ISL6363IRTZ-T [RENESAS]

Multiphase PWM Regulator for VR12 Desktop CPUs, TQFN, /Reel;
ISL6363IRTZ-T
型号: ISL6363IRTZ-T
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Multiphase PWM Regulator for VR12 Desktop CPUs, TQFN, /Reel

开关
文件: 总32页 (文件大小:948K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Multiphase PWM Regulator for VR12™ Desktop CPUs  
ISL6363  
Features  
Fully compliant with VR12™ specifications, the ISL6363  
provides a complete solution for microprocessor core and  
graphics power supplies. It provides two Voltage Regulators  
(VRs) with three integrated gate drivers. The first output (VR1)  
can be configured as a 4, 3, 2 or 1-phase VR while the second  
output (VR2) is a 1-phase VR. The two VRs share a serial control  
bus to communicate with the CPU and achieve lower cost and  
smaller board area compared with a two-chip approach.  
• Serial Data Bus (SVID)  
• Dual Outputs:  
- Configurable 4, 3, 2 or 1-phase for the 1st Output with 2  
Integrated Gate Drivers  
- 1-phase for the 2nd Output with Integrated Gate Driver  
• Precision Core Voltage Regulation  
- 0.5% System Accuracy Over-Temperature  
- Enhanced Load Line Accuracy  
Based on Intersil’s Robust Ripple Regulator R3 Technology™,  
the PWM modulator, compared to traditional modulators, has  
faster transient settling time, variable switching frequency  
during load transients and has improved light load efficiency  
with its ability to automatically change switching frequency.  
• PS2 Compensation and High Frequency Load Transient  
Compensation  
• Differential Remote Voltage Sensing  
• Lossless Inductor DCR Current Sensing  
The ISL6363 has several other key features. Both outputs  
support DCR current sensing with a single NTC thermistor for  
DCR temperature compensation or accurate resistor current  
sensing. Both outputs come with remote voltage sensing,  
• Programmable V  
BOOT  
Voltage at Start-up  
• Resistor Programmable Address, IMAX, TMAX for Both  
Outputs  
programmable V  
voltage, serial bus address, IMAX, TMAX,  
BOOT  
• Adaptive Body Diode Conduction Time Reduction  
adjustable switching frequency, OC protection and separate  
power-good indicators. To reduce output capacitors, the  
ISL6363 also has an additional compensation function for  
PS1/2 mode and high frequency load transient compensation.  
Applications  
• VR12 Desktop Computers  
Related Literature  
• ISL6363EVAL1Z User Guide  
1.15  
1.10  
1.7mLOADLINE  
V
CORE  
50mV/DIV  
1.05  
1.1V - PS1  
1.00  
1.1V - PS0  
0.95  
0.90  
COMP  
1V/DIV  
65A STEP LOAD  
1V/DIV  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85  
(A)  
2µs/DIV  
I
OUT  
FIGURE 2. ACCURATE LOADLINE, V  
vs I  
OUT  
FIGURE 1. FAST TRANSIENT RESPONSE  
CORE  
September 5, 2013  
FN6898.1  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas LLC 2011, 2013. All Rights Reserved  
Intersil (and design) and R3 Technology are trademarks owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISL6363  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
TEMP. RANGE  
PACKAGE  
(Pb-Free)  
PKG.  
DWG. #  
PART MARKING  
(°C)  
ISL6363CRTZ  
ISL6363 CRTZ  
ISL6363 IRTZ  
0 to +70  
-40 to +85  
48 Ld 6x6 TQFN  
48 Ld 6x6 TQFN  
L48.6x6  
L48.6x6  
ISL6363IRTZ  
NOTES:  
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL6363. For more information on MSL please see techbrief TB363.  
Pin Configuration  
ISL6363  
(48 LD TQFN)  
TOP VIEW  
48 47 46 45 44 43 42 41 40 39 38 37  
SCOMP  
PGOOD  
VCC  
PHASEG  
UGATEG  
BOOTG  
LGATEG  
PVCCG  
VR_HOT#  
NTCG  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
3
ISUMP  
ISUMN  
ISEN1  
ISEN2  
ISEN3  
ISEN4  
VSEN  
4
5
GND PAD  
(BOTTOM)  
6
7
ISUMNG  
ISUMPG  
RTNG  
8
9
10  
11  
12  
PSICOMP  
RTN  
FBG  
COMPG  
14  
13  
15 16 17 18 19 20 21 22 23 24  
Pin Descriptions  
ISL6363  
SYMBOL  
DESCRIPTION  
Bottom  
Pad  
GND  
Common ground signal of the IC. Unless otherwise stated, signals are referenced to the GND pin. The pad should also be  
used as the thermal pad for heat dissipation.  
1
2
SCOMP  
PGOOD  
This pin is a placeholder for potential future functionality. This pin can be left floating.  
Power-good open-drain output indicating when VR1 is able to supply a regulated voltage. Pull-up externally with a 680  
resistor to +5V or 1kto +3.3V.  
3
VCC  
+5V bias supply pin. Connect a high quality 0.1µF capacitor from this pin to GND and place it as close to the pin as possible.  
A small resistor (2.2for example) between the +5V supply and the decoupling capacitor is recommended.  
4, 5  
ISUMP,  
ISUMN  
VR1 current sense input pins for current monitoring, droop current and overcurrent detection.  
6
7
8
ISEN1  
ISEN2  
ISEN3  
VR1 phase 1 current sense input pin for phase current balancing.  
VR1 phase 2 current sense input pin for phase current balancing.  
VR1 phase 3 current sense input pin for phase current balancing.  
FN6898.1  
September 5, 2013  
2
ISL6363  
Pin Descriptions (Continued)  
ISL6363  
SYMBOL  
ISEN4  
VSEN  
DESCRIPTION  
9
VR1 phase 4 current sense input pin for phase current balancing.  
VR1 remote core voltage sense input.  
10  
11  
PSICOMP This pin is used for improving transient response in PS2/3 mode of VR1 by switching in an additional type 3 compensation  
network to improve system gain and phase margin. Connect a resistor and capacitor from this pin to the output of VR1 near  
the feedback compensation network.  
12  
13  
14  
RTN  
FB  
VR1 remote voltage sensing return input. Connect this pin to the remote ground sensing location.  
Inverting input of the error amplifier for VR1.  
COMP  
This is a dual function pin. This pin is the output of the error amplifier for VR1. A resistor connected from this pin to GND  
programs IMAX for VR1 and V  
for both VR1 and VR2. Refer to Table 7 on page 28.  
BOOT  
15  
16  
VW  
A resistor from this pin to COMP programs the PWM switching frequency for VR1.  
NTC  
One of the thermistor network inputs to the thermal monitoring circuit used to control the VR_HOT# signal. Use this pin to  
monitor the temperature of VR1. Place the NTC close to the desired thermal detection point on the PCB.  
17  
18  
IMON  
Current monitoring output pin for VR1. The current sense signal from ISUMN and ISUMP is output on this pin to generate a  
voltage proportional to the output current of VR1.  
VR_ON  
Enable input signal for the controller. A high level logic signal on this pin enables the controller and initiates soft-start for VR1  
and VR2.  
19, 20, 21  
SDA,  
ALERT#,  
SCLK  
Data, alert and clock signal for the SVID communication bus between the CPU and VR1 and VR2.  
22  
23  
PGOODG  
Power-good open-drain output indicating when VR2 is able to supply a regulated voltage. Pull-up externally with a 680Ω  
resistor to +5V or 1.0kto 3.3V.  
IMONG  
Current monitoring output pin for VR2. The current sense signal from ISUMNG and ISUMPG is output on this pin to generate  
a voltage proportional to the output current of VR2.  
24  
25  
VWG  
A resistor from this pin to COMPG programs the PWM switching frequency for VR1.  
COMPG  
This is a dual function pin. This pin is the output of the error amplifier for VR2. A resistor connected from this pin to GND  
programs IMAX for VR2 and TMAX for both VR1 and VR2. Refer to Table 8 on page 28.  
26  
27  
FBG  
Inverting input of the error amplifier for VR2.  
RTNG  
VR2 remote voltage sensing return input. Connect this pin to the remote ground sensing location.  
VR2 current sense input pin for current monitoring, droop current and overcurrent detection.  
28, 29  
ISUMPG,  
ISUMNG  
30  
NTCG  
One of the thermistor network inputs to the thermal monitoring circuit used to control the VR_HOT# signal. Use this pin to  
monitor the temperature of VR2. Place the NTC close to the desired thermal detection point on the PCB.  
31  
32  
VR_HOT# Open drain thermal overload output indicator.  
PVCCG  
Input voltage bias for the internal gate driver for VR2. Connect +12V to this pin. Decouple with at least a 1µF MLCC capacitor  
and place it as close to the pin as possible.  
33  
34  
LGATEG  
BOOTG  
Output of the VR2 low-side MOSFET gate driver. Connect this pin to the gate of the VR2 low-side MOSFET.  
Connect a MLCC capacitor from this pin to the PHASEG pin. The boot capacitor is charged through an internal boot diode  
connected from the PVCCG pin to the BOOTG pin.  
35  
36  
UGATEG  
PHASEG  
Output of the VR2 high-side MOSFET gate drive. Connect this pin to the gate of the VR2 high-side MOSFET.  
Current return path for the VR2 high-side MOSFET gate driver. Connect this pin to the node connecting the source of the  
high-side MOSFET, the drain of the low-side MOSFET and the output inductor of VR2.  
37  
38  
39  
PWM4  
PWM3  
PWM output for phase 4 of VR1. When PWM4 is pulled to +5V VCC, the controller will disable phase 4 of VR1.  
PWM output for phase 3 of VR1. When PWM3 is pulled to +5V VCC, the controller will disable phase 3 of VR1.  
PHASE2  
Current return path for the VR1 phase 2 high-side MOSFET gate driver. Connect this pin to the node connecting the source of  
the high-side MOSFET, the drain of the low-side MOSFET and the output inductor of phase 2.  
40  
UGATE2  
Output of the VR1 phase 2 high-side MOSFET gate drive. Connect this pin to the gate of the high-side MOSFET of phase 2.  
FN6898.1  
September 5, 2013  
3
ISL6363  
Pin Descriptions (Continued)  
ISL6363  
SYMBOL  
DESCRIPTION  
41  
BOOT2  
Connect an MLCC capacitor from this pin to the PHASE2 pin. The boot capacitor is charged through an internal boot diode  
connected from the PVCCG pin to the BOOTG pin.  
42  
43  
LGATE2  
PVCC  
Output of the VR1 phase 2 low-side MOSFET gate driver. Connect this pin to the gate of the low-side MOSFET of phase 2.  
Input voltage bias for the internal gate drivers for VR1. Connect +12V to this pin. Decouple with at least a 1µF MLCC capacitor  
and place it as close to the pin as possible.  
44  
45  
LGATE1  
BOOT1  
Output of the VR1 phase 1 low-side MOSFET gate driver. Connect this pin to the gate of the low-side MOSFET of phase 1.  
Connect an MLCC capacitor from this pin to the PHASE1 pin. The boot capacitor is charged through an internal boot diode  
connected from the PVCC pin to the BOOT1 pin.  
46  
47  
UGATE1  
PHASE1  
Output of the VR1 phase 1 high-side MOSFET gate drive. Connect this pin to the gate of the high-side MOSFET of phase 1.  
Current return path for the VR1 phase 1 high-side MOSFET gate driver. Connect this pin to the node connecting the source of  
the high-side MOSFET, the drain of the low-side MOSFET and the output inductor of phase 1.  
48  
ADDR  
A resistor from this pin to GND programs the SVID address for VR1 and VR2. Refer to Table 9 on page 28.  
FN6898.1  
September 5, 2013  
4
ISL6363  
Block Diagram  
VWG  
COMPG  
COMPG  
+
+
RTNG  
FBG  
+
_
Σ
E/A  
BOOTG  
VR2  
MODULATOR  
DRIVER  
DRIVER  
UGATEG  
PHASEG  
IDROOPG  
ISUMPG  
ISUMNG  
+
_
CURRENT  
SENSE  
LGATEG  
PGOODG  
IMONG  
OC FAULT  
OV FAULT  
NTCG  
NTC  
VCC  
T_MONITOR  
TEMP  
MONITOR  
PVCCG  
VR_HOT#  
IMAX  
VBOOT  
TMAX  
COMPG  
COMP  
PVCC  
ADDR  
SET (A/D)  
ADDR  
SCOMP  
PWM4  
IMONG  
IMON  
VR_ON  
SDA  
A/D  
D/A  
DAC2  
DAC1  
DIGITAL  
INTERFACE  
PWM3  
ALERT#  
SCLK  
MODE2  
MODE1  
MODE  
BOOT2  
UGATE2  
PHASE2  
VREADY  
DRIVER  
VW  
COMP  
COMP  
+
LGATE2  
DRIVER  
DRIVER  
+
VR1  
MODULATOR  
RTN  
+
_
Σ
E/A  
FB  
PSICOMP  
CIRCUIT  
BOOT1  
PSICOMP  
IDROOP  
UGATE1  
PHASE1  
ISUMP  
ISUMN  
+
_
CURRENT  
SENSE  
ISEN4  
ISEN3  
ISEN2  
ISEN1  
LGATE1  
PGOOD  
DRIVER  
CURRENT  
BALANCING  
OC FAULT  
IBAL FAULT  
OV FAULT  
VSEN  
IMON  
GND  
FN6898.1  
September 5, 2013  
5
ISL6363  
Simplified Application Circuit  
Vin +12V  
+5V  
VCC PVCC PVCCG  
Rntcg  
BOOTG  
NTCG  
o
C
LG  
UGATEG  
GX Vcore  
PGOODG  
PGOODG  
VWG  
PHASEG  
Rfsetg  
LGATEG  
Rsumg  
Rprog2  
ISUMPG  
ISUMNG  
Rng  
COMPG  
FBG  
o
Cng  
Rig  
C
Vsumng  
Cvsumng  
+12V  
Vin  
+12V  
VCC  
UGATE  
L4  
Rdroopg  
PVCC  
PHASE  
VCCSENSEG  
VSSSENSEG  
ISL6622  
RTNG  
BOOT  
LGATE  
GND  
PWM4  
PWM  
IMONG  
+12V  
IMONG  
ISL6363  
VCC  
L3  
L2  
L1  
UGATE  
SDA  
ALERT#  
SCLK  
SDA  
ALERT#  
SCLK  
PVCC  
PHASE  
ISL6622  
BOOT  
PWM3  
PWM  
LGATE  
Rscomp  
Raddr  
GND  
SCOMP  
ADDR  
BOOT2  
UGATE2  
PHASE2  
Rntc  
C
CPU Vcore  
NTC  
o
LGATE2  
BOOT1  
VR_HOT#  
PGOOD  
VR_ON  
VR_HOT#  
PGOOD  
VR_ON  
Rfset  
UGATE1  
PHASE1  
VW  
Rprog1  
LGATE1  
COMP  
Rsum4  
ISUMP  
Rsum3  
Rsum2  
Rsum1  
Rn  
FB  
o
Cn  
C
PSICOMP  
Ri  
Vsumn  
ISUMN  
Cvsumv  
Risen4  
Cisen1  
Cisen2Cisen3Cisen4  
Rdroop  
VCCSENSE  
VSSSENSE  
ISEN4  
ISEN3  
ISEN2  
ISEN1  
Risen3  
Risen2  
Risen1  
VSEN  
RTN  
IMON  
IMON  
GND  
FN6898.1  
September 5, 2013  
6
ISL6363  
Table of Contents  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Gate Driver Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Theory of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Multiphase R3 Modulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Start-up Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Voltage Regulation and Load Line Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Differential Voltage Sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Phase Current Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Modes of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Dynamic Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
VR_HOT#/ALERT# Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
PSICOMP Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Adaptive Body Diode Conduction Time Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Supported Data and Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Key Component Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Inductor DCR Current-Sensing Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Resistor Current-Sensing Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Compensator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Programming Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
NTC Network on the NTC and the NTCG pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Current Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Current Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Optional Slew Rate Compensation Circuit for 1-Tick VID Transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
FN6898.1  
September 5, 2013  
7
ISL6363  
Absolute Maximum Ratings  
Thermal Information  
Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +7V  
Supply Voltage, PVCC, PVCCG . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 15V  
Absolute Boot Voltage (BOOT). . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +36V  
Phase Voltage (PHASE) . . . . . . . . . . . . . . . . . . -8V (<400ns, 20µJ) to +30V,  
Thermal Resistance (Typical)  
48 Ld TQFN Package (Notes 4, 5) . . . . . . .  
θ
JA (°C/W)  
27  
θ
JC (°C/W)  
1
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C  
Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . .+150°C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
(<200ns, V  
- VGND < +36V)  
BOOT  
UGATE Voltage (UGATE) . . . . . . . . . . . . . . . . . . PHASE-0.3V to BOOT + 0.3V  
PHASE-3.5V (<100ns Pulse Width, 2µJ) to BOOT + 0.3V  
LGATE Voltage. . . . . . . . . . . . -3V (<20ns Pulse Width, 5µJ) to PVCC + 0.3V  
-5V (<100ns Pulse Width, 2µJ) to PVCC + 0.3V  
All Other Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3V to (VCC + 0.3V)  
Open Drain Outputs, PGOOD, VR_HOT#, ALERT#. . . . . . . . . . -0.3V to +7V  
ESD Rating  
Human Body Model (Tested per JESD22-A114E). . . . . . . . . . . . . . 2500V  
Machine Model (Tested per JESD22-A115-A). . . . . . . . . . . . . . . . . 250V  
Charged Device Model (Tested per JESD22-C101A) . . . . . . . . . . 1000V  
Latch Up (Tested per JESD-78B; Class 2, Level A) . . . . . . . . . . . . . . 100mA  
Recommended Operating Conditions  
Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+5V ±5%  
PVCC, PVCCG Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +5V to 12V  
Ambient Temperature  
CRTZ (Commercial) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to +70°C  
IRTZ (Industrial) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
5. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications Operating Conditions: VCC = 5V, PVCC = 12V, PVCCG = 12V, T = 0°C to +70°C, (Commercial) or  
A
-40°C to +85°C (Industrial), f  
= 300kHz, unless otherwise noted.  
SW  
Boldface limits apply over the operating temperature range, 0°C to +70°C (Commercial) or -40°C to +85°C (Industrial).  
MIN  
MAX  
(Note 6) TYP (Note 6) UNITS  
PARAMETER  
INPUT POWER SUPPLY  
SYMBOL  
TEST CONDITIONS  
+5V Supply Current  
I
VR_ON = 1V  
VR_ON = 0V  
VR_ON = 1V  
VR_ON = 0V  
VR_ON = 1V  
VR_ON = 0V  
18  
4.1  
1
20  
5.5  
2
mA  
mA  
mA  
mA  
mA  
mA  
V
VCC  
PVCC Supply Current  
I
PVCC  
1
PVCCG Supply Current  
VCC Power-On-Reset Threshold  
I
1
2
PVCCG  
1
POR  
POR  
V
V
V
V
rising  
falling  
rising  
falling  
4.35  
4.15  
4.35  
4.15  
4.5  
r
CC  
CC  
CC  
CC  
4
4
V
f
PVCC and PVCCG Power-On-Reset  
Threshold  
PPOR  
4.5  
V
r
f
PPOR  
V
SYSTEM AND REFERENCES  
System Accuracy  
CRTZ  
No load; closed loop, active mode range  
VID = 0.75V to 1.52V  
-0.5  
-8  
+0.5  
+8  
%
VID = 0.5V to 0.745V  
VID = 0.25V to 0.495V  
mV  
mV  
-15  
+15  
IRTZ  
No load; closed loop, active mode range  
VID = 0.75V to 1.52V  
-0.8  
-10  
-18  
+0.8  
+10  
+18  
%
mV  
mV  
V
VID = 0.5V to 0.745V  
VID = 0.25V to 0.495V  
Internal V  
BOOT  
CRTZ  
IRTZ  
1.0945 1.100 1.1055  
1.0912 1.1 1.1088  
V
FN6898.1  
September 5, 2013  
8
ISL6363  
Electrical Specifications Operating Conditions: VCC = 5V, PVCC = 12V, PVCCG = 12V, T = 0°C to +70°C, (Commercial) or  
A
-40°C to +85°C (Industrial), f  
= 300kHz, unless otherwise noted.  
SW  
Boldface limits apply over the operating temperature range, 0°C to +70°C (Commercial) or -40°C to +85°C (Industrial). (Continued)  
MIN  
MAX  
PARAMETER  
Maximum Output Voltage  
SYMBOL  
TEST CONDITIONS  
VID = [11111111]  
(Note 6) TYP (Note 6) UNITS  
V
1.52  
0.25  
V
V
V
CC_CORE(max)  
Minimum Output Voltage  
V
VID = [00000001]  
CC_CORE(min)  
Maximum Output Voltage with Offset  
V
Register 33h = 7Fh, VID = FFh  
2.155  
CC_CORE(max)  
+ Offset  
CHANNEL FREQUENCY  
Nominal Channel Frequency  
f
R
= 8.06kΩ, 3-channel operation,  
= 1.1V  
280  
300  
320  
200  
kHz  
kHz  
SW(nom)  
fset  
V
COMP  
Minimum Adjustment Range  
Maximum Adjustment Range  
AMPLIFIERS  
500  
Current-Sense Amplifier Input Offset  
Error Amp DC Gain  
I
= 0A  
-0.313  
+0.313  
mV  
dB  
FB  
A
90  
18  
v0  
Error Amp Gain-Bandwidth Product  
ISEN  
GBW  
C = 20pF  
L
MHz  
Imbalance Voltage  
Maximum of ISENs - Minimum of ISENs  
1.1  
mV  
nA  
Input Bias Current  
20  
POWER-GOOD AND PROTECTION MONITORS  
PGOOD Low Voltage  
V
I
= 4mA  
0.15  
0.4  
1
V
OL  
PGOOD  
PGOOD Leakage Current  
PGOOD Delay  
I
PGOOD = 3.3V  
µA  
ms  
OH  
tpgd  
3.8  
7
ALERT# Low Resistance  
VR_HOT# Low Resistance  
ALERT# Leakage Current  
VR_HOT# Leakage Current  
GATE DRIVE SWITCHING TIME  
UGATE Rise Time  
13  
13  
1
7
µA  
µA  
1
t
V
/V  
= 12V, 3nF load,  
26  
ns  
RUGATE; PVCC PVCCG  
10% to 90%  
LGATE Rise Time  
t
t
t
t
t
V
= 12V, 3nF load, 10% to 90%  
= 12V, 3nF load, 90% to 10%  
= 12V, 3nF load, 90% to 10%  
18  
18  
12  
10  
10  
ns  
ns  
ns  
ns  
ns  
RLGATE; PVCC  
UGATE Fall Time  
V
FUGATE; PVCC  
LGATE Fall Time  
V
FLGATE; PVCC  
UGATE Turn-On Non-Overlap  
LGATE Turn-On Non-Overlap  
GATE DRIVE RESISTANCE  
Upper Drive Source Resistance  
Upper Drive Sink Resistance  
Lower Drive Source Resistance  
Lower Drive Sink Resistance  
BOOTSTRAP DIODE  
; V  
= 12V, 3nF load, adaptive  
= 12V, 3nF load, adaptive  
PDHUGATE PVCC  
; V  
PDHLGATE PVCC  
V
V
V
V
= 12V, 15mA source current  
2.0  
W
W
W
W
PVCC  
PVCC  
PVCC  
PVCC  
= 12V, 15mA sink current  
= 12V, 15mA source current  
= 12V, 15mA sink current  
1.35  
1.35  
0.90  
Forward Voltage  
V
PVCC = 12V, I = 2mA  
0.58  
0.2  
V
F
F
Reverse Leakage  
I
V
= 25V  
R
µA  
R
FN6898.1  
September 5, 2013  
9
ISL6363  
Electrical Specifications Operating Conditions: VCC = 5V, PVCC = 12V, PVCCG = 12V, T = 0°C to +70°C, (Commercial) or  
A
-40°C to +85°C (Industrial), f  
= 300kHz, unless otherwise noted.  
SW  
Boldface limits apply over the operating temperature range, 0°C to +70°C (Commercial) or -40°C to +85°C (Industrial). (Continued)  
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(Note 6) TYP (Note 6) UNITS  
PROTECTION  
Overvoltage Threshold  
OV  
VSEN rising above setpoint for >1µs  
One ISEN above another ISEN for >1.2ms  
4, 3, 2, 1-Phase Configuration PS0 Mode  
116  
50  
232  
71  
mV  
mV  
µA  
µA  
H
Current Imbalance Threshold  
VR1 Overcurrent Threshold  
9
60  
30  
4-Phase Configuration, drop to 2-Phase in PS1  
Mode  
4-Phase Configuration, drop to 1-Phase in PS2/3  
Mode  
16  
16  
50  
20  
26  
26  
µA  
3-Phase Configuration, drop to 2-Phase in PS1  
3-Phase Configuration, drop to 1-Phase in PS2/3  
40  
20  
30  
µA  
µA  
µA  
2-Phase Configuration, drop to 1-phase in  
PS1/2/3 Mode  
VR2 Overcurrent Threshold  
LOGIC THRESHOLDS  
All modes of operation  
60  
71  
µA  
VR_ON Input Low  
V
0.3  
V
V
IL  
VR_ON Input High  
V
0.7  
3.5  
IH  
PWM  
PWM Output Low  
V
Sinking 5mA  
Sourcing 5mA  
PWM = 2.5V  
1.0  
V
V
0L  
PWM Output High (Note 6)  
PWM Tri-State Leakage  
V
4.2  
2
0H  
µA  
THERMAL MONITOR  
NTC Source Current  
NTC = 1.3V  
Falling  
58  
60  
63  
µA  
V
VR_HOT# Trip Voltage (VR1 and VR2)  
VR_HOT# Reset Voltage (VR1 and VR2)  
Therm_Alert Trip Voltage (VR1 and VR2)  
Therm_Alert Reset Voltage (VR1 and VR2)  
CURRENT MONITOR  
0.86  
0.873  
0.89  
Rising  
0.905 0.929 0.935  
0.9 0.913 0.93  
0.945 0.961 0.975  
V
Falling  
V
Rising  
V
IMON Output Current (VR1 and VR2)  
ICCMAX_Alert Trip Voltage (VR1 and VR2)  
ICCMAX_ALERT Reset Voltage (VR1 and VR2)  
INPUTS  
ISUM- pin current = 25µA  
147  
2.61  
150  
2.66  
2.62  
154  
µA  
V
Rising  
Falling  
2.695  
2.650  
2.585  
V
VR_ON Leakage Current  
I
VR_ON = 0V  
-1  
0
µA  
µA  
µA  
µA  
µA  
VR_ON  
VR_ON = 1V  
18  
35  
1
SCLK, SDA Leakage  
VR_ON = 0V, SCLK and SDA = 0V and 1V  
VR_ON = 1V, SCLK and SDA = 1V  
VR_ON = 1V, SCLK and SDA = 0V  
-1  
-5  
1
-85  
-60  
-30  
SLEW RATE (For VID Change)  
Fast Slew Rate  
10  
mV/µs  
mV/µs  
Slow Slew Rate  
NOTE:  
2.5  
6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
FN6898.1  
September 5, 2013  
10  
ISL6363  
Gate Driver Timing Diagram  
PWM  
t
LGFUGR  
t
FU  
t
RU  
1V  
UGATE  
LGATE  
1V  
t
RL  
t
FL  
t
UGFLGR  
MASTER CLOCK CIRCUIT  
VW  
Theory of Operation  
Multiphase R3 Modulator  
MASTER  
CLOCK  
Clock1  
Clock2  
Clock3  
COMP  
Vcrm  
MASTER  
CLOCK  
Phase  
Sequencer  
The ISL6363 is a multiphase regulator implementing Intel’s™  
VR12™ protocol. It has two voltage regulators, VR1 and VR2, on  
one chip. VR1 can be programmed for 1, 2, 3, or 4-phase  
operation, and VR2 is dedicated for 1-phase operation. The  
following description is based on VR1, but also applies to VR2  
because the same architecture is implemented.  
gmVo  
Crm  
SLAVE CIRCUIT 1  
L1  
IL1  
Phase1  
Clock1  
PWM1  
Vo  
S
R
VW  
Q
Co  
Vcrs1  
The ISL6363 uses Intersil’s patented R3 (Robust Ripple Regulator)  
modulator. The R3 modulator combines the best features of fixed  
frequency PWM and hysteretic PWM while eliminating many of  
their shortcomings. Figure 3 conceptually shows the multiphase  
R3 modulator circuit, and Figure 4 shows the operation principles.  
gm  
Crs1  
Crs2  
Crs3  
SLAVE CIRCUIT 2  
L2  
IL2  
Phase2  
PWM2  
Clock2  
S
R
VW  
Q
A current source flows from the VW pin to the COMP pin, creating  
a voltage window set by the resistor between the two pins. This  
voltage window is called VW window in the following discussion.  
Vcrs2  
gm  
Inside the IC, the modulator uses the master clock circuit to  
generate the clocks for the slave circuits. The modulator  
SLAVE CIRCUIT 3  
L3  
IL3  
Phase3  
PWM3  
Clock3  
S
R
VW  
Q
discharges the ripple capacitor C with a current source equal to  
rm  
g V , where g is a gain factor. C voltage V  
m o rm crm  
is a sawtooth  
m
waveform traversing between the VW and COMP voltages. It resets  
to VW when it hits COMP, and generates a one-shot master clock  
signal. A phase sequencer distributes the master clock signal to  
the slave circuits. If VR1 is in 4-phase mode, the master clock  
signal will be distributed to the four phases, and the Clock1~4  
signals will be 90° out-of-phase. If VR1 is in 3-phase mode, the  
master clock signal will be distributed to the three phases, and the  
Clock1~3 signals will be 120° out-of-phase. If VR1 is in 2-phase  
mode, the master clock signal will be distributed to Phases 1 and 2,  
and the Clock1 and Clock2 signals will be 180° out-of-phase. If  
VR1 is in 1-phase mode, the master clock signal will be distributed  
to Phase 1 only and be the Clock1 signal.  
Vcrs3  
gm  
FIGURE 3. R3 MODULATOR CIRCUIT  
Each slave circuit has its own ripple capacitor C , whose voltage  
rs  
mimics the inductor ripple current. A g amplifier converts the  
inductor voltage into a current source to charge and discharge  
C . The slave circuit turns on its PWM pulse upon receiving the  
m
rs  
clock signal, and the current source charges C . When C  
rs rs  
voltage V hits VW, the slave circuit turns off the PWM pulse,  
Crs  
and the current source discharges C .  
rs  
FN6898.1  
September 5, 2013  
11  
ISL6363  
VW  
VW  
Hysteretic  
Window  
Vcrm  
COMP  
COMP  
Vcrm  
Master  
Clock  
Master  
Clock  
Clock1  
PWM1  
Clock1  
PWM1  
Clock2  
PWM2  
Clock2  
PWM2  
Clock3  
PWM3  
Clock3  
PWM3  
VW  
VW  
Vcrs1  
Vcrs3  
Vcrs2  
Vcrs2 Vcrs3 Vcrs1  
FIGURE 4. R3 MODULATOR OPERATION PRINCIPLES IN STEADY  
STATE  
FIGURE 5. R3 MODULATOR OPERATION PRINCIPLES IN LOAD  
INSERTION RESPONSE  
Diode Emulation and Period Stretching of the ISL6363 can  
operate in diode emulation (DE) mode to improve light load  
efficiency. In DE mode, the low-side MOSFET conducts when the  
current is flowing from source to drain and does not allow reverse  
current, emulating a diode. As Figure 6 shows, when LGATE is on,  
the low-side MOSFET carries current, creating negative voltage on  
the phase node due to the voltage drop across the ON-resistance.  
The ISL6363 monitors the current through monitoring the phase  
node voltage. It turns off LGATE when the phase node voltage  
reaches zero to prevent the inductor current from reversing the  
direction and creating unnecessary power loss.  
Since the controller works with V , which are large-amplitude  
crs  
and noise-free synthesized signals, it achieves lower phase jitter  
than conventional hysteretic mode and fixed PWM mode  
controllers. Unlike conventional hysteretic mode converters, the  
ISL6363 uses an error amplifier that allows the controller to  
maintain a 0.5% output voltage accuracy.  
Figure 5 shows the operation principles during load insertion  
response. The COMP voltage rises during load insertion,  
generating the master clock signal more quickly, so the PWM  
pulses turn on earlier, increasing the effective switching frequency,  
which allows for higher control loop bandwidth than conventional  
fixed frequency PWM controllers. The VW voltage rises as the  
COMP voltage rises, making the PWM pulses wider. During load  
release response, the COMP voltage falls. It takes the master clock  
circuit longer to generate the next master clock signal so the PWM  
pulse is held off until needed. The VW voltage falls as the COMP  
voltage falls, reducing the current PWM pulse width. This kind of  
behavior gives the ISL6363 excellent response speed.  
P H A S E  
U G A TE  
LG A TE  
The fact that all the phases share the same VW window voltage  
also ensures excellent dynamic current balance among phases.  
IL  
FIGURE 6. DIODE EMULATION  
If the load current is light enough, as Figure 6 shows, the inductor  
current will reach and stay at zero before the next phase node  
pulse, and the regulator is in discontinuous conduction mode  
(DCM). If the load current is heavy enough, the inductor current  
will never reach 0A, and the regulator is in CCM although the  
controller is in DE mode.  
FN6898.1  
September 5, 2013  
12  
ISL6363  
Figure 7 shows the operation principle in diode emulation mode at  
Voltage Regulation and Load Line  
Implementation  
After the start sequence, the ISL6363 regulates the output voltage  
to the value set by the VID information per Table 1. The ISL6363  
will control the no-load output voltage to an accuracy of ±0.5%  
over the range of 0.75V to 1.52V. A differential amplifier allows  
voltage sensing for precise voltage regulation at the  
microprocessor die.  
light load. The load gets incrementally lighter in the three cases  
from top to bottom. The PWM on-time is determined by the VW  
window size, therefore is the same, making the inductor current  
triangle the same in the three cases. The ISL6363 clamps the  
ripple capacitor voltage V in DE mode to make it mimic the  
crs  
inductor current. It takes the COMP voltage longer to hit V  
,
crs  
naturally stretching the switching period. The inductor current  
triangles move further apart from each other such that the  
inductor current average value is equal to the load current. The  
reduced switching frequency helps increase light load efficiency.  
TABLE 1. VID TABLE  
VID  
CCM/DCM BOUNDARY  
VW  
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
HEX  
V (V)  
O
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
0
1
2
3
4
5
6
7
8
9
0.00000  
0.25000  
0.25500  
0.26000  
0.26500  
0.27000  
0.27500  
0.28000  
0.28500  
0.29000  
0.29500  
0.30000  
0.30500  
0.31000  
0.31500  
0.32000  
0.32500  
0.33000  
0.33500  
0.34000  
0.34500  
0.35000  
0.35500  
0.36000  
0.36500  
0.37000  
0.37500  
0.38000  
0.38500  
0.39000  
0.39500  
0.40000  
0.40500  
Vcrs  
iL  
LIGHT DCM  
VW  
Vcrs  
iL  
DEEP DCM  
VW  
Vcrs  
iL  
A
B
C
D
E
F
FIGURE 7. PERIOD STRETCHING  
Start-up Timing  
With the controller's V voltage above the POR threshold, the  
CC  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
start-up sequence begins when VR_ON exceeds the logic high  
threshold. Figure 8 shows the typical start-up timing of VR1 and  
VR2. The ISL6363 uses digital soft-start to ramp-up DAC to the  
voltage programmed by the SetVID command. PGOOD is asserted  
high and ALERT# is asserted low at the end of the ramp-up.  
Similar results occur if VR_ON is tied to VCC, with the soft-start  
sequence starting 800µs after VCC crosses the POR threshold.  
VCC  
SLEW RATE  
VID  
VR_ON  
2.5mV/µs  
VID COMMAND  
VOLTAGE  
3.8ms  
DAC  
PGOOD  
ALERT#  
…...  
FIGURE 8. VR1 SOFT-START WAVEFORMS  
0
FN6898.1  
September 5, 2013  
13  
ISL6363  
TABLE 1. VID TABLE (Continued)  
VID  
TABLE 1. VID TABLE (Continued)  
VID  
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
3
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
2
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
HEX  
V
(V)  
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
3
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
2
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
HEX  
V (V)  
O
O
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
1
2
3
4
5
6
7
8
9
A
B
C
0.41000  
0.41500  
0.42000  
0.42500  
0.43000  
0.43500  
0.44000  
0.44500  
0.45000  
0.45500  
0.46000  
0.46500  
0.47000  
0.47500  
0.48000  
0.48500  
0.49000  
0.49500  
0.50000  
0.50500  
0.51000  
0.51500  
0.52000  
0.52500  
0.53000  
0.53500  
0.54000  
0.54500  
0.55000  
0.55500  
0.56000  
0.56500  
0.57000  
0.57500  
0.58000  
0.58500  
0.59000  
0.59500  
0.60000  
0.60500  
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
9
0.61000  
0.61500  
0.62000  
0.62500  
0.63000  
0.63500  
0.64000  
0.64500  
0.65000  
0.65500  
0.66000  
0.66500  
0.67000  
0.67500  
0.68000  
0.68500  
0.69000  
0.69500  
0.70000  
0.70500  
0.71000  
0.71500  
0.72000  
0.72500  
0.73000  
0.73500  
0.74000  
0.74500  
0.75000  
0.75500  
0.76000  
0.76500  
0.77000  
0.77500  
0.78000  
0.78500  
0.79000  
0.79500  
0.80000  
0.80500  
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
0
FN6898.1  
September 5, 2013  
14  
ISL6363  
TABLE 1. VID TABLE (Continued)  
VID  
TABLE 1. VID TABLE (Continued)  
VID  
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
3
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
2
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
HEX  
V
(V)  
7
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
5
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
4
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
3
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
2
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
HEX  
V (V)  
O
O
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
1
2
3
4
5
6
7
8
9
A
B
C
0.81000  
0.81500  
0.82000  
0.82500  
0.83000  
0.83500  
0.84000  
0.84500  
0.85000  
0.85500  
0.86000  
0.86500  
0.87000  
0.87500  
0.88000  
0.88500  
0.89000  
0.89500  
0.90000  
0.90500  
0.91000  
0.91500  
0.92000  
0.92500  
0.93000  
0.93500  
0.94000  
0.94500  
0.95000  
0.95500  
0.96000  
0.96500  
0.97000  
0.97500  
0.98000  
0.98500  
0.99000  
0.99500  
1.00000  
1.00500  
9
9
9
9
9
9
9
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
C
9
1.01000  
1.01500  
1.02000  
1.02500  
1.03000  
1.03500  
1.04000  
1.04500  
1.05000  
1.05500  
1.06000  
1.06500  
1.07000  
1.07500  
1.08000  
1.08500  
1.09000  
1.09500  
1.10000  
1.10500  
1.11000  
1.11500  
1.12000  
1.12500  
1.13000  
1.13500  
1.14000  
1.14500  
1.15000  
1.15500  
1.16000  
1.16500  
1.17000  
1.17500  
1.18000  
1.18500  
1.19000  
1.19500  
1.20000  
1.20500  
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
0
FN6898.1  
September 5, 2013  
15  
ISL6363  
TABLE 1. VID TABLE (Continued)  
VID  
TABLE 1. VID TABLE (Continued)  
VID  
7
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
3
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
2
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
HEX  
V
(V)  
7
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
HEX  
V (V)  
O
O
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
E
1
2
3
4
5
6
7
8
9
A
B
C
1.21000  
1.21500  
1.22000  
1.22500  
1.23000  
1.23500  
1.24000  
1.24500  
1.25000  
1.25500  
1.26000  
1.26500  
1.27000  
1.27500  
1.28000  
1.28500  
1.29000  
1.29500  
1.30000  
1.30500  
1.31000  
1.31500  
1.32000  
1.32500  
1.33000  
1.33500  
1.34000  
1.34500  
1.35000  
1.35500  
1.36000  
1.36500  
1.37000  
1.37500  
1.38000  
1.38500  
1.39000  
1.39500  
1.40000  
1.40500  
E
E
E
E
E
E
E
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
9
1.41000  
1.41500  
1.42000  
1.42500  
1.43000  
1.43500  
1.44000  
1.44500  
1.45000  
1.45500  
1.46000  
1.46500  
1.47000  
1.47500  
1.48000  
1.48500  
1.49000  
1.49500  
1.50000  
1.50500  
1.51000  
1.51500  
1.52000  
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
As the load current increases from zero, the output voltage will  
droop from the VID table value by an amount proportional to the  
load current to achieve the load line. The ISL6363 can sense the  
inductor current through the intrinsic DC Resistance (DCR) of the  
inductors as shown in Figure 16 or through resistors in series  
with the inductors as shown in Figure 22. In both methods,  
capacitor C voltage represents the inductor total currents. A  
droop amplifier converts C voltage into an internal current  
source with the gain set by resistor R . The current source is used  
for load line implementation, current monitor and overcurrent  
protection.  
n
n
i
0
1
2
3
4
5
6
7
8
Figure 9 shows the load line implementation. The ISL6363 drives  
a current source I  
E
out of the FB pin, described by Equation 1.  
droop  
E
2xV  
Cn  
(EQ. 1)  
----------------  
I
=
droop  
E
R
i
E
When using inductor DCR current sensing, a single NTC element  
is used to compensate the positive temperature coefficient of the  
copper winding, thus sustaining the load line accuracy with  
reduced cost.  
E
E
E
E
FN6898.1  
September 5, 2013  
16  
ISL6363  
eliminate the effect of phase node parasitic PCB DCR.  
Equations 5 through 7 give the ISEN pin voltages:  
Rdroop  
Vdroop  
(EQ. 5)  
(EQ. 6)  
(EQ. 7)  
V
V
V
= (R  
= (R  
= (R  
+ R  
+ R  
+ R  
) × I  
) × I  
) × I  
VCCSENSE  
ISEN1  
ISEN2  
ISEN3  
dcr1  
dcr2  
dcr3  
pcb1  
pcb2  
pcb3  
L1  
L2  
L3  
FB  
VR LOCAL VO  
“CATCH”  
RESISTOR  
Idroop  
E/A  
VID  
Where R  
, R  
and R  
are inductor DCR; R  
, R  
pcb1 pcb2  
dcr1 dcr2  
dcr3  
COMP  
DAC  
X 1  
Σ
VDAC  
and R  
are parasitic PCB DCR between the inductor output  
pcb3  
RTN  
VSS  
side pad and the output voltage rail; and I , I and I are  
inductor average currents.  
L1 L2  
L3  
VSSSENSE  
INTERNAL  
TO IC  
L3  
L2  
L1  
Rdcr3  
Rpcb3  
“CATCH”  
RESISTOR  
Phase3  
Risen  
ISEN3  
IL3  
IL2  
IL1  
FIGURE 9. DIFFERENTIAL SENSING AND LOAD LINE  
IMPLEMENTATION  
Cisen  
Rdcr2  
Rdcr1  
Rpcb2  
Rpcb1  
V
o
INTERNAL  
TO IC  
Phase2  
Risen  
ISEN2  
I
flows through resistor R  
droop  
and creates a voltage drop as  
(EQ. 2)  
droop  
shown in Equation 2.  
Cisen  
V
= R  
× I  
droop droop  
droop  
Phase1  
Risen  
ISEN1  
V
is the droop voltage required to implement load line.  
droop  
Changing R  
Cisen  
or scaling I  
can both change the load line  
also sets the overcurrent protection level, it is  
droop  
slope. Since I  
droop  
droop  
FIGURE 10. CURRENT BALANCING CIRCUIT  
recommended to first scale I  
then select an appropriate R  
load line slope.  
based on OCP requirement,  
value to obtain the desired  
droop  
droop  
The ISL6363 will adjust the phase pulse-width relative to the  
other phases to make V = V = V , thus, to achieve  
ISEN1  
ISEN2 ISEN3  
I
R
= I = I , when there are R  
= R  
= R  
and  
L1 L2 L3 dcr1  
dcr2 dcr3  
Differential Voltage Sensing  
= R  
= R .  
pcb1  
pcb2  
pcb3  
Figure 9 also shows the differential voltage sensing scheme.  
Using the same components for L1, L2 and L3 will provide a good  
match of R , R and R . Board layout will determine  
VCC  
and VSS are the remote voltage sensing signals  
SENSE  
SENSE  
dcr1 dcr2 dcr3  
from the processor die. A unity gain differential amplifier senses  
the VSS voltage and add it to the DAC output. The error  
R
, R  
and R  
. It is recommended to have symmetrical  
pcb1 pcb2  
pcb3  
layout for the power delivery path between each inductor and the  
SENSE  
amplifier regulates the inverting and the non-inverting input  
voltages to be equal as shown in Equation 3:  
output voltage rail, such that R  
= R  
= R .  
pcb1  
pcb2  
pcb3  
L3  
Rdcr3  
Rpcb3  
Rpcb2  
Rpcb1  
V3p  
(EQ. 3)  
(EQ. 4)  
VCC  
+ V  
= V  
+ VSS  
DAC SENSE  
SENSE  
Phase3  
Risen  
ISEN3  
droop  
IL3  
V3n  
Rewriting Equation 3 and substitution of Equation 2 gives  
Risen  
Cisen  
VCC  
VSS  
= V  
R  
× I  
droop droop  
Risen  
SENSE  
SENSE  
DAC  
INTERNAL  
TO IC  
L2  
Rdcr2  
V
o
V2p  
Equation 4 is the exact equation required for load line  
implementation.  
Phase2  
Risen  
Risen  
Risen  
IL2  
ISEN2  
Cisen  
V2n  
The VCC  
SENSE  
and VSS signals come from the processor die.  
SENSE  
The feedback will be open circuit in the absence of the processor. As  
Figure 9 shows, it is recommended to add a “catch” resistor to feed  
the VR local output voltage back to the compensator, and add  
another “catch” resistor to connect the VR local output ground to the  
RTN pin. These resistors, typically 10Ω~100Ω, will provide voltage  
feedback if the system is powered up without a processor installed.  
L1  
Rdcr1  
V1p  
Phase1  
Risen  
Risen  
Risen  
IL1  
ISEN1  
Cisen  
V1n  
Phase Current Balancing  
FIGURE 11. DIFFERENTIAL-SENSING CURRENT BALANCING CIRCUIT  
The ISL6363 monitors individual phase average current by  
monitoring the ISEN1, ISEN2, ISEN3, and ISEN4 voltages.  
Figure 10 shows the current balancing circuit recommended for  
ISL6363 for a 3-Phase configuration as an example. Each phase  
Sometimes it is difficult to implement symmetrical layout. For  
the circuit shown in Figure 10, asymmetric layout causes  
different R  
, R  
and R , thus current imbalance.  
pcb1 pcb2  
pcb3  
Figure 11 shows a differential-sensing current balancing circuit  
recommended for the ISL6363. The current sensing traces  
should be routed to the inductor pads so they only pick up the  
inductor DCR voltage. Each ISEN pin sees the average voltage of  
node voltage is averaged by a low-pass filter consisting of R  
isen  
and C  
, and presented to the corresponding ISEN pin. R  
isen  
isen  
should be routed to the inductor phase-node pad in order to  
FN6898.1  
September 5, 2013  
17  
ISL6363  
three sources: its own phase inductor phase-node pad, and the  
other two phases inductor output side pads. Equations 8 thru 10  
give the ISEN pin voltages:  
REP RATE = 10kHz  
V
= V + V + V  
1p 2n 3n  
(EQ. 8)  
ISEN1  
V
V
= V + V + V  
1n 2p  
(EQ. 9)  
ISEN2  
ISEN3  
3n  
3p  
= V + V + V  
(EQ. 10)  
1n  
2n  
The ISL6363 will make V  
Equations 11 and 12:  
= V  
= V as shown in  
ISEN3  
ISEN1  
ISEN2  
V
+ V + V  
= V + V + V  
(EQ. 11)  
(EQ. 12)  
1p  
2n  
3n  
1n 2p  
3n  
3p  
REP RATE = 25kHz  
V
+ V + V  
= V + V + V  
1n 2n  
1n  
2p  
3n  
Rewriting Equation 11 gives Equation 13:  
V
V  
= V V  
(EQ. 13)  
(EQ. 14)  
1p  
1n 2p 2n  
and rewriting Equation 12 gives Equation 14:  
V
V  
= V V  
2p  
2n 3p 3n  
Combining Equations 13 and 14 gives:  
V
V  
= V V  
= V V  
3n  
(EQ. 15)  
(EQ. 16)  
1p  
1n  
2p  
2n  
3p  
Therefore:  
R
REP RATE = 50kHz  
× I  
= R  
× I  
= R  
× I  
dcr3 L3  
dcr1  
L1  
dcr2  
L2  
Current balancing (I = I = I ) will be achieved when there is  
L1 L2 L3  
R
= R  
= R  
. R , R  
and R  
will not have any  
dcr1  
effect.  
dcr2  
dcr3 pcb1 pcb2  
pcb3  
Since the slave ripple capacitor voltages mimic the inductor  
currents, the R3 modulator can naturally achieve excellent  
current balancing during steady state and dynamic operations.  
Figure 12 shows current balancing performance of the  
evaluation board with a load transient of 12A/51A at different  
rep rates. The inductor currents follow the load current dynamic  
change with the output capacitors supplying the difference. The  
inductor currents can track the load current well at low rep rate,  
but cannot keep up when the rep rate gets into the hundred-kHz  
range, where it’s out of the control loop bandwidth. The controller  
achieves excellent current balancing in all cases installed.  
REP RATE = 100kHz  
CCM SWITCHING FREQUENCY  
The R  
resistor between the COMP and the VW pins sets the  
fset  
VW windows size, therefore sets the switching frequency. When  
the ISL6363 is in continuous conduction mode (CCM), the  
switching frequency is not absolutely constant due to the nature  
of the R3 modulator. As explained in the Multiphase R3  
REP RATE = 200kHz  
Modulator section on page 11, the effective switching frequency  
will increase during load insertion and will decrease during load  
release to achieve fast response. On the other hand, the  
switching frequency is relatively constant at steady state.  
Variation is expected when the power stage condition, such as  
input voltage, output voltage, load, etc., changes. The variation is  
usually less than 15% and doesn’t have any significant effect on  
output voltage ripple magnitude. Equation 17 gives an estimate  
of the frequency-setting resistor R  
value. 8kΩ R gives  
fset  
fset  
approximately 300kHz switching frequency. Lower resistance  
gives higher switching frequency.  
FIGURE 12. CURRENT BALANCING DURING DYNAMIC OPERATION.  
CH1: IL1, CH2: I  
, CH3: IL2, CH4: IL3  
LOAD  
(EQ. 17)  
R
(kΩ) = (Periods) 0.29) × 2.65  
fset  
FN6898.1  
September 5, 2013  
18  
ISL6363  
Table 3 shows VR2 operational modes, programmed by the PS  
command. VR2 operates in 1-phase CCM in PS0 and PS1, and  
enters 1-phase DE mode in PS2 and PS3 mode.  
Modes of Operation  
TABLE 2. VR1 MODES OF OPERATION  
OCP  
THRESHOLD  
(µA)  
VR2 can be disabled completely by tying ISUMNG to 5V, and all  
communication to VR2 will be blocked.  
PWM4 PWM3 ISEN2  
CONFIG. PS  
MODE  
4-PH CCM  
2-PH CCM  
1-PH DE  
To Ext To Ext ToPower 4-phase  
Driver Driver Stage  
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
60  
30  
20  
Dynamic Operation  
CPU VR  
Config.  
VR1 and VR2 behave the same during dynamic operation. The  
controller responds to VID changes by slewing to the new voltage  
at a slew rate indicated in the SetVID command. There are three  
SetVID slew rates, namely SetVID_fast, SetVID_slow and  
SetVID_decay.  
Tie to  
5V VCC  
3-phase  
CPU VR  
Config.  
3-PH CCM  
2-PH CCM  
1-PH DE  
60  
40  
20  
SetVID_fast command prompts the controller to enter CCM and  
to actively drive the output voltage to the new VID value at a  
minimum 10mV/µs slew rate.  
SetVID_slow command prompts the controller to enter CCM and  
to actively drive the output voltage to the new VID value at a  
minimum 2.5mV/µs slew rate.  
Tie to  
5V VCC  
2-phase  
CPU VR  
Config.  
2-PH CCM  
2-PH CCM  
1-PH DE  
60  
60  
30  
SetVID_decay command prompts the controller to enter DE  
mode. The output voltage will decay down to the new VID value at  
a slew rate determined by the load. If the voltage decay rate is  
too fast, the controller will limit the voltage slew rate at  
SetVID_slow slew rate.  
Tie to 5V 1-phase  
VCC  
1-PH CCM  
1-PH DE  
60  
CPU VR  
Config.  
ALERT# will be asserted low at the end of SetVID_fast and  
SetVID_slow VID transitions.  
VR1 can be configured for 4, 3, 2 or 1-phase operation. Table 2  
shows VR1 configurations and operational modes, programmed  
by the PWM4, PWM3 pins and the ISEN2 pin status, and the PS  
command. For 3-phase configuration, tie the PWM4 pin to 5V. In  
this configuration, phases 1, 2 and 3 are active. For 2-phase  
configuration, tie the PWM4 and PWM3 pin to 5V. In this  
configuration, phases 1 and 2 are active. For 1-phase  
S e tV ID _ d e c a y  
S e tV ID _ fa s t/s lo w  
V O  
V ID  
t3  
configuration, tie the PWM4, PWM3 and the ISEN2 pin to 5V. In  
this configuration, only phase 1 is active.  
T _ a le rt  
t1  
t2  
A L E R T #  
In 4-phase configuration, VR1 operates in 4-phase CCM in PS0  
mode. It enters 2-phase CCM operation in PS1 mode. It enters  
1-phase DE operation in PS2 and PS3 modes.  
FIGURE 13. SETVID DECAY PRE-EMPTIVE BEHAVIOR  
In 3-phase configuration, VR1 operates in 3-phase CCM in PS0  
mode. It enters 2-phase CCM operation in PS1 mode. It enters  
1-phase DE operation in PS2 and PS3 modes.  
Figure 13 shows SetVID Decay Pre-Emptive behavior. The  
controller receives a SetVID_decay command at t1. The VR  
enters DE mode and the output voltage V decays down slowly.  
O
In 2-phase configuration, VR1 operates in 2-phase CCM in PS0  
and PS1 mode. It enters 1-phase DE mode in PS2 and PS3  
modes.  
At t2, before V reaches the intended VID target of the  
O
SetVID_decay command, the controller receives a SetVID_fast (or  
SetVID_slow) command to go to a voltage higher than the actual  
V . The controller will turn around immediately and slew V to  
the new target voltage at the slew rate specified by the SetVID  
O
O
In 1-phase configuration, VR1 operates in 1-phase CCM in PS0  
and PS1, and enters 1-phase DE mode in PS2 and PS3.  
command. At t3, V reaches the new target voltage and the  
O
TABLE 3. VR2 MODES OF OPERATION  
controller asserts the ALERT# signal.  
PS  
0
MODE  
1-phase CCM  
OCP THRESHOLD  
60µA  
The R3 modulator intrinsically has voltage feed-forward. The  
output voltage is insensitive to a fast slew rate input voltage  
change.  
1
2
1-phase DE  
3
FN6898.1  
September 5, 2013  
19  
ISL6363  
5. The CPU reads Status_1 register value to know that the alert  
VR_HOT#/ALERT# Behavior  
assertion is due to TZONE register bit 6 flipping.  
VR Temperature  
6. The controller clears ALERT#.  
3% Hysteresis  
10  
Temp Zone  
Bit 7 =1  
1111 1111  
0111 1111  
0011 1111  
0001 1111  
7
7. The temperature continues rising.  
1
Bit 6 =1  
8. The temperature crosses the threshold where the TZONE  
register Bit 7 changes from 0 to 1.  
Bit 5 =1  
12  
9. The controller asserts the VR_HOT# signal. The CPU throttles  
back and the system temperature starts dropping eventually.  
Temp Zone  
Register  
2
8
10. The temperature crosses the threshold where the TZONE  
register bit 6 changes from 1 to 0. This threshold is 1 ADC step  
lower than the one when VR_HOT# gets asserted, to provide  
3% hysteresis.  
0001 1111 0011 1111 0111 1111  
Status 1  
Register = “001”  
1111 1111  
0111 1111  
0011 1111  
0001 1111  
3
= “011”  
= “001”  
13  
15  
16  
5
GerReg  
Status1  
GerReg  
Status1  
SVID  
11. The controllers de-assert the VR_HOT# signal.  
12. The temperature crosses the threshold where the TZONE  
register bit 5 changes from 1 to 0. This threshold is 1 ADC step  
lower than the one when ALERT# gets asserted during the  
temperature rise to provide 3% hysteresis.  
ALERT#  
6
4
14  
VR_HOT#  
9
11  
FIGURE 14. VR_HOT#/ALERT# BEHAVIOR  
13. The controller changes Status_1 register bit 1 from 1 to 0.  
14. The controller asserts ALERT#.  
The controller drives 60µA current source out of the NTC pin and  
the NTCG pin alternatively at 1kHz frequency with 50% duty  
cycle. The current source flows through the respective NTC  
resistor networks on the pins and creates voltages that are  
monitored by the controller through an A/D converter (ADC) to  
generate the TZONE value. Table 4 shows the programming table  
for TZONE. The user needs to scale the NTC and the NTCG  
network resistance such that it generates the NTC (and NTCG) pin  
voltage that corresponds to the left-most column. Do not use any  
capacitor to filter the voltage.  
15. The CPU reads Status_1 register value to know that the alert  
assertion is due to TZONE register bit 5 flipping.  
16. The controller clears ALERT#.  
Protection Functions  
VR1 and VR2 both provide overcurrent, current-balance and  
overvoltage fault protections. The controller also provides  
over-temperature protection. The following discussion is based on  
VR1 and also applies to VR2.  
TABLE 4. TZONE TABLE  
The controller determines overcurrent protection (OCP) by  
comparing the average value of the droop current I  
with an  
VNTC (V)  
0.84  
0.88  
0.92  
0.96  
1.00  
1.04  
1.08  
1.12  
1.16  
1.2  
TMAX (%)  
>100  
100  
97  
TZONE  
FFh  
droop  
internal current source threshold as Table 2 shows. It declares  
OCP when I is above the threshold for 120µs.  
droop  
FFh  
For overcurrent conditions above 1.5x the OCP level, the PWM  
outputs will immediately shut off and PGOOD will go low to  
maximize protection. This protection is also referred to as  
way-overcurrent protection or fast-overcurrent protection, for  
short-circuit protections.  
7Fh  
3Fh  
1Fh  
0Fh  
07h  
03h  
01h  
01h  
00h  
94  
91  
88  
The controller monitors the ISEN pin voltages to determine  
current-balance protection. If the ISEN pin voltage difference is  
greater than 9mV for 1ms, the controller will declare a fault and  
latch off.  
85  
82  
79  
76  
The controller takes the same actions for all of the above fault  
protections: de-assertion of PGOOD and turn-off of the high-side  
and low-side power MOSFETs. Any residual inductor current will  
decay through the MOSFET body diodes.  
>1.2  
<76  
Figure 14 shows how the NTC and the NTCG network should be  
designed to get correct VR_HOT#/ALERT# behavior when the  
system temperature rises and falls, manifested as the NTC and the  
NTCG pin voltage falls and rises. The series of events are:  
The controller will declare an overvoltage fault and de-assert PGOOD  
if the output voltage exceeds the VID set value by +200mV. The  
ISL6363 will immediately declare an OV fault, de-assert PGOOD,  
and turn on the low-side power MOSFETs. The low-side power  
MOSFETs remain on until the output voltage is pulled down below  
the VID set value when all power MOSFETs are turned off. If the  
output voltage rises above the VID set value +200mV again, the  
protection process is repeated. This behavior provides the  
maximum amount of protection against shorted high-side power  
MOSFETs while preventing output ringing below ground.  
1. The temperature rises so the NTC pin (or the NTCG pin)  
voltage drops. TZONE value changes accordingly.  
2. The temperature crosses the threshold where the TZONE  
register Bit 6 changes from 0 to 1.  
3. The controller changes Status_1 register bit 1 from 0 to 1.  
4. The controller asserts ALERT#.  
FN6898.1  
September 5, 2013  
20  
ISL6363  
All the above fault conditions can be reset by bringing VR_ON low  
or by bringing VCC below the POR threshold. When VR_ON and  
VCC return to their high operating levels, a soft-start will occur  
C1  
C1  
R2  
R2  
CONTROLLER IN  
PS0/1 MODE  
CONTROLLER IN  
PS2/3 MODE  
C3.1  
C3.1  
C2  
R3  
C2  
R3  
Table 5 summarizes the fault protections.  
FB  
FB  
R1  
R1  
VSEN  
TABLE 5. FAULT PROTECTION SUMMARY  
FAULT DURATION  
VSEN  
COMP  
E/A  
E/A  
C2.2  
C2.2  
R3.2  
R3.2  
COMP  
BEFORE  
PROTECTION  
FAULT  
RESET  
PSICOMP  
PSICOMP  
FAULT TYPE  
Overcurrent  
PROTECTION ACTION  
FIGURE 15. PSICOMP FUNCTION  
120µs  
1ms  
PWM tri-state, PGOOD VR_ON  
latched low  
toggle or  
VCC toggle  
When the PSICOMP switch is off, C2.2 and R3.2 are  
Phase Current  
Unbalance  
disconnected from the FB pin. However, the controller still  
actively drives the PSICOMP pin to allow for smooth transitions  
between modes of operation.  
Way-Overcurrent  
(1.5xOC)  
Immediately  
The PSICOMP function ensures excellent transient response in  
both PS0, PS1 and PS2/3 modes of operation. If the PSICOMP  
function is not needed C2.2 and R3.2 can be disconnected.  
Overvoltage  
+200mV  
PGOOD latched low.  
Actively pulls the  
output voltage to  
below VID value, then  
tri-state.  
Adaptive Body Diode Conduction Time  
Reduction  
In DCM, the controller turns off the low-side MOSFET when the  
inductor current approaches zero. During on-time of the low-side  
MOSFET, phase voltage is negative and the amount is the  
CURRENT MONITOR  
The ISL6363 provides the current monitor function for both VRs.  
IMON pin reports VR1 inductor current and IMONG pins reports  
VR2 inductor current. Since they are designed following the same  
principle, the following discussion will be only based on the IMON  
pin but also applies to the IMONG pin.  
MOSFET r  
voltage drop, which is proportional to the  
DS(ON)  
inductor current. A phase comparator inside the controller  
monitors the phase voltage during on-time of the low-side  
MOSFET and compares it with a threshold to determine the  
zero-crossing point of the inductor current. If the inductor current  
has not reached zero when the low-side MOSFET turns off, it will  
flow through the low-side MOSFET body diode, causing the phase  
node to have a larger voltage drop until it decays to zero. If the  
inductor current has crossed zero and reversed the direction when  
the low-side MOSFET turns off, it will flow through the high-side  
MOSFET body diode, causing the phase node to have a spike until  
it decays to zero. The controller continues monitoring the phase  
voltage after turning off the low-side MOSFET and adjusts the  
phase comparator threshold voltage accordingly in iterative steps,  
such that the low-side MOSFET body diode conducts for  
The IMON pin outputs a high-speed analog current source that is  
3 times of the droop current flowing out of the FB pin. Thus  
becoming Equation 18:  
I
= 3 × I  
(EQ. 18)  
IMON  
droop  
As the “Simplified Application Circuit” on page 6 shows, a  
resistor R is connected to the IMON pin to convert the IMON  
imon  
pin current to voltage. A capacitor can be paralleled with R  
to filter the voltage information.  
imon  
The IMON pin voltage range is 0V to 2.7V. The controller monitors  
the IMON pin voltage and considers that VR1 has reached  
ICCMAX on IMON pin voltage is 2.7V.  
approximately 40ns to minimize the body diode-related loss.  
Supported Data and Configuration Registers  
The controller supports the following data and configuration  
registers.  
PSICOMP Function  
Figure 15 shows the PSICOMP function. A switch turns on to  
short the FB and the PSICOMP pins when the controller is in PS2  
mode. The RC network C2.2 and R3.2 is connected in parallel  
with R1 and C2/R3 compensation network in PS2/3 mode. This  
additional RC network increases the high frequency content of  
the signal passing from the output voltage to the COMP pin which  
will improve transient response in PS2/3 mode of operation.  
TABLE 6. SUPPORTED DATA AND CONFIGURATION  
REGISTERS  
REGISTER  
NAME  
DEFAULT  
VALUE  
INDEX  
00h  
DESCRIPTION  
Vendor ID  
Uniquely identifies the VR  
vendor. Assigned by Intel.  
12h  
01h  
02h  
05h  
Product ID  
Uniquely identifies the VR  
product. Intersil assigns this  
number.  
1Fh  
Product  
Revision  
Uniquely identifies the revision  
of the VR control IC. Intersil  
assigns this data.  
Protocol ID  
Identifies what revision of SVID 01h  
protocol the controller supports.  
FN6898.1  
September 5, 2013  
21  
ISL6363  
TABLE 6. SUPPORTED DATA AND CONFIGURATION  
REGISTERS (Continued)  
TABLE 6. SUPPORTED DATA AND CONFIGURATION  
REGISTERS (Continued)  
REGISTER  
NAME  
DEFAULT  
VALUE  
REGISTER  
NAME  
DEFAULT  
VALUE  
INDEX  
06h  
DESCRIPTION  
INDEX  
31h  
DESCRIPTION  
Capability  
Identifies the SVID VR  
capabilities and which of the  
optional telemetry registers are  
supported.  
81h  
VID Setting  
Data register containing  
currently programmed VID  
voltage. VID data format.  
00h  
32h  
33h  
Power State  
Register containing the current 00h  
programmed power state.  
10h  
Status_1  
Data register read after ALERT# 00h  
signal. Indicating if a VR rail has  
settled, has reached VRHOT  
condition or has reached ICC  
max.  
Voltage Offset Sets offset in VID steps added to 00h  
the VID setting for voltage  
margining. Bit 7 is a sign bit,  
0 = positive margin,  
11h  
12h  
Status_2  
Data register showing status_2 00h  
communication.  
1 = negativemargin.Remaining  
7 bits are # VID steps for the  
margin.  
00h = no margin,  
01h = +1 VID step  
Temperature Data register showing  
Zone  
00h  
temperature zones that have  
been entered.  
02h = +2 VID steps  
1Ch  
21h  
Status_2_  
LastRead  
This register contains a copy of 00h  
the Status_2 data that was last  
read with the GetReg (Status_2)  
command.  
34h  
Multi VR Config Data register that configures  
multiple VRs behavior on the  
same SVID bus.  
VR1: 00h  
VR2: 01h  
ICC max  
Data register containing the ICC Refer to  
max the platform supports, set Table 7  
at start-up by resistors Rprog1  
and Rprog2. The platform  
Key Component Selection  
Inductor DCR Current-Sensing Network  
design engineer programs this  
value during the design process.  
Binary format in amps, i.e.,  
Phase1 Phase2 Phase3  
Rsum  
Rsum  
100A = 64h  
ISUM+  
Rsum  
22h  
Temp max  
Data register containing the  
Refer to  
temperature max the platform Table 8  
support, set at startup by  
resistor Rprog2. The platform  
design engineer programs this  
value during the design process.  
Binary format in °C, i.e.,  
Rntcs  
L
L
L
Cn Vcn  
Ri  
Rp  
Rntc  
Ro  
DCR  
DCR  
DCR  
+100°C = 64h  
ISUM-  
24h  
SR-fast  
SR-slow  
Slew Rate Normal. The fastest 0Ah  
slew rate the platform VR can  
sustain. Binary format in  
Ro  
Ro  
mV/µs. i.e., 0Ah = 10mV/µs.  
25h  
26h  
Is 4x slower than normal. Binary 02h  
format in mV/µs. i.e.,  
02h = 2.5mV/µs  
Io  
FIGURE 16. DCR CURRENT-SENSING NETWORK  
V
If programmed by the platform, 00h  
Figure 16 shows the inductor DCR current-sensing network for a  
3-phase solution. An inductor current flows through the DCR and  
creates a voltage drop. Each inductor has two resistors in R  
and R connected to the pads to accurately sense the inductor  
current by sensing the DCR voltage drop. The R  
BOOT  
the VR supports V  
voltage  
BOOT  
during start-up ramp. The VR will  
ramp to V and hold at  
sum  
BOOT  
until it receives a new  
o
V
BOOT  
and R  
sum  
o
SetVID command to move to a  
different voltage.  
resistors are connected in a summing network as shown, and feed  
the total current information to the NTC network (consisting of  
30h  
Vout max  
This register is programmed by FBh  
the master and sets the  
maximum VID the VR will  
support. If a higher VID code is  
received, the VR will respond  
with “not supported”  
R
, R and R ) and capacitor C . R is a negative  
ntcs ntc ntc  
p
n
temperature coefficient (NTC) thermistor, used to  
temperature-compensate the inductor DCR change.  
The inductor output side pads are electrically shorted in the  
schematic, but have some parasitic impedance in actual board  
layout, which is why one cannot simply short them together for the  
acknowledge.  
FN6898.1  
September 5, 2013  
22  
ISL6363  
current-sensing summing network. It is recommended to use  
1Ω~10Ω R to create quality signals. Since R value is much  
smaller than the rest of the current sensing circuit, the following  
and solving for the solution, Equation 24 gives Cn value.  
o
o
L
-----------------------------------------------------------  
C
=
(EQ. 24)  
n
R
sum  
--------------  
R
×
analysis will ignore it for simplicity.  
ntcnet  
N
-----------------------------------------  
× DCR  
R
sum  
The summed inductor current information is presented to the  
--------------  
R
+
ntcnet  
N
capacitor C . Equations 19 thru 23 describe the  
n
frequency-domain relationship between inductor total current  
For example, given N = 3, R  
= 3.65kΩ, R = 11kΩ,  
p
sum  
= 2.61kΩ, R = 10kΩ, DCR = 0.88mΩ and L = 0.36µH,  
I (s) and C voltage V (s):  
o
n
Cn  
R
ntcs  
ntc  
Equation 24 gives C = 0.406µF.  
n
R
DCR  
----------------------------------------- -----------  
ntcnet  
V
(s) =  
×
× I (s) × A (s)  
Assuming the compensator design is correct, Figure 17 shows the  
expected load transient response waveforms if C is correctly  
(EQ. 19)  
Cn  
o
cs  
R
N
sum  
N
--------------  
+
R
n
ntcnet  
selected. When the load current I  
output voltage V  
CORE  
has a square change, the  
also has a square response.  
core  
(R  
+ R ) × R  
ntc p  
ntcs  
--------------------------------------------------  
R
A
=
(EQ. 20)  
(EQ. 21)  
ntcnet  
R
+ R  
+ R  
ntc p  
ntcs  
If C value is too large or too small, V (s) will not accurately  
Cn  
n
represent real-time I (s) and will worsen the transient response.  
o
s
------  
1 +  
Figure 18 shows the load transient response when C is too  
n
ω
L
----------------------  
1 +  
(s) =  
small. V  
will sag excessively upon load insertion and may  
cs  
CORE  
s
------------  
create a system failure. Figure 19 shows the transient response  
when C is too large. V is sluggish in drooping to its final  
ω
sns  
n
CORE  
DCR  
-----------  
=
value. There will be excessive overshoot if load insertion occurs  
during this time, which may potentially hurt the CPU reliability.  
ω
ω
(EQ. 22)  
(EQ. 23)  
L
L
1
------------------------------------------------------  
=
sns  
R
sum  
N
I
O
--------------  
R
×
ntcnet  
-----------------------------------------  
× C  
n
R
sum  
N
--------------  
R
+
ntcnet  
Where N is the number of phases.  
V
O
Transfer function A (s) always has unity gain at DC. The inductor  
cs  
DCR value increases as the winding temperature increases,  
giving higher reading of the inductor DC current. The NTC R  
FIGURE 17. DESIRED LOAD TRANSIENT RESPONSE WAVEFORMS  
ntc  
values decreases as its temperature decreases. Proper  
selections of R  
, R  
, R and R parameters ensure that  
sum ntcs  
p
ntc  
V
represent the inductor total DC current over the temperature  
I
Cn  
O
range of interest.  
There are many sets of parameters that can properly  
temperature-compensate the DCR change. Since the NTC network  
and the R  
resistors form a voltage divider, V is always a  
sum  
cn  
V
O
fraction of the inductor DCR voltage. It is recommended to have a  
higher ratio of V to the inductor DCR voltage, so the droop circuit  
cn  
has higher signal level to work with.  
FIGURE 18. LOAD TRANSIENT RESPONSE WHEN C IS TOO SMALL  
n
A typical set of parameters that provide good temperature  
compensation are: R  
= 3.65kΩ, R = 11kΩ, R  
= 2.61kΩ and  
= 10kΩ (ERT-J1VR103J). The NTC network parameters may  
sum  
p
ntcs  
R
ntc  
I
O
need to be fine tuned on actual boards. One can apply full load DC  
current and record the output voltage reading immediately; then  
record the output voltage reading again when the board has  
reached the thermal steady state. A good NTC network can limit the  
output voltage drift to within 2mV. It is recommended to follow the  
Intersil evaluation board layout and current-sensing network  
parameters to minimize engineering time.  
V
O
FIGURE 19. LOAD TRANSIENT RESPONSE WHEN C IS TOO LARGE  
n
V
(s) also needs to represent real-time I (s) for the controller to  
Cn  
o
achieve good transient response. Transfer function A (s) has a  
cs  
pole w  
and a zero w . One needs to match w and w so  
sns  
sns  
L
L
A
(s) is unity gain at all frequencies. By forcing w equal to w  
cs  
L
sns  
FN6898.1  
September 5, 2013  
23  
ISL6363  
R
and C form an R-C branch in parallel with R , providing a  
ip  
ip  
lower impedance path than R at the beginning of i change. R  
ip  
i
I
O
i
o
I
L
and C do not have any effect at steady state. Through proper  
ip  
selection of R and C values, i  
ip ip droop  
can resemble i rather than  
o
i , and V will not ring back. The recommended value for R is  
L
O
ip  
100Ω. C should be determined through tuning the load  
transient response waveforms on an actual board. The  
ip  
V
O
recommended range for C is 100pF~2000pF. However, it  
ip  
RING  
BACK  
should be noted that the R -C branch may distort the i  
ip ip  
droop  
waveform. Instead of being triangular as the real inductor  
current, i may have sharp spikes, which may adversely  
droop  
average value detection and therefore may affect  
FIGURE 20. OUTPUT VOLTAGE RING BACK PROBLEM  
affect i  
droop  
OCP accuracy. User discretion is advised.  
ISUM+  
Resistor Current-Sensing Network  
Phase1 Phase2 Phase3  
Rntcs  
Cn.1  
Vcn  
Cn.2  
Rp  
L
L
L
Rn  
Rntc  
ISUM-  
Ri  
OPTIONAL  
DCR  
DCR  
DCR  
Rsum  
Rsum  
Rsum  
Cip  
Rip  
ISUM+  
ISUM-  
OPTIONAL  
Rsen  
Rsen  
Rsen  
Vcn  
Cn  
Ri  
Ro  
Ro  
Ro  
FIGURE 21. OPTIONAL CIRCUITS FOR RING BACK REDUCTION  
Figure 20 shows the output voltage ring back problem during  
load transient response. The load current i has a fast step  
o
change, but the inductor current I cannot accurately follow.  
L
Instead, I responds in first order system fashion due to the  
nature of current loop. The ESR and ESL effect of the output  
L
Io  
capacitors makes the output voltage V dip quickly upon load  
O
FIGURE 22. RESISTOR CURRENT-SENSING NETWORK  
current change. However, the controller regulates V according to  
O
the droop current I  
, which is a real-time representation of I ;  
Figure 22 shows the resistor current-sensing network for a  
2-phase solution. Each inductor has a series current-sensing  
droop  
L
therefore it pulls V back to the level dictated by I , causing the  
O
L
ring back problem. This phenomenon is not observed when the  
output capacitor have very low ESR and ESL, such as all ceramic  
capacitors.  
resistor R . R  
and R are connected to the R pads to  
sen sum  
o
sen  
accurately capture the inductor current information. The R  
sum  
and R resistors are connected to capacitor C . R  
and C  
n
o
n
sum  
form a filter for noise attenuation. Equations 25 thru 27 give  
Figure 21 shows two optional circuits for reduction of the ring  
back.  
V
(s) expression  
Cn  
R
sen  
N
(EQ. 25)  
(EQ. 26)  
C is the capacitor used to match the inductor time constant. It  
n
usually takes the parallel of two (or more) capacitors to get the  
------------  
V
(s) =  
× I (s) × A  
(s)  
Rsen  
Cn  
o
desired value. Figure 21 shows that two capacitors C and C  
n.1 n.2  
1
----------------------  
1 +  
A
(s) =  
Rsen  
are in parallel. Resistor R is an optional component to reduce  
s
n
------------  
the V ring back. At steady state, C + C provides the desired  
ω
O
n.1 n.2  
sns  
C capacitance. At the beginning of i change, the effective  
n
o
1
capacitance is less because R increases the impedance of the  
n
---------------------------  
ω
=
(EQ. 27)  
Rsen  
R
C
branch. As Figure 18 explains, V tends to dip when C is too  
sum  
n.1  
small, and this effect will reduce the V ring back. This effect is  
O n  
O
--------------  
× C  
n
N
more pronounced when C is much larger than C . It is also  
n.1 n.2  
Transfer function A  
(s) always has unity gain at DC.  
Rsen  
Current-sensing resistor R  
more pronounced when R is bigger. However, the presence of  
n
value will not have significant  
sen  
R increases the ripple of the V signal if C is too small. It is  
n
n
n.2  
variation over-temperature, so there is no need for the NTC  
network.  
recommended to keep C greater than 2200pF. R value  
n.2  
n
usually is a few ohms. C , C and R values should be  
n.1 n.2  
n
determined through tuning the load transient response  
waveforms on an actual board.  
The recommended values are R  
sum  
= 1kΩ and C = 5600pF.  
n
FN6898.1  
September 5, 2013  
24  
ISL6363  
LOAD LINE SLOPE  
Overcurrent Protection  
Refer to Equation 1 on page 16 and Figures 16, 20 and 22;  
Refer to Figure 9.  
resistor R sets the droop current I  
. Tables 2 (page 19)  
i
droop  
and 3 (page 19) show the internal OCP threshold. It is  
recommended to design I without using the R  
For inductor DCR sensing, substitution of Equation 29 into  
Equation 2 gives the load line slope expression:  
resistor.  
droop  
comp  
For example, the OCP threshold is 60µA for 3-phase solution. We  
will design I to be 40.9µA at full load, so the OCP trip level is  
V
2R  
R
ntcnet  
DCR  
---------------------- ----------------------------------------- -----------  
droop  
droop  
R
-----------------  
LL =  
=
×
×
(EQ. 36)  
I
R
sum  
N
o
i
--------------  
+
R
droop  
ntcnet  
N
1.5x of the full load current.  
For resistor sensing, substitution of Equation 33 into Equation 2  
gives the load line slope expression:  
For inductor DCR sensing, Equation 28 gives the DC relationship  
of V (s) and I (s).  
cn  
o
V
2R  
× R  
sen droop  
droop  
(EQ. 37)  
-----------------  
-----------------------------------------  
=
LL =  
R
I
N × R  
DCR  
N
ntcnet  
o
i
----------------------------------------- -----------  
V
=
×
× I  
Cn  
o
(EQ. 28)  
R
sum  
--------------  
R
+
Substitution of Equation 30 and rewriting Equation 36, or  
substitution of Equation 34 and rewriting Equation 37 give the  
same result in Equation 38:  
ntcnet  
N
Substitution of Equation 28 into Equation 1 gives Equation 29:  
R
I
2
DCR  
N
ntcnet  
o
---- ----------------------------------------- -----------  
× I  
o
I
=
×
×
---------------  
(EQ. 29)  
R =  
droop  
× LL  
(EQ. 38)  
droop  
R
R
I
i
sum  
droop  
--------------  
+
R
ntcnet  
N
One can use the full load condition to calculate R  
droop  
. For  
Therefore:  
example, given I  
= 51A, I  
= 40.9µA and  
= 2.37kΩ.  
omax  
LL = 1.9mΩ, Equation 38 gives R  
droopmax  
2R  
× DCR × I  
o
ntcnet  
droop  
-------------------------------------------------------------------------------  
R
=
(EQ. 30)  
i
R
sum  
N
--------------  
It is recommended to start with the R  
value calculated by  
N ×  
R
+
× I  
droop  
ntcnet  
droop  
Equation 38, and fine tune it on the actual board to get accurate  
load line slope. One should record the output voltage readings at  
no load and at full load for load line slope calculation. Reading  
the output voltage at lighter load instead of full load will increase  
the measurement error.  
Substitution of Equation 20 and application of the OCP condition  
in Equation 30 gives Equation 31:  
(R  
+ R ) × R  
ntc p  
ntcs  
--------------------------------------------------  
2 ×  
× DCR × I  
omax  
R
+ R  
+ R  
ntc p  
ntcs  
-------------------------------------------------------------------------------------------------------------------------  
=
R
(EQ. 31)  
i
Compensator  
Figure 17 shows the desired load transient response waveforms.  
Figure 23 shows the equivalent circuit of a voltage regulator (VR)  
with the droop function. A VR is equivalent to a voltage source  
(R  
+ R ) × R  
R
ntcs  
ntc  
p
sum  
N
-------------------------------------------------- --------------  
N ×  
+
× I  
droopmax  
is the  
droopmax  
R
+ R  
+ R  
p
ntcs  
ntc  
Where I  
is the full load current, I  
omax  
corresponding droop current. For example, given N = 3,  
(= VID) and output impedance Z (s). If Z (s) is equal to the  
out out  
R
= 3.65kΩ, R = 11kΩ, R  
= 2.61kΩ, R = 10kΩ,  
= 40.9µA,  
droopmax  
load line slope LL, i.e., constant output impedance, in the entire  
frequency range, V will have square response when I has a  
sum  
DCR = 0.88mΩ, I  
p
ntcs ntc  
= 51A and I  
omax  
O
o
Equation 31 gives R = 606Ω.  
square change.  
i
For resistor sensing, Equation 32 gives the DC relationship of  
I
Zout(s) = LL  
O
V
(s) and I (s).  
cn  
o
R
sen  
------------  
(EQ. 32)  
V
=
× I  
Cn  
o
N
VR  
V
VID  
LOAD  
O
Substitution of Equation 32 into Equation 1 gives Equation 33:  
R
2
sen  
N
---- ------------  
× I  
o
I
=
×
(EQ. 33)  
droop  
R
i
FIGURE 23. VOLTAGE REGULATOR EQUIVALENT CIRCUIT  
Therefore  
2R  
× I  
sen  
o
(EQ. 34)  
---------------------------  
=
R
Intersil provides a Microsoft Excel-based spreadsheet to help  
design the compensator and the current sensing network, so the  
VR achieves constant output impedance as a stable system.  
Figure 26 shows a screenshot of the spreadsheet.  
i
N × I  
droop  
Substitution of Equation 34 and application of the OCP condition  
in Equation 30 gives Equation 35:  
2R  
× I  
sen  
omax  
A VR with an active droop function is a dual-loop system consisting  
of a voltage loop and a droop loop which is a current loop.  
However, neither loop alone is sufficient to describe the entire  
system. The spreadsheet shows two loop gain transfer functions,  
T1(s) and T2(s), that describe the entire system. Figure 24  
conceptually shows T1(s) measurement set-up and Figure 25  
--------------------------------------  
=
R
(EQ. 35)  
i
N × I  
droopmax  
Where I  
omax  
is the full load current, I  
droopmax  
is the corresponding  
droop current. For example, given N = 3, R = 1mΩ, I  
and I  
droopmax  
= 53A  
sen omax  
= 40.9µA, Equation 35 gives R = 863Ω.  
i
FN6898.1  
September 5, 2013  
25  
ISL6363  
conceptually shows T2(s) measurement set-up. The VR senses the  
T1(s) is the total loop gain of the voltage loop and the droop loop.  
It always has a higher crossover frequency than T2(s) and has  
more meaning of system stability.  
inductor current, multiplies it by a gain of the load line slope, then  
adds it on top of the sensed output voltage and feeds it to the  
compensator. T(1) is measured after the summing node, and T2(s)  
is measured in the voltage loop before the summing node. The  
spreadsheet gives both T1(s) and T2(s) plots. However, only T2(s)  
can be actually measured on an ISL6363 regulator.  
T2(s) is the voltage loop gain with closed droop loop. It has more  
meaning of output voltage response.  
Design the compensator to get stable T1(s) and T2(s) with  
sufficient phase margin, and output impedance equal or smaller  
than the load line slope.  
V
L
V
L
O
O
Q1  
Q1  
I
Q2  
V
GATE  
DRIVER  
I
C
O
V
GATE Q2  
DRIVER  
C
IN  
O
out  
IN  
OUT  
LOAD LINE SLOPE  
LOAD LINE SLOPE  
EA  
20  
20  
EA  
MOD.  
MOD.  
COMP  
COMP  
VID  
VID  
ISOLATION  
ISOLATION  
TRANSFORMER  
TRANSFORMER  
CHANNEL B  
CHANNEL A  
CHANNEL B  
LOOP GAIN =  
LOOP GAIN =  
CHANNEL A  
CHANNEL A  
NETWORK  
ANALYZER  
CHANNEL B  
CHANNEL A  
NETWORK  
ANALYZER  
CHANNEL B  
EXCITATION OUTPUT  
EXCITATION OUTPUT  
FIGURE 24. LOOP GAIN T1(s) MEASUREMENT SET-UP  
FIGURE 25. LOOP GAIN T2(s) MEASUREMENT SET-UP  
FN6898.1  
September 5, 2013  
26  
FIGURE 26. SCREENSHOT OF THE COMPENSATOR DESIGN SPREADSHEET  
ISL6363  
Programming Resistors  
There are three programming resistors: R  
TABLE 8. RPROG2 PROGRAMMING TABLE  
RPROG2 (k) IMAX_GR (A)  
, R  
and  
prog1 prog2  
TMAX (°C)  
120  
120  
120  
110  
110  
110  
110  
105  
105  
105  
105  
95  
R
. Table 7 shows how to select R  
based on V  
or an  
value. When the controller  
and  
addr prog1  
BOOT  
IMAX_CR register settings. VR1 can power to 0V V  
BOOT  
7.15  
13.0  
30  
25  
20  
20  
25  
30  
35  
35  
30  
25  
20  
20  
25  
30  
35  
internally-set V  
BOOT  
based on R  
prog1  
works with an actual CPU, select R  
such that VR1 powers up  
= 0V as required by the SVID command. In the absence  
prog1  
to V  
BOOT  
20.5  
of a CPU, such as testing of the only the VR, select R  
that VR1 powers up to the internally-set V  
is 1.1V. Determine the maximum current VR1 can support and  
set the IMAX_CR register value accordingly by selecting the  
such  
prog1  
, which by default  
27.4  
BOOT  
38.3  
52.3  
appropriate R  
value. The CPU will read the IMAX_CR register  
prog1  
and ensures that the CPU CORE current doesn’t exceed the value  
specified by IMAX_CR.  
66.5  
80.6  
Table 8 shows how to select R  
prog2  
based on TMAX and  
95.3  
IMAX_GR register settings. There are four TMAX temperatures to  
choose from: +120°C, +110°C, +105°C, and +95°C. There are  
also four IMAX_GR values to choose from: 35A, 30A, 25A and  
20A.  
113  
137  
165  
TABLE 7. RPROG1 PROGRAMMING TABLE  
196  
95  
IMAX  
CORE  
IMAX  
CORE  
IMAX  
CORE  
IMAX  
CORE  
226  
95  
RPROG1  
(k)  
BOOT  
(V)  
Nph = 4 (A) Nph = 3 (A) Nph = 2 (A) Nph = 1 (A)  
Open Circuit  
95  
7.15  
13.0  
20.5  
27.4  
38.3  
52.3  
66.5  
80.6  
95.3  
113  
137  
165  
196  
226  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
0
100  
108  
116  
124  
132  
140  
148  
148  
140  
132  
124  
116  
108  
100  
92  
75  
81  
50  
54  
58  
62  
66  
70  
74  
74  
70  
66  
62  
58  
54  
50  
46  
25  
27  
29  
31  
33  
35  
37  
37  
35  
33  
31  
29  
27  
25  
23  
Table 9 shows how to select R  
prog2  
based on TMAX and  
IMAX_GR register settings. There are four TMAX temperatures to  
choose from: +120°C, +110°C, +105°C, and +95°C. There are  
also four IMAX_GR values to choose from: 35A, 30A, 25A and  
20A.  
87  
93  
99  
TABLE 9. RADDR PROGRAMMING TABLE  
105  
111  
111  
105  
99  
RADDR  
(k)  
0
VR1 AND VR1 SVID ADDRESS  
0,1  
0,1  
2,3  
2,3  
4,5  
4,5  
6,7  
6,7  
8,9  
8,9  
A,B  
A,B  
C,D  
C,D  
0,1  
0,1  
0
7.15  
13  
0
0
93  
20.5  
27.4  
38.3  
52.3  
66.5  
80.6  
95.3  
113  
0
87  
0
81  
0
75  
Open  
Circuit  
0
69  
137  
165  
196  
226  
Open Circuit  
FN6898.1  
September 5, 2013  
28  
ISL6363  
For example, given LL = 1.9mΩ, R  
= 2.825kΩ,  
NTC Network on the NTC and the NTCG pins  
droop  
= 53A, Equation 42 gives  
omax  
V
= 2.7V at I  
Rimon  
The controller drives 60µA current source out of the NTC pin and  
the NTCG pin alternatively at 1kHz frequency with 50% duty  
cycle. The current source flows through the respective NTC  
resistor networks on the pins and creates voltages that are  
monitored by the controller through an A/D converter to generate  
the TZONE value. Table 10 shows the programming table for  
TZONE. The user needs to scale the NTC (and NTCG) network  
resistance such that it generates the NTC (and NTCG) pin voltage  
that corresponds to the left-most column. Do not use any  
capacitor to filter the voltage. On ADC Output = 7, the controller  
issues thermal alert to the CPU, on ADC Output <7, the controller  
asserts the VR_HOT# signal.  
R
= 25.2kΩ.  
imon  
A capacitor C  
imon  
pin voltage. The R  
is recommended to have a time constant long enough such that  
switching frequency ripples are removed.  
can be paralleled with R  
to filter the IMON  
time constant is the user’s choice. It  
imon  
C
imon imon  
Current Balancing  
The ISL6363 achieves current balancing through matching the  
ISEN pin voltages. R  
switching ripple of the phase node voltages. It is recommended  
to use a rather long R time constant such that the ISEN  
and C form filters to remove the  
isen  
isen  
C
isen isen  
voltages have minimal ripple and represent the DC current  
flowing through the inductors. Recommended values are  
TABLE 10. TZONE PROGRAMMING TABLE  
VNTC (V)  
0.64  
0.68  
0.72  
0.76  
0.80  
0.84  
0.88  
0.92  
0.96  
1.00  
1.04  
1.08  
1.12  
1.16  
1.2  
ADC OUTPUT  
%TMAX  
>100%  
>100%  
>100%  
>100%  
>100%  
>100%  
100%  
97%  
TZONE  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
7Fh  
3Fh  
1Fh  
0Fh  
07h  
03h  
01h  
01h  
00h  
R = 10kΩ and C = 0.22µF.  
s
s
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
Optional Slew Rate Compensation Circuit for  
1-Tick VID Transition  
Rdroop  
Vcore  
Cvid  
Rvid  
OPTIONAL  
FB  
Ivid  
Idroop_vid  
94%  
91%  
E/A  
VIDs  
88%  
COMP  
VID<0:6>  
DAC  
Σ VDAC  
85%  
RTN  
VSS  
VSSSENSE  
82%  
X 1  
79%  
INTERNAL  
TO IC  
76%  
>1.2  
<76%  
VID<0:6>  
Current Monitor  
Vfb  
Ivid  
Refer to Equation 18 for the IMON pin current expression.  
Referencing the “Simplified Application Circuit” on page 6, the  
IMON pin current flows through R . The voltage across R is  
imon imon  
expressed in Equation 39:  
(EQ. 39)  
V
= 3 × I  
× R  
droop imon  
Rimon  
Vcore  
Rewriting Equation 38 gives Equation 40:  
I
o
------------------  
I
=
× LL  
Idroop_vid  
(EQ. 40)  
droop  
R
droop  
Substitution of Equation 40 into Equation 39 gives Equation 41:  
FIGURE 27. OPTIONAL SLEW RATE COMPENSATION CIRCUIT FOR  
1-TICK VID TRANSITION  
3I × LL  
o
--------------------  
V
=
× R  
(EQ. 41)  
Rimon  
imon  
R
droop  
During a large VID transition, the DAC steps through the VIDs at a  
controlled slew rate. For example, the DAC may change a tick  
Rewriting Equation 41 and application of full load condition gives  
Equation 42:  
(5mV) per 0.5µs, controlling output voltage V  
10mV/µs.  
slew rate at  
CORE  
V
× R  
droop  
Rimon  
--------------------------------------------  
=
R
(EQ. 42)  
imon  
3I × LL  
o
FN6898.1  
September 5, 2013  
29  
ISL6363  
Figure 27 shows the waveforms of 1-tick VID transition. During  
1-tick VID transition, the DAC output changes at approximately  
15mV/µs slew rate, but the DAC cannot step through multiple  
VIDs to control the slew rate. Instead, the control loop response  
It is desired to let I (t) cancel I  
(t). So there are:  
vid  
droop_vid  
dV  
C
× LL dV  
core  
fb  
out  
(EQ. 45)  
-----------  
----------------------- -----------------  
×
C
×
=
vid  
dt  
R
dt  
droop  
speed determines V  
FB pin voltage slew rate. However, the controller senses the  
inductor current increase during the up transition, as the  
slew rate. Ideally, V will follow the  
CORE  
CORE  
and:  
(EQ. 46)  
(EQ. 47)  
R
× C  
= C × LL  
out  
vid  
vid  
I
V
waveform shows, and will droop the output voltage  
droop_vid  
CORE  
The result is expressed in Equation 47:  
accordingly, making V  
slew rate slow. Similar  
CORE  
behavior occurs during the down transition.  
R
= R  
vid  
droop  
To control V  
CORE  
slew rate during 1-tick VID transition, one can  
and:  
add the R -C branch, whose current I cancels I  
.
dV  
vid vid vid  
droop_vid  
core  
-----------------  
C
× LL  
dt  
out  
When V  
CORE  
increases, the time domain expression of the  
(EQ. 48)  
----------------------- -----------------  
C
=
×
vid  
R
dV  
fb  
droop  
induced I  
change is:  
droop  
-----------  
dt  
t  
-------------------------  
out  
C
× LL dV  
C
× LL  
out  
core  
(EQ. 43)  
----------------------- -----------------  
I
(t) =  
×
×
1 e  
For example: given LL = 1.9mΩ, R  
C
= 2.37kΩ,  
droop  
droop  
R
dt  
droop  
= 1320µF, dV  
/dt = 10mV/µs and dV /dt = 15mV/µs,  
out  
CORE  
fb  
Equation 47 gives R = 2.37kΩ and Equation 48 gives  
vid  
Where C  
is the total output capacitance.  
out  
C
= 700pF.  
vid  
In the mean time, the R -C branch current I time domain  
expression is:  
vid vid vid  
It is recommended to select the calculated R value and start  
vid  
with the calculated C value and tweak it on the actual board to  
vid  
t  
------------------------------  
vid  
get the best performance.  
dV  
R
× C  
vid  
fb  
(EQ. 44)  
-----------  
I
(t) = C  
×
vid  
×
1 e  
vid  
During normal transient response, the FB pin voltage is held  
constant, therefore is virtual ground in small signal sense. The  
dt  
R
- C network is between the virtual ground and the real  
vid vid  
ground, and hence has no effect on transient response.  
FN6898.1  
September 5, 2013  
30  
ISL6363  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not guaranteed. Please go to web to make  
sure you have the latest Rev.  
DATE  
REVISION  
FN6898.1  
CHANGE  
September 5, 2013  
Stamped Not Recommend For New Designs No Recommended Replacement.  
Changed Products information verbiage to About Intersil verbiage.  
Updated Copyright on page 1 from Americas Inc to Americas LLC  
September 29, 2011  
FN6898.0  
Initial Release.  
About Intersil  
Intersil Corporation is a leader in the design and manufacture of high-performance analog, mixed-signal and power management  
semiconductors. The company's products address some of the largest markets within the industrial and infrastructure, personal  
computing and high-end consumer markets. For more information about Intersil, visit our website at www.intersil.com.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com. You may report errors or suggestions for improving this datasheet by visiting  
www.intersil.com/en/support/ask-an-expert.html. Reliability reports are also available from our website at  
http://www.intersil.com/en/support/qualandreliability.html#reliability  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6898.1  
September 5, 2013  
31  
ISL6363  
Package Outline Drawing  
L48.6x6  
48 LEAD THIN QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 1, 4/07  
4X  
4.4  
6.00  
0.40  
44X  
A
6
B
PIN #1 INDEX AREA  
48  
37  
6
1
36  
PIN 1  
INDEX AREA  
4 .40 ± 0.15  
25  
12  
0.15  
(4X)  
13  
24  
0.10 M C A B  
0.05 M C  
TOP VIEW  
48X 0.45 ± 0.10  
BOTTOM VIEW  
4
48X 0.20  
SEE DETAIL "X"  
C
0.10  
C
MAX 0.80  
BASE PLANE  
SEATING PLANE  
0.08  
( 44 X 0 . 40 )  
( 5. 75 TYP )  
(
C
SIDE VIEW  
4. 40 )  
5
0 . 2 REF  
C
( 48X 0 . 20 )  
( 48X 0 . 65 )  
0 . 00 MIN.  
0 . 05 MAX.  
DETAIL "X"  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension b applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 indentifier may be  
either a mold or mark feature.  
FN6898.1  
September 5, 2013  
32  

相关型号:

ISL6363IRTZ-T7

SWITCHING CONTROLLER
RENESAS

ISL6364

Dual 4-Phase + 1-Phase PWM Controller for VR12/IMVP7 Applications
INTERSIL

ISL6364ACRZ

Green Dual 4+1 PWM Controller for VR12/IMVP7 Applications with AUTO Phase Shedding
RENESAS

ISL6364ACRZ

PCN13024 – ASECL Reliability Qualification Summary
INTERSIL

ISL6364ACRZ-T

暂无描述
RENESAS

ISL6364ACRZ-T

PCN13024 – ASECL Reliability Qualification Summary
INTERSIL

ISL6364AIRZ

Green Dual 4+1 PWM Controller for VR12/IMVP7 Applications with AUTO Phase Shedding
RENESAS

ISL6364AIRZ

PCN13024 – ASECL Reliability Qualification Summary
INTERSIL

ISL6364AIRZ-T

暂无描述
RENESAS

ISL6364AIRZ-T

PCN13024 – ASECL Reliability Qualification Summary
INTERSIL

ISL6364C

31 and 11 Voltage Regulator for IMVP-7/VR12™ CPUs
INTERSIL

ISL6364CRZ

Dual 4-Phase + 1-Phase PWM Controller for VR12/IMVP7 Applications
INTERSIL