ISL68201IRZ-T [RENESAS]

Single-Phase R4 Digital Hybrid PWM Controller with PMBus/SMBus/I2C and PFM; QFN24; Temp Range: -40° to 85°C;
ISL68201IRZ-T
型号: ISL68201IRZ-T
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Single-Phase R4 Digital Hybrid PWM Controller with PMBus/SMBus/I2C and PFM; QFN24; Temp Range: -40° to 85°C

文件: 总33页 (文件大小:1405K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL68201  
FN8696  
Rev.5.00  
Jul 12, 2018  
2
Single-Phase R4 Digital Hybrid PWM Controller with PMBus/SMBus/I C and PFM  
The ISL68201 is a single-phase, synchronous buck PWM  
Features  
controller featuring the Renesas proprietary R4™ Technology.  
• Renesas proprietary R4 Technology  
It supports a wide 4.5V to 24V input voltage range and a wide  
0.5V to 5.5V output range. Integrated LDOs provide controller  
bias voltage, allowing for single supply operation. The  
- Linear control loop for optimal transient response  
- Variable frequency and duty cycle control during load  
transient for fastest possible response  
2
ISL68201 includes a PMBus/SMBus/I C interface for device  
configuration and telemetry (V , V , I , and temperature)  
IN OUT OUT  
- Inherent voltage feed-forward for wide range input  
and fault reporting.  
• Input voltage range: 4.5V to 24V  
The Renesas proprietary R4 control scheme has extremely fast  
transient performance, accurately regulated frequency control,  
and all internal compensation. An efficiency enhancing PFM  
mode can be enabled to greatly improve light-load efficiency.  
The ISL68201’s serial bus allows for easy R4 loop  
• Output voltage range: 0.5V to 5.5V  
• ±0.5% DAC accuracy with remote sense  
• Support all ceramic solutions  
• Integrated LDOs for single input rail solution  
optimization, resulting in fast transient performance over a  
wide range of applications, including all ceramic output filters.  
2
• SMBus/PMBus/I C compatible, up to 1.25MHz  
The ISL68201 has four 8-bit configuration pins, which provide  
• 256 boot-up voltage levels with a configuration pin  
very flexible configuration options (frequency, V , R4 gain,  
etc.) without the need for built-in NVM memory. This results in  
a design flow that closely matches traditional analog  
• Eight switching frequency options from 300kHz to 1.5MHz  
OUT  
• PFM operation option, compatible with ISL99140 for  
improved light-load efficiency  
controllers, while still offering the design flexibility and feature  
2
• Start-up into precharged load  
set of a digital PMBus/SMBus/I C interface. The ISL68201  
also features remote voltage sensing and completely eliminates  
any potential difference between remote and local grounds. This  
improves regulation and protection accuracy. A precision enable  
input is available to coordinate the start-up of the ISL68201 with  
other voltage rails, especially useful for power sequencing.  
• Precision enable input to set higher input UVLO and power  
sequence as well as fault reset  
• Power-good monitor for soft-start and fault detection  
• Comprehensive fault protection for high system reliability  
- Over-temperature protection  
Applications  
• High efficiency and high density POL digital power  
• FPGA, ASIC, and memory supplies  
• Data center: servers, storage systems  
- Output overcurrent and short-circuit protection  
- Output overvoltage and undervoltage protection  
- Open remote sense protection  
• Compatible with 5V or 3.3V PWM input DrMOS or Smart  
Power Stage (SPS)  
• Wired infrastructure: routers, switches, and optical  
networking  
• Compatible with PowerNavigator software  
• Wireless infrastructure: base stations  
Related Literature  
For a full list of related documents, visit our website  
ISL68201 product page  
TABLE 1. SINGLE-PHASE R4 DIGITAL HYBRID PWM CONTROLLER OPTIONS  
2
PART  
NUMBER  
INTEGRATED  
DRIVER  
PWM  
OUTPUT  
PMBus/SMBus/I C  
INTERFACE  
COMPATIBLE DEVICES  
Discrete MOSFETs or Dual Channel MOSFETs  
ISL68200  
ISL68201  
Yes  
No  
No  
Yes  
Yes  
Yes  
Renesas Power Stages:  
ISL99140, ISL99227, ISL99125B, ISL99135B  
Renesas Drivers:  
ISL6596, ISL6609, ISL6627, ISL6622, ISL6208  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 1 of 33  
ISL68201  
Table of Contents  
Typical Applications Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Functional Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
IC Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Enable and Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Resistor Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Soft-Start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Boot-Up Voltage Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Current Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Thermal Monitoring and Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
I
Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
OUT  
Fault Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
PGOOD Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
PFM Mode Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2
SMBus, PMBus, and I C Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
R4 Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
General Application Design Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Output Filter Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Input Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Design and Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Voltage Regulator Design Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 2 of 33  
ISL68201  
Typical Applications Circuits  
1.0µF  
4.7µF  
VCC  
PVCC  
VIN  
7VLDO  
4.75 TO 24V  
1.0µF  
2
I
C/  
SALERT  
SCL  
ISL99140  
BOOT  
SMBus/  
PMBus  
V
< 7VLDO 1.7V  
OUT  
SDA  
FCCM  
PWM  
LGIN  
UG  
PWM  
0.5V TO 5.5V  
PGOOD  
EN  
PGOOD  
EN  
PHASE  
LG  
IOUT  
VCC  
100  
10k  
NTC  
VCC  
1.54k  
0.1µF  
VCC  
NTC  
NCP18XH103J03RB  
BETA = 3380  
4
PROG1-4  
CSEN  
CSRTN  
VSEN  
RGND  
GND  
FIGURE 1. WIDE RANGE INPUT AND OUTPUT APPLICATIONS  
1.0µF  
1.0µF  
4.7µF  
VCC  
PVCC  
VIN  
7VLDO  
4.5 TO 5.5V  
2
I C/  
SALERT  
SCL  
ISL99140  
UG  
BOOT  
SMBus/  
PMBus  
SDA  
V
< 7VLDO 1.7V  
OUT  
FCCM  
PWM  
0.5V TO 2.5V  
PGOOD  
EN  
PGOOD  
EN  
PWM  
LG  
PHASE  
LGIN  
VCC  
IOUT  
100  
10k  
NTC  
VCC  
1.54k  
VCC  
NTC  
NCP18XH103J03RB  
BETA = 3380  
0.1µF  
4
PROG1-4  
CSEN  
CSRTN  
VSEN  
RGND  
GND  
FIGURE 2. 5V INPUT APPLICATION  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 3 of 33  
Block Diagram  
PROG4  
SCL  
SDA SALERT  
PROG2  
PROG3  
7VLDO  
VIN PVCC  
VCC  
EN  
POR  
SOFT-START  
AND  
FAULT LOGIC  
2
SMBus/PMBus/I C  
INTERFACE  
IOUT  
VIN VOUT  
TEMP  
OTP OCP  
FCCM  
FCCM  
DRIVER  
PGOOD  
CIRCUITRY  
PGOOD  
LGIN  
PWM AND PFM  
CONTROL  
RGND  
VSEN  
-
INTERNAL  
COMPENSATION  
+
PVCC  
OVERVOLTAGE/  
UNDERVOLTAGE  
AMPLIFIER  
PWM  
DRIVER  
PWM  
GND  
5V LDO  
R4  
MODULATOR  
VIN  
7V LDO  
7VLDO  
REFERENCE  
VOLTAGE  
PROG1  
CIRCUITRY  
CSEN  
CURRENT SENSE  
AND TEMPERATURE  
COMPENSATION  
OVERCURRENT (OCP) AND  
OVER-TEMPERATURE (OTP)  
CSRTN  
NTC  
SWITCHING  
FREQUENCY  
GND  
IOUT  
FIGURE 3. ISL68201 SIMPLIFIED FUNCTIONAL BLOCK DIAGRAM  
ISL68201  
Ordering Information  
PART NUMBER  
(Notes 2, 3)  
PART  
MARKING  
TEMP RANGE  
(°C)  
TAPE AND REEL  
(UNITS) (Note 1)  
PACKAGE  
(RoHS Compliant)  
PKG.  
DWG. #  
ISL68201IRZ  
ISL 68201I  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-
24 Ld 4x4 QFN  
L24.4x4C  
ISL68201IRZ-T  
ISL 68201I  
ISL 68201I  
ISL 68201I  
6k  
24 Ld 4x4 QFN  
24 Ld 4x4 QFN  
24 Ld 4x4 QFN  
L24.4x4C  
L24.4x4C  
L24.4x4C  
ISL68201IRZ-T7A  
ISL68201IRZ-TK  
250  
1k  
ISL68201-99125DEMO1Z  
ISL68201-99135DEMO1Z  
ISL68201-99140DEMO1Z  
NOTES:  
16A Demo Board with On-Board Transient  
20A Demo Board with On-Board Transient  
35A Demo Board with On-Board Transient  
1. Refer to TB347 for details about reel specifications.  
2. These Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate  
plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Pb-free products are  
MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), see the ISL68201 product information page. For more information about MSL, see TB363.  
Pin Configuration  
24 LD 4X4 QFN  
TOP VIEW  
24 23 22 21 20 19  
EN  
VIN  
PROG1  
PROG2  
PROG3  
PROG4  
IOUT  
18  
17  
16  
15  
14  
13  
1
2
3
4
5
6
7VLDO  
VCC  
GND  
(PAD)  
SCL  
SALERT  
NTC  
7
8
9
10 11 12  
Functional Pin Descriptions  
PIN NUMBER  
SYMBOL  
DESCRIPTION  
1
EN  
Precision enable input. Pulling EN above the rising threshold voltage initiates the soft-start sequence, while pulling EN below the  
failing threshold voltage suspends the Voltage Regulator (VR) operation.  
2
3
4
VIN  
7VLDO  
VCC  
Input voltage pin for the R4 loop and LDOs (5V and 7V). Place a high quality low ESR ceramic capacitor (1.0μF, X7R) in  
close proximity to the pin. An external series resistor is not advised.  
7V LDO from VIN biases the current sensing amplifier. Place a high quality low ESR ceramic capacitor (1.0μF, X7R, 10V+) in  
close proximity to the pin.  
Logic bias supply that should be connected to PVCC rail externally. Place a high quality low ESR ceramic capacitor  
(1μF, X7R) from this pin to GND.  
2
5
6
7
SCL  
Synchronous clock signal input of SMBus/PMBus/I C.  
SALERT Output pin for transferring the active low signal driven asynchronously from the VR controller to the SMBus/PMBus.  
2
SDA  
I/O pin for transferring data signals between the SMBus/PMBus/I C host and VR controller.  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 5 of 33  
ISL68201  
Functional Pin Descriptions(Continued)  
PIN NUMBER  
SYMBOL  
DESCRIPTION  
8
9
PGOOD Power-good, open-drain indicator output.  
RGND  
VSEN  
This pin monitors the negative rail of the regulator output. Connect to ground at the point of regulation.  
10  
11  
This pin monitors the positive rail of the regulator output. Connect to the point of regulation.  
CSRTN  
This pin monitors the negative flow of output current with a series resistor and for overcurrent protection and telemetry.  
The series resistor sets the current gain and should be within 40Ωand 3.5kΩ.  
12  
13  
CSEN  
NTC  
This pin monitors the positive flow of output current for overcurrent protection and telemetry.  
Input pin for the temperature measurement. Connect this pin through an NTC thermistor (10kΩ, ~ 3380) and a decoupling  
capacitor (~0.1μF) to GND, and a resistor (1.54kΩ)to VCC of the controller. The voltage at this pin is inversely proportional to  
the VR temperature.  
14  
15  
IOUT  
Output current monitor pin. An external resistor sets the gain and an external capacitor provides the averaging function; an  
external pull-up resistor to VCC is recommended to calibrate the no load offset. See “I  
Calibration” on page 19.  
OUT  
PROG4 Programming pin for Modulator (R4) RR impedance and output slew rate during Soft-Start (SS) and Dynamic VID (DVID).  
It also sets AV gain multiplier to 1x or 2x and determines the AV gain on PROG3.  
16  
17  
PROG3 Programming pin for ultrasonic PFM operation, fault behavior, switching frequency, and R4 (AV) control loop gain.  
2
PROG2 Programming pin for PWM/PFM mode, temperature compensation, and serial bus (SMBus/PMBus/I C) address.  
18  
PROG1 Programming pin for boot-up voltage.  
19, 21  
20  
GND  
FCCM  
PWM  
PVCC  
Ground pin, connect directly to system ground plane.  
Output signal low to work with DrMOS ISL99140 for diode emulation in PFM mode; signal high for PWM mode.  
PWM output and is compatible with 3.3V or 5V PWM input external driver, DrMOS, or Smart Power Stage.  
22  
23  
Output of the 5V LDO and input for the LGATE and UGATE MOSFET driver circuits. Place a high quality low ESR ceramic  
capacitor (4.7μF or higher, X7R) in close proximity to the pin.  
24  
LGIN  
GND  
Low-side gate signal input to complete the internal FLL loop. A 100Ω series impedance from low-side gate drive signal to  
this pin is required.  
PAD  
Return of logic bias supply VCC. Connect directly to the system ground plane with at least four vias.  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 6 of 33  
ISL68201  
Absolute Maximum Ratings  
Thermal Information  
VCC, PVCC, VSEN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +7.0V  
Input Voltage, VIN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +27V  
7VLDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3V to GND, 7.75V  
All Other Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to GND, VCC + 0.3V  
ESD Rating  
Thermal Resistance (Typical)  
24 Ld QFN (Notes 4, 5) . . . . . . . . . . . . . . . .  
Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-55°C to +150°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493  
JA (°C/W)  
39  
JC (°C/W)  
2.5  
Human Body Model (Tested per JS-001-2010). . . . . . . . . . . . . . . . .2.5kV  
Machine Model (Tested per JESD22-A115C) . . . . . . . . . . . . . . . . . 200V  
Charge Device Model (Tested per JS-002-2014) . . . . . . . . . . . . . . . . 1kV  
Latch-Up (Tested per JESD78D, Class 2, Level A). . . . ±100mA at +125°C  
Recommended Operating Conditions  
Ambient Temperature Range . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Wide Range Input Voltage, V , Figure 1. . . . . . . . . . . . . . . . . 4.75V to 24V  
IN  
5V Application Input Voltage, V , V , PVCC, Figure 2 . . . . . . 4.5V to 5.5V  
IN CC  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. is measured in free air with the component mounted on a high-effective thermal conductivity test board with “direct attach” features. See TB379.  
JA  
5. For , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications All typical specifications T = +25°C, V = 5V. Boldface limits apply across the operating temperature range,  
A
CC  
-40°C to +85°C, unless otherwise stated.  
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNIT  
V
V
AND PVCC  
CC  
Input Bias Current  
I
EN = 5V, V = 5V, f  
CC  
= 500kHz, DAC = 1V  
= 500kHz, DAC = 1V  
14  
14  
2
16.5  
16.5  
mA  
mA  
mA  
mA  
CC  
VCC  
SW  
SW  
EN = 0V, V = 5V  
CC  
PVCC Input Bias Current  
I
EN = 5V, V = 5V, f  
CC  
PVCC  
EN = 0V, V = 5V  
CC  
1.0  
V
V
V
V
V
AND V POR THRESHOLD  
IN  
CC  
CC  
CC  
, PVCC Rising POR Threshold Voltage  
, PVCC Falling POR Threshold Voltage  
4.2  
3.95  
4.2  
4.35  
4.15  
4.35  
4.15  
V
V
V
V
3.80  
3.80  
, 7VLDO Rising POR Threshold Voltage  
, 7VLDO Falling POR Threshold Voltage  
IN  
IN  
3.95  
ENABLE INPUT  
EN High Threshold Voltage  
EN Low Threshold Voltage  
DAC ACCURACY  
V
0.81  
0.71  
0.84  
0.76  
0.87  
0.81  
V
V
ENTHR  
V
ENTHF  
DAC Accuracy  
2.5V < DAC 5.5V  
1.6V < DAC 2.5V  
1.2V < DAC 1.6V  
0.5V DAC 1.2V  
2.5V < DAC 5.5V  
1.6V < DAC 2.5V  
1.2V < DAC 1.6V  
0.5V DAC 1.2V  
-0.5  
-0.75  
-10  
0.5  
0.75  
10  
%
%
(T = 0°C to +85°C)  
A
mV  
mV  
%
-8  
8
DAC Accuracy  
-0.75  
-1.0  
-11  
0.75  
1.0  
11  
(T = -45°C to +85°C)  
A
%
mV  
mV  
-9  
9
CHANNEL FREQUENCY  
300kHz Configuration  
400kHz Configuration  
PWM mode  
PWM mode  
260  
345  
300  
400  
335  
450  
kHz  
kHz  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 7 of 33  
ISL68201  
Electrical Specifications All typical specifications T = +25°C, V = 5V. Boldface limits apply across the operating temperature range,  
A
CC  
-40°C to +85°C, unless otherwise stated. (Continued)  
MIN  
MAX  
PARAMETER  
500kHz Configuration  
SYMBOL  
TEST CONDITIONS  
(Note 6)  
TYP  
500  
(Note 6)  
UNIT  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
PWM mode  
PWM mode  
PWM mode  
PWM mode  
PWM mode  
PWM mode  
435  
510  
610  
730  
865  
1320  
562  
670  
600kHz Configuration  
600  
700kHz Configuration  
700  
790  
850kHz Configuration  
850  
950  
1000kHz Configuration  
1500kHz Configuration  
SOFT-START AND DYNAMIC VID  
Soft-Start and DVID Slew Rate  
1000  
1500  
1120  
1660  
0.0616 0.078  
0.096  
0.18  
0.37  
0.70  
1.40  
2.80  
5.60  
10.9  
260  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
µs  
0.13  
0.25  
0.53  
1.05  
2.10  
4.20  
8.60  
140  
0.157  
0.315  
0.625  
1.25  
2.50  
5.00  
10.0  
200  
Soft-Start Delay from Enable High  
Excluding 5.5ms POR timeout.  
See Figures 21 and 22  
REMOTE SENSE  
Bias Current of VSEN and RGND Pins  
Maximum Differential Input Voltage  
POWER-GOOD  
250  
µA  
V
6.0  
PGOOD Pull-Down Impedance  
PGOOD Leakage Current  
LDOs  
R
PGOOD = 5mA sink  
PGOOD = 5V  
10  
5.00  
7.4  
50  
Ω
PG  
I
1.0  
µA  
PG  
5V LDO Regulation  
V
V
= 12V, load = 50mA  
= 4.75V, load = 50mA  
4.85  
4.45  
125  
7.2  
5.15  
7.5  
V
V
IN  
5V Dropout  
IN  
5V LDO Current Capability  
7V LDO Regulation  
mA  
V
250µA load  
= 4.75V, 250µA load  
7V Dropout  
V
4.50  
2
V
IN  
7V LDO Current Capability  
CURRENT SENSE  
Not recommended for external use  
mA  
Average OCP Trip Level  
Short-Circuit Protection Threshold  
Sensed Current Tolerance  
Sensed Current Tolerance  
Maximum Common-Mode Input Voltage  
I
82  
100  
130  
78  
123  
µA  
OC_TRIP  
% I  
OCP  
74  
35  
83  
42  
µA  
38  
µA  
V
7VLDO = 7.4V  
5.7  
2.8  
VCC = PVCC = 7VLDO = 4.5V  
V
FN8696 Rev.5.00  
Jul 12, 2018  
Page 8 of 33  
ISL68201  
Electrical Specifications All typical specifications T = +25°C, V = 5V. Boldface limits apply across the operating temperature range,  
A
CC  
-40°C to +85°C, unless otherwise stated. (Continued)  
MIN  
MAX  
PARAMETER  
FAULT PROTECTION  
SYMBOL  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNIT  
UVP Threshold Voltage  
Latch  
0V V  
68  
74  
80  
% DAC  
Start-Up OVP Threshold Voltage  
1.08V  
1.10  
1.58  
1.88  
2.09  
2.56  
3.36  
5.52  
1.15  
1.65  
1.95  
2.15  
2.65  
3.45  
5.65  
100  
1.25  
1.75  
2.05  
2.25  
2.75  
3.6  
V
BOOT  
1.08V < V  
1.55V < V  
1.85V < V  
2.08V < V  
2.53V < V  
3.33V < V  
1.55V  
1.85V  
2.08V  
2.53V  
3.33V  
5.5V  
V
BOOT  
BOOT  
BOOT  
BOOT  
BOOT  
BOOT  
V
V
V
V
5.85  
V
Start-Up OVP Hysteresis  
mV  
OVP Rising Threshold Voltage  
V
0.5 DAC 5.5  
0.5 DAC 5.5  
READ_TEMP = 72h  
READ_TEMP = 8Eh  
114  
96  
120  
127  
108  
26  
% DAC  
% DAC  
% VCC  
% VCC  
OVRTH  
OVP Falling Threshold Voltage  
V
100  
OVFTH  
Over-Temperature Shutdown Threshold  
Over-Temperature Shutdown Reset Threshold  
20  
22.31  
27.79  
25  
30  
2
SMBus/PMBus/I C  
Signal Input Low Voltage  
Signal Input High Voltage  
Signal Output Low Voltage  
DATE, ALERT # Pull-Down Impedance  
CLOCK Maximum Speed  
CLOCK Minimum Speed  
Telemetry Update Rate  
Timeout  
1
V
V
1.6  
1.25  
25  
4mA pull-up current  
0.4  
50  
V
11  
Ω
MHz  
MHz  
µs  
0.05  
108  
30  
35  
ms  
ms  
PMBus Accessible Timeout from All Rails’ POR  
See Figure 21  
5.5  
6.5  
NOTE:  
6. Compliance to datasheet limits is assured by one or more methods: production test, characterization, and/or design.  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 9 of 33  
ISL68201  
In addition, based on the ON_OFF_CONFIG [02h] setting, the IC  
can be enabled or disabled by the serial bus command  
“OPERATION [01h]” and/or EN pin. See Table 11 on page 25 for  
more details.  
Operation  
The following sections provide a detailed description of the  
ISL68201 operation.  
IC Supplies  
Resistor Reader  
The ISL68201 has four bias pins: VIN, 7VLDO, PVCC, and VCC.  
The PVCC and 7VLDO voltage rails are 5V LDO and 7.4V LDO  
supplied by VIN, respectively, while the VCC pin needs to connect  
to the PVCC rail externally to be biased. For 5V input applications,  
all these pins should be tied together and biased by a 5V supply.  
Because the VIN pin voltage information is used by the R4  
Modulator loop, the user CANNOT bias VIN with a series resistor.  
In addition, the VIN pin CANNOT be biased independently from  
other rails.  
The ISL68201 offers four programming pins to customize their  
regulator specifications. The details of these pins are summarized  
in Table 2, followed by the detailed description of resistor reader  
operation.  
TABLE 2. DEFINITION OF PROG PINS  
PIN  
BIT  
NAME  
DESCRIPTION  
PROG1 [7:0]  
BOOT-UP  
VOLTAGE  
Sets output boot-up voltage, 256  
different options: 0, 0.5V to 5.5V (see  
Table 7)  
Enable and Disable  
PROG2 [7:7]  
PWM/PFM  
Enables PFM mode or forced PWM.  
The IC is disabled until the 7VLDO, PVCC, VCC, VIN, and EN pins  
increase above their respective rising threshold voltages and the  
typical 5.5ms timeout (worst case = 6.5ms) expires, as shown in  
Figures 21 and 22 on page 22. The controller becomes disabled  
when the 7VLDO, PVCC, VCC, VIN, or EN pins drop below their  
respective falling POR threshold voltages.  
[6:5] Temperature Adjusts NTC temperature compensation:  
Compensation OFF, +5, +15, +30°C.  
[4:0]  
ADDR  
Sets serial bus 32 different addresses  
(see Table 10).  
PROG3 [7:7]  
USPFM  
Ultrasonic (25kHz clamp) PFM enable  
The precision threshold EN pin allows the user to set a precision  
input UVLO level with an external resistor divider, as shown in  
Figure 4. For 5V input applications or wide range input  
applications, the EN pin can directly connect to VCC, as shown in  
Figure 5. If an external enable control signal is available and is an  
open-drain signal, a pull-up impedance (100k or higher) can be  
used.  
[6:6] Fault Behavior OCP fault behavior:  
Latch, infinite 9ms retry  
[5:3]  
[2:0]  
f
Sets switching frequency (f ).  
SW  
SW  
R4 Gain  
Sets error amplifier gain (AV).  
PROG4 [7:5] RAMP_RATE Sets soft-start and DVID ramp rate.  
[4:3]  
[2:2]  
[1:0]  
RR  
Selects RR impedance for R4 loop.  
Selects AV gain multiplier (1x or 2x)  
EXTERNAL CIRCUIT  
ISL68201  
AVMLTI  
Not Used  
VIN  
100k  
Renesas has developed a high resolution ADC using a technique  
with a simple 1%, 100ppm/K or better temperature coefficient  
resistor divider. The same type of resistors are preferred so that it  
has similar change over temperature. In addition, the divider is  
EN  
SOFT-  
START  
9.09k  
compared to the internal divider off V and GND nodes and  
CC  
VIN UVLO = 10.08V/9.12V  
therefore must refer to VCC and GND pins, not through any RC  
decoupling network.  
FIGURE 4. INPUT UVP CONFIGURATION  
EXTERNAL CIRCUIT  
ISL68201  
VCC  
EXTERNAL CIRCUIT  
ISL68201  
VCC  
R
UP  
REGISTER  
TABLE  
ADC  
R
OPTIONAL  
EN  
EN  
R
DW  
SOFT-  
START  
VIN UVLO = 4.20/3.95V  
is needed ONLY if the user wants to  
FIGURE 6. SIMPLIFIED RESISTOR DIVIDER ADC  
R
EN  
control the IC with an external enable signal  
FIGURE 5. 5V INPUT OR WIDE RANGE INPUT CONFIGURATION  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 10 of 33  
ISL68201  
The R and R  
UP DW  
found using the PowerNavigator GUI. Data for corresponding  
registers can be read out using the serial PMBus command (DC  
values for a particular parameter set can be  
TABLE 5. PROG 3 RESISTOR READER EXAMPLE  
R4 GAIN  
PROG3  
(DE)  
R
(kΩ)  
R
(kΩ)  
ULTRASONIC  
PFM  
FAULT  
BEHAVIOR (kHz)  
f
SW  
to DF). Note: The case of 10kΩ R or R  
is the same as 0kΩ  
UP  
DW  
UP DW  
1x  
42  
42  
42  
42  
42  
42  
42  
42  
1
2x  
84  
84  
84  
84  
84  
84  
84  
84  
2
R
or R  
.
UP  
DW  
00h  
20h  
40h  
60h  
80h  
A0h  
C0h  
E0h  
1Fh  
3Fh  
5Fh  
7Fh  
9Fh  
BFh  
DFh  
FFh  
Open  
0
Disabled  
Disabled  
Disabled  
Disabled  
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
Disabled  
Disabled  
Enabled  
Enabled  
Enabled  
Enabled  
Retry  
Retry  
Latch  
Latch  
Retry  
Retry  
Latch  
Latch  
Retry  
Retry  
Latch  
Latch  
Retry  
Retry  
Latch  
Latch  
300  
700  
300  
700  
300  
700  
300  
700  
600  
1500  
600  
1500  
600  
1500  
600  
1500  
TABLE 3. PROG 1 RESISTOR READER EXAMPLE  
Open 21.5  
Open 34.8  
Open 52.3  
PROG1  
(DC)  
R
(kΩ)  
R
(kΩ)  
V
OUT  
(V)  
UP  
DW  
00h  
20h  
40h  
60h  
80h  
A0h  
C0h  
E0h  
1Fh  
3Fh  
5Fh  
7Fh  
9Fh  
BFh  
DFh  
FFh  
Open  
0
0.797  
0.852  
0.898  
0.953  
1.000  
1.047  
1.102  
1.203  
1.352  
1.500  
1.797  
2.500  
3.000  
3.297  
5.000  
0.000  
Open  
Open  
Open  
Open  
0
75  
105  
147  
499  
Open  
Open 21.5  
Open 34.8  
Open 52.3  
Open  
Open 105  
Open 147  
Open 499  
Open  
75  
21.5 Open  
34.8 Open  
52.3 Open  
1
2
1
2
0
1
2
21.5 Open  
34.8 Open  
52.3 Open  
75  
Open  
Open  
Open  
Open  
1
2
105  
147  
499  
1
2
75  
105 Open  
147 Open  
499 Open  
Open  
1
2
1
2
TABLE 6. PROG 4 RESISTOR READER EXAMPLE  
PROG4  
(DF  
R
R
(kΩ)  
SS RATE  
(mV/µs)  
RR  
(kΩ  
UP  
DW  
TABLE 4. PROG 2 RESISTOR READER EXAMPLE  
(kΩ)  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
0
AVMLTI  
PROG2  
(DD)  
R
(kΩ)  
R
TEMP  
COMP  
PM_ADDR  
(7-BIT)  
UP  
DW  
(kΩ) PWM/PFM  
00h  
20h  
40h  
60h  
80h  
A0h  
C0h  
E0h  
1Fh  
3Fh  
5Fh  
7Fh  
9Fh  
BFh  
DFh  
FFh  
0
1.25  
2.5  
200  
200  
200  
200  
200  
200  
200  
200  
800  
800  
800  
800  
800  
800  
800  
800  
1x  
1x  
1x  
1x  
1x  
1x  
1x  
1x  
2x  
2x  
2x  
2x  
2x  
2x  
2x  
2x  
21.5  
34.8  
52.3  
75  
00h  
20h  
40h  
60h  
80h  
A0h  
C0h  
E0h  
1Fh  
3Fh  
5Fh  
7Fh  
9Fh  
BFh  
DFh  
FFh  
Open  
0
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
Disabled  
Disabled  
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
Disabled  
Disabled  
30  
15  
5
60h  
60h  
60h  
60h  
60h  
60h  
60h  
60h  
7F  
5
Open 21.5  
Open 34.8  
Open 52.3  
10  
0.078  
0.157  
0.315  
0.625  
1.25  
2.5  
OFF  
30  
15  
5
105  
Open  
Open 105  
Open 147  
Open 499  
Open  
75  
147  
499  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
OFF  
30  
15  
5
21.5  
34.8  
52.3  
75  
0
5
21.5 Open  
34.8 Open  
52.3 Open  
7F  
10  
7F  
0.078  
0.157  
0.315  
0.625  
OFF  
30  
15  
5
7F  
105  
75  
105 Open  
147 Open  
499 Open  
Open  
7F  
147  
7F  
499  
7F  
OFF  
7F  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 11 of 33  
ISL68201  
Soft-Start  
V
V
V  
PRECHARGED BOOT  
PRECHARGED  
-------------------------------------------- ----------------------------------------------------------------------  
s  
t
=
+
(EQ. 4)  
D2  
RAMP_RATE  
RAMP_RATE  
The ISL68201-based regulator has four periods during soft-start,  
as shown in Figure 7 on page 12. When the EN pin reaches  
above its enable threshold, after a 5.5ms timeout (worst  
case = 6.5ms) of bias supplies, the controller begins the first  
soft-start ramp after a fixed soft-start delay period t as shown  
in Figures 21 and 22 on page 22. The output voltage reaches the  
The ISL68201 supports precharged load start-up to the  
maximum V of 5.5V with sufficient boot capacitor charge. For  
OUT  
an extended precharged load, the boot capacitor discharges to  
“PVCC - V - V ” by the high-side drive circuits’ standby current.  
D1  
OUT  
D
For instance, during an extended 4V precharged load, the boot  
capacitor reduces to a less-than-1V boot capacitor voltage, which  
is insufficient to power up the VR; in this case, it is recommended  
to let the output drop below 2.5V with an external bleed resistor  
before issuing another soft-start command.  
boot-up voltage (V  
) at a fixed slew rate in period t . Then,  
BOOT  
D2  
the controller regulates the output voltage at V  
2
for another  
BOOT  
period t until SMBus/PMBus/ I C sends a new V  
D3  
OUT  
command. If the V command is valid, the ISL68201 initiates  
the ramp until the voltage reaches the new VOUT_COMMAND  
OUT  
voltage in period t . The soft-start time is the sum of the four  
periods, as shown in Equation 1.  
D4  
Boot-Up Voltage Programming  
An 8-bit pin PROG1 is dedicated for the boot-up voltage  
programmability, which offers 256 options 0V and 0.5V to 5.5V,  
as in Table 7. The most popular boot-up voltage levels are placed  
on the tie-low spots (0h, 20h, 40h, 60h, 80h, A0h, C0h, E0h) and  
the tie-high spots (1Fh, 3Fh, 5Fh, 7Fh, 9Fh, BFh, DFh, FFh) for  
easy programming, as summarized in Table 3. A 0V boot-up  
voltage is considered as “OFF,” the driver is in tri-state and the  
internal DAC sets to 0V.  
t
= t + t + t + t  
D1 D2 D3 D4  
(EQ. 1)  
SS  
t
is a fixed delay with a typical value of 200µs. t is determined  
D3  
D1  
by the time to obtain a new valid VOUT_COMMAND voltage from  
SMBus/PMBus/I C bus. If the VOUT_COMMAND is valid before the  
output reaches the boot-up voltage, the output turns around to  
respond to the new VOUT_COMMAND code.  
2
In addition, if the VOUT_COMMAND (21h) is executed  
successfully 5.5ms (typically, worst 6.5ms) after VCC POR and  
before Enable, it overrides the boot-up voltage set by the PROG1  
pin.  
V
V
< PRE-CHARGED < OVP  
BOOT  
OUT  
V
BOOT  
PRE-CHARGED<V  
0V  
BOOT  
TABLE 7. PROG1 8-BIT (BOOT-UP VOLTAGE)  
VOUT  
COMMAND  
CODE (HEX)  
DELTA FROM  
PREVIOUS  
CODE (mV)  
BINARY  
CODE  
HEX  
CODE  
V
BOOT  
(V)  
t
t
t
t
D2  
D3  
D1  
D4  
EN  
00000000  
00000001  
00000010  
00000011  
00000100  
00000101  
00000110  
00000111  
00001000  
00001001  
00001010  
00001011  
00001100  
00001101  
00001110  
00001111  
00010000  
00010001  
00010010  
0
1
0.7969  
0.5000  
0.5078  
0.5156  
0.5234  
0.5313  
0.5391  
0.5469  
0.5547  
0.5625  
0.5703  
0.5781  
0.5859  
0.5938  
0.6016  
0.6094  
0.6172  
0.6250  
0.6328  
66  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
2
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
PGOOD  
3
4
FIGURE 7. SOFT-START WAVEFORMS  
5
During t and t , the ISL68201 digitally controls the DAC  
D2 D4  
voltage change. The ramp time t and t can be calculated  
based on Equations 2 and 3, after the slew rate is set by the  
PROG4 pin.  
6
D2 D4  
7
8
V
BOOT  
9
-------------------------------------  
t
=
s  
(EQ. 2)  
(EQ. 3)  
D2  
RAMP_RATE  
A
V
V  
B
OUT  
BOOT  
-----------------------------------------  
s  
t
=
D4  
RAMP_RATE  
C
The ISL68201 supports precharged start-up, which initiates the  
first PWM pulse until the internal reference (DAC) reaches the  
precharged level at RAMP_RATE, programmed by PROG4 or  
D
E
D5[2:0]. When the precharged level is below V  
, the output  
at RAMP_RATE and releases PGOOD at  
F
BOOT  
walks up to the V  
BOOT  
10  
11  
12  
t
+ t . When the precharged output is above V  
but  
D1  
D2 BOOT  
below OVP, it walks down to V at RAMP_RATE and then  
BOOT  
releases PGOOD at t + t , in which t is defined in  
D1 D2 D2  
Equation 4 and is longer than a normal start-up.  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 12 of 33  
ISL68201  
TABLE 7. PROG1 8-BIT (BOOT-UP VOLTAGE) (Continued)  
TABLE 7. PROG1 8-BIT (BOOT-UP VOLTAGE) (Continued)  
VOUT  
COMMAND  
CODE (HEX)  
DELTA FROM  
PREVIOUS  
CODE (mV)  
VOUT  
COMMAND  
CODE (HEX)  
DELTA FROM  
PREVIOUS  
CODE (mV)  
BINARY  
CODE  
HEX  
CODE  
V
BINARY  
CODE  
HEX  
CODE  
V
BOOT  
(V)  
BOOT  
(V)  
00010011  
00010100  
00010101  
00010110  
00010111  
00011000  
00011001  
00011010  
00011011  
00011100  
00011101  
00011110  
00011111  
00100000  
00100001  
00100010  
00100011  
00100100  
00100101  
00100110  
00100111  
00101000  
00101001  
00101010  
00101011  
00101100  
00101101  
00101110  
00101111  
00110000  
00110001  
00110010  
00110011  
00110100  
00110101  
00110110  
00110111  
00111000  
00111001  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
0.6406  
0.6484  
0.6563  
0.6641  
0.6719  
0.6797  
0.6875  
0.6953  
0.7031  
0.7109  
0.7188  
0.7266  
1.3516  
0.8516  
0.7344  
0.7422  
0.7500  
0.7578  
0.7656  
0.7734  
0.7813  
0.7891  
0.7969  
0.8047  
0.8125  
0.8203  
0.8281  
0.8359  
0.8438  
0.8516  
0.8594  
0.8672  
0.8750  
0.8828  
0.8906  
0.8984  
0.9063  
0.9141  
0.9219  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
AD  
6D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
00111010  
00111011  
00111100  
00111101  
00111110  
00111111  
01000000  
01000001  
01000010  
01000011  
01000100  
01000101  
01000110  
01000111  
01001000  
01001001  
01001010  
01001011  
01001100  
01001101  
01001110  
01001111  
01010000  
01010001  
01010010  
01010011  
01010100  
01010101  
01010110  
01010111  
01011000  
01011001  
01011010  
01011011  
01011100  
01011101  
01011110  
01011111  
01100000  
3A  
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
0.9297  
0.9375  
0.9453  
0.9531  
0.9609  
1.5000  
0.8984  
0.9688  
0.9766  
0.9844  
0.9922  
1.0000  
1.0078  
1.0156  
1.0234  
1.0313  
1.0391  
1.0469  
1.0547  
1.0625  
1.0703  
1.0781  
1.0859  
1.0938  
1.1016  
1.1094  
1.1172  
1.1250  
1.1328  
1.1406  
1.1484  
1.1563  
1.1641  
1.1719  
1.1797  
1.1875  
1.1953  
1.7969  
0.9531  
77  
78  
79  
7A  
7B  
C0  
73  
7C  
7D  
7E  
7F  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
E6  
7A  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 13 of 33  
ISL68201  
TABLE 7. PROG1 8-BIT (BOOT-UP VOLTAGE) (Continued)  
TABLE 7. PROG1 8-BIT (BOOT-UP VOLTAGE) (Continued)  
VOUT  
COMMAND  
CODE (HEX)  
DELTA FROM  
PREVIOUS  
CODE (mV)  
VOUT  
COMMAND  
CODE (HEX)  
DELTA FROM  
PREVIOUS  
CODE (mV)  
BINARY  
CODE  
HEX  
CODE  
V
BINARY  
CODE  
HEX  
CODE  
V
BOOT  
(V)  
BOOT  
(V)  
01100001  
01100010  
01100011  
01100100  
01100101  
01100110  
01100111  
01101000  
01101001  
01101010  
01101011  
01101100  
01101101  
01101110  
01101111  
01110000  
01110001  
01110010  
01110011  
01110100  
01110101  
01110110  
01110111  
01111000  
01111001  
01111010  
01111011  
01111100  
01111101  
01111110  
01111111  
10000000  
10000001  
10000010  
10000011  
10000100  
10000101  
10000110  
10000111  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
80  
81  
82  
83  
84  
85  
86  
87  
1.2031  
1.2109  
1.2188  
1.2266  
1.2344  
1.2422  
1.2500  
1.2578  
1.2656  
1.2734  
1.2813  
1.2891  
1.2969  
1.3047  
1.3125  
1.3203  
1.3281  
1.3359  
1.3438  
1.3516  
1.3594  
1.3672  
1.3750  
1.3828  
1.3906  
1.3984  
1.4063  
1.4141  
1.4219  
1.4297  
2.5000  
1.0000  
1.4375  
1.4453  
1.4531  
1.4609  
1.4688  
1.4766  
1.4844  
9A  
9B  
9C  
9D  
9E  
9F  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
10001000  
10001001  
10001010  
10001011  
10001100  
10001101  
10001110  
10001111  
10010000  
10010001  
10010010  
10010011  
10010100  
10010101  
10010110  
10010111  
10011000  
10011001  
10011010  
10011011  
10011100  
10011101  
10011110  
10011111  
10100000  
10100001  
10100010  
10100011  
10100100  
10100101  
10100110  
10100111  
10101000  
10101001  
10101010  
10101011  
10101100  
10101101  
10101110  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
1.4922  
1.5000  
1.5078  
1.5156  
1.5234  
1.5313  
1.5391  
1.5469  
1.5547  
1.5625  
1.5703  
1.5781  
1.5859  
1.5938  
1.6016  
1.6094  
1.6172  
1.6250  
1.6328  
1.6406  
1.6484  
1.6563  
1.6641  
3.0000  
1.0469  
1.6719  
1.6797  
1.6875  
1.6953  
1.7031  
1.7109  
1.7188  
1.7266  
1.7344  
1.7422  
1.7500  
1.7578  
1.7656  
1.7734  
BF  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
140  
80  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
D0  
D1  
D2  
D3  
D4  
D5  
180  
86  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 14 of 33  
ISL68201  
TABLE 7. PROG1 8-BIT (BOOT-UP VOLTAGE) (Continued)  
TABLE 7. PROG1 8-BIT (BOOT-UP VOLTAGE) (Continued)  
VOUT  
COMMAND  
CODE (HEX)  
DELTA FROM  
PREVIOUS  
CODE (mV)  
VOUT  
COMMAND  
CODE (HEX)  
DELTA FROM  
PREVIOUS  
CODE (mV)  
BINARY  
CODE  
HEX  
CODE  
V
BINARY  
CODE  
HEX  
CODE  
V
BOOT  
(V)  
BOOT  
(V)  
10101111  
10110000  
10110001  
10110010  
10110011  
10110100  
10110101  
10110110  
10110111  
10111000  
10111001  
10111010  
10111011  
10111100  
10111101  
10111110  
10111111  
11000000  
11000001  
11000010  
11000011  
11000100  
11000101  
11000110  
11000111  
11001000  
11001001  
11001010  
11001011  
11001100  
11001101  
11001110  
11001111  
11010000  
11010001  
11010010  
11010011  
11010100  
11010101  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
1.7813  
1.7891  
1.7969  
1.8047  
1.8125  
1.8203  
1.8281  
1.8359  
1.9141  
1.9922  
2.0703  
2.1484  
2.2266  
2.3047  
2.3828  
2.4609  
3.2969  
1.1016  
2.4688  
2.4766  
2.4844  
2.4922  
2.5000  
2.5078  
2.5156  
2.5234  
2.6016  
2.6797  
2.7578  
2.8359  
2.9141  
2.9922  
3.0703  
3.1484  
3.2266  
3.2813  
3.2891  
3.2969  
3.3047  
E4  
E5  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
11010110  
11010111  
11011000  
11011001  
11011010  
11011011  
11011100  
11011101  
11011110  
11011111  
11100000  
11100001  
11100010  
11100011  
11100100  
11100101  
11100110  
11100111  
11101000  
11101001  
11101010  
11101011  
11101100  
11101101  
11101110  
11101111  
11110000  
11110001  
11110010  
11110011  
11110100  
11110101  
11110110  
11110111  
11111000  
11111001  
11111010  
11111011  
11111100  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
3.3125  
3.3203  
3.3281  
3.4063  
3.4844  
3.5625  
3.6406  
3.7188  
3.7969  
5.0000  
1.2031  
3.8750  
3.9531  
4.0313  
4.1094  
4.1875  
4.2656  
4.3438  
4.4219  
4.5000  
4.5781  
4.6563  
4.7344  
4.8125  
4.8906  
4.9688  
4.9766  
4.9844  
4.9922  
5.0000  
5.0078  
5.0156  
5.0234  
5.0313  
5.1094  
5.1875  
5.2656  
5.3438  
5.4219  
1A8  
1A9  
1AA  
1B4  
1BE  
1C8  
1D2  
1DC  
1E6  
280  
9A  
7.8125  
7.8125  
7.8125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
E6  
E7  
E8  
E9  
EA  
EB  
F5  
FF  
109  
113  
11D  
127  
131  
13B  
1A6  
8D  
1F0  
1FA  
204  
20E  
218  
222  
22C  
236  
240  
24A  
254  
25E  
268  
272  
27C  
27D  
27E  
27F  
280  
281  
282  
283  
284  
28E  
298  
2A2  
2AC  
2B6  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
78.125  
78.125  
78.125  
78.125  
78.125  
13C  
13D  
13E  
13F  
140  
141  
142  
143  
14D  
157  
161  
16B  
175  
17F  
189  
193  
19D  
1A4  
1A5  
1A6  
1A7  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
54.6875  
7.8125  
7.8125  
7.8125  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 15 of 33  
ISL68201  
TABLE 7. PROG1 8-BIT (BOOT-UP VOLTAGE) (Continued)  
across the DCR. With the internal low-offset current amplifier, the  
capacitor voltage V is replicated across the sense resistor R  
.
C
ISEN  
, is proportional  
VOUT  
COMMAND  
CODE (HEX)  
DELTA FROM  
PREVIOUS  
CODE (mV)  
Therefore, the current out of the CSRTN pin, I  
to the inductor current.  
SEN  
BINARY  
CODE  
HEX  
CODE  
V
BOOT  
(V)  
Equation 6 shows that the ratio of the inductor current to the  
sensed current, I , is driven by the value of the sense resistor  
and the DCR of the inductor.  
11111101  
11111110  
11111111  
FD  
FE  
FF  
5.4922  
5.5000  
0
2BF  
2C0  
0
70.3125  
7.8125  
SEN  
DCR  
-----------------  
I
= I  
(EQ. 6)  
SEN  
L
R
ISEN  
-7  
As shown in Table 7, one step is 2 = 7.8125mV; some  
selections are higher than one step from adjacent codes.  
However, the resolution is ±7.8125mV around the popular  
voltage regulation points, as in Table 3 on page 11, for fine-  
tuning purposes. For finer than 7.8125mV tuning, place a large  
ratio resistor divider on the VSEN pin between the output (V  
and RGND for positive offset or V for negative offset, as shown  
in Figure 8.  
The inductor DCR value increases as the temperature increases.  
Therefore, the sensed current increases as the temperature of  
the current sense element increases. To compensate for the  
temperature effect on the sensed current signal, the integrated  
temperature compensation function of the ISL68201 should be  
used. The integrated temperature compensation function is  
described in“Thermal Monitoring and Compensation” on  
page 18.  
)
OUT  
CC  
V
CC  
V
IN  
I
s  
L
V
OUT  
V
VSEN  
OUT  
VSEN  
L
+
-
+
-
DCR  
V
OUT  
DRIVER  
INDUCTOR  
-
C
OUT  
V
L
RGND  
A. V  
ISL68201  
INTERNAL CIRCUIT  
PLACE THESE IN CLOSE  
PROXIMITY TO THE ISL68201  
B. V  
OUT  
LOWER THAN DAC  
HIGHER THAN DAC  
OUT  
-
OPTIONAL  
V (s)  
C
FIGURE 8. EXTERNAL PROGRAMMABLE REGULATION  
I
OUT  
R
C
Current Sensing  
R
ISEN  
CURRENT  
SENSE  
The ISL68201 supports inductor DCR sensing, or resistive  
sensing techniques, and senses current continuously for fast  
response. The current sense amplifier uses the CSEN and CSRTN  
inputs to reproduce a signal proportional to the inductor current,  
CSEN  
+
-
CSRTN  
I . The sense current, I  
, is proportional to the inductor current  
L
SEN  
and is used for current reporting and overcurrent protection.  
DCR  
I
-------------------  
= I  
SEN  
L
R
ISEN  
The input bias current of the current sensing amplifier is typically  
10s of nA. Less than 15kΩ input impedance connected to CSEN  
pin is preferred to minimize the offset error, that is, use a larger  
C value (select 0.22µF to 1µF instead of 0.1µF when needed). In  
addition, the current sensing gain resistor connected to CSRTN  
pin should be within 40Ωto 3.5kΩ.  
FIGURE 9. DCR SENSING CONFIGURATION  
RESISTIVE SENSING  
For accurate current sense, a dedicated current-sense resistor,  
, in series with each output inductor, can serve as the current  
sense element (see Figure 10). This technique, however, reduces  
overall converter efficiency due to the additional power loss on the  
R
SENSE  
INDUCTOR DCR SENSING  
An inductor’s winding is characteristic of a distributed resistance,  
as measured by the Direct Current Resistance (DCR) parameter.  
A simple R-C network across the inductor extracts the DCR  
voltage, as shown in Figure 9.  
current sense element R  
.
SENSE  
The voltage on the capacitor V , can be shown to be proportional  
C
to the inductor current I as in Equation 5.  
L ,  
L
-------------  
s   
+ 1  DCR I   
L
(EQ. 5)  
DCR  
V
s= --------------------------------------------------------------------  
C
s RC + 1  
If the R-C network components are selected so that the R-C time  
constant (= R*C) matches the inductor time constant (= L/DCR),  
the voltage across the capacitor V is equal to the voltage drop  
C
FN8696 Rev.5.00  
Jul 12, 2018  
Page 16 of 33  
ISL68201  
L/DCR OR ESL/R  
MATCHING  
I
SEN  
Figure 13 shows the expected load transient response waveforms  
if L/DCR or ESL/R is matching the R-C time constant. When  
L
L
R
ESL  
V
SEN  
R
OUT  
SEN  
the load current has a square change, the IOUT pin voltage (V  
without a decoupling capacitor also has a square response.  
)
IOUT  
C
SENSE  
OUT  
-
V
R
However, there is always some PCB contact impedance of current  
sensing components between the two current sensing points; it  
ISL68201  
INTERNAL CIRCUIT  
PLACE THESE IN CLOSE  
PROXIMITY TO THE ISL68201  
hardly accounts into the L/DCR or ESL/R  
matching calculation.  
SEN  
I
-
R
OUT  
V (s)  
C
Fine tuning the matching is done in the board level to improve  
overall transient performance and system reliability.  
OPTIONAL  
CURRENT  
SENSE  
C
CSEN  
If the R-C timing constant is too large or too small, V (s) does not  
C
R
ISEN  
+
-
accurately represent real-time output current and worsens the  
overcurrent fault response. Figure 14 shows the IOUT pin  
transient voltage response when the R-C timing constant is too  
CSRTN  
small. V  
sags excessively upon load insertion and may create  
IOUT  
R
SEN  
I
-----------------  
a system failure or early overcurrent trip. Figure 15 shows the  
transient response when the R-C timing constant is too large.  
= I  
SEN  
L
R
ISEN  
V
is sluggish in reaching its final value. The excessive delay  
IOUT  
FIGURE 10. SENSE RESISTOR IN SERIES WITH INDUCTORS  
on current sensing does not provide a fast OCP response and  
reduces system reliability.  
A current sensing resistor has a distributed parasitic inductance,  
known as Equivalent Series Inductance (ESL) parameter, typically  
less than 1nH. A simple R-C network across the current-sense  
LOAD  
resistor extracts the R  
page 17.  
voltage, as shown in Figure 10 on  
SEN  
V
IOUT  
The voltage on the capacitor V , can be shown to be proportional  
C
to the inductor current I , see Equation 7.  
L
FIGURE 13. DESIRED LOAD TRANSIENT RESPONSE WAVEFORMS  
ESL  
---------------  
s   
+ 1  R  
I   
SEN L  
(EQ. 7)  
R
SEN  
V
s= -------------------------------------------------------------------------  
C
s RC + 1  
LOAD  
If the R-C network components are selected so that the RC time  
constant matches the ESL-R time constant  
SEN  
), the voltage across the capacitor V is equal to  
(R*C = ESL/R  
SEN  
the voltage drop across the R  
C
VIOUT  
, that is, proportional to the  
SEN  
inductor current. As an example, a typical 1mΩ sense resistor  
can use R = 348Ω and C = 820pF for the matching. Figures 11  
and 12 show the sensed waveforms without and with matching  
RC when using resistive sense.  
FIGURE 14. LOAD TRANSIENT RESPONSE WHEN R-C TIME  
CONSTANT IS TOO SMALL  
LOAD  
VIOUT  
FIGURE 11. VOLTAGE ACROSS R WITHOUT RC  
FIGURE 15. LOAD TRANSIENT RESPONSE WHEN R-C TIME  
CONSTANT IS TOO LARGE  
Note that the integrated thermal compensation applies to the DC  
current, but not the AC current; therefore, the peak current seen  
by the controller increases as the temperature decreases and  
can potentially trigger an OCP event. To overcome this issue, the  
RC should be over-matching L/DCR at room temperature by  
(-40°C +25°C)*0.385%/°C = +25% for -40°C operation.  
FIGURE 12. VOLTAGE ACROSS C WITH MATCHING RC  
Equation 8 shows that the ratio of the inductor current to the  
sensed current, I  
, is driven by the value of the sense resistor  
SEN  
and the R  
.
ISEN  
R
SEN  
(EQ. 8)  
-----------------  
I
= I  
SEN  
L
R
ISEN  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 17 of 33  
ISL68201  
Thermal Monitoring and Compensation  
The thermal monitoring function block diagram is shown in  
Figure 16 on page 18. One NTC resistor should be placed close to  
the respective power stage of the voltage regulator VR to sense  
the operational temperature, and pull-up resistors are needed to  
form the voltage dividers for the NTC pin. As the temperature of  
the power stage increases, the resistance of the NTC reduces,  
resulting in the reduced voltage at the NTC pin. Figure 18 on  
page 18 shows the TM voltage over the temperature for a typical  
design with a recommended 10kΩ NTC  
(P/N: NCP15XH103J03RC from Murata, = 3380) and 1.54kΩ  
resistor RTM. It is recommended to use those resistors for  
accurate temperature compensation because the internal  
thermal digital code is developed based on these two  
components. If a different value is used, the temperature  
coefficient must be close to 3380 and RTM must be scaled  
accordingly. For instance, if NTC = 20kΩ (= 3380), then RTM  
should be 20kΩ/10kΩ*1.54kΩ = 3.08kΩ.  
V
CC  
RTM  
NTC  
ISL68201  
CHANNEL  
CURRENT  
SENSE  
CSSEN  
CSRTN  
NON-LINEAR  
A/D  
I
PH  
°C  
RNTC  
k
i
D/A  
PLACE NTC  
CLOSE TO  
INDUCTOR  
IOUT MONITOR AND  
OVERCURRENT  
PROTECTION  
A/D  
TCOMP  
FIGURE 17. BLOCK DIAGRAM OF INTEGRATED TEMPERATURE  
COMPENSATION  
VCC  
When the NTC is placed close to the current sense component  
(inductor), the temperature of the NTC tracks the temperature of  
the current sense component. Therefore, the NTC pin voltage can  
be used to obtain the temperature of the current sense  
component. Because the NTC could pick up noise from phase  
node, a 0.1µF ceramic decoupling capacitor is recommended on  
the NTC pin in close proximity to the controller.  
THERMAL TRIP  
+136°C/+122ºC  
R
TM  
NTC  
+
OTP  
ISL68201  
-
R
NTC  
Based on the V voltage, the ISL68201 converts the NTC pin  
CC  
ºC  
voltage to a digital signal for temperature compensation. With  
the nonlinear A/D converter of the ISL68201, the NTC digital  
signal is linearly proportional to the NTC temperature. For  
accurate temperature compensation, the ratio of the NTC voltage  
to the NTC temperature of the practical design should be similar  
to that in Figure 18.  
BETA~ 3380  
FIGURE 16. BLOCK DIAGRAM OF THERMAL MONITORING AND  
PROTECTION  
The ISL68201 supports inductor DCR sensing, or resistive  
sensing techniques. The inductor DCR has a positive temperature  
coefficient, which is about +0.385%/°C. Because the voltage  
across the inductor is sensed for the output current information,  
the sensed current has the same positive temperature  
coefficient as the inductor DCR. To obtain the correct current  
information, the ISL68201 uses the voltage at the NTC pin and  
“TCOMP” register to compensate the temperature impact on the  
sensed current. The block diagram of this function is shown in  
Figure 17.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE (°C)  
FIGURE 18. THE RATIO OF TM VOLTAGE TO NTC TEMPERATURE  
WITH RECOMMENDED PART  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 18 of 33  
ISL68201  
Because the NTC attaches to the PCB, but not directly to the  
current sensing component, it inherits high thermal impedance  
between the NTC and the current sensing element. The “TCOMP”  
register values can be used to correct the temperature difference  
between the NTC and the current sense component. As shown in  
Figure 19, the NTC should be placed in proximity to the output  
rail; DO NOT place it close to the MOSFET side, which generates  
much more heat.  
5. Choose a number close to the result as in Equation 11 for the  
“TCOMP” register.  
T
= T  
T  
CSC NTC  
(EQ. 11)  
COMP  
6. Operate the actual board under full load again.  
7. Record the IOUT pin voltage as V1 immediately after the  
output voltage is stable with the full load. Record the IOUT pin  
voltage as V2 after the VR reaches the thermal steady state.  
8. If the IOUT pin voltage increases over 10mV as the  
temperature increases (that is, V2 - V1 > 10mV), reduce the  
“TCOMP” value. If the IOUT pin voltage decreases over 10mV  
as the temperature increases (that is, V1 - V2 > 10mV),  
increase the “TCOMP” value. The “TCOMP” value can be  
adjusted through the serial bus for easy thermal  
compensation optimization.  
OUTPUT  
INDUCTOR  
VOUT  
POWER STAGE  
I
Calibration  
OUT  
The current flowing out of the IOUT pin is equal to the sensed  
average current inside ISL68201. A resistor is placed from the  
IOUT pin to GND to generate a voltage, which is proportional to  
the load current and the resistor value, as shown in Equation 12:  
FIGURE 19. RECOMMENDED PLACEMENT OF NTC  
The ISL68201 multiplexes the “TCOMP” value with the NTC  
digital signal to obtain the adjustment gain to compensate the  
temperature impact on the sensed channel current. The  
R xI  
x
OCP  
------------------------  
2.5Vx  
2.5VxR  
100A  
ISEN  
R
= ---------------------------------- = -----------------------------------------------  
IOUT  
compensated current signal is used for I  
and overcurrent  
OUT  
63.875AxR  
63.875AxR  
x
x
protection functions. Use the TCOMP “OFF” code to disable  
thermal compensation when the current sensing element is the  
resistor or smart power stage (internally thermal compensated)  
that has little thermal drifting.  
2.5VxI  
25VxI  
OCP  
OCP  
(EQ. 12)  
--------------------------------------------  
----------------------------  
k  
=
=
63.875Ax100A  
63.875A  
where V  
is the voltage at the IOUT pin, R  
is the resistor  
IOUT  
IOUT  
is the total output current  
TABLE 8. TCOMP VALUES  
between the IOUT pin and GND, I  
LOAD  
is the sense resistor connected to the  
D1h  
0h  
TCOMP (°C)  
D1h  
2h  
TCOMP (°C)  
of the converter, R  
ISEN  
CSRTN pin, and R is the DC resistance of the current sense  
30  
15  
5
X
element, either the DCR of the inductor or R  
the sensing method. Scale the R  
IOUT  
depending on  
resistor to ensure that the  
SENSE  
1h  
3h  
OFF  
voltage at the IOUT pin is typically 2.5V at 63.875A load current.  
The I voltage is linearly digitized every 108µs and stored in  
the READ_IOUT register (8Ch).  
The thermal compensation design procedure for inductor current  
sensing is summarized as follows:  
OUT  
1. Properly choose the voltage divider for the NTC pin to match  
the NTC voltage vs temperature curve with the recommended  
curve in Figure 18 on page 18.  
EXTERNAL CIRCUIT  
ISL68201  
VCC  
2. Operate the actual board under the full load and the desired  
airflow condition.  
R
IOUT_UP  
3. After the board reaches the thermal steady state (often takes  
15 minutes), record the temperature (T  
sense component (inductor) and the voltage at NTC and VCC  
pins.  
) of the current  
CSC  
IOUT  
DIGITIZED  
IOUT (8Ch)  
R
4. Use Equation 9 to calculate the resistance of the NTC, and  
IOUT_DW  
find out the corresponding NTC temperature T  
from the  
NTC  
NTC datasheet or using Equation 10, where is equal to 3380  
for recommended NTC.  
FIGURE 20. IOUT NO LOAD OFFSET CALIBRATION  
V
xR  
TM  
TM  
Place a small capacitor between IOUT and GND to reduce the  
noise impact and provide averaging, > 200µs (typically).  
(EQ. 9)  
R
at T  
= -----------------------------  
NTC  
NTC  
V
V  
CC  
TM  
To deal with layout and design variation of different platforms,  
the ISL68201 is intentionally trimmed to negative at no load,  
thus, an offset can easily be added to calibrate the digitized I  
--------------------------------------------------------------------------------  
T
=
273.15  
NTC  
(EQ. 10)  
R
at T  
NTC  
NTC  
--------------------------------------------  
-----------------  
ln  
+
R
at 25C  
298.15  
OUT  
NTC  
reading (8Ch). Hence, the analog vs digitized current slope is set  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 19 of 33  
ISL68201  
by the equivalent impedance of R  
(as in Figure 20); the slope of the ideal curve should set to 1A/A  
with 0A offset.  
//R  
= R  
IOUT  
The UVLO and OTP faults respond to the current state with  
hysteresis, output OVP and output UVP faults are latch events,  
and output OCP and output short-circuit faults can be latch or  
retry events depending upon the PROG3 or D3[0] setting. All fault  
latch events can be reset by VCC cycling, toggling the Enable pin  
and/or the serial bus OPERATION command based on the  
ON_OFF_CONFIG setting, while the OCP retry event has a hiccup  
time of 9ms and the regulator can be recovered when the fault is  
removed.  
IOUT_UP IOUT_DW  
For a precision digital I , follow the fine-tuned procedure below.  
OUT  
Steps 1 to 5 must be completed before Step 6.  
1. Properly tune L/DCR or ESL/R  
SEN  
matching as shown on  
page 17 over the range of temperature operation. +25%  
over-matching L/DCR at room temperature is needed for  
-40°C operation.  
OVERVOLTAGE PROTECTION  
2. Properly complete thermal compensation as shown in  
“Thermal Monitoring and Compensation” on page 18.  
The OVP fault detection circuit triggers after the voltage between  
VSEN+ and VSEN- is above the rising overvoltage threshold.  
When an OVP fault is declared, the controller latches off and the  
PGOOD pin asserts low. The fault remains latched and can be  
3. Finalize the R  
ISEN  
resistor to set OCP for overall operating  
conditions and board variations as shown in “Overcurrent and  
Short-Circuit Protection” on page 20.  
reset by V cycling or toggling EN pin and/or the serial bus  
CC  
4. Collect no load I  
OUT  
current with sufficient prototypes and  
current.  
OPERATION command based on the ON_OFF_CONFIG setting  
.
determine the mean of no load I  
OUT  
Although the controller latches off in response to an OVP fault,  
the LGATE gate-driver output retains the ability to toggle the low-  
side MOSFET on and off, in response to the output voltage  
transversing the OVP rising and falling thresholds. The LGATE  
gate driver turns on the low-side MOSFET to discharge the output  
voltage, protecting the load. The LGATE gate driver turns off the  
low-side MOSFET when the sensed output voltage is lower than  
the falling overvoltage threshold (typically 100%). If the output  
voltage rises again, the LGATE driver turns on the low-side MOSFET  
again when the output voltage is above the rising overvoltage  
threshold (typically 120%). By doing so, the IC protects the load  
when there is a consistent overvoltage condition.  
5. The pull-up impedance on IOUT pin should be  
“VCC/IOUT_NO_LOAD”. For instance, a mean of -2.5µA I  
at  
OUT  
0A load needs R  
= 2MΩ.  
IOUT_UP  
6. Start with the value below and then fine-tune the R  
IOUT_DW  
value until the average slope of various boards equals 1A/A.  
R
xR  
IOUT  
R  
IOUT  
(EQ. 13)  
IOUT_UP  
R
= --------------------------------------------------  
IOUT_DW  
R
IOUT_UP  
Fault Protection  
The ISL68201 provides high system reliability with many fault  
protections, as summarized in Table 9.  
In addition to normal operation OVP, 5.5ms (typically, worst  
case = 6.5ms) after all rails (VCC, PVCC, 7VLDO, VIN) POR and  
before the end of soft-start, the start-up OVP circuits are enabled  
to protect against an OVP event, while the OVP level is set higher  
TABLE 9. FAULT PROTECTION SUMMARY  
FAULT  
DESCRIPTION  
FAULT ACTION  
than V  
. See Electrical Specifications on page 7.  
BOOT  
Input UVLO VIN pin UVLO; or set by EN pin  
with an external divider for a  
Shut down and recover  
when V > UVLO  
IN  
UNDERVOLTAGE PROTECTION  
higher level. See Figures 4 and 5.  
The UVP fault detection circuit triggers when the output voltage is  
below the undervoltage threshold (typically 74% of DAC). When a  
UVP fault is declared, the controller latches off, forcing the LGATE  
and UGATE gate-driver outputs low, and the PGOOD pin asserts  
Bias UVLO  
VCC, PVCC, 7VLDO UVLO  
Shut down and recover  
when Bias > UVLO  
Start-Up OVP Higher than V  
. See Electrical Latch OFF, reset by V  
BOOT CC  
Specifications on page 7.  
or toggling enable  
(including EN pin and/  
or OPERATION  
command based on  
the ON_OFF_CONFIG  
setting)  
low. The fault remains latched and can be reset by V cycling or  
CC  
toggling the EN pin and/or the serial bus OPERATION command  
based on the ON_OFF_CONFIG setting.  
Output OVP Rising = 120%; Falling = 100%  
Output UVP 74% of V , Latch OFF  
OUT  
OVERCURRENT AND SHORT-CIRCUIT PROTECTION  
The average Overcurrent Protection (OCP) is triggered when the  
internal current out of the IOUT pin goes above the fault  
Output OCP Average OCP = 100µA with  
128µs blanking time.  
Latch OFF (reset by V  
CC  
or toggling enable  
including EN pin and/  
or OPERATION  
command based on  
the ON_OFF_CONFIG  
setting), or retry every  
9ms; option is  
threshold (typically 100µA) with 128µs blanking time. It also has  
a fast (50ns filter) secondary overcurrent protection whose  
threshold is +30% above average OCP. This protects inductor  
saturation from a short-circuit event and provides a more robust  
power train and system protection. When an OCP or short-circuit  
fault is declared, the controller latches off, forcing the LGATE and  
UGATE gate-driver outputs low, or retries with a hiccup time of  
9ms. The fault response is programmable by PROG3 or D3[0].  
Short-Circuit Peak OCP = 130% of Average  
Protection  
OCP with 50ns filter.  
programmable by  
PROG3 or D3[0]  
However, the latched off event can be reset by V cycling,  
toggling the EN pin, and/or the serial bus OPERATION command  
based on the ON_OFF_CONFIG setting.  
CC  
OTP  
Rising = 22.31%VCC (~+136°C); Shut down above  
Falling =27.79%VCC (~+122°C). +136°C and recover  
when temperature  
drops below +122°C  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 20 of 33  
ISL68201  
Equation 14 provides a starting point to set a preliminary OCP  
trip point, in which IOCP is the targeted OCP trip point and DI (as  
in Equation 15) is the peak-to-peak inductor ripple current.  
PFM Mode Operation  
In PFM mode, programmable by PROG2 or serial bus D0[0:0],  
the switching frequency is dramatically reduced to minimize the  
switching loss and significantly improve light-load efficiency. The  
ISL68201 can enter and exit PFM mode seamlessly as the load  
changes. The PFM mode is only compatible with the ISL99140  
DrMOS with SMOD input by connecting to ISL68201’s FCCM  
output pin. Incompatible power stages should operate in PWM  
mode.  
R xI  
x
OCP  
(EQ. 14)  
R
= ------------------------  
ISEN1  
100A  
I  
2
-----  
R x  
+ I  
x
OCP  
R
R
= -------------------------------------------------------------  
ISEN2  
ISEN  
100Ax100% + 30%  
2
= MAX (R  
R
ISEN2  
SMBus, PMBus, and I C Operation  
The ISL68201 features SMBus, PMBus, and I C with 32  
ISEN1,  
2
To deal with layout and PCB contact impedance variation, follow  
the fine-tuning procedure below for a more precise OCP. Steps 1 to  
3 must be completed before Step 4.  
programmable addresses through the PROG2 pin, while  
SMBus/PMBus includes an Alert# line (SALERT) and Packet Error  
Check (PEC) to ensure data properly transmitted. The telemetry  
update rate is 108µs (typically). The supported  
1. Properly tune L/DCR or ESL/R  
SEN  
matching as shown on  
page 17 over the range of temperature operation. +25%  
over-matching L/DCR at room temperature is needed for  
-40°C operation.  
2
SMBus/PMBus/I C addresses are summarized in Table 10. The  
7-bit format address does not include the last bit (write and  
read): 40-47h, 60-67h, and 70-7Fh.  
2. Properly complete thermal compensation as shown in  
“Thermal Monitoring and Compensation” on page 18.  
2
SMBus/PMBus/I C allows users to program the registers as in  
2
Table 11, except for SMBus/PMBus/I C addresses, 5.5ms  
3. Collect OCP trip points (IOCP_MEASURED) with sufficient  
prototypes and determine the mean for overall operating  
conditions and board variations.  
(typically, worst 6.5ms) after all rails (VCC, PVCC, 7VLDO, and  
VIN) above POR. Figures 21 and 22 show the initialization timing  
diagram for the serial bus with different states of the EN (Enable)  
pin.  
4. Change R  
by IOCP_TARGETED/IOCP_MEASURED  
ISEN  
percentage to meet the targeted OCP.  
For proper operation, users should follow the SMBus, PMBus, and  
I C protocol, as shown in Figure 23 on page 23. Note that the  
STOP (P) bit is NOT allowed before the repeated START condition  
when reading the contents of the register.  
Note that if the inductor peak-to-peak current is higher or closer  
to 30%, the +30% threshold could be triggered instead of the  
average OCP threshold. However, the fine-tuning procedure can  
still be used.  
2
When the device’s serial bus is not used, ground the device’s  
SCL, SDA, and SALERT pins and do not connect them to the bus.  
OVER-TEMPERATURE PROTECTION  
As shown in Figure 16 on page 18, there is a comparator with  
hysteresis to compare the NTC pin voltage to the threshold set.  
2
TABLE 10. SMBus/PMBus/I C 7-BIT FORMAT ADDRESS (HEX)  
7-BIT ADDRESS  
7-BIT ADDRESS  
7-BIT ADDRESS  
When the NTC pin voltage is lower than 22.31% of the V  
voltage (typically +136°C), it triggers Over-Temperature  
CC  
40  
41  
42  
43  
44  
45  
46  
47  
60  
61  
62  
63  
64  
65  
66  
67  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
Protection (OTP) and shuts down the ISL68201. When the NTC  
pin voltage is above 27.79% of the V voltage (typically  
CC  
+122.4°C), the ISL68201 resumes normal operation. When an  
OTP fault is declared, the controller forces the LGATE and UGATE  
gate-driver outputs low.  
PGOOD Monitor  
The PGOOD pin indicates when the converter is capable of  
supplying regulated voltage. If there is a fault condition of a rail’s  
(VCC, PVCC, 7VLDO, or VIN) UVLO, output Overcurrent (OCP),  
Overvoltage (OVP), Undervoltage (UVP), or Over-Temperature (OTP),  
PGOOD is asserted low. Note that the PGOOD pin is an undefined  
impedance with insufficient V (typically <2.5V).  
CC  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 21 of 33  
ISL68201  
VIN, PVCC,  
7VLDO,  
VCC  
200µs  
SS DELAY  
WRITE AND READ  
CONFIGURATION  
WRITE AND READ  
CONFIGURATION  
WRITE AND READ  
CONFIGURATION  
WRITE AND READ  
CONFIGURATION  
VCC POR  
TIMEOUT  
READER  
DONE  
0ms TO INFINITY  
5ms  
0.5ms  
0ms TO INFINITY  
ENABLE  
PMBus COMMUNICATION NOT  
ACTIVATED  
PMBus  
COMMAND  
PMBus  
COMMAND  
PMBus  
COMMAND  
PMBus  
COMMAND  
VBOOT  
VOUT  
0V  
2
FIGURE 21. SIMPLIFIED SMBus/PMBus/I C INITIALIZATION TIMING DIAGRAM WITH ENABLE LOW  
VIN, PVCC,  
7VLDO,  
VCC  
200µs  
SS DELAY  
WRITE AND READ  
CONFIGURATION  
WRITE AND READ  
CONFIGURATION  
READER  
DONE  
0.5ms  
VCC POR  
TIMEOUT  
5ms  
WRITE AND READ  
CONFIGURATION  
0ms TO INFINITY  
ENABLE  
PMBus COMMUNICATION NOT  
ACTIVATED  
PMBus  
COMMAND  
PMBus  
COMMAND  
PMBus  
COMMAND  
VBOOT  
VOUT  
0V  
2
FIGURE 22. SIMPLIFIED SMBus/PMBus/I C INITIALIZATION TIMING DIAGRAM WITH ENABLE HIGH  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 22 of 33  
ISL68201  
S: Start Condition  
1. Send Byte Protocol  
A: Acknowledge (“0”)  
1
7 + 1  
1
8
1
8
1
1
N: Not Acknowledge (“1”)  
S
Slave Address_0  
A
Command Code  
A
PEC  
A
P
W: Write (“0”)  
RS: Repeated Start Condition  
R: Read (“1”)  
Optional 9 Bits for SMBus/PMBus  
2
PEC: Packet Error Checking  
P: Stop Condition  
NOT used in I C  
Example command: 03h Clear Faults  
(This will clear all of the bits in Status Byte for the selected Rail)  
Acknowledge or DATA from Slave,  
ISL68201  
Not Used for One Byte Word  
2. Write Byte/Word Protocol  
1
7 + 1  
1
8
1
8
1
8
1
8
1
1
S
A
Command Code  
Slave Address_0  
A
A
High Data Byte  
Low Data Byte  
A
PEC  
A
P
Optional 9 Bits for SMBus/PMBus  
2
NOT used in I C  
Example command: D0h ENABLE_PFM (one word, High Data Byte, and ACK are not used)  
3. Read Byte/Word Protocol  
1
7 + 1  
1
8
1
Not Used for One Byte Word Read  
S
Slave Address_0  
A
Command Code  
A
1
7 + 1  
1
8
1
8
1
8
1
1
RS  
A
Low Data Byte  
Slave Address_1  
A
High Data Byte  
A
PEC  
P
N
Optional 9 Bits for SMBus/PMBus  
2
NOT used in I C  
Example command: 8B READ_VOUT (Two words, read voltage of the selected rail).  
NOTE: That all Writable commands are read with one byte word protocol.  
STOP (P) bit is NOT allowed before the repeated START condition when “reading” contents of a register.  
4. Block Write Protocol  
1
7 + 1  
1
8
1
8
1
8
1
8
1
S
A
Command Code  
Slave Address_0  
A
A
Lowest Data Byte  
Byte Count = N  
A
Data Byte 2  
A
1
1
8
8
1
1
Data Byte N  
A
A
PEC  
A
P
Optional 9 Bits for SMBus/PMBus  
2
NOT used in I C  
Example command: ADh IC_DEVICE_ID (2 Data Byte)  
2
FIGURE 23. SMBus/PMBus/I C COMMAND PROTOCOL  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 23 of 33  
ISL68201  
5. Block Read Protocol  
1
7 + 1  
1
1
1
1
8
1
7 + 1  
8
8
S
Byte Count = N  
Lowest Data Byte  
A
Command Code  
A
A
Slave Address_0  
A
RS  
Slave Address_1  
1
1
8
8
1
8
1
1
Data Byte 2  
A
A
Data Byte N  
A
PEC  
P
N
Optional 9 Bits for SMBus/PMBus  
2
NOT used in I C  
Example command: 8B READ_VOUT (Two words, read voltage of the selected rail).  
NOTE: That all Writable commands are read with one byte word protocol.  
STOP (P) bit is NOT allowed before the repeated START condition when “reading” contents of a register.  
6. Group Command Protocol - No more than one command can be sent to the same Address  
1
7 + 1  
1
8
1
8
1
8
1
8
1
S
A
Command Code  
Slave ADDR1_0  
A
A
High Data Byte  
Low Data Byte  
A
PEC  
A
1
7 + 1  
8
1
1
1
8
8
1
RS  
Command Code  
A
Data Byte  
A
Slave ADDR2_0  
A
PEC  
A
1
8
1
7 + 1  
8
1
1
8
1
8
1
1
Command Code  
A
RS  
A
High Data Byte  
A
Low Data Byte  
A
Slave ADDR3_0  
PEC  
A
P
Optional 9 Bits for SMBus/PMBus  
2
NOT used in I C  
2
FIGURE 24. SMBus/PMBus/I C COMMAND PROTOCOL  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 24 of 33  
ISL68201  
2
TABLE 11. SMBus, PMBus, AND I C SUPPORTED COMMANDS  
WORD  
LENGTH  
(BYTE)  
COMMAND  
CODE  
DEFAULT  
VALUE  
ACCESS  
R/W  
COMMAND NAME  
OPERATION  
DESCRIPTION  
01h[7:0]  
ONE  
80h  
VR Enable (depending upon ON_OFF_CONFIG configuration):  
Bit[7]: 0 = OFF (0-F); 1 = ON (80-8Fh)  
Bit[6:4] = 0  
Bit[3:0] = Don’t care  
02h[7:0]  
R/W  
ONE  
1Fh  
ON_OFF_CONFIG  
Configure VR Enabled by OPERATION and/or EN pin:  
Bit[7:5] = 0  
Bit[4] = 1  
Bit[3] = OPERATION command Enable  
0h = OPERATION command has no control on VR  
1h = OPERATION command can turn ON/OFF VR  
Bit[2] = CONTROL pin Enable  
0h = EN Pin has no control on VR  
1h = EN pin can turn ON/OFF VR  
Bit[1] = 1  
Bit[0] = 1  
Bit[3:2] = 00b = 13h (ALWAYS ON)  
Bit[3:2] = 01b = 17h (EN controls VR)  
Bit[3:2] = 10b = 1Bh (OPERATION controls VR)  
Bit[3:2] = 11b = 1Fh (EN and OPERATION control VR)  
03h  
SEND BYTE  
R
N/A  
ONE  
CLEAR_FAULTS  
VOUT_MODE  
Clear faults in status registers  
20h[7:0]  
19h  
Set host format of V command.  
OUT  
Always Linear Format: N = -7  
21h[2:0]  
R/W  
R/W  
TWO  
TWO  
PROG1[7:0]  
VBOOT+500mV  
VOUT_COMMAND  
VOUT_MAX  
Set output voltage  
HEX Code = DEC2HEX [ROUND(V  
-7  
/2 )]  
OUT  
24h[15:0]  
Set maximum output voltage that VR can command  
(DAC VOUT_MAX). Linear Format. N = -7  
HEX Code = DEC2HEX(ROUNDUP(VOUT_MAX/ 2  
-7  
)
33h[15:0]  
R/W  
TWO  
PROG3[5:3]  
FREQUENCY_SWITCH Set VR Switching Frequency (In Linear Format)  
Support 8 options (N = 0):  
12Ch = 300kHz; 190h = 400kHz; 1F4h = 500kHz  
258h = 600kHz; 2BCh = 700kHz; 352h = 850kHz  
3E8h = 1MHz; 5DCh = 1.5MHz*  
* Very high frequency is not recommended for very high duty cycle  
applications as the boot capacitor does not have enough time to be  
charged due to low LGATE ON time.  
78h[8:0]  
R
ONE  
STATUS_BYTE  
Fault Reporting;  
Bit7 = Busy  
Bit6 = OFF (Reflect current state of operation and ON_OFF_CONFIG  
registers as well as VR Operation)  
Bit5 = OVP  
Bit4 = OCP  
Bit3 = 0  
Bit2 = OTP  
Bit1 = Bus communication error  
Bit0 = NONE OF ABOVE (OUTPUT UVP, VOUT_COMAND >  
VOUT_MAX, or VOUT OPEN SENSE)  
88h[15:0]  
8Bh[15:0]  
8Ch[15:0]  
R
R
R
TWO  
TWO  
TWO  
READ_VIN  
READ_VOUT  
READ_IOUT  
Input Voltage (N = - 4, Max = 31.9375V)  
VIN (V) = HEX2DEC(88 hex data - E000h) * 0.0625V  
-7  
VR Output Voltage, Resolution = 7.8125mV = 2  
-7  
VOUT (V) = HEX2DEC(8B hex data) * 2  
VR Output Current (N = -3, IMAX = 63.875A)  
IOUT (A) = HEX2DEC(8C hex data-E800) * 0.125A when IOUT pin  
voltage = 2.5V at 63.875A load.  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 25 of 33  
ISL68201  
2
TABLE 11. SMBus, PMBus, AND I C SUPPORTED COMMANDS (Continued)  
WORD  
COMMAND  
CODE  
LENGTH  
(BYTE)  
DEFAULT  
VALUE  
ACCESS  
R
COMMAND NAME  
READ_TEMP  
DESCRIPTION  
8Dh[15:0]  
TWO  
VR Temperature  
TEMP (°C) = 1/{ln[Rup*HEX2DEC(8D hex  
data)/(511 - HEX2DEC(8D hex data)/RNTC(at +25°C)]/Beta +  
1/298.15} -273.15  
98h[7:0]  
AD[15:0]  
AE[15:0]  
D0[0:0]  
R
ONE  
TWO  
TWO  
ONE  
02h  
8201h  
PMBUS_REVISION  
IC_DEVICE_ID  
Indicates PMBus Revision 1.2  
ISL68201 Device ID  
BLOCK R  
BLOCK R  
R/W  
0003h  
IC_DEVICE_REVISION ISL68201 Device Revision  
PROG2[7:7]  
ENABLE_PFM  
TEMP_COMP  
PFM OPERATION  
0h = PFM Enabled (DCM at light load)  
1h = PFM Disabled (always CCM mode)  
D1[1:0]  
D2[0:0]  
R/W  
R/W  
ONE  
ONE  
PROG2[6:5]  
PROG3[7:7]  
Thermal Compensation:  
0h = 30°C; 01h = 15°C; 02h = 5°C; 03h = OFF  
ENABLE_ULTRASONIC Ultrasonic PFM Enable  
0h = 25kHz Clamp Disabled  
1h = 25kHz Clamp Enabled  
D3[0:0]  
D4[2:0]  
R/W  
R/W  
ONE  
ONE  
PROG3[6:6]  
PROG3[2:0]  
OCP_BEHAVIOR  
AV_GAIN  
Set latch or infinite retry for OCP fault:  
0h = Retry every 9ms; 01 = Latch-OFF  
R4 AV GAIN (PROG4, AV Gain Multiplier = 2x)  
0h = 84; 1h = 73; 2h = 61; 3h = 49  
4h = 38; 5h = 26; 6h = 14; 7h = 2  
R4 AV GAIN (PROG4, AV Gain Multiplier = 1x)  
0h = 42; 1h = 36.5; 2h = 30.5; 3h = 29.5  
4h = 19; 5h = 13; 6h = 7; 7h = 1  
D5{2:0]  
D6[1:0]  
R/W  
R/W  
ONE  
ONE  
PROG4[7:5]  
PROG4[4:3]  
RAMP_RATE  
SET_RR  
Soft-Start and Margining DVID Rate (mV/µs)  
0h = 1.25; 1h = 2.5; 2h = 5; 3h = 10; 4h = 0.078; 5h = 0.157  
6h = 0.315; 7h = 0.625;  
Set RR  
0h = 200k; 01h = 400k; 02h = 600k; 03h = 800k  
DC[7:0]  
DD{7:0]  
DE[7:0]  
DF[7:0]  
R
R
R
R
ONE  
ONE  
ONE  
ONE  
READ_PROG1  
READ_PROG2  
READ_PROG3  
READ_PROG4  
Read PROG1  
Read PROG2  
Read PROG3  
Read PROG4  
NOTE: Serial bus communication is valid 5.5m (typically, worst 6.5ms) after V , V , 7VLDO, and PVCC above POR. The telemetry update rate is 108µs.  
CC IN  
STABILITY  
R4 Modulator  
The removal of compensation derives from the R4 modulator’s  
lack of need for high DC gain. In traditional architectures, high DC  
gain is achieved with an integrator in the voltage loop. The  
integrator introduces a pole in the open-loop transfer function at  
low frequencies. That, combined with the double-pole from the  
output L/C filter, creates a three pole system that must be  
compensated to maintain stability.  
The R4 modulator is an evolutionary step in R3 technology. Like  
R3, the R4 modulator is a linear control loop and variable  
frequency control during load transients to eliminate beat  
frequency oscillation at the switching frequency and maintains  
the benefits of current-mode hysteretic controllers. In addition,  
the R4 modulator reduces regulator output impedance and uses  
accurate referencing to eliminate the need for a high-gain  
voltage amplifier in the compensation loop. The result is a  
topology that can be tuned to voltage-mode hysteretic transient  
speed while maintaining a linear control model and removes the  
need for any compensation. This greatly simplifies the regulator  
design for customers and reduces external component cost.  
Classic control theory requires a single-pole transition through  
unity gain to ensure a stable system. Current-mode architectures  
(includes peak, peak-valley, current-mode hysteric, R3, and R4)  
generate a zero at or near the L/C resonant point, effectively  
canceling one of the system’s poles. The system still contains  
two poles, one of which must be canceled with a zero before  
unity gain crossover to achieve stability.  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 26 of 33  
ISL68201  
R4 LOOP GAIN (dB)  
COMPENSATION TO COUNTER  
INTEGRATOR POLE  
INTEGRATOR  
FOR HIGH DC GAIN  
L/C DOUBLE-POLE  
V
OUT  
p1  
V
COMP  
SYSTEM HAS 2 POLES  
AND 1 ZERO  
p2  
V
DAC  
NO COMPENSATOR IS  
NEEDED  
FIGURE 25. CLASSICAL INTEGRATOR ERROR-AMPLIFIER  
CONFIGURATION  
CURRENT-MODE  
ZERO  
z1  
Figure 25 illustrates the classic integrator configuration for a  
voltage loop error amplifier. While the integrator provides the  
high DC gain required for accurate regulation in traditional  
technologies, it also introduces a low-frequency pole into the  
control loop. Figure 26 shows the open-loop response that results  
from the addition of an integrating capacitor in the voltage loop.  
The compensation components found in Figure 25 are necessary  
to achieve stability.  
f (Hz)  
FIGURE 28. UNCOMPENSATED R4 OPEN-LOOP RESPONSE  
TRANSIENT RESPONSE  
In addition to requiring a compensation zero, the integrator in  
traditional architectures also slows system response to transient  
conditions. The change in COMP voltage is slow in response to a  
rapid change in output voltage. If the integrating capacitor is  
removed, COMP moves as quickly as V , and the modulator  
immediately increases or decreases switching frequency to  
recover the output voltage.  
Because R4 does not require a high-gain voltage loop, the  
integrator can be removed, reducing the number of inherent  
poles in the loop to two. The current-mode zero continues to  
cancel one of the poles, ensuring a single-pole crossover for a  
wide range of output filter choices. The result is a stable system  
with no need for compensation components or complex  
equations to properly tune the stability.  
OUT  
Figure 27 shows the R4 error amplifier that does not require an  
integrator for high DC gain to achieve accurate regulation. The  
result to the open loop response can be seen in Figure 28.  
I
OUT  
t
t
R4  
R3  
V
COMP  
R3 LOOP GAIN (dB)  
INTEGRATOR POLE  
p1  
L/C DOUBLE-POLE  
V
OUT  
p2  
-20dB CROSSOVER  
REQUIRED FOR STABILITY  
p3  
t
COMPENSATOR TO  
CURRENT-MODE  
ADD z2 IS NEEDED  
ZERO  
FIGURE 29. R3 vs R4 IDEALIZED TRANSIENT RESPONSE  
z1  
The dotted red and blue lines in Figure 29 represent the time  
delayed behavior of V  
and V in response to a load  
OUT  
COMP  
transient when an integrator is used. The solid red and blue lines  
illustrate the increased response of R4 in the absence of the  
integrator capacitor.  
f (Hz)  
FIGURE 26. UNCOMPENSATED INTEGRATOR OPEN-LOOP RESPONSE  
To optimize transient response and improve phase margin for  
very wide range applications, the ISL68201 integrates selectable  
AV and RR options that move the DC gain and z1 point, as shown  
in Figure 28. However, the defaulted AV gain of 42 and RR of  
200kΩ can cover many cases and provides sufficient gain and  
phase margin. For some extreme cases, lower AV gain and bigger  
RR values are needed to provide a better phase margin and  
improve transient ringback. The optimal choice AV and RR can  
be obtained by simple monitoring transient response when  
adjusting AV and RR values through the serial bus.  
R
2
V
OUT  
-
V
COMP  
R
1
+
V
DAC  
FIGURE 27. NON-INTEGRATED R4 ERROR-AMPLIFIER  
CONFIGURATION  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 27 of 33  
ISL68201  
Thus, after the output capacitors are selected, the maximum  
allowable ripple voltage, V , determines the lower limit on  
General Application Design  
Guide  
P-P(MAX)  
the inductance, as shown in Equation 16.  
This design guide provides a high-level explanation of the steps  
necessary to design a single-phase buck converter. It is assumed  
that the reader is familiar with many of the basic skills and  
techniques referenced in the following. In addition to this guide,  
complete reference designs that include schematics, bills of  
materials, and example board layouts are provided.  
V
 V V  
OUT  
OUT  
IN  
(EQ. 16)  
L
--------------------------------------------------------  
ESR   
OUT  
f
V V  
IN P-P(MAX)  
SW  
Because the capacitors are supplying a decreasing portion of the  
load current while the regulator recovers from the transient, the  
capacitor voltage becomes slightly depleted. The output  
inductors must be capable of assuming the entire load current  
Output Filter Design  
before the output voltage decreases more than V  
. This  
MAX  
The output inductors and the output capacitor bank together to  
form a low-pass filter responsible for smoothing the pulsating  
voltage at the phase nodes. The output filter also must provide  
the transient energy until the regulator can respond. The output  
filter limits the system transient response, because it has a low  
bandwidth compared to the switching frequency. The output  
capacitor must supply or sink load current while the current in  
the output inductors increases or decreases to meet the  
demand.  
places an upper limit on inductance.  
Equation 17 gives the upper limit on L for cases when the trailing  
edge of the current transient causes a greater output to voltage  
deviation than the leading edge. Equation 18 addresses the  
leading edge. Normally, the trailing edge dictates the selection of  
L because duty cycles are usually less than 50%. Nevertheless,  
both inequalities should be evaluated, and L should be selected  
based on the lower of the two results. In Equations 17 and 18,  
L is the per-channel inductance and C is the total output  
capacitance.  
In high-speed converters, the output capacitor bank is usually the  
most costly (and often the largest) part of the circuit. Output filter  
design begins with minimizing the cost of this part of the circuit.  
The critical load parameters in choosing the output capacitors are  
the maximum size of the load step, I; the load current slew rate,  
di/dt; and the maximum allowable output voltage deviation under  
2 C V  
OUT  
(EQ. 17)  
(EQ. 18)  
L
-------------------------------- V  
I ESR  
OUT  
OUT  
MAX  
2
I  
C  
1.25  
L
------------------- V  
I ESR  
V
V  
IN OUT  
MAX  
2
I  
transient loading, V  
. Capacitors are characterized according  
MAX  
to their capacitance, ESR, and ESL (equivalent series inductance).  
Input Capacitor Selection  
The input capacitors are responsible for sourcing the AC  
component of the input current flowing into the upper MOSFETs.  
Their RMS current capacity must be sufficient to handle the AC  
component of the current drawn by the upper MOSFETs, which is  
related to duty cycle and the number of active phases. The input  
RMS current can be calculated with Equation 19.  
At the beginning of the load transient, the output capacitors  
supply all of the transient current. The output voltage initially  
deviates by an amount approximated by the voltage drop across  
the ESL. As the load current increases, the voltage drop across  
the ESR increases linearly until the load current reaches its final  
value. The capacitors selected must have sufficiently low ESL and  
ESR so that the total output voltage deviation is less than the  
allowable maximum. Neglecting the contribution of inductor  
current and regulator response, the output voltage initially  
deviates by an amount, as shown in Equation 15:  
D
12  
(EQ. 19)  
2
2
2
------  
I
=
D D   Io  
+
 I  
INRMS  
ESL  
1
I  
8 N f  
(EQ. 15)  
Use Figure 30 on page 29 to determine the input capacitor RMS  
current requirement given the duty cycle, maximum sustained  
---------------  
---------------- --------------------------  
V  I ESR +  
V  
+
IN  
L
C
OUT  
OUT  
SW  
output current (I ), and the ratio of the per-phase peak-to-peak  
O
V
 1 D  
OUT  
L
--------------------------------------  
inductor current (I to I ). Select a bulk capacitor with a ripple  
I=  
L(P-P) O  
f  
OUT  
SW  
current rating that minimizes the total number of input capacitors  
required to support the RMS current calculated. The voltage rating of  
the capacitors should also be at least 1.25 times greater than the  
maximum input voltage.  
The filter capacitor must have sufficiently low ESL and ESR so  
that V < V  
.
MAX  
Most capacitor solutions rely on a mixture of high-frequency  
capacitors with relatively low capacitance in combination with  
bulk capacitors having high capacitance but limited  
Low capacitance, high-frequency ceramic capacitors are needed  
in addition to the bulk capacitors to suppress leading and falling  
edge voltage spikes. The result of the high current slew rates  
produced by the upper MOSFETs turn on and off requires low ESL  
ceramic capacitors, which should be placed as close as possible  
to each upper MOSFET drain to minimize board parasitic  
impedances and maximize noise suppression.  
high-frequency performance. Minimizing the ESL of the  
high-frequency capacitors allows them to support the output  
voltage as the current increases. Minimizing the ESR of the bulk  
capacitors allows them to supply the increased current with less  
output voltage deviation. The ESR of the bulk capacitors also  
creates the majority of the output voltage ripple. As the bulk  
capacitors sink and source the inductor AC ripple current, a  
voltage develops across the bulk capacitor ESR equal to  
I
(ESR).  
L(P-P)  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 28 of 33  
ISL68201  
Tables 12 and 13 provide a design and layout checklist that the  
designer can reference.  
0.6  
TABLE 12. DESIGN AND LAYOUT CHECKLIST  
I
= 0.75 I  
PIN  
NAME  
NOISE  
SENSITIVITY  
L(P-P)  
O
0.4  
0.2  
DESCRIPTION  
I
= 0  
L(P-P)  
EN  
YES  
There is an internal 1µs filter. Decoupling the  
capacitor is NOT needed, but if needed, use a  
low time constant one to avoid too large a  
shutdown delay.  
I
= 0.5 I  
L(P-P)  
O
VIN  
7VLDO  
VCC  
YES  
YES  
YES  
YES  
Place 16V+ X7R 1µF in close proximity to the  
pin and the system ground plane.  
Place 10V+ X7R 1µF in close proximity to the  
pin and the system ground plane.  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
DUTY CYCLE (V  
/V  
)
OUT IN  
Place X7R 1µF in close proximity to the pin and  
the system ground plane.  
FIGURE 30. NORMALIZED INPUT-CAPACITOR RMS CURRENT vs  
DUTY CYCLE FOR SINGLE-PHASE CONVERTER  
SCL, SDA  
50kHz to 1.25MHz signal when the SMBus,  
2
PMBus, or I C is sending commands. Pairing  
Design and Layout Considerations  
To ensure a first pass design, the schematics design must be  
done correctly with correct pinout and net names, and the board  
must be carefully laid out.  
up with SALERT and routing carefully back to  
2
SMBus, PMBus or I C master. 20 mils spacing  
within SDA, SALERT, and SCL; and more than  
30 mils to all other signals. Refer to the SMBus,  
2
PMBus or I C design guidelines and place  
As a general rule, power layers should be close together, either  
on the top or bottom of the board, with the weak analog or logic  
signal layers on the opposite side of the board or internal layers.  
The ground-plane layer should be in between power layers and  
the signal layers to provide shielding, often the layer below the  
top and the layer above the bottom should be the ground layers.  
proper terminated (pull-up) resistance for  
impedance matching. Tie them to GND when  
not used.  
SALERT  
PGOOD  
NO  
Open-drain and high dv/dt pin during  
transitions. Route it in the middle of SDA and  
SCL. Tie it to GND when not used.  
The two sets of components in a DC/DC converter are the power  
components and the small signal components. The power  
components are the most critical because they switch large  
amounts of energy. The small signal components connect to  
sensitive nodes or supply critical bypassing current and signal  
coupling.  
NO  
Open-drain pin. Tie it to GND when not used.  
RGND,  
VSEN  
YES  
Differential pair routed to the remote sensing  
points with sufficient decoupling ceramics  
capacitors and not across or go above/under  
any switching nodes (BOOT, PHASE, UGATE,  
LGATE) or planes (VIN, PHASE, VOUT) even  
though they are not in the same layer. At least  
20 mils spacing from other traces. DO NOT  
share the same trace with CSRTN.  
The power components should be placed first. These include  
MOSFETs, input and output capacitors, and the inductor. Keeping  
the distance between the power train and the control IC short  
helps keep the gate drive traces short. These drive signals  
include the LGATE, UGATE, GND, PHASE, and BOOT.  
CSRTN  
YES  
Connect to the output rail side of the output  
inductor or current sensing resistor pin with a  
series resistor in close proximity to the pin. The  
series resistor sets the current gain and should  
be within 40Ωand 3.5kΩ. Decoupling  
(~ 0.1µF/X7R) on the output end (not the pin) is  
optional and might be required for long sense  
trace and a poor layout (see Figures 9 and 10).  
When placing MOSFETs, keep the source of the upper MOSFETs  
and the drain of the lower MOSFETs as close as thermally  
possible. Input high-frequency capacitors should be placed close  
to the drain of the upper MOSFETs and the source of the lower  
MOSFETs. Place the output inductor and output capacitors  
between the MOSFETs and the load. Place high frequency output  
decoupling capacitors (ceramic) as close as possible to the  
decoupling target, making use of the shortest connection paths  
to any internal planes. Place the components in such a way that  
the area under the IC has less noise traces with high dV/dt and  
di/dt, such as gate signals, phase node signals, and VIN plane.  
CSEN  
YES  
Connect to the phase node side of the output  
inductor or current sensing resistor pin with  
L/DCR or ESL/R  
matching network in close  
SEN  
proximity to CSEN and CSRTN pins.  
Differentially routing back to the controller with  
at least 20 mils spacing from other traces.  
Should NOT cross or go above/under the  
switching nodes [BOOT, PHASE, UGATE, LGATE],  
and power planes (VIN, PHASE, VOUT) even  
though they are not in the same layer.  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 29 of 33  
ISL68201  
TABLE 12. DESIGN AND LAYOUT CHECKLIST (Continued)  
TABLE 13. TOP LAYOUT TIPS  
DESCRIPTION  
PIN  
NAME  
NOISE  
SENSITIVITY  
DESCRIPTION  
NUMBER  
1
NTC  
YES  
Place an NTC 10k (Murata, NCP15XH103J03RC,  
= 3380) in close proximity to the output  
inductor’s output rail, not close to MOSFET side  
(see Figure 19); the return trace should be  
20 mils away from other traces. Place 1.54kΩ  
pull-up and decoupling capacitor (typically  
0.1µF) in close proximity to the controller. The  
pull-up resistor should be exactly tied to the  
same point as VCC pin, not through an RC filter.  
If not used, connect this pin to VCC.  
The layer next to controller (top or bottom) should be a ground  
layer. Separate analog ground and power ground with a 0Ω  
resistor is highly NOT recommended. Directly connect GND  
PAD to low noise area of the system ground with at least four  
vias.  
2
Never place controller and its external components above or  
under VIN plane or any switching nodes.  
3
4
Never share CSRTN and VSEN on the same trace.  
Place the input rail decoupling ceramic capacitors closely to  
the high-side FET on the same layer as possible. Never use  
only one via and a trace connect the input rail decoupling  
ceramics capacitors; must connect to VIN and GND planes.  
IOUT  
YES  
Scale R so that the IOUT pin voltage is 2.5V at  
63.875A load. Place R and C in general  
proximity to the controller. The time constant of  
RC should be sufficient as an averaging  
function (>200µs) for the digital IOUT. An  
external pull-up resistor to VCC placeholder is  
5
6
Place all decoupling capacitors in close proximity to the  
controller and the system ground plane.  
recommended to cancel I  
offset at 0A load.  
OUT  
Calibration” on page 19  
Connect remote sense (VSEN and RGND) to the load and  
ceramic decoupling capacitors nodes; never run this pair  
above or below switching noise plane.  
See “I  
OUT  
PROG1-4  
GND  
NO  
The resistor divider must be referenced to VCC  
pin and the system ground (GND); they can be  
placed anywhere. DO NOT use decoupling  
capacitors on these pins.  
7
Always double check critical component pinout and their  
respective footprints.  
YES  
Directly connect to a low noise area of the  
system ground. The GND PAD should use at  
least four vias. Separate analog ground and  
power ground with a 0Ω resistor is highly NOT  
recommended.  
Voltage Regulator Design Materials  
To support VR design and layout, Renesas also developed a set of  
tools and evaluation boards, as listed in Table 14 and Ordering  
Information on page 5. Contact the local office or field support  
for the latest available information.  
FCCM  
PWM  
LGIN  
NO  
NO  
DO NOT place it across or under external  
components of the controller. Keep it at least  
20 mils away from sensitive nodes.  
TABLE 14. AVAILABLE DESIGN ASSISTANCE MATERIALS  
ITEM  
1
DESCRIPTION  
DO NOT place it across or under external  
components of the controller. Keep it at least  
20 mils away from any other traces.  
2
SMBus/PMBus/I C communication tool with the  
PowerNavigator GUI.  
2
Evaluation board schematics in OrCAD format and  
layout in Allegro format. See Ordering Information  
on page 5 for details.  
NO  
Keep it at least 20 mils away from sensitive  
nodes. A series 100Ω resistor to low-side gate  
signal is required for noise attenuation.  
PVCC  
YES  
Place X7R 4.7µF in proximity to the PVCC pin  
and the system ground plane.  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 30 of 33  
ISL68201  
Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted.  
Please visit our website to make sure you have the latest revision.  
DATE  
REVISION  
CHANGE  
Jul 12, 2018  
FN8696.5 Updated Ordering information table by adding tape and reel options to table and updating Note 1.  
Updated Equation 10.  
Removed About Intersil section and updated disclaimer.  
Oct 17, 2017  
Sep 25, 2017  
FN8696.4 Updated Pin 11 and 12 descriptions on page 6.  
FN8696.3 Updated LGIN pin description.  
Updated Figure 4, changed “10.2V/9.24V” to “10.08V/9.12V”.  
Updated 3Fh R value in Table 3.  
UP  
Replaced entire paragraph on page 11.  
Added units to R = 348Ω on page 17 above Figure 11.  
On page 28 last sentence in paragraph in left column changed “I  
” to “I  
C(P-P)  
”.  
L(P-P)  
Aug 29, 2017  
FN8696.2 For Figures 1 and 2 on page 3, added a resistor to the CSRTN circuit.  
On page 1, updated the Related Literature section to current standards.  
Added three demonstration boards to the Ordering Information table on page 5.  
Removed Table 15 on page 30 because the demonstration board information is in the Ordering Information  
section.  
Mar 7, 2016  
Mar 2, 2016  
FN8696.1 Removed unreleased parts from Table 1.  
FN8696.0 Initial release  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 31 of 33  
ISL68201  
For the most recent package outline drawing, see L24.4x4C.  
Package Outline Drawing  
L24.4x4C  
24 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 2, 10/06  
4X  
2.5  
4.00  
A
20X  
0.50  
PIN #1 CORNER  
(C 0 . 25)  
B
19  
24  
PIN 1  
INDEX AREA  
1
18  
2 . 50 ± 0 . 15  
13  
(4X)  
0.15  
12  
24X 0 . 4 ± 0 . 1  
7
0.10 M C  
A B  
TOP VIEW  
+ 0 . 07  
24X 0 . 23  
4
- 0 . 05  
BOTTOM VIEW  
SEE DETAIL "X"  
C
0.10  
0 . 90 ± 0 . 1  
C
BASE PLANE  
( 3 . 8 TYP )  
SEATING PLANE  
0.08  
SIDE VIEW  
C
(
2 . 50 )  
( 20X 0 . 5 )  
5
C
0 . 2 REF  
( 24X 0 . 25 )  
0 . 00 MIN.  
0 . 05 MAX.  
( 24X 0 . 6 )  
DETAIL "X"  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3. Unless otherwise specified, tolerance: Decimal ± 0.05  
4. Dimension b applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
FN8696 Rev.5.00  
Jul 12, 2018  
Page 32 of 33  
Notice  
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for  
the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by  
you or third parties arising from the use of these circuits, software, or information.  
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or  
arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application  
examples.  
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.  
4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by  
you or third parties arising from such alteration, modification, copying or reverse engineering.  
5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the  
product’s quality grade, as indicated below.  
"Standard":  
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic  
equipment; industrial robots; etc.  
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.  
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are  
not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause  
serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all  
liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or  
other Renesas Electronics document.  
6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the  
reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation  
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified  
ranges.  
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a  
certain rate and malfunctions under certain use conditions. Unless designated as  
a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas  
Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury  
or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to  
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult  
and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.  
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and  
sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics  
products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable  
laws and regulations.  
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws  
or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or  
transactions.  
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third  
party in advance of the contents and conditions set forth in this document.  
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.  
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.  
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.  
(Rev.4.0-1 November 2017)  
SALES OFFICES  
Refer to "http://www.renesas.com/" for the latest and detailed information.  
http://www.renesas.com  
Renesas Electronics America Inc.  
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.  
Tel: +1-408-432-8888, Fax: +1-408-434-5351  
Renesas Electronics Canada Limited  
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3  
Tel: +1-905-237-2004  
Renesas Electronics Europe Limited  
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K  
Tel: +44-1628-651-700, Fax: +44-1628-651-804  
Renesas Electronics Europe GmbH  
Arcadiastrasse 10, 40472 Düsseldorf, Germany  
Tel: +49-211-6503-0, Fax: +49-211-6503-1327  
Renesas Electronics (China) Co., Ltd.  
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China  
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679  
Renesas Electronics (Shanghai) Co., Ltd.  
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China  
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999  
Renesas Electronics Hong Kong Limited  
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong  
Tel: +852-2265-6688, Fax: +852 2886-9022  
Renesas Electronics Taiwan Co., Ltd.  
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan  
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670  
Renesas Electronics Singapore Pte. Ltd.  
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949  
Tel: +65-6213-0200, Fax: +65-6213-0300  
Renesas Electronics Malaysia Sdn.Bhd.  
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia  
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510  
Renesas Electronics India Pvt. Ltd.  
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India  
Tel: +91-80-67208700, Fax: +91-80-67208777  
Renesas Electronics Korea Co., Ltd.  
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea  
Tel: +82-2-558-3737, Fax: +82-2-558-5338  
© 2018 Renesas Electronics Corporation. All rights reserved.  
Colophon 7.0  

相关型号:

ISL68201IRZ-T7A

Single-Phase R4 Digital Hybrid PWM Controller with PMBus/SMBus/I2C and PFM; QFN24; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL68201IRZ-TK

Single-Phase R4 Digital Hybrid PWM Controller with PMBus/SMBus/I2C and PFM; QFN24; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL68301IRAZ-T7A

Switching Controller
RENESAS

ISL6840

Improved Industry Standard Single-Ended Current Mode PWM Controller
INTERSIL

ISL6840IB

Improved Industry Standard Single-Ended Current Mode PWM Controller
INTERSIL

ISL6840IB

1 A SWITCHING CONTROLLER, 2000 kHz SWITCHING FREQ-MAX, PDSO8, PLASTIC, MS-012AA, SOIC-8
ROCHESTER

ISL6840IBZ

Improved Industry Standard Single-Ended Current Mode PWM Controller
INTERSIL

ISL6840IBZ-T

Improved Industry Standard Single-Ended
INTERSIL

ISL6840IRZ

Improved Industry Standard Single-Ended
INTERSIL

ISL6840IRZ-T

Improved Industry Standard Single-Ended Current Mode PWM Controller
INTERSIL

ISL6840IU

Improved Industry Standard Single-Ended Current Mode PWM Controller
INTERSIL

ISL6840IU-T

1A SWITCHING CONTROLLER, 2000kHz SWITCHING FREQ-MAX, PDSO8, PLASTIC, MO-187AA, MSOP-8
ROCHESTER