ISL85003AEVAL2Z [RENESAS]

Highly Efficient 3A Synchronous Buck Regulator;
ISL85003AEVAL2Z
型号: ISL85003AEVAL2Z
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Highly Efficient 3A Synchronous Buck Regulator

文件: 总23页 (文件大小:1462K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL85003, ISL85003A  
Highly Efficient 3A Synchronous Buck Regulator  
FN7968  
Rev.2.00  
Jan 15, 2016  
The ISL85003 and ISL85003A are synchronous buck regulators  
with integrated high-side and low-side FETs. The regulator can  
operate from an input voltage range of 4.5V to 18V while  
delivering a very efficient continuous 3A current. This is all  
delivered in a very compact 3mmx4mm DFN package.  
Features  
• Input voltage range 4.5V to 18V  
• Output voltage adjustable from 0.8V, ±1%  
• Efficiency up to 95%  
The ISL85003 is designed on Intersil’s proprietary fab process  
• Integrated boot diode with undervoltage detection  
that is designed to deliver very low r  
FETs with an  
optimized current mode controller wrapped around it. The  
DS(ON)  
• Current mode control  
high-side NFET is designed to have an r  
the low-side NFET is designed to have an r  
With these two FETs, the device delivers very high efficiency  
power to the load.  
of 65mΩ while  
of 45mΩ.  
- DCM/CCM  
DS(ON)  
- Internal or external compensation options  
- 500kHz switching frequency option  
- External synchronization up to 2MHz on ISL85003  
DS(ON)  
The ISL85003 can automatically switch between DCM and  
CCM for light-load efficiency in DCM. The switching frequency  
in CCM is internally set to 500kHz.  
• Adjustable soft-start time on the ISL85003A  
• Open-drain PG window comparator  
- Built-in protection  
The device provides a maximum static regulation tolerance of  
±1% over wide line, load and temperature ranges. The output  
is user adjustable, with external resistors, down to 0.8V. Pulling  
EN above 0.6V enables the controller. The regulator supports  
prebiased output.  
- Positive and negative overcurrent protection  
- Overvoltage and thermal protection  
- Input overvoltage protection  
• Small 12 Ld 3mmx4mm Dual Flat No-Lead (DFN) package  
Fault protection is provided by internal current limiting during  
positive or negative overcurrent conditions, output and input  
under and overvoltage detection and an over-temperature  
monitoring circuit.  
Applications  
• Network and communication equipment  
• Industrial process control  
• Multifunction printers  
Related Literature  
AN1935, “ISL85003DEMO1Z, ISL85003ADEMO1Z  
Evaluation Board User Guide”  
• Point-of-load regulators  
• Standard 12V rail supplies  
• Embedded computing  
AN1930, “ISL85003EVAL2Z, ISL85003AEVAL2Z Evaluation  
Board User Guide”  
AN1965, “Effectively Using the Intersil Small Form Factor  
Power Management Evaluation Boards”  
OPTIONAL CAP  
NO CAP: t = 2ms  
SS  
U1  
SS  
ISL85003A  
t
= 2ms, FIXED  
U1  
ISL85003  
SS  
For t >2ms, ADD CAP:  
SS  
C[nF] = 4.1 * t [ms]-1.6nF  
SS  
C
2
C
C
3
0.1µF  
1µF  
22nF  
3
0.1µF  
1µF  
1
2
L = 0.5V H = 1.20V POS EDGE  
L = DE H = FPWM  
12  
11  
1
2
12  
11  
SYNC  
BOOT  
VDD  
VIN  
SYNC  
PG  
SYNC  
PG  
BOOT  
VDD  
VIN  
C
C
4
4
PG  
PG  
OPEN DRAIN, ADD PULL-UP  
+5V  
10  
OPEN DRAIN, ADD PULL-UP  
+5V  
10  
4.5 TO 18V  
3
4.5 TO 18V  
3
EN  
EN  
VIN  
EN  
VIN  
EN  
THRESHOLD 1V, HYST 100mV  
C
5
10µF  
THRESHOLD 1V, HYST 100mV  
C
10µF  
C
5
10µF  
C
10µF  
6
6
+0.8V ±8mV  
+0.8V ±8mV  
GND  
4
9
8
GND  
4
9
8
AGND  
AGND  
FB  
VIN  
PHASE  
PHASE  
FB  
VIN  
PHASE  
PHASE  
R
R
2
R
R
1
1
2
5
6
301k 57.1k  
5
6
301k 57.1k  
C
C
4.7pF  
1
COMP  
AGND  
1
1%  
1%  
COMP  
AGND  
1%  
1%  
4.7pF  
+5V  
MAX 3A  
+5V  
MAX 3A  
L
1
L
1
7
f
7
f
VOUT  
GND  
VOUT  
GND  
= 500kHz  
4.7µH  
C ,22µF  
= 500kHz  
SW  
4.7µH  
C
8
C ,22µF  
9
SW  
C
9
8
47µF  
47µF  
DEVICE MUST BE  
CONNECTED TO GND  
PLANE WITH 8 VIAs.  
DEVICE MUST BE  
CONNECTED TO GND  
PLANE WITH 8 VIAs.  
+5V  
FIGURE 1A. ISL85003 V RANGE FROM 4.5V TO 18V, V  
IN  
= 5V AND  
FIGURE 1B. ISL85003A V RANGE FROM 4.5V TO 18V, V  
IN  
= 5V  
OUT  
OUT  
AND INTERNAL COMPENSATION WITH EXTERNAL  
SOFT-START  
INTERNAL COMPENSATION WITH EXTERNAL  
FREQUENCY SYNC  
FIGURE 1. TYPICAL APPLICATION SCHEMATICS  
FN7968 Rev.2.00  
Jan 15, 2016  
Page 1 of 23  
ISL85003, ISL85003A  
Table of Contents  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Operation Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
CCM Control Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Light-Load Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Synchronization Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Enable, Soft-Start and Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Output Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Protection Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Switching Regulator Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Negative Current Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Output Overvoltage Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Input Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Thermal Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Power Derating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Application Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
BOOT Undervoltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Switching Regulator Output Capacitor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Output Inductor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Input Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Loop Compensation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Compensator Design Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
High DC Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Layout Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
About Intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
FN7968 Rev.2.00  
Jan 15, 2016  
Page 2 of 23  
ISL85003, ISL85003A  
Functional Block Diagram  
SS (ISL85003A)  
SYNC (ISL85003)  
SOFT-START  
CONTROL  
1
1
2
BOOT  
BOOT  
12  
11  
REFRESH  
VDD  
VIN  
VIN  
PG  
LDO  
10  
9
1.5ms  
DELAY  
FAULT  
MONITOR  
CIRCUITS  
CSA  
UNDERVOLTAGE  
LOCKOUT  
SLOPE COMP  
0.8V  
+
EN  
REFERENCE  
3
4
+
-
POR  
+
-
FB  
PHASE  
PHASE  
8
7
EA  
GATE DRIVE  
600k  
PGND  
30pF  
13  
COMP  
5
OSCILLATOR  
DCM  
GND DETECT  
DETECTOR  
ZERO CROSS  
DETECTOR  
AGND  
NEGATIVE  
CURRENT  
LIMIT  
6
FIGURE 2. FUNCTIONAL BLOCK DIAGRAM  
FN7968 Rev.2.00  
Jan 15, 2016  
Page 3 of 23  
ISL85003, ISL85003A  
Pin Configurations  
ISL85003  
(12 ld 3X4 DFN)  
TOP VIEW  
ISL85003A  
(12 LD 3X4 DFN)  
TOP VIEW  
SYNC  
PG  
SS  
PG  
1
2
3
4
5
6
12 BOOT  
1
2
3
4
5
6
12 BOOT  
11  
10  
9
11  
10  
9
VDD  
VDD  
EN  
EN  
VIN  
VIN  
PGND  
13  
PGND  
13  
FB  
FB  
VIN  
VIN  
COMP  
AGND  
8
PHASE  
PHASE  
COMP  
AGND  
8
PHASE  
PHASE  
7
7
Pin Descriptions  
PIN  
PIN  
NUMBER  
NAME  
DESCRIPTION  
1
SYNC Synchronization and mode selection input. Connect to VDD for CCM mode. Connect to AGND for DCM mode. Connect to an  
external function generator for synchronization with the positive edge trigger. There is an internal 1MΩ pull-up resistor to VDD,  
which prevents an undefined logic state in cases where SYNC is floating.  
(ISL85003)  
1
SS  
Soft-Start input. This pin provides a programmable soft-start. When the chip is enabled, the regulated 4µA pull-up current  
source charges a capacitor connected from SS to ground. The output voltage of the converter follows the ramping voltage on  
this pin. Without the external capacitor, the default soft-start is 2ms.  
(ISL85003A)  
2
PG  
Power-good open-drain output. Connect 10kΩ to 100kΩ pull-up resistor between PG and VDD or between PG and a voltage not  
exceeding 5.5V. PG transitions high about 1ms after the switching regulator’s output voltage reaches the regulation threshold,  
which is 85% of the regulated output voltage typically.  
3
4
EN  
FB  
Enable input. The regulator is held off when the pin is pulled to ground. The device is enabled when the voltage on this pin rises  
above 0.6V.  
Feedback input. The synchronous buck regulator employs a current mode control loop. FB is the negative input to the voltage  
loop error amplifier. The output voltage is set by an external resistor divider connected to FB. The output voltage can be set to  
any voltage between the power rail (reduced by converter losses) and the 0.8V reference.  
5
6
COMP Compensation node. This pin is connected to the output of the error amplifier, and is used to compensate the loop. Internal  
compensation is used to meet most applications. Connect COMP to AGND to select internal compensation. Connect a  
compensation network between COMP and FB to use external compensation.  
AGND The AGND terminal provides the return path for the core analog control circuitry within the device. Connect AGND to the board  
ground plane. AGND and PGND are connected internally within the device. Do not operate the device with AGND and PGND  
connected to dissimilar voltages.  
7, 8  
PHASE Phase switch output node. This is the main output of the device. Connect to the external output inductor.  
9, 10  
VIN  
Voltage supply input. The main power input for the IC. Connect to a suitable voltage supply. Place a ceramic capacitor from VIN  
to PGND, close to the IC for decoupling (typical 10µF).  
11  
12  
VDD  
Low dropout linear regulator decoupling pin. VDD is the internally generated 5V supply voltage and is derived from VIN. The  
VDD is used to power all the internal core analog control blocks and drivers. Connect a 1µF capacitor from VDD to the board  
ground plane. If VIN is between 4.5V to 5.5V, then connect VDD directly to VIN to improve efficiency.  
BOOT Bootstrap input. Floating bootstrap supply pin for the upper power MOSFET gate driver. Connect a 0.1µF capacitor between  
BOOT and PHASE.  
13  
(EPAD)  
PGND Power ground terminal. Provides thermal relief for the package and is connected to the source of the low-side output MOSFET.  
Connect PGND to the board ground plane using as many vias as possible. AGND and PGND are connected internally within the  
device. Do not operate the device with AGND and PGND connected to dissimilar voltages.  
FN7968 Rev.2.00  
Jan 15, 2016  
Page 4 of 23  
ISL85003, ISL85003A  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
PART  
MARKING  
TEMP RANGE  
(°C)  
FREQUENCY  
(kHz)  
PACKAGE  
(RoHS Compliant)  
PKG.  
DWG. #  
OPTION  
SYNC  
ISL85003FRZ  
003F  
-40 to +125  
-40 to +125  
500  
500  
12 Ld DFN  
12 Ld DFN  
L12.3x4  
L12.3x4  
ISL85003AFRZ  
ISL85003EVAL2Z  
ISL85003AEVAL2Z  
ISL85003DEMO1Z  
ISL85003ADEMO1Z  
NOTES:  
003A  
Soft-Start  
Evaluation Board  
Evaluation Board  
Demo Evaluation Board  
Demo Evaluation Board  
1. Add “-T” suffix for 6k unit, “-TK” suffix for 1k unit or “-T7A” suffix for 250 unit Tape and Reel options. Please refer to TB347 for details on reel  
specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see product information page for ISL85003, ISL85003A. For more information on MSL, please see tech  
brief TB363.  
4. The ISL85003 is provided with a frequency synchronization input. The ISL85003A is a version of the part with programmable soft-start.  
TABLE 1. COMPONENTS SELECTION (Refer to Figures 1A and 1B)  
V
0.8V  
10µF  
22µF  
22µF  
Open  
1.8µH  
301kΩ  
Open  
1V  
1.2V  
10µF  
1.5V  
10µF  
1.8V  
10µF  
2.5V  
10µF  
3.3V  
10µF  
5V  
OUT  
C , C  
10µF  
22µF  
22µF  
Open  
2.2µH  
301kΩ  
1.2MΩ  
10µF  
5
6
C
C
C
22µF  
47µF  
47µF  
47µF  
47µF  
47µF  
8
9
1
1
22µF  
22µF  
22µF  
22µF  
22µF  
22µF  
4.7pF  
4.7µH  
301kΩ  
57.1kΩ  
Open  
4.7pF  
3.3µH  
301kΩ  
344kΩ  
4.7pF  
3.3µH  
301kΩ  
241kΩ  
4.7pF  
3.3µH  
301kΩ  
142kΩ  
4.7pF  
4.7µH  
301kΩ  
96.3kΩ  
L
2.2µH  
301kΩ  
604kΩ  
R
1
2
R
NOTE: V = 12V, I  
IN  
= 3A; The components selection table is a suggestion for typical application using internal compensation mode. For application  
OUT  
that required high output capacitance greater than 200µF, R should be adjusted to maintain loop response bandwidth about 40kHz. See “Loop  
1
Compensation Design” on page 19 for more detail.  
TABLE 2. KEY DIFFERENCES BETWEEN FAMILY OF PARTS  
INTERNAL/EXTERNAL  
COMPENSATION  
EXTERNAL FREQUENCY  
SYNC  
PROGRAMMABLE  
SOFT-START  
PART NUMBER  
ISL85003  
SWITCHING FREQUENCY  
300kHz to 2MHz  
500kHz  
Yes  
Yes  
Yes  
No  
No  
ISL85003A  
Yes  
FN7968 Rev.2.00  
Jan 15, 2016  
Page 5 of 23  
ISL85003, ISL85003A  
Absolute Maximum Ratings  
Thermal Information  
VIN, EN to AGND and PGND. . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +24V  
PHASE to AGND and PGND . . . . . . . . . . . . . . . . . . . . . . . -0.7V to +24V (DC)  
PHASE to AGND and PGND . . . . . . . . . . . . . . . . . . . . . . . -2V to +24V (40ns)  
FB to AGND and PGND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +7V  
BOOT to PHASE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +7V  
VDD, COMP, SYNC, PG to AGND and PGND. . . . . . . . . . . . . . . -0.3V to +7V  
Junction Temperature Range at 0A . . . . . . . . . . . . . . . . . .-55°C to +150°C  
ESD Rating  
Thermal Resistance  
DFN Package (Notes 5, 6) . . . . . . . . . . . . . .  
Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C  
Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493  
(°C/W)  
49  
(°C/W)  
5
JA  
JC  
Recommended Operating Conditions  
Human Body Model (Tested per JESD22-A114E). . . . . . . . . . . . . . .2.5kV  
Machine Model (Tested per JESD22-A115-A). . . . . . . . . . . . . . . . . 150V  
Charged Device Model (Tested per JESD22-A115-A). . . . . . . . . . . . . 1kV  
V
Supply Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5V to 18V  
IN  
Load Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0A to 3A  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
5. is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
6. For , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications All parameter limits are established over the Recommended Operating Conditions with T = -40°C to +125°C,  
J
and with V = 12V unless otherwise noted. Typical values are at T = +25°C. Boldface limits apply across the operating junction temperature range,  
IN  
A
-40°C to +125°C.  
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(Note 7) TYP (Note 7) UNIT  
SUPPLY VOLTAGE  
V
V
Voltage Range  
V
I
4.5  
18  
V
IN  
IN  
IN  
Quiescent Supply Current  
SYNC = Low, EN > 1V, FB = 0.85V, not  
switching  
3.2  
6
4.5  
mA  
Q
V
Shutdown Supply Current  
I
EN = AGND  
11  
µA  
IN  
SD  
UNDERVOLTAGE LOCKOUT  
Rising Edge  
Falling Edge  
4.20  
3.8  
4.35  
V
V
V
UVLO Threshold  
IN  
3.6  
4.3  
INTERNAL VDD LDO  
V
V
Output Voltage  
V
= 6V to 18V, I = 0mA to 30mA  
VDD  
5.00  
50  
5.50  
V
DD  
DD  
IN  
Output Current Limit  
mA  
OSCILLATOR  
Nominal Switching Frequency  
Minimum On-Time  
Minimum Off-Time  
Synchronization Range  
SYNC High-Time  
f
400  
500  
120  
140  
600  
140  
kHz  
ns  
ns  
kHz  
ns  
ns  
V
SW  
t
I
= 0mA (Note 8)  
ON  
OUT  
t
(Note 8)  
180  
OFF  
SYNC  
ISL85003  
ISL85003  
ISL85003  
ISL85003  
ISL85003  
300  
100  
100  
2000  
t
HI  
SYNC Low-Time  
t
LO  
SYNC Logic Input Low  
SYNC Logic Input High  
ERROR AMPLIFIER  
FB Regulation Voltage  
FB Leakage Current  
Open Loop Bandwidth  
Gain  
0.50  
1.20  
V
V
V
V
= 4.5V to 18V  
0.792  
0.8  
0.3  
5.5  
70  
0.808  
10  
V
FB  
IN  
= 0.8V (Note 8)  
nA  
FB  
BW  
MHz  
dB  
FN7968 Rev.2.00  
Jan 15, 2016  
Page 6 of 23  
ISL85003, ISL85003A  
Electrical Specifications All parameter limits are established over the Recommended Operating Conditions with T = -40°C to +125°C,  
J
and with V = 12V unless otherwise noted. Typical values are at T = +25°C. Boldface limits apply across the operating junction temperature range,  
IN  
A
-40°C to +125°C. (Continued)  
MIN  
MAX  
PARAMETER  
Output Drive  
SYMBOL  
TEST CONDITIONS  
= 1.5V  
(Note 7) TYP (Note 7) UNIT  
V
±110  
0.2  
µA  
Ω
COMP  
Current Sense Gain  
Slope Compensation  
ENABLE INPUT  
RT  
Se  
f
500kHz  
550  
mV/µs  
SW =  
Rising Edge  
Hysteresis  
0.5  
60  
0.6  
0.7  
V
EN Input Threshold  
100  
140  
mV  
SOFT-START FUNCTION  
Default Soft-Start Time  
ISL85003, ISL85003A with soft-start open  
ISL85003A  
1
2.3  
3.5  
3.6  
4.5  
ms  
µA  
SS Internal Soft-Start Charging Current  
POWER GOOD OPEN DRAIN OUTPUT  
Output Low Voltage  
2.5  
I
= 5mA sinking  
0.25  
0.01  
85  
V
µA  
%
PG  
PG Pin Leakage Current  
PG Lower Threshold  
V
= V  
PG DD  
Percentage of output regulation  
Percentage of output regulation  
80  
90  
PG Upper Threshold  
110  
115  
3
120  
%
PG Thresholds Hysteresis  
%
Rising Edge  
Falling Edge  
1.5  
18  
ms  
µs  
Delay Time  
FAULT PROTECTION  
Positive Overcurrent Protection Threshold  
Negative Overcurrent Protection Threshold  
I
4.0  
5.0  
6.0  
A
A
POCP  
I
Current forced into PHASE node, high-side  
MOSFET is off, SYNC = High  
-3.2  
-2.2  
-1.1  
NOCP  
Positive Overcurrent Protection Low-Side MOSFET  
Current in low-side MOSFET at end of low-side  
cycle.  
6
A
19  
20  
1
V
V
V
Overvoltage Threshold  
IN  
Hysteresis  
T
Rising Threshold  
Hysteresis  
165  
10  
°C  
°C  
SD  
Thermal Shutdown Temperature  
POWER MOSFET  
T
HYS  
High-Side MOSFET r  
R
I
I
= 100mA  
= 100mA  
65  
45  
10  
110  
75  
mΩ  
mΩ  
KΩ  
DS(ON)  
HDS  
PHASE  
Low-Side MOSFET r  
R
LDS  
DS(ON)  
PHASE  
PHASE Pull-Down Resistor  
DIODE EMULATION  
Zero Crossing Threshold  
NOTES:  
EN = AGND  
ISL85003  
150  
mA  
7. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
8. Compliance to limits is assured by characterization and design.  
FN7968 Rev.2.00  
Jan 15, 2016  
Page 7 of 23  
ISL85003, ISL85003A  
Typical Performance Curves Circuit of V = 12V, V = 5V, I = 3A, T = -40°C to +125°C unless otherwise noted.  
IN  
OUT  
OUT  
J
Typical values are at T = +25°C.  
A
100  
100  
90  
90  
80  
70  
60  
50  
40  
80  
2.5V  
1.8V  
OUT  
OUT  
2.5V  
1.2V  
OUT  
3.3V  
OUT  
1.5V  
OUT  
OUT  
70  
1V  
OUT  
3.3V  
1.8V  
OUT  
OUT  
1V  
OUT  
60  
1.5V  
OUT  
50  
1.2V  
OUT  
40  
0
0.1  
1.0  
10  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0  
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 3. EFFICIENCY vs LOAD, 5V DCM  
IN  
FIGURE 4. EFFICIENCY vs LOAD, 5V CCM  
IN  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
3.3V  
OUT  
5V  
OUT  
3.3V  
OUT  
1.5V  
1.8V  
OUT  
OUT  
2.5V  
1.2V  
OUT  
1.2V  
OUT  
OUT  
1V  
1.5V  
OUT  
OUT  
1V  
OUT  
1.8V  
OUT  
5V  
OUT  
2.5V  
0.1  
OUT  
0
1.0  
10  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0  
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 5. EFFICIENCY vs LOAD, 12V DCM  
IN  
FIGURE 6. EFFICIENCY vs LOAD, 12V CCM  
IN  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
1.8V  
OUT  
2.5V  
OUT  
3.3V  
OUT  
1.5V  
OUT  
3.3V  
OUT  
OUT  
1.5V  
OUT  
5V  
OUT  
1.2V  
OUT  
1.8V  
OUT  
2.5V  
OUT  
OUT  
1.2V  
1V  
1V  
5V  
OUT  
OUT  
0
0.1  
OUTPUT LOAD (A)  
1.0  
10  
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
OUTPUT LOAD (A)  
0
3.0  
FIGURE 7. EFFICIENCY vs LOAD, 18V DCM  
IN  
FIGURE 8. EFFICIENCY vs LOAD, 18V CCM  
IN  
FN7968 Rev.2.00  
Jan 15, 2016  
Page 8 of 23  
ISL85003, ISL85003A  
Typical Performance Curves Circuit of V = 12V, V = 5V, I = 3A, T = -40°C to +125°C unless otherwise noted.  
IN  
OUT  
OUT  
J
Typical values are at T = +25°C. (Continued)  
A
1.006  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
1.204  
1.202  
1.200  
1.198  
1.196  
1.194  
1.192  
5 V DCM  
IN  
IN  
5 V DCM  
IN  
5 V CCM  
5 V CCM  
IN  
12 V DCM  
IN  
12 V DCM  
IN  
12 V CCM  
IN  
12 V CCM  
IN  
18V DCM  
IN  
18 V CCM  
IN  
3.0  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
OUTPUT LOAD (A)  
0
0.3  
0.9 1.2 1.5 1.8 2.1  
OUTPUT LOAD (A)  
2.7 3.0  
0.6  
2.4  
FIGURE 10. V  
OUT  
REGULATION vs LOAD, 1.2V  
FIGURE 9. V  
OUT  
REGULATION vs LOAD, 1V  
1.500  
1.498  
1.496  
1.494  
1.492  
1.490  
1.488  
1.800  
1.798  
1.796  
1.794  
1.792  
1.790  
1.788  
5V DCM  
IN  
5V CCM  
IN  
5V DCM  
IN  
5V CCM  
IN  
12V DCM  
12V DCM  
IN  
IN  
12V CCM  
IN  
12V CCM  
IN  
18V DCM  
IN  
18V DCM  
IN  
18V CCM  
IN  
18V CCM  
IN  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0  
OUTPUT LOAD (A)  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0  
OUTPUT LOAD (A)  
FIGURE 11. V  
OUT  
REGULATION vs LOAD, 1.5V  
FIGURE 12. V  
REGULATION vs LOAD, 1.8V  
OUT  
3.330  
3.328  
3.326  
3.324  
3.322  
3.320  
3.318  
2.486  
2.484  
2.482  
2.480  
2.478  
2.476  
2.474  
5V DCM  
IN  
5V DCM  
IN  
5V CCM  
IN  
5V CCM  
IN  
12V DCM  
IN  
12V DCM  
IN  
12V CCM  
IN  
12V CCM  
IN  
18V DCM  
IN  
18 V CCM  
18V DCM  
IN  
IN  
18V CCM  
IN  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0  
OUTPUT LOAD (A)  
0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0  
OUTPUT LOAD (A)  
FIGURE 13. V  
OUT  
REGULATION vs LOAD, 2.5V  
FIGURE 14. V REGULATION vs LOAD, 3.3V  
OUT  
FN7968 Rev.2.00  
Jan 15, 2016  
Page 9 of 23  
ISL85003, ISL85003A  
Typical Performance Curves Circuit of V = 12V, V = 5V, I = 3A, T = -40°C to +125°C unless otherwise noted.  
IN  
OUT  
OUT  
J
Typical values are at T = +25°C. (Continued)  
A
4.989  
4.986  
4.983  
4.980  
4.977  
4.974  
4.971  
7V DCM  
IN  
7V CCM  
IN  
PHASE 10V/DIV  
12V DCM  
IN  
12V CCM  
IN  
18V DCM  
IN  
18V CCM  
V
5V/DIV  
IN  
OUT  
V
10V/DIV  
EN  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0  
OUTPUT LOAD (A)  
PG 5V/DIV  
1ms/DIV  
FIGURE 15. V  
OUT  
REGULATION vs LOAD 5V  
FIGURE 16. START-UP V AT NO LOAD (DCM)  
EN  
PHASE 10V/DIV  
PHASE 10V/DIV  
V
5V/DIV  
OUT  
V
5V/DIV  
OUT  
V
10V/DIV  
EN  
V
10V/DIV  
EN  
PG 5V/DIV  
PG 5V/DIV  
50ms/DIV  
1ms/DIV  
FIGURE 17. START-UP V AT NO LOAD (CCM)  
EN  
FIGURE 18. SHUTDOWN V AT NO LOAD (DCM)  
EN  
PHASE 10V/DIV  
PHASE 10V/DIV  
V
5V/DIV  
OUT  
V
5V/DIV  
OUT  
V
10V/DIV  
V
10V/DIV  
EN  
EN  
PG 5V/DIV  
PG 5V/DIV  
50ms/DIV  
1ms/DIV  
FIGURE 19. SHUTDOWN V AT NO LOAD (CCM)  
EN  
FIGURE 20. START-UP V AT 3A LOAD  
EN  
FN7968 Rev.2.00  
Jan 15, 2016  
Page 10 of 23  
ISL85003, ISL85003A  
Typical Performance Curves Circuit of V = 12V, V = 5V, I = 3A, T = -40°C to +125°C unless otherwise noted.  
IN  
OUT  
OUT  
J
Typical values are at T = +25°C. (Continued)  
A
PHASE 10V/DIV  
V
10V/DIV  
IN  
V
5V/DIV  
V
I
5V/DIV  
OUT  
OUT  
2A/DIV  
L
V
10V/DIV  
EN  
PG 5V/DIV  
PG 5V/DIV  
1ms/DIV  
50ms/DIV  
FIGURE 21. SHUTDOWN V AT 3A LOAD  
EN  
FIGURE 22. START-UP V AT NO LOAD (CCM)  
IN  
V
10V/DIV  
IN  
V
10V/DIV  
IN  
V
5V/DIV  
OUT  
V
5V/DIV  
OUT  
I
2A/DIV  
I
2A/DIV  
L
L
PG 5V/DIV  
PG 5V/DIV  
100ms/DIV  
1ms/DIV  
FIGURE 23. SHUTDOWN V AT NO LOAD (CCM)  
IN  
FIGURE 24. START-UP V AT NO LOAD (DCM)  
IN  
V
10V/DIV  
V
10V/DIV  
IN  
IN  
V
5V/DIV  
OUT  
V
5V/DIV  
OUT  
I
2A/DIV  
L
I
2A/DIV  
L
PG 5V/DIV  
PG 5V/DIV  
100ms/DIV  
1ms/DIV  
FIGURE 25. SHUTDOWN V AT NO LOAD (DCM)  
IN  
FIGURE 26. STAR-TUP V AT 3A LOAD  
IN  
FN7968 Rev.2.00  
Jan 15, 2016  
Page 11 of 23  
ISL85003, ISL85003A  
Typical Performance Curves Circuit of V = 12V, V = 5V, I = 3A, T = -40°C to +125°C unless otherwise noted.  
IN  
OUT  
OUT  
J
Typical values are at T = +25°C. (Continued)  
A
V
10V/DIV  
IN  
PHASE 5V/DIV  
V
I
5V/DIV  
OUT  
2A/DIV  
L
PG 5V/DIV  
20ns/DIV  
1ms/DIV  
FIGURE 28. JITTER AT NO LOAD (CCM )  
FIGURE 27. SHUTDOWN V AT 3A LOAD  
IN  
PHASE 5V/DIV  
PHASE 5V/DIV  
V
10mV/DIV  
OUT  
I
2A/DIV  
L
500ns/DIV  
20ns/DIV  
FIGURE 29. JITTER AT FULL LOAD 3A (CCM)  
FIGURE 30. STEADY STATE AT NO LOAD CCM  
PHASE 5V/DIV  
PHASE 5V/DIV  
V
10mV/DIV  
OUT  
V
20mV/DIV  
OUT  
I
0.2A/DIV  
L
I
2A/DIV  
L
500ns/DIV  
50µs/DIV  
FIGURE 31. STEADY STATE AT NO LOAD DCM  
FIGURE 32. STEADY STATE AT 3A LOAD DCM  
FN7968 Rev.2.00  
Jan 15, 2016  
Page 12 of 23  
ISL85003, ISL85003A  
Typical Performance Curves Circuit of V = 12V, V = 5V, I = 3A, T = -40°C to +125°C unless otherwise noted.  
IN  
OUT  
OUT  
J
Typical values are at T = +25°C. (Continued)  
A
I
2A/DIV  
L
I
2A/DIV  
L
V
RIPPLE 100mV/DIV  
100µs/DIV  
V
RIPPLE 50mV/DIV  
OUT  
OUT  
100µs/DIV  
FIGURE 33. LOAD TRANSIENT (CCM)  
FIGURE 34. LOAD TRANSIENT (DCM)  
PHASE 10V/DIV  
V
5V/DIV  
OUT  
V
2V/DIV  
OUT  
I
2A/DIV  
L
I
2A/DIV  
OUT  
PG 5V/DIV  
PG 5V/DIV  
100µs/DIV  
1ms/DIV  
FIGURE 35. OUTPUT SHORT-CIRCUIT  
FIGURE 36. OVERCURRENT PROTECTION  
PHASE 10V/DIV  
PHASE 10V/DIV  
V
RIPPLE 20mV/DIV  
OUT  
V
RIPPLE 50mV/DIV  
OUT  
I
1A/DIV  
L
I
1A/DIV  
L
10µs/DIV  
5µs/DIV  
FIGURE 37. DCM TO CCM TRANSITION  
FIGURE 38. CCM TO DCM TRANSITION  
FN7968 Rev.2.00  
Jan 15, 2016  
Page 13 of 23  
ISL85003, ISL85003A  
Typical Performance Curves Circuit of V = 12V, V = 5V, I = 3A, T = -40°C to +125°C unless otherwise noted.  
IN  
OUT  
OUT  
J
Typical values are at T = +25°C. (Continued)  
A
V
2V/DIV  
+165°C  
OUT  
PHASE 10V/DIV  
2V/DIV  
V
OUT  
I
2A/DIV  
L
PG 2V/DIV  
PG 5V/DIV  
1µs/DIV  
20ms/DIV  
FIGURE 40. OVER-TEMPERATURE PROTECTION  
FIGURE 39. 0VERVOLTAGE PROTECTION  
FN7968 Rev.2.00  
Jan 15, 2016  
Page 14 of 23  
ISL85003, ISL85003A  
PWM operation is initialized by the clock from the oscillator. The  
upper MOSFET is turned on at the beginning of a cycle and the  
current in the MOSFET starts to ramp up. When the sum of the  
current amplifier CSA signal and the slope compensation reaches  
the control reference of the current loop, the PWM comparator  
sends a signal to the logic to turn off the upper MOSFET and turn  
on the lower MOSFET. The lower MOSFET stays on until the end of  
the cycle. Figure 41 shows the typical operating waveforms during  
Continuous Conduction Mode (CCM) operation. The dotted lines  
illustrate the sum of the compensation ramp and the  
Detailed Description  
The ISL85003 and ISL85003A combine a synchronous buck  
controller with a pair of integrated switching MOSFETs. The buck  
controller drives the internal high-side and low-side N-channel  
MOSFETs to deliver load currents up to 3A. The buck regulator  
can operate from an unregulated DC source, such as a battery,  
with a voltage ranging from +4.5V to +18V. An internal 5V LDO  
voltage regulator is used to bias the controller. The converter  
output voltage is programmed using an external resistor divider  
and will generate regulated voltages down to 0.8V. These  
features make the regulator suited for a wide range of  
applications.  
current-sense amplifier’s output.  
V
EAMP  
The controller uses a current mode loop, which simplifies the  
loop compensation and permits fixed frequency operation over a  
wide range of input and output voltages. The internal feedback  
loop compensation option allows for simple circuit design. The  
regulator switches at a default of 500kHz or it can be  
V
CSA  
DUTY  
CYCLE  
synchronized from 300kHz to 2MHz on an ISL85003.  
I
L
The buck regulator is equipped with a lossless current limit  
scheme. The current in the output stage is derived from  
temperature compensated measurements of the drain-to-source  
voltage of the internal power MOSFETs. The current limit  
threshold is internally set at 5A.  
V
OUT  
FIGURE 41. CCM OPERATION WAVEFORMS  
Operation Initialization  
Light-Load Operation  
Pull EN high to start operation. The power-on reset circuitry will  
prevent operation if the input voltage is below 4.2V. Once the  
power-on reset requirement is met, the controller will soft-start  
with a 2ms ramp on an ISL85003 or at a rate determined by the  
value of a capacitor connected between SS and AGND on an  
ISL85003A.  
The ISL85003 monitors both the current in the low-side MOSFET  
and the voltage of the FB node for regulation. Pulling the SYNC  
pin low allows the ISL85003 to enter discontinuous operation  
when lightly loaded by operating the low-side MOSFET in Diode  
Emulation Mode (DEM). In this mode, reverse current is not  
allowed in the inductor, and the output falls naturally to the  
regulation voltage before the high-side MOSFET is switched for  
the next cycle. Figure 42 shows the transition from CCM to DCM  
operation. In CCM mode, the boundary is set by Equation 1:  
CCM Control Scheme  
The regulator employs a current-mode pulse-width modulation  
control scheme for fast transient response and pulse-by-pulse  
current limiting. The current loop consists of the oscillator, the  
PWM comparator, current sensing circuit, and a slope  
compensation circuit. The gain of the current sensing circuit is  
typically 200mV/A and the slope compensation is 1.1V/T. The  
reference for the current loop is in turn provided by the output of  
an Error Amplifier (EA), which compares the feedback signal at  
the FB pin to the integrated 0.8V reference. Thus, the output  
voltage is regulated by using the error amplifier to control the  
reference for the current loop.  
V
1 D  
OUT  
(EQ. 1)  
----------------------------------  
=
I
OUT  
2Lf  
SW  
Where D = duty cycle, f  
SW  
= switching frequency, L = inductor  
value, I  
= output loading current, V  
= output voltage.  
OUT  
OUT  
The error amplifier is an operational amplifier that converts the  
voltage error signal to a voltage output. The voltage loop is  
internally compensated with the 30pF and 600kΩ RC network  
that can support most applications.  
FN7968 Rev.2.00  
Jan 15, 2016  
Page 15 of 23  
ISL85003, ISL85003A  
CCM  
DCM  
CLOCK  
I
L
LOAD CURRENT  
0
V
OUT  
NOMINAL  
FIGURE 42. DCM MODE OPERATION WAVEFORMS  
Synchronization Control  
R
0.8V  
1
----------------------------------  
R
=
(EQ. 3)  
2
V
0.8V  
The ISL85003 can be synchronized from 300kHz to 2MHz by an  
external signal applied to the SYNC pin. The rising edge on the SYNC  
triggers the rising edge of the PHASE pulse. Make sure that the  
on-time of the SYNC pulse is greater than 100ns. Although the  
maximum synchronized frequency can be as high as 2MHz, the  
ISL85003 is a current mode regulator that requires a minimum  
of 140ns on-time to regulate properly. As an example, the  
maximum recommended synchronized frequency will be about  
OUT  
If the output voltage desired is 0.8V, then R is left unpopulated.  
R is still required to set the low frequency pole of the modulator  
compensation.  
2
1
V
OUT  
R1  
R2  
-
600kHz with 12V and 1V  
.
+
IN OUT  
EA  
Enable, Soft-Start and Disable  
Chip operation begins after V exceeds its rising POR trip point  
0.8V  
REFERENCE  
IN  
(nominal 4.2V). If EN is held low externally, nothing happens until  
this pin is released. Once the voltage on the EN pin is above 0.6V,  
the LDO powers up and soft-start control begins. The default  
soft-start time is 2ms.  
FIGURE 43. EXTERNAL RESISTOR DIVIDER  
Protection Features  
On the ISL85003A, let SS float to select the internal soft-start  
time with a default of 2ms. The soft-start time is extended by  
connecting an external capacitor between SS and AGND. A 3.5µA  
current source charges up the capacitor. The soft-start capacitor  
is charged until the voltage on the SS pin reaches a 2.0V clamp  
level. However, the output voltage reaches its regulation value  
when the voltage on the SS pin reaches approximately 0.9V. The  
capacitor, along with an internal 3.5µA current source, sets the  
The regulator limits current in all on-chip power devices.  
Overcurrent limits are applied to the two output switching  
MOSFETs as well as to the LDO linear regulator that feeds VDD.  
Input and output overvoltage protection circuitry on the switching  
regulator provides a second layer of protection.  
Switching Regulator Overcurrent Protection  
soft-start interval of the converter, t , according to Equation 2:  
SS  
Current flowing through the internal high-side switching MOSFET  
is monitored during the on-time. The current is compared to a  
nominal 5A overcurrent limit. If the measured current exceeds  
the overcurrent limit reference level, the high-side MOSFET is  
immediately turned off and will not turn on again until the next  
switching cycle. Current through the low-side switching MOSFET  
is sampled during off time. If the low-side MOSFET current  
exceeds 6A at the end of the low-side cycle, then the high-side  
MOSFET will skip the next cycle, allowing the inductor current to  
decay to a safe level before resuming switching.  
(EQ. 2)  
C
nF= 4.1 t mS1.6nF  
SS  
SS  
Output Voltage Selection  
The regulator output voltage is programmed using an external  
resistor divider that scales the feedback relative to the internal  
reference voltage. The scaled voltage is fed back to the inverting  
input of the error amplifier; refer to Figure 43.  
The output voltage programming resistor, R , will depend on the  
2
value chosen for the feedback resistor, R , and the desired  
1
Once an output overload condition is removed, the output voltage  
will rise into regulation at the internal SS rate.  
regulator output voltage, V ; (see Equation 3). The R value will  
OUT  
1
determine the gain of the feedback loop. (See “Loop  
Compensation Design” on page 19) for more details. The value  
for the feedback resistor is typically between 10kΩ and 400kΩ.  
FN7968 Rev.2.00  
Jan 15, 2016  
Page 16 of 23  
ISL85003, ISL85003A  
T
3.0  
2.5  
Negative Current Protection  
1V  
Similar to the overcurrent, the negative current protection is  
realized by monitoring the current across the low-side MOSFET, as  
shown in “Functional Block Diagram” on page 3. When the  
inductor current reaches -2.2A, the synchronous rectifier is turned  
off. This limits the ability of the regulator to actively pull down on  
the output and prevents large reverse currents that may fall  
outside the range of the high-side current sense amp.  
3.3V  
1.8V  
2.0  
2.5V  
5V  
1.5  
1.0  
0.5  
0
Output Overvoltage Protection  
V
= 12V, ZERO LFM  
IN  
The output overvoltage protection is triggered when the output  
voltage exceeds 115% of the set voltage. In this condition,  
high-side and low-side MOSFETs are tri-stated until the output  
drops to within the regulation band. Once the output is in  
regulation, the controller will restart under internal SS control.  
50  
60  
70  
80  
90  
100  
110  
120  
130  
TEMPERATURE (°C)  
FIGURE 44. DERATING CURVE vs TEMPERATURE  
Application Guidelines  
Input Overvoltage Protection  
BOOT Undervoltage Detection  
The input overvoltage protection system prevents operation of the  
switching regulator whenever the input voltage is higher than 20V.  
The high-side and low-side MOSFETs are tri-stated and the  
converter will restart under internal SS control when the input  
voltage returns to normal.  
The internal driver of the high-side FET is equipped with a BOOT  
Undervoltage (UV) detection circuit. In the event the voltage  
difference between BOOT and PHASE falls below 2.5V, the UV  
detection circuit allows the low-side MOSFET on for 300ns, to  
recharge the bootstrap capacitor.  
Thermal Overload Protection  
Thermal overload protection limits the maximum die  
temperature, thus the total power dissipation in the regulator. A  
sensor on the chip monitors the junction temperature. A signal is  
sent to the fault monitor circuits whenever the junction  
While the ISL85003 includes an internal bootstrap diode,  
efficiency can be improved by using an external supply voltage  
and bootstrap Schottky diode. The external diode is then sourced  
from a fixed external 5V supply or from the output of the  
switching regulator if this is at 5V. The bootstrap diode can be a  
low cost type, such as the BAT54.  
temperature (T ) exceeds +165°C and this causes the switching  
J
regulator and LDO to shut down.  
PHASE  
The switching regulator turns on again and soft-starts after the  
IC’s junction temperature cool by 10°C. The switching regulator  
exhibits hiccup mode operation during continuous thermal  
overload conditions. For continuous operation, do not exceed the  
+125°C junction temperature rating.  
C
4
µ
0.1 F  
BOOT  
ISL85003  
ISL85003A  
BAT54  
5V  
Power Derating Characteristics  
To prevent the regulator from exceeding the maximum junction  
temperature, some thermal analysis is required. The  
temperature rise is given by Equation 4:  
or 5V SOURCE  
OUT  
FIGURE 45. EXTERNAL BOOTSTRAP DIODE  
(EQ. 4)  
T
= PD  
JA  
RISE  
Switching Regulator Output Capacitor  
Selection  
Where PD is the power dissipated by the regulator and θ is the  
thermal resistance from the junction of the die to the ambient  
JA  
temperature. The junction temperature, T , is given by  
An output capacitor is required to filter the inductor current and  
supply the load transient current. The filtering requirements are a  
function of the switching frequency, the ripple current and the  
required output ripple. The load transient requirements are a  
function of the slew rate (di/dt) and the magnitude of the transient  
load current. These requirements are generally met with a mix of  
capacitor types and careful layout.  
J
Equation 5:  
(EQ. 5)  
T
= T + T  
RISE  
J
A
Where T is the ambient temperature. For the DFN package, the  
A
θ
is 49 (°C/W).  
JA  
The actual junction temperature should not exceed the absolute  
maximum junction temperature of +125°C when considering  
the thermal design.  
High frequency ceramic capacitors initially supply the transient and  
slow the current load rate seen by the bulk capacitors. The bulk filter  
capacitor values are generally determined by the (Equivalent Series  
Resistance) ESR and voltage rating requirements rather than actual  
capacitance requirements.  
FN7968 Rev.2.00  
Jan 15, 2016  
Page 17 of 23  
ISL85003, ISL85003A  
V  
V  
= ESR I  
tran  
(EQ. 6)  
(EQ. 7)  
ESR  
ESL  
SAG  
DV  
dI  
tran  
HUMP  
---------------  
dt  
= ESL   
V
OUT  
2
L
I  
DV  
ESR  
out tran  
(EQ. 8)  
(EQ. 9)  
-------------------------------------------------  
V  
V  
=
C
 V V  
out  
out  
in  
DV  
DV  
SAG  
2
L
I  
out tran  
ESL  
--------------------------------  
=
HUMP  
C
V  
out  
out  
Where: I  
= Output Load Current Transient and C = Total  
out  
I
tran  
Output Capacitance.  
OUT  
I
In a typical converter design, the ESR of the output capacitor  
bank dominates the transient response. The ESR and the ESL are  
typically the major contributing factors in determining the output  
capacitance. The number of output capacitors can be  
determined by using Equation 10, which relates the ESR and ESL  
of the capacitors to the transient load step and the voltage limit  
(Vo):  
tran  
FIGURE 46. TYPICAL TRANSIENT RESPONSE  
ESL I  
tran  
-----------------------------  
+ ESR I  
tran  
The high frequency decoupling capacitors should be placed as close  
to the power pins of the load as physically possible. Be careful not to  
add inductance in the circuit board wiring that could cancel the  
usefulness of these low inductance components. Consult with the  
manufacturer of the load on specific decoupling requirements.  
dt  
(EQ. 10)  
-------------------------------------------------------------------  
Number of Caps =  
V  
o
If V  
SAG  
or V are found to be too large for the output  
HUMP  
voltage limits, then the amount of capacitance may need to be  
increased. In this situation, a trade-off between output  
inductance and output capacitance may be necessary.  
The shape of the output voltage waveform during a load transient  
that represents the worst case loading conditions will ultimately  
determine the number of output capacitors and their type. When  
this load transient is applied to the converter, most of the energy  
required by the load is initially delivered from the output capacitors.  
This is due to the finite amount of time required for the inductor  
current to slew up to the level of the output current required by the  
load. This phenomenon results in a temporary dip in the output  
voltage. At the very edge of the transient, the Equivalent Series  
Inductance (ESL) of each capacitor induces a spike that adds on top  
of the existing voltage drop due to the ESR.  
The ESL of the capacitors, which is an important parameter in  
the above equations, is not usually listed in specification.  
Practically, it can be approximated using Equation 11 if an  
Impedance vs Frequency curve is given for a specific capacitor:  
1
(EQ. 11)  
----------------------------------------  
ESL =  
2
C2    f  
res  
Where: f is the resonant frequency where the lowest  
res  
impedance is achieved.  
After the initial spike, attributable to the ESR and ESL of the  
capacitors, the output voltage experiences sag. This sag is a direct  
consequence of the amount of capacitance on the output.  
The ESL of the capacitors becomes a concern when designing  
circuits that supply power to loads with high rates of change in  
the current.  
During the removal of the same output load, the energy stored in the  
inductor is dumped into the output capacitors. This energy dumping  
creates a temporary hump in the output voltage. This hump, as with  
the sag, can be attributed to the total amount of capacitance on the  
output. Figure 46 shows a typical response to a load transient.  
Output Inductor Selection  
The output inductor is selected to meet the output voltage ripple  
requirements and minimize the converter’s response time to the  
load transient. The inductor value determines the converter’s  
ripple current and the output ripple voltage is a function of the  
ripple current. The ripple voltage and current are approximated  
by Equations 12 and 13:  
The amplitudes of the different types of voltage excursions can  
be approximated using Equations 6, 7, 8 and 9.  
V V  
V
OUT  
V
IN  
IN  
OUT  
(EQ. 12)  
------------------------------------ ---------------  
I =  
Fs L  
(EQ. 13)  
V  
= I x ESR  
OUT  
FN7968 Rev.2.00  
Jan 15, 2016  
Page 18 of 23  
ISL85003, ISL85003A  
Increasing the value of inductance reduces the ripple current and  
voltage. However, the large inductance values reduce the  
converter’s response time to a load transient. Furthermore, the  
ripple current is an important signed in current mode control.  
Therefore, set the ripple inductor current to approximately 30%  
of the maximum output current or about 1A for optimized  
performance.  
For a through-hole design, several electrolytic capacitors may be  
needed, especially at temperature less than -25°C. The  
electrolytic's ESR can increase ten times higher than at room  
temperature and cause input line oscillation. In this case, a more  
thermally stable capacitor such as X7R ceramic should be used.  
For surface mount designs, solid tantalum capacitors can be  
used, but caution must be exercised with regard to the capacitor  
surge current rating. Some capacitor series available from  
reputable manufacturers are surge current tested.  
One of the parameters limiting the converter’s response to a  
load transient is the time required to change the inductor  
current. Given a sufficiently fast control loop design, the  
regulator will provide either 0% or 100% duty cycle in response  
to a load transient. The response time is the time required to  
slew the inductor current from an initial current value to the  
transient current level. During this interval, the difference  
between the inductor current and the transient current level  
must be supplied by the output capacitor. Minimizing the  
response time can minimize the output capacitance required.  
Loop Compensation Design  
When COMP is not connected to GND, the COMP pin is active for  
external loop compensation. In an application where extreme  
temperature such as less than -10°C or greater than +85°C,  
external compensation mode should be used. The regulator uses  
constant frequency peak current mode control architecture to  
achieve a fast loop transient response. An accurate current  
sensing pilot device in parallel with the upper MOSFET is used for  
peak current control signal and overcurrent protection. The  
inductor is not considered as a state variable since its peak  
current is constant, and the system becomes a single order  
system. It is much easier to design a type II compensator to  
stabilize the loop than to implement voltage mode control. Peak  
current mode control has an inherent input voltage feed-forward  
function to achieve good line regulation. Figure 47 shows the  
small signal model of the synchronous buck regulator.  
The response time to a transient is different for the application of  
load and the removal of load. Equations 14 and 15 give the  
approximate response time interval for application and removal  
of a transient load:  
L x I  
TRAN  
- V  
OUT  
(EQ. 14)  
t
=
RISE  
V
IN  
L x I  
V
TRAN  
(EQ. 15)  
t
=
FALL  
^
^
^
L
R
LP  
i
i
P
L
v
in  
OUT  
o
Where: I  
TRAN  
response time to the application of load, and t  
response time to the removal of load. The worst case response  
time can be either at the application or removal of load. Be sure  
to check both of these equations at the minimum and maximum  
output levels for the worst case response time.  
is the transient load current step, t  
is the  
^
d
RISE  
is the  
V
IN  
^
^
1:D  
I d  
V
L
IN  
FALL  
Rc  
Co  
+
R
T
Ro  
T (S)  
i
^
d
K
Input Capacitor Selection  
Fm  
Use a mix of input bypass capacitors to control the input voltage  
ripple. Use ceramic capacitors for high frequency decoupling and  
bulk capacitors to supply the current needed each time the  
switching MOSFET turns on. Place the ceramic capacitors  
physically close to the MOSFET VIN pins (switching MOSFET  
drain) and PGND.  
T (S)  
+
v
He(S)  
^
Vcomp  
-Av(S)  
FIGURE 47. SMALL SIGNAL MODEL OF SYNCHRONOUS BUCK  
REGULATOR  
The important parameters for the bulk input capacitance are the  
voltage rating and the RMS current rating. For reliable operation,  
select bulk capacitors with voltage and current ratings above the  
maximum input voltage and largest RMS current required by the  
circuit. Their voltage rating should be at least 1.25x greater than  
the maximum input voltage, while a voltage rating of 1.5x is a  
conservative guideline. For most cases, the RMS current rating  
requirement for the input capacitor of a buck regulator is  
approximately 1/2 the DC load current.  
C
7
Vo  
R
6
C
6
R
R
C
3
1
2
-
V
COMP  
V
FB  
+
V
REF  
The maximum RMS current required by the regulator may be  
more closely approximated through Equation 16:  
FIGURE 48. TYPE II COMPENSATOR  
2
VOUT  
-------------  
VIN  
VIN VOUT VOUT  
2
1
12  
   
   
------ ---------------------------- -------------  
IRMS  
=
IOUT  
+
L fs  
VIN  
MAX  
MAX  
(EQ. 16)  
FN7968 Rev.2.00  
Jan 15, 2016  
Page 19 of 23  
ISL85003, ISL85003A  
Figure 48 shows the type II compensator and its transfer function  
is expressed, as shown in Equation 17:  
5V 60F  
10 3A 153k  
(EQ. 23)  
-----------------------------------------  
= 65pF  
C
=
6
S
S
   
   
------------  
------------  
1 +  
1 +  
ˆ
v
1
1.5m  60F  
10 153k  
1
comp  
cz1  
cz2  
---------------------------------------------------  
(EQ. 17)  
C = max[-------------------------------------,  
]= (0.06pF, 4.2pF)  
---------------- ------------------------------------- --------------------------------------------------------------  
A S=  
=
7
  500kHz 153k  
v
ˆ
C + C   R  
S
S
v
   
6
7
1
o
-------------  
-------------  
S 1 +  
1 +  
(EQ. 24)  
   
cp1  
cp2  
Use the closest standard values for R , C and C . There is  
6
6
7
approximately 3pF parasitic capacitance from V  
to GND;  
COMP  
Where,  
therefore, C is optional. Use R = 150kΩ, C = 62pF, and  
7
6
6
C
+ C  
7
1
1
6
C = OPEN.  
7
--------------  
--------------  
----------------------  
   
=
,
=
   
=
350kHz  
cp2  
cz1  
cz2  
cp1  
R C  
R C  
R C C  
6 6 7  
6
6
1
3
1
(EQ. 25)  
---------------------------------------------  
C =  
= 62pF  
3
250kHz 51k  
Compensator Design Goal  
Use C = 68pF. Note that C may increase the loop bandwidth  
3
3
from the previous estimated value. Figure 49 shows the  
simulated voltage loop gain. It has a 42kHz loop bandwidth with  
54°of phase margin and 17dB of gain margin. It may be more  
desirable to achieve an increased phase margin. This can be  
accomplished by lowering R or increasing C by 20% to 30%.  
High DC Gain  
Choose Loop bandwidth f of approximately 50kHz or 1/10 of  
the switching frequency.  
c
Gain margin: >10dB  
6
3
Phase margin: >40°  
60  
40  
20  
0
BANDWIDTH OF CLOSE LOOP  
The compensator design procedure is as follows:  
The loop gain at crossover frequency of f has a unity gain.  
c
Therefore, the compensator resistance R is determined by  
Equation 18.  
6
(EQ. 18)  
R
= 2f C R R f C R  
c o t 1 c o 1  
6
-20  
-40  
Note that C is the actual capacitance seen by the regulator,  
o
which may include ceramic high frequency decoupling and bulk  
output capacitors. Ceramic may have to be derated by  
-60  
1.E+00  
approximately 40% depending on dielectric, voltage stress and  
1.E+01  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
temperature. Compensator capacitor C is then given by  
6
FREQUENCY (kHz)  
Equations 19 and 20.  
R C  
V C  
o o  
10I R  
o 6  
o
o
(EQ. 19)  
(EQ. 20)  
-------------- -------------------  
C
=
=
6
120  
80  
40  
0
10R  
6
PHASE MARGIN CLOSED LOOP  
R C  
1
c
o
C = max[--------------,---------------]  
7
10R f R  
s 6  
6
An optional zero can boost the phase margin. CZ2 is a zero due  
to R and C   
1
3
-40  
-80  
Put compensator zero, CZ2 from 1/2f to f .  
c
c
1
(EQ. 21)  
-------------------  
C =  
3
2f R  
c
2
-120  
1.E+00  
1.E+01  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
For internal compensation mode, R is equal 600kΩ and C is  
6
6
FREQUENCY (kHz)  
30pF. Equation 18 can be rearranged to solve for R .  
1
FIGURE 49. SIMULATED LOOP GAIN  
Example: V = 12V, V = 5V, I = 3A, fSW = 500kHz, R = 51kΩ,  
IN  
O
O
1
R = 9.7kΩ, C = 2x47µF/3mΩ 6.3V ceramic (~60µF with  
2
o
derating), L = 4.7µH, f = 50kHz, then compensator resistance  
c
R :  
6
(EQ. 22)  
R
6
= 50k 60F 51k= 153k  
FN7968 Rev.2.00  
Jan 15, 2016  
Page 20 of 23  
ISL85003, ISL85003A  
Layout Considerations  
V
IN  
The layout is very important in high frequency switching  
converter design. With power devices switching efficiently at  
500kHz, the resulting current transitions from one device to  
another cause voltage spikes across the interconnecting  
impedances and parasitic circuit elements. These voltage spikes  
can degrade efficiency, radiate noise into the circuit, and lead to  
device overvoltage stress. Careful component layout and printed  
circuit board design minimizes these voltage spikes.  
V
IN  
C
IN  
ISL85003  
ISL85003A  
L
V
OUT1  
PHASE  
C
OUT1  
PGND  
COMP  
As an example, consider the turn-off transition of the upper  
MOSFET. Prior to turn-off, the MOSFET is carrying the full load  
current. During turn-off, current stops flowing in the MOSFET and  
is picked up by the internal body diode. Any parasitic inductance  
in the switched current path generates a large voltage spike  
during the switching interval. Careful component selection, tight  
layout of the critical components and short, wide traces minimize  
the magnitude of voltage spikes.  
C
6
C
7
R
6
R
1
FB  
R
PGND PAD  
2
C
3
There are two sets of critical components in the regulator  
switching converter. The switching components are the most  
critical because they switch large amounts of energy and  
therefore tend to generate large amounts of noise. Next are the  
small signal components, which connect to sensitive nodes or  
supply critical bypass current and signal coupling.  
KEY  
ISLAND ON CIRCUIT AND/OR POWER PLANE LAYER  
VIA CONNECTION TO GROUND PLANE  
FIGURE 50. PRINTED CIRCUIT BOARD POWER PLANES AND ISLANDS  
A multi-layer printed circuit board is recommended. Figure 50  
shows the connections of the critical components in the  
The critical small signal components include any bypass  
capacitors, feedback components and compensation  
components. Place the compensation components close to the  
FB and COMP pins. The feedback resistors should be located as  
close as possible to the FB pin with vias tied straight to the  
ground plane.  
converter. Note that capacitors C and C  
could each  
IN OUT  
represent numerous physical capacitors. Dedicate one solid  
layer, usually a middle layer of the PC board, for a ground plane  
and make all critical component ground connections with vias to  
this layer. Dedicate another solid layer as a power plane and  
break this plane into smaller islands of common voltage levels.  
Keep the metal runs from the PHASE terminals to the output  
inductor short. The power plane should support the input power  
and output power nodes. Use copper filled polygons on the top  
and bottom circuit layers for the phase nodes. Use the remaining  
printed circuit layers for small signal wiring.  
In order to dissipate heat generated by the internal LDO and  
MOSFETs, the ground pad should be connected to the internal  
ground plane through at least five vias. This allows the heat to  
move away from the IC and also ties the pad to the ground plane  
through a low impedance path.  
The switching components should be placed close to the  
regulator first. Minimize the length of the connections between  
the input capacitors, C , and the power switches by placing  
IN  
them nearby. Position both the ceramic and bulk input capacitors  
as close to the upper MOSFET drain as possible.  
FN7968 Rev.2.00  
Jan 15, 2016  
Page 21 of 23  
ISL85003, ISL85003A  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest revision.  
DATE  
REVISION  
FN7968.2  
CHANGE  
Jan 15, 2016  
Added the Related Literature section on page 1.  
On page 4, updated VDD pin description by changing VIN range from “3V to 5.5V” to “4.5V to 5.5V”.  
Updated Note 1 in the ordering information table to include all tape and reel options.  
Added Table 2 on page 5.  
Updated POD L12.3x4 to the latest revision the changes are as follows:  
Tiebar Note 5 updated  
From: Tiebar shown (if present) is a non-functional feature.  
To: Tiebar shown (if present) is a non-functional feature and may be located on any of the 4 sides (or ends).  
Jul 17, 2014  
FN7968.1  
Detailed Description on page 15 changed from 4.5A to 5A.  
“Switching Regulator Overcurrent Protection” on page 16: Changed 4.5A to 5A.  
Equation 12 on page 18, updated from “dI=/(Fs*L)*Vout/Vin” to “dI=(Vin-Vout)/(Fs*L)*Vout/Vin”  
“Input Capacitor Selection” on page 19 : Change RESR to ESR  
“Negative Current Protection” on page 17: Changed -2.5A to -2.2A.  
Updated Package information from 4x3 to 3x4 on page 1, Pin Configuration on page 4, Ordering Information  
on page 5, and replaced the “Package Outline Drawing” on page 23.  
Updated the Ordering Information on page 5 to include the new Evaluation Boards that are now available.  
Mar 21, 2014  
FN7968.0  
Initial Release.  
About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com.  
For a listing of definitions and abbreviations of common terms used in our documents, visit: www.intersil.com/glossary.  
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support.  
© Copyright Intersil Americas LLC 2014-2016. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7968 Rev.2.00  
Jan 15, 2016  
Page 22 of 23  
ISL85003, ISL85003A  
For the most recent package outline drawing, see L12.3x4.  
Package Outline Drawing  
L12.3x4  
12 LEAD DUAL FLAT NO-LEAD PLASTIC PACKAGE  
Rev 1, 3/15  
6
3.00  
A
PIN #1  
SEE DETAIL "X"  
INDEX AREA  
B
6
PIN 1  
INDEX AREA  
1
12  
3.30 ±0.10  
2X 2.50  
6
(4X)  
0.10  
7
10X 0.50  
12X 0.25 ±0.05  
0.10M C A B  
TOP VIEW  
0.90 MAX  
1.70  
±0.10  
4
C
12X 0.40 ± 0.05  
SIDE VIEW  
BOTTOM VIEW  
(12X 0.60)  
( 12 X 0.25)  
( 3.30 )  
( 2.50)  
0.10 C  
(10x 0.50)  
C
0 . 203 REF  
SEATING PLANE  
0.08 C  
(1.70)  
0 . 00 MIN.  
0 . 05 MAX.  
( 2.80 )  
TYPICAL RECOMMENDED LAND PATTERN  
DETAIL "X"  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
5. Tiebar shown (if present) is a non-functional feature and may be  
located on any of the 4 sides (or ends).  
6. The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
7. Reference document JEDEC MO-229.  
FN7968 Rev.2.00  
Jan 15, 2016  
Page 23 of 23  

相关型号:

ISL85003AFRZ

Highly Efficient 3A Synchronous Buck Regulator
RENESAS

ISL85003DEMO1Z

Highly Efficient 3A Synchronous Buck Regulator
RENESAS

ISL85003EVAL2Z

Highly Efficient 3A Synchronous Buck Regulator
RENESAS

ISL85003FRZ

Highly Efficient 3A Synchronous Buck Regulator
RENESAS

ISL85005

Internal or external compensation options
INTERSIL

ISL85005

4.5V to 18V Input, 5A High Efficiency Synchronous Buck Regulator
RENESAS

ISL85005A

Internal or external compensation options
INTERSIL

ISL85005A

4.5V to 18V Input, 5A High Efficiency Synchronous Buck Regulator
RENESAS

ISL85005ADEMO1Z

4.5V to 18V Input, 5A High Efficiency Synchronous Buck Regulator
RENESAS

ISL85005AEVAL1Z

Internal or external compensation options
INTERSIL

ISL85005AEVAL1Z

4.5V to 18V Input, 5A High Efficiency Synchronous Buck Regulator
RENESAS

ISL85005AFRZ

Internal or external compensation options
INTERSIL