ISL85033DUALEVAL1Z [RENESAS]

Wide VIN Dual Standard Buck Regulator With 3A/3A Continuous Output Current;
ISL85033DUALEVAL1Z
型号: ISL85033DUALEVAL1Z
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Wide VIN Dual Standard Buck Regulator With 3A/3A Continuous Output Current

文件: 总26页 (文件大小:1888K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL85033  
FN6676  
Rev 8.00  
February 17, 2015  
Wide V Dual Standard Buck Regulator With 3A/3A Continuous Output Current  
IN  
The ISL85033 is a dual standard buck regulator capable of 3A  
Features  
per channel continuous output current. With an input range of  
4.5V to 28V, it provides a high frequency power solution for a  
variety of point of load applications.  
• Wide input voltage range from 4.5V to 28V  
• Adjustable output voltage with continuous output current up  
to 3A  
The PWM controller in the ISL85033 drives an internal  
switching N-Channel power MOSFET and requires an external  
Schottky diode to generate the output voltage. The integrated  
power switch is optimized for excellent thermal performance  
up to 3A of output current. The PWM regulator switches at a  
default frequency of 500kHz and it can be user programmed  
or synchronized from 300kHz to 2MHz. The ISL85033 utilizes  
peak current mode control to provide flexibility in component  
selection and minimize solution size. The protection features  
include overcurrent, UVLO and thermal overload protection.  
• Current mode control  
• Adjustable switching frequency from 300kHz to 2MHz  
• Independent power-good detection  
• Selectable in-phase or out-of-phase PWM operation  
• Independent, sequential, ratiometric or absolute tracking  
between outputs  
• Internal 2ms soft-start time  
• Overcurrent/short circuit protection, thermal overload  
protection, UVLO  
The ISL85033 is available in a small 4mmx4mm Thin Quad  
Flat No-Lead (TQFN) Pb-free package.  
• Boot undervoltage detection  
• Pb-free (RoHS compliant)  
Related Literature  
AN1574 “ISL85033DUALEVAL1Z Wide VIN Dual Standard  
Buck Regulator With 3A/3A Output Current”  
Applications  
• General purpose point-of-load DC/DC power conversion  
AN1585 “ISL85033EVAL2Z (Small Form) Wide VIN Dual  
Standard Buck Regulator With 3A/3A Output Current - Short  
Form”  
• Set-top boxes  
• FPGA power and STB power  
• DVD and HDD drives  
AN1584 “ISL85033EVAL2Z (Small Form) Wide VIN Dual  
Standard Buck Regulator With 3A/3A Output Current - Long  
Form”  
• LCD panels, TV power  
• Cable modems  
AN1605 “ISL85033CRSHEVAL1Z Wide VIN Current sharing  
Standard Buck Regulator With 6A Output Current”  
100  
90  
80  
70  
60  
50  
40  
12V  
OUT  
1MHz  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
OUTPUT LOAD (A)  
FIGURE 1. EFFICIENCY vs LOAD, V = 28V, T = +25°C  
IN  
A
FN6676 Rev 8.00  
February 17, 2015  
Page 1 of 26  
ISL85033  
Table of Contents  
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Typical Application Schematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Operation Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Power-on Reset and Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Enable and Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Power-good. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Output Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Output Tracking and Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Protection Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Buck Regulator Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Thermal Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
BOOT Undervoltage Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Application Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Operating Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Synchronization Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Output Inductor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Buck Regulator Output Capacitor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Current Sharing Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Input Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Loop Compensation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Theory of Compensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
PWM Comparator Gain Fm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Power Stage Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Rectifier Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Power Derating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Layout Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
About Intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
FN6676 Rev 8.00  
February 17, 2015  
Page 2 of 26  
ISL85033  
Pin Configuration  
ISL85033  
(28 LD TQFN)  
TOP VIEW  
28  
27 26 25 24  
23 22  
1
21  
20  
19  
COMP1  
FB1  
COMP2  
FB2  
2
3
4
5
6
7
SS1  
SS2  
PGND1  
BOOT1  
PHASE1  
PHASE1  
18 PGND2  
17  
PD  
BOOT2  
16 PHASE2  
15  
PHASE2  
8
9
10 11 12 13 14  
Pin Descriptions  
PIN NUMBER  
SYMBOL  
COMP1, COMP2  
FB1, FB2  
PIN DESCRIPTION  
1, 21  
COMP1, COMP2 are the output of the error amplifier.  
2, 20  
Feedback pin for the regulator. FB is the negative input to the voltage loop error amplifier. COMP is the  
output of the error amplifier. The output voltage is set by an external resistor divider connected to FB.  
In addition, the PWM regulator’s power-good and undervoltage protection circuits use FB1, FB2 to monitor  
the regulator output voltage.  
3, 19  
SS1, SS2  
Soft-start pins for each controller. The SS1, SS2 pins control the soft-start and sequence of their respective  
outputs. A single capacitor from the SS pin to ground determines the output ramp rate. See the “Output  
Tracking and Sequencing” on page 16 for soft-start and output tracking/sequencing details. If SS pins are  
tied to VCC, an internal soft-start of 2ms will be used. Maximum C value is 100nF.  
SS  
4, 18  
5, 17  
PGND1, PGND2  
BOOT1, BOOT2  
Power ground connections. Connect directly to the system GND plane.  
Floating bootstrap supply pin for the power MOSFET gate driver. The bootstrap capacitor provides the  
necessary charge to turn on the internal N-Channel MOSFET. Connect an external capacitor from this pin to  
PHASE.  
6, 7, 15, 16  
8, 9, 13, 14  
PHASE1, PHASE2  
VIN1, VIN2  
Switch node output. It connects the source of the internal power MOSFET with the external output inductor  
and with the cathode of the external diode.  
The input supply for the power stage of the PWM regulator and the source for the internal linear regulator  
that provides bias for the IC. Place a minimum of 10µF ceramic capacitance from each VIN to GND and  
close to the IC for decoupling.  
10, 12  
EN1, EN2  
PWM controller’s enable inputs. The PWM controllers are held off when the pin is pulled to ground. When  
the voltage on this pin rises above 2V, the PWM controller is enabled. If EN1, EN2 pins are driven by an  
external signal, the minimum off-time for EN1, EN2 should be:  
EN_T_off s= 10s C  
2.2nF  
SS  
where C is the soft-start pin capacitor (nF). The ISL85033 does not have debouncing to EN1, EN2 external  
SS  
signals.  
11  
VCC  
Output of the internal 5V linear regulator. Decouple to PGND with a minimum of 4.7µF ceramic capacitor.  
This pin is provided only for internal bias of ISL85033 (not to be loaded with current over 10mA).  
FN6676 Rev 8.00  
Page 3 of 26  
February 17, 2015  
ISL85033  
Pin Descriptions(Continued)  
PIN NUMBER  
SYMBOL  
SYNCOUT  
SYNCIN  
PIN DESCRIPTION  
23  
24  
Synchronization output. Provides a signal that is the inverse of the SYNCIN signal.  
Connect to an external signal for synchronization from 300kHz to 2MHz (negative edge trigger). SYNCIN is  
not allowed to be floating.  
When SYNCIN = logic 0, PHASE1 and PHASE2 are running at 180° out-of-phase.  
When SYNCIN = logic 1, PHASE1 and PHASE2 are running at 0° in-phase.  
When SYNCIN = an external clock, PHASE1 and PHASE2 are running at 180° out-of-phase.  
External SYNC frequency applied to the SYNCIN pin should be at least 2.4 x the internal switching frequency  
setting.  
25  
SGND  
Signal ground connections. The exposed pad must be connected to SGND and soldered to the PCB. All  
voltage levels are measured with respect to this pin.  
26  
27  
NC  
FS  
This is a no connection pin.  
Frequency selection pin. Tie to VCC for 500kHz switching frequency. Connect a resistor to GND for  
adjustable frequency from 300kHz to 2MHz.  
22, 28  
PGOOD2, PGOOD1  
PD  
Open-drain power-good output that is pulled to ground when the output voltage is below regulation limits or  
during the soft-start interval. There is an internal 5MΩ internal pull-up resistor.  
The exposed pad must be connected to the system GND plane with as many vias as possible for proper  
electrical and thermal performance.  
FN6676 Rev 8.00  
February 17, 2015  
Page 4 of 26  
ISL85033  
Typical Application Schematics  
V
V
OUT2  
OUT1  
R
42.2k  
R
5
25.5k  
1
R
8.06k  
R
2
8.06k  
6
C
C
2
470pF  
5
C
68pF  
1
C
68pF  
4
470pF  
R
R
4
8
69.8k  
69.8k  
20  
21  
1
2
VIN1  
VIN2  
FS  
27  
19  
8/9  
VCC  
SS2  
VCC  
VCC  
C
71  
µ
13/14  
SS1  
20 F  
3
µ
10 F  
C
72  
PGOOD2  
PGOOD1  
22  
28  
ISL85033  
L1  
7µ  
L
7µ  
2
H
V
V
OUT1  
3A  
H
OUT2  
3A  
PHASE1  
PHASE2  
6/7  
5
15/16  
C
8
C
9
47 F  
C
12  
10nF  
C
47 F  
10nF  
13  
µ
D
1
BOOT1  
D
µ
2
B340B  
B340B  
17  
BOOT2  
24 23 4/18  
12 26 10 25  
11  
4.7µF  
FIGURE 2. DUAL 3A OUTPUT (V RANGE FROM 4.5V TO 28V)  
IN  
FB2  
V
OUT1  
R
5
42.2k  
R
6
8.06k  
COMP2  
C
5
C
68pF  
R
0
4
7
1nF  
FB2  
8/9  
R
8
34k  
20  
21  
1
2
FS  
VIN1  
VIN2  
27  
VCC  
C
20 F  
SS2  
SS1  
71  
µ
19  
3
C
ss2  
13/14  
47nF  
C
ss1  
PGOOD2  
PGOOD1  
22  
28  
µ
C72  
C8  
10 F  
47nF  
ISL85033  
V
OUT1  
6A  
PHASE1  
V
OUT1  
PHASE2  
6/7  
5
15/16  
17  
L
7µ  
1
H
L
7µ  
2
H
C
C
µ
47 F  
12  
9
C
13  
µ
47 F  
10n  
F
10nF  
BOOT1  
D
D
1
2
B340B  
B340B  
BOOT2  
24 23 4/18 12 26 10 25  
11  
4.7µF  
FIGURE 3. SINGLE 6A OUTPUT (V RANGE FROM 4.5V TO 28V) CURRENT SHARING  
IN  
FN6676 Rev 8.00  
February 17, 2015  
Page 5 of 26  
ISL85033  
Functional Block Diagram  
VCC  
5MΩ  
-
+
BOOT UV  
DETECTION  
-10%  
VIN2  
SOFT-START  
CONTROL  
SS2  
-
CSA2  
VOLTAGE  
MONITOR  
-
+
+
EA  
COMP2  
0.8V  
REFERENCE  
FAULT  
MONITOR  
GATE  
DRIVE  
PHASE2  
PGND2  
EN2  
CSA2  
BOOT  
REFRESH  
CONTROL  
+
SLOPE COMP  
POWER-ON  
RESET  
MONITOR  
VIN1  
LDO  
V
= 5V  
CC  
CSA2  
CSA1  
VIN1  
THERMAL  
MONITOR  
+150°C  
SYNCOUT  
FS  
OSCILLATOR  
SYNCIN  
+
SLOPE COMP  
VIN1  
CSA1  
CSA1  
EN1  
FAULT  
MONITOR  
0.8V  
REFERENCE  
DRIVE  
GATE  
COMP1  
+
-
PHASE1  
PGND1  
+ EA  
-
MONITOR  
VOLTAGE  
CONTROL  
SOFT-START  
BOOT  
REFRESH  
CONTROL  
SS1  
-10%  
+
-
VCC  
5MΩ  
BOOT UV  
VCC  
DETECTION  
FN6676 Rev 8.00  
February 17, 2015  
Page 6 of 26  
ISL85033  
Ordering Information  
PART NUMBER  
PART  
MARKING  
TEMP. RANGE  
(°C)  
PACKAGE  
(RoHS Compliant)  
PKG.  
DWG. #  
(Notes 1, 2, 3)  
ISL85033IRTZ  
850 33IRTZ  
-40 to +85  
28 Ld TQFN  
L28.4x4  
ISL85033-12VEVAL3Z  
ISL85033DUALEVAL1Z  
ISL85033EVAL2Z  
ISL85033CRSHEVAL1Z  
NOTES:  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Evaluation Board  
1. Add “-T*” suffix for Tape and Reel. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL85033. For more information on MSL please see techbrief TB363.  
FN6676 Rev 8.00  
February 17, 2015  
Page 7 of 26  
ISL85033  
Absolute Maximum Ratings  
Thermal Information  
VIN1/2 to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +30V  
PHASE1/2 to GND . . . . . . . . . . . . . . . . . . . -7V (<10ns) /-0.3V (DC) to +33V  
BOOT1/2 to PHASE1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +5.9V  
FS to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +5.9V  
SYNCIN to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +5.9V  
FB1/2 to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +2.95V  
EN1/2 to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +5.9V  
PGOOD1/2 to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +5.9V  
COMP1/2 to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +5.9V  
VCC to GND Short Maximum Duration. . . . . . . . . . . . . . . . . . . . . . . . . . . . .1s  
SYNCOUT to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +5.9V  
SS1/2 to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +5.9V  
ESD Rating  
Thermal Resistance  
QFN Package (Notes 4, 5) . . . . . . . . . . . . . .  
(°C/W)  
38  
(°C/W)  
3
JA  
JC  
Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . .+150°C  
Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Temperature Range . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-55°C to +150°C  
Operating Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493  
Recommended Operating Conditions  
Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5V to 28V  
Human Body Model (Tested per JESD22-A114) . . . . . . . . . . . . . . . . . 3kV  
Charged Device Model (Tested per JESD22-C101E). . . . . . . . . . . . .2.2kV  
Machine Model (Tested per JESD22-A115). . . . . . . . . . . . . . . . . . . . 300V  
Latch-up (Tested per JESD-78A; Class 2, Level A) . . . . . . . . . . . . . . 100mA  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379 for details.  
5. For , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications  
T
= -40°C to +85°C, V = 4.5V to 28V, unless otherwise noted. Typical values are at T = +25°C.  
IN  
A
A
Boldface limits apply across the operating temperature range, -40°C to +85°C  
MIN  
MAX  
PARAMETER  
SUPPLY VOLTAGE  
SYMBOL  
TEST CONDITIONS  
(Note 8)  
TYP  
(Note 8)  
UNITS  
V
V
V
V
Voltage Range  
VIN  
4.5  
4.5  
28  
2.2  
45  
V
mA  
µA  
V
IN  
IN  
IN  
CC  
Quiescent Supply Current  
Shutdown Supply Current  
Voltage  
I
1.2  
20  
Q
I
EN1/2 = 0V  
= 12V; I = 0mA  
OUT  
SD  
V
V
5.1  
5.6  
CC  
IN  
POWER-ON RESET  
VIN POR Threshold  
Rising Edge  
Falling Edge  
3.9  
3.7  
4.4  
V
V
3.2  
OSCILLATOR  
Nominal Switching Frequency  
f
FS pin = VCC  
420  
500  
300  
2000  
800  
580  
kHz  
kHz  
kHz  
mV  
kHz  
kHz  
ns  
SW  
Resistor from FS pin to GND = 383kΩ  
Resistor from FS pin to GND = 40.2kΩ  
FS = 100kΩ  
FS Voltage  
V
780  
600  
820  
FS  
Switching Frequency  
SYNCIN = 600kHz  
300  
1.2MHz SYNCIN 4MHz  
2000  
Minimum Off-time  
t
130  
OFF  
ERROR AMPLIFIER  
Error Amplifier Transconductance Gain  
FB1, FB2 Leakage Current  
Current Sense Amplifier Gain  
Reference Voltage  
gm  
125  
205  
10  
285  
100  
0.24  
0.808  
3.5  
µA/V  
nA  
V
= 0.8V  
FB  
R
0.18  
0.792  
1.5  
0.21  
0.8  
2.5  
2
V/A  
V
T
Soft-start Ramp Time  
SS1, SS2 = V  
DD  
ms  
µA  
Soft-start Charging Current  
ISS  
1.4  
2.6  
FN6676 Rev 8.00  
February 17, 2015  
Page 8 of 26  
ISL85033  
Electrical Specifications  
T
= -40°C to +85°C, V = 4.5V to 28V, unless otherwise noted. Typical values are at T = +25°C.  
IN  
A
A
Boldface limits apply across the operating temperature range, -40°C to +85°C (Continued)  
MIN  
MAX  
PARAMETER  
POWER-GOOD  
SYMBOL  
TEST CONDITIONS  
(Note 8)  
TYP  
(Note 8)  
UNITS  
PG1, PG2 Trip Level PG to PGOOD1,  
PGOOD2  
Rise  
Fall  
91  
85.5  
10  
94  
%
%
82.5  
PG1, PG2 Propagation Delay  
PG1, PG2 Low Voltage  
Percentage of the soft-start time  
ISINK = 3mA  
%
100  
300  
mV  
ENABLE INPUT  
EN1, EN2 Leakage Current  
EN1, EN2 Input Threshold Voltage  
EN1/2 = 0V/5V  
Low Level  
-1  
1
µA  
V
0.8  
1.4  
Float Level  
High Level  
1.0  
2
V
V
SYNC INPUT/OUTPUT  
SYNCIN Input Threshold  
Falling Edge  
Rising Edge  
Hysteresis  
1.1  
1.4  
1.6  
200  
10  
V
V
1.9  
mV  
nA  
SYNCIN Leakage Current  
SYNCIN Pulse Width  
SYNCIN = 0V/5V  
1000  
100  
600  
ns  
SYNCOUT Phase-shift to SYNCIN  
Measured from rising edge to rising  
edge, if duty cycle is 50%  
180  
Degree  
SYNCOUT Frequency Range  
SYNCOUT Output Voltage High  
SYNCOUT Output Voltage Low  
FAULT PROTECTION  
4000  
0.3  
kHz  
V
ISYNCOUT = 3mA  
V
- 0.3  
V
-0.08  
CC  
CC  
0.08  
V
Thermal Shutdown Temperature  
T
Rising Threshold  
Hysteresis  
150  
20  
°C  
°C  
A
SD  
T
HYS  
Overcurrent Protection Threshold  
OCP Blanking Time  
POWER MOSFET  
(Note 7)  
4.1  
5.1  
60  
6.1  
ns  
High-side  
R
I
I
= 100mA  
= 100mA  
75  
1
150  
300  
mΩ  
Ω
HDS  
PHASE  
Internal BOOT1, BOOT2 Refresh Low-side  
PHASE Leakage Current  
PHASE Rise Time  
R
LDS  
PHASE  
EN1/2 = PHASE1/2 = 0V  
= 25V  
nA  
ns  
t
V
10  
RISE  
IN  
NOTES:  
6. Test Condition: V = 28V, FB forced above regulation point (0.8V), no switching, and power MOSFET gate charging current not included.  
IN  
7. Established by both current sense amplifier gain test and current sense amplifier output test at I = 0A.  
L
8. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested.  
FN6676 Rev 8.00  
February 17, 2015  
Page 9 of 26  
ISL85033  
Typical Performance Curves Circuit of Figure 2. V = 12V, V  
= 5V, V  
OUT2  
= 3.3V, I  
OUT1  
= 3A, I  
= 3A,  
OUT2  
IN  
OUT1  
T
= -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.  
A
A
100  
90  
80  
70  
60  
50  
40  
100  
90  
12V  
1MHz  
80  
70  
60  
50  
40  
OUT  
9V  
OUT  
1MHz  
5V  
OUT  
3.3V  
OUT  
5V  
OUT  
500kHz  
3.3V  
500kHz  
OUT  
1.8V  
300kHz  
OUT  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 4. EFFICIENCY vs LOAD, T = +25°C, V = 28V  
IN  
FIGURE 5. EFFICIENCY vs LOAD, T = +25°C, f = 500kHz,  
SW  
A
A
V
= 12V  
IN  
4.2  
3.5  
2.8  
2.1  
1.4  
0.7  
0.0  
100  
90  
80  
70  
60  
50  
40  
9V  
IN  
12V  
IN  
28V  
IN  
12V  
IN  
28V  
IN  
9V  
IN  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 6. EFFICIENCY vs LOAD, T = +25°C, CURRENT SHARING  
FIGURE 7. POWER DISSIPATION vs LOAD, T = +25°C,  
A
A
5V  
, f  
= 500kHz  
CURRENT SHARING 5V  
, f  
= 500kHz  
OUT SW  
OUT SW  
4.8  
4.0  
3.2  
2.4  
1.6  
0.8  
0.0  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
12V  
IN  
9V  
IN  
12V  
IN  
28V  
IN  
28V  
IN  
9V  
IN  
0
1
2
3
4
5
6
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 8. POWER DISSIPATION vs LOAD, T = +85°C,  
FIGURE 9. V  
OUT  
REGULATION vs LOAD, CHANNEL 1,  
, f = 500kHz  
A
CURRENT SHARING 5V  
, f  
= 500kHz  
T
= +25°C, 5V  
OUT SW  
A
OUT SW  
FN6676 Rev 8.00  
February 17, 2015  
Page 10 of 26  
ISL85033  
Typical Performance Curves Circuit of Figure 2. V = 12V, V  
= 5V, V  
= 3.3V, I  
OUT1  
= 3A, I = 3A,  
OUT2  
IN  
OUT1  
OUT2  
T
= -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C. (Continued)  
A
A
3.329  
3.328  
3.326  
3.325  
3.323  
3.322  
3.320  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
28V  
IN  
18V  
IN  
9V  
IN  
12V  
IN  
28V  
IN  
12V  
1.0  
IN  
0
0.5  
1.5  
2.0  
2.5  
3.0  
0
1
2
3
4
5
6
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 11. V  
OUT  
REGULATION vs LOAD, CHANNEL 2, T = +25°C,  
A
FIGURE 10. V  
T
REGULATION vs LOAD, CURRENT SHARING,  
OUT  
= +25°C, 5V  
3.3V  
, f  
= 500kHz  
, f  
= 500kHz  
OUT SW  
A
OUT SW  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
0A  
3A  
2A  
0A  
4A  
6A  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
FIGURE 12. OUTPUT VOLTAGE REGULATION vs V , CHANNEL 1,  
IN  
FIGURE 13. OUTPUT VOLTAGE REGULATION vs V , CURRENT  
IN  
T
= +25°C, 5V  
, f  
= 500kHz  
SHARING, T = +25°C, 5V = 500kHz  
, f  
A
OUT SW  
A
OUT SW  
3.340  
3.335  
3.330  
3.325  
3.320  
3.315  
3.310  
LX1 5V/DIV  
V
RIPPLE 20mV/DIV  
OUT1  
0A  
3A  
2A  
IL1 0.1A/DIV  
0
5
10  
15  
20  
25  
30  
INPUT VOLTAGE (V)  
FIGURE 14. OUTPUT VOLTAGE REGULATION vs V , CHANNEL 2,  
IN  
FIGURE 15. STEADY STATE OPERATION AT NO LOAD CHANNEL 1  
T
= +25°C, 3.3V = 500kHz  
, f  
A
OUT SW  
FN6676 Rev 8.00  
February 17, 2015  
Page 11 of 26  
ISL85033  
Typical Performance Curves Circuit of Figure 2. V = 12V, V  
= 5V, V  
OUT2  
= 3.3V, I  
OUT1  
= 3A, I  
= 3A,  
OUT2  
IN  
OUT1  
T
= -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C. (Continued)  
A
A
LX1 5V/DIV  
LX2 5V/DIV  
V
RIPPLE 20mV/DIV  
IL1 0.2A/DIV  
OUT1  
V
RIPPLE 20mV/DIV  
OUT2  
IL2 0.1A/DIV  
FIGURE 16. STEADY STATE OPERATION AT NO LOAD CHANNEL 1  
(V = 9V)  
FIGURE 17. STEADY STATE OPERATION AT NO LOAD CHANNEL 2  
IN  
LX1 5V/DIV  
LX2 5V/DIV  
V
RIPPLE 20mV/DIV  
OUT2  
V
RIPPLE 20mV/DIV  
OUT1  
IL1 1A/DIV  
IL2 1A/DIV  
FIGURE 18. STEADY STATE OPERATION WITH FULL LOAD CHANNEL 1  
FIGURE 19. STEADY STATE OPERATION WITH FULL LOAD CHANNEL 2  
LX2 10V/DIV  
V
RIPPLE 20mV/DIV  
OUT1  
V
RIPPLE 20mV/DIV  
OUT  
LX1 10V/DIV  
IL1 2A/DIV  
FIGURE 20. STEADY STATE OPERATION WITH FULL LOAD CURRENT  
SHARING  
FIGURE 21. LOAD TRANSIENT CHANNEL 1  
FN6676 Rev 8.00  
February 17, 2015  
Page 12 of 26  
ISL85033  
Typical Performance Curves Circuit of Figure 2. V = 12V, V  
= 5V, V  
OUT2  
= 3.3V, I  
OUT1  
= 3A, I  
= 3A,  
OUT2  
IN  
OUT1  
T
= -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C. (Continued)  
A
A
EN1 5V/DIV  
V
2V/DIV  
OUT1  
V
RIPPLE 20mV/DIV  
OUT2  
IL1 0.5A/DIV  
PG1 5V/DIV  
IL2 2A/DIV  
FIGURE 22. LOAD TRANSIENT CHANNEL 2  
FIGURE 23. SOFT-START WITH NO LOAD CHANNEL 1  
EN2 5V/DIV  
EN1 5V/DIV  
V
2V/DIV  
OUT2  
V
2V/DIV  
OUT1  
IL2 0.5A/DIV  
PG2 5V/DIV  
IL1 2A/DIV  
PG1 5V/DIV  
FIGURE 24. SOFT-START WITH NO LOAD CHANNEL 2  
FIGURE 25. SOFT-START AT FULL LOAD CHANNEL 1  
EN2 5V/DIV  
EN1 5V/DIV  
V
2V/DIV  
OUT2  
V
1V/DIV  
OUT1  
IL2 2A/DIV  
IL1 0.5A/DIV  
PG 5V/DIV  
PG2 5V/DIV  
FIGURE 26. SOFT-START AT FULL LOAD CHANNEL 2  
FIGURE 27. SOFT-DISCHARGE SHUTDOWN CHANNEL 1  
FN6676 Rev 8.00  
February 17, 2015  
Page 13 of 26  
ISL85033  
Typical Performance Curves Circuit of Figure 2. V = 12V, V  
= 5V, V  
OUT2  
= 3.3V, I  
OUT1  
= 3A, I  
= 3A,  
OUT2  
IN  
OUT1  
T
= -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C. (Continued)  
A
A
V
V
2V/DIV  
2V/DIV  
OUT1  
OUT2  
EN2 5V/DIV  
V
0.5V/DIV  
OUT2  
EN1, 2 2V/DIV  
IL2 0.5A/DIV  
PG 5V/DIV  
FIGURE 28. SOFT-DISCHARGE SHUTDOWN CHANNEL 2  
FIGURE 29. INDEPENDENT START-UP SEQUENCING AT NO LOAD  
V
V
2V/DIV  
2V/DIV  
V
2V/DIV  
2V/DIV  
OUT1  
OUT2  
OUT1  
V
OUT2  
EN1, 2 2V/DIV  
EN1, 2 2V/DIV  
FIGURE 30. RATIOMETRIC START-UP SEQUENCING AT NO LOAD  
FIGURE 31. ABSOLUTE START-UP SEQUENCING AT NO LOAD  
LX1 10V/DIV  
LX1 10V/DIV  
V
RIPPLE 20mV/DIV  
OUT1  
V
RIPPLE 20mV/DIV  
OUT2  
LX2 10V/DIV  
SYNC 5V/DIV  
LX2 10V/DIV  
SYNC 5V/DIV  
FIGURE 32. STEADY STATE OPERATION CHANNEL 1 AT FULL LOAD WITH  
SYNC FREQUENCY = 4MHz  
FIGURE 33. STEADY STATE OPERATION CHANNEL 2 AT FULL LOAD WITH  
SYNC FREQUENCY = 4MHz  
FN6676 Rev 8.00  
February 17, 2015  
Page 14 of 26  
ISL85033  
Typical Performance Curves Circuit of Figure 2. V = 12V, V  
= 5V, V  
OUT2  
= 3.3V, I  
OUT1  
= 3A, I  
= 3A,  
OUT2  
IN  
OUT1  
T
= -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C. (Continued)  
A
A
PHASE1 10V/DIV  
PHASE1 10V/DIV  
V
2V/DIV  
OUT1  
IL1 2A/DIV  
V
2V/DIV  
IL1 2A/DIV  
PG1 5V/DIV  
OUT1  
PG1 5V/DIV  
FIGURE 34. OUTPUT SHORT CIRCUIT CHANNEL 1  
FIGURE 35. OUTPUT SHORT CIRCUIT HICCUP AND RECOVERY FOR  
CHANNEL 1  
PHASE2 10V/DIV  
IL2 2A/DIV  
PHASE2 10V/DIV  
V
2V/DIV  
OUT2  
V
2V/DIV  
OUT2  
IL2 2A/DIV  
PG2 5V/DIV  
PG2 5V/DIV  
FIGURE 36. OUTPUT SHORT CIRCUIT CHANNEL 2  
FIGURE 37. OUTPUT SHORT CIRCUIT HICCUP AND RECOVERY FOR  
CHANNEL 2  
FN6676 Rev 8.00  
February 17, 2015  
Page 15 of 26  
ISL85033  
pin. PG is actively held low when EN is low and during the buck  
regulator soft-start period. After the soft-start period terminates,  
PG becomes high impedance as long as the output voltage  
(monitored on the FB pin) is above 90% of the nominal regulation  
Detailed Description  
The ISL85033 combines a standard buck PWM controller with  
integrated switching MOSFETs. The buck controller drives an  
internal N-Channel MOSFET and requires an external diode to  
deliver load current up to 3A. A Schottky diode is recommended  
for improved efficiency and performance over a standard diode.  
The standard buck regulator can operate from an unregulated DC  
source, such as a battery, with a voltage ranging from +4.5V to  
+28V. The converter output can be regulated to as low as 0.8V.  
These features make the ISL85033 ideally suited for FPGA,  
set-top boxes, LCD panels, DVD drives, and wireless chipset  
power applications.  
voltage set by FB. When V  
drops 10% below the nominal  
OUT  
regulation voltage, the ISL85033 pulls PG low. Any fault condition  
forces PG low until the fault condition is cleared by attempts to  
soft-start. There is an internal 5MΩ internal pull-up resistor.  
Output Voltage Selection  
The regulator output voltage is easily programmed using an  
external resistor divider to scale V  
relative to the internal  
OUT  
reference voltage. The scaled voltage is applied to the inverting  
input of the error amplifier; refer to Figure 38.  
The ISL85033 employs peak current-mode control loop, which  
simplifies feedback loop compensation and rejects input voltage  
variation. External feedback loop compensation allows flexibility  
in output filter component selection. The regulator switches at a  
default 500kHz and it can be adjusted from 300kHz to 2MHz  
with a resistor from FS to GND. The ISL85033 is synchronizable  
from 300kHz to 2MHz.  
The output voltage programming resistor, R , depends on the  
2
value chosen for the feedback resistor, R , and the desired  
3
output voltage, V , of the regulator. Equation 2 describes the  
OUT  
relationship between V  
OUT  
and resistor values. R is often  
3
chosen to be in the 1kΩ to 10kΩ range.  
(EQ. 2)  
R
= V  
0.8  R 0.8  
OUT 3  
2
Operation Initialization  
The power-on reset circuitry and enable inputs prevent false  
start-up of the PWM regulator output. Once all input criteria are  
met, the controller soft starts the output voltage to the  
programmed level.  
If the desired output voltage is 0.8V, then R is left unpopulated  
3
and R is 0Ω.  
2
V
OUT  
R
R
2
FB  
-
+
Power-on Reset and Undervoltage Lockout  
The ISL85033 automatically initializes upon receipt of input  
power supply. The power-on reset (POR) function continually  
EA  
3
0.8V  
REFERENCE  
monitors V  
voltage. While below the POR threshold, the  
IN1  
controller inhibits switching of the internal power MOSFET. Once  
exceeded, the controller initializes the internal soft-start circuitry.  
If V  
supply drops below their falling POR threshold during  
FIGURE 38. EXTERNAL RESISTOR DIVIDER  
IN1  
soft-start or operation, the buck regulator is disabled until the  
input voltage returns.  
Output Tracking and Sequencing  
Enable and Disable  
The output tracking and sequencing between channels can be  
implemented by using the SS1 and SS2 pins. Figures 39, 40 and  
41 show several configurations for output tracking/sequencing  
for a 2.5V and 1.8V application. Independent soft-start for each  
channel is shown in Figure 39 and measured in Figure 29. The  
When EN1 and EN2 are pulled low, the device enters shutdown  
mode and the supply current drops to a typical value of 20µA. All  
internal power devices are held in a high impedance state while  
in shutdown mode.  
output ramp-time for each channel (t ) is set by the soft-start  
capacitor (C ) as shown by Equation 3.  
SS  
SS  
The EN pin enables the controller of the ISL85033. When the  
voltage on the EN pin exceeds its logic rising threshold, the  
controller initiates the 2ms soft-start function for the PWM  
regulator. If the voltage on the EN pin drops below the falling  
threshold, the buck regulator shuts down.  
(EQ. 3)  
C
F= 2.5*t s  
SS  
SS  
The maximum C value is recommended not to exceed 100nF.  
SS  
Ratiometric tracking is achieved in Figure 40 by using the same  
value for the soft-start capacitor on each channel; it is measured  
in Figure 30.  
If EN1 and EN2 pins are driven by an external signal, the  
minimum off-time for EN1 and EN2 should be:  
EN_T_off s= 10s C  
2.2nF  
(EQ. 1)  
SS  
By connecting a feedback network from V  
with the same ratio that sets V  
OUT2  
shown in Figure 41 is implemented. The measurement is shown  
in Figure 31. If the output of Channel 1 is shorted to GND, it will  
enter overcurrent hiccup mode, SS2 will be pulled low through  
to the SS2 pin  
voltage, absolute tracking  
OUT1  
Where C is the soft-start pin capacitor (nF). The ISL85033 does  
SS  
not have debouncing to the EN1 and EN2 external signals.  
Power-good  
the added resistor between V  
Channel 2 into hiccup as well. If the output of Channel 2 is  
and SS2 and this will force  
PG is the open-drain output of a window comparator that  
continuously monitors the buck regulator output voltage via the FB  
OUT1  
FN6676 Rev 8.00  
February 17, 2015  
Page 16 of 26  
ISL85033  
shorted to GND with V  
in regulation, it will enter overcurrent  
OUT1  
V
V
OUT1  
hiccup mode with a very short hiccup waiting time. The reason is  
that V is still in regulation and can pull up SS2 very quickly  
5.0V  
3.3V  
SS1  
SS2  
C
C
OUT1  
via the resistor added between V  
3
C
47nF  
1
and SS2.  
OUT1  
Figure 42 illustrates output sequencing. When EN1 is high and  
EN2 is floating, OUT1 comes up first and OUT2 will not start until  
OUT1 > 90% of its regulation point. If EN1 is floating and EN2 is  
high, OUT2 comes up first and OUT1 will not start until  
ISL85033  
OUT2  
4
OUT2 > 90% of its regulation point. If EN1 = EN2 = high, OUT1  
and OUT2 come up at the same time. Please refer to Table 1 for  
conditions related to Figure 42 (Output Sequencing).  
TABLE 1. OUTPUT SEQUENCING  
R
8.06k  
R
1
25.5k  
2
EN1  
High  
EN2  
Floating  
High  
V
V
NOTE  
OUT1  
OUT2  
First  
After V  
> 90%  
OUT1  
Floating  
High  
After V  
> 90%  
First  
OUT2  
FIGURE 41. ABSOLUTE START-UP  
High  
Same time  
as V  
Same time  
as V  
OUT2  
OUT1  
Floating Floating  
Not  
Allowed  
5.0V  
3.3V  
V
OUT1  
OUT2  
SS1  
C
3
C
22nF  
1
V
5.0V  
OUT1  
OUT2  
SS2  
EN1  
SS1  
SS2  
ISL85033  
C
C
3
4
C
22nF  
2
C1  
22nF  
V
C
EN2  
4
ISL85033  
C2  
47nF  
V
3.3V  
FIGURE 42. OUTPUT SEQUENCING  
Protection Features  
FIGURE 39. INDEPENDENT START-UP  
The ISL85033 limits the current in all on-chip power devices.  
Overcurrent protection limits the current on the two buck  
regulators and internal LDO for V  
.
CC  
V
5.0V  
3.3V  
OUT1  
SS1  
Buck Regulator Overcurrent Protection  
C
3
4
C
1
During PWM on-time, current through the internal switching  
MOSFET is sampled and scaled through an internal pilot device.  
The sampled current is compared to a nominal 5A overcurrent  
limit. If the sampled current exceeds the overcurrent limit  
reference level, an internal overcurrent fault counter is set to 1  
and an internal flag is set. The internal power MOSFET is  
immediately turned off and will not be turned on again until the  
next switching cycle.  
22nF  
SS2  
ISL85033  
V
OUT2  
C
C
2
22nF  
The protection circuitry continues to monitor the current and  
turns off the internal MOSFET as described. If the overcurrent  
condition persists for 17 sequential clock cycles, the overcurrent  
fault counter overflows indicating an overcurrent fault condition  
exists. The regulator is shutdown and power-good goes low.  
FIGURE 40. RATIOMETRIC START-UP  
The buck controller attempts to recover from the overcurrent  
condition after waiting 8 soft-start cycles. The internal  
overcurrent flag and counter are reset. A normal soft-start cycle  
FN6676 Rev 8.00  
February 17, 2015  
Page 17 of 26  
ISL85033  
is attempted and normal operation continues if the fault  
condition has cleared. If the overcurrent fault counter overflows  
during soft-start, the converter shuts down and this hiccup mode  
operation repeats.  
Synchronization Control  
The frequency of operation can be synchronized up to 2MHz by  
an external signal applied to the SYNCIN pin. The falling edge on  
the SYNCIN triggers the rising edge of PHASE1/2. The switching  
frequency for each output is half of the SYNCIN frequency.  
Thermal Overload Protection  
Thermal overload protection limits maximum junction  
temperature in the ISL85033. When the junction temperature  
Output Inductor Selection  
The inductor value determines the converter’s ripple current.  
Choosing an inductor current requires a somewhat arbitrary  
choice of ripple current, I. A reasonable starting point is 30% of  
total load current. The inductor value can then be calculated  
using Equation 5:  
(T ) exceeds +150°C, a thermal sensor sends a signal to the fault  
monitor.  
J
The fault monitor commands the buck regulator to shutdown.  
When the junction temperature has decreased by 20°C, the  
regulator will attempt a normal soft-start sequence and return to  
normal operation. For continuous operation, the +125°C  
junction temperature rating should not be exceeded.  
V
V  
V
OUT  
IN  
OUT  
(EQ. 5)  
------------------------------- ---------------  
L =  
f
 I  
V
IN  
SW  
Increasing the value of inductance reduces the ripple current and  
thus ripple voltage. However, the larger inductance value may  
reduce the converter’s response time to a load transient. The  
inductor current rating should be such that it will not saturate in  
overcurrent conditions.  
BOOT Undervoltage Protection  
If the BOOT capacitor voltage falls below 2.5V, the BOOT  
undervoltage protection circuit will pull the phase pin low through  
a 1Ω switch for 400ns to recharge the capacitor. This operation  
may arise during long periods of no switching as in no load  
situations.  
Buck Regulator Output Capacitor Selection  
An output capacitor is required to filter the inductor current. The  
Output ripple voltage and transient response are 2 critical factors  
when considering output capacitance choice. The current mode  
control loop allows the usage of low ESR ceramic capacitors and  
thus smaller board layout. Electrolytic and polymer capacitors  
may also be used.  
Application Guidelines  
Operating Frequency  
The ISL85033 operates at a default switching frequency of  
500kHz if FS is tied to V . Tie a resistor from FS to GND to  
CC  
program the switching frequency from 300kHz to 2MHz, as  
shown in Equation 4. [Minimum on-time of 150ns (typical) in  
conjunction with the input and output voltage should be  
considered when selecting the maximum operating frequency].  
Additional consideration applies to ceramic capacitors. While  
they offer excellent overall performance and reliability, the actual  
in-circuit capacitance must be considered. Ceramic capacitors  
are rated using large peak-to-peak voltage swings and with no DC  
bias. In the DC/DC converter application, these conditions do not  
reflect reality. As a result, the actual capacitance may be  
considerably lower than the advertised value. Consult the  
manufacturers data sheet to determine the actual in-application  
capacitance. Most manufacturers publish capacitance vs DC bias  
so that this effect can be easily accommodated. The effects of  
AC voltage are not frequently published, but an assumption of  
~20% further reduction will generally suffice. The result of these  
considerations can easily result in an effective capacitance 50%  
lower than the rated value. Nonetheless, they are a very good  
choice in many applications due to their reliability and extremely  
low ESR.  
(EQ. 4)  
k = 122k t 0.17s  
R
FS  
Where t is the switching period in µs.  
300  
200  
The following equations allow calculation of the required  
capacitance to meet a desired ripple voltage level. Additional  
capacitance may be used.  
100  
0
For the ceramic capacitors (low ESR):  
I  
------------------------------------  
V
=
(EQ. 6)  
is the  
OUTripple  
C
OUT  
500  
750  
1000  
1250  
(kHz)  
1500  
1750  
2000  
8 f  
SW  
f
SW  
Where I is the inductor’s peak-to-peak ripple current, f  
SW  
FIGURE 43. R SELECTION vs f  
FS  
SW  
switching frequency and C  
is the output capacitor.  
OUT  
If using electrolytic capacitors then:  
V
= I*ESR  
(EQ. 7)  
OUTripple  
FN6676 Rev 8.00  
February 17, 2015  
Page 18 of 26  
ISL85033  
Regarding transient response needs, a good starting point is to  
IRMS  
2
(EQ. 10)  
-----------  
=
D D  
determine the allowable overshoot in V  
if the load is suddenly  
OUT  
I
o
removed. In this case, energy stored in the inductor will be  
transferred to C causing its voltage to rise. After calculating  
Where D = V /V  
IN  
O
OUT  
capacitance required for both ripple and transient needs, choose  
the larger of the calculated values. Equation 8 determines the  
required output capacitor value in order to achieve a desired  
overshoot relative to the regulated voltage.  
The input ripple current is graphically represented in Figure 45.  
0.6  
0.5  
0.4  
2
I
L
*
OUT  
--------------------------------------------------------------------------------------------  
=
C
(EQ. 8)  
OUT  
2
2
V
V  
V  
1  
*
OUT  
OUTMAX  
OUT  
Where V is the relative maximum overshoot  
allowed during the removal of the load. For an overshoot of 5%,  
the equation becomes Equation 9:  
/V  
OUTMAX OUT  
0.3  
0.2  
0.1  
0
2
I
L
*
OUT  
-----------------------------------------------------  
=
C
(EQ. 9)  
OUT  
2
2
V
1.05 1  
*
OUT  
Figure 44 shows the relationship of C  
OUT  
and % overshoot at three  
0
0.2  
0.4  
0.6  
0.8  
different output voltages. L is assumed to be 7µH and I  
is 3A.  
OUT  
DUTY CYCLE (D)  
FIGURE 45. I  
/I vs DUTY CYCLE  
O
RMS  
A minimum of 10µF ceramic capacitance is required on each VIN  
pin. The capacitors must be as close to the IC as physically  
possible. Additional capacitance may be used.  
80  
60  
3.3V  
OUT  
Loop Compensation Design  
The ISL85033 uses a constant frequency current mode control  
architecture to achieve simplified loop compensation and fast  
loop transient response.  
40  
5V  
OUT  
20  
0
12V  
OUT  
The compensator schematic is shown in Figure 47. As mentioned  
in the C  
selection, ISL85033 allows the usage of low ESR  
OUT  
1.02  
1.04  
1.06  
/V  
1.08  
1.10  
output capacitor. Choice of the loop bandwidth f is somewhat  
c
arbitrary but should not exceed 1/4 of the switching frequency.  
As a starting point, the lower of 100kHz or 1/6 of the switching  
frequency is reasonable. The following equations determine  
initial component values for the compensation, allowing the  
designer to make the selection with minimal effort. Further detail  
is provided in “Theory of Compensation” on page 20 to allow fine  
tuning of the compensator.  
V
OUTMAX OUT  
FIGURE 44. C  
vs OVERSHOOT V  
/V  
OUT  
OUTMAX OUT  
Current Sharing Configuration  
In current sharing configuration, FB1 is connected to FB2, EN1 to  
EN2, COMP1 to COMP2 and V  
to V as shown in Figure 3  
OUT1  
OUT2  
on page 5. As a result, the equivalent g doubles its single  
m
Compensation resistor R is given by Equation 11:  
1
channel value. Since the two channels are out-of-phase, the  
frequency will be 2x the channel switching frequency. Ripple  
current cancellation will reduce the ripple current seen by the  
output capacitors and thus lower the ripple voltage. This results  
in the ability to use less capacitance than would be required by a  
single phase design of similar rating. Ripple current cancellation  
also reduces the ripple current seen at the input capacitors.  
2f V C R  
o o T  
c
(EQ. 11)  
-----------------------------------  
=
R
1
g
V
FB  
m
Which, when applied to the ISL85033 becomes:  
V C  
o o  
(EQ. 12)  
R k= 0.008247 f  
1
c
Where C is the output capacitor value [µF], f = loop bandwidth  
o
c
Input Capacitor Selection  
[kHz] and V is the output voltage [V].  
o
To reduce the resulting input voltage ripple and to minimize EMI  
by forcing the very high frequency switching current into a tight  
local loop, an input capacitor is required. The input capacitor  
must have adequate ripple current rating, which can be  
approximated by Equation 10. If capacitors other than MLCC are  
used, attention must be paid to ripple and surge current ratings.  
Compensation capacitors C [nF], C [pF] are given by  
Equation 13:  
1
2
3
6
C
V  10  
C
R  10  
(EQ. 13)  
o
o
o
c
-----------------------------------------  
-----------------------------------------  
C
=
,C =  
1
2
I
R  
R
1
o
1
Where I [A] is the output load current, R (Ω) and R (Ω) is the  
o
1
C
ESR of the output capacitor C .  
o
FN6676 Rev 8.00  
February 17, 2015  
Page 19 of 26  
ISL85033  
Example: V = 5V, I = 3A, f  
= 500kHz, f = 50kHz,  
c
Power Stage Transfer Functions  
o
o
SW  
C = 47µF/R = 5mΩ, then the compensation resistance  
o
c
Transfer function F (S) from control to output voltage is  
1
R = 96kΩ.  
1
calculated in Equation 17:  
The compensation capacitors are:  
S
-----------  
1 +  
ˆ
v
esr  
(EQ. 17)  
o
C = 815pF, C = 2.5pF (There is approximately 3pF parasitic  
------  
ˆ
--------------------------------------  
F S=  
= V  
IN  
1
2
1
2
d
S
S
capacitance from V  
to GND; therefore, C is optional).  
COMP  
2
------ --------------  
+
+ 1  
2
o
Q  
o
p
Theory of Compensation  
C
1
1
o
--------------  
------  
--------------  
Where  
=
,Q R  
  =  
The sensed current signal is injected into the voltage loop to  
achieve current mode control to simplify the loop compensation  
design. The inductor is not considered as a state variable for  
current mode control and the system becomes a single order  
system. It is much easier to design a compensator to stabilize the  
voltage loop than voltage mode control. Figure 46 shows the  
small signal model of the synchronous buck regulator.  
esr  
p
o
o
R C  
L
LC  
o
c
o
Transfer function F (S) from control to inductor current is given  
2
by Equation 18:  
S
------  
1 +  
ˆ
V
I
o
IN  
z
----  
ˆ
-------------------- --------------------------------------  
F S=  
=
(EQ. 18)  
2
2
R
+ R  
L
d
o
S
S
------ --------------  
+
+ 1  
2
o
Q  
^
^
^
L
o
p
i
i
L
IN  
V
O
1
^
d
--------------  
=
V
Where  
z
IN  
^
^
R C  
1:D  
I d  
V
o
o
L
IN  
Rc  
Ro  
+
R
Current loop gain T (S) is expressed as Equation 19:  
i
T
(EQ. 19)  
T S= R F F SH S  
Co  
i
T
m
2
e
T (S)  
The voltage loop gain with open current loop is calculated in  
Equation 20:  
i
^
d
K
Fm  
(EQ. 20)  
T S= KF F SA S  
v
m
1
v
The voltage loop gain with current loop closed is given by  
Equation 21:  
T (S)  
v
+
He(S)  
^
V
COMP  
T S  
(EQ. 21)  
-Av(S)  
v
-----------------------  
L S=  
v
1 + T S  
i
FIGURE 46. SMALL SIGNAL MODEL OF SYNCHRONOUS BUCK  
REGULATOR  
V
FB  
----------  
K =  
, V  
FB  
Where  
V
is the feedback voltage of the voltage  
o
error amplifier. If T (S)>>1, then Equation 21 can be simplified as  
shown in Equation 22:  
PWM Comparator Gain F  
i
m
The PWM comparator gain F for peak current mode control is  
m
S
given by Equation 14:  
-----------  
1 +  
V
R
+ R  
A S  
esr v  
1
FB  
o
L
ˆ
(EQ. 22)  
-------------------------------------------------------------------  
--------------  
d
1
L S=  
,   
p
v
-------------------  
-------------------------------  
(EQ. 14)  
F
=
=
V
R
S
H S  
R C  
o o  
m
ˆ
o
T
e
------  
S + S T  
s
1 +  
v
e
n
COMP  
p
Where S is the slew rate of the slope compensation and S is  
given by Equation 15.  
e
n
Equation 22 shows that the system is a single order system,  
which has a single pole located at P before the half switching  
frequency. Therefore, a simple type II compensator can be easily  
used to stabilize the system.  
V
V  
o
L
IN  
(EQ. 15)  
----------------------  
= R  
T
S
n
Where R is transresistance and is the product of the current  
T
sensing resistance and gain of the current amplifier in current  
loop.  
CURRENT SAMPLING TRANSFER FUNCTION H (S)  
e
In current loop, the current signal is sampled every switching  
cycle. Equation 16 shows the transfer function:  
2
S
S
(EQ. 16)  
------ --------------  
+
H S=  
+ 1  
e
2
n
Q  
n
n
2
--  
Where Q and are given by Q = – = = f .  
n
n
n
n
S
FN6676 Rev 8.00  
February 17, 2015  
Page 20 of 26  
ISL85033  
Put the compensator zero at 6.6kHz (~1.5x C R ), and put the  
o o  
Vo  
compensator pole at ESR zero, which is 1.45MHz. The  
compensator capacitors are:  
R
2
C
3
C = 470pF, C = 3pF (There is approximately 3pF parasitic  
1
2
V
FB  
-
capacitance from V  
to GND; therefore, C is optional).  
V
COMP  
2
COMP  
GM  
V
Figure 48A shows the simulated voltage loop gain. It is shown  
that it has 80kHz loop bandwidth with 69° phase margin and  
15dB gain margin. Optional addition phase boost can be added  
REF  
R
3
+
R
1
1
C
2
to the overall loop response by using C .  
3
C
60  
45  
30  
FIGURE 47. TYPE II COMPENSATOR  
GAIN (dB)  
Figure 47 shows the type II compensator and its transfer function  
is expressed as Equation 23:  
15  
0
S
S
   
   
------------  
------------  
1 +  
1 +  
ˆ
g
v
COMP  
m
cz1  
cz2  
(EQ. 23)  
------------------- -------------------- ---------------------------------------------------------  
A S=  
=
-15  
-30  
v
ˆ
C
+ C  
S
v
1
2
FB  
---------  
S 1 +  
cp  
3
4
5
6
100  
1•10  
1•10  
1•10  
1•10  
Where:  
FIGURE 48A.  
C
+ C  
2
1
1
1
(EQ. 24)  
--------------  
--------------  
----------------------  
=
=
,
=
   
cp  
cz1  
cz2  
R C  
R C  
R C C  
1 1 2  
1
1
2
3
100  
80  
60  
40  
20  
0
The compensator design goal is:  
High DC gain  
1
1
-- ------  
to  
f
Loop bandwidth f :  
c
SW  
4
10  
PHASE (°)  
Gain margin: >10dB  
Phase margin: 40°  
The compensator design procedure is shown in Equation 25:  
1
(EQ. 25)  
--------------  
= 1to3  
Put compensator zero  
cz1  
R C  
o
0
-20  
100  
3
4
5
6
1•10  
1•10  
1•10  
1•10  
Put one compensator pole at zero frequency to achieve high DC  
gain, and put another compensator pole at either ESR zero  
frequency or half switching frequency, whichever is lower.  
FIGURE 48B.  
Rectifier Selection  
The loop gain T (S) at crossover frequency of f has unity gain.  
v
c
Current circulates from ground to the junction of the external  
Schottky diode and the inductor when the high-side switch is off.  
As a consequence, the polarity of the switching node is negative  
with respect to ground. This voltage is approximately -0.5V (a  
Schottky diode drop) during the off-time. The rectifier's rated  
reverse breakdown voltage must be at least equal to the  
maximum input voltage, preferably with a 20% derating factor.  
The power dissipation when the Schottky diode conducts is  
expressed in Equation 28:  
Therefore, the compensator resistance R is determined by  
Equation 26:  
1
2f V C R  
o o T  
c
(EQ. 26)  
-----------------------------------  
=
R
1
g
V
FB  
m
Where g is the transconductance of the voltage error amplifier,  
m
typically 200µA/V. Compensator capacitor C is then given by  
1
Equation 27:  
1
1
V
(EQ. 27)  
-----------------  
------------------------  
C
=
,C =  
OUT  
(EQ. 28)  
1
2
---------------  
R   
2R f  
P
W= I  
V 1 –  
1
cz  
1 esr  
D
OUT  
D
V
IN  
Example: V = 12V, V = 5V, I = 3A, f  
= 500kHz,  
C = 22µF (derated value over voltage, temperature)/5mΩ,  
IN SW  
o
o
Where:  
o
5
The V is the voltage drop of the Schottky diode. Selection of the  
D
Schottky diode is critical in terms of the high temperature  
reverse bias leakage current, which is very dependent on V and  
exponentially increasing with temperature. Due to the nature of  
L = 5.6µH, g = 200µs, R = 0.21, V = 0.8V, S = 1.110 V/s,  
m
T
FB  
e
5
S = 3.410 V/s, f = 80kHz, then compensator resistance  
n
c
R = 72kΩ.  
IN  
1
FN6676 Rev 8.00  
February 17, 2015  
Page 21 of 26  
ISL85033  
reverse bias leakage vs temperature, the diode should be  
carefully selected to operate in the worst case circuit conditions.  
Catastrophic failure is possible if the diode chosen experiences  
thermal runaway at elevated temperatures. Refer to Application  
Notes for AN1574, AN1605, AN1584 diode selection listed on  
page 1.  
Layout Considerations  
Layout is very important in high frequency switching converter  
designs. With power devices switching efficiently between  
100kHz and 600kHz, the resulting current transitions from one  
device to another cause voltage spikes across the  
interconnecting impedances and parasitic circuit elements.  
These voltage spikes can degrade efficiency, radiate noise into  
the circuit, and lead to device overvoltage stress. Careful  
component layout and printed circuit board design minimizes  
these voltage spikes.  
Power Derating Characteristics  
To prevent the ISL85033 from exceeding the maximum junction  
temperature, some thermal analysis is required. The  
temperature rise is given by Equation 29:  
As an example, consider the turn-off transition of the upper  
MOSFET. Prior to turn-off, the MOSFET is carrying the full load  
current. During turn-off, current stops flowing in the MOSFET and  
is picked up by the Schottky diode. Any parasitic inductance in  
the switched current path generates a large voltage spike during  
the switching interval. Careful component selection, tight layout  
of the critical components and short, wide traces minimizes the  
magnitude of voltage spikes.  
(EQ. 29)  
T
= PD  
JA  
RISE  
Where PD is the power dissipated by the regulator and θ is the  
JA  
thermal resistance from the junction of the die to the ambient  
temperature. The junction temperature, T , is given by  
Equation 30:  
J
(EQ. 30)  
T = T + T   
RISE  
J
A
There are two sets of critical components in the ISL85033  
switching converter. The switching components are the most  
critical because they switch large amounts of energy and  
therefore tend to generate large amounts of noise. Next are the  
small signal components which connect to sensitive nodes or  
supply critical bypass current and signal coupling.  
Where T is the ambient temperature. For the QFN package, the  
A
θ
is +38°C/W.  
JA  
The actual junction temperature should not exceed the absolute  
maximum junction temperature of +125°C When considering  
the thermal design, (consider the thermal needs of the rectifier  
diode).  
A multilayer printed circuit board is recommended. Figure 50  
shows the connections of the critical components in the  
The ISL85033 delivers full current at ambient temperatures up  
to +85°C if the thermal impedance from the thermal pad  
maintains the junction temperature below the thermal shutdown  
level, depending on the Input Voltage/Output Voltage  
combination and the switching frequency. The device power  
dissipation must be reduced to maintain the junction  
temperature at or below the thermal shutdown level. Figure 49  
illustrates the power derating versus ambient temperature for  
the ISL85033 evaluation kit. Note that the evaluation kit derating  
curve is based on total circuit dissipation, not IC dissipation  
alone.  
converter. Note that capacitors C and C  
could each  
IN OUT  
represent numerous physical capacitors. Dedicate one solid  
layer, (usually a middle layer of the PC board) for a ground plane  
and make all critical component ground connections with vias to  
this layer. Dedicate another solid layer as a power plane and  
break this plane into smaller islands of common voltage levels.  
Keep the metal runs from the PHASE terminals to the output  
inductor short. The power plane should support the input power  
and output power nodes. Use copper filled polygons on the top  
and bottom circuit layers for the phase nodes. Use the remaining  
printed circuit layers for small signal wiring.  
120  
110  
100  
90  
In order to dissipate heat generated by the internal LDO and  
MOSFET, the ground pad should be connected to the internal  
ground plane through at least four vias. This allows the heat to  
move away from the IC and also ties the pad to the ground plane  
through a low impedance path.  
80  
70  
60  
50  
40  
30  
20  
10  
0
= +38°C/W  
JA  
The switching components should be placed close to the  
ISL85033 first. Minimize the length of the connections between  
the input capacitors, C , and the power switches by placing  
IN  
them nearby. Position both the ceramic and bulk input capacitors  
as close to the upper MOSFET drain as possible. Position the  
output inductor and output capacitors between the upper and  
Schottky diode and the load.  
0
1
2
3
4
5
6
7
8
9
10 11 12  
ISL85033EVAL1ZB EVALUATION BOARD  
TOTAL POWER DISSIPATION (W)  
The critical small signal components include any bypass  
capacitors, feedback components, and compensation  
components. Place the PWM converter compensation  
components close to the FB and COMP pins. The feedback  
resistors should be located as close as possible to the FB pin with  
vias tied straight to the ground plane as required.  
FIGURE 49. POWER DERATING CURVE  
FN6676 Rev 8.00  
February 17, 2015  
Page 22 of 26  
ISL85033  
Fb1  
Fb2  
ISL85033  
L1  
L2  
LX1 trace  
LX2 trace  
. . .  
vias  
D1  
D2  
Cin1 Cin2  
VOUT2  
Cout1  
Cout2  
VOUT1  
FIGURE 50. PRINTED CIRCUIT BOARD POWER PLANES AND ISLANDS  
FN6676 Rev 8.00  
February 17, 2015  
Page 23 of 26  
ISL85033  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest Rev.  
DATE  
REVISION  
CHANGE  
February 17, 2015  
FN6676.8 Page 21, paragraph below Equation 27, changed “Co = 220µF/5mΩ...” to "Co = 22µF (derated value over voltage,  
temperature)/5mΩ...  
April 17, 2014  
FN6676.7 On page 16 in the "Output Tracking and Sequencing" changed the sentence "Maximum CSS value is 50nF" to "The  
maximum CSS value is recommended not to exceed 100nF".  
Figure 39 on page 17, changed C1 from 0.1µF to 22nF and C2 from 0.2µF to 47nF.  
Figure 40 on page 17, changed the value of both C1 and C2 to 22nF each.  
Figure 41 on page 17, changed C1 value to 47nF.  
Figure 42 on page 17, changed C1 and C2 value to 22nF each.  
On page 18 in the Operating Frequency chapter, after the sentence "Tie a resistor from FS to GND to program the  
switching frequency from 300kHz to 2MHz, as shown in Equation 4." Added : "Minimum on-time of 150ns (typical)  
in conjunction with input and output voltage should be considered when selecting the maximum operating  
frequency".  
November 2, 2011  
FN6676.6 In the “Pin Descriptions” on page 3, added the following to end of EN1, EN2 description:  
"If EN1, EN2 pins are driven by an external signal, the minimum off-time for EN1, EN2 should be:  
EN_T_off s= 10s C  
2.2nF  
SS  
where CSS is the soft-start pin capacitor (nF). ISL85033 does not have debouncing to EN1, EN2 external signals."  
In “Enable and Disable” on page 16, adding the following:  
"If EN1, EN2 pins are driven by an external signal, the minimum off-time for EN1, EN2 should be:  
EN_T_off s= 10s C  
2.2nF  
SS  
where CSS is the soft-start pin capacitor (nF). ISL85033 does not have debouncing to EN1, EN2 external signals."  
Adding the following after Equation 3 on page 16:  
"Maximum Css value is 50nF".  
In the “Pin Descriptions” on page 3, added the following to the end of SS1, SS2 description:  
"Maximum Css value is 50nF".  
October 7, 2011  
FN6676.5 In “Absolute Maximum Ratings” on page 8, changed:  
PHASE1/2 to GND . . . . .-0.3V to +33V  
to:  
PHASE1/2 to GND . . . . .-7V (<10ns) /-0.3V (DC) to +33V  
September 14, 2011 FN6676.4 In the “Pin Descriptions” on page 4, for “SYNCIN”, replaced “Set the internal switching frequency 20% lower than  
the external SYNC frequency applied to the SYNCIN pin" with "External SYNC frequency applied to the SYNCIN pin  
should be at least 2.4 times the internal switching frequency setting"  
August 9, 2011  
April 5, 2011  
On page 8, changed parameter name from “Syncronization Frequency” to “Switching Frequency”.  
FN6676.3 Converted to new template  
Updated Intersil Trademark statement at bottom of page 1 per directive from Legal.  
Page 2 in the pin table definition, please add the following sentence to the Pin 11 (VCC) description after “Output  
of the internal 5V linear regulator. Decouple to PGND with a minimum of 4.7μF ceramic capacitor.”  
“This pin is provided only for internal bias of ISL85033 (not to be loaded with current over 10mA).”  
Page 8 all Absolute Max Ratings that are “5.5” should be changed to “5.9”  
October 15, 2010  
FN6676.2 Added the following sentence to the “SYNCIN” description in the “Pin Descriptions” table on page 4:  
“Set the internal switching frequency 20% lower than the external SYNC frequency applied to the SYNCIN pin.”  
Added the following sentence to “Synchronization Control” on page 18: “The switching frequency for each output  
is half of the SYNCIN frequency.”  
Revised tape and reel note in “Ordering Information” on page 7 from:  
“Add “-T” suffix for Tape and Reel. Please refer to TB347 for details on reel specifications”  
to:  
“Add “-T*” suffix for Tape and Reel. Please refer to TB347 for details on reel specifications”  
This is in order to delineate all tape and reel options.  
FN6676 Rev 8.00  
February 17, 2015  
Page 24 of 26  
ISL85033  
Revision History(Continued)  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest Rev. (Continued)  
DATE  
REVISION  
CHANGE  
September 14, 2010  
Corrected Eq. 2 on page 16 from:  
R x0.8V  
2
----------------------------------  
=
R
3
V
0.8V  
OUT  
to:  
R
= V  
0.8  R 0.8  
2
OUT  
3
Revised preceding paragraph from:  
“The output voltage programming resistor, R , depends on the value chosen for the feedback resistor, R , and the  
3
2
desired output voltage, V , of the regulator. Equation 2 describes the relationship between V  
and resistor  
OUT OUT  
values. R is often chosen to be in the 1kΩ to 10kΩ range.”  
2
to:  
“The output voltage programming resistor, R , depends on the value chosen for the feedback resistor, R , and the  
2
3
desired output voltage, V , of the regulator. Equation 2 describes the relationship between V  
and resistor  
OUT OUT  
values. R is often chosen to be in the 1kΩ to 10kΩ range.”  
3
July 21, 2010  
July 18, 2010  
FN6676.1 Changed MIN/MAX for “Soft-start Charging Current” on page 8 from 1.5/2.5µA to 1.4/2.6µA  
FN6676.0 Initial Release.  
About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com.  
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support  
© Copyright Intersil Americas LLC 2010-2015. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6676 Rev 8.00  
February 17, 2015  
Page 25 of 26  
ISL85033  
Package Outline Drawing  
L28.4x4  
28 LEAD THIN QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 0, 9/06  
A
4 . 00  
2 . 50  
B
PIN 1  
PIN #1 INDEX AREA  
CHAMFER 0 . 400 X 45°  
0 . 40  
INDEX AREA  
22  
28  
21  
1
0 . 40  
15  
7
0 . 10  
2X  
14  
8
0 . 20 ±0 . 05  
0 . 10 M  
C
A B  
0 . 4 x 6 = 2 . 40 REF  
3 . 20  
TOP VIEW  
BOTTOM VIEW  
SEE DETAIL X''  
0 . 10 C  
C
(3 . 20)  
PACKAGE BOUNDARY  
MAX. 0 . 80  
SEATING PLANE  
0 . 08 C  
(28X 0 . 20)  
0 . 00 - 0 . 05  
0 . 20 REF  
SIDE VIEW  
(0 . 40)  
0 . 20 REF  
C
5
(0 . 40)  
0 ~ 0 . 05  
(28X 0 . 60)  
(2 . 50)  
DETAIL "X"  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Controlling dimensions are in mm.  
Dimensions in ( ) for reference only.  
2. Unless otherwise specified, tolerance : Decimal ±0.05  
Angular ±2°  
3. Dimensioning and tolerancing conform to AMSE Y14.5M-1994  
4. Bottom side Pin#1 ID is diepad chamfer as shown.  
5. Tiebar shown (if present) is a non-functional feature.  
.
FN6676 Rev 8.00  
February 17, 2015  
Page 26 of 26  

相关型号:

ISL85033EVAL1ZREVBPCB

Wide VIN Dual Standard Buck Regulator With 3A/3A Output Current
INTERSIL

ISL85033EVAL2Z

Wide VIN Dual Standard Buck Regulator With 3A/3A Output Current - Short Form
INTERSIL

ISL85033EVAL2Z

Wide VIN Dual Standard Buck Regulator With 3A/3A Continuous Output Current
RENESAS

ISL85033IRTZ

Wide VIN Dual Standard Buck Regulator With 3A/3A Coutinuous Output Current
INTERSIL

ISL85033IRTZ

Wide VIN Dual Standard Buck Regulator With 3A/3A Continuous Output Current
RENESAS

ISL85033IRTZ-T7

DUAL SWITCHING CONTROLLER
RENESAS

ISL85033IRTZ-T7A

Dual Switching Controller
RENESAS

ISL85033_1012

Wide VIN Dual Standard Buck Regulator With 3A/3A Continuous Output Current
INTERSIL

ISL85033_11

Wide VIN Dual Standard Buck Regulator With 3A/3A Continuous Output Current
INTERSIL

ISL8510

Dual Output Controller with 1A Standard Buck PWM and LDO
INTERSIL

ISL8510IRZ

Dual Output Controller with 1A Standard Buck PWM and LDO
INTERSIL

ISL8510IRZ

1A DUAL SWITCHING CONTROLLER, 550kHz SWITCHING FREQ-MAX, PQCC24, 4 X 4 MM, ROHS COMPLIANT, PLASTIC, QFN-24
RENESAS