ISL8202MIRZ-T7A [RENESAS]

3A Single Channel High Efficiency DC/DC Step-Down Power Module; MODULE22; Temp Range: -40° to 85°C;
ISL8202MIRZ-T7A
型号: ISL8202MIRZ-T7A
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

3A Single Channel High Efficiency DC/DC Step-Down Power Module; MODULE22; Temp Range: -40° to 85°C

文件: 总25页 (文件大小:1623K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL8202M  
FN8761  
Rev.4.00  
Mar 17, 2017  
3A Single Channel High Efficiency DC/DC Step-Down Power Module  
The ISL8202M power module is a single channel synchronous  
Features  
step-down complete power supply, capable of delivering up to  
• 3A single channel complete power supply  
- Integrates controller, MOSFETs and inductor  
3A of continuous current. Operating from a single 2.6V to 5.5V  
input power rail and integrating controller, power inductor and  
MOSFETs, the ISL8202M only requires a few external  
components to operate and is optimized for space constrained  
and portable battery operated applications.  
- Pin compatible with the 5A ISL8205M  
• 2.6V to 5.5V input voltage range  
• Adjustable output voltage range  
Based on current mode PWM control scheme, the ISL8202M  
provides a fast transient response and excellent loop stability  
as well as a very low duty cycle with an adjustable output  
voltage as low as 0.6V and better than 1.6% accuracy over line  
and load conditions. Operation frequency is selectable through  
an external resistor, with a 1.8MHz default setting, or may be  
synchronized with an external clock signal up to 3.5MHz. The  
ISL8202M also implements a selectable PFM mode to  
improve light-load efficiency and a 100% duty cycle LDO mode  
to extend battery life. A programmable soft-start reduces the  
inrush current required from the input supply while an  
automatic output discharge ensures a soft stop. Dedicated  
enable pin and power-good flag allow for easy system power  
rails sequencing.  
- As low as 0.6V with ±1.6% accuracy over  
line/load/temperature  
- Up to 95% efficiency  
• Default 1.8MHz current mode control operations  
- 680kHz to 3.5MHz resistor adjustable  
- External synchronization up to 3.5MHz  
- Selectable light-load efficiency mode  
- 100% duty cycle LDO mode  
• Programmable soft-start  
• Soft-stop output discharge  
• Dedicated enable pin and power-good flag  
An array of protection features, including input Undervoltage  
Lockout (UVLO), over-temperature, overcurrent/short-circuit  
with hiccup mode, overvoltage and negative overcurrent,  
guarantees safe operations under abnormal operating  
conditions.  
• UVLO, over-temperature, overcurrent, overvoltage and  
negative overcurrent protections  
- Overcurrent/short-circuit hiccup mode  
• 4.5mmx7.5mmx1.85mm 22 Ld QFN package  
The ISL8202M is available in a compact RoHS compliant  
22 Ld 4.5x7.5x1.85mm QFN package.  
Applications  
• DC to DC POL power module  
• µC/µP, FPGA and DSP power  
• Portable equipment  
Related Literature  
TB389, “PCB Land Pattern Design and Surface Mount  
Guidelines for QFN Packages”  
• Battery operated equipment  
UG071, “ISL8202MEVAL1Z Evaluation Board User Guide”  
100  
ISL8202M  
1.2V 3A OUTPUT  
2.6V TO 5.5V INPUT  
95  
90  
85  
80  
75  
70  
65  
60  
VIN  
EN  
VOUT  
SW  
VSENSE  
COMP  
CIN  
COUT  
2x22µF  
2x22µF  
PG  
SYNC  
FS  
FB  
Vout=3.3V, Fsw=2MHz PWM  
Vout=3.3V, Fsw=2MHz PFM  
Vout=1.2V, Fsw=1.5MHz PFM  
Vout=1.2V, Fsw=1.5MHz PWM  
SS  
RSET  
100k  
EPAD  
CFF  
RFS  
133k  
560pF  
SGND  
PGND  
0
0.5  
1
1.5  
2
2.5  
3
LOAD CURRENT (A)  
FIGURE 1. TYPICAL APPLICATION DIAGRAM AT 5 , 1.2V  
, 1.5MHz f , 3A  
OUT SW  
FIGURE 2. EFFICIENCY vs LOAD 5V  
IN  
VIN  
FN8761 Rev.4.00  
Mar 17, 2017  
Page 1 of 25  
ISL8202M  
Table of Contents  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Output Voltage Ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Load Transient Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Start-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Short-Circuit Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Power Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
PWM Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
PFM (Skip) Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Frequency Adjust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Negative Current Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Power-Good . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
UVLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Soft Start-Up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
External Synchronization Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Discharge Mode (Soft-Stop) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
100% Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Programming the Output Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Recommended Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Input Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Output Capacitor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Feed-Forward Capacitor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Thermal Consideration and Current Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
PCB Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Package Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
PCB Layout Pattern Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Thermal Vias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Stencil Pattern Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Reflow Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
About Intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
FN8761 Rev.4.00  
Mar 17, 2017  
Page 2 of 25  
ISL8202M  
Functional Block Diagram  
COMP  
18  
FS  
16  
SYNC  
13  
SHUTDOWN  
SOFT-  
SS 17  
START  
VIN  
11  
SHUTDOWN  
OSCILLATOR  
COMP  
SW  
21  
6
+
VREF  
EN 15  
PWM/PFM LOGIC  
BANDGAP  
+
EAMP  
L
CONTROLLER  
PROTECTION  
HS DRIVER  
VOUT  
9
SW  
LS  
FB 19  
DRIVER  
0.8V  
SLOPE  
COMP  
3
PGND  
PGND  
FB  
1
OV  
20  
14  
+
+
CSA  
PGND  
51  
+
OCP  
SKIP  
4
2
VSENSE  
VSENSE  
UV  
0.85 x VREF  
+
ISET  
THRESHOLD  
+
22  
SGND  
PG 12  
1ms  
DELAY  
NEGATIVE CURRENT  
SENSING  
ZERO-CROSSING  
SENSING  
SCP  
100k  
SHUTDOWN  
0.5V  
+
SGND  
PGND  
100k 0.5%  
  
FIGURE 3. FUNCTIONAL BLOCK DIAGRAM  
FN8761 Rev.4.00  
Mar 17, 2017  
Page 3 of 25  
ISL8202M  
Pin Configuration  
ISL8202M  
(22 LD QFN)  
TOP VIEW  
PGND SYNC PG  
VIN  
NC  
10  
SW  
9
14  
13  
12  
11  
EN  
FS  
15  
16  
17  
18  
20  
21  
NC  
NC  
8
7
SS  
PGND  
SW  
COMP  
22 SGND  
FB  
19  
5
4
2
3
6
1
FB  
VSENSE  
PGND  
VSENSE NC  
VOUT  
Pin Descriptions  
PIN  
PIN  
NUMBER  
NAME  
DESCRIPTION  
Voltage setting pin. Module output voltage is set by connecting a resistor R  
1, 19  
2, 4  
FB  
from this pin to SGND. A ceramic  
SET  
from FB to SGND to ensure system stability in extreme  
capacitor is also recommended to be placed in parallel with R  
SET  
operation conditions. Refer to Table 2 on page 14 for the resistor and capacitor values for various typical output voltage.  
VSENSE  
PGND  
Voltage sense pin. Pins 2 and 4 are shorted together internally. An internal 51Ω resistor is connected from VOUT (Pad 6)  
to VSENSE for local output voltage feedback in case remote sensing is not present. To achieve best regulation  
performance at point of load, remote sensing trace needs to be directly routed to VSENSE.  
3, 14  
Power ground. Power ground pins. Place output capacitor across VOUT and PGND close to Pin 3 since it is the return  
path for output current.  
5, 7, 8, 10  
6
NC  
No connection pins. These pins have no connections inside. Leave these pins floating.  
VOUT  
Power output. Power output of the module. Output capacitors should be placed across this pad and Pin 3 PGND and  
close to the module. Apply load between this pin and PGND Pin 3. Output voltage range: 0.6V to 5.0V.  
9, 21  
11  
SW  
VIN  
Switching node. These pins can be used to monitor switch node waveform to examine switching frequency. These pins  
can also be used for snubber connection. To improve system efficiency, it is recommended to connect Pin 9 and Pin 21  
with wide copper shape. However, avoid connecting SW to large copper shape to minimize radiated EMI noise.  
Power input. Input voltage range: 2.6V to 5.5V. Tie directly to the input rail. It is required to have minimum total input  
capacitance of 44µF at module input. Add additional capacitance if possible. Use X5R or X7R ceramic capacitors. It is  
critical to place input ceramic capacitors as close as possible to module input. Refer to “PCB Layout  
Recommendations” on page 19 for more information.  
12  
13  
PG  
Power-good pin. Power-good is an open-drain output. Use a 10kΩ to 100kΩ pull-up resistor connected between VIN and  
PG. During power-up or EN pin start-up, PG rising edge is delayed by 1ms upon output reached within regulation.  
SYNC  
Synchronization pin. Mode Selection pin. Connect to logic high or input voltage VIN for PWM mode. Connect to logic low  
or ground for PFM mode. Connect to an external clock for synchronization with the positive edge trigger. There is an  
internal 1MΩ pull-down resistor to prevent an undefined logic state in case SYNC pin is floating. Therefore, PFM mode  
is enabled when SYNC is left floating.  
FN8761 Rev.4.00  
Mar 17, 2017  
Page 4 of 25  
ISL8202M  
Pin Descriptions(Continued)  
PIN  
PIN  
NUMBER  
NAME  
DESCRIPTION  
15  
EN  
Power enable pin. Enable the output, when driven to high. Shutdown the output and discharge output capacitor when  
driven to low. Typically tie to VIN pin directly. Do not leave this pin floating.  
16  
FS  
Frequency selection pin. This pin sets module switching frequency. The default frequency is 1.8MHz if FS is connected  
to VIN. In spite of default setting, a resistor, R , can be connected from the FS pin to SGND to adjust switching  
FS  
frequency ranging from 680kHz to 3.5MHz.  
17  
18  
SS  
Soft-start pin. SS is used to adjust the soft-start time. Connect to SGND for internal 1ms rise time. Connect a capacitor  
from SS to SGND to adjust the soft-start time. The capacitor value should be less than 33nF to ensure proper operation.  
COMP  
Compensation pin. COMP is the output of voltage feedback error amplifier. For most applications, internal  
compensation network can be used to stabilize the system and achieve optimal transient response. This can be done  
by directly connecting COMP to VIN. For other applications where external compensation is desired, COMP needs to be  
disconnected from VIN and tied to external compensation network.  
Exposed  
Pad 20  
PGND  
SGND  
The exposed pad is connected internally to PGND. Solid connection should be made between Pad 20 and PGND plane  
on PCB. Place as many vias as possible under the pad connecting to PGND plane(s) for optimal electrical and thermal  
performance. Refer to “PCB Layout Recommendations” on page 19 for more information.  
22  
Signal ground pin. Connect PCB SGND plane to this pin. Internally, this pin is single-point connected to module PGND.  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
PART  
MARKING  
TEMP. RANGE  
(°C)  
TAPE AND REEL  
(UNITS)  
PACKAGE  
(RoHS Compliant)  
PKG.  
DWG. #  
ISL8202MIRZ-T  
ISL8202M  
-40 to +85  
-40 to +85  
3k  
22 Ld QFN  
22 Ld QFN  
L22.4.5x7.5  
L22.4.5x7.5  
ISL8202MIRZ-T7A  
ISL8202MEVAL1Z  
NOTES:  
ISL8202M  
250  
Evaluation Board  
1. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products are RoHS compliant by EU exemption 7C-I. They employ special Pb-free material sets, molding  
compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both  
SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-  
free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see product information page for ISL8202M. For more information on MSL, please see Technical Brief  
TB363.  
TABLE 1. KEY DIFFERENCES BETWEEN FAMILY OF PARTS  
PART  
NUMBER  
MAX OUTPUT CURRENT I  
(DC)  
OUT  
ISL8205M  
ISL8203M  
ISL8202M  
5A  
3A dual, 6A single  
3A  
FN8761 Rev.4.00  
Mar 17, 2017  
Page 5 of 25  
ISL8202M  
Absolute Maximum Ratings (Reference to GND)  
Thermal Information  
VIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 5.8V (DC) or 7V (20ms)  
EN, FS, PG, SYNC, VFB . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3V (DC) to VIN +0.3V  
SW . . . . . . . . . . . . . . . -1.5V (100ns)/-0.3V (DC) to 6.5V (DC) or 7V (20ms)  
COMP, SS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 2.7V  
ESD Ratings  
Thermal Resistance (Typical)  
22 Ld QFN (Notes 4, 5) . . . . . . . . . . . . . . . .  
Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-55°C to +125°C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493  
(°C/W)  
27.4  
(°C/W)  
4.8  
JA  
JC  
Human Body Model (Tested per JS-001-2010). . . . . . . . . . . . . . . . . . 2kV  
Charged Device Model (Tested per JS-002-2014) . . . . . . . . . . . . . . 750V  
Machine Model (Tested per JESD22-A115C) . . . . . . . . . . . . . . . . . . 200V  
Latch-Up (Tested per JESD-78D; Class 2, Level A) . . . . . 100mA at +85°C  
Recommended Operating Conditions  
V
V
Supply Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6V to 5.5V  
IN  
Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6V to 5.0V  
OUT  
Load Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0A to 3A  
Ambient Temperature Range . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. is measured in free air with the component mounted on the ISL8202MEVAL1Z evaluation board with “direct attach” features. Refer to  
JA  
ISL8202MEVAL1Z User Guide for evaluation board details. Also see Tech Brief TB379 for general thermal metric information.  
5. For , “case temperature” location is at the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications Unless otherwise noted, typical specifications are measured at V = 3.6V, V  
= 1.2V, T = +25°C. Boldface  
IN  
OUT A  
limits apply across the operating temperature range, -40°C to +85°C.  
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(Note 6) TYP (Note 6)  
UNIT  
INPUT SUPPLY  
Undervoltage Lockout Threshold (Note 7)  
V
V
Rising, no load  
2.3  
2.25  
50  
2.5  
V
V
IN  
UVLO  
Falling, no load  
2.10  
Quiescent Supply Current  
I
SYNC = GND, EN = high, I  
= 0A  
OUT  
µA  
mA  
VIN  
SYNC = V , f  
IN SW  
= 1.5MHz, EN = high,  
13  
20  
20  
I
= 0A  
OUT  
Shutdown Supply Current  
OUTPUT REGULATION  
I
SYNC = GND, V = 5.5V, EN = low  
5
µA  
SD  
IN  
Output Continuous Current Range  
Line Regulation  
I
3
A
OUT(DC)  
ΔV  
V
V
= 2.6V to 5.5V, V  
OUT  
= 0A, PWM mode  
= 1.2V, f  
= 1.2V, f  
= 1.5MHz,  
= 1.5MHz,  
0.58  
0.66  
0.34  
0.21  
%
OUT/ OUT IN  
SW  
SW  
I
OUT  
V
= 2.6V to 5.5V, V  
OUT  
= 3A, PWM mode  
%
%
%
%
IN  
I
OUT  
Load Regulation  
V
= 5V, V  
OUT  
= 1.2V, f  
= 1.5MHz,  
IN  
SW  
= 0A to 3A, PWM mode  
I
OUT  
V
= 5V, V  
OUT  
= 3.3V, f  
= 2MHz,  
IN  
SW  
= 0A to 3A, PWM mode  
I
OUT  
Output Voltage Accuracy (Note 8)  
Output Ripple Voltage  
Over line/load/temperature range, PWM  
mode, V = 1.2V to 3.3V  
-1.6  
1.6  
OUT  
= 5V, 2x22µF ceramic output capacitor,  
ΔV  
OUT  
V
IN  
PWM mode  
I
I
I
I
= 0A, V  
= 3A, V  
= 0A, V  
= 3A, V  
= 1.2V, f  
= 1.2V, f  
= 3.3V, f  
= 3.3V, f  
= 1.5MHz  
= 1.5MHz  
= 2MHz  
7
8
7
8
mV  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
SW  
SW  
SW  
SW  
P-P  
P-P  
P-P  
P-P  
mV  
mV  
mV  
= 2MHz  
Reference Voltage (Note 7)  
V
0.594 0.600 0.606  
V
REF  
FN8761 Rev.4.00  
Mar 17, 2017  
Page 6 of 25  
ISL8202M  
Electrical Specifications Unless otherwise noted, typical specifications are measured at V = 3.6V, V  
= 1.2V, T = +25°C. Boldface  
IN  
OUT A  
limits apply across the operating temperature range, -40°C to +85°C. (Continued)  
MIN  
MAX  
PARAMETER  
Bias Current (Note 7)  
SYMBOL  
TEST CONDITIONS  
(Note 6) TYP (Note 6)  
UNIT  
µA  
V
I
V
= 0.75V  
0.1  
1
FB  
FB  
FB  
SS = GND  
= 0.1V  
Soft-Start Ramp Time Cycle (Note 7)  
Soft-Start Charging Current (Note 7)  
DYNAMIC CHARACTERISTICS  
ms  
µA  
I
V
1.45  
1.85  
2.25  
SS  
SS  
Voltage Change for Positive Load Step  
ΔV  
ΔV  
Current slew rate = 1A/µs, V = 5V, 2x22µF  
IN  
ceramic output capacitor  
OUT-DP  
V
V
= 1.2V, I  
= 3.3V, I  
= 0A to 3A, f  
= 0A to 3A, f  
= 1.5MHz  
= 2MHz  
59  
47  
mV  
OUT  
OUT  
SW  
P-P  
P-P  
mV  
OUT  
OUT  
SW  
Voltage Change for Negative Load Step  
Current slew rate = 1A/µs, V = 5V, 2x22µF  
IN  
OUT-DP  
ceramic output capacitor  
V
= 1.2V, I  
= 3A to 0A, f  
= 1.5MHz  
= 2MHz  
73  
51  
mV  
mV  
OUT  
OUT  
OUT  
OUT  
SW  
SW  
P-P  
P-P  
V
= 3.3V, I  
= 3A to 0A, f  
OVERCURRENT PROTECTION (Note 7)  
Current Limit Blanking Time  
Overcurrent and Auto Restart Period  
Positive Peak Overcurrent Limit  
Positive Skip Limit  
t
17  
8
Clock pulses  
OCON  
t
SS cycle  
OCOFF  
PLIMIT  
I
7.5  
1
9
11  
A
A
I
1.3  
1.8  
300  
-1.5  
SKIP  
Zero Cross Threshold  
-300  
-4.5  
mA  
A
Negative Current Limit  
I
-3  
NLIMIT  
COMPENSATION (Note 7)  
Current Sensing Gain  
R
0.119 0.140 0.166  
Ω
t
Error Amplifier Transconductance  
Internal compensation  
External compensation  
60  
µA/V  
µA/V  
120  
SWITCH NODE (Note 7)  
P-Channel MOSFET ON-Resistance  
V
V
V
V
= 5V, I = 200mA  
36  
52  
63  
89  
30  
36  
mΩ  
mΩ  
mΩ  
mΩ  
%
IN  
IN  
IN  
IN  
O
= 2.7V, I = 200mA  
O
N-Channel MOSFET ON-Resistance  
= 5V, I = 200mA  
13  
O
= 2.7V, I = 200mA  
17  
O
SW Maximum Duty Cycle  
SW Minimum On-Time  
OSCILLATOR  
100  
SYNC = High  
115  
ns  
Nominal Switching Frequency  
f
SYNC = V  
1600 1835 2070  
kHz  
kHz  
kHz  
V
SW  
IN  
f
with R = 261kΩ  
800  
SW  
SW  
FS  
f
with R = 133kΩ  
1500  
FS  
SYNC Logic LOW to HIGH Transition Range  
SYNC Hysteresis  
0.70  
0.75  
0.15  
3.6  
0.80  
5
V
SYNC Logic Input Leakage Current  
V
= 3.6V  
µA  
IN  
FN8761 Rev.4.00  
Mar 17, 2017  
Page 7 of 25  
ISL8202M  
Electrical Specifications Unless otherwise noted, typical specifications are measured at V = 3.6V, V  
= 1.2V, T = +25°C. Boldface  
IN  
OUT A  
limits apply across the operating temperature range, -40°C to +85°C. (Continued)  
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(Note 6) TYP (Note 6)  
UNIT  
PG (Note 7)  
Output Low Voltage  
PG Pin Leakage Current  
OVP PG Rising Threshold  
UVP PG Rising Threshold  
UVP PG Hysteresis  
0.3  
V
µA  
V
PG = V  
0.01  
0.80  
85  
0.10  
IN  
80  
90  
%
30  
mV  
ms  
µs  
Delay Time (Rising Edge)  
PGOOD Delay Time (Falling Edge)  
EN (Note 7)  
Time from VOUT_ reached regulation  
0.5  
1.0  
7.5  
2.0  
Logic Input Low  
0.4  
1.0  
V
Logic Input High  
0.9  
V
Enable Logic Input Leakage Current  
Thermal Shutdown  
Pulled up to 3.6V  
0.1  
150  
25  
µA  
°C  
°C  
Temperature Rising  
Temperature Falling  
Thermal Shutdown Hysteresis  
NOTES:  
6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
7. Parameters with MIN and/or MAX limits are 100% tested for internal IC prior to module assembly, unless otherwise specified. Temperature limits  
established by characterization and are not production tested.  
8. A 0.1% tolerance resistor is used for R  
.
SET  
FN8761 Rev.4.00  
Mar 17, 2017  
Page 8 of 25  
ISL8202M  
Typical Performance Characteristics  
Efficiency  
T
= +25°C.  
A
100.0  
95.0  
90.0  
85.0  
80.0  
75.0  
70.0  
65.0  
100.0  
95.0  
90.0  
85.0  
80.0  
75.0  
70.0  
65.0  
60.0  
Vout=1V , Fsw=1.3MHz  
Vout=1.2V , Fsw=1.5MHz  
Vout=1.8V , Fsw=2MHz  
Vout=2.5V, Fsw=2MHz  
Vout=3.3V, Fsw=2MHz  
Vout=1V , Fsw=1.3MHz  
Vout=1.2V , Fsw=1.5MHz  
Vout=1.8V , Fsw=2MHz  
Vout=2.5V, Fsw=2MHz  
60.0  
0
0
0.5  
1
1.5  
2
2.5  
3
0.5  
1
1.5  
2
2.5  
3
LOAD CURRENT (A)  
LOAD CURRENT (A)  
FIGURE 4. EFFICIENCY T = +25°C, V = 3.3V PFM MODE  
FIGURE 5. EFFICIENCY T = +25°C, V = 5V PFM MODE  
A
IN  
A
IN  
100.0  
95.0  
90.0  
85.0  
80.0  
75.0  
70.0  
65.0  
60.0  
100.0  
95.0  
90.0  
85.0  
80.0  
75.0  
70.0  
65.0  
60.0  
Vout=1V , Fsw=1.3MHz  
Vout=1.2V , Fsw=1.5MHz  
Vout=1.8V , Fsw=2MHz  
Vout=2.5V, Fsw=2MHz  
Vout=3.3V, Fsw=2MHz  
Vout=1V , Fsw=1.3MHz  
Vout=1.2V , Fsw=1.5MHz  
Vout=1.8V , Fsw=2MHz  
Vout=2.5V, Fsw=2MHz  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
LOAD CURRENT (A)  
LOAD CURRENT (A)  
FIGURE 6. EFFICIENCY T = +25°C, V = 3.3V PWM MODE  
FIGURE 7. EFFICIENCY T = +25°C, V = 5V PWM MODE  
A
IN  
A
IN  
Output Voltage Ripple  
T
= +25°C.  
A
20mV/DIV  
20mV/DIV  
1µs/DIV  
1µs/DIV  
FIGURE 9. V = 5V, V  
IN  
= 3.3V, I  
= 3A, f  
= 2MHz,  
FIGURE 8. V = 5V, V  
IN OUT  
= 3.3V, I  
= 0A, f  
= 2MHz,  
OUT  
OUT  
SW  
OUT  
SW  
C
= 2x22µF CERAMIC CAPACITORS  
C
= 2x22µF CERAMIC CAPACITORS  
OUT  
OUT  
FN8761 Rev.4.00  
Mar 17, 2017  
Page 9 of 25  
ISL8202M  
Typical Performance Characteristics (Continued)  
20mV/DIV  
20mV/DIV  
1µs/DIV  
1µs/DIV  
FIGURE 10. V = 5V, V  
IN  
= 1.2V, I  
= 0A, f  
= 1.5MHz,  
SW  
FIGURE 11. V = 5V, V  
IN  
= 1.2V, I  
= 3A, f  
= 1.5MHz,  
SW  
OUT  
OUT  
OUT  
OUT  
C
= 2x22µF CERAMIC CAPACITORS  
C
= 2x22µF CERAMIC CAPACITORS  
OUT  
OUT  
20mV/DIV  
20mV/DIV  
1µs/DIV  
1µs/DIV  
FIGURE 12. V = 3.3V, V  
IN OUT  
= 2.5V, I  
OUT  
= 0A, f  
= 2MHz,  
FIGURE 13. V = 3.3V, V  
IN OUT  
=2.5V, I  
OUT  
= 3A, f  
= 2MHz,  
SW  
= 2x22µF CERAMIC CAPACITORS  
SW  
= 2x22µF CERAMIC CAPACITORS  
C
C
OUT  
OUT  
Load Transient Response  
T = +25°C, load current step slew rate: 1A/µs.  
A
I
1A/DIV  
OUT  
I
1A/DIV  
OUT  
V
50mV/DIV  
OUT  
V
50mV/DIV  
OUT  
100µs/DIV  
100µs/DIV  
FIGURE 14. V = 5V, V  
IN  
= 1V, I  
= 0 TO 3A, f  
= 1.3MHz,  
SW  
OUT  
OUT  
FIGURE 15. V = 5V, V  
IN OUT  
= 1.2V, I  
OUT  
= 0 TO 3A, f  
= 1.5MHz,  
SW  
= 2x22µF CERAMIC CAPACITORS  
C
= 3x22µF CERAMIC CAPACITORS  
OUT  
C
OUT  
FN8761 Rev.4.00  
Mar 17, 2017  
Page 10 of 25  
ISL8202M  
Typical Performance Characteristics (Continued)  
I
1A/DIV  
OUT  
I
1A/DIV  
OUT  
V
50mV/DIV  
OUT  
V
50mV/DIV  
OUT  
100µs/DIV  
100µs/DIV  
FIGURE 17. V = 5V, V  
IN OUT  
= 3.3V, I  
OUT  
= 0 TO 3A, f  
= 2MHz,  
SW  
FIGURE 16. V = 5V, V  
IN  
= 2.5V, I  
OUT  
= 0 TO 3A, f = 2MHz,  
SW  
OUT  
C
= 2x22µF CERAMIC CAPACITORS  
C
= 2x22µF CERAMIC CAPACITORS  
OUT  
OUT  
Start-Up  
T
= +25°C, Resistor load is used in the test.  
A
SW 5V/DIV  
SW 5V/DIV  
V
500mV/DIV  
V
500mV/DIV  
OUT  
OUT  
PGOOD 5V/DIV  
PGOOD 5V/DIV  
I
1A/DIV  
I
1A/DIV  
OUT  
OUT  
640µs/DIV  
640µs/DIV  
FIGURE 18. SOFT-START WITH 0A LOAD PWM MODE, V = 5V,  
IN  
FIGURE 19. SOFT-START WITH 3A LOAD PWM MODE, V = 5V,  
IN  
V
= 1.2V, I  
= 0A, C  
= 2x22µF CERAMIC  
V = 1.2V, I  
= 3A, C = 2x22µF CERAMIC  
OUT  
OUT  
OUT  
OUT OUT  
OUT  
CAPACITORS, C = 100µF POSCAP + 2x22µF CERAMIC  
CAPACITORS, C = 100µF POSCAP + 2x22µF CERAMIC  
IN  
IN  
CAPACITORS  
CAPACITORS  
SW 5V/DIV  
SW 5V/DIV  
V
500mV/DIV  
OUT  
V
500mV/DIV  
OUT  
PGOOD 5V/DIV  
PGOOD 5V/DIV  
I
1A/DIV  
OUT  
I
1A/DIV  
OUT  
640µs/DIV  
640µs/DIV  
FIGURE 20. SOFT-START WITH 0A LOAD PFM MODE, V = 5V,  
IN  
FIGURE 21. SOFT-START WITH 3A LOAD PFM MODE, V = 5V,  
IN  
V
= 1.2V, I  
= 0A, C  
= 2x22µF CERAMIC  
V = 1.2V, I  
= 3A, C = 2x22µF CERAMIC  
OUT  
OUT  
OUT  
OUT OUT  
OUT  
CAPACITORS, C = 100µF POSCAP + 2x22µF CERAMIC  
CAPACITORS, C = 100µF POSCAP + 2x22µF CERAMIC  
IN  
IN  
CAPACITORS  
CAPACITORS  
FN8761 Rev.4.00  
Mar 17, 2017  
Page 11 of 25  
ISL8202M  
Typical Performance Characteristics (Continued)  
SW 5V/DIV  
SW 5V/DIV  
V
500mV/DIV  
V
500mV/DIV  
OUT  
OUT  
PGOOD 5V/DIV  
PGOOD 5V/DIV  
I
1A/DIV  
I
1A/DIV  
OUT  
OUT  
640µs/DIV  
640µs/DIV  
FIGURE 22. PREBIAS SOFT-START WITH 0A LOAD PWM MODE,  
= 5V, V = 1.2V, I = 0A, C = 2x22µF  
FIGURE 23. PREBIAS SOFT-START WITH 0A LOAD PFM MODE,  
= 5V, V = 1.2V, I = 0A, C = 2x22µF  
V
V
IN  
OUT  
OUT  
OUT  
IN  
OUT  
OUT  
OUT  
CERAMIC CAPACITORS, C = 100µF POSCAP +  
CERAMIC CAPACITORS, C = 100µF POSCAP +  
IN  
IN  
2 x 22µF CERAMIC CAPACITORS  
2 x 22µF CERAMIC CAPACITORS  
Short-Circuit Protection  
T
= +25°C, V = 5V, V  
IN OUT  
= 1.2V, C = 100µF POScap + 22µF ceramic capacitors, C  
IN  
= 2x22µF ceramic  
OUT  
A
capacitors, output short-circuit during normal operation.  
SW 2V/DIV  
SW 2V/DIV  
V
500mV/DIV  
OUT  
V
500mV/DIV  
OUT  
I
2A/DIV  
IN  
I
2A/DIV  
IN  
PGOOD 2V/DIV  
10µs/DIV  
PGOOD 2V/DIV  
3.2ms/DIV  
FIGURE 25. OUTPUT SHORT-CIRCUIT PROTECTION, HICCUP MODE  
FIGURE 24. OUTPUT SHORT-CIRCUIT PROTECTION  
SW 2V/DIV  
V
500mV/DIV  
OUT  
I
2A/DIV  
IN  
PGOOD 2V/DIV  
3.2ms/DIV  
FIGURE 26. OUTPUT SHORT-CIRCUIT RECOVER FROM HICCUP  
FN8761 Rev.4.00  
Mar 17, 2017  
Page 12 of 25  
ISL8202M  
Typical Performance Characteristics (Continued)  
Overvoltage Protection  
T
= +25°C, V = 5V, V  
= 1.2V, C = 100µF POScap + 22µF ceramic capacitors, C  
= 2x22µF ceramic  
OUT  
A
IN OUT  
IN  
capacitors.  
SW 5V/DIV  
VOUT 500mV/DIV  
PGOOD 5V/DIV  
640µs/DIV  
FIGURE 27. OUTPUT OVERVOLTAGE PROTECTION  
Power Loss  
T
= +25°C, C = 100µF POScap + 22µF ceramic capacitors, C  
IN  
= 2x22µF ceramic capacitors.  
OUT  
A
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Vout=1.2V , Fsw=1.5MHz  
Vout=3.3V, Fsw=2MHz  
Vout=1.2V , Fsw=1.5MHz  
Vout=2.5V, Fsw=2MHz  
0.0  
0
0
0.5  
1
1.5  
2
2.5  
3
0.5  
1
1.5  
2
2.5  
3
LOAD CURRENT (A)  
LOAD CURRENT (A)  
FIGURE 29. POWER LOSS AT V = 3.3V, T = +25°C  
IN  
FIGURE 28. POWER LOSS AT V = 5V, T = +25°C  
IN  
A
A
Derating All of the following curves were plotted at T = +120°C.  
J
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.0  
3.5  
3.0  
2.5  
2.0  
0LFM  
200LFM  
1.5  
0LFM  
1.0  
200LFM  
0.5  
0.0  
0
10 20 30 40 50 60 70 80 90 100 110 120  
AMBIENT TEMPERATURE (°C)  
0
10 20 30 40 50 60 70 80 90 100 110 120  
AMBIENT TEMPERATURE (°C)  
FIGURE 31. DERATING CURVES AT V = 5V, V  
IN OUT  
= 3.3V  
FIGURE 30. DERATING CURVES AT V = 5V, V  
IN OUT  
= 1.2V  
FN8761 Rev.4.00  
Mar 17, 2017  
Page 13 of 25  
ISL8202M  
Typical Performance Characteristics (Continued)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0LFM  
0LFM  
200LFM  
200LFM  
0
10 20 30 40 50 60 70 80 90 100 110 120  
AMBIENT TEMPERATURE (°C)  
0
10 20 30 40 50 60 70 80 90 100 110 120  
AMBIENT TEMPERATURE (°C)  
FIGURE 32. DERATING CURVES AT V = 3.3V, V  
IN OUT  
= 1.2V  
FIGURE 33. DERATING CURVES AT V = 3.3V, V  
IN OUT  
= 2.5V  
TABLE 2. ISL8202M DESIGN GUIDE MATRIX (REFER TO Figure 1)  
(MHz) (µF) (µF) (kΩ)  
V
(V)  
V
(V)  
f
C
C
R
R
(kΩ)  
C
(pF)  
FF  
IN  
OUT  
SW  
0.8  
IN  
OUT  
FS  
261  
SET  
5
0.6  
0.9  
1
2x22  
2x22  
2x22  
2x22  
2x22  
2x22  
2x22  
2x22  
2x22  
2x22  
2x22  
2x22  
2x22  
2x22  
2x22  
3x22  
3x22  
2x22  
2x22  
2x22  
2x22  
2x22  
2x22  
3x22  
3x22  
2x22  
2x22  
2x22  
2x22  
2x22  
OPEN  
200  
680  
680  
680  
560  
390  
390  
220  
330  
680  
680  
680  
560  
390  
390  
220  
5
5
1.2  
1.3  
1.5  
1.9  
2
169  
154  
133  
102  
95.3  
95.3  
95.3  
261  
169  
154  
133  
102  
95.3  
95.3  
150  
5
1.2  
1.5  
1.8  
2.5  
3.3  
0.6  
0.9  
1
100  
5
66.5  
49.9  
31.6  
22.1  
OPEN  
200  
5
5
2
5
2
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
0.8  
1.2  
1.3  
1.5  
1.9  
2
150  
1.2  
1.5  
1.8  
2.5  
100  
66.5  
49.9  
31.6  
2
PWM  
PFM  
PWM  
CLOCK  
16 CYCLES  
PFM CURRENT LIMIT  
LOAD CURRENT  
I
L
0
NOMINAL +1.2%  
V
OUT  
NOMINAL -2.5%  
NOMINAL  
FIGURE 34. PFM MODE OPERATION WAVEFORMS  
FN8761 Rev.4.00  
Mar 17, 2017  
Page 14 of 25  
ISL8202M  
Functional Description  
V
EAMP  
The ISL8202M is a single channel 3A step-down high efficiency  
power module optimized for FPGA, DSP and Li-ion battery power  
devices. The module switches at 1.8MHz by default when the FS  
pin is shorted to VIN. The switching frequency is also adjustable  
V
CSA  
DUTY  
CYCLE  
from 680kHz to 3.5MHz through a resistor, R from FS to  
FS,  
SGND. To boost light-load efficiency, ISL8202M can also be  
configured to operate in PFM mode by pulling the SYNC pin to  
SGND. Peak current mode control scheme is implemented for  
fast transient response. By shorting the COMP pin to VIN, the  
module utilizes internal compensation to stabilize system and  
optimize transient response. Other excellent features include  
external synchronization, 100% duty cycle operation and very low  
quiescent current.  
I
L
V
OUT  
FIGURE 35. PWM OPERATION WAVEFORMS  
PFM (Skip) Mode  
PWM Control Scheme  
Pulling the SYNC pin LOW (<0.4V) forces the module into PFM  
mode. The ISL8202M enters a pulse-skipping mode at light load  
to minimize the switching losses by reducing the switching  
frequency. Figure 34 illustrates the Skip mode operation. A  
zero-cross sensing circuit shown in Figure 3 on page 3 monitors  
the NFET current for zero crossing. When 16 consecutive cycles  
are detected, the module enters the Skip mode. During the  
sixteen detecting cycles, the current in the inductor is allowed to  
become negative. The counter is reset to zero when the current in  
any cycle does not cross zero.  
Pulling the SYNC pin high (>0.8V) forces the module into PWM  
mode, regardless of output current. The ISL8202M employs the  
current-mode Pulse-Width Modulation (PWM) control scheme for  
fast transient response and pulse-by-pulse current limiting. As  
shown in Figure 3 on page 3, the current loop consists of the  
oscillator, the PWM comparator, current sensing circuit and the  
slope compensation for the current loop stability. The slope  
compensation is 440mV/Ts, which changes with frequency. The  
gain for the current sensing circuit is typically 140mV/A. The control  
reference for the current loops comes from the Error Amplifier's  
(EAMP) output.  
Once the Skip mode is entered, the pulse modulation starts  
being controlled by the skip comparator shown in Figure 3 on  
page 3. Each pulse cycle is still synchronized by the PWM clock.  
The PFET is turned on at the clock's rising edge and turned off  
when the output is higher than 1.2% of the nominal regulation or  
when its current reaches the peak skip current limit value. Then,  
the inductor current is discharged to 0A and stays at zero (the  
internal clock is disabled) and the output voltage reduces  
gradually due to the load current discharging the output  
capacitor. When the output voltage drops to the nominal voltage,  
the PFET will be turned on again at the rising edge of the internal  
clock as it repeats the previous operations. The module resumes  
normal PWM mode operation when the output voltage drops  
2.5% below the nominal voltage.  
The PWM operation is initialized by the clock from the oscillator.  
The P-channel MOSFET is turned on at the beginning of a PWM  
cycle and the current in the MOSFET starts to ramp up. When the  
sum of the current amplifier, CSA and the slope compensation  
reaches the control reference of the current loop, the PWM  
comparator COMP sends a signal to the PWM logic to turn off the  
PFET and turn on the N-channel MOSFET. The NFET stays on until  
the end of the PWM cycle. Figure 35 shows the typical operating  
waveforms during the PWM operation. The dotted lines illustrate  
the sum of the slope compensation ramp and the Current-Sense  
Amplifier’s (CSA) output.  
The output voltage is regulated by controlling the V  
EAMP  
voltage  
to the current loop. The bandgap circuit outputs a 0.6V reference  
voltage to the voltage loop. The feedback signal comes from the  
VFB pin. The soft-start block only affects the operation during  
start-up and will be discussed separately, please refer to “Soft  
Start-Up” on page 16. The error amplifier is a transconductance  
amplifier that converts the voltage error signal to a current  
output. When the COMP is tied to VIN, the voltage loop is  
internally compensated with the 55pF and 100kΩ RC network.  
Frequency Adjust  
The switching frequency of ISL8202M is adjustable ranging from  
680kHz to 3.5MHz via a simple resistor, R , across FS to SGND.  
The switching frequency setting is based on Equation 1:  
FS  
3
220 10  
------------------------------  
R
k =  
14  
(EQ. 1)  
FS  
f
kHz  
OSC  
When the FS pin is directly tied to VIN, the frequency of operation is  
fixed at 1.8MHz. For selections of switching frequency of typical  
operation conditions, refer to Table 2 on page 14. More detailed  
information on recommended switching frequency  
recommendation is provided in “Recommended Switching  
Frequency” on page 17.  
FN8761 Rev.4.00  
Mar 17, 2017  
Page 15 of 25  
ISL8202M  
200kHz, so that the output can start-up smoothly at light load  
condition. During soft-start, the IC operates in the Skip mode to  
support prebiased output condition.  
Overcurrent Protection  
The overcurrent protection is realized by monitoring the CSA  
output with the OCP comparator, as shown in Figure 3 on page 3.  
The current sensing circuit has a gain of 140mV/A, from the PFET  
current to the CSA output. When the CSA output reaches the  
threshold, the OCP comparator is tripled and turns off the PFET  
immediately. The overcurrent function protects the module from a  
shorted output by monitoring the current flowing through the  
upper MOSFET.  
Tie SS to SGND for internal soft-start, which is approximately  
1ms. Connect a capacitor from SS to SGND to adjust the  
soft-start time. This capacitor, along with an internal 1.85µA  
current source sets the soft-start interval of the module, t as  
SS,  
shown by Equation 2:  
C
F= 3.1 t s  
SS  
(EQ. 2)  
SS  
Upon detection of an overcurrent condition, the upper MOSFET  
will be immediately turned off and will not be turned on again  
until the next switching cycle. Upon detection of the initial  
overcurrent condition, the overcurrent fault counter is set to 1. If,  
on the subsequent cycle, another overcurrent condition is  
detected, the OC fault counter will be incremented. If there are  
17 sequential OC fault detections, the module will be shut down  
under an overcurrent fault condition. An overcurrent fault  
condition will result in the module attempting to restart in a  
hiccup mode within the delay of eight soft-start periods. At the  
C
must be less than 33nF to insure proper soft-start reset after  
SS  
fault condition.  
External Synchronization Control  
The frequency of operation can be synchronized up to 3.5MHz by  
an external signal applied to the SYNC pin. The rising edge of  
SYNC signal triggers the rising edge of PWM ON pulse. To ensure  
proper operation, it is recommended that the external SYNC  
frequency is within ±25% of the switching frequency set by FS  
pin.  
th  
end of the 8 soft-start wait period, the fault counters are reset  
and soft-start is attempted again. If the overcurrent condition  
goes away during the delay of 8 soft-start periods, the output will  
resume back into regulation after hiccup mode expires.  
Enable  
The enable (EN) input allows the user to control the turning on or off  
of the module for purposes such as power-up sequencing. When the  
module is enabled, there is typically a 600µs delay for waking up  
the bandgap reference and then the soft start-up begins.  
Negative Current Protection  
Similar to overcurrent, the negative current protection is realized  
by monitoring the current across the low-side NFET, as shown in  
Figure 3 on page 3. When the valley point of the inductor current  
reaches -3A for 4 consecutive cycles, both PFET and NFET are  
turned off. The 100Ω in parallel to the NFET will activate  
discharging the output into regulation. The control will begin to  
switch when output is within regulation. The module will be in PFM  
for 20µs before switching to PWM, if necessary.  
Discharge Mode (Soft-Stop)  
When a transition to Shutdown mode occurs or the VIN UVLO is  
set, the output discharges to PGND through an internal 100Ω  
switch.  
100% Duty Cycle  
Power-Good  
PG is an open-drain output of a window comparator that  
continuously monitors the module output voltage. PG is actively held  
low when EN is low and during the module soft-start period. After  
1ms delay of the soft-start period, PG becomes high impedance as  
long as the output voltage is within the nominal regulation voltage  
The ISL8202M features a 100% duty cycle operation to minimize  
switching loss. When the input voltage drops to a level that the  
ISL8202M can no longer maintain the regulation at the output,  
the module completely turns on the PFET.  
Thermal Shutdown  
set by V . Under output overvoltage fault condition (output voltage  
The ISL8202M has built-in thermal protection. When the internal  
temperature reaches +150°C, the module is completely shut down.  
As the temperature drops to +125°C, the ISL8202M resumes  
operation by stepping through the soft-start.  
FB  
is 33% higher than nominal value) or output undervoltage fault  
condition (output voltage is 15% lower than nominal value), the PG  
will be pulled low. Any fault condition forces PG low until the fault  
condition is cleared by attempts to soft-start. For logic level output  
voltages, connect an external pull-up resistor, between PG and VIN.  
A 100kΩ resistor works well in most applications.  
Applications Information  
Programming the Output Voltage  
The output voltage of the module is programmed by an external  
UVLO  
When the input voltage is below the Undervoltage Lockout  
(UVLO) threshold, the module is disabled.  
resistor, as R  
SGND. R  
SET  
in Figure 1 on page 1 applied from FB pin to  
in combination with the internal 100kΩ 0.5%  
SET  
resistor connected from FB to VSENSE forms resistor divider that  
sets the output voltage. The output voltage is governed by  
Equation 3:  
Soft Start-Up  
The soft start-up reduces the inrush current during the start-up.  
The soft-start block outputs a ramp reference to the input of the  
error amplifier. This voltage ramp limits the inductor current as  
well as the output voltage speed, so that the output voltage rises  
R
+ 100k  
SET  
---------------------------------------  
V
= V  
(EQ. 3)  
OUT  
REF  
R
SET  
in a controlled fashion. When V is less than 0.1V at the  
FB  
beginning of the soft-start, the switching frequency is reduced to  
FN8761 Rev.4.00  
Mar 17, 2017  
Page 16 of 25  
ISL8202M  
.
Where:  
• C  
TABLE 3. TYPICAL VOLTAGE SETTING RESISTOR VALUES  
(V) (kΩ)  
V
R
SET  
is the minimum required input capacitance (µF)  
OUT  
0.6  
IN(MIN)  
OPEN  
300  
• I is the output current (A)  
O
0.8  
1.0  
1.2  
1.8  
2.5  
3.3  
• D is the duty cycle  
150  
• V  
is the allowable peak-to-peak voltage (V)  
is the switching frequency (Hz)  
P-P  
100  
• f  
SW  
49.9  
31.6  
22.1  
Low Equivalent Series Resistance (ESR) ceramic capacitance is  
recommended to be placed as close as possible to the module  
input to reduce input voltage ripple and decouple between the  
VIN and PGND. This capacitance not only reduces voltage ringing  
created by the switching current across parasitic circuit elements  
but also reduce the input noise seen by the module. Moreover,  
the estimated RMS ripple current should be considered in  
choosing ceramic capacitors. The RMS ripple current can be  
calculated by Equation 5:  
Please note that the output voltage accuracy is also dependent  
on the resistor accuracy of R . The user needs to select high  
SET  
accuracy resistors in order to achieve the overall output accuracy.  
Recommended Switching Frequency  
With varieties of input and output voltage combinations, one  
must choose wisely on which frequency to operate at. Selection  
Io D1 D  
--------------------------------  
=
(EQ. 5)  
I
INRMS  
of switching frequency for each V and V  
combination needs  
IN OUT  
to take in to account a few trade-offs. Generally, lower switching  
frequency will lead to higher efficiency. However, switching  
frequency should not be decreased too low due to negative  
current protection limit. Moreover, when output voltage is  
relatively high, low switching frequency will result in more sub-  
harmonic oscillation. Therefore, operating frequency needs to be  
Each 22µF X5R or X7R ceramic capacitor is typically good for 2A  
to 3A of RMS ripple current. Refer to the capacitor vendor to  
check the RMS current ratings.  
Based on the above considerations, minimum total input  
capacitance of 44µF is required for ISL8202M. Add additional  
capacitance if possible. Use X5R or X7R ceramic capacitors. The  
placement of the input ceramic capacitors should be as close as  
possible to the module input. Refer to “PCB Layout Pattern  
Design” on page 20 for more information. A bulk input  
capacitance may also be needed if the input source does not  
have enough output capacitance. A typical value of bulk input  
capacitor is 100µF. In such conditions, this bulk input  
capacitance can supply the current during output load transient  
conditions.  
kept relatively high under high V  
conditions. However, again,  
OUT  
switching frequency cannot be increased too much. Otherwise,  
the minimum on-time limit could be violated. Based on these  
considerations, Figure 36 provides the recommended switching  
frequency under various typical V and across V  
range.  
IN  
OUT  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Output Capacitor Selection  
Ceramic capacitors are typically used as the output capacitors  
for the ISL8202M. Refer to Table 2 on page 14 for recommended  
output capacitor values. Bulk output capacitors that have  
adequately low Equivalent Series Resistance (ESR), such as low  
ESR polymer capacitors or a low ESR tantalum capacitor, may  
also be used in combination with the ceramic capacitors,  
depending on the output voltage ripple and transient  
requirements.  
VIN=5V  
VIN=4V  
VIN=3.3V  
VIN=2.6V  
0.6  
1
1.4 1.8 2.2 2.6  
3
3.4 3.8 4.2 4.6  
5
OUTPUT VOLTAGE (V)  
Feed-Forward Capacitor Selection  
FIGURE 36. SWITCHING FREQUENCY RECOMMENDATION  
In typical applications where the output capacitors are all ceramic, a  
feed-forward capacitor, as shown as C in Figure 1 on page 1, is  
needed to insure loop stability in extreme operating conditions. With  
Input Capacitor Selection  
FF  
Selection of the input filter capacitor is based on how much  
ripple the supply can tolerate on the DC input line. The larger the  
capacitor, the less ripple expected, however, consideration  
should be given to the higher surge current during power-up. The  
ISL8202M provides a soft-start function that controls and limits  
the current surge. The total capacitance the input capacitor can  
be calculated based on Equation 4:  
internal compensation mode enabled, the C values for typical  
FF  
operating conditions are optimized and listed in Table 2 on page 14.  
Please note that, for system parameters that are different from  
Table 2 or external instead of internal compensation is used, the  
optimized value of C needs to be adjusted.  
FF  
I
D1 D  
O
V
(EQ. 4)  
----------------------------------  
=
C
INMIN  
f  
P-P SW  
FN8761 Rev.4.00  
Mar 17, 2017  
Page 17 of 25  
ISL8202M  
Typical Application Circuit  
Figure 1 on page 1 only illustrates the application circuit with  
minimum external components required for operation in PWM  
mode. A more comprehensive typical application circuit diagram is  
shown in Figure 37. In this example, a pull-up resistor is added to  
the PG pin to allow power-good signal monitoring. Soft start-up  
time adjustment is achieved by adding a capacitor, C , to the SS  
SS  
pin. Typical application circuit of PFM mode operation can also be  
found in Figure 38.  
ISL8202M  
1.2V 3A OUTPUT  
2.6V TO 5.5V INPUT  
VIN  
VOUT  
SW  
RPU  
10k  
CIN  
EN  
COUT  
2x22µF  
SYNC  
PG  
VSENSE  
COMP  
FB  
2x22µF  
PGOOD  
FS  
RSET  
100k  
SS  
CFF  
EPAD  
RFS  
560pF  
SGND  
PGND  
CSS  
133k  
15nF  
FIGURE 37. COMPLETE APPLICATION CIRCUIT DIAGRAM  
ISL8202M  
1.2V 3A OUTPUT  
2.6V TO 5.5V INPUT  
CIN  
VIN  
EN  
VOUT  
SW  
COUT  
2x22µF  
PG  
VSENSE  
COMP  
FB  
2x22µF  
SYNC  
FS  
RSET  
100k  
SS  
CFF  
EPAD  
RFS  
560pF  
SGND  
PGND  
133k  
FIGURE 38. TYPICAL APPLICATION CIRCUIT DIAGRAM IN PFM MODE  
FN8761 Rev.4.00  
Mar 17, 2017  
Page 18 of 25  
ISL8202M  
• It is recommended to keep the SW pads only on the top and  
inner layers of the PCB. Do not expose the SW pads to the  
outside on the bottom layer of the PCB. In order to minimize  
switch node resistance, connect Pads 21 and 9 using wide  
trace or shape.  
Thermal Consideration and Current Derating  
The ISL8202M’s thermally enhanced package offers typical  
junction to ambient thermal resistance of approximately  
JA  
27.4°C/W at natural convection with a typical 4-layer PCB board.  
In applications with elevated ambient temperature, the  
continuous current handling capability of the module may need  
to be derated. The derating curves (Figure 30 through 33) are  
fully tested. They are on the basis of determining the maximum  
continuous load current while limiting the maximum junction  
temperature to +120°C, which provides 5°C margin of safety  
from the rated junction temperature of +125°C. The test was  
done across various typical operation conditions, providing a  
starting point for system thermal design. Note that all the  
derating curves are obtained based on tests in free air with the  
module mounted on the ISL8202MEVAL1Z evaluation board with  
“direct attach” features. Refer to ISL8202MEVAL1Z User Guide  
for evaluation board details. Also see Tech Brief TB379 for  
general thermal metric information.  
• If remote sense is needed, route remote sensing trace from  
point-of-load to module VSENSE pin through quiet inner layer  
that is shielded by PGND planes.  
• Avoid routing noise-sensitive signal traces such as FB, COMP  
near the noisy SW pins.  
• The feedback and compensation network should be placed as  
close as possible to the FB pins and far away from the SW pins.  
In real applications where the system parameters and layout are  
different than the evaluation board, the customer can adjust the  
margin of safety. Other heat sources and design margins also  
need to be taken into consideration.  
PCB Layout Recommendations  
A few layout considerations need to be taken into account in  
order to achieve proper operation of ISL8202M. An optimized  
layout design also allows the module to have lower power loss  
and good thermal performance. An illustrative layout example is  
shown in Figures 39 and 40. Key points are listed in the  
following:  
• Place the input ceramic capacitors as close as possible to the  
module input. These ceramic capacitors are used to minimize  
the high frequency noise by reducing parasitic inductance of  
the switching loop. Optimized placement of these capacitors  
will not only lead to less switch node ringing but also minimize  
the noise seen by the module to insure proper operation. It is  
recommended to use X5R or X7R ceramic capacitors with  
minimum total capacitance of 44µF at module input. It is a  
FIGURE 39. LAYOUT EXAMPLE - TOP LAYER  
MUST that one of the input capacitors (C ) with no less than  
IN1  
3.3µF capacitance should be placed on the same layer  
(assuming top layer) as module and within less than 70 mil  
clearance to module input (refer to Figure 39). For capacitors  
on the bottom layer, it is recommended to have one (C  
placed from VIN to PGND copper close to exposed pad  
)
IN2  
(Pad 20) vias (as shown in the layout example in Figure 40).  
• Use large copper areas for power path (VIN, PGND) to minimize  
conduction loss and thermal stress. Also, it is recommended to  
use multiple vias to connect the power planes in different  
layers. Use at least 5 vias on the exposed Pad 20 connected to  
PGND plane(s) for the best thermal relief.  
• Use a separate SGND ground copper area for components that  
are connected to signal ground. Connect SGND copper to  
module Pad 22 through multiple vias (refer to Figure 40).  
Because Pad 22 is connected to module internal PGND at a  
single location, the SGND copper area and PGND plane on the  
PCB can be left separated.  
FIGURE 40. LAYOUT EXAMPLE - BOTTOM LAYER  
FN8761 Rev.4.00  
Mar 17, 2017  
Page 19 of 25  
ISL8202M  
Package Description  
Stencil Pattern Design  
The ISL8202M is integrated into a Quad Flatpack No-lead (QFN)  
package. This package has such advantages as good thermal  
and electrical conductivity, low weight and small size. The QFN  
package is applicable for surface mounting technology and is  
becoming more common in the industry. The ISL8202M is a  
copper leadframe based package with exposed copper thermal  
pads, which have good electrical and thermal conductivity. The  
copper leadframe and multicomponent assembly are  
overmolded with polymer mold compound to protect these  
devices.  
Reflowed solder joints on the perimeter I/O lands should have  
about a 50µm to 75µm (2 mil to 3 mil) standoff height. The  
solder paste stencil design is the first step in developing  
optimized, reliable solder joins. The stencil aperture size to land  
size ratio should typically be 1:1. Aperture width may be reduced  
slightly to help prevent solder bridging between adjacent I/O  
lands.  
To reduce solder paste volume on the larger thermal lands, an  
array of smaller apertures instead of one large aperture is  
recommended. The stencil printing area should cover 50% to  
80% of the PCB layout pattern. Consider the symmetry of the  
whole stencil pattern when designing the pads.  
The package outline, typical PCB layout pattern and typical  
stencil pattern design are shown in the L22.4.5x7.5 “Package  
Outline Drawing” on page 22. TB493 shows typical reflow profile  
parameters. These guidelines are general design rules. Users can  
modify parameters according to specific applications.  
A laser-cut, stainless-steel stencil with electropolished  
trapezoidal walls is recommended. Electropolishing smooths the  
aperture walls, resulting in reduced surface friction and better  
paste release, which reduces voids. Using a Trapezoidal Section  
Aperture (TSA) also promotes paste release and forms a  
brick-like paste deposit, which assists in firm component  
placement.  
PCB Layout Pattern Design  
The bottom of ISL8202M is a leadframe footprint, which is  
attached to the PCB by surface mounting. The PCB layout pattern  
is shown in the L22.4.5x7.5 “Package Outline Drawing” on  
page 22. The PCB layout pattern is essentially 1:1 with the QFN  
exposed pad and the I/O termination dimensions, except that the  
PCB lands are slightly longer than the QFN terminations by about  
0.2mm (0.4mm maximum). This extension allows for solder  
filleting around the package periphery and ensures a more  
complete and inspectable solder joint. The thermal lands on the  
PCB layout should match 1:1 with the package exposed die pads.  
Reflow Parameters  
Due to the low mount height of the QFN, “No Clean” Type 3 solder  
paste, per ANSI/J-STD-005, is recommended. Nitrogen purge is  
also recommended during reflow. A system board reflow profile  
depends on the thermal mass of the entire populated board.  
Thus it is not practical to define a specific soldering profile just  
for the QFN. The profile given in TB493 is provided as a guideline  
to customize for varying manufacturing practices and  
applications.  
Thermal Vias  
A grid of 1.0mm to 1.2mm pitched thermal vias, which drops  
down and connects to buried copper planes, should be placed  
under the thermal land. The vias should be about 0.3mm to  
0.33mm in diameter, with the barrel plated to about 2.0 ounce  
copper. Although adding more vias (by decreasing pitch)  
improves thermal performance, it also diminishes results as  
more vias are added. Use only as many vias are needed for the  
thermal land size and as your board design rules allow.  
FN8761 Rev.4.00  
Mar 17, 2017  
Page 20 of 25  
ISL8202M  
Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted.  
Please visit our website to make sure you have the latest revision.  
DATE  
REVISION  
FN8761.4  
FN8761.3  
FN8761.2  
FN8761.1  
CHANGE  
Updated Ordering Information table tape and reel units for ISL8202MIRZ-T from 4k to 3k.  
Ordering Information table, Note 2 updated.  
Mar 17, 2017  
Aug 16, 2016  
May 19, 2016  
May 10, 2016  
Related Literature on page 1: Added UG071 link.  
Updated default setting from 1.9MHz to 1.8MHz throughout datasheet.  
Updated title of datasheet.  
Replaced Figure 1 on page 1.  
Updated Figure 3 on page 3.  
Updated typical specification for “Nominal Switching Frequency” on page 7 from 1900 to 1835.  
Added Note 8 on page 8.  
Added “Typical Application Circuit” section on page 18.  
On page 25, replaced Recommended Stencil Perimeter Pads view to match POD.  
Mar 21, 2016  
FN8761.0  
Initial release.  
About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com.  
For a listing of definitions and abbreviations of common terms used in our documents, visit www.intersil.com/glossary.  
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support.  
© Copyright Intersil Americas LLC 2016-2017. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8761 Rev.4.00  
Mar 17, 2017  
Page 21 of 25  
For the most recent package outline drawing, see L22.4.5x7.5.  
Package Outline Drawing  
L22.4.5x7.5  
22 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 0, 9/15  
1.300  
2x 1.610  
2x 1.360  
C A B  
4.5  
A
2x 0.390  
4x 0.300  
0.05  
B
4x 0.390  
42x 0.220  
0.10 C A B  
2x 3.110  
0.05  
C
38x 0.500 BSC  
7.5  
2x 0.350  
0.710  
2x 1.230  
1.385  
1.500  
1.000  
2.900  
21x 0.250  
0.450  
11x 0.6  
0.05 C  
0.05 C  
(2X)  
PIN 1 IDENTIFICATION  
PIN 1  
INDEX AREA  
1.000  
1.250  
2x 0.890  
1.125  
(2X)  
1.000  
1.500  
1.885  
TOP VIEW  
BOTTOM VIEW  
SEE DETAIL “X”  
1.90 MAX  
0.05 C  
0.08 C  
4
C
C
0.203 REF  
SEATING PLANE  
0 - 0.05  
(20x)  
0.05  
DETAIL “X”  
SIDE VIEW  
NOTES:  
1. Dimensions are in millimeters.  
2. Dimensioning and tolerancing conform to ASMEY 14.5m-1994.  
3. Unless otherwise specified, tolerance: Decimal ± 0.05.  
4. Tiebar shown (if present) is a non-functional feature.  
5. The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
2.450  
1.650  
2.450  
1.950  
1.860  
1.360  
1.250  
1.140  
1.125  
0.865  
0.640  
0.860  
0.640  
0.360  
0.140  
0.00  
0.140  
0.360  
0.140  
0.00  
0.140  
0.360  
0.250  
0.365  
0.360  
0.640  
0.640  
0.650  
0.950  
1.000  
1.250  
1.360  
1.650  
1.800  
1.700  
1.860  
1.950  
2.450  
2.450  
PCB LAND PATTERN  
1.950  
1.950  
1.659  
1.445  
1.245  
1.700  
1.226  
1.050  
0.840  
0.741  
0.600  
0.400  
0.000  
0.000  
0.050  
0.340  
0.741  
0.665  
0.689  
1.245  
1.445  
1.659  
0.985  
1.275  
1.310  
1.700  
1.950  
1.950  
RECOMMENDED STENCIL INTERIOR PADS  
2.425  
2.050  
2.425  
2.050  
1.845  
1.655  
1.345  
1.975  
1.675  
1.345  
1.155  
1.155  
0.845  
0.655  
0.845  
0.655  
0.345  
0.155  
0.345  
0.155  
0.000  
0.000  
0.155  
0.345  
0.655  
0.155  
0.345  
0.655  
0.845  
0.975  
0.845  
1.155  
1.345  
1.155  
1.345  
1.675  
1.655  
1.845  
1.820  
2.050  
1.975  
2.050  
2.425  
2.425  
RECOMMENDED STENCIL PERIMETER PADS  

相关型号:

ISL8203M

Dual 3A/Single 6A Step-Down DC/DC Power Module
RENESAS

ISL8203MEVAL2Z

Dual 3A/Single 6A Step-Down DC/DC Power Module
RENESAS

ISL8203MIRZ

Dual 3A/Single 6A Step-Down DC/DC Power Module; MODULE23; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL8203MIRZ-T

Dual 3A/Single 6A Step-Down DC/DC Power Module; MODULE23; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL8204M

Complete High Efficiency DC/DC Power Module
INTERSIL

ISL8204M

Complete High Efficiency DC/DC Power Module
RENESAS

ISL8204MEVAL1Z

Complete High Efficiency DC/DC Power Module
RENESAS

ISL8204MIRZ

Complete High Efficiency DC/DC Power Module
INTERSIL

ISL8204MIRZ

Complete High Efficiency DC/DC Power Module
RENESAS

ISL8206M

Complete High Efficiency DC/DC Power Module
INTERSIL

ISL8206M

Complete High Efficiency DC/DC Power Module
RENESAS

ISL8206MEVAL1Z

Complete High Efficiency DC/DC Power Module
RENESAS