ISL60002CIH320Z [RENESAS]

THREE TERM VOLTAGE REFERENCE;
ISL60002CIH320Z
型号: ISL60002CIH320Z
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

THREE TERM VOLTAGE REFERENCE

文件: 总38页 (文件大小:1689K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Low Power FGA™ Voltage References  
ISL60002  
The ISL60002 FGA™ voltage references are very high precision  
analog voltage references fabricated in Intersil's proprietary  
Floating Gate Analog technology and feature low supply  
voltage operation at ultra-low 350nA operating current.  
Features  
• Reference voltages . . . . . 1.024V, 1.2V, 1.25V, 1.8V, 2.048V,  
2.5V, 2.6V, 3.0V and 3.3V  
• Absolute initial accuracy options . . . . . . . . . ±1.0mV,±2.5mV  
and ±5.0mV  
Additionally, the ISL60002 family features guaranteed initial  
accuracy as low as ±1.0mV and 20ppm/°C temperature  
coefficient. The initial accuracy and temperature stability  
performance of the ISL60002 family, plus the low supply  
voltage and 350nA power consumption, eliminates the need  
to compromise thermal stability for reduced power  
consumption making it an ideal companion to high resolution,  
low power data conversion systems.  
• Supply voltage range  
- ISL60002-10, -11, -12, -18, -20, -25 . . . . . . . . 2.7V to 5.5V  
- ISL60002-26 . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8V to 5.5V  
- ISL60002-30 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2V to 5.5V  
- ISL60002-33 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5V to 5.5V  
• Ultra-low supply current. . . . . . . . . . . . . . . . . . . . . . .350nA typ  
• Low 20ppm/°C temperature coefficient  
Special Note: Post-assembly x-ray inspection may lead to  
permanent changes in device output voltage and should be  
minimized or avoided. For further information, please see  
“Applications Information” on page 34 and AN1533, “X-Ray  
Effects on Intersil FGA References”.  
• I  
• I  
and I  
= 7mA  
SOURCE  
SINK  
and I  
= 20mA for ISL60002-33 only  
SOURCE  
SINK  
• ESD protection . . . . . . . . . . . . . . 5500V (human body model)  
• Standard 3 Ld SOT-23 packaging  
Applications  
• High resolution A/Ds and D/As  
• Operating temperature range  
- ISL60002-10, -11, -12, -18, -20, -25,  
-26, -30 . . . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C  
• Digital meters  
- ISL60002-33 . . . . . . . . . . . . . . . . . . . . . . .-40°C to +105°C  
• Bar code scanners  
• Pb-Free (RoHS Compliant)  
• Mobile communications  
• PDA’s and notebooks  
• Medical systems  
Related Literature  
• See AN1494, “Reflow and PC Board Assembly Effects on  
Intersil FGA References”  
• See AN1533, “X-Ray Effects on Intersil FGA References”  
• See TB475, “ISL21009-25 and ISL60002-30 Capacitive  
Load Drive Capability”  
• See AN1843 "ISL60002XXEVAL1Z User's Guide"  
V
= +3.0V  
IN  
0.1µF  
10µF  
V
IN  
V
OUT  
0.001µF*  
ISL60002-25  
V
= 2.50V  
OUT  
GND  
REF IN  
ENABLE  
SCK  
SERIAL  
BUS  
SDAT  
16 TO 24-BIT  
A/D CONVERTER  
NOTE: *Also see Figure 119 on page 35 in Applications Information.  
FIGURE 1. TYPICAL APPLICATION  
January 16, 2014  
FN8082.19  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas LLC 2004-2010, 2014. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISL60002  
Table of Contents  
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Electrical Specifications ISL60002-10, V  
Electrical Specifications ISL60002-11, V  
Electrical Specifications ISL60002-18, V  
Electrical Specifications ISL60002-20, V  
Electrical Specifications ISL60002-26, V  
Electrical Specifications ISL60002-30, V  
Electrical Specifications ISL60002-33, V  
= 1.024V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
= 1.200V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
= 1.800V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
= 2.048V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
= 2.600V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
= 3.000V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
= 3.300V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
Common Electrical Specifications ISL60002 -10, -11, -12, -18, -20, and -25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Typical Performance Characteristic Curves, V  
Typical Performance Characteristic Curves, V  
Typical Performance Characteristic Curves, V  
= 1.024V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
= 1.20V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
= 1.25V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
OUT  
OUT  
OUT  
Typical Performance Curves, V  
Typical Performance Curves, V  
= 1.8V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
= 2.048V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
OUT  
OUT  
Typical Performance Characteristic Curves, V  
Typical Performance Characteristic Curves, V  
Typical Performance Characteristic Curves, V  
= 2.50V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
= 3.0V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
= 3.3V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
OUT  
OUT  
OUT  
High Current Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
FGA Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Nanopower Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Board Mounting Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Board Assembly Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Special Applications Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Noise Performance and Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Turn-On Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Temperature Coefficient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
FN8082.19  
January 16, 2014  
2
ISL60002  
m
Pin Configuration  
ISL60002  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
DESCRIPTION  
(3 LD SOT-23)  
TOP VIEW  
1
2
3
V
IN  
Power Supply Input  
V
Voltage Reference Output  
Ground  
OUT  
1
2
V
IN  
GND  
3
GND  
V
OUT  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
V
(V)  
TEMP. RANGE  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
OUT  
PART MARKING  
GRADE  
(°C)  
ISL60002BIH320Z  
DEY (Note 4)  
AON (Note 4)  
DEZ (Note 4)  
APC (Note 4)  
DFB (Note 4)  
DFC (Note 4)  
DFD (Note 4)  
APM (Note 4)  
AOR (Note 4)  
AOY (Note 4)  
AOM (Note 4)  
AOS (Note 4)  
APA (Note 4)  
DEO (Note 4)  
DEP(Note 4)  
DEQ (Note 4)  
DEY (Note 4)  
DEZ (Note 4)  
DFA (Note 4)  
AON (Note 4)  
APB (Note 4)  
AOT (Note 4)  
DFK (Note 4)  
DFL (Note 4)  
DFM (Note 4)  
DFI (Note 4)  
DFJ (Note 4)  
DFH (Note 4)  
AOP (Note 4)  
AOU (Note 4)  
2.048  
2.500  
2.048  
3.300  
1.024  
1.024  
1.024  
1.200  
1.200  
1.200  
1.250  
1.250  
1.250  
1.800  
1.800  
1.800  
2.048  
2.048  
2.048  
2.500  
2.500  
2.500  
2.600  
2.600  
2.600  
3.000  
3.000  
3.000  
3.300  
3.300  
±1.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +105  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +105  
-40 to +105  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
ISL60002BIH325Z  
ISL60002CIH320Z  
ISL60002DAH333Z  
ISL60002BIH310Z-TK  
ISL60002CIH310Z-TK  
ISL60002DIH310Z-TK  
ISL60002BIH311Z-TK  
ISL60002CIH311Z-TK  
ISL60002DIH311Z-TK  
ISL60002BIH312Z-TK  
ISL60002CIH312Z-TK  
ISL60002DIH312Z-TK  
ISL60002BIH318Z-TK  
ISL60002CIH318Z-TK  
ISL60002DIH318Z-TK  
ISL60002BIH320Z-TK  
ISL60002CIH320Z-TK  
ISL60002DIH320Z-TK  
ISL60002BIH325Z-TK  
ISL60002DIH325Z-TK  
ISL60002CIH325Z-TK  
ISL60002BIH326Z-TK  
ISL60002CIH326Z-TK  
ISL60002DIH326Z-TK  
ISL60002BIH330Z-TK  
ISL60002CIH330Z-TK  
ISL60002DIH330Z-TK  
ISL60002BAH333Z-TK  
ISL60002CAH333Z-TK  
FN8082.19  
January 16, 2014  
3
ISL60002  
Ordering Information(Continued)  
PART NUMBER  
(Notes 1, 2, 3)  
V
(V)  
TEMP. RANGE  
(°C)  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
OUT  
PART MARKING  
APC (Note 4)  
AOP (Note 4)  
DFB (Note 4)  
DEY (Note 4)  
AON (Note 4)  
AOT (Note 4)  
APC (Note 4)  
DFD (Note 4)  
APA (Note 4)  
APB (Note 4)  
DFH (Note 4)  
GRADE  
ISL60002DAH333Z-TK  
ISL60002BAH333Z-T7A  
ISL60002BIH310Z-T7A  
ISL60002BIH320Z-T7A  
ISL60002BIH325Z-T7A  
ISL60002CIH325Z-T7A  
ISL60002DAH333Z-T7A  
ISL60002DIH310Z-T7A  
ISL60002DIH312Z-T7A  
ISL60002DIH325Z-T7A  
ISL60002DIH330Z-T7A  
NOTES:  
3.300  
3.300  
1.024  
2.048  
2.500  
2.500  
3.300  
1.024  
1.250  
2.500  
3.000  
±5.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
-40 to +105  
-40 to +105  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +105  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
3 Ld SOT-23  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
1. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL60002. For more information on MSL please see techbrief TB363.  
4. The part marking is located on the bottom of the part.  
FN8082.19  
January 16, 2014  
4
ISL60002  
Absolute Maximum Ratings  
Thermal Information  
Thermal Resistance (Typical)  
3 Ld SOT-23 (Notes 6, 7) . . . . . . . . . . . . . . .  
Max Voltage V to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to +6.5V  
θ
(°C/W)  
275  
θ
(°C/W)  
110  
IN  
JA  
JC  
Max Voltage V  
OUT  
to GND (10s):. . . . . . . . . . . . . . . . . . .-0.5V to +V + 1V  
OUT  
Voltage on “DNC” pins . . . . . . . . . .No connections permitted to these pins  
ESD Ratings  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5500V  
Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550V  
Charged Device Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2kV  
Continuous Power Dissipation (T = +85°C) . . . . . . . . . . . . . . . . . . .99mW  
A
Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . .+107°C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Environmental Operating Conditions  
Recommended Operating Conditions  
X-Ray Exposure (Note 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mRem  
Temperature Range  
Industrial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
3.3V Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +105°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
5. Measured with no filtering, distance of 10” from source, intensity set to 55kV and 70mA current, 30s duration. Other exposure levels should be  
analyzed for Output Voltage drift effects. See “Applications Information” on page 34.  
6. θ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
7. For θ , the “case temp” location is taken at the package top center.  
JC  
8. Post-reflow drift for the ISL60002 devices will range from 100µV to 1.0mV based on experimental results with devices on FR4 double sided boards.  
The design engineer must take this into account when considering the reference voltage after assembly.  
9. Post-assembly x-ray inspection may also lead to permanent changes in device output voltage and should be minimized or avoided. Initial accuracy  
can change 10mV or more under extreme radiation. Most inspection equipment will not affect the FGA reference voltage, but if x-ray inspection is  
required, it is advisable to monitor the reference output voltage to verify excessive shift has not occurred.  
Electrical Specifications ISL60002-10, V  
= 1.024V (Additional specifications on page 9, “Common Electrical  
OUT  
Specifications”) Operating Conditions: V = 3.0V, I  
IN OUT  
= 0mA, C  
= 0.001µF, T = -40 to +85°C, unless otherwise specified. Boldface limits apply over  
OUT A  
the operating temperature range, -40°C to +85°C  
MIN  
(Note  
10)  
MAX  
(Note  
10)  
SYMBOL  
PARAMETER  
Output Voltage  
NOTES:V Accuracy (Notes 11, 9)  
CONDITIONS  
TYP  
UNITS  
V
V
1.024  
OUT  
V
T = +25°C  
A
OA  
OUT  
ISL60002B10  
ISL60002C10  
ISL60002D10  
-1.0  
-2.5  
-5.0  
2.7  
+1.0  
+2.5  
+5.0  
5.5  
mV  
mV  
mV  
V
V
Input Voltage Range  
IN  
Electrical Specifications ISL60002-11, V  
= 1.200V (Additional specifications on page 9, “Common Electrical  
OUT  
Specifications”). Operating Conditions: V = 3.0V, I  
IN  
= 0mA, C  
= 0.001µF, T = -40 to +85°C, unless otherwise specified. Boldface limits apply over  
OUT A  
OUT  
the operating temperature range, -40°C to +85°C  
MIN  
(Note  
10)  
MAX  
(Note  
10)  
SYMBOL  
PARAMETER  
Output Voltage  
Accuracy (Note 11)  
CONDITIONS  
TYP  
UNITS  
V
V
1.200  
OUT  
V
V
T = +25°C  
A
OA  
OUT  
ISL60002B11  
ISL60002C11  
ISL60002D11  
-1.0  
-2.5  
-5.0  
2.7  
+1.0  
+2.5  
+5.0  
5.5  
mV  
mV  
mV  
V
V
Input Voltage Range  
IN  
FN8082.19  
January 16, 2014  
5
ISL60002  
Electrical Specifications ISL60002-12, V  
= 1.250V (Additional specifications on page 9, “Common Electrical  
OUT  
Specifications”) Operating Conditions: V = 3.0V, I  
IN  
= 0mA, C  
= 0.001µF, T = -40 to +85°C, unless otherwise specified. Boldface limits apply over  
OUT  
the operating temperature range, -40°C to +85°C  
OUT  
A
MIN  
(Note  
10)  
MAX  
(Note  
10)  
SYMBOL  
PARAMETER  
Output Voltage  
Accuracy (Note 11)  
CONDITIONS  
TYP  
UNITS  
V
V
1.250  
OUT  
V
V
T = +25°C  
A
OA  
OUT  
ISL60002B12  
ISL60002C12  
ISL60002D12  
-1.0  
-2.5  
-5.0  
2.7  
+1.0  
+2.5  
+5.0  
5.5  
mV  
mV  
mV  
V
V
Input Voltage Range  
IN  
Electrical Specifications ISL60002-18, V  
= 1.800V (Additional specifications on page 9, “Common Electrical  
OUT  
Specifications”). Operating Conditions: V = 3.0V, I  
IN  
= 0mA, C  
= 0.001µF, T = -40 to +85°C, unless otherwise specified. Boldface limits apply over  
OUT A  
OUT  
the operating temperature range, -40°C to +85°C  
MIN  
(Note  
10)  
MAX  
(Note  
10)  
SYMBOL  
PARAMETER  
Output Voltage  
Accuracy (Note 11)  
CONDITIONS  
TYP  
UNITS  
V
V
1.800  
OUT  
V
V
T = +25°C  
A
OA  
OUT  
ISL60002B18  
ISL60002C18  
ISL60002D18  
-1.0  
-2.5  
-5.0  
2.7  
+1.0  
+2.5  
+5.0  
5.5  
mV  
mV  
mV  
V
V
Input Voltage Range  
IN  
Electrical Specifications ISL60002-20, V  
= 2.048V (Additional specifications on page 9, “Common Electrical  
OUT  
Specifications”). Operating Conditions: V = 3.0V, I  
IN  
= 0mA, C  
= 0.001µF, T = -40 to +85°C, unless otherwise specified. Boldface limits apply over  
OUT A  
OUT  
the operating temperature range, -40°C to +85°C  
MIN  
(Note  
10)  
MAX  
(Note  
10)  
SYMBOL  
PARAMETER  
Output Voltage  
Accuracy (Note 11)  
CONDITIONS  
TYP  
UNITS  
V
V
2.048  
OUT  
V
V
T = +25°C  
A
OA  
OUT  
ISL60002B20  
ISL60002C20  
ISL60002D20  
-1.0  
-2.5  
-5.0  
2.7  
+1.0  
+2.5  
+5.0  
5.5  
mV  
mV  
mV  
V
V
Input Voltage Range  
IN  
FN8082.19  
January 16, 2014  
6
ISL60002  
Electrical Specifications ISL60002-25, V  
= 2.500V (Additional specifications on page 9, “Common Electrical  
= 0mAO, CUT  
Specifications”). Operating Conditions: V = 3.0V, I  
IN OUT  
= 0.001µF, T = -40 to +85°C, unless otherwise specified. Boldface limits  
A
OUT  
apply over the operating temperature range, -40°C to +85°C  
MIN  
(Note  
10)  
MAX  
(Note  
10)  
SYMBOL  
PARAMETER  
Output Voltage  
Accuracy (Note 11)  
CONDITIONS  
TYP  
UNITS  
V
V
2.500  
OUT  
V
V
T = +25°C  
A
OA  
OUT  
ISL60002B25  
ISL60002C25  
ISL60002D25  
-1.0  
-2.5  
-5.0  
2.7  
+1.0  
+2.5  
+5.0  
5.5  
mV  
mV  
mV  
V
V
Input Voltage Range  
IN  
Electrical Specifications ISL60002-26, V  
= 2.600V (Additional specifications on page 9, “Common Electrical  
OUT  
Specifications”). Operating Conditions: V = 3.0V, I  
IN  
= 0mA, C  
= 0.001µF, T = -40 to +85°C, unless otherwise specified. Boldface limits apply over  
OUT A  
OUT  
the operating temperature range, -40°C to +85°C  
MIN  
(Note  
10)  
MAX  
(Note  
10)  
SYMBOL  
PARAMETER  
Output Voltage  
Accuracy (Note 11)  
CONDITIONS  
TYP  
UNITS  
V
V
2.600  
OUT  
V
V
T = +25°C  
A
OA  
OUT  
ISL60002B26  
ISL60002C26  
ISL60002D26  
-1.0  
-2.5  
-5.0  
2.8  
+1.0  
+2.5  
+5.0  
5.5  
mV  
mV  
mV  
V
Input Voltage Range  
V
IN  
TC V  
Output Voltage Temperature  
Coefficient (Note 11)  
20  
ppm/°C  
OUT  
I
Supply Current  
Line Regulation  
Load Regulation  
350  
80  
900  
350  
100  
250  
nA  
µV/V  
µV/mA  
µV/mA  
ppm  
IN  
ΔV  
/ΔV  
+2.8V V +5.5V  
IN  
OUT  
IN  
ΔV  
/ΔI  
0mA I  
7mA  
25  
OUT  
OUT  
SOURCE  
-7mA I 0mA  
50  
SINK  
ΔT = +125°C  
ΔV  
/ΔT  
Thermal Hysteresis (Note 12)  
Long Term Stability (Note 13)  
Short Circuit Current (to GND)*  
Output Voltage Noise  
100  
50  
OUT  
A
A
ΔV  
/Δt  
T
= +25°C; First 1khrs  
= +25°C  
A
ppm  
OUT  
A
I
T
50  
mA  
SC  
V
0.1Hz f 10Hz  
30  
µV  
P-P  
N
FN8082.19  
January 16, 2014  
7
ISL60002  
Electrical Specifications ISL60002-30, V  
= 3.000V Operating Conditions: V = 5.0V, I  
= 0mA, C = 0.001µF,  
OUT  
IN  
OUT  
OUT  
T
= -40 to +85°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +85°C  
A
MIN  
(Note  
10)  
MAX  
(Note  
10)  
SYMBOL  
PARAMETER  
Output Voltage  
Accuracy (Note 11)  
CONDITIONS  
TYP  
UNITS  
V
V
3.000  
OUT  
V
V
T = +25°C  
A
OA  
OUT  
ISL60002B30  
ISL60002C30  
ISL60002D30  
-1.0  
-2.5  
-5.0  
3.2  
+1.0  
+2.5  
+5.0  
5.5  
mV  
mV  
mV  
V
Input Voltage Range  
V
IN  
TC V  
Output Voltage Temperature  
Coefficient (Note 11)  
20  
ppm/°C  
OUT  
I
Supply Current  
Line Regulation  
Load Regulation  
350  
80  
900  
250  
100  
150  
nA  
µV/V  
µV/mA  
µV/mA  
ppm  
IN  
ΔV  
/ΔV  
+3.2V V +5.5V  
IN  
OUT  
IN  
ΔV  
/ΔI  
0mA I  
SOURCE  
7mA  
25  
OUT OUT  
-7mA I  
0mA  
50  
SINK  
ΔV  
/ΔT  
Thermal Hysteresis (Note 12)  
Long Term Stability (Note 13)  
Short Circuit Current (to GND)  
Output Voltage Noise  
ΔT = +125°C  
100  
50  
OUT  
A
A
ΔV  
/Δt  
T
= +25°C; First 1khrs  
= +25°C  
A
ppm  
OUT  
A
I
T
50  
mA  
SC  
V
0.1Hz f 10Hz  
30  
µV  
P-P  
N
Electrical Specifications ISL60002-33, V  
= 3.300V Operating Conditions: V = 5.0V, I  
= 0mA, C = 0.001µF,  
OUT  
IN  
OUT  
OUT  
T
= -40 to +105°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +105°C  
A
MIN  
(Note  
10)  
MAX  
(Note  
10)  
SYMBOL  
PARAMETER  
Output Voltage  
Accuracy (Note 11)  
CONDITIONS  
TYP  
UNITS  
V
V
3.300  
OUT  
V
V
T = +25°C  
A
OA  
OUT  
ISL60002B33  
ISL60002C33  
ISL60002D33  
-1.0  
-2.5  
-5.0  
1.0  
2.5  
5.0  
20  
mV  
mV  
mV  
TC V  
OUT  
Output Voltage Temperature  
Coefficient (Note 11)  
ppm/°C  
V
Input Voltage Range  
Supply Current  
3.5  
5.5  
700  
200  
100  
150  
V
IN  
I
350  
80  
nA  
IN  
ΔV  
ΔV  
/ΔV  
Line Regulation  
Load Regulation  
+3.5V V +5.5V  
IN  
µV/V  
µV/mA  
µV/mA  
ppm  
ppm  
mA  
OUT  
IN  
/ΔI  
0mA I  
20mA  
0mA  
25  
OUT OUT  
SOURCE  
-20mA I  
50  
SINK  
ΔV  
/ΔT  
Thermal Hysteresis (Note 12)  
Long Term Stability (Note 13)  
Short Circuit Current (to GND)  
Output Voltage Noise  
ΔT = +145°C  
100  
50  
OUT  
A
A
ΔV  
/Δt  
T
= +25°C; First 1khrs  
= +25°C  
A
OUT  
A
I
T
50  
SC  
V
0.1Hz f 10Hz  
30  
µV  
P-P  
N
FN8082.19  
January 16, 2014  
8
ISL60002  
Common Electrical Specifications ISL60002 -10, -11, -12, -18, -20, and -25  
Operating Conditions: V = 3.0V, I  
= 0mA, C = 0.001µF, T = -40 to +85°C, unless otherwise specified. Boldface limits apply over the operating  
OUT A  
IN  
OUT  
temperature range, -40°C to +85°C  
MIN  
(Note  
10)  
MAX  
(Note  
10)  
SYMBOL  
TC V  
PARAMETER  
CONDITIONS  
TYP  
UNITS  
Output Voltage Temperature  
Coefficient (Note 11)  
20  
ppm/°C  
OUT  
I
Supply Current  
Line Regulation  
Load Regulation  
350  
80  
900  
250  
100  
150  
nA  
µV/V  
µV/mA  
µV/mA  
ppm  
IN  
ΔV  
/ΔV  
+2.7V V +5.5V  
OUT  
IN  
IN  
ΔV  
/ΔI  
0mA I  
7mA  
25  
OUT  
OUT  
SOURCE  
-7mA I  
0mA  
ΔT = +125°C  
50  
SINK  
ΔV  
/ΔT  
Thermal Hysteresis (Note 12)  
Long Term Stability (Note 13)  
100  
50  
OUT  
A
A
ΔV  
/Δt  
T
= +25°C; First 1khrs  
= +25°C  
A
ppm  
OUT  
A
I
Short Circuit Current (to GND)  
(Note 14)  
T
50  
mA  
SC  
V
Output Voltage Noise  
0.1Hz f 10Hz  
30  
µV  
P-P  
N
NOTES:  
10. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
11. Over the specified temperature range. Temperature coefficient is measured by the box method whereby the change in V  
temperature range: (-40°C to +85°C = +125°C, or -40°C to +105°C = +145°C for the ISL60002-33).  
is divided by the  
OUT  
12. Thermal Hysteresis is the change in V  
OUT  
measured @ T = +25°C after temperature cycling over a specified range, ΔT , V is read initially at  
OUT  
A
A
T
= +25°C for the device under test. The device is temperature cycled and a second V  
measurement is taken at +25°C. The difference between  
A
OUT  
the initial V  
reading and the second V  
OUT  
reading is then expressed in ppm. For ΔT = +125°C, the device under is cycled from +25°C to +85°C  
OUT  
A
to -40°C to +25°C, and for ΔT = +145°C, the device under is cycled from +25°C to +105°C to -40°C to +25°C  
A
13. Long term drift is logarithmic in nature and diminishes over time. Drift after the first 1000 hours will be approximately 10ppm.  
14. Short Circuit Current (to V ) for ISL60002-25 at V = 5.0V and +25°C is typically around 30mA. Shorting V  
CC IN OUT  
to V is not recommended due to  
CC  
risk of resetting the part.  
FN8082.19  
January 16, 2014  
9
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.024V  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified.  
OUT A  
IN  
500  
450  
400  
350  
300  
250  
200  
150  
100  
700  
600  
500  
400  
300  
200  
100  
0
+85°C  
+25°C  
-40°C  
UNIT 3  
UNIT 2  
UNIT 1  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
VIN (V)  
V
(V)  
IN  
FIGURE 3. I vs V OVER-TEMPERATURE  
FIGURE 2. I vs V , 3 UNITS  
IN IN  
IN  
IN  
1.0244  
1.0243  
1.0242  
1.0241  
1.0240  
1.0239  
1.0238  
1.0237  
1.0236  
150  
125  
100  
75  
-40°C  
+85°C  
UNIT 3  
50  
25  
0
UNIT 2  
UNIT 1  
-25  
-50  
-75  
-100  
-125  
-150  
+25°C  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
(V)  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V
V
(V)  
IN  
IN  
FIGURE 4. LINE REGULATION, 3 UNITS  
FIGURE 5. LINE REGULATION OVER-TEMPERATURE  
1.0250  
UNIT 2  
1.0248  
1.0246  
1.0244  
1.0242  
1.0240  
1.0238  
1.0236  
1.0234  
1.0232  
1.0230  
UNIT 3  
UNIT 1  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FIGURE 6. V  
OUT  
vs TEMPERATURE NORMALIZED to +25°C  
FN8082.19  
January 16, 2014  
10  
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.024V (Continued)  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified.  
OUT A  
IN  
C
= 0pF  
C
L
= 500pF  
L
ΔV = 0.3V  
ΔV = 0.3V  
ΔV = -0.3V  
ΔV = -0.3V  
1ms/DIV  
1ms/DIV  
FIGURE 8. LINE TRANSIENT RESPONSE  
FIGURE 7. LINE TRANSIENT RESPONSE, WITH CAPACITIVE LOAD  
0.6  
0.5  
0.4  
+85°C  
0.3  
+25°C  
0.2  
0.1  
0
-40°C  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
SINKING OUTPUT CURRENT  
SOURCING  
FIGURE 9. LOAD REGULATION OVER-TEMPERATURE  
ΔI = 7mA  
L
ΔI = 50µA  
L
ΔI = -50µA  
L
ΔI = -7mA  
L
1ms/DIV  
2ms/DIV  
FIGURE 10. LOAD TRANSIENT RESPONSE  
FIGURE 11. LOAD TRANSIENT RESPONSE  
FN8082.19  
January 16, 2014  
11  
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.024V (Continued)  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified.  
OUT A  
IN  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
3.2  
V
IN  
V
2.8  
IN  
2.4  
2.0  
1.6  
UNIT 3  
V
REF  
1.2  
0.8  
UNIT 2  
UNIT 1  
0.4  
0
0
0
2
4
6
8
10  
12  
2
4
6
8
10  
12  
TIME (ms)  
TIME (ms)  
FIGURE 13. TURN-ON TIME (+25°C)  
FIGURE 12. TURN-ON TIME (+25°C)  
160  
140  
120  
100  
80  
NO LOAD  
1nF LOAD  
10nF LOAD  
60  
40  
100nF LOAD  
20  
0
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FIGURE 14. Z  
vs FREQUENCY  
OUT  
FN8082.19  
January 16, 2014  
12  
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.20V  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
500  
450  
400  
350  
300  
250  
200  
150  
100  
700  
600  
500  
400  
300  
200  
100  
0
+85°C  
+25°C  
UNIT 3  
UNIT 2  
UNIT 1  
-40°C  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V
(V)  
V
(V)  
IN  
IN  
FIGURE 16. I vs V OVER-TEMPERATURE  
IN IN  
FIGURE 15. I vs V , 3 UNITS  
IN IN  
1.2006  
1.2004  
1.2002  
1.2000  
1.1998  
1.1996  
1.1994  
UNIT 2  
UNIT 3  
UNIT 1  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FIGURE 17. V  
OUT  
vs TEMPERATURE NORMALIZED TO +25°C  
1.20010  
1.20008  
1.20006  
1.20004  
1.20002  
1.20000  
1.19998  
1.19996  
1.19994  
1.19992  
1.19990  
150  
125  
100  
75  
+85°C  
+25°C  
50  
UNIT 3  
25  
0
UNIT 2  
UNIT 1  
-25  
-50  
-40°C  
-75  
-100  
-125  
-150  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V
(V)  
V
IN  
IN  
FIGURE 18. LINE REGULATION, 3 UNITS  
FIGURE 19. LINE REGULATION OVER-TEMPERATURE  
FN8082.19  
January 16, 2014  
13  
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.20V (Continued)  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
C
= 0nF  
C = 500pF  
L
L
ΔV = 0.30V  
IN  
ΔV = 0.30V  
IN  
ΔV = -0.30V  
IN  
ΔV = -0.30V  
IN  
1ms/DIV  
1ms/DIV  
FIGURE 20. LINE TRANSIENT RESPONSE  
FIGURE 21. LINE TRANSIENT RESPONSE WITH CAPACITIVE LOAD  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0.6  
0.5  
+85°C  
NO LOAD  
0.4  
+25°C  
0.3  
0.2  
1nF LOAD  
0.1  
0.0  
10nF LOAD  
-40°C  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
100nF LOAD  
-100  
1
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
10  
100  
1k  
10k  
100k  
1M  
SINKING OUTPUT CURRENT (mA)  
SOURCING  
FREQUENCY (Hz)  
FIGURE 22. PSRR vs CAPACITIVE LOAD  
FIGURE 23. LOAD REGULATION OVER-TEMPERATURE  
I
= -50µA  
I = 50µA  
L
L
I
= -7mA  
I = 7mA  
L
L
200µs/DIV  
500µs/DIV  
FIGURE 24. LOAD TRANSIENT RESPONSE  
FIGURE 25. LOAD TRANSIENT RESPONSE  
FN8082.19  
January 16, 2014  
14  
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.20V (Continued)  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
160  
140  
120  
100  
80  
3.2  
1nF LOAD  
NO LOAD  
V
2.8  
IN  
2.4  
10nF LOAD  
0
1.6  
60  
1.2  
V
REF  
100nF LOAD  
40  
0.8  
20  
0.4  
0
1
0
0
10  
100  
1k  
10k  
100k  
2
4
6
8
10  
12  
TIME (ms)  
FREQUENCY (Hz)  
FIGURE 26. TURN-ON TIME (+25°C)  
FIGURE 27. Z  
vs FREQUENCY  
OUT  
10s/DIV  
FIGURE 28. V  
OUT  
NOISE  
FN8082.19  
January 16, 2014  
15  
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.25V  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
460  
440  
420  
400  
380  
360  
340  
320  
300  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
+25°C  
UNIT 3  
+85°C  
-40°C  
UNIT 2  
UNIT 1  
200  
2.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
IN  
V
IN  
FIGURE 30. I vs V OVER-TEMPERATURE  
IN IN  
FIGURE 29. I vs V , 3 UNITS  
IN IN  
1.2510  
1.2508  
1.2506  
1.2504  
1.2502  
1.2500  
1.2498  
1.2496  
1.2494  
UNIT 2  
UNIT 3  
UNIT 1  
1.2492  
1.249  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FIGURE 31. V  
vs TEMPERATURE NORMALIZED TO +25°C  
OUT  
1.25030  
1.25025  
1.25020  
1.25015  
1.25010  
1.25005  
1.25000  
1.24995  
1.24990  
50  
UNIT 1  
25  
0
UNIT 3  
-40°C  
+25°C  
UNIT 2  
+85°C  
-25  
2.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
IN  
IN  
FIGURE 32. LINE REGULATION, 3 UNITS  
FIGURE 33. LINE REGULATION OVER-TEMPERATURE  
FN8082.19  
January 16, 2014  
16  
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.25V (Continued)  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
C
= 0nF  
L
C
= 1nF  
L
ΔV = 0.30V  
IN  
ΔV = -0.30V  
IN  
ΔV = 0.30V  
IN  
ΔV = -0.30V  
IN  
1ms/DIV  
1ms/DIV  
FIGURE 35. LINE TRANSIENT RESPONSE, WITH CAPACITIVE LOAD  
FIGURE 34. LINE TRANSIENT RESPONSE  
0.3  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
+85°C  
NO LOAD  
+25°C  
0.2  
1nF LOAD  
0.1  
-40°C  
0.0  
10nF LOAD  
100nF LOAD  
-0.1  
-80  
1
-7 -6 -5 -4 -3 -2 -1  
SINKING  
0
1
2
3
4
5
6
7
10  
100  
1k  
10k  
100k  
1M  
SOURCING  
FREQUENCY (Hz)  
OUTPUT CURRENT (mA)  
FIGURE 36. PSRR vs CAPACITIVE LOAD  
FIGURE 37. LOAD REGULATION  
I = 50µA  
L
I
= -50µA  
L
I
= -7mA  
I = 7mA  
L
L
100µs/DIV  
500µs/DIV  
FIGURE 38. LOAD TRANSIENT RESPONSE  
FIGURE 39. LOAD TRANSIENT RESPONSE  
FN8082.19  
January 16, 2014  
17  
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.25V (Continued)  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
3.0  
180  
160  
140  
120  
100  
80  
NO LOAD  
V
IN  
2.5  
2.0  
1.5  
1.0  
0.5  
10nF LOAD  
1nF LOAD  
60  
V
100nF LOAD  
REF  
40  
20  
0
-1  
0
1
3
5
7
9
11  
1
10  
100  
1k  
10k  
1M  
TIME (ms)  
FREQUENCY (Hz)  
FIGURE 40. TURN-ON TIME (+25°C)  
FIGURE 41. Z  
vs FREQUENCY  
OUT  
10s/DIV  
FIGURE 42. V  
OUT  
NOISE  
FN8082.19  
January 16, 2014  
18  
ISL60002  
Typical Performance Curves, V  
= 1.8V  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
700  
500  
450  
400  
350  
300  
250  
200  
150  
100  
600  
500  
400  
300  
200  
100  
0
+85°C  
+25°C  
UNIT 3  
UNIT 2  
-40°C  
UNIT 1  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V
(V)  
V
(V)  
IN  
IN  
FIGURE 43. I vs V , 3 UNITS  
IN IN  
FIGURE 44. I vs V OVER-TEMPERATURE  
IN IN  
1.80020  
1.80015  
1.80010  
1.80005  
1.80000  
1.79995  
1.79990  
1.79985  
1.7998  
150  
125  
100  
75  
-40°C  
+85°C  
50  
UNIT 3  
25  
0
UNIT 1  
UNIT 2  
-25  
-50  
-75  
-100  
-125  
-150  
+25°C  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V
(V)  
IN  
V
(V)  
IN  
FIGURE 45. LINE REGULATION (3 REPRESENTATIVE UNITS)  
FIGURE 46. LINE REGULATION OVER-TEMPERATURE  
C
= 500pF  
C = 500pF  
L
L
ΔV = 0.3V  
ΔV = 0.3V  
ΔV = -0.3V  
ΔV = -0.3V  
1ms/DIV  
1ms/DIV  
FIGURE 47. LINE TRANSIENT RESPONSE, WITH CAPACITIVE LOAD  
FIGURE 48. LINE TRANSIENT RESPONSE  
FN8082.19  
January 16, 2014  
19  
ISL60002  
Typical Performance Curves, V  
= 1.8V (Continued)  
OUT  
V
= 3.0V, I  
0
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
0.8  
0.6  
+85°C  
+25°C  
-10  
NO LOAD  
-20  
0.4  
-30  
0.2  
-40  
-40°C  
1nF LOAD  
10nF LOAD  
-50  
0.0  
-60  
-0.2  
-0.4  
-0.6  
-0.8  
-70  
-80  
100nF LOAD  
-90  
-100  
1
10  
100  
1k  
10k  
100k  
1G  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
FREQUENCY (Hz)  
SINKING  
OUTPUT CURRENT  
SOURCING  
FIGURE 49. PSRR vs CAPACITIVE LOAD  
FIGURE 50. LOAD REGULATION OVER-TEMPERATURE  
ΔI = 10mA  
L
ΔI = 50µA  
L
ΔI = -50µA  
L
ΔI = -10mA  
L
2ms/DIV  
1ms/DIV  
FIGURE 51. LOAD TRANSIENT RESPONSE  
FIGURE 52. LOAD TRANSIENT RESPONSE  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
V
V
IN  
IN  
UNIT 3  
V
REF  
UNIT 2  
UNIT 1  
0
0
0
2
4
6
8
10  
12  
2
4
6
8
10  
12  
TIME (ms)  
TIME (ms)  
FIGURE 54. TURN-ON TIME (+25°C)  
FIGURE 53. TURN-ON TIME (+25°C)  
FN8082.19  
January 16, 2014  
20  
ISL60002  
Typical Performance Curves, V  
= 1.8V (Continued)  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
160  
1nF LOAD  
140  
120  
100  
80  
NO LOAD  
100nF LOAD  
60  
10nF LOAD  
40  
20  
0
1
10  
100  
1k  
10k  
100k  
1ms/DIV  
FREQUENCY (Hz)  
FIGURE 55. Z  
vs FREQUENCY  
FIGURE 56. V  
OUT  
NOISE  
OUT  
FN8082.19  
January 16, 2014  
21  
ISL60002  
= 2.048V  
Typical Performance Curves, V  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
700  
500  
450  
400  
350  
300  
250  
200  
150  
100  
600  
500  
400  
300  
200  
100  
0
+85°C  
-40°C  
+25°C  
UNIT 3  
UNIT 2  
UNIT 1  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V
(V)  
V
(V)  
IN  
IN  
FIGURE 58. I vs V OVER-TEMPERATURE  
IN IN  
FIGURE 57. I vs V (3 REPRESENTATIVE UNITS)  
IN IN  
200  
2.0484  
2.0483  
2.0482  
2.0481  
2.0480  
2.0479  
2.0478  
2.0477  
2.0476  
175  
150  
125  
100  
75  
-40°C  
+25°C  
UNIT 1  
UNIT 2  
50  
25  
0
UNIT 3  
+85°C  
-25  
-50  
-75  
-100  
-125  
-150  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V
(V)  
V
(V)  
IN  
IN  
FIGURE 59. LINE REGULATION (3 REPRESENTATIVE UNITS)  
FIGURE 60. LINE REGULATION OVER-TEMPERATURE  
2.0484  
2.0483  
2.0482  
2.0481  
2.0480  
2.0479  
2.0478  
2.0477  
2.0476  
2.0475  
2.0474  
UNIT 2  
UNIT 1  
UNIT 3  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FIGURE 61. V  
OUT  
vs TEMPERATURE NORMALIZED to +25°C  
FN8082.19  
January 16, 2014  
22  
ISL60002  
Typical Performance Curves, V  
= 2.048V (Continued)  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
C
= 0pF  
C
L
= 500pF  
L
ΔV = 0.3V  
ΔV = 0.3V  
ΔV = -0.3V  
ΔV = -0.3V  
1ms/DIV  
1ms/DIV  
FIGURE 63. LINE TRANSIENT RESPONSE  
FIGURE 62. LINE TRANSIENT RESPONSE, WITH CAPACITIVE LOAD  
1.4  
1.2  
+85°C  
1.0  
0.8  
+25°C  
0.6  
0.4  
0.2  
-40°C  
0
-0.2  
-0.4  
-0.6  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
SINKING  
OUTPUT CURRENT  
SOURCING  
FIGURE 64. LOAD REGULATION OVER-TEMPERATURE  
Δ
I = 7mA  
L
ΔI = 50µA  
L
ΔI = -50µA  
L
Δ
I = -7mA  
L
2ms/DIV  
2ms/DIV  
FIGURE 66. LOAD TRANSIENT RESPONSE  
FIGURE 65. LOAD TRANSIENT RESPONSE  
FN8082.19  
January 16, 2014  
23  
ISL60002  
Typical Performance Curves, V  
= 2.048V (Continued)  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
3.2  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
V
V
2.8  
IN  
IN  
2.4  
2.0  
V
UNIT 3  
UNIT 2  
UNIT 1  
REF  
1.6  
1.2  
0.8  
0.4  
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
TIME (ms)  
TIME (ms)  
FIGURE 67. TURN-ON TIME (+25°C)  
FIGURE 68. TURN-ON TIME (+25°C)  
160  
140  
120  
100  
80  
NO LOAD  
10nF LOAD  
1nF LOAD  
60  
40  
100nF LOAD  
20  
0
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FIGURE 69. Z  
vs FREQUENCY  
OUT  
FN8082.19  
January 16, 2014  
24  
ISL60002  
Typical Performance Characteristic Curves, V  
= 2.50V  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
600  
460  
440  
420  
400  
380  
360  
340  
320  
300  
550  
+85°C  
500  
UNIT 3  
450  
400  
+25°C  
-40°C  
UNIT 2  
UNIT 1  
350  
300  
250  
200  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
IN  
IN  
FIGURE 70. I vs V , 3 UNITS  
IN IN  
FIGURE 71. I vs V OVER-TEMPERATURE  
IN IN  
2.5020  
2.5015  
2.5010  
2.5005  
2.5000  
2.4995  
2.4990  
2.4985  
UNIT 2  
UNIT 1  
UNIT 3  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FIGURE 72. V  
OUT  
vs TEMPERATURE NORMALIZED TO +25°C  
200  
150  
100  
50  
2.50016  
2.50012  
2.50008  
2.50004  
2.50000  
2.49996  
2.49992  
-40°C  
UNIT 2  
+25°C  
UNIT 1  
+85°C  
0
UNIT 3  
-50  
-100  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
IN  
IN  
FIGURE 73. LINE REGULATION, 3 UNITS  
FIGURE 74. LINE REGULATION OVER-TEMPERATURE  
FN8082.19  
January 16, 2014  
25  
ISL60002  
Typical Performance Characteristic Curves, V  
= 2.50V (Continued)  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
C
= 0nF  
C = 1nF  
L
L
ΔV = -0.30V  
IN  
ΔV = 0.30V  
IN  
ΔV = 0.30V  
ΔV = -0.30V  
IN  
IN  
1ms/DIV  
1ms/DIV  
FIGURE 75. LINE TRANSIENT RESPONSE  
FIGURE 76. LINE TRANSIENT RESPONSE  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
NO LOAD  
+85°C  
+25°C  
-40°C  
1nF LOAD  
0.0  
10nF LOAD  
100nF LOAD  
-0.1  
-80  
1
-7 -6 -5 -4 -3 -2 -1  
SINKING  
0
1
2
3
4
5
6
7
10  
100  
1k  
10k  
100k  
1M  
SOURCING  
FREQUENCY (Hz)  
OUTPUT CURRENT (mA)  
FIGURE 77. PSRR vs CAPACITIVE LOAD  
FIGURE 78. LOAD REGULATION OVER-TEMPERATURE  
I
= -50µA  
I = 50µA  
L
L
I
= -7mA  
I = 7mA  
L
L
200µs/DIV  
500µs/DIV  
FIGURE 79. LOAD TRANSIENT RESPONSE  
FIGURE 80. LOAD TRANSIENT RESPONSE  
FN8082.19  
January 16, 2014  
26  
ISL60002  
Typical Performance Characteristic Curves, V  
= 2.50V (Continued)  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
200  
150  
100  
50  
3.5  
1nF LOAD  
NO LOAD  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
V
REF  
10nF LOAD  
100nF LOAD  
0
1
0
10  
100  
1k  
10k  
100k  
-1  
1
3
5
7
9
11  
FREQUENCY (Hz)  
TIME (ms)  
FIGURE 82. Z  
vs FREQUENCY  
OUT  
FIGURE 81. TURN-ON TIME (+25°C)  
10s/DIV  
FIGURE 83. V  
OUT  
NOISE  
FN8082.19  
January 16, 2014  
27  
ISL60002  
Typical Performance Characteristic Curves, V  
= 3.0V  
OUT  
V
= 5.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
500  
350  
335  
320  
305  
290  
275  
260  
450  
400  
350  
300  
250  
UNIT 1  
UNIT 2  
+85°C  
+25°C  
UNIT 3  
-40°C  
4.8  
200  
3.2  
3.6  
4.0  
4.4  
(V)  
4.8  
5.2  
5.6  
3.2  
3.6  
4.0  
4.4  
(V)  
5.2  
5.6  
V
V
IN  
IN  
FIGURE 84. I vs V , 3 UNITS  
FIGURE 85. I vs V OVER-TEMPERATURE  
IN IN  
IN  
IN  
3.0008  
3.0006  
3.0004  
3.0002  
3.0000  
2.9998  
2.9996  
2.9994  
2.9992  
2.9990  
UNIT 1  
UNIT 2  
UNIT 3  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FIGURE 86. V  
vs TEMPERATURE NORMALIZED TO +25°C  
OUT  
3.0001  
3.0000  
3.0000  
2.9999  
40  
+85°C  
20  
+25°C  
UNIT 3  
0
UNIT 2  
-20  
-40  
-60  
-40°C  
UNIT 1  
-80  
3.2  
3.2  
3.6  
4.0  
4.4  
4.8  
5.2  
5.6  
3.6  
4.0  
4.4  
(V)  
4.8  
5.2  
5.6  
V
(V)  
IN  
V
IN  
FIGURE 87. LINE REGULATION (3 REPRESENTATIVE UNITS)  
FIGURE 88. LINE REGULATION OVER-TEMPERATURE  
FN8082.19  
January 16, 2014  
28  
ISL60002  
Typical Performance Characteristic Curves, V  
= 3.0V (Continued)  
OUT  
V
= 5.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
C
= 0nF  
L
C = 1nF  
L
ΔV = 0.30V  
IN  
ΔV = -0.30V  
IN  
ΔV = 0.30V  
ΔV = -0.30V  
IN  
IN  
1ms/DIV  
1ms/DIV  
FIGURE 89. LINE TRANSIENT RESPONSE  
FIGURE 90. LINE TRANSIENT RESPONSE  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
NO LOAD  
+85°C  
1nF LOAD  
+25°C  
-40°C  
10nF LOAD  
100nF LOAD  
-100  
1
-7 -6 -5 -4 -3 -2 -1  
SINKING  
0
1
2
3
4
5
6
7
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
SOURCING  
OUTPUT CURRENT (mA)  
FIGURE 91. PSRR vs CAPACITIVE LOAD  
FIGURE 92. LOAD REGULATION OVER-TEMPERATURE  
I
= -50µA  
I = 50µA  
L
I
= -1mA  
I = 1mA  
L
L
L
200µs/DIV  
200µs/DIV  
FIGURE 93. LOAD TRANSIENT RESPONSE  
FIGURE 94. LOAD TRANSIENT RESPONSE  
FN8082.19  
January 16, 2014  
29  
ISL60002  
Typical Performance Characteristic Curves, V  
= 3.0V (Continued)  
OUT  
V
= 5.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
I
= -7mA  
I = 7mA  
L
I
= -20mA  
I = 20mA  
L
L
L
200µs/DIV  
200µs/DIV  
FIGURE 95. LOAD TRANSIENT RESPONSE  
FIGURE 96. LOAD TRANSIENT RESPONSE  
160  
140  
120  
100  
80  
1nF LOAD  
NO LOAD  
5
4
3
2
1
V
IN  
10nF LOAD  
V
REF  
60  
40  
100nF LOAD  
20  
0
0
0
1
10  
100  
1k  
10k  
100k  
2
4
6
8
10  
12  
TIME (ms)  
FREQUENCY (Hz)  
FIGURE 97. TURN-ON TIME (+25°C)  
FIGURE 98. Z  
vs FREQUENCY  
OUT  
FN8082.19  
January 16, 2014  
30  
ISL60002  
Typical Performance Characteristic Curves, V  
= 3.3V  
OUT  
V
= 5.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
400  
380  
360  
340  
320  
300  
280  
260  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
+105°C  
UNIT 3  
UNIT 2  
+25°C  
-40°C  
UNIT 1  
3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
(V)  
3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
(V)  
V
V
IN  
IN  
FIGURE 100. I vs V OVER-TEMPERATURE  
FIGURE 99. I vs V , 3 UNITS  
IN IN  
IN  
IN  
3.3008  
3.3006  
3.3004  
3.3002  
3.3000  
3.2998  
3.2996  
3.2994  
UNIT 1  
UNIT 3  
UNIT 2  
3.2992  
3.2990  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FIGURE 101. V  
vs TEMPERATURE NORMALIZED TO +25°C  
OUT  
150  
125  
100  
75  
3.30020  
3.30015  
3.30010  
3.30005  
3.30000  
3.29995  
3.29990  
3.29985  
3.29980  
3.29975  
3.29970  
UNIT 3  
UNIT 2  
UNIT 1  
50  
+105°C  
-40°C  
25  
0
-25  
-50  
-75  
-100  
-125  
-150  
+25°C  
3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
(V)  
3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V
IN  
V
(V)  
IN  
FIGURE 103. LINE REGULATION OVER-TEMPERATURE  
FIGURE 102. LINE REGULATION, 3 UNITS  
FN8082.19  
January 16, 2014  
31  
ISL60002  
Typical Performance Characteristic Curves, V  
= 3.3V(Continued)  
OUT  
V
= 5.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
C
= 0nF  
C = 1nF  
L
L
ΔV = -0.30V  
IN  
ΔV = -0.30V  
IN  
ΔV = 0.30V  
IN  
ΔV = 0.30V  
IN  
1ms/DIV  
1ms/DIV  
FIGURE 104. LINE TRANSIENT RESPONSE  
FIGURE 105. LINE TRANSIENT RESPONSE  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
NO LOAD  
1nF LOAD  
10nF LOAD  
100nF LOAD  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FIGURE 106. PSRR vs CAPACITIVE LOAD  
1.00  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
-0.10  
-0.20  
-0.30  
-0.40  
+105°C  
0.80  
+105°C  
+25°C  
0.60  
+25°C  
0.40  
0.20  
-40°C  
-40°C  
0.00  
-0.20  
-0.40  
-0.60  
-0.80  
-1.00  
-0.50  
-0.60  
-7 -6 -5 -4 -3 -2 -1  
SINKING  
0
1
2
3
4
5
6
7
-20-18-16-14-12-10 -8 -6 -4 -2  
SINKING  
0
2
4
6
8 10 12 14 16 18 20  
SOURCING  
OUTPUT CURRENT (mA)  
SOURCING  
OUTPUT CURRENT (mA)  
FIGURE 107. LOAD REGULATION  
FIGURE 108. LOAD REGULATION OVER-TEMPERATURE  
FN8082.19  
January 16, 2014  
32  
ISL60002  
Typical Performance Characteristic Curves, V  
= 3.3V(Continued)  
OUT  
V
= 5.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
I = 1mA  
L
I
= -1mA  
I
= -50µA  
I
= 50µA  
L
L
L
200µs/DIV  
200µs/DIV  
FIGURE 110. LOAD TRANSIENT RESPONSE  
FIGURE 109. LOAD TRANSIENT RESPONSE  
I
= -7mA  
I
= 7mA  
I
= -20mA  
I = 20mA  
L
L
L
L
200µs/DIV  
200µs/DIV  
FIGURE 111. LOAD TRANSIENT RESPONSE  
FIGURE 112. LOAD TRANSIENT RESPONSE  
160  
140  
120  
100  
80  
1nF LOAD  
NO LOAD  
5
4
3
2
1
V
IN  
10nF LOAD  
V
REF  
60  
40  
100nF LOAD  
20  
0
0
0
1
10  
100  
1k  
10k  
100k  
2
4
6
8
10  
12  
TIME (ms)  
FREQUENCY (Hz)  
FIGURE 113. TURN-ON TIME (+25°C)  
FIGURE 114. Z  
vs FREQUENCY  
OUT  
FN8082.19  
January 16, 2014  
33  
ISL60002  
High Current Application  
2.5001  
2.502  
2.500  
2.498  
2.496  
V
= 5V  
IN  
2.4998  
2.4995  
2.4992  
2.4989  
2.4986  
2.4983  
2.4980  
5V , +85°C  
IN  
V
= 3.3V  
IN  
2.494  
2.492  
2.490  
2.488  
2.486  
3.2V , +85°C  
IN  
V
= 3.5V  
25  
IN  
3.3V , +85°C  
IN  
0
5
10  
15  
(mA)  
20  
30  
0
4
8
12  
16  
20  
24  
28  
32  
I
(mA)  
I
LOAD  
LOAD  
FIGURE 116. DIFFERENT V AT HIGH TEMPERATURE  
IN  
FIGURE 115. DIFFERENT V AT ROOM TEMPERATURE  
IN  
can remain powered up between conversions as shown in  
Figure 117. Data acquisition circuits providing 12 to 24 bits of  
accuracy can operate with the reference device continuously  
biased with no power penalty, providing the highest accuracy and  
lowest possible long term drift.  
Applications Information  
FGA Technology  
The ISL60002 series of voltage references use the floating gate  
technology to create references with very low drift and supply  
current. Essentially, the charge stored on a floating gate cell is  
set precisely in manufacturing. The reference voltage output  
itself is a buffered version of the floating gate voltage. The  
resulting reference device has excellent characteristics which are  
unique in the industry: very low temperature drift, high initial  
accuracy, and almost zero supply current. Also, the reference  
voltage itself is not limited by voltage bandgaps or zener settings,  
so a wide range of reference voltages can be programmed  
(standard voltage settings are provided, but customer-specific  
voltages are available).  
Other reference devices consuming higher supply currents will  
need to be disabled in between conversions to conserve battery  
capacity. Absolute accuracy will suffer as the device is biased and  
requires time to settle to its final value, or, may not actually settle  
to a final value as power on time may be short.  
V
= +3.0V  
IN  
10µF  
0.01µF  
V
IN  
V
OUT  
ISL60002-25  
VOUT = 2.5V  
GND  
The process used for these reference devices is a floating gate  
CMOS process, and the amplifier circuitry uses CMOS transistors  
for amplifier and output transistor circuitry. While providing  
excellent accuracy, there are limitations in output noise level and  
load regulation due to the MOS device characteristics. These  
limitations are addressed with circuit techniques discussed in  
other sections.  
0.001µF TO 0.01µF  
REF IN  
ENABLE  
SCK  
SERIAL  
BUS  
SDAT  
12 TO 24-BIT  
A/D CONVERTER  
Nanopower Operation  
Reference devices achieve their highest accuracy when powered  
up continuously, and after initial stabilization has taken place.  
This drift can be eliminated by leaving the power on continuously.  
FIGURE 117.  
The ISL60002 is the first high precision voltage reference with  
ultra low power consumption that makes it possible to leave  
power on continuously in battery operated circuits. The ISL60002  
consumes extremely low supply current due to the proprietary  
FGA technology. Supply current at room temperature is typically  
350nA, which is 1 to 2 orders of magnitude lower than  
competitive devices. Application circuits using battery power will  
benefit greatly from having an accurate, stable reference, which  
essentially presents no load to the battery.  
Board Mounting Considerations  
For applications requiring the highest accuracy, board mounting  
location should be reviewed. Placing the device in areas subject to  
slight twisting can cause degradation of the accuracy of the  
reference voltage due to die stresses. It is normally best to place the  
device near the edge of a board, or the shortest side, as the axis of  
bending is most limited at that location. Obviously mounting the  
device on flexprint or extremely thin PC material will likewise cause  
loss of reference accuracy.  
In particular, battery powered data converter circuits that would  
normally require the entire circuit to be disabled when not in use  
FN8082.19  
January 16, 2014  
34  
ISL60002  
significantly over the full bandwidth. As shown in Figure 118,  
noise is reduced to less than 40µV from 1Hz to 1MHz using  
this network with a 0.01µF capacitor and a 2kΩ resistor in series  
Board Assembly Considerations  
P-P  
FGA references provide high accuracy and low temperature drift  
but some PC board assembly precautions are necessary. Normal  
Output voltage shifts of 100µV to 1mV can be expected with  
Pb-free reflow profiles. Precautions should be taken to avoid  
excessive heat or extended exposure to high reflow  
with a 10µF capacitor.  
400  
CL = 0  
temperatures, which may reduce device initial accuracy.  
CL = 0.001µF  
350  
300  
250  
200  
150  
100  
CL = 0.1µF  
Post-assembly x-ray inspection may also lead to permanent  
changes in device output voltage and should be minimized or  
avoided. If x-ray inspection is required, it is advisable to monitor  
the reference output voltage to verify excessive shift has not  
occurred. If large amounts of shift are observed, it is best to add  
an X-ray shield consisting of thin zinc (300µm) sheeting to allow  
clear imaging, yet block x-ray energy that affects the FGA  
reference.  
CL = 0.01µF AND 10µF + 2k  
Ω
50  
0
Special Applications Considerations  
In addition to post-assembly examination, there are also other  
X-ray sources that may affect the FGA reference long term  
accuracy. Airport screening machines contain X-rays and will  
have a cumulative effect on the voltage reference output  
accuracy. Carry-on luggage screening uses low level X-rays and is  
not a major source of output voltage shift, however, if a product is  
expected to pass through that type of screening over 100 times,  
it may need to consider shielding with copper or aluminum.  
Checked luggage X-rays are higher intensity and can cause  
output voltage shift in much fewer passes, thus devices expected  
to go through those machines should definitely consider  
shielding. Note that just two layers of 1/2 ounce copper planes  
will reduce the received dose by over 90%. The leadframe for the  
device which is on the bottom also provides similar shielding.  
1
10  
100  
1k  
10k  
100k  
FIGURE 118. NOISE REDUCTION  
V
= 3.0V  
IN  
V
10µF  
IN  
V
O
0.1µF  
ISL60002-25  
VOUT = 2.50V  
GND  
2kΩ  
0.01µF  
10µF  
If a device is expected to pass through luggage X-ray machines  
numerous times, it is advised to mount a 2-layer (minimum) PC  
board on the top, and along with a ground plane underneath will  
effectively shield it from 50 to 100 passes through the machine.  
Since these machines vary in X-ray dose delivered, it is difficult to  
produce an accurate maximum pass recommendation.  
FIGURE 119. NOISE REDUCTION NETWORK  
Turn-On Time  
The ISL60002 devices have ultra-low supply current and thus the  
time to bias up internal circuitry to final values will be longer than  
with higher power references. Normal turn-on time is typically  
7ms. This is shown in Figure 120. Since devices can vary in  
supply current down to >300nA, turn-on time can last up to about  
12ms. Care should be taken in system design to include this  
delay before measurements or conversions are started.  
Noise Performance and Reduction  
The output noise voltage in a 0.1Hz to 10Hz bandwidth is  
typically 30µV . This is shown in the plot in the Typical  
P-P  
Performance Curves. The noise measurement is made with a  
bandpass filter made of a 1 pole high-pass filter with a corner  
frequency at 0.1Hz and a 2-pole low-pass filter with a corner  
frequency at 12.6Hz to create a filter with a 9.9Hz bandwidth.  
Noise in the 10kHz to 1MHz bandwidth is approximately  
400µV  
with no capacitance on the output, as shown in  
P-P  
Figure 118. These noise measurements are made with a 2  
decade bandpass filter made of a 1 pole high-pass filter with a  
corner frequency at 1/10 of the center frequency and 1-pole  
low-pass filter with a corner frequency at 10 times the center  
frequency. Figure 118 also shows the noise in the 10kHz to 1MHz  
band can be reduced to about 50µV  
using a 0.001µF  
P-P  
capacitor on the output. Noise in the 1kHz to 100kHz band can  
be further reduced using a 0.1µF capacitor on the output, but  
noise in the 1Hz to 100Hz band increases due to instability of the  
very low power amplifier with a 0.1µF capacitance load. For load  
capacitances above 0.001µF the noise reduction network shown  
in Figure 119 is recommended. This network reduces noise  
FN8082.19  
January 16, 2014  
35  
ISL60002  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Temperature Coefficient  
The limits stated for temperature coefficient (tempco) are  
governed by the method of measurement. The overwhelming  
standard for specifying the temperature drift of a reference is to  
measure the reference voltage at two temperatures, take the  
V
IN  
total variation, (V  
– V  
), and divide by the temperature  
HIGH  
LOW  
extremes of measurement (T  
– T  
). The result is divided  
LOW  
HIGH  
UNIT 3  
by the nominal reference voltage (at T = +25°C) and multiplied  
6
by 10 to yield ppm/°C. This is the “Box” method for specifying  
temperature coefficient.  
UNIT 1  
UNIT 2  
0
-1  
1
3
5
7
9
11  
TIME (ms)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
V
IN  
UNIT 3  
UNIT 1  
UNIT 2  
0
-1  
1
3
5
7
9
11  
TIME (ms)  
FIGURE 120. TURN-ON TIME  
Typical Application Circuits  
V
= 3.0V  
IN  
R = 200Ω  
2N2905  
V
IN  
V
2.5V/50mA  
0.001µF  
OUT  
ISL60002  
V
= 2.50V  
OUT  
GND  
FIGURE 121. PRECISION 2.5V 50mA REFERENCE  
FN8082.19  
January 16, 2014  
36  
ISL60002  
Typical Application Circuits(Continued)  
2.7V TO 5.5V  
0.1µF  
10µF  
V
IN  
V
OUT  
ISL60002-25  
V
= 2.50V  
OUT  
GND  
0.001µF  
V
R
CC  
V
H
OUT  
X9119  
SDA  
SCL  
+
2-WIRE BUS  
V
OUT  
(BUFFERED)  
V
R
L
SS  
FIGURE 122. 2.5V FULL SCALE LOW-DRIFT 10-BIT ADJUSTABLE VOLTAGE SOURCE  
2.7V TO 5.5V  
0.1µF  
10µF  
V
IN  
+
V
SENSE  
OUT  
V
OUT  
ISL60002-25  
LOAD  
V
= 2.50V  
OUT  
GND  
FIGURE 123. KELVIN SENSED LOAD  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8082.19  
January 16, 2014  
37  
ISL60002  
Package Outline Drawing  
P3.064  
3 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE (SOT23-3)  
Rev 3, 3/12  
4
2.92±0.12  
DETAIL "A"  
C
L
2.37±0.27  
1.30±0.10  
4
C
L
0.950  
0.435±0.065  
0.20 M C  
0 - 8 deg.  
TOP VIEW  
10° TYP  
(2 plcs)  
0.25  
0.95±0.07  
GAUGE PLANE  
1.00±0.12  
SEATING PLANE  
C
SEATING PLANE  
0.10 C  
0.38±0.10  
5
0.013(MIN)  
0.100(MAX)  
SIDE VIEW  
DETAIL "A"  
(0.60)  
NOTES:  
(2.15)  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSEY14.5m-1994.  
3.  
(1.25)  
Reference JEDEC TO-236.  
4. Dimension does not include interlead flash or protrusions.  
Interlead flash or protrusions shall not exceed 0.25mm per side.  
(0.4 RAD TYP.)  
5. Footlength is measured at reference to gauge plane.  
(0.95 typ.)  
TYPICAL RECOMMENDED LAND PATTERN  
FN8082.19  
January 16, 2014  
38  

相关型号:

ISL60002CIH320Z-TK

Precision Low Power FGA⑩ Voltage References
INTERSIL

ISL60002CIH320Z-TK

Precision Low Power FGA Voltage References
RENESAS

ISL60002CIH325

Precision 1.25V & 2.50V Low Voltage FGA References
INTERSIL

ISL60002CIH325-TK

Precision Low Power FGA⑩ Voltage References
INTERSIL

ISL60002CIH325Z-T7A

Precision Low Power FGA Voltage References; SOT3; Temp Range: -40° to 85°C
RENESAS

ISL60002CIH325Z-TK

Precision Low Power FGA⑩ Voltage References
INTERSIL

ISL60002CIH325Z-TK

Precision Low Power FGA Voltage References; SOT3; Temp Range: -40° to 85°C
RENESAS

ISL60002CIH326Z-TK

Precision, Low Noise FGA Voltage References
INTERSIL

ISL60002CIH326Z-TK

Precision Low Power FGA Voltage References
RENESAS

ISL60002CIH330Z-TK

Precision Low Power FGA⑩ Voltage References
INTERSIL

ISL60002CIH330Z-TK

Precision Low Power FGA Voltage References; SOT3; Temp Range: -40° to 85°C
RENESAS

ISL60002D

Providing high-performance solutions for every link in the signal chain
INTERSIL