ISL80030 [RENESAS]

3A Synchronous Buck Converter in 2x2 DFN Package;
ISL80030
型号: ISL80030
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

3A Synchronous Buck Converter in 2x2 DFN Package

文件: 总20页 (文件大小:1308K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL80030, ISL80030A, ISL80031, ISL80031A  
3A Synchronous Buck Converter in 2x2 DFN Package  
FN8766  
Rev.2.00  
Nov 16, 2017  
The ISL80030, ISL80030A, ISL80031, and ISL80031A are highly  
Features  
efficient, monolithic, synchronous step-down DC/DC converters  
that can deliver up to 3A of continuous output current from a 2.7V  
to 5.5V input supply. They use peak current mode control  
architecture to allow very low duty cycle operation. These devices  
operate at either a 1MHz or 2MHz switching frequency, thereby  
providing superior transient response and allowing for the use of  
small inductors. They also have excellent stability.  
• V range 2.7V to 5.5V  
IN  
• Up to 3A of output current  
• Switching frequency of 1MHz or 2MHz (see Table 1 on page 3)  
• 35µA quiescent current (ISL80031 and ISL80031A)  
• Overcurrent and short-circuit protection  
• Over-temperature/thermal protection  
• Negative current protection  
The ISL80030, ISL80030A, ISL80031, and ISL80031A integrate  
very low r  
MOSFETs to maximize efficiency. In addition,  
DS(ON)  
because the high-side MOSFET is a PMOS, the need for a Boot  
capacitor is eliminated, thereby reducing external component  
count. The devices can operate at 100% duty cycle.  
• Power-good and enable  
• 100% duty cycle  
The ISL80030 and ISL80030A are configured for PWM pulse  
width modulation operation and provide a fast transient  
response, which helps reduce the output noise and RF  
interference.  
• Internal soft-start and soft-stop  
• V undervoltage lockout and V  
IN  
overvoltage protection  
OUT  
• Up to 95% peak efficiency  
The ISL80031 and ISL80031A are configured for PFM  
discontinuous conduction operation and provide high  
efficiency by reducing switching losses at light loads.  
Applications  
• General purpose POL  
• Industrial, instrumentation, and medical equipment  
• Telecom and networking equipment  
• Game consoles  
These devices are offered in a space saving 8 Ld 2mmx2mm  
DFN Pb-free package with exposed pad for improved thermal  
performance. The complete converter occupies an area less  
2
than 64mm .  
Related Literature  
• For a full list of related documents, visit our website  
- ISL80030, ISL80030A, ISL80031, ISL80031A product  
pages  
100  
ISL80030/ISL80031  
V
= 3.3V  
OUT  
L1  
+2.7 TO +5.5V  
+1.8V/3A  
1
2
3
4
8
7
VIN  
VOUT  
GND  
VIN  
VIN  
EN  
PHASE  
PGND  
PGND  
FB  
93  
87  
80  
73  
67  
60  
C2  
22µF  
C1  
22µF  
GND  
EPAD  
C3  
22pF  
6
EN  
PG  
V
= 1.8V  
R1  
OUT  
  
200k 1%  
5
0.6V  
PG  
R2  
100k1%  
V
= 2.5V  
OUT  
9
V
O
(EQ. 1)  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0  
LOAD (A)  
------------  
R
= R  
1  
1
2
VFB  
FIGURE 1. TYPICAL APPLICATION CIRCUIT CONFIGURATION  
FIGURE 2. EFFICIENCY vs LOAD, ISL80031,  
= 5V, T = +25°C  
V
IN  
A
FN8766 Rev.2.00  
Nov 16, 2017  
Page 1 of 20  
ISL80030, ISL80030A, ISL80031, ISL80031A  
Table of Contents  
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Theory of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
PWM Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
PFM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Short-Circuit Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Negative Current Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
PG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
UVLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Enable, Disable and Soft-Start Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Discharge Mode (Soft-Stop) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
100% Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Power Derating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Output Inductor and Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Output Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Input Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Layout Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
About Intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
FN8766 Rev.2.00  
Nov 16, 2017  
Page 2 of 20  
ISL80030, ISL80030A, ISL80031, ISL80031A  
TABLE 1. SUMMARY OF KEY DIFFERENCES  
f
V
RANGE  
(V)  
I
(MAX)  
PACKAGE  
SIZE  
SW  
IN  
OUT  
(A)  
PART#  
ISL80030  
PWM/PFM MODE  
(MHz)  
PWM  
PWM  
PFM  
PFM  
1
2
1
2
ISL80030A  
ISL80031  
ISL80031A  
2.7 to 5.5  
3
8 pin 2mmx2mm DFN  
NOTE: In this datasheet, the parts in this table are collectively called “device”.  
TABLE 2. COMPONENT VALUE SELECTION TABLE  
V
C
C
C
L
R
R
2
OUT  
1
2
3
1
1
(V)  
0.8  
1.2  
1.5  
1.8  
2.5  
3.3  
(µF)  
22  
22  
22  
22  
22  
22  
(µF)  
22  
22  
22  
22  
22  
22  
(pF)  
22  
22  
22  
22  
22  
22  
(µH)  
(kΩ)  
(kΩ)  
100  
100  
100  
100  
100  
100  
1.0~2.2  
1.0~2.2  
1.0~2.2  
1.0~3.3  
1.5~3.3  
1.5~4.7  
33  
100  
150  
200  
316  
450  
FN8766 Rev.2.00  
Nov 16, 2017  
Page 3 of 20  
ISL80030, ISL80030A, ISL80031, ISL80031A  
Pin Configuration  
ISL80030, ISL80030A, ISL80031, ISL80031A  
(8 LD 2x2 DFN)  
TOP VIEW  
VIN  
VIN  
EN  
1
2
3
4
8
7
6
5
PHASE  
PGND  
PGND  
EPAD  
(GND)  
PG  
FB  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
PIN DESCRIPTION  
1, 2  
VIN  
The input supply for the power stage of the PWM regulator and the source for the internal linear regulator that provides  
bias for the IC. Place a minimum of 10µF ceramic capacitance from VIN to GND and as close as possible to the IC for  
decoupling.  
3
EN  
Device enable input. When the voltage on this pin rises above 1.4V, the device is enabled. The device is disabled when  
the pin is pulled to ground. When the device is disabled, a 100Ω resistor discharges the output through the PHASE pin.  
See Figure 3, “Functional Block Diagram” on page 5 for details.  
4
5
PG  
FB  
The power-good output is pulled to ground during the soft-start interval and also when the output voltage is below  
regulation limits. This pin has an internal 5MΩ internal pull-up resistor.  
Feedback pin for the regulator. FB is the negative input to the voltage loop error amplifier. The output voltage is set by  
an external resistor divider connected to FB. In addition, the power-good PWM regulator’s power-good and undervoltage  
protection circuits use FB to monitor the output voltage.  
6, 7  
8
PGND  
Power and analog ground connections. Connect directly to the board GROUND plane.  
PHASE  
Power stage switching node for output voltage regulation. Connect to the output inductor. This pin is discharged by a  
100Ω resistor when the device is disabled. See Figure 3, “Functional Block Diagram” on page 5 for details.  
-
EPAD  
The exposed pad must be connected to the PGND pin for proper electrical performance. Place as many vias as possible  
under the pad connecting to the PGND plane for optimal thermal performance.  
FN8766 Rev.2.00  
Nov 16, 2017  
Page 4 of 20  
ISL80030, ISL80030A, ISL80031, ISL80031A  
Functional Block Diagram  
27pF  
SOFT-  
SHUTDOWN  
START  
200kΩ  
+
VIN  
OSCILLATOR  
+
EN  
VREF  
BANDGAP  
+
EAMP  
COMP  
-
P
N
-
PWM/PFM  
LOGIC  
SHUTDOWN  
PHASE  
PGND  
CONTROLLER  
PROTECTION  
HS DRIVER  
3pF  
+
FB  
SLOPE
COMP  
1.15*VREF  
6kΩ  
+
-
-
CSA  
OV  
+
+
-
OCP  
SKIP  
-
0.85*VREF  
VIN  
5MΩ  
+
UV  
+
-
PG  
1ms  
DELAY  
NEG CURRENT  
SENSING  
ZERO-CROSS  
SENSING  
-
SCP  
+
0.3V  
100Ω  
SHUTDOWN  
FIGURE 3. FUNCTIONAL BLOCK DIAGRAM  
FN8766 Rev.2.00  
Nov 16, 2017  
Page 5 of 20  
ISL80030, ISL80030A, ISL80031, ISL80031A  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
TAPE AND REEL  
QUANTITY  
PART  
MARKING  
TECHNICAL  
SPECIFICATIONS  
TEMP. RANGE  
(°C)  
PACKAGE  
(RoHS Compliant)  
PKG.  
DWG. #  
ISL80030FRZ-T  
1000  
250  
030  
030  
30A  
30A  
031  
031  
31A  
31A  
1MHz, PWM  
1MHz, PWM  
2MHz, PWM  
2MHz, PWM  
1MHz, PFM  
1MHz, PFM  
2MHz, PFM  
2MHz, PFM  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
8 Ld DFN  
8 Ld DFN  
8 Ld DFN  
8 Ld DFN  
8 Ld DFN  
8 Ld DFN  
8 Ld DFN  
8 Ld DFN  
L8.2x2E  
ISL80030FRZ-T7A  
ISL80030AFRZ-T  
ISL80030AFRZ-T7A  
ISL80031FRZ-T  
L8.2x2E  
L8.2x2E  
L8.2x2E  
L8.2x2E  
L8.2x2E  
L8.2x2E  
L8.2x2E  
1000  
250  
1000  
250  
ISL80031FRZ-T7A  
ISL80031AFRZ-T  
ISL80031AFRZ-T7A  
1000  
250  
ISL80030DEMO1Z Demonstration Board for the ISL80030  
ISL80031DEMO1Z Demonstration Board for the ISL80031  
ISL80030ADEMO1Z Demonstration Board for the ISL80030A  
ISL80031ADEMO1Z Demonstration Board for the ISL80031A  
NOTES:  
1. Refer to TB347 for details on tape and reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), refer to the ISL80030, ISL80030A, ISL80031, ISL80031A product information pages. For more information on  
MSL, refer to TB363.  
FN8766 Rev.2.00  
Nov 16, 2017  
Page 6 of 20  
ISL80030, ISL80030A, ISL80031, ISL80031A  
Absolute Maximum Ratings  
Thermal Information  
VIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6V (DC) or 7V (20ms)  
PHASE . . . . . . . . . . . . . . -1.5V (100ns)/-0.3V (DC) to 6V (DC) or 7V (20ms)  
EN, PG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to VIN + 0.3V  
FB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 2.7V  
Junction Temperature Range at 0A . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
ESD Rating  
Human Body Model (Tested per JESD22-JS-001). . . . . . . . . . . . . . . . 4kV  
Machine Model (Tested per JESD22-A115C) . . . . . . . . . . . . . . . . . 300V  
Charged Device Model (Tested per JESD22-C101D) . . . . . . . . . . . . . 2kV  
Latch-Up (Tested per JESD78D, Class 2, Level A). . . . ±100mA at +125°C  
Thermal Resistance (Typical, Notes 4, 5)  
2x2 DFN Package . . . . . . . . . . . . . . . . . . . .  
Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . +150°C  
Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C  
Operating Junction Temperature Range . . . . . . . . . . . . . .-40°C to +125°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493  
(°C/W)  
70  
(°C/W)  
7
JA  
JC  
Recommended Operating Conditions  
V
Supply Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7V to 5.5V  
IN  
Load Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0A to 3A  
Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. is measured in free air with the component mounted on a high-effective thermal conductivity test board with “direct attach” features. See TB379  
JA  
for details.  
5. For , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications T = -40°C to +125°C, V = 2.7V to 5.5V, unless otherwise noted. Typical values are at T = +25°C. Boldface  
A
IN  
A
limits apply across the junction operating temperature range, -40°C to +125°C.  
MIN  
MAX  
PARAMETER  
INPUT SUPPLY  
Undervoltage Lockout Threshold  
SYMBOL  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNIT  
V
V
Rising, no load  
2.5  
2.4  
35  
7
2.7  
V
IN  
UVLO  
Falling, no load  
2.2  
V
Quiescent Supply Current  
I
ISL80031A, no load at the output  
ISL80030, no load at the output  
ISL80030A, no load at the output  
60  
15  
22  
10  
µA  
mA  
mA  
µA  
VIN  
10  
1.2  
Shutdown Supply Current  
OUTPUT REGULATION  
Feedback Voltage  
I
ISL80031, ISL80031A, V = 5.5V, EN = low  
IN  
SD  
V
T = -40°C to +85°C  
0.594  
0.589  
-120  
0.600  
0.606  
0.606  
350  
V
V
FB  
J
T = -40°C to +125°C  
J
VFB Bias Current  
Line Regulation  
I
V
= 2.7V. T = -40°C to +125°C  
50  
nA  
%/V  
VFB  
FB  
IN  
J
V
= V + 0.5V to 5.5V (minimal 2.7V)  
-0.32  
-0.05  
0.28  
O
Nominal = 3.6V  
Soft-Start Ramp Time Cycle  
PROTECTIONS  
V
= 5.5V  
0.39  
1
1.36  
ms  
IN  
Positive Peak Current Limit  
Peak Skip Limit  
I
3.6  
4.5  
5.4  
A
PLIMIT  
I
ISL80031, ISL80031A  
= 3.6, V = 1.8V (See “Applications  
450  
mA  
SKIP  
V
IN  
OUT  
Information” on page 17 for details)  
Zero Cross Threshold  
Negative Current Limit  
Thermal Shutdown  
ISL80031, ISL80031A  
-170  
-2.6  
-70  
-2  
30  
-1  
mA  
A
I
NLIMIT  
Temperature rising  
Temperature falling  
150  
25  
°C  
°C  
Thermal Shutdown Hysteresis  
FN8766 Rev.2.00  
Nov 16, 2017  
Page 7 of 20  
ISL80030, ISL80030A, ISL80031, ISL80031A  
Electrical Specifications T = -40°C to +125°C, V = 2.7V to 5.5V, unless otherwise noted. Typical values are at T = +25°C. Boldface  
A
IN  
A
limits apply across the junction operating temperature range, -40°C to +125°C. (Continued)  
MIN  
MAX  
PARAMETER  
COMPENSATION  
SYMBOL  
RT  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNIT  
Error Amplifier Transconductance  
Transresistance  
40  
µA/V  
0.20  
0.25  
0.30  
Ω
PHASE  
P-Channel MOSFET ON-Resistance  
N-Channel MOSFET ON-Resistance  
PHASE Maximum Duty Cycle  
PHASE Minimum On-Time  
OSCILLATOR  
V
V
= 5V, I = 200mA  
70  
60  
mΩ  
mΩ  
IN  
O
= 5V, I = 200mA  
IN  
O
100  
60  
ISL80030, ISL80030A  
80  
ns  
Nominal Switching Frequency  
f
ISL80030, ISL80031  
850  
1000  
2000  
1150  
2300  
kHz  
kHz  
SW  
ISL80030A, ISL80031A  
1700  
PG  
Output Low Voltage  
Delay Time (Rising Edge)  
PGOOD Delay Time (Falling Edge)  
PG Pin Leakage Current  
OVP PG Rising Threshold  
OVP PG Hysteresis  
UVP PG Rising Threshold  
UVP PG Hysteresis  
EN LOGIC  
1mA sinking current  
0.3  
2
V
ms  
µs  
µA  
%
0.5  
1
5
PG = V  
0.01  
117  
2
0.1  
IN  
110  
80  
125  
%
85  
2
90  
%
%
Logic Input Low  
0.4  
1
V
V
Logic Input High  
1.4  
Logic Input Leakage Current  
I
Pulled up to 5.5V  
0.1  
µA  
EN  
NOTES:  
6. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested.  
FN8766 Rev.2.00  
Nov 16, 2017  
Page 8 of 20  
ISL80030, ISL80030A, ISL80031, ISL80031A  
Typical Performance Curves  
100  
90  
80  
70  
60  
50  
40  
100  
93  
87  
80  
V
= 1.2V  
OUT  
V
= 1.2V  
OUT  
V
= 1.5V  
OUT  
V
= 1.8V  
V
= 1.5V  
73  
67  
60  
OUT  
OUT  
V
= 1.8V  
OUT  
V
= 2.5V  
OUT  
V
= 2.5V  
OUT  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0  
LOAD (A)  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0  
LOAD (A)  
FIGURE 4. EFFICIENCY vs LOAD (ISL80031A)  
FIGURE 5. EFFICIENCY vs LOAD (ISL80030A)  
f
= 2MHz, V = 3.3V, PFM, T = +25°C  
f
= 2MHz, V = 3.3V, PWM, T = +25°C  
SW  
IN  
A
SW  
IN  
A
100  
93  
87  
80  
73  
67  
60  
100  
90  
80  
70  
60  
50  
40  
V
= 1.2V  
OUT  
V
= 1.5V  
OUT  
V
= 1.2V  
OUT  
V
= 1.8V  
OUT  
V
= 1.5V  
OUT  
V
= 1.8V  
OUT  
V
= 2.5V  
OUT  
V
= 2.5V  
OUT  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0  
LOAD (A)  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
LOAD (A)  
3.0  
FIGURE 6. EFFICIENCY vs LOAD (ISL80031)  
FIGURE 7. EFFICIENCY vs LOAD (ISL80030)  
f
= 1MHz, V = 3.3V, PFM, T = +25°C  
f
= 1MHz, V = 3.3V, PWM, T = +25°C  
SW  
IN  
A
SW  
IN  
A
100  
93  
87  
80  
73  
67  
60  
100  
93  
80  
67  
53  
40  
V
= 3.3V  
OUT  
V
= 3.3V  
OUT  
V
= 1.2V  
OUT  
V
= 1.2V  
OUT  
V
= 1.5V  
V
OUT  
V
= 1.5V  
= 1.8V  
OUT  
OUT  
V
= 1.8V  
OUT  
V
= 2.5V  
OUT  
V
= 2.5V  
OUT  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0  
LOAD (A)  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0  
LOAD (A)  
FIGURE 9. EFFICIENCY vs LOAD (ISL80030A)  
= 2MHz, V = 5V, PWM, T = +25°C  
FIGURE 8. EFFICIENCY vs LOAD (ISL80031A)  
f
f
= 2MHz, V = 5V, PFM, T = +25°C  
SW  
IN  
A
SW  
IN  
A
FN8766 Rev.2.00  
Nov 16, 2017  
Page 9 of 20  
ISL80030, ISL80030A, ISL80031, ISL80031A  
Typical Performance Curves (Continued)  
100  
100  
90  
80  
70  
60  
50  
40  
V
= 3.3V  
OUT  
V
= 3.3V  
OUT  
93  
87  
80  
73  
67  
60  
V
= 1.2V  
OUT  
V
= 1.5V  
OUT  
V
= 1.8V  
V
= 1.2V  
OUT  
OUT  
V
= 1.5V  
OUT  
V
= 1.8V  
OUT  
V
= 2.5V  
OUT  
V
= 2.5V  
OUT  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0  
LOAD (A)  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0  
LOAD (A)  
FIGURE 11. EFFICIENCY vs LOAD (ISL80030)  
FIGURE 10. EFFICIENCY vs LOAD (ISL80031)  
= 1MHz, V = 5V, PFM, T = +25°C  
f
= 1MHz, V = 5V, PWM, T = +25°C  
f
SW  
IN  
A
SW  
IN  
A
1.876  
1.872  
1.867  
1.863  
1.859  
1.854  
1.850  
1.828  
1.827  
1.826  
1.825  
1.824  
1.823  
1.822  
3.3V PWM  
IN  
5V PFM  
IN  
3.3V PFM  
IN  
5V PWM  
IN  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0  
OUTPUT LOAD (A)  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0  
OUTPUT LOAD (A)  
FIGURE 12. V  
REGULATION vs LOAD (ISL80031)  
= 1MHz, V = 1.8V, PFM, T = +25°C  
OUT  
FIGURE 13. V  
OUT  
REGULATION vs LOAD (ISL80030)  
= 1.8V, PWM, T = +25°C  
OUT  
f
f
= 1MHz, V  
SW  
A
SW  
OUT  
A
PHASE 5V/DIV  
PHASE 5V/DIV  
V
1V/DIV  
OUT  
V
1V/DIV  
OUT  
VEN 5V/DIV  
PG 5V/DIV  
VEN 5V/DIV  
PG 5V/DIV  
500µs/DIV  
500µs/DIV  
FIGURE 15. START-UP AT NO LOAD (ISL80030A)  
= 2MHz, V = 5V, PWM, T = +25°C  
FIGURE 14. START-UP AT NO LOAD (ISL80031A)  
= 2MHz, V = 5V, PFM, T = +25°C  
f
f
SW  
IN  
A
SW  
IN  
A
FN8766 Rev.2.00  
Nov 16, 2017  
Page 10 of 20  
ISL80030, ISL80030A, ISL80031, ISL80031A  
Typical Performance Curves (Continued)  
PHASE 5V/DIV  
PHASE 5V/DIV  
V
1V/DIV  
V
1V/DIV  
OUT  
OUT  
VEN 5V/DIV  
VEN 5V/DIV  
PG 5V/DIV  
PG 5V/DIV  
500µs/DIV  
500µs/DIV  
FIGURE 16. SHUTDOWN AT NO LOAD (ISL80031A)  
= 2MHz, V = 5V, PFM, T = +25°C  
FIGURE 17. SHUTDOWN AT NO LOAD (ISL80030A)  
f
f
= 2MHz, V = 5V, PWM, T = +25°C  
SW  
IN  
A
SW  
IN  
A
VEN 5V/DIV  
VEN 5V/DIV  
V
1V/DIV  
OUT  
V
1V/DIV  
OUT  
I
2A/DIV  
L
I
2A/DIV  
L
PG 5V/DIV  
PG 5V/DIV  
500µs/DIV  
500µs/DIV  
FIGURE 19. SHUTDOWN AT 3A LOAD (ISL80030A)  
FIGURE 18. START-UP AT 3A LOAD (ISL80030A)  
= 2MHz, V = 5V, PWM, T = +25°C  
f
= 2MHz, V = 5V, PWM, T = +25°C  
f
SW  
IN  
A
SW  
IN  
A
VEN 5V/DIV  
VEN 5V/DIV  
V
1V/DIV  
OUT  
V
1V/DIV  
OUT  
I
2A/DIV  
L
I
2A/DIV  
L
PG 5V/DIV  
PG 5V/DIV  
500µs/DIV  
1ms/DIV  
FIGURE 21. SHUTDOWN AT 3A LOAD (ISL80031A)  
= 2MHz, V = 5V, PFM, T = +25°C  
FIGURE 20. START-UP AT 3A LOAD (ISL80031A)  
= 2MHz, V = 5V, PFM, T = +25°C  
f
f
SW  
IN  
A
SW  
IN  
A
FN8766 Rev.2.00  
Nov 16, 2017  
Page 11 of 20  
ISL80030, ISL80030A, ISL80031, ISL80031A  
Typical Performance Curves (Continued)  
V
V
I
5V/DIV  
V
V
5V/DIV  
IN  
IN  
1V/DIV  
1V/DIV  
OUT  
OUT  
2A/DIV  
I
2A/DIV  
L
L
PG 5V/DIV  
PG 5V/DIV  
500µs/DIV  
500µs/DIV  
FIGURE 22. START-UP V AT 3A LOAD (ISL80031A)  
IN  
FIGURE 23. START-UP V AT 3A LOAD (ISL80030A)  
IN  
f
= 2MHz, V = 5V, PFM, T = +25°C  
f
= 2MHz, V = 5V, PWM, T = +25°C  
SW  
IN  
A
SW  
IN  
A
PHASE 5V/DIV  
PHASE 5V/DIV  
V
V
1V/DIV  
OUT  
V
V
1V/DIV  
OUT  
5V/DIV  
IN  
5V/DIV  
IN  
PG 5V/DIV  
PG 5V/DIV  
100µs/DIV  
20µs/DIV  
FIGURE 25. SHUTDOWN V AT 3A LOAD (ISL80030A)  
IN  
FIGURE 24. SHUTDOWN V AT 3A LOAD (ISL80031A)  
IN  
f
= 2MHz, V = 5V, PWM, T = +25°C  
f
= 2MHz, V = 5V, PFM, T = +25°C  
SW  
IN  
A
SW  
IN  
A
PHASE 5V/DIV  
PHASE 5V/DIV  
V
1V/DIV  
OUT  
V
1V/DIV  
OUT  
V
5V/DIV  
IN  
V
5V/DIV  
IN  
PG 5V/DIV  
PG 5V/DIV  
500µs/DIV  
500µs/DIV  
FIGURE 27. START-UP V AT NO LOAD (ISL80030A)  
IN  
FIGURE 26. START-UP V AT NO LOAD (ISL80031A)  
IN  
f
= 2MHz, V = 5V, PWM, T = +25°C  
f
= 2MHz, V = 5V, PFM, T = +25°C  
SW  
IN  
A
SW  
IN  
A
FN8766 Rev.2.00  
Nov 16, 2017  
Page 12 of 20  
ISL80030, ISL80030A, ISL80031, ISL80031A  
Typical Performance Curves (Continued)  
PHASE 5V/DIV  
PHASE 5V/DIV  
V
1V/DIV  
OUT  
V
V
1V/DIV  
OUT  
5V/DIV  
IN  
V
5V/DIV  
IN  
PG 5V/DIV  
PG 5V/DIV  
2ms/DIV  
5ms/DIV  
FIGURE 29. SHUTDOWN V AT NO LOAD (ISL80030A)  
IN  
FIGURE 28. SHUTDOWN V AT NO LOAD (ISL80031A)  
IN  
f
= 2MHz, V = 5V, PWM, T = +25°C  
f
= 2MHz, V = 5V, PFM, T = +25°C  
SW  
IN  
A
SW  
IN  
A
PHASE 1V/DIV  
PHASE 1V/DIV  
10ns/DIV  
10ns/DIV  
FIGURE 31. JITTER AT FULL LOAD (ISL80030A)  
= 2MHz, V = 5V, PWM, T = +25°C  
FIGURE 30. JITTER AT NO LOAD (ISL80030A)  
= 2MHz, V = 5V, PWM, T = +25°C  
f
f
SW  
IN  
A
SW  
IN  
A
PHASE 5V/DIV  
PHASE 5V/DIV  
V
20mV/DIV  
OUT  
V
10mV/DIV  
OUT  
I
0.5A/DIV  
L
I
0.5A/DIV  
L
50ms/DIV  
200ns/DIV  
FIGURE 32. STEADY STATE AT NO LOAD (ISL80031A)  
= 2MHz, V = 5V, PFM, T = +25°C  
FIGURE 33. STEADY STATE AT NO LOAD (ISL80030A)  
= 2MHz, V = 5V, PWM, T = +25°C  
f
f
SW  
IN  
A
SW  
IN  
A
FN8766 Rev.2.00  
Nov 16, 2017  
Page 13 of 20  
ISL80030, ISL80030A, ISL80031, ISL80031A  
Typical Performance Curves (Continued)  
PHASE 5V/DIV  
PHASE 5V/DIV  
V
10mV/DIV  
OUT  
V
10mV/DIV  
OUT  
I
2A/DIV  
L
I
2A/DIV  
L
500ns/DIV  
500ns/DIV  
FIGURE 34. STEADY STATE AT 3A LOAD (ISL80031A)  
= 2MHz, V = 5V, PFM, T = +25°C  
FIGURE 35. STEADY STATE AT 3A LOAD (ISL80030A)  
= 2MHz, V = 5V, PWM, T = +25°C  
f
f
SW  
SW  
IN  
A
IN  
A
V
RIPPLE 50mV/DIV  
OUT  
V
RIPPLE 50mV/DIV  
OUT  
I
1A/DIV  
L
I
1A/DIV  
L
200µs/DIV  
200µs/DIV  
FIGURE 36. LOAD TRANSIENT (ISL80031A)  
= 2MHz, V = 5V, PFM, T = +25°C  
FIGURE 37. LOAD TRANSIENT (ISL80030A)  
= 2MHz, V = 5V, PWM, T = +25°C  
f
f
SW  
SW  
IN  
A
IN  
A
PHASE 5V/DIV  
V
1V/DIV  
OUT  
I
2A/DIV  
L
I
2A/DIV  
L
V
1V/DIV  
OUT  
PG 5V/DIV  
PG 5V/DIV  
5µs/DIV  
500µs/DIV  
FIGURE 39. OVERCURRENT PROTECTION (ISL80030A)  
= 2MHz, V = 5V, PWM, T = +25°C  
FIGURE 38. OUTPUT SHORT-CIRCUIT (ISL80030A)  
= 2MHz, V = 5V, PWM, T = +25°C  
f
f
SW  
IN  
A
SW  
IN  
A
FN8766 Rev.2.00  
Nov 16, 2017  
Page 14 of 20  
ISL80030, ISL80030A, ISL80031, ISL80031A  
Typical Performance Curves (Continued)  
PHASE 5V/DIV  
V
0.5V/DIV  
OUT  
I
2A/DIV  
L
PG 2V/DIV  
V
2V/DIV  
OUT  
PG 5V/DIV  
1ms/DIV  
200µs/DIV  
FIGURE 41. OVER-TEMPERATURE PROTECTION  
= 2MHz, V = 5V, PWM, T = +150°C  
FIGURE 40. OVERVOLTAGE PROTECTION (ISL80030A)  
= 2MHz, V = 5V, PWM, T = +25°C  
f
f
SW  
IN  
A
SW  
IN  
A
Theory of Operation  
V
EAMP  
The device is a step-down switching regulator optimized for battery  
powered applications. It operates at a high switching frequency  
(1MHz or 2MHz), which enables the use of smaller inductors  
resulting in a small form factor, while also providing excellent  
efficiency. The quiescent current is typically only 1.2µA when the  
regulator is shut down.  
V
CSA  
DUTY  
CYCLE  
I
L
PWM Control Scheme  
The ISL80030 and ISL80030A employ the current-mode  
V
OUT  
Pulse-Width Modulation (PWM) control scheme for fast transient  
response and pulse-by-pulse current limiting (see “Functional Block  
Diagram” on page 5). The current loop consists of the oscillator,  
PWM comparator, current sensing circuit, and the slope  
FIGURE 42. PWM OPERATION WAVEFORMS  
compensation for current loop stability. The slope compensation is  
900mV/Ts, which changes with frequency. The gain for the current  
sensing circuit is typically 250mV/A. The control reference for the  
current loop comes from the error amplifier's (EAMP) output.  
The reference voltage is 0.6V, which is used by feedback to  
adjust the output of the error amplifier, V . The error  
amplifier is a transconductance amplifier that converts the  
voltage error signal to a current output. The voltage loop is  
internally compensated with the 27pF and 200kΩ RC network.  
The maximum EAMP voltage output is precisely clamped to 1.6V.  
EAMP  
The PWM operation is initialized by the clock from the oscillator.  
The P-channel MOSFET is turned on at the beginning of a PWM  
cycle and the current in the MOSFET starts to ramp up. When the  
sum of the current amplifier CSA and the slope compensation  
reaches the control reference of the current loop, the PWM  
comparator COMP sends a signal to the PWM logic to turn off the  
P-FET and turn on the N-channel MOSFET. The N-FET stays on until  
the end of the PWM cycle. Figure 42 shows the typical operating  
waveforms during the PWM operation. The dotted lines illustrate  
the sum of the slope compensation ramp and the current-sense  
amplifier’s CSA output.  
PFM Operation  
The ISL80031 and ISL80031A employ a pulse-skipping mode to  
minimize the switching loss at light load by reducing the  
switching frequency. Figure 43 on page 16 illustrates the  
skip-mode operation. A zero-cross sensing circuit shown in  
Figure 43 monitors the N-FET current for zero crossing. When  
16 consecutive cycles of the inductor current crossing zero are  
detected, the regulator enters the skip mode. During the eight  
detecting cycles, the current in the inductor is allowed to become  
negative. The counter is reset to zero when the current in any  
cycle does not cross zero.  
FN8766 Rev.2.00  
Nov 16, 2017  
Page 15 of 20  
ISL80030, ISL80030A, ISL80031, ISL80031A  
PWM  
PFM  
PWM  
CLOCK  
16 CYCLES  
PFM CURRENT LIMIT  
LOAD CURRENT  
I
L
0
NOMINAL +1.5%  
V
OUT  
NOMINAL -1.5%  
NOMINAL  
FIGURE 43. PFM MODE OPERATION WAVEFORMS  
When the device enters skip mode, the SKIP comparator starts  
controlling pulse modulation as shown in the “Functional Block  
Diagram” on page 5. Each pulse cycle is still synchronized by the  
PWM clock. The P-FET is turned on at the clock's rising edge and  
turned off when the output is higher than 1.5% of the nominal  
regulation or when its current reaches the peak skip current limit  
value. Then, the inductor current discharges to 0A and stays at  
zero. The internal clock is disabled. The output voltage reduces  
gradually due to the load current discharging the output  
capacitor. When the output voltage drops to the nominal voltage,  
the P-FET will be turned on again at the rising edge of the internal  
clock as it repeats the previous operations.  
Negative Current Protection  
Similar to the overcurrent, the negative current protection is  
realized by monitoring the current across the low-side N-FET, as  
shown in the “Functional Block Diagram” on page 5. When the  
valley point of the inductor current reaches -2A for two consecutive  
cycles, both P-FET and N-FET shut off. The 100Ω in parallel to the  
N-FET will activate discharging the output into regulation. The  
control will begin to switch when output is within regulation. The  
regulator will be in PFM for 20µs before switching to PWM if  
necessary.  
PG  
PG is an output of a window comparator that continuously monitors  
the buck regulator output voltage. PG is actively held low when EN is  
low and during the buck regulator soft-start period. After a 1ms  
delay of the soft-start period, PG becomes high impedance as long  
as the output voltage is within nominal regulation voltage set by  
VFB. When VFB drops 15% below or raises 15% above the nominal  
regulation voltage, the device pulls PG low. Any fault condition forces  
PG low until the fault condition is cleared by attempts to soft-start.  
There is an internal 5MΩ pull-up resistor to fit most applications. An  
external resistor can be added from PG to VIN for more pull-up  
strength.  
Overcurrent Protection  
The overcurrent protection is realized by monitoring the CSA  
output with the OCP comparator, as shown in the “Functional  
Block Diagram” on page 5. The current sensing circuit has a gain  
of 300mV/A, from the P-FET current to the CSA output. When the  
CSA output reaches a threshold, the OCP comparator is tripped to  
turn off the P-FET immediately. The overcurrent function protects  
the switching converter from a shorted output by monitoring the  
current flowing through the upper MOSFET.  
Upon detection of overcurrent condition, the upper MOSFET will  
be immediately turned off and will not be turned on again until  
the next switching cycle. If the overcurrent condition goes away,  
the output will resume back into the regulation point.  
UVLO  
When the input voltage is below the Undervoltage Lockout  
(UVLO) threshold, the regulator is disabled.  
Short-Circuit Protection  
Enable, Disable and Soft-Start Up  
The Short-Circuit Protection (SCP) comparator monitors the VFB  
pin voltage for output short-circuit protection. When the VFB is  
lower than 0.3V, the SCP comparator forces the PWM oscillator  
frequency to drop to 1/3 of the normal operation value. This  
comparator is effective during start-up or an output short-circuit  
event.  
After the VIN pin exceeds its rising POR trip point (nominal 2.5V),  
the device begins operation. If the EN pin is held low externally,  
nothing happens until this pin is released. When the EN is  
released and above the logic threshold, the internal default  
soft-start time is 1ms.  
Discharge Mode (Soft-Stop)  
When a transition to shutdown mode occurs or the VIN UVLO is set,  
the outputs discharge to GND through an internal 100Ω switch.  
FN8766 Rev.2.00  
Nov 16, 2017  
Page 16 of 20  
ISL80030, ISL80030A, ISL80031, ISL80031A  
100% Duty Cycle  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
The device features 100% duty cycle operation to maximize the  
battery life. When the battery voltage drops below a level at  
which the device can no longer maintain the regulation at the  
output, the regulator completely turns on the P-FET. The  
maximum dropout voltage under the 100% duty cycle operation  
is the product of the load current and the ON-resistance of the  
P-FET.  
V
= 5V, OLFM  
IN  
Thermal Shutdown  
The device has built-in thermal protection. When the internal  
temperature reaches +150°C, the regulator is completely shut  
down. As the temperature drops to +125°C, the device resumes  
operation by stepping through the soft-start.  
50  
60  
70  
80  
90  
100  
110  
120  
130  
TEMPERATURE (°C)  
Power Derating Characteristics  
FIGURE 44. DERATING CURVE vs TEMPERATURE  
To prevent the device from exceeding the maximum junction  
temperature, some thermal analysis is required. The  
temperature rise is given by Equation 2:  
Applications Information  
Output Inductor and Capacitor Selection  
(EQ. 2)  
T
= PD  
JA  
To consider steady state and transient operations, the device  
typically requires a 1µH output inductor. Higher or lower inductor  
values can be used to optimize the total converter system  
performance. For example, for higher output voltage 3.3V  
applications, to decrease the inductor ripple current and output  
voltage ripple, the output inductor value can be increased. It is  
recommended to set the inductor ripple current to approximately  
30% of the maximum output current for optimized performance.  
The inductor ripple current can be expressed as shown in  
Equation 4:  
RISE  
where PD is the power dissipated by the regulator and θ is the  
JA  
thermal resistance from the junction of the die to the ambient  
temperature. The junction temperature, T , is given by  
J
Equation 3:  
(EQ. 3)  
T = T + T   
RISE  
j
A
where T is the ambient temperature. For the DFN package, the  
A
θ
is +70°C/W.  
JA  
V
O
---------  
V
1 –  
O
The actual junction temperature should not exceed the absolute  
maximum junction temperature of +125°C when considering  
the thermal design.  
(EQ. 4)  
V
IN  
--------------------------------------  
I =  
L f  
SW  
The inductor’s saturation current rating needs to be larger than  
the peak current.  
The device delivers full current at ambient temperatures up to  
+85°C; if the thermal impedance from the thermal pad  
maintains the junction temperature below the thermal shutdown  
level, depending on the input voltage/output voltage  
combination and the switching frequency. The device power  
dissipation must be reduced to maintain the junction  
temperature at or below the thermal shutdown level. Figure 44  
illustrates the approximate output current derating versus  
ambient temperature for the ISL80030EVAL1Z board.  
The device uses an internal compensation network and the  
output capacitor value is dependent on the output voltage. An  
X5R or X7R ceramic capacitor is recommended.  
Output Voltage Selection  
The output voltage of the regulator can be programmed from an  
external resistor divider that scales the output voltage relative to the  
internal reference voltage and feeds it back to the inverting input of  
the error amplifier.  
The output voltage programming resistor, R , will depend on the  
1
value chosen for the feedback resistor and the desired output  
voltage of the regulator. The value for the feedback resistor is  
typically between 10kΩ and 100kΩas shown in Equation 5.  
V
O
(EQ. 5)  
------------  
R
= R  
1  
1
2
VFB  
If the output voltage desired is 0.6V, then R is left unpopulated  
2
and R is shorted. There is a leakage current from VIN to LX. It is  
1
recommended to preload the output with 10µA minimum. For  
better performance, add 22pF in parallel with R   
1
FN8766 Rev.2.00  
Nov 16, 2017  
Page 17 of 20  
ISL80030, ISL80030A, ISL80031, ISL80031A  
To determine transient response needs, a good starting point is  
to determine the allowable overshoot in V if the load is  
Input Capacitor Selection  
OUT  
suddenly removed. In this case, energy stored in the inductor will  
be transferred to C causing its voltage to rise. After  
The main functions for the input capacitor are to provide  
decoupling of the parasitic inductance and to provide filtering  
function to prevent the switching current flowing back to the  
battery rail. At least two 22µF X5R or X7R ceramic capacitors are  
a good starting point for the input capacitor selection.  
OUT  
calculating capacitance required for both ripple and transient  
needs, choose the larger of the calculated values. The following  
equation determines the required output capacitor value to  
achieve a desired overshoot relative to the regulated voltage.  
Output Capacitor Selection  
2
I
L
*
An output capacitor is required to filter the inductor current.  
Output ripple voltage and transient response are two critical  
factors when considering output capacitance choice. The current  
mode control loop allows for the usage of low ESR ceramic  
capacitors and thus smaller board layout. Electrolytic and  
polymer capacitors can also be used.  
OUT  
--------------------------------------------------------------------------------------------  
=
C
(EQ. 8)  
OUT  
2
2
V
V  
V  
1  
*
OUT  
OUTMAX  
OUT  
where V is the relative maximum overshoot  
/V  
OUTMAX OUT  
allowed during the removal of the load. For an overshoot of 5%,  
Equation 9 becomes as follows:  
2
Although ceramic capacitors offer excellent overall performance  
and reliability, the actual in-circuit capacitance must be  
considered. Ceramic capacitors are rated using large peak-to-  
peak voltage swings and with no DC bias. In the DC/DC converter  
application, these conditions do not reflect reality. As a result, the  
actual capacitance may be considerably lower than the  
advertised value. Consult the manufacturer’s datasheet to  
determine the actual in-application capacitance. Most  
manufacturers publish capacitance vs DC bias so this effect can  
be easily accommodated. The effects of AC voltage are not  
frequently published, but an assumption of ~20% further  
reduction will generally suffice. The result of these  
I
L
*
OUT  
-----------------------------------------------------  
=
C
OUT  
(EQ. 9)  
2
2
V
1.05 1  
*
OUT  
Layout Considerations  
PCB layout is a very important converter design step to make  
sure the designed converter works well. The power loop is  
composed of the output inductor Ls, the output capacitor C  
,
OUT  
the PHASE’s pins, and the PGND pin. Make the power loop as  
small as possible and the connecting traces among them direct,  
short, and wide. The switching node of the converter, the PHASE  
pins, and the traces connected to the node are very noisy, so  
keep the voltage feedback trace away from these noisy traces.  
The input capacitor should be placed as closely as possible to the  
VIN pin and the ground of the input and output capacitors should  
be connected as closely as possible. The heat of the IC is mainly  
dissipated through the thermal pad. Maximizing the copper area  
connected to the thermal pad is preferable. In addition, a solid  
ground plane is helpful for better EMI performance. It is  
recommended to add at least four vias ground connection within  
the pad for the best thermal relief.  
considerations can easily result in an effective capacitance 50%  
lower than the rated value. Nonetheless, they are a very good  
choice in many applications due to their reliability and extremely  
low ESR.  
Use the following equations to calculate the required  
capacitance to meet a desired ripple voltage level. Additional  
capacitance can be used.  
For the ceramic capacitors (low ESR):  
I  
------------------------------------  
(EQ. 6)  
V
=
OUTripple  
C
OUT  
8 f  
SW  
where I is the inductor’s peak-to-peak ripple current, f  
SW  
is the  
switching frequency and C  
is the output capacitor.  
OUT  
If using electrolytic capacitors:  
V
= I*ESR  
(EQ. 7)  
OUTripple  
FN8766 Rev.2.00  
Nov 16, 2017  
Page 18 of 20  
ISL80030, ISL80030A, ISL80031, ISL80031A  
Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted.  
Please visit our website to make sure you have the latest revision.  
DATE  
REVISION  
CHANGE  
Nov 16, 2017  
FN8766.2 Added Related Literature section on page 1.  
Added the ISL80030ADEMO1Z and ISL80031ADEMO1Z to Ordering Information on page 6.  
Added test conditions, minimum value, and maximum value for the Soft-Start Ramp Time Cycle specification on  
page 7.  
Applied new header/footer.  
Dec 24, 2015  
Jul 20, 2015  
FN8766.1 Added Related Literature section on page 1.  
Added Demonstration boards to the ordering information on page 6.  
Feedback Voltage parameter on page 7.  
-Added test conditions “TJ = -40°C to +85°C” to the first line and unbolded the min and max specs.  
-The second line (TJ = -40°C to +125°C) bolded the min and max specs.  
VFB Bias Current parameter on page 7, bolded the min and max specs.  
FN8766.0 Initial release  
About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing, and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation, and related parts, see the respective product information  
page found at www.intersil.com.  
For a listing of definitions and abbreviations of common terms used in our documents, visit www.intersil.com/glossary.  
You can report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support.  
© Copyright Intersil Americas LLC 2015-2017. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8766 Rev.2.00  
Nov 16, 2017  
Page 19 of 20  
ISL80030, ISL80030A, ISL80031, ISL80031A  
Package Outline Drawing  
For the most recent package outline drawing, see L8.2x2E.  
L8.2x2E  
8 LEAD DUAL FLAT NO-LEAD PLASTIC PACKAGE (DFN) WITH E-PAD  
Rev 0, 5/15  
2.00  
6
A
PIN #1 INDEX AREA  
6
B
PIN 1  
INDEX AREA  
8
1
0.50  
1.45±0.050  
Exp.DAP  
(4X)  
0.15  
0.25  
( 8x0.30 )  
0.10  
C A B  
M
TOP VIEW  
0.80±0.050  
Exp.DAP  
BOTTOM VIEW  
(8x0.20)  
(8x0.30)  
Package Outline  
SEE DETAIL "X"  
(6x0.50)  
C
0.10  
C
0.90 ±0.10  
1.45  
2.00  
BASE PLANE  
SEATING PLANE  
0.08  
C
SIDE VIEW  
(8x0.25)  
0.80  
2.00  
TYPICAL RECOMMENDED LAND PATTERN  
0.2 REF  
C
0.00 MIN.  
0.05 MAX.  
DETAIL "X"  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension b applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
FN8766 Rev.2.00  
Nov 16, 2017  
Page 20 of 20  

相关型号:

ISL80030A

3A Synchronous Buck Converter In 2x2 DFN Package
INTERSIL

ISL80030A

3A Synchronous Buck Converter in 2x2 DFN Package
RENESAS

ISL80030ADEMO1Z

3A Synchronous Buck Converter in 2x2 DFN Package
RENESAS

ISL80030AFRZ-T

3A Synchronous Buck Converter In 2x2 DFN Package
INTERSIL

ISL80030AFRZ-T

3A Synchronous Buck Converter in 2x2 DFN Package
RENESAS

ISL80030AFRZ-T7A

3A Synchronous Buck Converter In 2x2 DFN Package
INTERSIL

ISL80030AFRZ-T7A

3A Synchronous Buck Converter in 2x2 DFN Package
RENESAS

ISL80030DEMO1Z

3A Synchronous Buck Converter in 2x2 DFN Package
RENESAS

ISL80030FRZ-T

3A Synchronous Buck Converter In 2x2 DFN Package
INTERSIL

ISL80030FRZ-T

3A Synchronous Buck Converter in 2x2 DFN Package
RENESAS

ISL80030FRZ-T7A

3A Synchronous Buck Converter In 2x2 DFN Package
INTERSIL

ISL80030FRZ-T7A

3A Synchronous Buck Converter in 2x2 DFN Package
RENESAS