trace capacitance per unit length.  
C
Figure 40 shows the relationship for the minimum node spacing as a function of C and C graphically. Load  
C
L
capacitance includes contributions from the line circuit bus pins, connector contacts, printed circuit board  
traces, protection devices, and any other physical connections to the trunk line as long as the distance from the  
bus to the transceiver, known as the stub, is electrically short.  
Putting some values to the individual capacitance contributions: 5V transceivers typically possess a capacitance  
of 7pF, while 3V transceivers have about twice that capacitance at 16pF. Board traces add about 1.3 to 2pF/in  
depending upon their construction.  
Connector and suppression device capacitance can vary widely. Media distributed capacitance ranges from  
11pF/ft for low capacitance, unshielded, twisted-pair cable up to 22pF/ft for backplanes.  
20  
C
L
(pF)  
100  
60  
40  
20  
10  
16  
12  
8
4
0
40  
50  
60  
70  
80  
Distributed Cable Capacitance – C (pF)  
C
Figure 40. Minimum Distance between Bus Nodes as Function of Cable and Load Capacitance  
6.1.5  
Failsafe Biasing Termination  
As mentioned in “Full-Failsafe Receiver” on page 19, the ISL315xE transceivers are full-failsafe and capable of  
tolerating up to 140mV of differential noise on a passive bus without needing external failsafe biasing.  
P-P  
However, in harsh industrial environments, such as the factor floors in industrial automation, the differential  
noise can reach levels of more than 1V . In this case external failsafe biasing at the network’s line  
P-P  
terminations is strongly recommended. Here the termination resistors R connect through the biasing resistors  
T
R to the supply rails V and GND.  
B
CC  
Short data links (<100m) only require a single failsafe termination at one cable end, while the other end is  
terminated with the cable characteristic impedance Z (Figure 41, left circuit).  
0
FN6363 Rev.4.00  
Apr 19, 2018  
Page 24 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
6. Application Information  
V
V
S
V
S
S
R
R
R
R
R
B
B
B
T
L<100m  
V
L>100m  
V
AB  
Z
0
Z
0
R
R
T1  
R
T2  
AB  
T
R
B
R
B
B
Figure 41. Failsafe Biasing of Short (<100m) and Long (>100m) Data Links  
The corresponding resistor values are calculated with Equations 3 to 5.  
V
V  
+ 1  
AB  
S
(EQ. 3)  
(EQ. 4)  
--------------------------------  
R
=
B
0.036  
R
120  
B
---------------------------  
R
=
T2  
R
60  
B
(EQ. 5)  
R
= 120  
T1  
Longer data links (>100m) require two identical failsafe basing networks, one at each cable end, to minimize  
the differential voltage drop along the bus (Figure 41, right circuit). Their resistor values are calculated using  
Equations 6 and 7:  
2V V  
+ 1  
AB  
(EQ. 6)  
S
------------------------------------  
R
R
=
=
B
0.036  
R
120  
(EQ. 7)  
B
---------------------------  
60  
T
R
B
Note that Equations 3 to 7 apply to the multi-driver applications of half- and full-duplex networks. For single  
driver applications, the values of R and R are calculated using Equations 8 and 9.  
B
T
V
S
V
S
DE  
DI  
R
R
R
B
Z
0
D
V
AB  
T
B
RO  
R
R
RO  
Figure 42. Failsafe Biasing of a Single-Driver Network  
V
S
(EQ. 8)  
(EQ. 9)  
-----------  
R
R
= 60   
B
V
AB  
R
120  
B
---------------------------  
=
T
R
60  
B
For more details on failsafe biasing refer to TB509.  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 25 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
6. Application Information  
6.2  
Transient Protection  
Although the ISL315xE transceivers have on-chip transient protection circuitry against Electrostatic Discharge  
(ESD), they are vulnerable to bursts of Electrical Fast Transients (EFT) and surge transients. Surge transients can  
be caused by lightning strikes or the switching of power systems including load changes and short circuits. Their  
energy content is up to 8 million times higher than that of ESD transients and thus, requires the addition of external  
transient protection.  
Because standard RS-485 transceivers have asymmetric stand-off voltages of -9V and +14V, external protection  
requires a bidirectional Transient Voltage Suppressor (TVS) with asymmetric breakdown voltages. The only device  
satisfying this requirement is the 400W TVS, SM712.  
The SM712 operates across the asymmetrical common-mode voltage range from -7V to +12V. The device protects  
transceivers against ESD, EFT, and surge transients up to the following levels:  
• IEC61000-4-2 (ESD) +15kV (air), +8kV (contact)  
• IEC61000-4-4 (EFT) 40A (5/50ns)  
• IEC61000-4-5 (Lightning) 12A (8/20μs)  
Because the transceiver’s ESD cells and the SM712 have a similar switching characteristics, series resistors (R )  
S
are used to prevent the two protection schemes from interacting with one another.  
These resistors can be carbon composite or pulse-proof thick-film resistors which should be inserted between the  
TVS and the transceiver bus terminals to limit the bus currents into the transceiver during a surge event. Their value  
should be less than 20Ω to minimize the attenuation of the bus voltage during normal operation. Figure 43 shows  
the schematic of a 1kV surge protection example for the ISL3152E and its bill of materials.  
V
S
100n  
8
V
CC  
Name  
XCVR  
TVS  
Function  
Order No.  
ISL3152EIBZ  
SM712.TCT  
Vendor  
Renesas  
Semtech  
1
2
3
4
RO  
RE  
DE  
DI  
R
R
S
S
5V, 115kbps transceiver  
B/Z  
A/Y  
7
6
B
A
400W (8,20μs),  
bidirectional TVS  
RS  
10Ω, 0.2W, pulse-proof CRCW0603-HP  
thick-film resistor e3 series  
Vishay  
1
2
GND  
5
XCVR  
TVS  
3
Figure 43. IEC61000-4-5 Level 2 (1kV) Surge Protection and Associated Bill of Materials  
For more information on transient protection, refer to AN1976, AN1977, AN1978, and AN1979.  
6.3  
Layout Guidelines  
Because ESD and EFT transients have a wide frequency bandwidth from approximately 3MHz to 3GHz,  
high-frequency layout techniques must be applied during PCB design.  
• For your PCB design to be successful, start with the design of the protection circuit in mind.  
• Place the protection circuitry close to the bus connector to prevent noise transients from penetrating your board.  
• Use V and ground planes to provide low-inductance. Note that high-frequency currents follow the path of least  
CC  
inductance and not the path of least impedance.  
• Design the protection components into the direction of the signal path. Do not force the transient currents to divert  
from the signal path to reach the protection device.  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 26 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
6. Application Information  
• Apply 100nF to 220nF bypass capacitors as close as possible to the V pins of the transceiver, UART, and  
CC  
controller ICs on the board.  
• Use at least two vias for V and ground connections of bypass capacitors and protection devices to minimize the  
CC  
effective via-inductance.  
• Use 1kto 10kpull-up/down resistors for the transceiver enable lines to limit noise currents into these lines  
during transient events.  
• Insert pulse-proof resistors into the A and B bus lines if the TVS clamping voltage is higher than the specified  
maximum voltage of the transceiver bus terminals. These resistors limit the residual clamping current into the  
transceiver and prevent it from latching up.  
6.3.1  
Layout Example  
= VCC Vias  
RPU  
= Ground Vias  
RPU  
CB  
ISL3152E  
RS  
1
2
R
8
7
6
5
VCC  
B
RE  
DE  
D
to Bus  
Connector  
MCU  
3
4
A
GND  
TVS  
RPD  
RS  
Figure 44. ISL3152E Layout Example  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 27 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
7. Revision History  
7. Revision History  
Rev.  
Date  
Description  
4.00  
Apr 19, 2018  
Updated to the latest Renesas formatting.  
Updated title.  
Updated Application and Features bullets.  
Updated Table 1.  
Updated Ordering Information table by adding all available parts, updating Note 1, and removing Notes 2  
through 5.  
Updated Pin Descriptions.  
Updated Figures 1 through 9.  
Updated Recommended Operating Conditions - Supply Voltage.  
Added Device Description sections.  
Rewrote the Application Information sections.  
Added the following Typical Performance curves:  
-Driver Output High and Low Voltages vs Output Current  
-Driver Output Voltages vs Common-Mode Voltage  
-Driver Output Voltage vs Supply Voltage  
-Supply Current vs Data Rate for all three data rate versions  
3.00  
Aug 23, 2017 Updated the Receiving Truth Table.  
Updated header/footer.  
Updated the POD M8.118 from revision 2 to revision 4. Changes since revision 2:  
-Updated to new format by adding land pattern and moving dimensions from the table to the drawing.  
-Corrected lead width dimension in side view 1 from “0.25 - 0.036” to “0.25 - 0.36”.  
Updated the POD M10.118 from revision 0 to revision 1. Changes since revision 0:  
-Updated to new format by adding land pattern and moving dimensions from the table to the drawing.  
Updated the POD M14.15 from revision 0 to revision 1. Changes since revision 0:  
-Updated to new format by adding land pattern and moving dimensions from the table to the drawing.  
Updated the POD M8.15 from revision 1 to revision 4. Changes since revision 1:  
-Changed Note 1 “1982” to “1994”  
-In the Typical Recommended Land pattern, changed the following:  
2.41 (0.095) to 2.20 (0.087)  
0.76 (0.030) to 0.60 (0.023)  
0.20 to 5.20 (0.205)  
Updated to new format by adding land pattern and moving dimensions from the table to the drawing.  
2.00  
Jun 30 2009  
Converted to new Intersil template. Rev. 2 changes are as follows:  
Page 1 – Introduction was reworded to fit graphs. Features section by listing only key features.  
Added performance graphs.  
Page – 2 Updated Ordering Information by numbering all notes and referencing them on each part.  
Added MSL Note as new standard with linked parts to device info page. Updated Pinout name to Pin  
Configurations with Pin Descriptions following on page 3.  
Page 5 – Added Boldface limit verbiage in Electrical specifications table and added bold formatting for Min  
and Max over-temperature limits.  
Page 17 – Added Revision History and Products information with all links included.  
1.00  
0.00  
0.00  
Jan 17 2008  
Added 8 Ld PDIP to ordering information, POD, and Thermal resistance. Applied Intersil Standards as  
follows: Updated ordering information with Notes for tape and reel reference, Pb-free PDIP and lead finish.  
Added Pb-free reflow link and Pb-free note to Thermal Information. Added E8.3 POD.  
Feb 20, 2007 Cosmetic edit to the ISL315xE data sheet, no rev, no date change, no formal review. Removed both  
commas in this sentence in the first paragraph: “Each driver output, and receiver input, is protected against  
±16.5kV ESD strikes without latch-up.”  
Dec 14, 2006 Initial release  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 28 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
8. Package Outline Drawings  
For the most recent package outline drawing, see M8.15.  
8. Package Outline Drawings  
M8.15  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 4, 1/12  
DETAIL "A"  
1.27 (0.050)  
0.40 (0.016)  
INDEX  
AREA  
6.20 (0.244)  
5.80 (0.228)  
0.50 (0.20)  
x 45°  
0.25 (0.01)  
4.00 (0.157)  
3.80 (0.150)  
8°  
0°  
1
2
3
0.25 (0.010)  
0.19 (0.008)  
SIDE VIEW “B”  
TOP VIEW  
2.20 (0.087)  
1
8
SEATING PLANE  
0.60 (0.023)  
1.27 (0.050)  
1.75 (0.069)  
5.00 (0.197)  
4.80 (0.189)  
2
3
7
6
1.35 (0.053)  
-C-  
4
5
0.25(0.010)  
0.10(0.004)  
1.27 (0.050)  
0.51(0.020)  
0.33(0.013)  
5.20(0.205)  
SIDE VIEW “A  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
2. Package length does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006  
inch) per side.  
3. Package width does not include interlead flash or protrusions. Interlead  
flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.  
4. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
5. Terminal numbers are shown for reference only.  
6. The lead width as measured 0.36mm (0.014 inch) or greater above the  
seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch).  
7. Controlling dimension: MILLIMETER. Converted inch dimensions are not  
necessarily exact.  
8. This outline conforms to JEDEC publication MS-012-AA ISSUE C.  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 29 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
8. Package Outline Drawings  
M8.118  
For the most recent package outline drawing, see M8.118.  
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE  
Rev 4, 7/11  
5
3.0±0.05  
A
DETAIL "X"  
D
8
1.10 MAX  
SIDE VIEW 2  
0.09 - 0.20  
4.9±0.15  
3.0±0.05  
5
0.95 REF  
PIN# 1 ID  
1
2
B
0.65 BSC  
GAUGE  
TOP VIEW  
PLANE  
0.25  
3°±3°  
0.55 ± 0.15  
0.85±010  
H
DETAIL "X"  
C
SEATING PLANE  
0.10 C  
0.25 - 0.36  
0.10 ± 0.05  
0.08  
C A-B D  
M
SIDE VIEW 1  
(5.80)  
NOTES:  
(4.40)  
(3.00)  
1. Dimensions are in millimeters.  
2. Dimensioning and tolerancing conform to JEDEC MO-187-AA  
and AMSEY14.5m-1994.  
3. Plastic or metal protrusions of 0.15mm max per side are not  
included.  
(0.65)  
4. Plastic interlead protrusions of 0.15mm max per side are not  
included.  
(0.40)  
(1.40)  
5. Dimensions are measured at Datum Plane "H".  
6. Dimensions in ( ) are for reference only.  
TYPICAL RECOMMENDED LAND PATTERN  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 30 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
8. Package Outline Drawings  
M10.118  
For the most recent package outline drawing, see M10.118.  
10 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE  
Rev 1, 4/12  
5
3.0±0.05  
A
DETAIL "X"  
D
10  
1.10 MAX  
SIDE VIEW 2  
0.09 - 0.20  
4.9±0.15  
3.0±0.05  
5
0.95 REF  
PIN# 1 ID  
1
2
0.50 BSC  
B
GAUGE  
TOP VIEW  
PLANE  
0.25  
3°±3°  
0.55 ± 0.15  
0.85±010  
H
DETAIL "X"  
C
SEATING PLANE  
0.10 C  
0.18 - 0.27  
0.10 ± 0.05  
0.08  
C A-B D  
M
SIDE VIEW 1  
(5.80)  
NOTES:  
(4.40)  
(3.00)  
1. Dimensions are in millimeters.  
2. Dimensioning and tolerancing conform to JEDEC MO-187-BA  
and AMSEY14.5m-1994.  
3. Plastic or metal protrusions of 0.15mm max per side are not  
included.  
(0.50)  
4. Plastic interlead protrusions of 0.15mm max per side are not  
included.  
5. Dimensions are measured at Datum Plane "H".  
6. Dimensions in ( ) are for reference only.  
(0.29)  
(1.40)  
TYPICAL RECOMMENDED LAND PATTERN  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 31 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
8. Package Outline Drawings  
M14.15  
For the most recent package outline drawing, see M14.15.  
14 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 1, 10/09  
4
0.10 C A-B 2X  
8.65  
A
3
6
DETAIL"A"  
0.22±0.03  
D
14  
8
6.0  
3.9  
4
0.10 C D 2X  
0.20 C 2X  
7
PIN NO.1  
ID MARK  
(0.35) x 45°  
4° ± 4°  
5
0.31-0.51  
0.25M C A-B D  
B
3
6
TOP VIEW  
0.10 C  
H
1.75 MAX  
1.25 MIN  
0.25  
GAUGE PLANE  
SEATING PLANE  
C
0.10-0.25  
1.27  
0.10 C  
SIDE VIEW  
DETAIL "A"  
(1.27)  
(0.6)  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSEY14.5m-1994.  
3. Datums A and B to be determined at Datum H.  
(5.40)  
4. Dimension does not include interlead flash or protrusions.  
Interlead flash or protrusions shall not exceed 0.25mm per side.  
5. The pin #1 indentifier may be either a mold or mark feature.  
6. Does not include dambar protrusion. Allowable dambar protrusion  
shall be 0.10mm total in excess of lead width at maximum condition.  
(1.50)  
7. Reference to JEDEC MS-012-AB.  
TYPICAL RECOMMENDED LAND PATTERN  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 32 of 34  
ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E  
8. Package Outline Drawings  
Dual-In-Line Plastic Packages (PDIP)  
For the most recent package outline drawing, see E8.3.  
E8.3 (JEDEC MS-001-BA ISSUE D)  
N
8 LEAD DUAL-IN-LINE PLASTIC PACKAGE  
E1  
INCHES  
MILLIMETERS  
INDEX  
AREA  
1
2
3
N/2  
SYMBOL  
MIN  
MAX  
0.210  
-
MIN  
-
MAX  
5.33  
-
NOTES  
-B-  
A
A1  
A2  
B
-
4
-A-  
0.015  
0.115  
0.014  
0.045  
0.008  
0.355  
0.005  
0.300  
0.240  
0.39  
2.93  
0.356  
1.15  
0.204  
9.01  
0.13  
7.62  
6.10  
4
D
E
BASE  
PLANE  
0.195  
0.022  
0.070  
0.014  
0.400  
-
4.95  
0.558  
1.77  
0.355  
10.16  
-
-
A2  
A
-C-  
-
SEATING  
PLANE  
B1  
C
8, 10  
L
C
L
-
D1  
B1  
eA  
A
1
D1  
e
D
5
eC  
C
B
D1  
E
5
eB  
0.010 (0.25) M  
C A B S  
0.325  
0.280  
8.25  
7.11  
6
NOTES:  
E1  
e
5
1. Controlling Dimensions: INCH. In case of conflict between  
0.100 BSC  
0.300 BSC  
2.54 BSC  
7.62 BSC  
-
English and Metric dimensions, the inch dimensions control.  
eA  
eB  
L
6
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
-
0.430  
0.150  
-
10.92  
3.81  
7
3. Symbols are defined in the “MO Series Symbol List” in Section  
2.2 of Publication No. 95.  
0.115  
2.93  
4
9
4. Dimensions A, A1 and L are measured with the package seated  
N
8
8
in JEDEC seating plane gauge GS-3.  
Rev. 0 12/93  
5. D, D1, and E1 dimensions do not include mold flash or protru-  
sions. Mold flash or protrusions shall not exceed 0.010 inch  
(0.25mm).  
eA  
6. E and  
are measured with the leads constrained to be per-  
-C-  
pendicular to datum  
.
7. eB and eC are measured at the lead tips with the leads uncon-  
strained. eC must be zero or greater.  
8. B1 maximum dimensions do not include dambar protrusions.  
Dambar protrusions shall not exceed 0.010 inch (0.25mm).  
9. N is the maximum number of terminal positions.  
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3,  
E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch  
(0.76 - 1.14mm).  
FN6363 Rev.4.00  
Apr 19, 2018  
Page 33 of 34  
Notice  
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for  
the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by  
you or third parties arising from the use of these circuits, software, or information.  
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or  
arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application  
examples.  
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.  
4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by  
you or third parties arising from such alteration, modification, copying or reverse engineering.  
5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the  
product’s quality grade, as indicated below.  
"Standard":  
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic  
equipment; industrial robots; etc.  
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.  
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are  
not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause  
serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all  
liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or  
other Renesas Electronics document.  
6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the  
reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation  
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified  
ranges.  
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a  
certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas  
Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury  
or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to  
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult  
and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.  
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and  
sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics  
products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable  
laws and regulations.  
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws  
or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or  
transactions.  
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third  
party in advance of the contents and conditions set forth in this document.  
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.  
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.  
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.  
(Rev.4.0-1 November 2017)  
SALES OFFICES  
Refer to "http://www.renesas.com/" for the latest and detailed information.  
http://www.renesas.com  
Renesas Electronics America Inc.  
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.  
Tel: +1-408-432-8888, Fax: +1-408-434-5351  
Renesas Electronics Canada Limited  
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3  
Tel: +1-905-237-2004  
Renesas Electronics Europe Limited  
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K  
Tel: +44-1628-651-700, Fax: +44-1628-651-804  
Renesas Electronics Europe GmbH  
Arcadiastrasse 10, 40472 Düsseldorf, Germany  
Tel: +49-211-6503-0, Fax: +49-211-6503-1327  
Renesas Electronics (China) Co., Ltd.  
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China  
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679  
Renesas Electronics (Shanghai) Co., Ltd.  
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China  
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999  
Renesas Electronics Hong Kong Limited  
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong  
Tel: +852-2265-6688, Fax: +852 2886-9022  
Renesas Electronics Taiwan Co., Ltd.  
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan  
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670  
Renesas Electronics Singapore Pte. Ltd.  
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949  
Tel: +65-6213-0200, Fax: +65-6213-0300  
Renesas Electronics Malaysia Sdn.Bhd.  
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia  
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510  
Renesas Electronics India Pvt. Ltd.  
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India  
Tel: +91-80-67208700, Fax: +91-80-67208777  
Renesas Electronics Korea Co., Ltd.  
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea  
Tel: +82-2-558-3737, Fax: +82-2-558-5338  
© 2018 Renesas Electronics Corporation. All rights reserved.  
Colophon 7.0  

相关型号:

ISL3152EIBZ-T7

Large 3V Output Swing, 16.5kV ESD, Full Fail-Safe, 1/8 Unit Load, RS-485/RS-422 Transceivers
RENESAS

ISL3152EIBZ-T7A

Large 3V Output Swing, 16.5kV ESD, Full Fail-Safe, 1/8 Unit Load, RS-485/RS-422 Transceivers
RENESAS

ISL3152EIPZ

【16.5kV ESD (IEC61000-4-2) Protected, Large Output Swing, 5V, Full Fail-Safe, 1/8 Unit Load, RS-485/RS-422 Transceivers
INTERSIL

ISL3152EIPZ

Large 3V Output Swing, 16.5kV ESD, Full Fail-Safe, 1/8 Unit Load, RS-485/RS-422 Transceivers
RENESAS

ISL3152EIUZ

【16.5kV ESD (IEC61000-4-2) Protected, Large Output Swing, 5V, Full Fail-Safe, 1/8 Unit Load, RS-485/RS-422 Transceivers
INTERSIL

ISL3152EIUZ

Large 3V Output Swing, 16.5kV ESD, Full Fail-Safe, 1/8 Unit Load, RS-485/RS-422 Transceivers
RENESAS

ISL3152EIUZ-T

Large 3V Output Swing, 16.5kV ESD, Full Fail-Safe, 1/8 Unit Load, RS-485/RS-422 Transceivers
RENESAS

ISL3152EIUZ-T7A

Large 3V Output Swing, 16.5kV ESD, Full Fail-Safe, 1/8 Unit Load, RS-485/RS-422 Transceivers
RENESAS

ISL3153E

【16.5kV ESD (IEC61000-4-2) Protected, Large Output Swing, 5V, Full Fail-Safe, 1/8 Unit Load, RS-485/RS-422 Transceivers
INTERSIL

ISL3153E

Large 3V Output Swing, 16.5kV ESD, Full Fail-Safe, 1/8 Unit Load, RS-485/RS-422 Transceivers
RENESAS

ISL3153EIBZ

【16.5kV ESD (IEC61000-4-2) Protected, Large Output Swing, 5V, Full Fail-Safe, 1/8 Unit Load, RS-485/RS-422 Transceivers
INTERSIL

ISL3153EIBZ-T

5V Full Duplex, 1Mbps, IEC61000 ESD Protected with 2.4V Vod RS-485/RS-422 Transceiver; MSOP10, SOIC14; Temp Range: -40&deg; to 85&deg;C
RENESAS